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ABSTRACT

The Khovanov—Lauda—Rouquier algebras Z,, are a relatively new family of Z-graded
algebras. Their cyclotomic quotients ,@Tfl\ are intimately connected to a smaller family
of algebras, the cyclotomic Hecke algebras ,%”nA of type A, via Brundan and Kleshchev’s
Graded Isomorphism Theorem. The study of representation theory of j’fj{\ is well devel-
oped, partly inspired by the remaining open questions about the modular representations
of the symmetric group &,,.

There is a profound interplay between the representations for &,, and combinatorics,
whereby each irreducible representation in characteristic zero can be realised as a Specht
module whose basis is constructed from combinatorial objects. For g%’f}, we can similarly
construct their representations as analogous Specht modules in a combinatorial fashion.
Many results can be lifted through the Graded Isomorphism Theorem from the symmet-
ric group algebras, and more so from £, to the cyclotomic Khovanov-Lauda-Rouquier
algebras, providing a foundation for the representation theory of Z2.

Following the introduction of %2, Brundan, Kleshchev and Wang discovered that
Specht modules over %2 have Z-graded bases, giving rise to the study of graded Specht
modules. In this thesis we solely study graded Specht modules and their irreducible
quotients for 2. One of the main problems in graded representation theory of %2, the
Graded Decomposition Number Problem, is to determine the graded multiplicities of
graded irreducible Z-modules arising as graded composition factors of graded Specht
modules.

We first consider Z2 in level one, which is isomorphic to the Iwahori-Hecke algebra of
type A, and research graded Specht modules labelled by hook partitions in this context.
In quantum characteristic two, we extend to %’fl\ a result of Murphy for the symmetric
groups, determining graded filtrations of Specht modules labelled by hook partitions,
whose factors appear as Specht modules labelled by two-part partitions. In quantum
characteristic at least three, we determine an analogous %2 -version of Peel’s Theorem
for the symmetric groups, providing an alternative approach to Chuang, Miyachi and
Tan.

We then study graded Specht modules labelled by hook bipartitions for %{} in level
two, which is isomorphic to the Iwahori—Hecke algebra of type B. In quantum character-
isitic at least three, we completely determine the composition factors of Specht modules

labelled by hook bipartitions for %,/L\, together with their graded analogues.
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The universe is an enormous direct
product of representations of symmetry

groups.

HErRMANN WEYL

INTRODUCTION

Symmetry permeates the natural world, from the intricacy of spider webs to the vastness
of the Milky Way; its beauty reaches far. Its prevalence in our surroundings has inspired
many in history to understand the collection of symmetries of a tangible object; it is
logical to ask if the concept of symmetry can be formalised abstractly. The story of the
symmetric group as we know it today, however, does not begin with this question.

The foundations of permutation groups, and in particular, the symmetric group,
date back to Galois’ work [G] on solutions to polynomial equations from the nineteenth
century. Cauchy [Cau] formally defined the notion of a permutation group (which he
called a system of conjugate substitutions), and more generally, of a finite group. The
study of permutation groups in their own right was continued by Cayley [Cay|, who in-
troduced the first abstract definition of a group. One of the most fundamental theorems
in the beginnings of group theory is attributed to Cayley: every group is isomorphic to a
permutation group. Since every subgroup of a symmetric group arises as a permutation
group, Cayley’s Theorem emphasises the importance of the symmetric group.

The beginning of the twentieth century gave rise to the representation theory of the
symmetric group; one began to question the linear actions of these groups on a vector
space. Frobenius [F] inaugurated the ordinary irreducible representations of the sym-
metric group in 1900, swiftly followed by Young’s independent approach [Y1, Y2]. The
original construction of the ordinary representations of the symmetric group as a special
class of modules, the Specht modules Sy labelled by partitions, was given by Specht
[Sp]. What we now refer to as the classical theory of Specht modules was developed
by James [J2], who built on the combinatorics established by Young to afford these
modules with a combinatorial basis; the dimensions of Specht modules were discovered
by Frame, Robinson and Thrall’s [FRT] Hook Length Formula. By taking particular
quotients D,, of Specht modules, James completely classified the modular representa-
tions of the symmetric group. The main problems we face in representation theory of
the symmetric group are to determine the multiplicities [S) : D,] of these quotients
arising as composition factors of Specht modules, known as decomposition numbers, and
to completely understand the structure of Specht modules.

Around the same time, Schur introduced his own algebras in his PhD thesis [Sch],
now referred to as Schur algebras. Schur classified the ordinary irreducible represen-

tations of the general linear group by exploiting his newly defined algebras, together
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INTRODUCTION

with the symmetric group algebras, and thus revealing a deep connection between the
representations of the symmetric group and those of the general linear group. Dipper
and James developed the g-analogues of Schur’s algebras [DJ2], motivated to classify
the modular irreducible representations of G L, (q) in non-defining characteristic.

The Twahori—-Hecke algebras are closely related to the g-Schur algebras, which emerged
from the study of endomorphism algebras of representations of groups induced by
representations of subgroups (see [I] and [Bou|) and were later established in [DJ1].
These algebras are g-deformations of permutation groups of different Coxeter types:
g-deformations of the symmetric group algebra in type A [M1], and of the signed sym-
metric group algebra in type B [DJ3].

Lascoux, Leclerc and Thibon made a momentous advance in the representation the-
ory of the Iwahori—Hecke algebras when they presented a remarkable algorithm [LLT],
now known as the LLT algorithm. Using the representation theory of the quantum affine
algebra Uv(sin), for every pair of partitions A and e-regular p, Lascoux, Leclerc and
Thibon introduced the polynomials dy ,(v) with integer coefficients by applying their
algorithm. These polynomials, called v-decomposition numbers, appear as coefficients
of the canonical basis elements of Uv(szn). They conjectured that the v-decomposition
numbers are v-analogues of decomposition numbers for Iwahori-Hecke algebras of type
A over a field of characteristic zero.

Ariki [A2] subsequently proved Lascoux, Leclerc and Thibon’s conjecture for a larger
class of algebras, the Ariki-Koike algebras. The Ariki-Koike algebras are a natural gen-
eralisation of the Iwahori—-Hecke algebras: Ariki and Koike [AK] associated a Hecke alge-
bra to each complex reflection group (Z/1Z2)!S,, of type G(I,1,n) in the Shephard-Todd
classification [ST]. These algebras, defined over the polynomial ring Z[Q1, . .., Q1, ¢, ¢ ],
lie in the cyclotomic Hecke algebras, a larger family of algebras that were developed by
Broué and Malle [BM]. Their construction of the cyclotomic Hecke algebras yielded
Hecke algebras for some other complex reflection groups, in particular, for all complex
reflection groups of type G(,2,n) (where 2 divides [) as well as of some exceptional
types. This class of algebras was further generalised by Ariki [A1], and in doing so, he
introduced Hecke algebras for the remaining complex reflection groups.

Khovanov and Lauda [KL1, KL2] introduced an extraordinary family of diagram
algebras, that were independently discovered via Rouquier’s algebraic approach [Rou2].
These algebras are know aptly named the Khovanov-Lauda—Rouquier algebras %,
which are naturally non-trivially Z-graded. Astonishingly, Brundan and Kleshchev
[BK2] showed that each cyclotomic Hecke algebra of type A is isomorphic to a cyclo-
tomic quotient of the Khovanov-Lauda-Rouquier algebra via their Graded Isomorphism
Theorem. Brundan and Kleshchev’s isomorphism affirms independent speculations by
Rouquier [Roul, Remark 3.11] and Turner [T] that the cyclotomic Hecke algebras of
type A could be attributed non-trivial gradings. This remarkable set of papers moti-
vated the study of graded representation theory of Khovanov—Lauda—Rouquier algebras,

and, in particular, of the symmetric group algebras.
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INTRODUCTION

Shortly after the discovery of the Khovanov-Lauda—Rouquier algebras, Brundan,
Kleshchev and Wang [BKW] introduced a non-trivially Z-grading of Specht modules
over %,, which yields a recursive combinatorial formula for their graded dimensions.
So, we can study graded Specht modules and their corresponding graded decomposition
numbers [Sy : D]y, which encode grading shifts of their composition factors. Brundan
and Kleshchev in [BK3] showed that these graded decomposition numbers are the same
as the v-decomposition numbers as mentioned above, and provide a generalised graded
analogue of Lascoux, Leclerc and Thibon’s conjecture. This extra structure now afforded
to cyclotomic Hecke algebras raises new interesting questions about the representations
in this graded world: Can we determine their graded decomposition numbers? Can we
find a graded analogue to Frame, Robinson and Thrall’s Hook Length Formula?

This thesis is split into three distinct parts; the rest of Part I contains Chapter 1,
where we provide a review of the necessary background material for our study into these
questions. In particular, we introduce the graded family of algebras we will be working
over, the Khovanov-Lauda—Rouquier algebras and their cyclotomic quotients, and the
Specht modules defined over these algebras. The remaining parts of this thesis tackle
these fundamental questions for the cyclotomic Khovanov—Lauda—Rouquier algebras.

In Part IT we restrict our study from the general Khovanov-Lauda—Rouquier algebras
to the Iwahori-Hecke algebras of type A, and study graded Specht modules in this
setting. Our main results, determining part of the graded decomposition matrix for
%’7{}, provide an alternative approach to part of Chuang, Miyachi and Tan’s result [CMT,
Theorem 1], which predates the theory of Khovanov-Lauda—Rouquier algebras.

We begin with an investigation of graded dimensions of certain Specht modules for
the Twahori—-Hecke algebra of type A in Chapter 2. We discover a closed formula for the
graded dimension of Specht modules labelled by two-part partitions in quantum char-
acteristic two, illustrating the complicated nature of these gradings on Specht modules
and that a graded Hook Length Formula is most unlikely.

In Chapter 3, we study Specht modules S(,,_p, 1m) labelled by hook partitions in
quantum characteristic two. Inspired by Murphy’s work [Mu2] on hook representations
and their connection with two-part representations, we find that every S, _, 1m) has a
Specht filtration whose factors appear as Specht modules labelled by two-part partitions.
Moreover, from a result of James [JM2, Theorem 4.15], we know that Specht modules
labelled by two-part partitions are irreducible when n is odd in characteristic zero,
establishing that the filtrations of S, _,, 1m) are in fact composition series in this case.
This leads us to determine the corresponding graded decomposition matrices for the
Iwahori-Hecke algebras of type A, comprising rows corresponding to hook partitions.

With quantum characteristic at least three, we continue the study of Specht modules
labelled by hook partitions in Chapter 4. In this context, Peel’s Theorem [P, Theorem
2] gives us the ungraded decomposition matrices comprising rows corresponding to hook
partitions. We provide results on the graded dimension of S(;,_, 1m), and thus determine

the analogous graded decomposition matrices.
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In Part ITI, we study graded Specht modules S((,,_y,),(1m)) labelled by hook bipar-
titions for the Iwahori-Hecke algebras of type B, quotients of the general Khovanov—
Lauda—Rouquier algebras, in quantum characteristic at least three. The structure of
S((n—m),(1m)) depends on parameters £ and n, and thus we examine these Specht mod-
ules in four separate cases. For Chapters 5 to 7, we forget the grading on Specht
modules.

We begin with Chapter 5: we provide an introduction to the study of S((,—m),1m))-
We present a combinatorial description of the standard basis elements of S((,—_y), 1m))
and understand the action of the Khovanov—Lauda—Rouquier basis elements {y1, ..., y, }U
{1,...,%n_1} on these standard basis elements.

Having established how %, acts on standard basis elements of Specht modules,
we now introduce certain Specht module homomorphisms in Chapter 6, which will be
instrumental in finding the composition factors of S((;,—,),(1m)). We show when these
Specht module homomorphisms exhibit exact sequences, by ascertaining bases for the
kernels and images of these homomorphisms.

In Chapter 7, we discover that the ungraded composition factors of S(,—m),1m))
arise as certain quotients of the kernels and images of the aforementioned Specht mod-
ule homomorphisms. To determine irreducibility of these Z-modules, we begin Chap-
ter 7 by giving an explicit description of how the Khovanov-Lauda—Rouquier generators
¥1,...,¥n—1 act on an arbitrary standard basis element of S((,_,),(1m)). By finding that
every non-zero submodule of S((,_p) 1m)) contains a standard basis vector, we apply
the action of %, to completely determine the ungraded composition series of Specht
modules labelled by hook bipartitions.

We draw on Brundan and Kleshchevs’s i-restriction and i-induction functors from
[BK1, §2.2] in Chapter 8, originating from Robinson’s work [Rob], and compose these
functors to introduce new induction and restriction functors. We first introduce the sgn-
restriction functor to determine the bipartition that labels the irreducible head of the
sign representation S(g (17)), and then introduce arm and leg functors, and variations
thereof. These functors provide us with an understanding of how to find the irreducible
labels of the composition factors of S((,_ym),(1m)), which we determine in Chapter 9.

In Chapter 10 we completely determine the ungraded decomposition matrices for the
Iwahori—Hecke algebra of type B comprising rows corresponding to hook bipartitions,
by determining the distinct irreducible labels of the composition factors of S, —m),(1m))-

We observe that we can obtain the analogous graded decomposition matrices to
those given in Chapter 10, by finding the graded dimensions of S((;,—m),(1m)) together
with the graded dimensions of its graded composition factors. Chapter 11 is self con-
tained, whereby we determine the graded dimensions of S(,—_,) 1my). In fact, it is
necessary to only find the leading and second leading terms in the graded dimensions of
the composition factors of S((;,—m),(1m)), which we determine in Chapter 12. Collating
our results from Chapters 10 to 12 we completely determine the graded decomposition

matrices for the Iwahori—Hecke algebra of type B comprising rows corresponding to hook
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bipartitions in Chapter 13.
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CHAPTER 1

BACKGROUND

In this chapter we establish our notation and review fundamental background material.

Let F be an arbitrary field throughout, and denote the characteristic of F by char(F).

1.1 HECKE ALGEBRAS

This section serves to introduce the Khovanov—Lauda-Rouquier algebras. Later on we
will establish that these algebras are non-trivially graded, which we first prepare for by

providing an overview of graded algebra.

1.1.1 GRADED ALGEBRAS AND GRADED MODULES

An F-algebra A is called graded, more precisely, Z-graded, if there exists a direct sum
decomposition A = @,., A; such that A;A; C A;y; for all i,j € Z. There are only
finitely many non-zero summands A; in the direct sum of A whenever A is finite dimen-
sional. An element in the summand A; is said to be homogeneous, and to have degree i.
For a; € A;, we write deg(a;) = i. We note that every algebra A can be trivially graded
by setting A := A in the above decomposition.

Given a graded F-algebra A, we say that the (left) A-module M is Z-graded if there
exists a direct sum decomposition M = P,., M; such that A;M; C M;; for all i, j € Z.
If M is a graded A-module, then we obtain the module M (k) by shifting the grading in
M by k € Z. For an indeterminate v, we set M (k) = v*M, so that the grading on M is
defined by (M(k)); = (v*M), = M;_y.

For a graded A-module M, we define its graded dimension to be the Laurent poly-
nomial

grdim(M) = Zdim(Mi)vi.
€7

Given graded A-modules M and N, an A-module homomorphism f : M — N
satisfying f(M;) C N,y for all ¢ € Z is said to be homogeneous of degree k. If k = 0,

then f is said to be a degree preserving homomorphism.
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1.1. HECKE ALGEBRAS CHAPTER 1

Let A be a graded F-algebra and M be a graded A-module. A submodule N C M is
a graded submodule of M if, for every n = ;. n; € N, then each of its homogeneous
components n; also lies in N.

For a graded A-module M, we say that a graded filtration of M is a strictly increasing

sequence of graded submodules
O=MycMyC---CM,_1CM,=M, (1.1.1)

whose factors are M;1/M; fori € {0,...,r—1}. We refer to M, /M,_; as the top factor

in the filtration of M, and similarly, to My as its bottom factor.

Lemma 1.1. [NO, Theorem 4.4.6 and Remark 4.4.8] Let M be a graded finitely gener-
ated A-module. The radical of M is a graded submodule of M.

Let A be a graded F-algebra. If a graded A-module M only has graded submodules
0 and itself, then we say that M is irreducible (or simple). The following result indicates

that the theory of graded algebra is at least as rich as its ungraded counterpart.

Lemma 1.2. [NO, Theorem 4.4.4] If M is an irreducible graded A-module, then the
A-module obtained by forgetting the grading on M is also irreducible.

We now observe how every irreducible graded module of a finite-dimensional algebra

arises.

Lemma 1.3. [NO, Theorem 9.6.8] Let A be a graded finite-dimensional algebra. If M
is an irreducible ungraded A-module, then there is a unique grading on M up to grading

shift and isomorphism.

If the factors M,;1/M; arising in the graded filtration Equation (1.1.1) of M are
irreducible, then we call this filtration a graded composition series for M and we say
that the quotients M;1/M; of M are the graded composition factors of M, which are
well-defined by the existence of a graded analogue of the Jordan—Holder theorem. It
now makes sense to study graded decomposition numbers [M : L], of M, where L is a
graded irreducible A-module; the graded multiplicity of L as a composition factor of M

is defined to be the Laurent polynomial

[M : L], =) [M: L{i)jv".

i€EZ

Note that by setting v = 1 in the above definitions, we recover the usual (ungraded)

analogues.

1.1.2 PERMUTATION GROUPS

We review two important permutation groups.
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1.1. HECKE ALGEBRAS CHAPTER 1

1.1.2.1 THE SYMMETRIC GROUP

Definition 1.4. The symmetric group on n letters, denoted &, is the set of n! per-

mutations m of {1,...,n}.

In fact, &, is a Coxeter group generated by si,...,S,—1, where s; is the simple
transposition (¢,7+ 1), for 0 <i < n— 1.

For 1 <i<j<n-—1, we define

j j
S\l‘,:Z S§j85—1--.Sq, ST: SiSi4+1 -+ S5

We say that a reduced expression for a permutation m € &,, is a minimal length word
T =8p...5, for 1 <r; <nand0<i<m. Let < be the Bruhat order on G,,, defined
as follows. For mi,m € &, we write m; < mo if there is a reduced expression for 7y

which is a subexpression of a reduced expression for ms.

1.1.2.2 THE SIGNED SYMMETRIC GROUP

Definition 1.5. The signed symmetric group of degree n, denoted (Z/27)1 &, or
equivalently, the hyperoctahedral group, is the set of 2"n! permutations = of {—n,...,n}
such that w(—i) = —7 (i) for all i.

For example, the signed symmetric group of degree 8 is the dihedral group G, Gs.
In fact, (Z/2Z)16,, is a Coxeter group generated by sg, s1, ..., S,—1, where s; is the
permutation (i, + 1)(—1 — i, —1), for i > 0, and sp = (—1,1).

1.1.3 LIE-THEORETIC NOTATION

For ¢ € F*, let e be the smallest positive integer such that 1 +¢q+¢?> +--- +¢* 1 =0,
and set e = oo if no such integer exists. If an algebra A depends on the parameter g,
we say that e is the quantum characteristic of A.

Define I := Z/eZ. 1If e is finite, then we identify I with the set {0,1,...,e — 1},
whereas, if e is infinite, then we identify I with the set of integers Z.

We let T" be the quiver with vertex set I and directed edges ¢ — 7 4+ 1 for each 7 € I.
If no directed edge exists between two vertices i # j, we write ¢ £ j. If e is infinite, then

I" is the integral linear quiver of type As, with the following orientation

= 2—-1—0—1—2—--- .

Otherwise, if e is finite, then I' is the integral cyclic quiver on e vertices of type Agl_)l.
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For example, the cyclic quiver diagrams for e = 2, 3, 4 and 5, respectively, are

0
0 0——1
R N N
29— 1 3 2 %HQJ

The associated Cartan matrix Cr = (¢; ;)i jer is defined by

2 ifi=j
0 ifjAi,

—1 ifi—sjori+« j,

Cij *=

2 ifisj

The notation ¢ = j indicates that ¢ = j — 1 = j + 1, which only occurs when e = 2.

The generalised Cartan matrix Cp corresponds to a Kac-Moody algebra g(Cr), as
given in [Kac]. It follows that we have the simple roots {a; | i € I'}, the fundamental
dominant weights {A; | ¢ € I}, and the invariant symmetric bilinear form (, ) such that
(ai,a5) = ¢ and (Aj, o) = 9y, for all 4,5 € I. Let Q4 := @, Z=oc; be the positive
part of the root lattice. A root o € Q4 is a linear combination ), ; a;a; of its simple
roots where a; € Z, and the height of « is the sum ), ; a;, denoted by ht(a).

We now fix a level | € N. The symmetric group &; acts on the left by place
permutation on the set I' of all I-tuples. An e-multicharge of | is an ordered I-tuple
k = (k1,...,k) € I'. We define its associated dominant weight A of level I to be
ANi=Ag, +-+ Ay,

1.1.4 IWAHORI-HECKE ALEBRAS

The Iwahori—Hecke algebras are g-deformations of the group algebras of Coxeter groups,

whereby we recover the group algebra of the Coxeter group in question by setting ¢ = 1.

1.1.4.1 IWAHORI-HECKE ALGEBRAS OF TYPE A

The Iwahori-Hecke algebras of type A are g-analogues of group algebras of symmetric
groups.

Let ¢ € F*. Then the Iwahori-Hecke algebra J% ((&,) [M1, §2] of the symmetric
group, or equivalently, the Hecke algebra of type A, is the unital associative F-algebra

with generators
{Th T27 cee 7Tn—1}

subject to the relations

o (Ti+1)(T; —q) =0, for 1 <i<n—1;

24



1.1. HECKE ALGEBRAS CHAPTER 1

o TiT; =TT, for 0<i<j—1<n—2;
o Ti\TiTi 1 =TT 1T, for 1 <i <n — 2.

We recover the symmetric group group algebra F&,, when we set ¢ = 1.

1.1.4.2 IwWAHORI-HECKE ALGEBRAS OF TYPE B

The Iwahori-Hecke algebras of type B are g-analogues of group algebras of signed sym-
metric groups.

Let ¢,@Q € F*. Then the Iwahori-Hecke algebra % ,0((Z/2Z) 1 &,) [DJ3, §3] of
the signed symmetric group, or equivalently, the Hecke algebra of type B, is the unital

associative F-algebra with generators
{Tv, T\, T> ..., Ty—1}

subject to the relations
o (To+1)(Th — Q) =0;
o ToThToTy = ThYToT  To;
o (T;+1)(T; —q)=0,for 1 <i<n—1;
o TiT; =TT, for 0<i<j—1<n—2
o T TiTi =TT, for 1 <o <in — 2.

