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Abstract

Factorizing low-rank matrices has many applications in machine learning and statis-
tics. For probabilistic models in the Bayes optimal setting, a general expression
for the mutual information has been proposed using heuristic statistical physics
computations, and proven in few specific cases. Here, we show how to rigorously
prove the conjectured formula for the symmetric rank-one case. This allows to
express the minimal mean-square-error and to characterize the detectability phase
transitions in a large set of estimation problems ranging from community detec-
tion to sparse PCA. We also show that for a large set of parameters, an iterative
algorithm called approximate message-passing is Bayes optimal. There exists,
however, a gap between what currently known polynomial algorithms can do and
what is expected information theoretically. Additionally, the proof technique has
an interest of its own and exploits three essential ingredients: the interpolation
method introduced in statistical physics by Guerra, the analysis of the approximate
message-passing algorithm and the theory of spatial coupling and threshold satura-
tion in coding. Our approach is generic and applicable to other open problems in
statistical estimation where heuristic statistical physics predictions are available.

Consider the following probabilistic rank-one matrix estimation problem: one has access to
noisy observations w = (wij)

n
i,j=1 of the pair-wise product of the components of a vector

s = (s1, . . . , sn)ᵀ ∈ Rn with i.i.d components distributed as Si ∼ P0, i = 1, . . . , n. The entries
of w are observed through a noisy element-wise (possibly non-linear) output probabilistic channel
Pout(wij |sisj/

√
n). The goal is to estimate the vector s from w assuming that both P0 and Pout are

known and independent of n (noise is symmetric so that wij =wji). Many important problems in
statistics and machine learning can be expressed in this way, such as sparse PCA [1], the Wigner
spiked model [2, 3], community detection [4] or matrix completion [5].

Proving a result initially derived by a heuristic method from statistical physics, we give an explicit
expression for the mutual information (MI) and the information theoretic minimal mean-square-error
(MMSE) in the asymptotic n→∞ limit. Our results imply that for a large region of parameters,
the posterior marginal expectations of the underlying signal components (often assumed intractable
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to compute) can be obtained in the leading order in n using a polynomial-time algorithm called
approximate message-passing (AMP) [6, 3, 4, 7]. We also demonstrate the existence of a region
where both AMP and spectral methods [8] fail to provide a good answer to the estimation problem,
while it is nevertheless information theoretically possible to do so. We illustrate our theorems with
examples and also briefly discuss the implications in terms of computational complexity.

1 Setting and main results

The additive white Gaussian noise setting: A standard and natural setting is the case of additive
white Gaussian noise (AWGN) of known variance ∆, wij =sisj/

√
n+zij

√
∆, where z=(zij)

n
i,j=1

is a symmetric matrix with i.i.d entries Zij ∼N (0, 1), 1≤ i≤ j≤n. Perhaps surprisingly, it turns
out that this Gaussian setting is sufficient to completely characterize all the problems discussed in
the introduction, even if these have more complicated output channels. This is made possible by a
theorem of channel universality [9] (already proven for community detection in [4] and conjectured in
[10]). This theorem states that given an output channel Pout(w|y), such that (s.t) logPout(w|y=0) is
three times differentiable with bounded second and third derivatives, then the MI satisfies I(S; W)=

I(S; SSᵀ/
√
n+Z

√
∆)+O(

√
n), where ∆ is the inverse Fisher information (evaluated at y=0) of

the output channel: ∆−1 := EPout(w|0)[(∂y logPout(W |y)|y=0)2]. Informally, this means that we
only have to compute the MI for an AWGN channel to take care of a wide range of problems, which
can be expressed in terms of their Fisher information. In this paper we derive rigorously, for a large
class of signal distributions P0, an explicit one-letter formula for the MI per variable I(S; W)/n in
the asymptotic limit n→∞.

Main result: Our central result is a proof of the expression for the asymptotic n→∞MI per variable
via the so-called replica symmetric (RS) potential iRS(E; ∆) defined as

iRS(E; ∆) :=
(v − E)2 + v2

4∆
− ES,Z

[
ln

(∫
dxP0(x)e

− x2

2Σ(E;∆)2
+x
(

S
Σ(E;∆)2

+ Z
Σ(E;∆)

))]
, (1)

with Z∼N (0, 1), S∼P0, E[S2]=v and Σ(E; ∆)2 :=∆/(v−E), E∈ [0, v]. Here we will assume
that P0 is a discrete distribution over a finite bounded real alphabet P0(s)=

∑ν
α=1 pαδ(s−aα). Thus

the only continuous integral in (1) is the Gaussian over z. Our results can be extended to mixtures of
discrete and continuous signal distributions at the expense of technical complications in some proofs.