We recover the signed symmetric group algebra Z/2Z 1 &,, when we set ¢ = @Q = 1.

1.1.5 ARIKI-KOIKE ALGEBRAS

Iwahori-Hecke algebras of types A and B were generalised by Ariki and Koike [AK] to
a larger family of algebras, the Ariki—-Koike algebras, also referred to as the cyclotomic
Hecke algebras. These algebras are Hecke algebras for each complex reflection group
(Z)1Z) 1 &y, of type G(I,1,n) in the Shephard-Todd classification [ST].

Let ¢,Q1,...,Q; € F* and set Q = (Q1,...,Q;). Then the Ariki-Koike algebra
I q.0((Z/1Z) 1 &y,) is the unital associative F-algebra with generators

{(To,T1, ..., Tur}

subject to the relations
o (To — Q1)(To — Q2) ... (To — Q1) = 0;
<& TUT1TOT1 = TlToTlTo;

o (T;+1)(T; —q) =0, for 1 <i<n—1;
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O Ti Tyl =TT Ty, for 1 <i<n — 25
o TiT; = TyT, for 0<i<j—1<n—2.

By setting [ = 1, we see that the Ariki-Koike algebra for &,, of type G(1,1,n) is
the Iwahori—Hecke algebra of type A, and by setting | = 2, the Ariki—Koike algebra for
7./27.0 S, of type G(2,1,n) is the Iwahori-Hecke algebra of type B.

1.1.6 KHOVANOV-LAUDA—ROUQUIER ALGEBRAS

The Khovanov-Lauda—Rouquier algebras were discovered by Khovanov-Lauda [KIL1],
and independently, Rouquier [Rou2]. Brundan and Kleshchev transformed their work

to give the following presentation.

Definition 1.6. [BK2] Let a € Q4 such that ht(a)) = n, and define the set
Ia:{iEIn ‘ QG + o+, 205}.

Then the algebra %, is defined to be the unital associative F-algebra generated by the

elements

{e() 1€ I} U{yr, -yt U{¥1, o ¥}, (1.1.2)

subject only to the following relations:

e(i)e(j) = dije(i); Sieree(i) = 1; (1.1.3)
yre(i) = e(i)yr; Pre(i) = e(s,1)tr; (1.1.4)
YrYs = YsYr; (1.1.5)
YrYs = Ystr if s #rr+1; (1.1.6)
Urhs = sty if r —s| > 1; (1.1.7)
Uryryre(i) = (yrtr + 4,4, )e(d); (1.1.8)
Yrp1¥re(i) = (Vryr + 04,4, )e(d); (1.1.9)
(0 if ir = dry1,
e(i) if iy g1 # iy i £ 1,
re(®) = 9§ (yr1 — yr)e(d) if iy = i1, (1.1.10)
(Yr — yry1)e(i) if Uy <= Upg1,
\ (Yr+1 — Yr)(Wr — yra1)e(i) if ir S ipat;
(i1 0tbr1 + 1)e(i) if irys = ir = irp1,

Dty 1ne(i) = (Yrp1Urr g + De(i) z:f z:r+2 = Z:r — Z:r+1,
(Vr10rVri1 — 2Yri1 + Yr + yrr2)e(d)  if drgo = ip S ipg1,
Yrp1rYrire(i) otherwise;

(1.1.11)
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for all admissible i,j,r, s.

We see that the relations of the algebra Z,, given in Equations (1.1.3) to (1.1.11),
depends on the quantum characteristic of %, without directly involving the parameter

q. The above presentation endows %, with a canonical Z-grading.

Theorem 1.7. [BK2, Corollary 1] There is a unique Z-grading on %o such that

deg(e(i)) =0, deg(y,) =2, deg(¢re(i)) = —ci s,
for all admissible r and i € 1.

We now define the affine Khovanov-Lauda—Rouquier algebra 2%, to be the direct

sum
@ '@aa

acQy
ht(a)=n

and thus Z,, exhibits a non-trivial Z-grading too.

If e is finite, then we can obtain the presentation of %, by tweaking the presentation
of Z,. We do this by replacing a with n, where necessary. Notice that we abuse
notation and write . and 1, for the generators corresponding to %,, regardless of
a € Q4. Thus the generator y, (respectively, 1) of %, is the sum of the corresponding
yr generators (respectively, ¢, generators), where each summand corresponds to an %,
for each o € Q4 such that ht(a) = n.

1.1.7 CycroroMIC KHOVANOV-LAUDA-ROUQUIER ALGEBRAS

For a positive root a € @)1 and a dominant weight A, the cyclotomic algebra %é} is

defined to be the quotient algebra of Z,, subject to the cyclotomic relations
ue(i) = 0, (1.1.12)

for all i € I*. These cyclotomic relations are homogeneous, so %’é} inherits a non-trivial

Z-grading. We define the affine cyclotomic Khovanov-Lauda—Rouquier algebra %2 to

@ %27

a€Q 4
ht(a)=n

be the direct sum

and thus QZ’Q is non-trivially Z-graded too.

Brundan and Kleshchev remarkably discovered a connection, via their Graded Iso-
morphism Theorem, between the well established representation theory of the cyclo-
tomic Hecke algebras and the newly introduced cyclotomic Khovanov—Lauda-Rouquier

algebras.
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Theorem 1.8. [BK2] Let ¢ € F* and e € {2,3,...,} U{oo} be such that char(F) t e if

e < oo and q# 1 whenl > 1. Then there is an isomorphism of algebras
Ry = A gq (Z)12)16y),

where @Q = (¢*,...,q") such that a; = k; (mod e).

In particular, when e = char(FF) and [ = 1, we have the following isomorphism of alge-
bras: #2 = F&,,. Thus, we can consider the cyclotomic Hecke algebras #%, ¢ ((Z/17)1&,,)
as non-trivially Z-graded algebras, in particular the symmetric group algebras, by iden-

tifying them with the cyclotomic Khovanov-Lauda—Rouquier algebras %’fl\

Corollary 1.9. [M2, Corollary 3.1.3] Let q1,q2 € F* be distinct primitive eth roots of

unity. Then there is an isomorphism of cyclotomic Hecke algebras IF-
‘%7Q17Q ((Z/ZZ) ! 671) = %‘,QQ.,Q ((Z/ZZ) ¢ Gn) )

as F-algebras.

It follows that cyclotomic Hecke algebras, and hence cyclotomic Khovanov—Lauda—
Rouquier algebras, do not depend on the parameter ¢ € F*, and hence depend only on

the quantum characteristic e, dominant weight A and the ground field F.

1.1.8 GRADED DUALITY

There exists a homogeneous Khovanov-Lauda-Rouquier algebra anti-involution
* 1 Fon — Kn, 6(1) = e(i), Yr > Yry s > Ps,

forieI™, 1 <r<nand 1l < s < n, which factors through to a homogeneous anti-
involution for the cyclotomic quotient %{1\ We denote the element x € %, mapped

under * by z*.
Given a graded Z,-module M, we define the graded dual of M to be the Z-graded
Zy,-module M® such that

(M®)k = Homy (M (k),F)

for all k € Z, with Z,-action given by (zf)(m) = f(z*m), for all x € %,,, f € M® and
m e M.

1.1.9 THE SIGN REPRESENTATION

The sign representation sgn, a one-dimensional %ﬁ—representation, attaches a sign to a

generator of Z2 as described below.
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For i = (i1,...,i,) € I", we define
—i= (=1, ..y —ln).

If we write ov = ), ; a;;, then we let o = > icr aicv—i. We define the sign representa-

tion to be the unique homogeneous algebra isomorphism
Sgn 1 Ko — Koy
where
sgn (e(i)) = e(—1), sgn (yr) = —yr and sgn () = —1bs,

forallie I* re{l,...,n} and s € {1,...,n — 1} such that ht(a) = n.
For k = (k1,...,k;) we define k' := (—£y, ..., —K1), which determines the dominant
weight
N=A_, + - +A_, €Py.

In fact, the sign representation factors through to an algebra isomorphism on the cyclo-

tomic quotients
sgn : BN — 7N .

We define the corresponding sign-twisted algebras

Ry = @ Ry and B = @ A, .

aEQ+ a€Q+
ht(a)=n ht(a)=n

Then, for a module M € %{}/, we define the sign-twisted module M*®#" to be M ® sgn,

where multiplication from %7 is given by
a-m = sgn(a)m,

for all @ € #2 and m € M™",

1.2 COMBINATORICS

We introduce necessary notation for the purposes of our combinatorial approach.

1.2.1 YOUNG DIAGRAMS AND PARTITIONS

A composition of n is a sequence A = (A1, A2, Az, ... ) of non-negative integers such that
Y2y Ai =n. For i > 1, we refer to the integers \; as the parts of \. A partition of n
is a composition A for which \; > A\;41 for all ¢+ > 1. We denote the empty partition
(0,...,0) by @. We define (1Y) := &.
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We fix a positive integer [ and an e-multicharge k = (k1, ..., k7). An l-multicomposition
of n is an ordered I-tuple A = (A, ..., A)) of compositions such that Zi’:l IAD| = n.
We refer to A(*) as the ith component of \. When each component of an [-multicomposition
A is a partition, A is an [-multipartition. We also write @ for the empty multipartition
(@,...,9); it is generally clear which level [ the empty multipartition & belongs to. We
denote the set of all l-multipartitions of n by ..

Given [-multicompositions A and p of n, we say that A dominates p, if

m—1 k m—1 k
DY A > DAY 5™
= J= = j=

forall 1 <m <l and k > 1. We write A > u to mean that A dominates pu.
The Young diagram of the [-multicomposition A = (/\(1), . ,)\(l)) is defined by

N = {(z‘,j,m)eNxNx{1,...,1}\1<j<A§m)}.

Each element (i,7,m) € [A] is called a node of A, and in particular, an (7, j)-node of
M) We pictorially represent the Young diagram of an l-multipartition as a column
vector of Young diagrams [A(M],... [AO] where [\?)] lies above [ACHD] for all i > 1.
For example, ((32,1), (4,3), (2?)) has the Young diagram

For nodes (i1, ji,m), (i2, j2,1) € [A], we say that node (i1, j1,m) is higher than node
(i2,j2,1) if i; < 12 and m < . We define a dominance ordering on nodes of a Young
diagram. For A € 2. and A, B € [\], we say that A dominates B, written A < B, if A
lies in a higher row in [A] than B.

The conjugate of a partition A = (A1, Ag, ... ) is the partition N = (A}, A\, ...) where
No=#{i=>11]X)>i}.

Informally, we obtain A’ from \ by swapping the rows and columns of A\. The conjugate

of an l-multipartition A = (A, ..., X)) is the [-multipartition

No= AW AW,
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1.2.2 RESIDUES

We fix an e-multicharge kK = (k1,...,k;). The e-residue of a node A = (i, j, m) lying in
the space N x N x {1,...,1} is defined by

resA:= Ky +j—14 (mode).

We call a node of residue i an i-node. For A € 2, the residue content of X is defined
to be

cont(A) := Z Olres A-

AeX

1.2.3 LADDERS AND e-REGULAR PARTITIONS

Let [ = 1 throughout this subsection. We say that A € &} is an e-reqular partition if

there is no ¢ > 1 for which A = A\;1._1 > 0. In other words, a partition A is e-regular if

[A] has no e consecutive rows of the same length. Otherwise, we say that A is e-singular.
For each r > 1, we define the rth ladder to be the set of nodes

L ={(0,§) eN*|r=i+(j—1)(e— 1)}

If (i,7) € £, we say that (i,7) has (column) ladder number r, denoted ¢,, and nodes
belonging to the same ladder have the same e-residue. In particular, the rth ladder of a
partition is the intersection of the Young diagram [\] with the rth ladder .Z,.. Observe

that the ladder numbers lying in nodes in the space N x N are

1 e |2e—1|3e—2|4e—3| .

2 |et+l| 2e |3e—1|de—2| -~

3 |e+2 |2e+1| 3e |de—1| -

4 | e+3 |2e+2|3e+1| 4e | -

Now we can take any partition A and map it to an e-regular partition p by a process
called e-regularisation. One does this by moving every node with ladder number 7 in [A]
to its highest position in the rth ladder of A, .Z, N [A]. We call p the e-regularisation of
A, denoted by A%,

Example 1.10. Let e = 3 and A\ = (6,33,2,1%). The ladder numbers of A\ and the

ladder numbers of the 3-regularisation of A\, respectively, are as follows. Nodes which
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have moved up their particular ladder are highlighted.

e-regularisation of A

719]11] 71911

~ || Ot

N[O O~ |

\]‘@U‘H&w{\br—‘

‘ﬂ‘@muswwr—n

We see that (6,33,2,15)% = (6,5,4,3,2,1%).

The following result is easily observed, as seen in the previous example, and implies

that for any partition ), the e-regularisation A\ is indeed e-regular.

Lemma 1.11. [J1, Statement (1.2)] Let A\ € PL. Then X is e-reqular if and only if all

the nodes in [\ with ladder number r lie in the highest possible row in £, for each r.

In other words, A is e-regular if and only if A = A%,

1.2.4 REGULAR MULTIPARTITIONS

Most of the combinatorial definitions in this subsection date back to [K3|; we adopt
notation introduced in [Fa5] by Fayers.

For an [-multipartition A of n, we say that A € [)] is a removable node for \ if
[AJ\{A} is a Young diagram of an [-multipartition. Similarly, we say that A ¢ [A] is an
addable node for A if [A\] U {A} is a Young diagram of an [-multipartition.

We call a node A € [A] a removable i-node of X if A is a removable node of A and
res A = i. Similarly, a node A ¢ [A] is called an addable i-node of X if A is an addable
node of X\ and res A = i. We denote the total number of removable i-nodes of A by
rem;(\), and denote the total number of addable i-nodes of A by add;()\). For A € !,
we write the multipartition obtained by removing all of the removable i-nodes from A
as A\V?, and we write the multipartition obtained by adding all of the addable i-nodes to
A as A%

Let A € &', We define the i-signature of X by reading the Young digram [\] from
the top of the first component down to the bottom of the last component, writing a +
for each addable i-node and writing a — for each removable i-node, where the leftmost
+ corresponds to the highest addable i-node of A\. We obtain the reduced i-signature of
A by successively deleting all adjacent pairs +— from the i-signature of A, always of the
form _— e —
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Example 1.12. Let e = 3, k = (0,0) and A = ((8,42),(4)). The 3-residues of \ are

o[1]2][o]1]2]0],

[\
[es}
—_
[\

0[1]2]0]

and the 0-addable and 0-removable nodes of A are labelled as follows

I (1.2.1)
+

+

[T T 1]

Thus, by removing all of the removable 0-nodes from X\ (corresponding to the outlined
nodes), and respectively, adding all of the removable 0-nodes from X\ (corresponding to

the shaded nodes) we have the Young diagrams of multipartitions

(A7) = L L] and [X*0) = [}

]
LT

Referring to Diagram (1.2.1), the 0-signature of X is — + +— (corresponding to the —

HERE

and + labels from top to bottom in the diagram), and the reduced 0-signature is —+
(corresponding to the nodes (1,7,1) and (2,5,1)).

The removable i-nodes corresponding to the — signs in the reduced i-signature of A
are called the normal i-nodes of A, and similarly, we call the addable i-nodes correspond-
ing to the + signs in the reduced i-signature of A\ the conormal i-nodes of \. We denote
the total number of normal i-nodes of A by nor;(\), and we denote the total number of
conormal i-nodes of A by conor;(\). The lowest normal i-node of [A], if there is one, is
called the good i-node of A, which corresponds to the last — sign in the ¢-signature of A.
Dually, the highest conormal i-node of [)], if there is one, is called the cogood i-node of
A, which corresponds to the first + sign in the i-signature of .

For 0 < r < nor;(\), we denote the multipartition obtained from A by removing
the r lowest normal i-nodes of A by A |/, and for 0 < r < conor;(\), we denote the
multipartition obtained from A by adding the r highest conormal i-nodes of A by A 17.
We set TZ-::Tl1 for adding the cogood i-node of A and @::H for removing the good
i-node of X\. For A € Z! it is easy to see that A is a cogood node for X if and only if A
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is a good node for A U {A}. The operators 17 and | act inversely on a multipartition

A€ 2 in the following sense
ALTi=A and A=A, (1.2.2)

for 0 < 7 < nor;(A) and 0 < s < conor; ().
We define the set of all regular [-multipartitions of n to be the set

RPY ={@ 10, ... i, i1, in €1},

If a multipartition A lies in f%’ﬁsz then ) is called reqular. Hence A € 2. is regular if
and only if [\] is obtained by successively adding cogood nodes to [&]. That is, we have
a sequence @ = A(0), A\(1),...,A(n) = A such that [A(i)]U{A} = [A(i + 1)], where A is
a cogood node of A(7).

We can alternatively write the set of all regular [-multipartitions of n as
RP = {)\ e 2L | A, ... Li,= @, for some iy, ..., i, € I}.

Example 1.13. Suppose that | = 1. If e € {2,3,...} is finite, then %32,11 coincides

with the set of all e-reqular partitions, whereas # P = P} if e = .

1.2.5 TABLEAUX

Let A = AW ... A0y ¢ 2L A Mtableau T is a bijection T : [A\] — {1,...,n}.
Usually, we depict a A-tableau T' by inserting entries 1,...,n into the Young diagram
[A]; we say that the entry lying in the node (i,7,m) € [A] is the (4,7, m)-entry of T,
denoted T'(i,j,m). We refer to the AD_tableau T as the ith component of T for all
i€ {1,...,l}. Wesay that T is row standard if the entries in each row increase from left
to right along rows of each component of 7', and similarly, we say T is column standard
if the entries in 7" increase down each column along the columns of each component of T'.
We denote the set of all column-standard A-tableaux by ColStd(A). If T' is row-standard
and column-standard, then T is called standard. We denote the set of all standard
A-tableaux by Std(\).

For A € #!, let T be a standard M-tableau. Then we define T, to be the u-tableau
obtained from 7' by removing all of the nodes occupied with entries greater than r,
where 1 < r < n and p is a multipartition of r. It follows that T, has the shape of the
multipartition p € 2.

The column-initial tableau T) is the A-tableau where the entries 1,...,n appear in
order down consecutive columns, working from left to right in components I,1—1,...,1,
in turn. Similarly, the row-initial tableau T is the A-tableau where the entries 1,...,n

appear in order along successive rows, working from top to bottom in components

1,2,...,1, in turn. For example, the column- and row-initial ((5,3), (22,1))-tableaux
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are
Ty(s.9).(22.1)) = | 6| 8[10[12[13] and T(®3(*1D) = [172]3[4[5]
7911 6718
14 910
2[5 1112
3 13

The symmetric group &,, acts naturally on the left on the set of A-tableaux. We

define the permutations wr, w! € &,, from
wrT\ =T = w' T,

where T is a A-tableau for some A\ € .. For example, if

S=4

o

10[11]12],
13

N |
NeJ

ot

‘wl\')}—t
D

then (456)(11 13 12)T((5.3) 221y = S = (141128133105 126 79)7((>:3:(2%1),

We let w € &, have a fixed reduced expression w = $,,..., S, throughout, and
refer to it as the preferred reduced expression of w. We define the associated element of
p

Yw = Vry o P
which, in general, depends on the choice of a preferred reduced expression of w.

We say that w € G, is fully commutative if we can go from any reduced expression
of w to any other using only the commuting braid relations s;s; = sjs; for [ i —j | > 1.
The elements 1,, do not depend on the choice of preferred reduced expression if w is a
fully commutative element of &,,. We now define important elements which will aid us

in constructing bases for particular %,’}-modules

YT =y, and  p = Py,

Let T be a A-tableau and write resy(r) = res(i, j,m), where r = T'(i,j,m). The

residue sequence of T is defined to be
ir =i} = (resy(1),...,resp(n)).

We set iy = ir,. For example, when e = 3 and x = (0, 1), the 3-residues of the nodes in
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((5,3),(2%,1)) are given by

[\
)
—_

‘MO»—\
—_

so that i(53)221)) = (1,0,2,2,1,0,2,1,0,2,1,0,1). We now define the idempotent
generator of Z2 to be er := e(ir) with respect to 7.
Let A € 2. and T be a A-tableau. Suppose that T'(iy, j1,m) = r and T'(iz, jo,m) = s

such that 1 <r # s <n (sor and s lie in the same component of T'). We write

or S sifip > iy and j1 < jo (s lies strictly above and to the right of r in the

same component of T');

o r N\ sif iy < ig and j; < jo (s lies strictly below and to the right of r in the

same component of T');

o r—p sif iy =i9 and j; < jo (r and s lie in the same row of the same component

of T', where s is strictly to the right of r);

o rlp sifip <igand j; = jo (r and s lie in the same column of the same component

of T', where s is strictly below r).

Lemma 1.14. [BK2, Lemma 3.3] Let A\ € &' and T € Std()\). Then s,T is also
standard if and only if neither r —p r+ 1 norr {pr+ 1.

For example, given S as above, s, is standard for » = 3,4,6,7,9,12.
For A €¢ !

", we define a Bruhat order on A-tableaux. For A-tableaux S and T', we

let wg,wr € &,, be permutations such that S = wgT) and T' = wypT). Then we say
that T dominates S if and only if wg < wr, and write T' > S.

Let A € 2. and A be an addable i-node of A and B be a removable i-node of A. We
set the degree of A to be

d*()\) : = #{addable i-nodes of A strictly above A}
— #{removable i-nodes of \ strictly above A}

and the degree of B to be

dp(A) : = #{addable i-nodes of A strictly below B}
— #{removable i-nodes of X strictly below B}.

For a positive root a € Q)+, we define the defect of a to be

def(a) = (A, @) — 3(a, a). (1.2.3)
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Let T' € Std(\) where n lies in node A of A, and set = A\{A}. We set deg(@) :=0

and define the degree of T recursively via
deg(T) := d* () + deg(T<pn1).
Similarly, the dual notion of the codegree of T is defined to be
codeg(T') := da(p) + codeg(T<p—1).

We note that these definitions are the other way around to those given in [BKW]. The
degree and codegree of a standard A-tableau are dual notions of each other via the

following result.

Lemma 1.15. [BKW, Lemma 3.12] Let A € &

n’

cont(\) = a and T € Std(\). Then

deg(T") + codeg(T) = def(a).

1.3 GRADED SPECHT MODULES

We introduce our main objects of study, graded Specht modules, following the theory
of Brundan, Kleshchev and Wang in [BKW]. We remark that we work with the dual
Specht module throughout, however, we will refer to this module as the Specht module
itself for brevity, consistent with James’ classical construction of the Specht module over

the symmetric group algebras.

1.3.1 GARNIR TABLEAUX AND (GARNIR ELEMENTS

Let A € 2!, We say that a node A = (i,5,m) € [\] is a (column) Garnir node of \, if
(1,7 +1,m) is a node in [A]. The (column) Garnir belt B4 of A is defined to be the set

of nodes
Ba={(k,jym)e N |k=i}U{(k,j+1,m)e[N|1<k<i}.

For example, the Garnir belt of (3,1,1) in ((4%,2,1?),(2)) is shaded in the following

Young diagram

L[]

Let r = T\(i,j,m) and s = T)\(i,j + 1, m). We place the entries 7,7+ 1,...,s in B4 in
order from top right to bottom left. The resulting A-tableau, G 4, is called the (column)
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Garnir tableau of A whose entries outside the Garnir belt of A coincide with the entries
in Ty. The Garnir ((42,2,12), (2))-tableau of (3,1,1) is

G311y = 1113 =
1214

B

1

m%q

Ti(42,2,12),(2))-

A (column) brick of A is a set of e consecutive nodes
{(i7j7m)7 (/I: + 17j7m)7' M) (/L +e - 17j7m)} C BA

such that res(i, j, m) = res A. Suppose that there are k bricks lying in the Garnir belt
B4. If £ > 0, then we label the bricks B}L‘, Bi, ces ,Bf‘f1 in B4 from top to bottom, firstly
down column j + 1, then down column j. For e = 3, the Garnir belt of (3,1,1) in our

running example has two bricks, labelled in the following Young diagram

B

1
(37171)

2
B

L[]

Let n4 be the smallest number in the Garnir tableau G 4 in By, which also lies in
a brick. We define brick permutations of &,,, which are simple transpositions of bricks,

by

nat+re—1

wh = H (aa+e) e,

a=na+e(r—1)

for each r € {1,...,k — 1}. Informally, the brick permutation w’ swaps the rth and
(r 4+ 1)th bricks in B4. Let the (column) brick permutation group be

-1\ ~
6A2<w,147w,24a"-7w§1 >:6kg6n

We let T4 be the A-tableau obtained by placing the bricks B%, B,247 ey Bﬁ succes-
sively down column j and then down column j + 1 in [A\]. We consider the following set
of A-tableaux

Garyg = {T € ColStd(\) | T = wTy, for a brick permutation w € G4},
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called the set of Garnir A-tableaur of A. In our running example, notice that T(3 1) =
7 8 9

T((42,2,12),(2))- Now, there is only one brick permutation w(13 1) = sl sl s, so that
Y 5 6 7

S(3,1,1) is generated by w(1371’1). We have w(13’1’1)T((4272’12)7(2)) = G(3,1,1), hence

Garz 1) = {G11) T(42,2,12),2)) ) -

Each tableau in Gar4 is standard, except for G4, which is the maximal element of
Gar 4 under the strong Bruhat order of tableaux, that is, T <G4 for all T € Gars. The
unique minimal element of Gara under the Bruhat order is T4. If T € Garyg, then T
has the same residue sequence as G 4, that is, 27 = 14 where 4 := i¢,, and moreover,
deg(T) = deg(G4) for all tableaux T in Gar 4.

In general, we can write Gary in terms of Ty as follows. Let f be the number of
bricks in column j of B4 and let Z4 be the minimal length left coset representatives of

the group of brick permutations that permute bricks within columns. Then
Garg = {wTy | w € Za}.

For any S € Garg, we have S = ugT4 for some ug € Z4. So we can write wg = uswr,
with [(wg) = l(us)+1(wr, ), where wg, wr, € &, such that wgT\ = S and wp, Ty = T4.
By [KMR, Lemma 3.17], the elements wg, ug,wr, € Z4 are fully commutative. Hence
we have elements g, ¥y, and 97, that are independent of the choice of preferred

reduced expression where ¥g = Yy 1r,. We now define elements lying in %711\
ol = (1) Yyre(ia) and 1) := (0} + 1)e(ia).

We let w') ... w'{™ be a reduced expression for ug € &4, and write 74% = 7' ... 7™,
We know ug is fully commutative, so 7'2‘ is not dependent on the choice of reduced

expression.

Definition 1.16. Let A be a Garnir node of A\. The (column) Garnir element of A is

Z TZSd}TA € R,

us€EDA

ug

Since 7,° is a homogeneous element of %, by definition, g4 is also homogeneous.

For our running example, the Garnir element g3 ; 1y of (3,1,1) is

Z T&?1,1)¢T<3,1,1) =1+ 7'(13,1,1))6(i(3,1,1))

us€X(3,1,1)
= (2+0(311)elis )
= 2e(i3,1,1)) — Vrvessreorsire(is 1)

There exists a dual notion of a row Garnir element of a Garnir node — see [KMR,
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Section 5] for an exposition.

In general, the Garnir elements of Garnir nodes in a A-tableau are very complicated
to compute, however, those of interest to us, the Garnir elements of Garnir nodes lying
in partitions (n — m,m) and (n —m,1™), and bipartitions ((n —m), (1)) and ((n —

m, 1), &), happen to be particularly easy to find.

Lemma 1.17. Let A € &' and A = (a,b,m) be a Garnir node of \. If all the bricks

are in the same column of the Garnir belt B s, then the Garnir element g4 is V¥g ,e(ia).

Proof. Suppose that there are k > 0 bricks lying in the (b — 1)th column (respectively,
bth column) of B 4 and no bricks lying in its bth column (respectively, (b—1)th column).
We thus observe that Z4 = {1} and hence the Garnir element of A is

ga =T e(ia) = g e(ia).

1.3.1.1 GARNIR ELEMENTS OF (n —m,m)
Let A = (n —m,m), A = (1,4) and A? = (2,i) for i € N. Then the complete set of
Garnir nodes of A is

(Al J1<i<n—-m-1}u{A2|1<i<m—1}.

We first find the Garnir element of node Azl, form+1<i<n—-—m-—1. The Garnir
belt of A} is By = {(1,4)} U{(1,i + 1)}, depicted by the shaded area in the following
Young diagram of A

The Garnir tableau G 41 of A} is

1] 2m—12m+1] - -1 [ 2 | [ n

2 | e 2m

where j = i+m, so G Al = Ym+iT. It follows from Lemma 1.17 that the Garnir element
gar of Alis Ymyie(in), form+1<i<n—m— 1.

We now find the Garnir element of node Ail, for 1 < i < m. The Garnir belt of Ai1 is
B, = {(1,7),(1,i4+ 1)} U{(2,4)}, depicted by the shaded area in the following Young

diagram of A
| mEGE
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The Garnir tableau G 41 of A} is

1| e 2i—3 243 2m—12m+1] - | n
2 | 2i—2 2i+2| 24| - 2m

where G Al = s2i—182; 1. It follows from Lemma 1.17 that the Garnir element g Al of Azl
is o —199e(iy), for 1 <i < m.

Finally, we find the Garnir element of node A%, for 1 < i < m — 1. The Garnir
belt of A? is B,z = {(1,i+ 1)} U{(2,7),(2,i + 1)}, depicted by the shaded area in the

following Young diagram of A

The Garnir tableau G 42 of A? is

= 2i—3 | 2i—1 243 2m—1)2m+1] - [ n |
2 | 2i—2 itd| 2m

where G 42 = 89,1189, T. It follows from Lemma 1.17 that the Garnir element g 4> of A2
is 1o; 1 190:e(iy), for 1 <i < m — 1.

1.3.1.2 GARNIR ELEMENTS OF (n —m,1™)

Let A = (n —m,1™) and A, := (1,4) for ¢ € N. Then the complete set of Garnir nodes
of \is
{4;]1<i<n—m-—1}.

We first find the Garnir element of node A; = (1,1). The Garnir belt of (1,1) is
Ba, ={(5,1)]1<j<m+1}U{(1,2)}, depicted by the shaded area in the following
Young diagram of A

The Garnir tableau of A; is

Ga, = m+3\m+4\ ----- \ n \,

where G4, = s5152...5Sm+11). It follows from Lemma 1.17 that the Garnir element g4,

of Ay is Y11ha. .. Ymyre(in).
We now find the Garnir element of node A;, for ¢ > 1. The Garnir belt B4, of A4;
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consists only of the two consecutive nodes (1,7) and (1,7 + 1) in the arm of A, as shown

in the following shaded Young diagram

Thus, the Garnir A-tableau of A; is

Ga;= [ 1 [mt2[ - [j—1 [ j+2] [ n |

2
3

m—+1

where 7 +m = j, so Ty, = G4,. It follows from Lemma 1.17 that the Garnir element
ga; of A;is Ypyie(iy), for 1 <i<n—m—1.

Remark 1.18. The Garnir nodes of (n — m,1™), @) are A; = (1,i,1), for 1 < i <
n—m—1. We can deduce from the Garnir elements of (n —m,1™) that the Garnir

elements of ((n —m,1™), @) are
© ga, = Y12 Ymy1e(i(n_m,1m)2));

o ga; = Ym+ie(i((n-mim)e)), for2<i<n—m—1.

1.3.1.3 GARNIR ELEMENTS OF ((n —m), (1™))

Let A = ((n —m),(1™)) and A; = (1,4,1) for i« € N. Then the complete set of Garnir
nodes of \ is
{4;|1<i<n—m-—1}.

The Garnir belt B4, of A; consists only of the two consecutive nodes (1,4,1) and (1,7 +
1,1) in the arm of A. Thus, the Garnir A-tableau of A; is

m

where i +m = j, so G4, = Sm+iTa. It follows from Lemma 1.17 that the Garnir element
of A; is Ymie(iy), foralli € {1,...,n —m — 1}.
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1.3.2 HOMOGENEOUS PRESENTATION OF SPECHT MODULES

Kleshchev, Mathas and Ram provide the following presentation of Specht modules for

%L

Definition 1.19. [KMR, Definition 7.11] Let o € Q. such that ht(a) = n and A € 2.
The (column) Specht module S is defined to be the Zn-module generated by zy of degree

deg(zx) := deg(T)
subject only to the defining relations:
o e(i)zy = 0y, 2n;
o yrzx=0 forallr € {1,...,n};

o Yrzx =0 foralli € {1,...,n—1} such that r and r + 1 lie in the same column of

the same component of T';
o gazx =0 for all Garnir nodes A in [A].

We notice that this Specht module presentation of S is homogeneous, so that S)

is a non-trivially Z-graded #,-module. In the light of Equation (1.1.12), one can show

that yiA’ail)e(i) kills Sy for all i € I, bringing us to the following result.

Theorem 1.20. [KMR, Corollary 7.21] For A € 2., Sy factors through the surjective
F-algebra homomorphism %o — X2. Moreover, Sy is a Z-graded %% -module.

1.3.3 A STANDARD HOMOGENEOUS BASIS OF SPECHT MODULES
Let A € g@fl and T be a A-tableau. Recall that we define wp € &,, to be the permutation

that satisfies T" = wyT). Now define an element of Sy to be

VT 1= Y2,

where 1)y, is determined by the preferred reduced expression of wz. In particular, we

have vy, = z).

Lemma 1.21. Let A € L@f” T be a A-tableaw and suppose that vr = Yy, 2x be a basis

vector of Sx. Then e(i)vp = vp if i = wriy, otherwise e(i)vp = 0.

Proof. We have

Ywpe(in)za if i = wpiy;

e(i)vr = e(i)wyr 2 = deTe(w;li)@ =
hype(i)zy with ' #£ 1 if 1 # wriy,

and the result clearly follows from Definition 1.19. O
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Whilst the vectors vr of S also depend on the choice of a preferred reduced expres-

sion, in general, the following result does not.

Theorem 1.22. [BKW, Corollary 4.6] and [KMR, Proposition 7.14] Let A\ € 2. The
set of vectors
{vr | T € Std(\)}

is a homogeneous F-basis of Sy of degrees
deg(vr) = deg(T).

Moreover, for any A-tableau S, not necessarily standard, vs can be written as a linear

combination of F-basis elements vy such that S > T.

We call this basis the standard homogeneous basis of Sy. We consider the action of

the Khovanov—Lauda—-Rouquier generators on basis elements of S).
Lemma 1.23. [BKW, Lemmas 4.8 and 4.9] Let A € 2% and T € Std(\).

1. y,vp can be written as a linear combination of basis elements vg such that T > S,
for 1 <r < n;

2. Ifrdrr+1 orr =7 r+1, then Yvr can be written as a linear combination of

basis elements vg such that T > S and ig =1is.7, for 1 <r <n—1.

Theorem 1.24. [BKW, Theorem 4.10(i)] Let A € 2. and X € Std()\). Given reduced

expressions Sy, ... Sy, and Sy, ...s,, for wr,

Ury - Ara2r =ty - e 2n

can be written as a linear combination of homogeneous basis elements vy where ST

We now examine the homogeneous elements of Specht modules, since we know from
Definition 1.19 that Specht modules are graded over Z-.

Theorem 1.25. [BKW, Theorem 4.10(ii)] Let A € 2. and X € Std(\). For each r,

the vectors y,vr and v are homogeneous, and we have that

e(i)vT = 6i,iT (UT) (l S In),
deg(yrvr) = deg(yr) + deg(vr) (re{l,....n}),
deg(¢rvr) = deg(ire(i)) + deg(vr) (re{l,...,n—1}).

1.3.4 GRADED DIMENSIONS OF SPECHT MODULES

We first review the ungraded dimensions of James’ classical Specht modules for the

symmetric group algebras. We know from [J3, Theorem 8.4] that the basis elements of

44



1.3. GRADED SPECHT MODULES CHAPTER 1

Specht modules S defined over the symmetric group algebra are labelled by standard
A-tableaux, so that the dimension of Sy equals the total number of distinct standard
A-tableaux. The size of this basis of a Specht module for FG,, is far from trivial to
determine.

For a partition A\ € !, we say that a hook in \ consists of a node (i,7) € [\
together with nodes lying directly below it and directly to its right. That is, the hook
of (i,7) is the set of nodes

{(,) e N | J<i<A}U{(k,jg) e\ | i<k<mi,

where A = (A1,...,A\m) has m non-zero parts. The hook length of (i, ), denoted hy; ),
is the number of nodes in its hook.

In 1954, Frame, Robinson and Thrall [FRT] introduced the following beautiful com-
binatorial formula using hook lengths to determine the dimensions of Specht modules
for FG&,,.

Theorem 1.26 (Hook Length Formula). Let A € &L, Then

n!

dim(S)) = =—F
H(i,j)em h(m‘)

Remark 1.27. [t is clear that the Hook Length Formula is independent of the choice of
the ground field F. By generalising the definition of a hook to a multipartition, we can
easily extend this result to ungraded Specht modules labelled by multipartitions \ € 2.,

for the cyclotomic Khovanov—Lauda—Rouquier algebra.

Example 1.28. Let A\ = ((5,3),(22,1)). The hook lengths of each node in [\ are as

follows

6[5[4][2]1].
3/12]1
4(2
31
1]
Thus dim (Sy) = W = 180180, so there are 180180 standard ((5,3),(2%,1))-

tableaux!

We now consider the graded dimensions of Specht modules for %Z2 by taking into
account their Z-gradings.
For a multipartition A € 22!, recall that the degree of standard \-tableau T is defined
recursively via
deg(T) := d* () + deg(T<pn1),

where T'<),_; is the standard p-tableau obtained by removing node A from 7', which

contains entry n. By Theorem 1.22, we know that the degree of a standard basis vector
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vy is the degree of the standard A-tableau T', that is, deg(vr) = deg(7T’). Thus we obtain
the graded dimension of .S, by summing over each degree of every possible standard A-

tableau as follows.

Proposition 1.29. Let A € .. Then the graded dimension of Sy is

grdim (Sy) := Z paee(T),
TeStd(N)

where v is an arbitrary indeterminate.
Naturally, we recover the ungraded dimension of Sy by setting v = 1.

Example 1.30. Let e = 3 and x = (0,0). S((1),(14)) s spanned by basis vectors labelled
by tableaux

T=[1], »=[2], 13 =[3] Tu=[4] 5 =5/

We find the degree of T1. We note that the degree of any node in the first component is
0, so dbY = 0. The e-residues of ((1), (1)) are

il
0]

Thus (1,1,2) has removable 0-node (1,1,1), and hence d™2) = —1. Adding this node,
we observe the e-residues of ((1), (1))

0
Thus (2,1,2) has addable 2-node (2,1,1), and hence d2Z12) = 1. Adding this node, we
observe the e-residues of ((1), (1%))

Thus (3,1,2) has addable 1-nodes (1,2,1) and (1,2,2), and hence d®%2) = 2. Finally,
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adding this node, we observe the e-residues of (1), (1%))

Thus (4,1,2) has removable 0-node (1,1,1), and hence d*12) = —1. Thus
deg(Tl) — d(l,l,l) 4 d(l,l,?) 4 d(2,1,2) 4 d(3,1,2) 4 d(4,1,2) - 1.

Similarly, one can find that deg(Ts) = deg(Ts) = 3, deg(T3) = 2 and deg(Ty) = 1,
and hence grdim (S (1) (14y)) = 20° 4 v? + 2v.

Unlike the Hook Length Formula given in Theorem 1.26, there is no known closed
formula for the graded dimension of a Specht module for %{1\ This raises the problem

of determining if a graded analogue to the Hook Length Formula exists.

1.3.5 WEIGHTS OF MULTIPARTITIONS

We define the block decomposition of a finite-dimensional F-algebra A to be
A=By®B1® - - @ B,

where By, ..., B,, are indecomposable, two-sided ideals. We call these B;, for all i €
{0,...,m}, the blocks of A. We now let e, ..., e, be the primitive central idempotents
of A, namely the block idempotents of A. If Ae; = B;, fori € {0,...,m}, then ¢;B; = B;,
otherwise e;B; = 0 for j # 1.

Let M be an A-module. We have > " e; = 14, so that M decomposes as

M =egM @ --- D enM.

We say that M belongs to the block B; if e,M = M.

The blocks of the Khovanov-Lauda-Rouquier algebras, in particular the weights
of these blocks, provide us with a lot of information about the representations of these
algebras. For example, each block contains a Specht module, and moreover, each Specht
we know from [LM] that the weight of

a block containing the Specht module S corresponds to the combinatorial definition of

module belongs to a single block. For A\ € &!,
the e-weight of the multipartition A, which we now introduce.

We first restrict our attention to level one and let A € &L, We define a rim e-hook
of A to be a connected chain of e nodes of [A] such that we obtain a valid Young diagram

when these nodes are removed from [A]. The partition obtained by removing all possible
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rim e-hooks from A is called the e-core of A\, denoted core(\). We say that the e-weight
of A is the number of rim e-hooks we remove to obtain the e-core of A\, denoted by
wte(A). We set wte(A) =0if e = 00

Example 1.31. Let e = 3 and X\ = (5,2%). Observe that we can successively remove

rim 3-hooks (shaded below) from [A] to obtain its 3-core as follows

HF]]H[-HD
s

We see that cors(A\) = (1) and wtz(\) = 3. In fact, notice that we obtain the same

3-core, and hence 3-weight, of A by successively removing different rim 3-hooks from [A]

1 1

We see that the e-core, and hence the e-weight, of a partition are well defined notions.

as follows

Theorem 1.32. [JK, Theorem 2.7.16] The e-core of A € P} is uniquely determined.

Fayers [Fa3, §2.1] generalised the definition of the e-weight of a partition to higher
levels of the cyclotomic Hecke algebras, and hence the cyclotomic Khovanov—Lauda—
Rouquier algebras, by introducing the e-weight of a multipartition.

In fact, the e-weights of multipartitions are block invariants, so that the e-weights
of two multipartitions \, u € 22! are the same whenever the Specht modules Sy and Sy
lie in the same block. Moreover, we know from [Fa3], for o € Q4 and A € 22! such that
a = cont(\), that the defect of a from Equation (1.2.3) is equivalent to the e-weight of
A

1.3.6 GRADED DUALITY OF SPECHT MODULES

For A\ € 2! one can instead study the representations of Z2 as (row) Specht modules,
denoted by S*. Row Specht modules have a similar presentation to column Specht
modules, as can be seen in [KMR]. In fact, row and column Specht modules are dual to

each other, up to a grading shift.

Theorem 1.33. [KMR, Theorem 7.25] Let A € P.. Then we have the following iso-
morphism of %2 -algebras
§* 2 (53)° (wee(N)).
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14 GRADED IRREDUCIBLE Z"-MODULES

We determine a classification of the graded irreducible %ﬁ—modules. We can equip the
graded %{}—module Sy with a homogeneous symmetric bilinear form (, ) of degree zero
(see [HM1, §2]). We define the radical of Sy to be

rad Sy = {vr € S) | (vr,vs) = 0,Yvg € Sy}.

Since (vr,vs) = 0 whenever deg(vr) + deg(vs) # 0 (that is, deg(T) + deg(S) # 0),
rad Sy is a graded Z2-submodule of Sy. We now define the graded quotient Z2-module

D) := 85, /rad S,

for each A € 2. We know from [HM1, Lemma 2.9] that D) is absolutely irreducible or
zero. Moreover, since we also know from [HM1, Lemma 2.9] that rad D) is the graded
Jacobson radical of Sy, D) is a well-defined graded quotient of Sy by Lemma 1.1.

Specht modules also exhibit a graded cellular basis, and so, Sy can be analogously
studied as a graded cell module (see [HMI1] for an exposition). The next result shows
that the irreducible heads of Sy only arise from regular multipartitions, first conjectured
by Ariki and Mathas in [AM].

Theorem 1.34. [HM1, Corollary 5.11] Dy is an absolutely irreducible Z>-module if
and only if \ € ZP"..

Thus, these non-zero quotient %{}—modules labelled by regular multipartitions give

a complete classification of the irreducible Z22-modules.
Theorem 1.35. [BK3, Theorem 4.11] and [HM1, Proposition 2.18]

1. {DA@') NeRZPic Z} is a complete set of pairwise non-isomorphic irreducible
graded Z-modules.

2. For all\ € #P.,, Dy = DY as graded RN -modules.

By the second part of this theorem, we know that irreducible Z2-modules are self-
dual. As Dy and its dual are isomorphic as graded Z2-modules, no grading shifts occur

which leads us on to the following result.