It turns out that both the information theoretic and algorithmic AMP thresholds are determined by the
set of stationary points of (1) (w.r.t E). It is possible to show that for all ∆>0 there always exist at
least one stationary minimum. Note E=0 is never a stationary point (except for P0 a single Dirac
mass) and E= v is stationary only if E[S] = 0. In this contribution we suppose that at most three
stationary points exist, corresponding to situations with at most one phase transition. We believe that
situations with multiple transitions can also be covered by our techniques.

Theorem 1.1 (RS formula for the mutual information) Fix ∆>0 and let P0 be a discrete distri-
bution s.t (1) has at most three stationary points. Then limn→∞ I(S; W)/n=minE∈[0,v] iRS(E; ∆).

The proof of the existence of the limit does not require the above hypothesis on P0. Also, it was first
shown in [9] that for all n, I(S; W)/n≤minE∈[0,v] iRS(E; ∆), an inequality that we will use in the
proof section. It is conceptually useful to define the following threshold:

Definition 1.2 (Information theoretic threshold) Define ∆Opt as the first non-analyticity point of
the MI as ∆ increases: ∆Opt :=sup{∆| limn→∞ I(S; W)/n is analytic in ]0,∆[}.

When P0 is s.t (1) has at most three stationary points, as discussed below, then minE∈[0,v] iRS(E; ∆)
has at most one non-analyticity point denoted ∆RS (if minE∈[0,v] iRS(E; ∆) is analytic over all R+

we set ∆RS =∞). Theorem 1.1 gives us a mean to compute the information theoretic threshold
∆Opt =∆RS. A basic application of theorem 1.1 is the expression of the MMSE:

Corollary 1.3 (Exact formula for the MMSE) For all ∆ 6= ∆RS, the matrix-MMSE Mmmsen :=
ES,W[‖SSᵀ − E[XXᵀ|W]‖2F]/n2 (‖ − ‖F being the Frobenius norm) is asymptotically
limn→∞Mmmsen(∆−1) = v2−(v−argminE∈[0,v]iRS(E; ∆))2. Moreover, if ∆<∆AMP (where
∆AMP is the algorithmic threshold, see definition 1.4) or ∆>∆RS, then the usual vector-MMSE
Vmmsen :=ES,W[‖S−E[X|W]‖22]/n satisfies limn→∞Vmmsen=argminE∈[0,v]iRS(E; ∆).
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It is natural to conjecture that the vector-MMSE is given by argminE∈[0,v]iRS(E; ∆) for all ∆ 6=∆RS,
but our proof does not quite yield the full statement.

A fundamental consequence concerns the performance of the AMP algorithm [6] for estimating s.
AMP has been analysed rigorously in [11, 12, 4] where it is shown that its asymptotic performance
is tracked by state evolution (SE). Let Et :=limn→∞ ES,Z[‖S− ŝt‖22]/n be the asymptotic average
vector-MSE of the AMP estimate ŝt at time t. Define mmse(Σ−2) :=ES,Z [(S−E[X|S+ΣZ])2] as
the usual scalar mmse function associated to a scalar AWGN channel of noise variance Σ2, with
S∼P0 and Z∼N (0, 1). Then

Et+1 = mmse(Σ(Et; ∆)−2), E0 = v, (2)

is the SE recursion. Monotonicity properties of the mmse function imply that Et is a decreasing
sequence s.t limt→∞Et=E∞ exists. Note that when E[S] = 0 and v is an unstable fixed point, as
such, SE “does not start”. While this is not really a problem when one runs AMP in practice, for
analysis purposes one can slightly bias P0 and remove the bias at the end of the proofs.

Definition 1.4 (AMP algorithmic threshold) For ∆ > 0 small enough, the fixed point equation
corresponding to (2) has a unique solution for all noise values in ]0,∆[. We define ∆AMP as the
supremum of all such ∆.

Corollary 1.5 (Performance of AMP) In the limit n→∞, AMP initialized without any knowledge
other than P0 yields upon convergence the asymptotic matrix-MMSE as well as the asymptotic
vector-MMSE iff ∆<∆AMP or ∆>∆RS, namely E∞=argminE∈[0,v]iRS(E; ∆).

∆AMP can be read off the replica potential (1): by differentiation of (1) one finds a fixed point
equation that corresponds to (2). Thus ∆AMP is the smallest solution of ∂iRS/∂E=∂2iRS/∂E

2 =0;
in other words it is the “first” horizontal inflexion point appearing in iRS(E; ∆) when ∆ increases.