Proposition 1.36. For all \ € %’332, the graded dimension of Dy is symmetric in v

and v1.
Together with Proposition 1.29, the following result is an immediate consequence.

Corollary 1.37. Let A € Z#P., and T = Std()\). Then

grdim(Dy) = v* Z pdee(T),
TeT
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where 2i = —maxdeg(7) — mindeg(.7). Moreover, the highest degree in the graded
dimension of Dy is 1(maxdeg(.7) — mindeg(.7)).

Setting S = {vr | T € J}, we have grdim(D,) = v’ grdim(span S), and in other
words Dy = span S(7).

1.5 GRADED DECOMPOSITION NUMBERS FOR %"

Decomposition numbers record information about the structure of Specht modules over
ZN. For A € P and u € %9”2, we denote the ungraded decomposition number by
dxpu = [Sx : D,], which is the multiplicity of D,, appearing as a composition factor in a
composition series of S). We know that we can afford Specht modules with a grading
and study the graded composition factors that arise in their composition series, since a
graded version of the Jordan—Holder theorem exists.

We denote the ungraded decomposition matrix for %2 by (dy ,,); we write (d]i ,,) When
we want to emphasise the ground field F. We can compute the ungraded decomposition
matrices for Z2 over a field of characteristic zero via the generalised Lascoux-Leclerc—
Thibon algorithm given by Fayers in [Fa4], whereas, the ungraded decomposition matri-
ces for ,9?{} over a field of positive characteristic are far more elusive. For v, u € Z 3”%,
we know from [BK3] that there exists an adjustment matriz (aj, ,,) such that the product

(d$ )(ay, ,1) gives us the ungraded decomposition matrices for ) over an arbitrary field,

C
v,p

entries in the adjustment matrix over a field of positive characteristic.

and moreover, (dgy)(a ) = (dgy). However, there exists no algorithm for finding the

For A € & and u € AP . we define the graded decomposition number (or the

n’

graded composition multiplicity) to be

dyu(v) = [Sx: Dyly := Zawi € N[v,v 1],
1€Z
where a; is the composition multiplicity of D, (i) appearing as a composition factor of
S\. Note that we recover the ungraded decomposition number by setting v = 1.

We record these graded multiplicities in a graded decomposition matriz, denoted by
(dxu(v)), where its rows correspond to Specht modules labelled by multipartitions and
its columns correspond to irreducible quotients of Specht modules labelled by regu-
lar multipartitions. By [BK2, Corrollary 6.3] we know that the graded decomposition
matrices for cyclotomic Hecke algebras, and hence for the corresponding cyclotomic
Khovanov-Lauda—Rouquier algebras, only depend on the quantum characterisitic e and
the characteristic of the ground field F, and not on F itself, affirming a conjecture by
Mathas.

The following result for %2 is a generalised graded version of [J3, Corollary 12.2] for
FG,.

Theorem 1.38. [BK3, Corollary 5.15] Let A € P and p € #P.,. Then
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'Z' d:unu(v) = 1;

2. dyu(v) #0 only if p> A

Theorem 1.39. [BKS3, Theorem 5.17] Let F be an arbitrary field, A\ € 2. and pu €
RP. . Then
dIE,,u(U) = Z dg,u(v)a]}j”u(v)a

vERP,
for some aIE’M(v) € N[v,v™!] with aIS,#(v) = a]}j’u(vfl).
We say that aE . (v) is a graded adjustment number of #2 over TF; the graded adjust-

F
Ay

v and v~ and whose rows and columns correspond to regular multipartitions, whereby

ment matrix (a,, ,(v)) is a square unitriangular matrix whose entries are symmetric in
we recover the ungraded adjustment matrix when we set v = 1. It follows that we can
obtain the graded decomposition matrix for 2 over a field of positive characteristic by
post-multiplying the graded decomposition matrix %ﬁ over C by the graded adjustment

matrix, that is,
(.. (v)) = (5, (v)) (ay,,(v),

for \e P, pve RPL.

1.6 INDUCTION AND RESTRICTION OF Z’-MODULES

The decomposition number problem of understanding the multiplicities [Sy : D,], for all
A€ Wfl, is equivalent to the branching problem of understanding the multiplicities
R
[res,k  Da: Dy,

Hpy—1

for all A\, € W,ZL, which provides the motivation for studying the restriction of an
irreducible Z2-module to an %#2 ;-module. The restriction of the ordinary represen-
tations of the symmetric group and their composition factors are well understood via
the Classical Branching Rule for FS,, (for example, see [J3, Theorem 9.2]). This re-
sult was extended to the Ariki-Koike algebras or the cyclotomic Hecke algebras by
Ariki-Koike [AK, Corollary 3.12], and hence we introduce an analogous result for the
cyclotomic Khovanov-Lauda—Rouquier algebras, recently given by Mathas [M3]. We
simultaneously recall the ‘dual’ results in [HM1] of how Specht modules of the cyclo-
tomic Khovanov-Lauda—Rouquier algebra behave under induction. Induction allows us
to understand representations of the the cyclotomic Khovanov-Lauda—Rouquier algebra
s 1 from representations of the subalgebra ) that are known to us. We write res to
denote the functor restricting a Z2-module to a Z2 ;-module, and write ind to denote
the functor inducing a #2-module to a %2, -module.

We first introduce Brundan and Kleshchev’s i-restriction and ¢-induction operators

e; and f; acting on F&,-modules, as given in Section 2.2 of [BK1]. These functors
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originate from Robinson [Rob]; we extend these exact operators to act on Z>-modules.
We let M be a #-module. There are i-restriction functors e; : Z)-mod —
#)_| -mod, for i € Z/eZ, such that

Vs ~
res i M = @ e;M,
€L/l

n—1

by [BK1, Lemma 2.5, which is an analogous result to [AK, Corollary 3.12].
The graded classical branching rule for Specht modules is given as follows, whereby

the ungraded version is recovered by setting v to be 1.

Theorem 1.40. [M3, Corollary 5.8] Let A\ € 2. and i € Z/eZ. Let A1, As, ..., Ay, be
the removable i-nodes of A and AV aA@) q. .. qX(™) be the respective l-multipartitions of
n—1 such that \V) = \\{A;} for 1 <j < m. Then e;Sy has a filtration of Z>_,-modules

OCM()CMlC"'CMm:eiS)\,

with _Z\4j/]\4]71 o~ UdAj(A)S)\(J')z fO’F 1 < ] < m.

Example 1.41. Let e =3, k = (0,2) and A = ((6,5%,2), (4,3,2)). We observe that the

3-residues of A and its addable 2-nodes, shading the removable 2-nodes of X\, are

\)
(e

=N O =
NN
[

NIO|IFIN O

—_

in

2

l\D‘OD—‘[\?
‘»—\MO

We label the removable 2-nodes as Ay = (1,6,1), A2 = (3,5,1) and A3 = (1,4,2). It
follows that e2Sy has a filtration of %ﬁ%—modules

0CMOCM1CM2CM3:€25)\,

where

dA1 (V)

M,y /My = v Sh = 5((53,2),(4,3,2))

~ dA2O) ~o -
My /My = 0P8 ) 2 075 (6.5.4.2),(4,3.2))

dAs(N)

M3 /My = v Sx® = 5((6,52,2),(32,2))-

Similarly, there are i-induction functors f; : Z»-mod — ;@fl‘ﬂ -mod, for i € Z/eZ,
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such that N
indégﬂ M= @
€L/l
by [BK1, Lemma 2.5].

The ‘dual’ graded branching rule for Specht modules is given as follows.

Theorem 1.42. [HM2, Main Theorem] Let A\ € &', and i € ZJeZ. Let Ay, Aa, ..., Ap
be the addable i-nodes of X and AV > X&) ... X" be the respective l-multipartitions
of n+ 1 such that \9) = XU {A;} for 1 < j < m. Then f;S\ has a filtration of

R, -modules

OCM()CM1C"'CMm:fZ'S,\
with Mj/Mj_l = UdAjS)\(j) fO?” 1< ] <m.

Example 1.43. Let e = 3, k = (0,2) and \ = ((6,52,2), (4,3,2)) as in Ezample 1.41.
We label the addable 2-nodes of A\ as By = (4,3,1), Bs = (5,1,1), B3 = (3,3,2) and
By = (4,1,2). Then f2Sy has a filtration of %3s-modules

OCMoCM1CM2CM3CM4:fQS)\,
where

My /My = 0?8 = V728 ((6,52.3),(4.3.2))
My /M,y vdBﬂMSA(z) = 0 5((6,52,2,1),(4,3.2));
Mz /My =08, ) = v S((6,52,2),(4,3%);
My/Ms3 = UdB4<A>S>\(4) = 5((6,52,2),(4,3,2,1))-

1%

The operators e; and f; are both left and right adjoint to each other by [K4, Lemma
8.2.2], and so are exact functors.

There are generalisations of the i-restriction and ¢-induction operators to “divided
powers” egr) and fi(r). For i € Z/eZ and r > 0, there are divided power i-restriction
functors ezm : #2 -mod — %), -mod, which satisfy [BK1, Lemma 2.6]

rl
e; M = @ eET)M.
k=1

Similarly, for i € Z/eZ, there are divided power induction i-functors fi(r) : %{1\ -mod —
A%, -mod, which satisfy [BK1, Lemma 2.6

r!
k=1

Notice that egl) = ¢; and fi(l) = f;. The divided powers eET) and fi(r) are also both left
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and right adjoint to each other (see [K4, Theorem 8.3.2]), and so are exact functors.

For a non-zero %Z-module M, we define
(M) =max{r >0|e"M #£0} and @;(M)=max{r>0| "M #£0}, (16.1)
and now define

N = M and M = peM

Corollary 1.44. Let A\ € 2. andi € Z/eZ.
1. Then €; (Sy) = rem;(\) and eEmaX)SA = Syvi.

2. Then ¢; (S)) = add;(\) and fl-(max)SA = Syni.

1.7 MODULAR BRANCHING RULES FOR Z>-MODULES

Kleshchev developed the analogous theory for restricting the modular representations of
the symmetric group [K1, K2, K3], which Brundan extended to Hecke algebras of type
A [B]. These modular branching rules were generalised for cyclotomic Hecke algebras,
proven by Ariki in the proof of [A3, Theorem 6.1]. Thus, modular branching rules for
the cyclotomic Khovanov-Lauda—Rouquier algebras make sense, which we note here.
Recall that D, is the irreducible quotient of the Specht module Sy, where \ € # L@fl

Theorem 1.45. [BK1, §2.6] Let A € &', Then
€ (Dy) = nor;(\) and p; (D)) = conor;(A).

Moreover,

1 if Ay, ..o Apor,(n) are the normal i-nodes of A, then

(max)

e D= Da\{Ar, Ao, o)}

2. and if A1, ..., Aconor;(n) are the conormal i-nodes of A, then

(max) ~
f’i D)‘ = D)‘U{Alv---7Aconori(/\)}'
Example 1.46. Let e = 3, k = (0,2) and A = ((9,6,2,1%),(4,3,2)). We know that S
is irreducible since we can obtain A from (&, D) by adding certain conormal nodes, that
is, A\ = (@,9) TatiToteTot313151 12015131312, We draw the 3-residues of X and its
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addable nodes as follows.

o[1]2]o]1][2]0]1]2]0
2/0]1[2]0]1]2
112]0
0]1
2]
1]
0
2[0]1]2]0

o/ B

2 (2)
2 2

Observe that A has 2-signature — + — — +4, and hence the reduced 2-signature of X is
— — 4+, so that A\ has two normal 2-nodes and two conormal 2-nodes. Note that we
have also drawn the bipartition obtained by removing the normal 2-nodes from X (that
are outlined), as well as the bipartition obtained by adding the conormal 2-nodes of A
(that are shaded). Then we have

2 ~
e$ Dy 2 Dy(s.6.2.19),32.2))

2D~
f2( 'Dy, = D (9,6,2,13),(4,32,1))-

For each i € Z/eZ, there is at most one good i-node of A, and hence at most e good
nodes of A. It follows from [K2, Theorem 0.5] that the socle of the restriction of an
irreducible Z2-module D, to an #Z» ;-module is a direct sum of at most e indecom-
posable Z)-summands. Moreover, we also know from [K2] that we can verify that the
residue sequence of A\\{A} is distinct for each good node of A, so that each summand
D3\ {4y belongs to a distinct block of ,%’é\ We generalise this result to “divided powers”

as follows.

Corollary 1.47. Let A\ € 2. andi € Z/eZ.
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1. If r < nor;(\), then
soc (el(-T)D/\) = DAU{‘

2. If r < conor;(\), then
soc (fi(r)D,\) = Dyyr.

It follows that the modular branching rules for Specht modules of the Khovanov—
Lauda-Rouquier algebras %2, together with the operators 17 and |, provide a combi-

natorial algorithm for determining labels of %Z2-modules that we know are irreducible.

Proposition 1.48. Let A € &', If D is an irreducible Z)-module with eET)D = Dy,
then D = Dyyr.

Proof. Suppose that D = D,, where ;1 € ,%’L@ﬁl, so that eET)D = egr)DM = Dy. We know
that r < nor;(p) since eET)D # 0, then from the first part of Corollary 1.47 we have
soc (el(-r)Du) = D, where v = p |7. Since el(-r)DM =~ D,, we have v = A. Then, by
Equation (1.2.2), A = p |I17'= p, as required. O

Let 0 < r < nor;(\) with egr)DM > Dy, where \, u € %(@fl Then the normal i-nodes

of p and the conormal i-nodes of A coincide, and hence

S0¢C (fi(T) (egr)Du» = Dygryr = Dy

Example 1.49. Let e = 3, k = (0,2) and X = ((8,6,2,13),(32,2)). By Example 1.46,
we have eéQ)D,\ >~ D). The 3-residues of ((8,6,2,13),(3%,2)) are

o[1]2]o][1]2]0]1]2] ol1]2][o]1]2]0]1]2]
2[ol1]2]0]1]2 2[o]1]2]0]1
11210 1]2

01 0]

2] 2]

1] - 1]

0

2|0]1]2 2[0[1]2]
1[2]0 1[2]0
0/1]2 0/1]2

2

where the removable 2-node of A is shaded and the addable 2-nodes of A\ are outlined.
Hence ((8,6,2,13),(3%,2)) has 2-signature ++—+++, and thus reduced 2-signature ++
+-+. Adding the highest two conormal 2-nodes, it follows that soc <f2(2)D((8,6,2,13),(32,2))) =
D (9,6,2,13),(4,3,2)), as expected.

For non-irreducible ,%’,/l\-modules, we can determine the labels of their composition

factors by applying the same combinatorial algorithm using the following result.
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Proposition 1.50. Forr >0 and an Z2-module M, suppose that egr)M = D,,, where
p € P._.. Then one of the composition factors of M is Dy, while all the other

composition factors of M are killed by eir).

Example 1.51. Let e =3, k = (0,2) and A = ((7,5,1%),(3%,1)). The 3-residues of

o[1]2]o0]1]2]0] ol1][2]o[1]2]0]
2/0/1]2]0 2[o0]1[2]0
1[2 1]

0] 0]

2] e 2]

1] - 1]

201F 2[0]1

1/2]0 112]0

ﬁ 0]

where the addable 2-node of A is outlined and the removable 2-nodes of \ are shaded.
Hence e§2)5((7,57l4)’(473712)) & 5((7,5,14),(32,1))» which we know is irreducible since S((s 6.2,13),(32,2))
is irreducible from Ezample 1.46 and ((8,6,2,13),(32,2)) {3lo= ((7,5,1%), (32, 1)).

We now observe that the 3-residues of ((7,5,1%),(32,1)) and its addable 2-nodes are

o[1]2]o0]1]2]0] o[1]2]o]1][2]0]
200[1]2]0 2[o]1]2]0
1[2 1]2

0] 0]

2] 5 2]

1] - 1]

2|0]1]2 2/0]1][2]
1/2]0 1[2]0

0 0]

Observe that +-++ is the 2-signature of ((7,5,1%), (3%,1)), and thus soc (féz)D((775714)7(3271))> =

D ((7,5,2,13),(4,3,1)) 8 @ composition factor of Si.
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PART I1

SPECHT MODULES LABELLED
BY HOOK PARTITIONS
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CHAPTER 2

GRADINGS ON 5 ) AND S,y 1m)

n—m,m

Our main objects of study in Part II of this thesis are Specht modules S(,,_, 1m) labelled
by hook partitions in finite quantum characteristic. In the following chapter, we will see a
deep connection between these Specht modules and Specht modules labelled by two-part
partitions in quantum characteristic two, inspired by the work [Mu2] of Murphy on hook
representations. In preparation, we first determine the ungraded dimension of S,y m)
in quantum characteristic two, together with its graded analogue, and subsequently

begin to understand the Z-grading on S(;,_p,,1m) in finite quantum characteristic.

2.1 THE GRADED DIMENSION OF S(;,_, ;) WHEN € = 2

We first determine the ungraded dimension of Specht modules labelled by two-part
partitions, which is independent of the ground field F.

Proposition 2.1. The (ungraded) dimension of S(n_m m) s

n+1—2m<n+1>

n-+1 m

Proof. Observe that the hook lengths of each node in [(n — m,m)] are

n—-m+1l| n—-m | - n—2m+2| n—2m ‘n—Qm—l‘ --------- ‘ 1 ,
m m—1 | e 1
written as

O h(im—y=n—2m+2+ifor 0 <i<m—1;
o hip-mpn=1i+1for 0<i<n—2m—1;

o higm-yy=ti+1lfor0<i<m—1
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Hence, by applying the Hook Length Formula given in Theorem 1.26, we have

n!
m!(n —2m)!l(n —2m+2)(n—2m+3)...(n—m+1)
(n—=2m+1)(n+1)!
(n+1)mlin—m+1)!
n—2m+1/n+1
TS ( >

dim (S(n—m,m)) =

m
U

We now let e = 2 and observe that the 2-residues for the nodes in the space N x N

are
0/1/0]1]0]||
1/0/1/0]1 ]~
0/1/0/1]0]-
11011101~
0[1[0[1]|0]-

and thus, due to the chequerboard arrangement of these 2-residues, we expect that
the graded dimensions of Specht modules in quantum characteristic two are easier to

determine than those in quantum characteristic at least three.

Lemma 2.2. Let e =2 and 0 < m < [§]. Then the graded dimension of S(,_, m) s
1. grdim (S(n,m,Lm)) + v - grdim (S(n,mm,l)) if n is even with n > 2m;
2. v-grdim (S(m,m_l)) if n=2m;
3. grdim (S(n_m_Lm)) +ov~ ! grdim (S(n_mm_l)) if n is odd.

Proof. Let A = (n —m,m). If n > 2m, then there are two nodes in [A] which n can lie
in, namely (1,n—m) and (2,m). Clearly, there are no addable or removable (n—m —1)-
nodes strictly above (1,n —m) for A, and hence d(:"=™)()\) = 0.

1. Suppose that n > 2m is even. Now res(2,m) =res(1,n —m+1), so (1,n—m+1)
is an addable (m — 2)-node above (2,mm) and thus d®>™)(\) = 1. Hence we have

grdim (Sy)
— Z pdes(T)
TeStd(N)
_ S (vdegm) + Y (vdegm)
TeStd(N) TeStd(N)
s.t. T(1,n—m)=n s.t. T(2,m)=n
_ Z (Ud<1vn*m>(x)+deg(T)> i Z (vd<2»m)(x)+deg(T)>
TeStd((n—m—1,m)) TeStd((n—m,m—1))
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— Z (vdeg(T)> e Z pdea(T)

TeStd((n—m—1,m)) TeStd((n—m,m—1))

= grdim (S(n—m—l,m)) + v - grdim (S(n_m,m_l)) .

2. Suppose n = 2m, so n always lies in node (2,m) in (m?) € £}, Since res(2,m) =
res(1,m+1), (1,m + 1) is an addable (m — 2)-node strictly above (2,m) for (m?)
and thus d?™((m?)) = 1. Hence, by the previous part, grdim (S(n,m’m)) =

v - grdim (S(m,m_l)), as required.

3. Suppose n is odd. We have res(2,m) =res(1,n — m), and hence (1,n —m) is a
removable (m — 2)-node strictly above (2,m) for A, that is, d®>™)(\) = —1. Thus,

the results follows from the first part.

Proposition 2.3. Let e =2 and n > 2m. Then

" (n—2m+2—4 /n n
Z(n—2m+2+2ni<§>< 2_ > me2 if n is even,

grdim (S(n_m7m)) = i=0

n+1—2m ntl odl 9% .
_— mee dd.
o Zz:%(( ; —_— ifnis o

Proof. We proceed by simultaneous induction on n, for n odd and for n even. Firstly,

let n = 2a for some a € N, and suppose that

=55 (0 ))

7

If n > 2m, then by Lemma 2.2 we have

grdim (S(n—m,m))
= grdim (S(n—l—m,m)) + v - grdim (S(n—m,m—l))
= grdim (S(2a—1—m,m)) + v - grdim (S(Qa—m,m—l))

() e (O )
-2 (O6) )
R e 06 ) )

B (i ()

=0
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4
:m n—2m+2—;’ % % 'l)miZi
prd n—2m+2+2i\i)\m—1 '

Similarly, if n = 2m, then by Lemma 2.2 we have

m—1
. : 1 m m m—2i—
grdim (S(mz)) = v - grdim (S(mm_l)) =v- ooy << ; > <m i 1)1} 2 1)

We now let n = 2a + 1 for some a € N, and suppose that

] "l —am+a—i (a a m—2i
grdim (S(2q—m,m)) = Z ( (a—m+i+1) ( ) (m — i)v >
=0

S (e (), ),

Then, by Lemma 2.2, we have

grdim (S(n_m’m))
= grdim (S(n_l_m,m)) + v~ ! grdim (S(n mm— 1))
= grdim (S(Qa m m)) + vt grdim (S(2a+1 m,m— 1

(00
B
S (SO0 )

Z;< ety () () )

:(a_m+1)(a+1)§<(a—|—1—z’)(a1+1—m+i)<(il><ma—i)v2i_m>

-~ (7)) )

)
_n +1-2m i ”;’1 ”T'H L 2i-m
n+1 par i m—1 '

d

It is obvious that we recover the ungraded dimension of S(,_, ;) from Proposi-
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tion 2.1 when n is odd by setting v = 1, that is,

n—|—1—2m§:<(”'2"1>< "74'1 >> _ n—|—1—2m<n+1>

n+l i m—i n+1 m )’

however, the ungraded dimension of S(,,_,,,) cannot be directly recovered when n is
even.

We observe that the graded dimension of S(,,_,, ) With e = 2, a particularly straight-
forward graded dimension to determine, is remarkably complicated. Moreover, we note
that it seems unlikely to obtain a graded Hook Length Formula by this observation
together with others throughout this thesis, and that if one exists, it will most certainly

not be as beautifully succinct as Frame, Robinson and Thrall’s ungraded version.

2.2 DEGREE OF A STANDARD (n — m, 1™)-TABLEAU

In this section we set up preliminary results in order to later determine the graded
dimensions of Specht modules labelled by hook partitions and of their composition
factors in finite quantum characteristic.

We denote a hook partition of n by (n —m,1™), for 0 < m < n — 1. We refer to the
set of nodes {(i,1) | 2 < i < m+ 1} as the leg of (n —m,1™), and we refer to the set
of nodes {(1,7) | 2 < i < n—m} as the arm of (n —m,1™). The Young diagram of a

hook partition with its leg and arm shaded is

where its leg has been shaded lighter than its arm.
For A € [(n — m,1™)] such that res A = i, we now determine when there is an

addable or removable i-node of (n — m,1™) lying in the first row of [A], strictly above

A.

Lemma 2.4. Let e be finite and T € Std(n—m, 1™) with T(i,1) = k, for some i, k, with
2<i<m+1and?2 <k <n. Then (k—1i+ 1,171 has neither addable (1 — i)-node
(1,k — i+ 2) nor removable (1 —i)-node (1,k —i+ 1), except in the following cases.

1. If k=0 (mod e), then (1,k —i+2) is an addable (1 —i)-node of (k —i+1,1°71)
strictly above (i,1).

2. Ifk=1 (mod e) andT(i,1) > T(1,2), then (1,k—i+1) is a removable (1—1)-node
of (k —i+1,1=1) strictly above (i,1).
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Proof. 1. Suppose that T'(i,1) = ae for some o > 0. Then the entries 2,..., ae — 1
in T lie in the set of nodes {(2,1),...,(: — 1,1)} U{(1,2),...,(1,ce — i + 1)}.
Observe that res(i,1) =1—14 = ae —i+ 1 =res(1l,ve — i+ 2), and since T'(3,1) >
T(1,ce — i+ 1), then (ae — i+ 1,1°1) has addable (1 — i)-node (1, ae —i + 2).

2. Suppose that T'(i,1) = ae + 1 for some o > 0. Then the entries 2,..., ae in T lie
in the set of nodes {(2,1),...,(:—1,2)}U{(1,2),...,(1,ce—i+2)}. Observe that
res(i,1) =1—i=ae—i+1=res(l,ae —i+2). Hence, if T(i,1) > T(1,2), then
(1, e —i+2) is a removable (1 —1i)-node of (i,1). Clearly, if T'(i,1) < T'(1,2), then
the arm of T is empty, and hence (ae — i+ 2,1°!) has no removable (1 —i)-nodes

in the arm of T

3. Suppose that T'(i,1) = ae + j, for j € {2,...,e — 1}, @ > 0. Then the entries
2,...,ae+j—1in T lie in the set of nodes {(2,1),..., (i—1,2)}U{(1,2),..., (1, ae+
j—1)}. We observe that res(i, 1) = 1—1i, whereas res(1,ae+j—i+1) = ae+j—i =
res(1,e + j —4). So res(i,1) # res(1,e + j — i), res(l,ae + j — i + 1), and thus
(ae — i+ j + 1,11 has neither addable (1 —i)-node (1, k — i + 2) nor removable
(1 —i)-node (1,k—i+1).

O

We now provide the degree of an arbitrary standard (n — m, 1™)-tableau.

Lemma 2.5. Let e be finite, T € Std(n —m,1™) and 2 <i < m+ 1. Then
deg(T) = | 2]+ #{i|T(i,1) =0 (mode)} —#{i|T(i,1)=1 (mode)}.

Proof. Let T'(i,1) = k, for i <k < n. We note that there are [ | nodes in the leg of T
with residue 0 modulo e and (k — 4 + 1,1°"!) has addable 0-node if i = 1 (mod e) and
k > 1. Then, by Lemma 2.4, we have

deg(T) = #{i | (k — i+ 1,171) has addable 0-node (2,2)}
4+ #{i | (k—i+1,171) has addable (1 —i)-node (1,k — i+ 2)}
—#{i | (k—i+1,1"") has removable (1 — i)-node (1,k —i+ 1)}
=#{i|i=1 (mode)}—#{i|i=1 (mode)k=1i}
+#{i| k=0 (mode)}
—#{i|k=1 (mode)}+#{i|k=1 (mode),k=7i}
—4{ifi=1 (mode)}+#{i|k=0 (mode)}—4{i|k=1 (mode)},

where #{i | i =1 (mod e)} = | Z]. O

e

For any T € Std(n — m, 1™), we define

ar :=#{i|T(;,1) =0 (mode)} —#{i|T(i,1)=1 (mode)}.
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Then, for any non-empty subset 7 of Std(n —m,1™), we define the set
Ag:={ar | Te T}. (2.2.1)

We define the maximum degree of 7 to be the largest degree of all tableaux in .7,
written
maxdeg(.7) := max{deg(T) | T € J}.

Similarly, we define the minimum degree of 7 to be the smallest degree of all tableaux
in 7, written

mindeg(.7) := min{deg(T) | T € T }.

By Lemma 2.5, it follows that

maxdeg(.7) = 2] + max(Az), mindeg(7) = 2|+ min(Az). (2.2.2)
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CHAPTER 3

HOOK REPRESENTATIONS IN QUANTUM
CHARACTERISTIC 2

Historically, the hook representations of the symmetric group have been some of the
easier representations to study, yet they possess rich structure. Recall that a hook
representation is a Specht module labelled by a hook partition. Peel [P] studied hook
representations for the symmetric group, and subsequently, Murphy [Mul, Mu2].

We know the decomposable Specht modules for the symmetric group algebra F&,,
only occur over a field of characteristic two. In this case, we know that the Specht module
Sy is indecomposable if A is a 2-regular partition, by [J3, Corollary 13.18]. Murphy
studied the decomposable Specht modules labelled by hook partitions for the symmetric
group in [Mul]. Murphy determined that most hook representations are indecomposable,
where the only decomposable hook representations occur when n is odd. A more precise
result was given in [Mu2, Theorem 3.3] to determine these particular decomposable
Specht modules; the cases when S(;,_p, 1m) is semisimple occur when m < 6. S, is
clearly semisimple, and for 0 < m < 6, the sum decompositions of S(;,_,, 1m) are as

follows:
¢ if n is odd, then S(,_; 1) is semisimple;
o if n =3 (mod 4), then S(,,_912) = S(;,_2.2) ® Sin);
o if n=1 (mod 4), then S(,,_315) = S(;,_33) ® S(n_1,1);
o if n =17 (mod 8), then S, _414) = S(;,—4.4) D Sn—22) © S(n);
o if n =1 (mod 8), then S(;,,_5 15y = S(—55) D S(n-33) D S(n-1,1)-

Thus, for the most part, Specht modules labelled by hook partitions have no such
sum decomposition. However, it can be extracted from [Mu2, §2] that Specht modules

labelled by hook partitions over the symmetric group algebra have Specht filtrations
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whose factors are Specht modules labelled by two part partitions

S(nfm,m)v S(n7m+2,m72)7 S(nfm+4,m74)7 )

from bottom to top. For n > 2m, the partitions (n — m,m),(n —m +2,m — 2), (n —
m +4,m — 4),... are 2-regular partitions, and hence the Specht modules labelled by
these partitions are indecomposable. Thus, from Murphy’s work, S(,_, 1m) is the first
known Specht module filtered by indecomposable Specht modules that confirms Dodge
and Fayers’ postulation [DF, §8] that every Specht module for the symmetric group has
a filtration of indecomposable Specht modules.

The modular representations of the symmetric group over a field of characteristic
two are known to closely emulate the representations of the Iwahori—Hecke algebra in
quantum characteristic two over the ground field C. Thus, it is natural to ask if we can
extend the above filtration arising from G. Murphy’s work from the symmetric group to
the cyclotomic Khovanov—-Lauda—Rouquier algebra; we introduce analagous filtrations
of Specht modules labelled by hook partitions for 2. We set [ = 1 and e = 2 (that is,
g = —1) throughout this chapter.

3.1 HOMOGENEOUS BASIS ELEMENTS OF S(;_y, 1m)

We now define a homogeneous basis of S(;,_, 1m). Given a standard (n—m, 1™)-tableau

T, we write a; := T(j,1) for 2 < j < m+ 1. Then T is completely determined by

@z, - ..,am+1- We can write
T= wTT(n—m,lm)u
where
ag—1 az—1 ampm41—1
wr=sJ] s ...s |
2 3 m+1
is a reduced expression. If a; =i for all i € {2,...,m + 1}, then we set T' = T{;,_, 1m).

For j > i, we define
j
W =11

Now we can write

vr = waz(n—m,lm)y (311)
where
ag—1 az—1 am4+1—1
Y, =0 | ¥ | ..U |,
2 3 m+41

and by Theorem 1.22, the vy form a basis for S(,_,, 1m) as T' runs over all standard

(n—m, 1™)-tableaux. For brevity, we write vy = v(ag, ..., am+1). Thus, if a; = ¢ for all
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i €{2,...,m+ 1}, then vp = 2(;,_p, 1my. For j € N, we write

J
Hazi =T1X9.. ..Tj,
=1

where 1, ...,x; are elements of %, that do not necessarily commute.

3.2 A SPECHT FILTRATION OF S, o 12ty

We concern ourselves with the hook representations S, oy, 125y; we let A = (n — 2k, 12F)
until the end of Chapter 3.

Definition 3.1. For 1 < j < k+ 1, we define the standard A-tableau

2k—2543 /o o\ T3 e ajism
e I1(59) I (5 40)m

i—3 =0 2k—2j+4+1

We note that the entries in A; that correspond to the left hand product in the
definition of A; are even, whereas the entries corresponding to the right hand product
are consecutive entries. Aj; is the standard A-tableau with even entries 2,4,6,...,4k —
47 + 6 lying in the first 2k — 25 + 2 nodes in its leg, and with consecutive entries
4k — 45+ 7,4k — 45+ 8,...,4k — 25 + 3 lying in the remaining 2j — 2 nodes in its leg.
If we set | = 4k — 47, then A; is the A-tableau

I+4

where we have shaded the consecutive entries lying in A;. In particular, we see that
Aj+1 is the column-initial A-tableau 7).
‘We now find the basis vector v A; of Sy corresponding to A;. For 1 < j < k41, we

2k—2j+3 iz\ 2073 4k—4j+5+1
VA, = H <\I’ i ) H <‘I’ b )Z)\, (3.2.1)

R 2k—25+4+1
i=3 ¢ 1=0 It

write

by setting 7' = A; in Equation (3.1.1).
We know that vy, is completely determined by the entries lying in the leg of Aj;.

Thus, by observing the standard A-tableau A; above, we can write the basis vector va;
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as
v(2,4,...,4k —4j + 4,4k —4j + 6,4k — 45+ 7,..., 4k — 25 + 2,4k — 2j + 3).

In particular, va, , = v(2,3,...,2k + 1), which is the standard generator z) of S). We
let M; be the Z2-module generated by v 4;- We aim to show that Sy has an ascending
filtration 0 C My C -+ C Mgy1 = S).

To prove the following lemmas, we require the presentation of Specht modules la-
belled by hook partitions from Definition 1.19.

Remark 3.2. S) is the %’fl\—module generated by zy, subject only to the relations
o e(i)zy = 6i4, 2,
o yizx =0 forie{l,...,n— 1},
o Pizy =0 forie{l,...,2k},
together with the Garnir relations (by Section 1.3.1.2)
o htha . bogyr2a =0,
o izx=0 forie {2k +2,2k+3,...,n—1}.

The following lemmas describe how the generators yi,...,yn, ¥1,...,%n—1 of the

Khovanov-Lauda—Rouquier algebras act on a basis vector v(as,...,agk+1) of Sh.
Lemma 3.3. Let e = 2 and suppose i,j are such that aj_1 > j and 3 < j <i— 1.
1. If both i and i + 1 lie in {a2,...,amy1}, then Yv(ag, ..., amy1) =0.
2. If i lies in {ag, ..., am+1}, then yv(az, ..., ams1) = 0.
3. If i+ 1 lies in {aa,...,am+1}, but i does not, then y;v(az,...,am+1) = 0.

Proof. We prove the three statements simultaneously, by induction on ¢. We name

statement 1, 2 and 3, respectively, A;, B; and C;.

1. We prove that A; holds by using the inductive statements A; 1, B;, C;_1 and

ag—1 i—1 i
Ci—2. Let aj =i and aj41 =i+ 1. If i = j then all the terms ¥ | ... W | W |
2 i g+l
are trivial, so
a]-+2—1 amy1—1 aj+2—1 a1
Yiv(ag, ... amy1) =;¥ L .U | ozy=0 | ..U | hizy=0.
Jj+2 m+1 j+2 m+1

We suppose that ¢ > j + 1.

70



3.2. A SPECHT FILTRATION OF Sy _y 12x) CHAPTER 3

(i) Let’s first consider when i is odd. We have

T/Jiv(GQ,ag,...,aj_l,i,i+1,aj+2,aj+3,...,am+1)
ag—1 aj_1—-1 4 i ajto—1 am41—1
_w,qz¢.x1:¢ viwl vl v
j—1 i ¥ j+2 m1
ag—1 aj_l—l ajyo— 1 app1—1
AR A TSRS LR AR AN AN
2 j—1 J J+1 j+2 m+1
We see that
i—2 i—1 aj42-1 am41—1
sl sl s | ...s | 1,
i i+l g2 mt1

which we shall call T', is the corresponding A-tableau to the element

i—1  aj42—1 am41—1 A
VUL 0] v ez
i g+l j+2 m+1

One observes that T'(j,1) =i—1, T(j+1,1) =tand T(1,i—j+1) = i+1. Ifj
is odd (resp., even), then res(j, 1) = 1—j is even (resp., odd), res(j+1,1) = —

is odd (resp., even), and res(1,i — j + 1) = ¢ — j is even (resp., odd) since
1 is odd. We let er be the idempotent with respect of T', where, if j is odd
(resp., even), its (i — 1)th and (¢ + 1)th entries are odd (resp., even) and its

ith entry is even (resp., odd). We thus have

ap—1 aj7171 i—1 ajyo— 1 amp1—1 .
UL (i wl)m VU] 0L e(ia
2 j—1 j J+1 Jj+2 m+1
ag—1 aj_1-1 —2 -1 @jyo-1 am1—1
=5 2V RN (I m)eT\u LTS 2
2 j—1 j Jj+1 Jj+2 m+1
ag—1 aj—1—1 i1 421
=V | ...V | (Wiavithion + 2y — Ui — yz+2)6T‘I’¢ v, v |
2 i1 i g+l J+2
a,m_’_lfl
.U \l, 2N\,
m—+1

by Definition 1.6 Equation (1.1.11).

The first term of this expression becomes

ag—1 aj_1-1 -1 @j+2-1 am41-1
vl o i Vi1 1\If¢ ‘IW‘I’ U
2 j Jj+1 Jj+2 m-+1

ag—1 aj_1-1

=W | UL ki qv(2,. ., — i — 14, a540, . Gmet)
j-1

Now ;—1v(2,...,5 —1,i —1,i,aj42,...,am+1) is zero by A;_;.

The second term of the expression becomes

ag—1 aj—1-1 ajy2=l ajp3-l am+1-1
PA N i yz+1\11¢ A A A
2 J Jj+1 j+2 j+3 m+1
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ag—1 aj_1—1 2 ajyo-1 i—1 i1 @j43—1 amy1—1
=20 .0 | UL U | oyl VLWl T ] 2
2 j—1 J i+2 j+1 j+2 j+3 m+1
ag—1 j—1—1 4_2 ajia-1
=2V ~2L : \IJ ~L1 \II\L v ;l-/z lerlU(Q '"7jaiai+2aaj+3a'--7am+l)
Jj— 7
where y;110(2,...,7,4,1+ 2,043, ...,am+1) equals zero by Cj_.

The third term of the expression becomes

ag—1 aj_1-1 4 421 am41—1
-l ...v ] ‘Piyz\lfi\lfi O
2 j—1 J Jj+1 Jj+2 m+1
ag—1 aj—1-1 4
vl vy UL yio(2, G0 a4, Gt
Jj— J
where y;v(2,...,j,%,aj42,...,am+1) equals zero by B;.

Finally, the fourth term of the expression becomes

ag—1 aj_1— 1 421 A1 —1

vl S R AR A
2 J J+1 Jj+2 m+1
ag—1 aj_1-1 ;o ajyo-1 i-1 42  @j43~1 am41—1
=-v] ..v | \I’i‘lf U EEL U U N
2 j—1 J i+3 J+1 g+2 Jj+3 m+1
az—1 aj—1-1 i aj+2-1 .
=-v \L W \L ‘lji v \lf yl+2v(2 "'7]72)Z+37aj+3a"'7am+1)
2 Jj—1 J i+3
where y;40v(2,...,7,%,0 4+ 3,aj43,...,am+1) equals zero by Cj_s.

(ii) Now suppose that i is even. We have

¢1U(a2,a3,~-,ag‘717i7i+17aj+2,aj+3,---7am+1)
ag—1 aj—1=1 i +2-1 am41—1
=l LU Vvl R A R
Jj—1 J Jj+1 Jj+2 m+1
ag—1 aj_1—1 am+171
=v | ...¥ i Yithi— 1%\1% ‘I’i v’ i 2
2 i g+ j+2 m41
ag—1 aj—1— 1 am_‘_lfl
=v | ... i Yic1Pithi— 1‘If¢ ‘Ifi‘If i A
2 J J+1 Jj+2 m+1
a2—1 j—1— 1

=V \L \II \L wl 11/%% 1'U( ]_1>i_17i>aj+2a"'7afm+l)

where ¢;_1v(2,...,j —1,i —1,9,aj42,...,am1) equals zero by A; .

2. We prove that B; holds by using the inductive statements A;_o and B;_1. Let
ag—1 i—1

a;j =i. If i = j then all the terms ¥ | ... ¥ | are trivial, so

2

J

ajp1—1 am41—1 ajp1—1 a1 —1
yiv(az, .. amp1) =gV L ¥ L oa=0 | U | gz =0.
j+1 m+1 Jj+1 m+1

We suppose that ¢ > j + 1.
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(i) Suppose i is odd. We have

yiv(ag, e ,aj_l, ’i, aj+1, ceey am+1)
ag—1 aj—1—1 -1 ajp1-1 am41—1
=y, ¥ i R A | -
j—1 J J+1 m+1
ag—1 aj_1— 1 _ ajyq— 1 apyp1—1
=v] ...v i Yithi— 1\I’¢\If N
2 Jj— J Jj+1 m+1
ag—1 aj—1-1 i—2 %411 am+1-1
=v | ..U | (g +)¥L Y T 2.
2 j—1 J J+1 m+1

The first term of this expression becomes

ag—1 aj_1—-1 +1-1 Amq1—1

vl o...v i Yi—1Yi— 1‘1’¢‘1’ i )
2 J Jj+1 m+1
ag—1 aj—1— 1 . .
0 L g — i = Lage, e ap)
2 -1
where y;_1v(2,...,7 — 1,9 —1,a41,...,am4+1) equals zero by B;_;.

Now the second term of the expression becomes

ag—1 aj_o—1 aj_1—1 9 ajy1—1 a1 —1
U U ] UL WU W 2
2 Jj—2 j—1 J Jj+1 m+1
ag—1 aj;_9— 1 aj_1— am_;'_lfl
:\I/¢.\I/¢ ‘Ifi wmmwwf¢ R A 2
2 - J— J+1 m+1
ao—1 a;_o—1 a; -
=V | .U \l/ v \l/ wl QU( .7_27i_2ai_17aj+17"'7am+1)
2
where ¥;_ov(2,...,5 — 2,1 — 2,1 —1,aj41,...,am+1) equals zero by A;_».

(ii) Suppose i is even.

Yiv(az, ..., 51,5, Q5115 - Gmy1)
ag—1 aj_1-1 4 +1-1 am41—1
U v vl el e s
2 j—1 J j+1 m—+1
ag—1 aj_1-1 aj+1—1 am41—1
=Vl ..v i Yivi- wiep el s
2 Jj— J J+1 m+1
ag—1 aj_1-1 +1-1 am41-1
=Vl ..v i Vi-1Yi- 1‘1%‘1/ R A A
2 i= J j+1 m+1
ag—1 aj_1—1
=v \QL LU ~\L1 ¢i_1yi_1v(2,...,j—l,i—l,aj+1,...,am+1)
J—
where y;_1v(2,...,5 —1,i—1,aj41,...,amy1) equals zero by B;_;

3. We prove that C; holds by using the inductive statements A;_; and C;_1. Suppose
ag—1 ag -1
that aj;1 =¢+1and a; <i—1. If i = j then all the terms ¥ | ... ¥ ¢ \II¢
2

J Jj+1
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are trivial, so

aj+271 am41—1 aj+271 am41—1

yiv(ag, .. .,amp1) =¥ | .0 | o=V | .U | gz =0,

j+2 m+1 j+2 m+1

(i) Let ¢ be odd. We have

yiv(ag,...,aj,i—l—l Aj42,. ..y am+1)
ag—1 aj—1 aji1—1 am1—1
R TRE AR R AR A R A
2 J Jj+1 Jj+1 m+1
ag—1 aj .—1 i—1 ajyo— 1 A1 —1
— 0| ...\I/¢ g UL UL U 2y
2 J+1 Jj+2 m+1
ag—1 aj -—1 i—1 ajyo— 1 41 —1
—v ...\u RTIEE AR AR RN
2 Jj+1 Jj+2 m—+1
ag—1 aj -1 aj42— 1 i—1 41 aj+3~ 1 am41—1
=v | ~--‘P¢ (70 A AR R SN SR R TR A A5\
2 i+2 Jj+1 Jj+2 Jj+3 m—+1
ag=1 “j -1 KA ! ..
=V | ~--‘Ifi ViV L yi1v(2, 0,00+ 2,048, Q)
2 i+2
where y;11v(2,...,4,4,9+ 2,a;43,...,am+1) equals zero by C;_;.