Discussion: With our hypothesis on P0 there are only three possible scenarios: ∆AMP < ∆RS

(one “first order” phase transition); ∆AMP = ∆RS < ∞ (one “higher order” phase transition);
∆AMP = ∆RS =∞ (no phase transition). In the sequel we will have in mind the most interesting
case, namely one first order phase transition, where we determine the gap between the algorithmic
AMP and information theoretic performance. The cases of no phase transition or higher order phase
transition, which present no algorithmic gap, are basically covered by the analysis of [3] and follow
as a special case from our proof. The only cases that would require more work are those where P0 is
s.t (1) develops more than three stationary points and more than one phase transition is present.

For ∆AMP<∆RS the structure of stationary points of (1) is as follows1 (figure 1). There exist three
branchesEgood(∆), Eunstable(∆) andEbad(∆) s.t: 1) For 0<∆<∆AMP there is a single stationary
point Egood(∆) which is a global minimum; 2) At ∆AMP a horizontal inflexion point appears, for
∆∈ [∆AMP,∆RS] there are three stationary points satisfying Egood(∆AMP)<Eunstable(∆AMP)=
Ebad(∆AMP), Egood(∆) < Eunstable(∆) < Ebad(∆) otherwise, and moreover iRS(Egood; ∆) ≤
iRS(Ebad; ∆) with equality only at ∆RS; 3) for ∆ > ∆RS there is at least the stationary point
Ebad(∆) which is always the global minimum, i.e. iRS(Ebad; ∆)<iRS(Egood; ∆). (For higher ∆
the Egood(∆) and Eunstable(∆) branches may merge and disappear); 4) Egood(∆) is analytic for
∆∈]0,∆′[, ∆′>∆RS, and Ebad(∆) is analytic for ∆>∆AMP.

We note for further use in the proof section that E∞=Egood(∆) for ∆<∆AMP and E∞=Ebad(∆)
for ∆>∆AMP. Definition 1.4 is equivalent to ∆AMP = sup{∆|E∞=Egood(∆)}. Moreover we
will also use that iRS(Egood; ∆) is analytic on ]0,∆′[, iRS(Ebad; ∆) is analytic on ]∆AMP,∞[, and
the only non-analyticity point of minE∈[0,v] iRS(E; ∆) is at ∆RS.

Relation to other works: Explicit single-letter characterization of the MI in the rank-one problem
has attracted a lot of attention recently. Particular cases of theorem 1.1 have been shown rigorously
in a number of situations. A special case when si=±1∼Ber(1/2) already appeared in [13] where
an equivalent spin glass model is analysed. Very recently, [9] has generalized the results of [13]
and, notably, obtained a generic matching upper bound. The same formula has been also rigorously
computed following the study of AMP in [3] for spiked models (provided, however, that the signal
was not too sparse) and in [4] for strictly symmetric community detection.

1We take E[S] 6= 0. Once theorem 1.1 is proven for this case a limiting argument allows to extend it to
E[S]=0.
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Figure 1: The replica symmetric potential iRS(E) for four values of ∆ in the Wigner spiked model. The MI
is min iRS(E) (the black dot, while the black cross corresponds to the local minimum) and the asymptotic
matrix-MMSE is v2−(v−argminEiRS(E))2, where v=ρ in this case with ρ=0.02 as in the inset of figure 2.
From top left to bottom right: (1) For low noise values, here ∆=0.0008<∆AMP, there exists a unique “good”
minimum corresponding to the MMSE and AMP is Bayes optimal. (2) As the noise increases, a second local
“bad” minimum appears: this is the situation at ∆AMP<∆=0.0012<∆RS. (3) For ∆=0.00125>∆RS, the
“bad” minimum becomes the global one and the MMSE suddenly deteriorates. (4) For larger values of ∆, only
the “bad” minimum exists. AMP can be seen as a naive minimizer of this curve starting from E=v=0.02. It
reaches the global minimum in situations (1), (3) and (4), but in (2), when ∆AMP<∆<∆RS, it is trapped by
the local minimum with large MSE instead of reaching the global one corresponding to the MMSE.

For rank-one symmetric matrix estimation problems, AMP has been introduced by [6], who also
computed the SE formula to analyse its performance, generalizing techniques developed by [11] and
[12]. SE was further studied by [3] and [4]. In [7, 10], the generalization to larger rank was also
considered. The general formula proposed by [10] for the conditional entropy and the MMSE on the
basis of the heuristic cavity method from statistical physics was not demonstrated in full generality.
Worst, all existing proofs could not reach the more interesting regime where a gap between the
algorithmic and information theoretic perfomances appears, leaving a gap with the statistical physics
conjectured formula (and rigorous upper bound from [9]). Our result closes this conjecture and has
interesting non-trivial implications on the computational complexity of these tasks.

Our proof technique combines recent rigorous results in coding theory along the study of capacity-
achieving spatially coupled codes [14, 15, 16, 17] with other progress, coming from developments
in mathematical physics putting on a rigorous basis predictions of spin glass theory [18]. From
this point of view, the theorem proved in this paper is relevant in a broader context going beyond
low-rank matrix estimation. Hundreds of papers have been published in statistics, machine learning
or information theory using the non-rigorous statistical physics approach. We believe that our result
helps setting a rigorous foundation of a broad line of work. While we focus on rank-one symmetric
matrix estimation, our proof technique is readily extendable to more generic low-rank symmetric
matrix or low-rank symmetric tensor estimation. We also believe that it can be extended to other
problems of interest in machine learning and signal processing, such as generalized linear regression,
features/dictionary learning, compressed sensing or multi-layer neural networks.

2 Two examples: Wigner spiked model and community detection

In order to illustrate the consequences of our results we shall present two examples.

Wigner spiked model: In this model, the vector s is a Bernoulli random vector, Si∼Ber(ρ). For
large enough densities (i.e. ρ>0.041(1)), [3] computed the matrix-MMSE and proved that AMP is a
computationally efficient algorithm that asymptotically achieves the matrix-MMSE for any value of
the noise ∆. Our results allow to close the gap left open by [3]: on one hand we now obtain rigorously
the MMSE for ρ≤ 0.041(1), and on the other one we observe that for such values of ρ, and as ∆
decreases, there is a small region where two local minima coexist in iRS(E; ∆). In particular for
∆AMP<∆<∆Opt = ∆RS the global minimum corresponding to the MMSE differs from the local
one that traps AMP, and a computational gap appears (see figure 1). While the region where AMP
is Bayes optimal is quite large, the region where is it not, however, is perhaps the most interesting
one. While this is by no means evident, statistical physics analogies with physical phase transitions
in nature suggest that this region should be hard for a very broad class of algorithms. For small ρ our
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Figure 2: Phase diagram in the noise variance ∆ versus density ρ plane for the rank-one spiked Wigner model
(left) and the asymmetric community detection (right). Left: [3] proved that AMP achieves the matrix-MMSE
for all ∆ as long as ρ>0.041(1). Here we show that AMP is actually achieving the optimal reconstruction in
the whole phase diagram except in the small region between the blue and red lines. Notice the large gap with
spectral methods (dashed black line). Inset: matrix-MMSE (blue) at ρ=0.02 as a function of ∆. AMP (dashed
red) provably achieves the matrix-MMSE except in the region ∆AMP <∆<∆Opt = ∆RS. We conjecture
that no polynomial-time algorithm will do better than AMP in this region. Right: Asymmetric community
detection problem with two communities. For ρ>1/2−

√
1/12 (black point) and when ∆>1, it is information

theoretically impossible to find any overlap with the true communities and the matrix-MMSE is 1, while it
becomes possible for ∆<1. In this region, AMP is always achieving the matrix-MMSE and spectral methods
can find a non-trivial overlap with the truth as well, starting from ∆<1. For ρ<1/2−

√
1/12, however, it is

information theoretically possible to find an overlap with the hidden communities for ∆>1 (below the blue line)
but both AMP and spectral methods miss this information. Inset: matrix-MMSE (blue) at ρ=0.05 as a function
of ∆. AMP (dashed red) again provably achieves the matrix-MMSE except in the region ∆AMP<∆<∆Opt.

results are consistent with the known optimal and algorithmic thresholds predicted in sparse PCA
[19, 20], that treats the case of sub-extensive ρ=O(1) values. Another interesting line of work for
such probabilistic models appeared in the context of random matrix theory (see [8] and references
therein) and predicts that a sharp phase transition occurs at a critical value of the noise ∆spectral =ρ2

below which an outlier eigenvalue (and its principal eigenvector) has a positive correlation with the
hidden signal. For larger noise values the spectral distribution of the observation is indistinguishable
from that of the pure random noise.