(ii) Let i be even.

yiv(ag,...,aj,i—i-l Aj42,- .-, am+1)
ag—1 a;—1 i ajyo—1 am41—1
=y | ‘I’i vl w | .U 2z
2 J Jj+1 Jj+2 m+1
ag—1 a;—1 +2-1 am41—1
=V \Ifi yﬂﬁz‘l’i\lf RO A
2 j+1 j+2 m+1
ag—1 -1 -1 ajy2-l am41-1
=V | \Ij \lr (Yiyir1 — 1)\1’ i/ v UL 2
2 J+1 j+2 m+1

Now the first term of this expression becomes

ag—1 aj—1 ajig—1 i—1 i1 @431 amp1—1
‘I’i - ‘Ifi (T A N A N T )
i+2 Jj+1 j+2 Jj+3 m+41
ag—1 a;—1 ajy2—1
=v] ...¥ i ¥ iz Yir1V(2, -+, 4,050+ 2,543, Gmy1)
2 it
where y;10(2,...,7,4,1+ 2,043, ...,am+1) equals zero by Cj_;.

Now the second term becomes

ap—1 aj_1— 1 a]71 i—1 ajyo— 1 u,m_;'_lfl
R A AT TR A R N
2 Jj—1 7 Jj+1 Jj+2 m—41
ag—1 aj_1— 1 aj -1 i1 ajyo— 1 amp1—1
=—\If¢-\lf¢ ‘I’iwzﬂl’i‘lfi‘l’i LT 2
2 j Jj+1 Jj+2 m—+1
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ag—1 aj_1— 1 aj —1
=-v | ...V \L \Il\l/ (. 1U( 7j_1ai_17Z.aaj+27"'7am+1)
2
where ¢;_1v(2,...,j —1,i — 1,4,aj42,...,am+1) equals zero by A;_;

d

Lemma 3.4. Let e =2. If bothi—1 and i+ 2 lie in {ag,...,am+1}, but neither i nor

i+ 1 lie in {aa,...,am+1}, then Yv(ag, ..., am+1) = 0.

Proof. Suppose that a; =4 — 1 and aj41 =i+ 2. Then

ag—1 j—1—1 42 41 +2-1 p1—1
Yiv(az, ..., ame1) =¥ | . v VS (R N v i L) 2
2 j—1 J Jjt+1 j+2 m+1

We proceed by induction on the sum ag + as + - - - + @pm41-
ag—1 aj_1—=1 42 41

Ifz—j—lthentheterms\lli LU W U oare trivial, so

j—1 J Jj+1
aj+271 am+1—1 a]-+271 ‘lm+1_1
Yiv(ag,...,ame1) =¥ | .0 L =0 | 0 | iz =0.
j+2 m41 j+2 m+1

We suppose that ¢ > j.

(i) Let’s first consider when i is odd. We have

Yiv(az, ..., am+1)
ag—1 aj_1-1 4 +2—1 am1—1
=v] ...¥ i ‘I’i wzwmwzw v’ i R 2
2 Jj+1 Jj+2 m+1
ag—1 aj—1-1 - i—1 9421 am+1-1
=0 ] ...¥ i 4 i (Wir1¥ivit1 =2y Ty tyir2) VL ¥ L 0 L 2
2 J= j+1 j+2 m+1

The first term of this expression becomes

ag—1 j—1—1 i i—1  aj42-1 A1 —1
A + m Vi WL UL W] 2
2 Jj+1 Jjt+2 m+1
ag—1 aj_1—1 ajto—1 i—1 42 9j43~1 am+1-1
=v | ... i \Ifi Yiprhi® | i WL WL L L 2
2 - i+3 J+1 g+2 Jj+3 m+1
ag—1 aj_1— 1 i— aj o= 1
=V \QL W \L \Ili wz-l—lw’blll \L3 wz—i—lv( 7' .. 7j7i7i+37aj+37 s 7am+1)
it
where ¢;11v(2,3,...,4,%,i + 3,aj43,...,am+1) equals zero by the inductive hy-

pothesis. Now the second term of the expression becomes

ag—1 aj—1— 1 i— +2-1 ”"m+171
—-2v | ...¥ ] ‘Ifi yz+1\If¢ v’ i R )
2 J=1 J+1 J+2 m+1
ag—1 aj_1-1 42 +2—1 i—1 41 @j43—1 am41—1
=20 .9 | \I’i‘I’ i YWl Wl UL U | 2y
2 j—1 J i+2 Jj+1 g+2 Jj+3 m+1
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ag—1 j—1—1 2 ajpo—1
= -2V \]/ . q’ \]/ \IJ\L v lerlU(Q 3)"'7j7iai+27aj+37'--7am+1)
Jj—1 J i+2
where y;11v(2,3,...,7,%,14+2,aj43, ..., amy1) equals zero by part three of Lemma 3.3.

The third term of the expression becomes

ag—1 aj_1— 1 i—2 i—1 ajyo— 1 ‘lm+1_1
vl ..volovl yz‘lfi‘l’ Lol 2
2 j—1 j Jj+1 j+2 m+1
ag—1 aj_1—1 2
:\Il\]/ U \]/ \IJ\L Yiv ( 37"'7j7i7aj+27"-7am+1)
2 Jj—1
where y;v(2,3,...,7,%,a;42,...,am4+1) equals zero by part two of Lemma 3.3. The

last term of the expression becomes

ag—1 j—1— 1 i— 42— 1 amp1—1
vl v 1 \I’i yz+2‘1’¢‘1’ i R Y
2 j—1 Jj+1 Jj+2 m+1
ag—1 aj_1—1 42 +2—1 i-1  i+2 @431 am41—1
=] ..v | ‘Pi‘l’i Yipr Wl W] WU | WL 2y
2 i=1 i+3 G110 +2 43 me+1
ag—1 j—1—1 4_2 ajia-1
=v \J/ ‘Ij \J/ \IJ\L v \lf Z/z+2U(2 3)'"7j7iai+37a'j+37'--7am+1)
2 j—1 i+3
where y;12v(2,3,...,7,%,14+3,aj43, ..., amy1) equals zero by part three of Lemma 3.3.

(ii) Now suppose that i is even. We have

Yiv(ag, ..., ami1)
ag—1 aj_1—-1 4_ +2-1 am4+1—1
=v | ...¥ i ‘I’i %%sz‘l’i v’ i T
2 - JHL G2 me1
ag—1 aj_1—-1 4_ +2-1 am41—1
=vl ] \u R TPE I A AR A NN
2 - Jj+1 Jj+2 m+1
ag—1 aj—1-1 4 i—1  i+2  %j+371 am41—1
—vy v ] \Iw T AT I A AR i R
2 J— i+3 J+1 g+2 Jj+3 m+1
ag—1 aj—1-1 4
=v \l/ .U \l/ \Ij\l/ ¢Z+1¢Z\II \1/3 %—HU( 7' "7.]‘77:77:—’_370/]'-"-37"' 7am+1>
i+
where ¥;11v(2,3,...,4,%,i + 3,aj43,...,am+1) equals zero by the inductive hy-
pothesis.

Lemma 3.5. Let e =2 and i,k be such that i is odd and k+1 <i < amym — 1. Then

2

‘IJ\L v(ag, ceey @52, k, k+ 2, k+ 3, k+ 4, ey 1+ 2, jti—k41, Aj+i—k+2y - - - ,CLm_H)

= v(ag,.. .,aj,g,k,k:%— Lk+2,k+3,...,¢i+ L i ky1,Qjpikyo, .- s Qnt1)-
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Proof. We proceed by induction on ¢. If ¢ = k + 1, then

v | v(ag,...,aj_g,k,k+2,k+3,aj+2,...,am+1)

k+1  ag—1 aj_o—=1 p_ +1 k42 @j42-1 am41—1
—U, U] ..U ] x1/¢\1f¢x1;¢\11¢ LU
k 2 j—2 —1 J Jj+1 Jj+2 m—+1
ag—1 aj_g—1 - k k4+2 @421 am+41—1
—¢k+1¢k1/)k+1‘1’¢ ) ‘Ifi vwl v | .U oz
j—2 j—=1 i  j+1 Jj+2 m+1
ag—1 j—2—1 k-1 k  k+2 aj42-1 W11
= (Vr¥rr1¥k + 2Uk+1 — Yk — Yrr2) ¥ i v i v, wwlwv | ...¥ | oz
Jj— ji=1 5 j+1 j+2 m41

The first term becomes

ag—1 j—2—1 -1k k42 @j42-1 am41—1
wkwkﬂwkm n \: ‘I’i el v | ..W ] oz
Jj=2 j=1 3 J+1 j+2 m+1

= ¢k¢k+lwkv(a27 ceey @52, ka k + 17 k+ 3a Aj42,. .. 7am+1)

where Ypv(ag, ..., aj—2,k, k+1,k+3,a;42,...,am41) equals zero by part one of Lemma 3.3.

The second term becomes

ag—1 j—2—1 ko k+2  9j42-1 amy1-1
2yp1V L. v \J ‘I’L vl v | ..Uz
2 j—2 j—1 3 j+1 Jj+2 m+1

= 2yk+1’U(CL2, sy Q-2 kyk+1,k+ 3, Aj+2, - .- 7am+1)7

which equals zero by part two of Lemma 3.3. The third term becomes

ag—1 aj_o-1 ko k42 9421 am41—1
—ykqw R ¢ xu AR 2 IR N
Jj— j=1 3  j+1 j+2 m+1

= —yk’l}(ag, ceey G52, k.k+1,k+ 3, Ajt2y - -+ am+1),

which equals zero by part two of Lemma 3.3. The last term becomes

ag—1 aj_o—1 ko k+2 @421 Am41—1
—yk+2‘If¢ . i ‘Ifi vl w | U] oz
j—1 5 J+1 j+2 m+1
ag—1 aj_g—1 k k+1 @421 amy1—1
=-v | ...V i ‘Ifi U Yot 2V ) W L L0 L 2y
2 Jj— J J+1 Jj+2 m+1
ag—1 aj_o—1 k k41 aj42—1 am41-1
=-v | ...V i v i Ul (Ypoupezs — YL ¥ | 0 | 2y
2 Jj— j—1 J Jj+1 j+2 m+1

Now, its first term becomes

ag—1 aj—2-1 k+1  @j42-1  ajq43—1 Am41—1
Sl vl \If¢wk+2yk+3m ST AR
2 j—1 Jj+1 j+2 Jj+3 m+1
ag—1 aj_o—1 +2-1 k+1  k+3 9431 am41—1
=-v] ..V i \Pi ‘I’Mbkw‘l’ i YW L WL W@ | 0] 2y
2 Jj— Jj—1 k+4 J+1 g+2 Jj+3 m+1
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ag—1 j—27 1
=-v ] . v i ‘I’i ‘I’i?/)k+2yk+3v(2 cesdik+ 2,k +4,a543, 0 Gmg),
2 e Jo1

where yp13v(2,...,7,k+2,k+4,a;43,...,am+1) equals zero by part three of Lemma 3.3.

Its second term is

ag—1 aj_og—1 kE k+1 @421 pp1—1
R A AR R A A A R
2 j—2 j=1 3 J+1 Jj+2 m+1

= U(ag, sy Qg k.k+1,k+ 2,aj+2, ce ,am+1),
which is non-zero, as required.
Now let ¢« > k + 1. By induction, we have

142

v v(ag,...,aj_g,k,k—i—2,k+3,k+4,...
k

) i+ 25 i+ 3)Z + 4) Qjti—k+3, Aj+i—k+4; - - - ,CLm+]_)
42
=v] U(ag,...,aj_g,k,k—i-1,k—|—2,]€+3,...
i1
. ai + 17 i+ 3 i+4 y Qjti—k+3y Aj+i—k+4s - - - 7am+1)
i+2  ag-—1 j—2—1 k- ko k+1 k42
—U, U] .. \If¢ SRR A
i+1 2 Jj— j—=1 3 Jj+1  j+2
i i+2 i+3 ajyi—k+3—1 11
R AR 2N A R A
jti—k  jHi—k+1  jti—k+2 jt+i—k+3 m+1
ag—1 —2-1 ko k+1 k42
= Yiroit19it2V i v i v i vwl] v .
j—2 j=1 5 j+1  j+2
i+3 jti—k+3—1 amt1—1
R 7 R A A AR A
Jjt+i—k Jj+i—k+1 Jjti—k+2 j+i—k+3 m—+1
ag—1 aj_o—1 -1k k41 k+2
= (Yit1¥ir2Vis1 + 2Yiv2 — Yir1 —vir3)¥ L .0 | v U AR R
2 Jj—2 j—=1 3 g+l j+2
i i+1 i+3 @jti—k+3—1 amg1—1
R AR 2R R AR A
jti—k  jHi—k+1  jti—k+2 jt+i—k+3 m+1

The first term of this expression becomes

ag—1 aj_g—1 kE k+1 k42
wmmgw S vl ww] vl
Jj— j—1 g J+1  j+2
i+3 ajpi—k+3~1 appy1—1
T 7 A R AR A AR A R
Jj+i—k—1 Jj+i—k Jj+i—k+1 Jti—k+2 Jj+i—k+3 m+1
ag—1 j—2—1 i—1 Aiyi—k+3—1  @jpi_gqqa—1
iV b L v w el e e
2 j—2 j—1 j  j+1  j+2 jHi—k—1 it+4 i+5
am41—1 i+3 m—j+k—i
L i i v i 4 i vl v 2
m—j+k—i+1 Jj+i—k JjHi—k+1 JjHi—k+2 j+i—k+3 m+1
ag—1 j—2—1 k-1 k+1 i—1 Gjpi—k+3~1  ajqigqa—l
S A R A A2 R PR /A A
2 j—2 j—1 J J+1 Jj+2 Jj+i—k—-1 i+4 i+5
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amt1—1

LU YVig1v(2,. ., j+i—ki+1,i+2,i+3,....m—j+k—i+1)
m—j+k—it1
where ;1 1v(2,...,j+i—k,i+1,i4+2,i+3,...,m—j+k—i+ 1) equals zero by part
one of Lemma 3.3.

The second term of this expression becomes

ag—1 aj—2-1 kB k+1 k42
20 LW | WL W W W
2 j—2 j—1 5 J+1  g+2
i+l Gjti—k+371 G ppa—l am41-1
\Ifi yie? | W i v v 5
Jj+i—k Jj+i—k+1 Jt+i—k+2 Jj+i—k+3 Jj+i—k+4 m+1
ag—1 j—2—1 g1 i—1 Wjpi—k+3~1  aj4i ka1
=2v | . o vl ‘Ifi‘I’i ‘Ifi L iV ] v
2 j—2 J—1  § o+l 42 jti—k—1 i+4 i+5
am41—1 i i+2 i+3 m—j+k
BV \L yi+2\I/¢ v \L v \L v \L LU i ZN
m—j+k+1 j+i—k  j+i—k+1 j+i—k+2 j+i—k+3 m41
ag—1 aj_og—1 i—1 Wjpi—k+3~1 a4 gpa—1
=2v ] ...¥ i ‘Ifi \Ifi‘lli \Ifi UL iV
2 i—1  § 41 j+2 j+i—k—1 i+4 i+5
am+1—1
LUl Y2, i —k =1+ 1,04+ 2,i+3,i+4,....m—j+k+1)
m—j+k+1

where y;10v(2,...,j+i—k—1,i+1,i+2,i+3,i+4,...,m—j+ k+ 1) equals zero
by part two of Lemma 3.3.

The third term of this expression becomes

ag—1 aj—2-1 k _k+1l _k+2
R A AR AR AR AR A
2 j—2 Jj—=1 j J+1  j+2
i—2 i—1 i i+1 i+3 @jti—k+3—1 apygq—1
R NNV AT A R A S S A
Gti—k—2 jti—k—1 jti—k jti—k+l jHi—k+2 Gti—k+3 m+1
ag—1 aj_o2—=1 1 i—2 @jpi—143—1  ajyi a1
=-v ] ...¥ i v ‘1’¢\I’¢ ‘Ifi N A ) O
2 Jj— j=1 3 g+l j+2 j+i—k—2 i+4 i+5
am41—1 i—1 +1 m—j+k
2 VR T A AR A AR
m—j+k+1 jti—k—1 j+i—k j+i—k+1 m+1
ag—1 aj_o—1 k41 i—2 Ajpi—14+3~1 @Gy kta—]
=-v | ...v | ‘I’i \Pi‘l’i ‘Ifi UL iV
2 j—2 i—1  § g+l 42 Gti—k—2 it4 i+5
am_;'_lfl
LU L yaw(2 ik =204 1,42, om—j+k+1)
m—j+k+1

where y;10(2,...,j+i—k—2,4,i+1,i+2,...,m—j+k+ 1) equals zero by part two
of Lemma 3.3.

The last term of this expression becomes

ag—1 aj_g—1 k k+l k42
R R A A IR A A
2 Jj—2 j—=1 3 j+1  j+2
i1 i+2 ajti—k4+3—1 am41—1
.U i Ul yipsthips? O] )
Jjti—k Jjt+i—k+1 JHi—k+2 Jj+i—k+3 m—+1
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ag—1 j—2—1 -1 k k41  k+2
N v L v w ] v
2 Jj— j—1 3 j+1  j+2
i+1 i+2 ajqi—k+3—1 ap41—1
' i Ul (Wigsyia—1¥ L W L U L2
Jjt+i—k Jjt+i—k+1 Jti—k+2 Jj+i—k+3 m+1

The first term of this expression becomes

ag—1 aj_og—1 k k+l k42
-l ] v v vl
2 Jj— j—1 3 j+1  j+2
i+1 i+2 jpi—k+3~1 A y1—1
Ol ow T ey Tow L e g
Jj+i—k Jjti—k+1 Jjt+i—k+2 Jj+i—k+3 m+1
ag—1 aj_z—1 ko k1l k42
T A A T AR
2 Jj—2 j—1 5 J+1 42
i i+1 jyi—k+3—1 it2 Am41—1
) O AL i A5
Jj+i—k Jjti—k+1 i+5 Jjti—k+2 Jj+i—k+3 m+1
ag—1 aj_g—1 ko k+1 k42
T A A TR AR
2 Jj—2 j—1 5 J+1  j+2
i+l jyi—k+3—1 ) ) ) )
W l/ ¢i+3\1l \L yi+4v(27 ceey ] +1— k+ ]‘77’ +377’ + 57aj+i—k+47 o 7am+1)7
j+i—k+1 i+5

where y;14v(2,...,j+i—k+1,i+3,i+5,aj4i—k+4,-- -, 0ms+1) equals zero by part three
of Lemma 3.3.

Now the last expression of this expression becomes

ag—1 aj_o-1 i+2 Ajpi—k+3—1 am41-1
v v vlwel el el v v ow T w4
2 Jj—2 j—1 5 j+1  j+2 j+i—k  jHi—k+1  jHi—k42 j+i—k+3 m+1

= v(ag,...,aj,l,k:Jr L,k+2,k+3,...,i+ 1,i+2,1’+3,aj+i_k+3,aj+i_k+4,...,am+1),

as required. O

We will show that there is a strong connection between Specht modules labelled by
hook partitions and Specht modules labelled by two-part partitions S, m). We first

give the presentation of S, _p, 1)

Remark 3.6. For 1 = (n—2k—2+2j5,2k+2—2j), S, is generated by z,, subject only

to the relations

o e(i)z, = 6i4, Zu,

o Yizy =0 for all1 <i < n,

o iz, =0 forallie {1,3,5,...,4k —4j + 3},
together with the Garnir relations (by Section 1.3.1.1)

o iz, =0 forallie {4k —4j+5,...,n — 1},
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o Yithiv1z, =0 for all i € {1,3,5,...,4k — 45 + 3},
o Yihi—1z, =0 for alli € {3,5,...,4k — 4j + 3}.

Theorem 3.7. For A = (n — 2k,1?*) and n > 4k + 1, S\ has an increasing filtration
0CM CMyC--CM;C--CSy

whose factors are

M;/Mj—1 = S _ok—2+42j2k+2—2j)5
forallje{l,....k+1}.

Proof of theorem. Recall that M, is the %’,‘}—module generated by va;. For 2 < j <
k + 1, we observe that

4k—4j+9  4k—45+10 4k—2j+4
VA, =Yag—27¥ L ¥ L U] v,
4k—4j48  4k—4j+9 4k—2j43

so that Mj—l Q Mj.

We now show that M;/M;_1 is isomorphic to a quotient of S, _op_219j2k+2-25)- We
take the generator vy, of M; and show that modulo M;_; it satisfies the relations that
2(n—2k—2+2j,2k+2—2;) Satisfies, which are given in Remark 3.6. We will draw particular

attention to the relation yx—2j4+32(n—2k—242j2k+2-25) = 0.

(i) We show that y;va;, = 0 for all 1 <4 < n. Suppose that i € {1,2}. Then

2k—2j+3 siz\ 2073 Ak—4j+5+1

i—3 i =0 2k—2j+4+1
2k—2j+3 23\ 973 4k—45+5+1
= I (w4 )II(e L Jua
i=3 i 1=0 2k—2j54+4+1

=0.

Suppose that i € {4,6,8,...,4k —4j + 6}. Then

5 7 i-3 i1 i+1 ah—1j+3 D73 1 an— a5t
yiva, =YWl VL .. 0L W | W | W] H(‘I/ | )Z,\
4 5 =0

Li la+2)  Lava 2k—2j+3 2k—2j+4+1
5 7 i-3 i—1 it+1 ak—45+3 2j—3 Ak —4j+5+1
=g WUy | v | v | JI(T | 2
4 5 Li L+ L+ 2k—2j+3 1 2k—2j4+4+41
5 7 i—3 i
- ’¢3\II\L \I/\J/ . \J/ yiv(27 37 RN al(i+4)7 s 7a2k+1)
4 5 %z 2 2
where y;v(2,3,..., %,i,al(i+4), ..., a2k+1) equals zero by part two of Lemma 3.3.
2
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Now suppose that i € {3,5,7,...,4k —4j + 5}. Then

5 7 i—4 i—2 i i+2 ai—1j+3 T3 1 are st
yiva, =ypsWl WL .0 LW | v W Y H(‘I’ 1 )Z,\
4 5 =0

Le-1  fa+n  La+s)  La+s) 2k—2j+3 2k—2j+4+1

5 7 i—4 i—2 i i+2 4k—4j+3 253 Ak—4j+541
=Wl WL ... | v | v | v ] v | J[(v | Z

4 5 %(i—l) %(14_1) %(1+3) %(2+5) 2k—25+3 1=0 2k—2j5+4+1

5 7 4
=YL WL WL (23, 30— 1), = L L g o),

where y;v(2,3,..., %(z —1),i—1,i+1, Q1(iy5) - , Gok+1) equals zero by part three
2

of Lemma 3.3.