Asymmetric balanced community detection: We now consider the problem of detecting two com-
munities (groups) with different sizes ρn and (1− ρ)n, that generalizes the one considered in
[4]. One is given a graph where the probability to have a link between nodes in the first group
is p+µ(1−ρ)/(ρ

√
n), between those in the second group is p+µρ/(

√
n(1−ρ)), while inter-

connections appear with probability p−µ/
√
n. With this peculiar “balanced” setting, the nodes

in each group have the same degree distribution with mean pn, making them harder to distin-
guish. According to the universality property described in the first section, this is equivalent to a
model with AWGN of variance ∆ = p(1−p)/µ2 where each variable si is chosen according to
P0(s)=ρδ(s−

√
(1−ρ)/ρ)+(1−ρ)δ(s+

√
ρ/(1−ρ)). Our results for this problem2 are summarized

on the right hand side of figure 2. For ρ > ρc = 1/2−
√

1/12 (black point), it is asymptotically
information theoretically possible to get an estimation better than chance if and only if ∆<1. When
ρ<ρc, however, it becomes possible for much larger values of the noise. Interestingly, AMP and
spectral methods have the same transition and can find a positive correlation with the hidden commu-
nities for ∆<1, regardless of the value of ρ. Again, a region [∆AMP,∆Opt =∆RS] exists where a
computational gap appears when ρ<ρc. One can investigate the very low ρ regime where we find
that the information theoretic transition goes as ∆Opt(ρ→0) = 1/(4ρ| log ρ|). Now if we assume
that this result stays true even for ρ= O(1) (which is a speculation at this point), we can choose
µ→(1−p)ρ

√
n such that the small group is a clique. Then the problem corresponds to a “balanced”

version of the famous planted clique problem [21]. We find that the AMP/spectral approach finds the

2Note that here since E=v=1 is an extremum of iRS(E; ∆), one must introduce a small bias in P0 and let
it then tend to zero at the end of the proofs.
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hidden clique when it is larger than
√
np/(1−p), while the information theoretic transition translates

into size of the clique 4p log(n)/(1−p). This is indeed reminiscent of the more classical planted
clique problem at p=1/2 with its gap between log(n) (information theoretic),

√
n/e (AMP [22])

and
√
n (spectral [21]). Since in our balanced case the spectral and AMP limits match, this suggests

that the small gain of AMP in the standard clique problem is simply due to the information provided
by the distribution of local degrees in the two groups (which is absent in our balanced case). We
believe this correspondence strengthens the claim that the AMP gap is actually a fundamental one.

3 Proofs

The crux of our proof rests on an auxiliary “spatially coupled system”. The hallmark of spatially
coupled models is that one can tune them so that the gap between the algorithmic and information
theoretic limits is eliminated, while at the same time the MI is maintained unchanged for the coupled
and original models. Roughly speaking, this means that it is possible to algorithmically compute
the information theoretic limit of the original model because a suitable algorithm is optimal on
the coupled system. The present spatially coupled construction is similar to the one used for the
coupled Curie-Weiss model [14]. Consider a ring of length L+1 (L even) with blocks positioned at
µ∈{0, . . . , L} and coupled to neighboring blocks {µ−w, . . . , µ+w}. Positions µ are taken modulo
L+1 and the integer w∈{0, . . . , L/2} equals the size of the coupling window. The coupled model is

wiµjν = siµsjν

√
Λµν
n

+ ziµjν
√

∆, (3)

where the index iµ∈{1, . . . , n} (resp. jν) belongs to the block µ (resp. ν) along the ring, Λ is an
(L+1)×(L+1) matrix which describes the strength of the coupling between blocks, andZiµjν ∼N (0, 1)
are i.i.d. For the proof to work, the matrix elements have to be chosen appropriately. We assume
that: i) Λ is a doubly stochastic matrix; ii) Λµν depends on |µ−ν|; iii) Λµν is not vanishing for
|µ−ν| ≤ w and vanishes for |µ−ν|>w; iv) Λ is smooth in the sense |Λµν−Λµ+1ν |=O(w−2); v)
Λ has a non-negative Fourier transform. All these conditions can easily be met, the simplest example
being a triangle of base 2w+1 and height 1/(w+1). The construction of the coupled system is
completed by introducing a seed in the ring: we assume perfect knowledge of the signal components
{siµ} for µ∈B :={−w−1, . . . , w−1} mod L+1. This seed is what allows to close the gap between
the algorithmic and information theoretic limits and therefore plays a crucial role. Note it can also be
viewed as an “opening” of the chain with fixed boundary conditions. Our first crucial result states
that the MI Iw,L(S; W) of the coupled and original systems are the same in a suitable limit.

Lemma 3.1 (Equality of mutual informations) For any fixed w the following limits exist and are
equal: limL→∞ limn→∞ Iw,L(S; W)/(n(L+1))=limn→∞ I(S; W)/n.

An immediate corollary is that non-analyticity points (w.r.t ∆) of the MIs are the same
in the coupled and original models. In particular, defining ∆Opt,coup := sup{∆ |
limL→∞ limn→∞ Iw,L(S; W)/(n(L+1)) is analytic in ]0,∆[}, we have ∆Opt,coup =∆Opt.

The second crucial result states that the AMP threshold of the spatially coupled system is at least
as good as ∆RS. The analysis of AMP applies to the coupled system as well [11, 12] and it can be
shown that the performance of AMP is assessed by SE. Let Etµ := limn→∞ ES,Z[‖Sµ− ŝtµ‖22]/n be
the asymptotic average vector-MSE of the AMP estimate ŝtµ at time t for the µ-th “block” of S. We
associate to each position µ ∈ {0, . . . , L} an independent scalar system with AWGN of the form
Y =S+Σµ(E; ∆)Z, with Σµ(E; ∆)2 := ∆/(v−

∑L
ν=0 ΛµνEν) and S∼P0, Z∼N (0, 1). Taking

into account knowledge of the signal components in B, SE reads:

Et+1
µ = mmse(Σµ(Et; ∆)−2), E0

µ = v for µ ∈ {0, . . . , L} \ B, Etµ = 0 for µ ∈ B, t ≥ 0, (4)

where the mmse function is defined as in section 1. From the monotonicity of the mmse function we
have Et+1

µ ≤Etµ for all µ∈{0, . . . , L}, a partial order which implies that limt→∞ Et= E∞ exists.
This allows to define an algorithmic threshold for the coupled system: ∆AMP,w,L :=sup{∆|E∞µ ≤
Egood(∆) ∀ µ}. We show (equality holds but is not directly needed):

Lemma 3.2 (Threshold saturation) Let ∆AMP,coup := lim infw→∞ lim infL→∞∆AMP,w,L. We
have ∆AMP,coup≥∆RS.
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Proof sketch of theorem 1.1: First we prove the RS formula for ∆ ≤ ∆Opt. It is known [3] that the
matrix-MSE of AMP when n→∞ is equal to v2−(v−Et)2. This cannot improve the matrix-MMSE,
hence (v2−(v−E∞)2)/4≥ lim supn→∞Mmmsen/4. For ∆≤∆AMP we have E∞=Egood(∆)
which is the global minimum of (1) so the left hand side of the last inequality equals the derivative of
minE∈[0,v] iRS(E; ∆) w.r.t ∆−1. Thus using the matrix version of the I-MMSE relation [23] we get

d

d∆−1
min
E∈[0,v]

iRS(E; ∆) ≥ lim sup
n→∞

1

n

dI(S; W)

d∆−1
. (5)

Integrating this relation on [0,∆] ⊂ [0,∆AMP] and checking that minE∈[0,v] iRS(E; 0) = H(S)
(the Shannon entropy of P0) we obtain minE∈[0,v] iRS(E; ∆)≤ lim infn→∞ I(S; W)/n. But we
know I(S; W)/n≤minE∈[0,v] iRS(E; ∆) [9], thus we already get theorem 1.1 for ∆≤∆AMP. We
notice that ∆AMP≤∆Opt. While this might seem intuitively clear, it follows from ∆RS≥∆AMP

(by their definitions) which together with ∆AMP > ∆Opt would imply from theorem 1.1 that
limn→∞ I(S; W)/n is analytic at ∆Opt, a contradiction. The next step is to extend theorem 1.1 to
the range [∆AMP,∆Opt]. Suppose for a moment ∆RS≥∆Opt. Then both functions on each side of
the RS formula are analytic on the whole range ]0,∆Opt[ and since they are equal for ∆≤∆AMP,
they must be equal on their whole analyticity range and by continuity, they must also be equal at
∆Opt (that the functions are continuous follows from independent arguments on the existence of
the n→∞ limit of concave functions). It remains to show that ∆RS∈ ]∆AMP,∆Opt[ is impossible.
We proceed by contradiction, so suppose this is true. Then both functions on each side of the RS
formula are analytic on ]0,∆RS[ and since they are equal for ]0,∆AMP[⊂]0,∆RS[ they must be equal
on the whole range ]0,∆RS[ and also at ∆RS by continuity. For ∆>∆RS the fixed point of SE is
E∞=Ebad(∆) which is also the global minimum of iRS(E; ∆), hence (5) is verified. Integrating
this inequality on ]∆RS,∆[⊂]∆RS,∆Opt[ and using I(S; W)/n≤minE∈[0,v] iRS(E; ∆) again, we
find that the RS formula holds for all ∆∈ [0,∆Opt]. But this implies that minE∈[0,v] iRS(E; ∆) is
analytic at ∆RS, a contradiction.