Suppose that 4k — 45 + 7 < i < 4k — 2§ + 3. Then we have

4k—4j+1 4k—4j+3 4k—4j+5 4k—4j+6

5 7
yiva; = yips WL Wl .. 0|
4

5 2k—2j42 2k—2j+3 2k—2j+4 2k—2j+5
i—2 i—1 i ak—2j+2
0 2NN A R AN
i—2k+2j—3  i—2k+2j—2 i—2k+2j—1 2k+1

4k—4j4+1 4k—4j4+3 4k—4j+5 4k—4j+6

:qu\pi\y;..\y Ve e ey

2k—2j+2 2k—2j+3 2k—2j+4 2k—2j+5

i—3 i—2 i—1 i 4k—25+42
0 2T, A 2 AR 2R
i—2k42j—4 i—2k+2j—3  i—2k+2j—2 i—2k+2j—1 2k+1

5 7 Ak—4j+1  4k—4j4+3  4k—4j+5 4k—4j+6
TR TR A
4 5

2k—2j+2 2k—2j+3 2k—2j+4 2k—2j+5

1—3
LU L (2, i—2k 425 —4i— 1,00+ 1,.. ., 4k — 25+ 3)

i—2k+2j—4

:O,

since y;v(2,...,i—2k+2j —4,i— 1,40+ 1,...,4k — 25 + 3) equals zero by part

two of Lemma 3.3.

Finally suppose that 4k — 25 +4 < i < n. Then

2k— 2j+3 2i—3 2j 3 4k 454541
Yiva; = vl \ Z\

i 2k —2j 4441

2k— 2‘7+3 2i—3 2‘7 3 4k 454541
= vl { YiZ
(3 2k—2j5+4+4+1

(ii) We show that ¢va, = 0foralli € {1,3,5,...,4k—4j+3}U{4k—4j+5,...,n—1}.
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Clearly ¥1va; = 0. Now suppose that i € {3,5,7,...,4k —4j + 5}. Then

2j—3

5 7 i—2 i i+2 4k—4j+3 4k—4j+5+1
Yiva, =yYibs UL L0 L WL W] H<\1J | >zA
4 5 $Ga+1)  $G+3)  L(i+5) 2k=2j+3 17 2k—2j+4+1
) . ) o 2]3 )
5 7 i—2 9 1—1 +2 4k—45+43 4k—45+5+1
=YWl U ... ¥ | ;¥ | ¥ | ..U ] H(lll + )zA
4 5 L+1) La+3)  L@+s) 2k=2j+3 7 2k—2j+4+1
5 7 i—2 i—1 i+2
=YWl W ...V L (i —y) Wi —yir)Y L U]
4 5 L+ L6+3)  L6+5)
. 2j-3 .
4k—45+3 4k —4j+5+1
v ] (qf 1 >ZA.
2k—25+3 2k—2j+4+1
=0
Two of the terms of this expression become
5 7 i—2 i—1 i+2 4k—45+3 2j—3 4k —4j+5+1
GO WL 0L (i —yyY L WL H(wlf ) )zA
4 5 L+1) La+3)  LG+5) 2k=2j+3 7 g 2k—2j+4+1
5 7 i—2
=YWL W L (g — Y028 B+ Dy gy 020,
4 5 5 (i+1)
where y;v(2,3, ..., %(z’—kl), 01345y , ok+1) equals zero by part two of Lemma 3.3.
2
Now the remaining terms of the expression become
. . . . 2]3 )

5 7 1—2 1—1 i+2 4k—45+3 4k—45+5+1
GsUL WL .U L (Y — w1 WL ] H(ﬁf ! )zA
4 5 L+ La+3) L@+ 2k—2j+3 70 2k—25+4-+1

5 7 i—2 i—1 i+1
=YWL W)V | (Y1 — Y)Vir2yinV L W]
4 5 LG+ $6+3)  L(i+5)
. 2j-3 .
4k—45+3 4k —4j+5+1
v ] (xy 1 >ZA
2k—2j+3 1 2k—2j+4+1

5 7 i—2
=YsWL UL ] (i1 — g Viayinv(2 s(i+1),00+2,a1(;,q), - a2r41),

5 L+1)
where y;11v(2,. .., %(z +1),4,i+2, aL(iyrys- - , Gok+1) equals zero by part three of
2
Lemma 3.3.
Now suppose that 4k — 45 + 6 <7 < 4k — 2j + 2. Then we have
Ak—4j+1  4k—4j43  4k—4j+5 4k—45+6

%biUAj:l/)i%\Ifi\If;..\Il R A )

2k—2j4+2 2k—2j+43 2k—2j+4 2k—2j+5

i—2 i—1 i i+1 4k—2j42
U0 N A A A N AURE AR
i—2k+2j—3  i—2k4+2j-2 i—2k+2j—1 i—2k+2j 2k+1

5 7 4k—4j+1  4k—4j43 4k—4j+5 4k—4j+6
=30 v ...¥ | O | ¥ | v |
4 5

2k—2j+2 2k—2j+3 2k—2j+4 2k—2j+5

i—2 i—1 i i+1 4k—25+2
USRS AR A A R,
i—2k+25—3 i—2k+2j—2  i—2k+2j—1 i—2k+2j 2k+1
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5 7 Ak—4j+1  Ak—4j+3  4k—4j+5 4k—45+6
=3V W]
4 5 2k—2j+2 2k—2j+3 2k—2j+4 2k—2j+5

i—2
LU L (2, i —2k 425 — 30 i+1,i+2,... 4k —2j +3)

i—2k4+2j—3

=0,

since Y;v(2,...,1 —2k+2j —3,i,i+ 1,9+ 2,...,4k — 25 4+ 3) equals zero by part
one of Lemma 3.3.

We now reach the most enlightening part of the proof, to show that 41243 kills

v4;. By calling on Lemma 3.5, we have

4k—2j+1  4k—2j+3

\II \l’ \Ij l/ UAj—l

4k—4j+6  4k—4j+8

) . 2k—2j+5 ) 25—5 )
4k—2j+1  4k—2j5+3 2i—3 4k—45+9+1
=0 | U | 11 <\11¢>H<\11 1 )ZA

4k—4j 4k—4j . 2k—2j l
j+6 Jj+8 i—3 i 1=0 j+6+

4k—2j+1  4k—2j+3
=0 | U | v(2,4,6,...,4k —4j+6,4k —4j +8,

4k—4j4+6  4k—45+8

Ak — 45 + 10,4k — 45 + 11,... 4k — 2 + 4,4k — 2j + 5)

4k—25+1
=0 | v(2,4,6,....4k —4j+4,4k — 4j +6,

k4746

Ak —4j + 8,4k — 4j + 9,4k — 4j + 10,... 4k — 2j + 3,4k — 2j + 4)
— 0(2,4,6,...,4k — 4] + 4,4k — 4] + 6,

Ak — 45+ 7,4k — 4] + 8,4k — 45 +0,. .., 4k — 2j + 2,4k — 2j + 4)
= Yoo 430 (2,4,6,. .., 4k — 45 + 4,4k — 45 + 6,

Ak — 45+ 7,4k — 47 + 8,4k — 45 +9,..., 4k — 2j + 2,4k — 2j + 3)

2%—2; 2j—
= Yak—2j+3 ﬁ+3 (‘11213> i_[3 (‘I’4k4i+5+l) 2
i=3 Pg=p N R

= Yap—2j43VA;-

Thus,

4k—2j+1  4k—2j+3

¢4k72j+3UAj =V J, U J, ’UAJ.71 =0 (mod Mj_l).

4k—4j+6  4k—4j+8

If4dk —2j4+4 <i<n-—1, then

2i—3 2j—3 Ak —4j+5+1
Yiva; =i H (‘I’ 1 ) (\I’ 1 > Z)
; i -0 2k—2j+4+1

=3

2k—2j+3 2i—3 2j—3 4k—4j+5+1

= I () T0 (v 177 )
i—3 i 1—0 2k—2j5+4+1
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=0.

(iii) We now show that ;i1 1va;, = 0 for all i € {1,3,5,...,4k — 45 + 3}. If i = 1,

then we have

2k—27+3 2i_g\ 23 Ak —4j+5+1
Yigva; = vive [ (\P ¢_> 1T (\P ! )zA
i—3 i =0 2k—2j5+4+1
k=243 , .\ 2k—2j+3 203 1 e 273
= P12 < { ) P <‘1’ I > 1) zx
7;:H3 1+1 7;H3 ( ,L) g 2k—25+45+1 g ( )
k=243, LN 2B 2k—2j+3 2j—3
= T () T (v 2w T @0 T w0
i=3 RN A =3 1=0

2k —2j4+5+1

2k—2j+3 23\ 3 4k—4j+5+1
= H <\I/ ¢> H (‘If 1 >¢1¢2w3---¢2k¢2k+12/\7
1=0

where 19913 . . . orthor1 12y equals zero by the first Garnir relation given in Re-
mark 3.2.

Now let 7 > 3. Then we have

Yithir1va,
) ) ) . 273 )
5 7 i—2 i i+2 4k—45+3 4k—45+5+1
=Yt PL WY L WL W T H(w l )zA
4 5 $6a+1)  $G+3)  L(i+5) 2k=2j+3 17 2k—25+4+1
) ) ) . 2j—3 )
5 7 i—2 i—1 1+2 4k—4j+3 4k—45+5+1
=Wl WL ..U | b ® | WL T | H(\P ! )zA
4 5 L+1) La+3)  1G+5) 2k=2j+3 7 2k—2j+4+1
5 7 i—2 i—1 i+2
=YW W] ...V | (Yi1¥ivis1 — 2Yi1 Y Fuie2) ¥ L WL
4 5 LG+ $6+3)  i+5)
4k—45+3 2j—3 4k —4j+5+1
LU <\I’ i\ >Z)\.
2k—2j+3 1 2k —2j+4+1

The first term of this expression becomes
5 7 i—2 i—1 i+2 Ak—4j+3 2j—3 4k—4j+5+1
UL WL W | pain® L0 L 0 L [T L )a
4 5 %(l-‘rl) %(l-‘rS) %(i+5) 2k—25+3 1=0 2k—2j5+4+1

5 7 i—2
=Wl Yinrithi1v(2,3,. . 50+ 1),4, 0+ 3,014y, G2ke1),

L+

where 1;11v(2,3,. .., %(i—l—l), i,1+3, AL (ipryse , agk+1) equals zero by Lemma 3.4.

The second term of the expression becomes

2j—3

5 7 i—2 i—1 i+2 4k—45+3 Ak—4j+5+1
—2pgUL WL W | oy ) W e | (e 2
4 5 $+1) $6+3)  L(i+5) 2k=2j+3 2k—2j44-+1
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5 7 i—2 i-1 i+l 4k—4j+3 2j—3 4k—4j+5+1
= =2 WL W .U | oy ® L WL T H(w ! )ZA
4 5

L+1) $G+3)  L(i+5) 2k=2j4+3 15 2k—2j+4+1

5 7 i—2
= =230 Wl ... ‘I’l b Yipoyiv(2,3,. ., 5 (i 4+ 1),0,0 + 2, A1 (7)o s O2kt1)
4 5 5 (i+1)
where y;11v(2,3,. .., %(z +1),4,i 42, a1(iyryr- - , 9k+1) equals zero by part three
2

of Lemma 3.3. The third term of the expression becomes
5 7 i—2 i—1 i+2 4k—45+3 2j—3 4k—4j+5+1
YWl vl ... v | V¥ | W | ..U ] H<\If 4 )z,\
4 5 %(i-}—l) %(i+3) %(i+5) 2k—2j5+3 1=0 2k—2j5+4+1

5 7 1—2
= 1/,3\1% \1% LUl yw(2,3,, 5+ 1),i,i+3,a%(i+7),...,a2k+1),

$G+1)

where y;v(2,3,..., %(z +1),4,1+ 3, AL (i) ,aok+1) equals zero by part two of

Lemma 3.3. The last term of the expression becomes

5 7 i—2 i—1 i+2 4k—4j+3 253 Ak —4j+5+1
U I N RN 7w A A A | | (w ! )
4 5 $+1) $6+3)  i+5) 2k—2j+3 ;5 2k—2j+4+1
5 7 1—2
—GeWL WL L 023, B 1,00+ 3y G2k
45 5 (i+1)
where y;19v(2,3, ..., %(z +1),4,i+ 3, ALty - ,a9k+1) equals zero by part three
2

of Lemma 3.3.

(iv) We now show that 9;1;1v4, = 0 for all i € {3,5,...,4k —4j + 3}. Suppose that
i€{3,5,...,4k — 45 + 3}. Then we have

Yii—1v(ag, ..., am)

5 7 i—4 i—2 i i+2 4k—4j+3 2j—3 4k —4j+5+1
=S T A AR (R (A AR R () H(\If ! )zA
4.5 1=0

a-1n e+ 6+3) G+ 2k—2j+3 2%—2j+4+1
, , ‘ , . 273 .
5 7 1—4 i—1 7 i+2 4k—4j+3 4k—45+5+1
=gl W, ... T | 0 | U | WU | ..U | H(\I/ 1 >ZA
4 5 La-1) L+ F@+3) @+s) 2k=2j+3 1 2k—2j+4+1
5 7 1—4 1/ o
= @bgg’\l, vl ... \I’l \l/ ¢iv(23 3, 5(1 - 1)7172 +1, a%(i+5)a SRR a2k+1)’
4 5 -1
2
where ;v(2,3,..., %(2 —1),4,i+ Laygis), - , aok+1) equals zero by part one of
2

Lemma 3.3.

Thus, we have shown that the jth factor M;/M;_; in the filtration of A is a quotient of
S(n—2k—242j2k+2-2j)- By comparing dimensions, we ascertain that the jth factor in the
filtration of A is, in fact, equal to the entire Specht module S, _or_242j 2k+2-2j)-

Using the Hook Length Formula given in Theorem 1.26 or by [P, Proposition 2],
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observe that )
. (=
dnn(sn—( " )

and by Proposition 2.1, we have

i n—4k+45—3 n+1
dim (S(n—Qk—2+2j,2k+2_2j)) = J ( >’

n+1 2%k + 2 — 2j

for all 1 < j < k+ 1. To show that the factors M;/M;_; are, in fact, the entire Specht

modules S(n—?k—2+2j,2k+2—2j)7 we want

k+1

dim (S)) = Z (dim (S(n—2k—2+2 2k+2-27)))
j=1

n—1 as . n+1
= +D{,, => (n—4k+4j—3) 422

j=1
n—1 n—1 AR n—1

= (n+1)< ok ):(n—4k+1)< ok >+;(2n—8k5—2+4j)<2k_j>
n—1 R (n-—1

— 4k< o ):;(Qn—Sk—Q—i—élj)(%_j)

n—1 AR n—1
2 = — 4k — 1429
e k( ok ) Z(n k + ])<2k—j>’

J=1

which can be written as follows, using the binomial identity (7") = >}, (—1)=%) (mljl)

for all m > n > 0. Hence we have

Simplifying gives

(n_1>@ +(n—3)<§> +---+<n—2k+3)<2k113> +(”—2’“+1><2kn_1>

_2<Z> +4<Z> +---+(2k—2)<2kn_ 2) +2k<;€>,
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which clearly holds since

n

—2k+1+2j
(n +1+ j)< 9% — 2

:(2k—2j)< )vogjgk—l.

n
2k —1—2j
O

Thus, Sy is factored by the graded modules S(,_ox 2k)s S(n—2k+2,2k—2)s-»5(n) from
bottom to top.

Example 3.8. By Theorem 5.7, S(7 16y has an increasing filtration
0C M1 C MQ C M3 (- 5(7716),

where M1 = 5(7,6)7 MQ/Ml = 5(974), Mg/Mg = 5(1172) and 5(7716)/M3 = S(lS)- Let
5 7 9 11

Ay = s3sl 8| s| 8] Ti716y, which is the standard (7, 16)-tableau
4 5 6 7

Ay =[1]3]5]7][9]11]13.

= [ =
HEEIEE N

By Equation (3.2.1), we know that M is generated by va, = v(2,4,6,8,10,12).
5 7 9 10
Now, let Ay = s3sl sl s| s] Ti716), which is the standard (7, 16)-tableau
4 5 6 7

As =

3[5[7[9[i2

1
12
4
6
8
10

where the consecutive entries in Az are shaded. By FEquation (3.2.1), we know that
va, = v(2,4,6,8,10,11) generates Ma/M (satisfying the relations that 276 satisfies
modulo Mj ).

In particular, by Lemma 3.5, we have that
¥110(2,4,6,8,10,11) = v(2,4,6,8,10,12) =0 (mod M;).

5 6 7 8
For the next factor up, Ms/Ms,, we let A3 = s3s| sl sl sl T(7,16y, which is the
6 7

4 5
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standard (7,15)-tableau

Az =

3|5 [HONI2E

c:‘»p‘ww

where the consecutive entries in As are shaded. By FEquation (3.2.1), we know that
M3/Ms is generated by va, = v(2,4,6,8,9) (satisfying the relations that z(11,2) satisfies
modulo My ).

In particular, by Lemma 3.5, we have that

7 9
Yov(2,4,6,7,8,9) = W] ¥| v(2,4,6,8,10,11) =0 (mod My).
6 8
Now, for the top factor S 16)/Ms, we let Ay = T(716). We know that Sz 16)/M3 is
generated by z(7 16y = v(2,3,4,5,6,7) (satisfying the relations that z(13) satisfies modulo
Ms), by Equation (3.2.1). In particular, by Lemma 3.5, we have that

5 7
Y7v(2,3,4,5,6,7) = ¥ U] v(2,4,6,7,8,9) =0 (mod Ms).
2 4
Finally, one can readily compute that dim Sz 6y = 924 = 429 + 429 + 65+ 1 =
dim S(76) + dim S(g 4) + dim S(11 9) + dim S(y3), by the Hook Length Formula. Thus, the
factors in the filtration of Sz 16y are the whole Specht modules S(7¢y, S(9,4), S(11,2) and
S3), from bottom to top.

3.3 A SPECHT FILTRATION OF S, o) 1 j2k+1)

We now investigate the structure of Specht modules labelled by hook partitions that
have legs of odd length, that is, Specht modules with labels (n — 2k — 1,12¥+1) for
k> 0.

Definition 3.9. For 1 < j < k+ 1, we define the standard (n — 2k — 1,128%1)-tableau

2k—2544 /o o\ T3 ki
Bj = H <5¢>H<s 4 )T(n—zk—1,12k+1)-

i3 =0 2k —2j+5+1

We describe B; as the (n — 2k — 1,12%1)-tableau with 2k — 2j + 2 even entries
2,4,...,4k — 47 + 6 lying in the first 2k — 25 + 2 nodes in its arm, and with 25 — 2
consecutive entries 4k — 45 + 8,4k — 45 + 9,...,4k — 2j + 5 lying in the remaining
2j — 2 nodes in its arm. If we set [ = 4k — 4j, then B; is the following standard
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(n — 2k — 1,12+1)-tableau

[+6

where the nodes containing the consecutive entries are shaded.
We now find the corresponding basis vector vp; of Sg,_op_1 126+1) to Bj.
For 1 <j<k+1, we write

2k—2j-+4

; 2j—-3 4

| | 28 H dk—4j+T7+1
" Y Lok ) 3.3.1
; =3 < % ) 1=0 ( 2k—2j+5+l> (n—2k—1,12++1) ( )

by setting 7' = B; in Equation (3.1.1).
That is, vp, = (2,4,...,4k —4j + 6,4k —4j + 8,4k —4j +9,...,4k — 2j +5). We
let N; be the .@,’Z\—module generated by vp,. Thus, we obtain the following analogous

result to Theorem 3.7.
Theorem 3.10. Forn > 4k + 2, S(;,_gp_1,12k+1) has an increasing Specht filtration
0OCNCNyC---CN;C---C S(n—2k—1,12k+1)
whose factors are
N;j/Nj-1 = S—ok—342j,2k+3-2j)>
forallie{1,...,k+1}.

Proof. One shows that vp, satisfies the relations that z(,,_ox_342; 26432 satisfies. Sim-
ilarly to Theorem 3.7, the main problem in doing this is showing that a particular relation

is satisfied, that is, ¥4x—2j15 kills vp;. One finds, by using Lemma 3.5, that

4k—2j+3  4k—2j+5

Yag—2jr5vp, =¥ | ¥ | wp_, = (mod Nj_1).
4k—4j+8  4k—2j+10

Thus, S(,,_op—1,12k+1y s filtered by the Specht modules

S(n—2k—1,2k+1)s S(n—2k—3,2k—1)1 - - - s O(n—1,1)5
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from bottom to top.

Example 3.11. By Theorem 3.10, S 15) has an increasing filtration
0C My C My C S(6,15)a

where My = S(g5), Ma/My = Sg3) and S 15)/Ma = Sgo,1)- By Equation (3.3.1),
va, = v(2,4,6,8,10), va, = v(2,4,6,8,9), and va, = v(2,4,5,6,7), where My = (v4,),
My /My = (va,) and S(g15)/Ma = (va,). Moreover, dim S(g 15y = 252 = 132+110+10 =
dim S 5) + dim S(g 3) + dim S(1¢,1)-

3.4 GRADED DECOMPOSITION NUMBERS

In this section we determine the graded multiplicities [S(n,mjlm) : D]y, where D is a
composition factor of S, 1m) for ZD over a field of characteristic zero. We first need
to establish that the factors

S(nfm,m)v S(n7m+2,m72)7 S(n7m+4,m74)7 SR

arising in the filtrations of S(,_p, 1m) in Theorem 3.7 and Theorem 3.10, are the com-
position factors of S(,_,, 1m). We let F be arbitrary in this section unless otherwise
stated.

The following is a special case of [JM2, Theorem 4.15|, determining irreducibility of

graded Z}-modules when [ = 1.

Theorem 3.12. Let char(F) = 0. If n is odd, then S(,_mm) = Dn—mm) s an irre-
ducible Z2-module.