We now prove the RS formula for ∆≥∆Opt. Note that the previous arguments showed that necessarily
∆Opt≤∆RS. Thus by lemmas 3.1 and 3.2 (and the sub-optimality of AMP as shown as before) we
obtain ∆RS ≤ ∆AMP,coup≤∆Opt,coup = ∆Opt≤∆RS. This shows that ∆Opt = ∆RS (this is the
point where spatial coupling came in the game and we do not know of other means to prove such
an equality). For ∆>∆RS we have E∞ =Ebad(∆) which is the global minimum of iRS(E; ∆).
Therefore we again have (5) in this range and the proof can be completed by using once more the
integration argument, this time over the range [∆RS,∆]=[∆Opt,∆].

Proof sketch of corollaries 1.3 and 1.5: LetE∗(∆)=argminEiRS(E; ∆) for ∆ 6=∆RS. By explicit
calculation one checks that diRS(E∗,∆)/d∆−1 =(v2−(v−E∗(∆))2)/4, so from theorem 1.1 and
the matrix form of the I-MMSE relation we find Mmmsen→v2−(v−E∗(∆))2 as n→∞ which is
the first part of the statement of corollary 1.3. Let us now turn to corollary 1.5. For n→∞ the vector-
MSE of the AMP estimator at time t equals Et, and since the fixed point equation corresponding to
SE is precisely the stationarity equation for iRS(E; ∆), we conclude that for ∆ /∈ [∆AMP,∆RS] we
must have E∞=E∗(∆). It remains to prove that E∗(∆)=limn→∞Vmmsen(∆) at least for ∆ /∈
[∆AMP,∆RS] (we believe this is in fact true for all ∆). This will settle the second part of corollary 1.3
as well as 1.5. Using (Nishimori) identities ES,W[SiSjE[XiXj |W]]=ES,W[E[XiXj |W]2] (see e.g.
[9]) and using the law of large numbers we can show limn→∞Mmmsen ≤ limn→∞(v2− (v−
Vmmsen(∆))2). Concentration techniques similar to [13] suggest that the equality in fact holds
(for ∆ 6= ∆RS) but there are technicalities that prevent us from completing the proof of equality.
However it is interesting to note that this equality would imply E∗(∆)=limn→∞Vmmsen(∆) for
all ∆ 6=∆RS. Nevertheless, another argument can be used when AMP is optimal. On one hand the
right hand side of the inequality is necessarily smaller than v2−(v−E∞)2. On the other hand the left
hand side of the inequality is equal to v2−(v−E∗(∆))2. SinceE∗(∆)=E∞ when ∆ /∈ [∆AMP,∆RS],
we can conclude limn→∞Vmmsen(∆)=argminEiRS(E; ∆) for this range of ∆.

Proof sketch of lemma 3.1: Here we prove the lemma for a ring that is not seeded. An easy argument
shows that a seed of size w does not change the MI per variable when L→∞. The statistical physics
formulation is convenient: up to the trivial additive term n(L+1)v2/4, the MI Iw,L(S; W) equals the
free energy −ES,Z[lnZw,L], where Zw,L :=

∫
dxP0(x) exp(−H(x, z,Λ)) and

H(x, z,Λ) =
1

∆

L∑
µ=0

(
Λµµ

∑
iµ≤jµ

Aiµjµ(x, z,Λ) +

µ+w∑
ν=µ+1

Λµν
∑
iµ,jν

Aiµjν (x, z,Λ)
)
, (6)
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with Aiµjν (x, z,Λ) :=(x2iµx
2
jν

)/(2n)−(siµsjνxiµxjν )/n−(xiµxjνziµjν
√

∆)/
√
nΛµν . Consider a

pair of systems with coupling matrices Λ and Λ′ and i.i.d noize realizations z, z′, an interpolated
HamiltonianH(x, z, tΛ)+H(x, z′, (1−t)Λ′), t ∈ [0, 1], and the corresponding partition function Zt.
The main idea of the proof is to show that for suitable choices of matrices,− d

dtES,Z,Z′ [lnZt]≤0 for all
t∈ [0, 1] (up to negligible terms), so that by the fundamental theorem of calculus, we get a comparison
between the free energies ofH(x, z,Λ) andH(x, z′,Λ′). Performing the t-derivative brings down a
Gibbs average of a polynomial in all variables siµ , xiµ , ziµjν and z′iµjν . This expectation over S, Z,
Z′ of this Gibbs average is simplified using integration by parts over the Gaussian noise ziµjν , z

′
iµjν

and Nishimori identities (see e.g. proof of corollary 1.3 for one of them). This algebra leads to

− 1

n(L+ 1)

d

dt
ES,Z,Z′ [lnZt] =

1

4∆(L+ 1)
ES,Z,Z′ [〈qᵀΛq− qᵀΛ′q〉t] +O(1/(nL)), (7)

where 〈−〉t is the Gibbs average w.r.t the interpolated Hamiltonian, q is the vector of overlaps
qµ :=

∑n
iµ=1 siµxiµ/n. If we can choose matrices s.t Λ′ >Λ, the difference of quadratic forms

in the Gibbs bracket is negative and we obtain an inequality in the large size limit. We use this
scheme to interpolate between the fully decoupled system w=0 and the coupled one 1≤w<L/2
and then between 1≤w <L/2 and the fully connected system w=L/2. The w= 0 system has
Λµν = δµν with eigenvalues (1, 1, . . . , 1). For the 1 ≤ w < L/2 system, we take any stochastic
translation invariant matrix with non-negative discrete Fourier transform (of its rows): such matrices
have an eigenvalue equal to 1 and all others in [0, 1[ (the eigenvalues are precisely equal to the
discrete Fourier transform). For w = L/2 we choose Λµν = 1/(L+1) which is a projector with
eigenvalues (0, 0, . . . , 1). With these choices we deduce that the free energies and MIs are ordered as
Iw=0,L +O(1)≤Iw,L +O(1)≤Iw=L/2,L +O(1). To conclude the proof we divide by n(L+1) and
note that the limits of the leftmost and rightmost MIs are equal, provided the limit exists. Indeed the
leftmost term equals L times I(S; W) and the rightmost term is the same MI for a system of n(L+1)
variables. Existence of the limit follows by subadditivity, proven by a similar interpolation [18].

Proof sketch of lemma 3.2: Fix ∆ < ∆RS. We show that, for w large enough, the coupled SE
recursion (4) must converge to a fixed point E∞µ ≤Egood(∆) for all µ. The main intuition behind
the proof is to use a “potential function” whose “energy” can be lowered by small perturbation of
a fixed point that would go above Egood(∆) [16, 17]. The relevant potential function iw,L(E,∆)
is in fact the replica potential of the coupled system (a generalization of (1)). The stationarity
condition for this potential is precisely (4) (without the seeding condition). Monotonicity properties
of SE ensure that any fixed point has a “unimodal” shape (and recall that it vanishes for µ∈B=
{0, . . . , w−1}∪{L−w, . . . , L}). Consider a position µmax∈{w, . . . , L−w−1} where it is maximal
and suppose that E∞µmax

> Egood(∆). We associate to the fixed point E∞ a so-called saturated
profile Es defined on the whole of Z as follows: Es

µ=Egood(∆) for all µ≤µ∞ where µ∞+1 is the
smallest position s.t E∞µ >Egood(∆); Es

µ=E∞µ for µ∈{µ∞+1, . . . , µmax−1}; Es
µ=E∞µmax

for all
µ≥µmax. We show that Es cannot exist for w large enough. To this end define a shift operator by
[S(Es)]µ :=Es

µ−1. On one hand the shifted profile is a small perturbation of Es which matches a
fixed point, except where it is constant, so if we Taylor expand, the first order vanishes and the second
order and higher orders can be estimated as |iw,L(S(Es); ∆)−iw,L(Es; ∆)|=O(1/w) uniformly in
L. On the other hand, by explicit cancellation of telescopic sums iw,L(S(Es); ∆)−iw,L(Es; ∆)=
iRS(Egood; ∆)−iRS(E∞µmax

; ∆). Now one can show from monotonicity properties of SE that if E∞
is a non trivial fixed point of the coupled SE then E∞µmax

cannot be in the basin of attraction of
Egood(∆) for the uncoupled SE recursion. Consequently as can be seen on the plot of iRS(E; ∆) (e.g.
figure 1) we must have iRS(E∞µmax

; ∆)≥ iRS(Ebad; ∆). Therefore iw,L(S(Es); ∆)−iw,L(Es; ∆)≤
−|iRS(Ebad; ∆)−iRS(Egood; ∆)| which is an energy gain independent of w, and for large enough
w we get a contradiction with the previous estimate coming from the Taylor expansion.
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