Over a field of arbitrary characteristic, we know from [JM2] that irreducible Specht
modules Sy for the Iwahori-Hecke algebra of type A, that is for #Z2 in level one with
p 1 e, are labelled by e-regular partitions. However, not all Specht modules Sy, where
A is e-regular, remain irreducible in positive characteristic. When e # 2, the necessary
and sufficient criterion for the irreducibility of Specht modules for the Iwahori—Hecke
algebras of type A was conjectured by James and Mathas [M1, Conjecture 5.47], which
was later proved over several papers [L, Fal, Fa2].

Thus, if n is odd, then the filtrations of S(;,_, 1m) given in Theorem 3.7 and Theo-
rem 3.10 are, in fact, composition series of S, _, 1m) for ZD over a field of characteristic
Zero.

Now, the following is a g-analogue of James’s useful result [J3, Theorem 8.15], gen-

eralising from the symmetric algebra to the Khovanov-Lauda—Rouquier algebra.

Theorem 3.13. [KMR, Theorem 8.5]Let e be arbitrary. For A € P!,

S 2= (Sw)® (wte(N)),
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as graded Z-modules.
Corollary 3.14. Let e be arbitrary. For A € &), grdim (Sy/) = v"t() grdim (Sa(v™h)).

Recall from Theorem 1.35 that irreducible Z2-modules are self-dual. Moreover, in

quantum characteristic two, M®" = M for any %#’-module M. We also have from

Theorem 3.13 the following well known consequence.

Corollary 3.15. Let e = 2. For A € &', S\ and Sy share the same ungraded compo-

sition factors, up to isomorphism.

Hence, we know the composition factors of S(,_p, 1my for all m € {0,...,n —1}. In

fact, we observe that the ladder numbers for the space N x N are

1/2]3]4]5]6] ],
2(3]4[5]6]7]-
3[4]5]6/7]8]
45]6]7/8]9]
506]7/8]9]10/-

which follows from Section 1.2.3. It is now easy to observe that the 2-regularisation of

n
25
tion factor of S, _,, 1m). We thus can ascertain the following ungraded decomposition

a hook partition (n —m, 1™) is (n —m,m) if m < §, and hence D(;,_p, ) is a composi-

numbers for Z2.
Proposition 3.16. Let char(F) =0 and e = 2.

1. If n =3 (mod 4), then part of the decomposition matriz for Z# comprising rows

92



3.4. GRADED DECOMPOSITION NUMBERS CHAPTER 3

corresponding to hook partitions is

S(n) 1
Stn-1,1) 1
S(n,2712) ]_ ].

S(n_3’13) 1 1

S(3,1"73) 1 1
S(271n—2) ].

where the columns are labelled by D(n)7D(n—1,1)v-~-aD(n_L%J 12]) from left to
right.

2. If n =1 (mod 4), then part of the decomposition matriz for > comprising rows

corresponding to hook partitions is

Stn-1,1) 1
S(n—2,12) 1 1
S n 1 1 1
<n |5 +1,1{2 J 1)
S n 1 1 1 0
(»-131a12)) |
S n 1 1 1
(w1312
5(371n—3) 1 1
S(271n72) 1
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where the columns are labelled by Dy, D11y, - - .,D<n_ 12].12]) from left to
right.

Now that we have established the ungraded decomposition matrices for %ﬁ, whose
rows correspond to hook representations with n odd, when the ground field has char-
acteristic zero and the quantum characteristic is two, we seek graded analogues. For
completeness, we first determine the graded dimensions of Specht modules labelled by

hooks partitions in quantum characteristic two.

Lemma 3.17. Let e = 2. If n is odd, then the 2-core of (n—m,1™) is (1) or (2,1) and

its 2-weight is | 2| + | =2=1],

Proof. Tt is obvious that the 2-core of (n —m, 1™) is non-empty. Its 2-weight is the sum
of the total number of consecutive rim 2-hooks we can remove from its arm |2=2=1 |

and the total number of consecutive rim 2-hooks we can remove from its leg [5]. [

Lemma 3.18. Let e = 2 and i,k be such that 2 < i <m+1andi <k <n. Then
(1,k —i+2) is an addable (1 —i)-node of (k —i+1,1°"1) strictly above (i, 1) if and only

if k is even.

Proof. ( <= ) Follows from Lemma 2.4.
( = ) Supposing that k is odd, we know that res(1,k —i + 1) = res(i,1). Hence
(1,k —i+1,1) is a removable (1 — 4)-node of (k — i + 1,1°1) strictly above (i,1). O

Proposition 3.19. Let e = 2.

1. If m < [ 5], then

. o (BINIEEN nm—20)
grdim (S(n_m71m)) = Z i ; v 2 .

2. If m >[5, then

m n n—1 o
grdim (S(n,m,lm)) = Z (77&2—2) (L 3 J)fu("mlJr\_zJQz).

1=0

Proof. 1. Let T' € Std((n —m,1™)). Then there are | 5

odd entries in T, including 1 which lies in (1,1). By Lemma 2.5 we know that

| even entries in T and L”T‘HJ

deg(T) = 5] +#{i | T(i,1) is even} — #{i | T(i,1) is odd}.

Since m < |5, entries in the leg of T' can all be even or all be odd, so that the
leading degree in the graded dimension of S(,_p, 1my is [ | +m, and its trailing

degree is |5 | —m.
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Also, by Lemma 2.5, the degree of T is determined by the entries in its leg. If we

place ¢ odd entries in the leg of T, then the remaining m —¢ nodes in its leg contain
n n—1

even entries, and clearly, there are (an_Jl) (LTJ) possible standard (n — m,1™)-

tableaux with this number of odd and even entries in its leg.

2. By Corollary 3.14 and Lemma 3.17, we have

grdim (S(m+171n—m—l)) = LB grdim (S(n_mﬁlm)(v_l)) .

Hence, we need only determine the leading degree in the graded dimension of
S(n—m,1m), then the result is proven similarly to the previous part. The trailing
degree in the graded dimension of S, 41 1n-m-1y is |5 | —m by the previous part,

and thus the leading degree in grdim (S(,_p, 1m)) is m — [ 2] + [ 2] + |p=m=l

as required.
O

We now introduce a couple of useful results involving two-part partitions, which are

proven similarly to Lemma 2.4 and Lemma 2.5, respectively.

Lemma 3.20. Let ¢ = 2, T € Std(n — m,m) with T(2,i) = k, for some i,k, with
1<i<mand 2t <k <n.

1. If k is even, then (1,k —i+ 1) is an addable k-node of (k —1,17);
2. If k is odd, then (1,k — i) is a removable k-node of (k — 1,1).
Lemma 3.21. Lete =2, T € Std(n —m,m) and 1 <i < m. Then

deg(T) = #{i | T(2,i) is even} — # {i | T(2,1) is odd} .

Recall from Section 3.1 that T € Std(n —m, 1) is determined by ag, ..., am+1 such

ag—1 Ap41—1
that 1 <ag < - <amy1 <n,whereT'=s | ...s |  Tuomim).
2 m—+1

Now let T' € Std(n — m,m) and write b; := T'(2,j) for 1 < j < m. Then T is
completely determined by b1,...,b,, such that 1 < by < --- < b, < n and b; > 2j for
all j € {1,...,m}. We can thus write

by—1 bg—1 b3—1 b —1

T=sl| sl sl ...s | Thmm)-
2m

2 4 6

Lemma 3.22. Suppose that n > 2m and let

ag—1 agz—1 am+1—l
T=s] s| ...s | Tpnomim)-
2 3 m+1

Then we have a bijection

f:Std(n —m,1™) — Std(n — m,m) UStd(n — m + 2,1™72),
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where,
1. if T(r,1) 2 2r — 2, forallr € {2,...,m+ 1}, then

ag—1 agz—1 Ap41—1

/ (T) =sl sl ...s | T(nfm,m);
2 4 2m
2. otherwise
ag—1 ap_2—1 apy1-1 Amy1—1
fMy=sl ...s 1 s 1 .5 | Tnomeoim2),
2 r—2 r+1 m—1

where r 18 minimal such that a,—1 = 2r — 4 and a, = 2r — 3.

Proof. 1f there exists an r € {2,...,m + 1} such that T'(r,1) # 2r — 2, it is clear that
f(T) is indeed a standard (n —m + 2, 1™ 2)-tableau.

We instead assume otherwise and let S be an (n — m,m)-tableau. For S to be
standard, we require S(2,7) > 2r, for all » € {1,...,m}. By the action of f, we find
that f(T(r,1)) = S(2,7 — 1) where T'(r,1) > 2r — 2, for all » € {2,...,m + 1}. Thus
f(T) € Std(n —m,m), and moreover, f is well-defined.

‘We now observe that

Std(n —m, 1™)
={T € Std(n —m,1™) | T(r,1)
+{T € Std(n —m,1™) | T(r,1)

o —2, Vre{2,...,m+1}}
2r — 3, for some r € {3,...,m+1}},

vV

and hence f is bijective. O

That is, if T'(r,1) > 2r — 2, for all r € {2,...,m + 1}, then we can informally think

of f acting on T by rotating its hook 90° anticlockwise as follows

!

1 S .
as az | as ‘ """ ‘am-&-l‘
az
Am+41

Otherwise, we can think of f acting on T' by moving the two nodes in the leg of T'

containing entries a,_1 and a, to its arm as follows

1 ‘ ri> 1 ‘ ar_1 ‘ ar ‘ ‘
as az
as :
: Qr—2
Am+1 Ar41
Am+1
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Lemma 3.23. Let e = 2,

T ={T € Std(n —m,1™) | T(r,1) =2r—2, Vre{2,...,m+1}}

and
S ={T € Std(n — m,1™) | T(r,1) = 2r — 3, for somer € {3,...,m+1}}.

Then

de )+ |2 ofTeT;

gty = [ RO 13)
deg (f(T))+1 if T e ..
ag—1 ag—1 am+1—1
Proof. Let T=s | s{ ...s | T(_m,m) and recall from Lemma 2.5 that
2 3 m+1
deg(T) = 2] + #{i | T(i,1) is even} — # {i | T'(3,1) is odd}, (3.4.1)

for2<i<m+1.
Let us first suppose that T' € 7, so that f(T) € Std(n — m,m). Then, by
Lemma 3.21,

deg (f(T)) = #{i|T(2,17) is even} — # {i | T'(2,14) is odd}, (3.4.2)

for 1 < ¢ < m. We know that T contains ao, ..., an41 in its leg, and that these entries
are mapped under f, by Lemma 3.22, to the second row of f(7T'). Hence on comparing
Equation (3.4.1) and Equation (3.4.2), we have deg(T) = deg (f(T')) + [ % ].

Now suppose that T' € ., so that f(T) € Std(n —m +2,1™~2). By Lemma 2.5, we

have
deg (f(T)) = 5] —1+#{i|T(,1) is even} — # {3 | T'(i,1) is odd}, (3.4.3)

for 2 <i < m — 1. We know from Lemma 3.22 that the entries as, ..., ar—2,Gr41 ..., Gm41
are mapped under f to the leg of f(7T'), whilst the entries a,_; and a, are mapped to
the arm of f(7'). Since the parity of a,_; is different to that of a,, then by comparing
Equation (3.4.1) and Equation (3.4.3), we have

deg(T) = |5 ] +#{i|T(i,1)iseven, i #r — 1} —#{i|T(i,1) is odd, i # 7}
= deg (f(T)) + 1,

for2<i<m+1. O

We can now prove the main result of this subsection, by implicitly drawing on Propo-
sition 3.16.
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Theorem 3.24. Let char(F) =0, e =2 and n be odd.

L Ifm < |5], then [Sp—m,1m) : Sth—m+2i,m—2i)lv = ’UL%J, fori>0.

2. If m > |5, then [Sp_m1m) © Simt142in—m—1-2i)lv = UL%J, fori>0.
Moreowver, [S(n_mlm) : D] = 0 for any other graded irreducible %’f}-module.

Proof. 1. Let ayp—9; € Z for i« > 0. By the composition series of S(,,_, 1m) given in

Proposition 3.16, we have

grdim (S(n_m7]_m))

p¥m grdim (S(n—m m)) + pdm—2 grdim (S(n—m+2,m—2)) +o

-4 v grdim (S (n—1,1 ) if m is odd;
v¥m grdim ( (n—m,m)) +v¥m~2 grdim (S(n_m+2,m_2)) + .-
-+ v grdim (S(,)) if m is even.
We want to show that o, = a2 = g = --- = [§]; we proceed by induction
on m.

It is obvious that grdim S(,,_1 1) = ol3] grdim S(;,,_1 1) and grdim S,,) = vl3] grdim S(,,).

We assume that

%
grdim S(n m42,1m=2) = 'U Z rdlmSn m+2i,m—27)»
=1

for m > 3.

Now let
T ={T € Std(n —m,1™) | T(r,1) =2 2r—2, Vr € {2,...,m+1}}
and
S ={T € Std(n — m,1™) | T(r,1) = 2r — 3, for some r € {3,...,m+ 1}}.

We know from Lemma 3.22 that dim S, _p, 1m) = dim S,y ) +dim Sy, g2 1m-2).

Moreover, we know from Lemma 3.23 that
grdim S,y 1my = ol%] grdim S, m) + v grdim Sg, 49, 1m-2),

since || = deg(T) —deg (f(T)) if T € .7 and 1 = deg(T') —deg (f(T)) if T € 7.

Hence, by the inductive hypothesis,

vl 7] grdim Sin—m,m) +verdim Sy, 49 1m-2)
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%)
—yl3l grdim S, —pm,m) + oll%)) Z grdim S —m+-2i,m—2i)
i=1
I
= U(L%J) grdim S(n_m+2i,m—2i)7
i=0

M3

for all m > 0, and we are done.

2. We know that S(, 1 1n-m-1) shares the same composition factors (up to isomor-
phism) as S(;,_,, 1m) by Corollary 3.15. Thus, for m < [ 5], S(;,—m,1m) has compo-

sition factors

S(m+l,n—m—1)a S(m+3,n—m—3)> S(m+5,n—m—5)7 SUR)

from bottom to top. Following a similar inductive argument as in the first part of
the proof, we obtain our desired result.
O

Recall that (n —m,1™) = (n —m,m) if m < %, and hence Theorem 3.24 gives an
alternative approach to Chuang, Miyachi and Tan, whereby this result coincides with

[CMT, Theorem 1(2)], for odd n.

Example 3.25. Let char(F) = 0 and e = 2. Then part of the graded decomposition

matriz for 1y comprising rows corresponding to hook partitions is

Say (1

S(10,1) 1

Swe12) | v v

S(8,13) v v
S(7,14) v? v? v?
S(6,15) v? v? v? O
S(5,16) v3 v3 v3
S4,17) v3 v3
S(3,18) v v

S(2,19) vt

Sy vd
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CHAPTER 4

HOOK REPRESENTATIONS IN QUANTUM
CHARACTERISTIC AT LEAST 3

We continue the study of the hook representations for the cyclotomic Khovanov—Lauda—
Rouquier algebra Z2 to e > 3. Recall that Peel [P] found the decomposition numbers
for hook representations over the symmetric group algebra in odd characteristic. James
[J4] developed this theory for the Iwahori-Hecke algebras over C at an eth root of
unity. Using the recently introduced machinery of %,,, we provide the analogous graded
decomposition numbers corresponding to the hook representations. This is an alter-
native to Chuang-Miyachi-Tan [CMT, Theorem(1)], who discovered the corresponding
v-decomposition numbers for the Iwahori—-Hecke algebra of type A, prior to the devel-
opment of graded representation theory of the Hecke algebras, via the Fock space. In
fact, these v-decomposition numbers are shown to be equal to the graded decomposi-
tion numbers in [BK3], so our result is indeed equivalent to Chuang, Miyachi and Tan’s

result.

4.1 UNGRADED DECOMPOSITION NUMBERS

Peel [P] obtained results for the decomposition of modular representations for the sym-
metric group in odd characteristic, corresponding to hook partitions. The following

result is known as Peel’s Theorem.
Theorem 4.1. [P, Theorem 2] Let F be a field with characteristic p, where p is odd.

1. If p { n, then the Specht modules S(y_p 1my for 0 < m < n—1 are pairwise

non-isomorphic and irreducible.

2. Ifp | n, then there are n— 1 distinct p-regular partitions 1, ..., An—1 of n, ordered
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lexicographically, such that

(n m,lm) "[M

0 otherwise.

In [J4, Theorem 6.22], James states a g-analogous version of Peel’s Theorem, where
q is a primitive eth root of unity, e > 2 and the characteristic of the ground field F
is arbitrary. Thus, James provides us with an analogous result for the Iwahori-Hecke
algebras of type A, and hence for the Khovanov-Lauda—Rouquier algebras in level 1.

We let e > 3 from now on.

4.2 GRADED SPECHT MODULES S(;,_y, 1m) WITH € n

Suppose that n #Z 0 (mod e). We deduce from Theorem 4.1 that S, 1m) = D,y 1m)R
as ungraded #Z2-modules. To determine the graded decomposition numbers correspond-
ing to hook partitions, we need only find S(;,_, 1m) in terms of a grading shift on

D(nfm,lm)R .

Proposition 4.2. Suppose e { n. Then the leading and trailing term, respectively, in

the graded dimension of S, 1m) are

1. <L6J>UW+L"§J and <L;1J>v_m+wj; fr<m< 2],

m

2 (M T ot ana (M T o R 2 < <2

m— 2] m—|

I3
[

e
)

3. (n _L;LJ_ 1>v”ml+v«:J and <n _LTEQJ_ 1>vmn+1+LZLJ7 ifn—[2]-1<m<

n—1.

Moreover, S(n—m1m) = D (y_p1m)r (2]} as graded 22 -modules.

e

Proof. Let .7 = Std(n —m,1™) and T € .7. We note that there are [2] entries
congruent to 0 modulo e, %] 4 1 entries congruent to 1 modulo e, and n —2[ 2] — 1
entries congruent to neither 0 modulo e nor 1 modulo e lying in T. Since S(;,—p,1m)
is irreducible, the coefficients of the leading and trailing terms in its graded dimension
are equal. Moreover, if we suppose that S,T € 7 such that maxdeg(.7) = deg(T") and
mindeg(.7) = deg(S), then mindeg(.7) = maxdeg(.7) — 2max(Az), where Az is the
set as defined in Equation (2.2.1).

1. By Lemma 2.5, T is formed from the Young diagram [(n — m,1™)] by placing m

of the |2 ] entries congruent to 0 modulo e in its leg. Hence max(Az) = m.
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2. By Lemma 2.5, T' is formed from the Young diagram [(n — m, 1™)] by placing all
of the | 2] congruent to 0 modulo e in the leg of T', together with n —2[2] —1
entries congruent to neither 0 modulo e nor 1 modulo e in the remaining nodes in
the leg of T'. Hence max(Az) = [2].

3. By Lemma 2.5, T' is formed from the Young diagram [(n — m,1")] by placing all
of the | %] entries congruent to 0 modulo e and all of the n — 2[ %] — 1 entries
congruent to neither 0 modulo e nor 1 modulo e in the leg of T', together with
m—mn+ | %]+ 1 entries congruent to 1 modulo e in the remaining nodes in the leg

of T. Hence max(Az) =n—m — 1.
O

Example 4.3. For e = 3, part of the graded decomposition matriz for %é\ comprising

rows corresponding to hook partitions has the form

Dy Dey D2y Dagyy De2ry Dezny Dag)

4.3 GRADED SPECHT MODULES S,y 1m) WITH € | n

Suppose that n = 0 (mod e). It follows from Theorem 4.1 that we can order the rows
and columns of the decomposition matrix for Z2 so that the submatrix comprising the

rows corresponding to hook partitions has the form

S(n—1,1) 1 1
S(n_2712) 1 1

S(g’ln—B) 1 1
5(2717172) 1 1

Further, the first n —1 columns correspond to the e-regular partitions Aq,..., A,—1, from
left to right. Thus, to obtain the analogous graded decomposition submatrix for %’f},

we need only find the graded dimensions of S(;,_p,),(1m) and Dy,,.
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We know from Theorem 4.1 that the partition A, is the e-regularisation of a partic-
ular hook partition (n — i,1%). The next result enables us to determine i, for 0 < m <

n— 1.

Lemma 4.4. Ife | n, then

(e a(=) o ()

)

Proof. Observe that

IR R )
(2] - [ {2t 2=))

Now, notice that nodes (1, %+€) and (W) share ladder number n + 1 — %, where
(1, ”:e) is the highest node in ladder .ZHH_Q. Thus,
(&

e(n—=1)—n R e(n—1)—n R
(|- [y o229
(& & (&

and by moving node (W) to the highest node (1, 2t¢) in ladder &, ,_n, we have
€

ey ey {(229)

Lemma 4.5. Fore |n andl <m, (n—m,1™)® = (n—1,1)% if and only ifl =n—1—2

andm:n—%.

and

O]

Proof. It is clear that the e-regularisation of (n—m, 1™)* can only equal the e-regularisation
(n—1,1Y% when the set of ladder numbers contained in the Young diagrams of (n—m, 1)

and (n —1,1") are equal. The ladders numbers of nodes in [(n —1,1)]U[(n —m, 1™)] are
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142

m

m—+1

with £(1—m) =1+ (n—m —1)(e = 1), {1 pn-mi1) = 1+ (n—m)(e—1) and £,y =
1+ (n—1-1)(e—1). The ladder numbers that lie in both [(n — 1,1")] and [(n —
m,1™)] are shaded, and the unshaded nodes lying in the arm (respectively, leg) of
[(n—1,1H] U [(n — m,1™)] lie in [(n — 1,1")] (respectively, [(n —m,1™)]). Hence, if the
ladder numbers contained in the Young diagrams of (n—m,1™) and (n—1,1!) are equal,
then £1 ;) =14+ 2,41 n—m+1) =1+3,...,£1,n—1y = m+1. It is obvious that only one
of these m — equalities holds, and thus I = m —1 and £(1 ,,_;) = m+1, as required. [

Hence, we know that the only hook partitions which have the same e-regularisation

are those given in Lemma 4.4. We can now define

A (n —m, 1) if 0 < m < S (4.3.1)
" (n—m —1,1m+tHE if =t <m<n—1. o
Then S,) = D(y,y and S(1n) = D(jnyr, and for 1 < m < n — 2, S, 1m) has composition
factors
<& D(n—m—i—l,lm_l)R and D(n—m,lm)R7 if 1 <m < =

eEn—m
€

o D(n—m,lm)R and D(n_m_171m+l)R, i <m<n-— 2.
Proposition 4.6. Suppose e | n.

1 If 1. < m < ==, then the leading and trailing terms, respectively, of the graded

dimension of S(p—pm,1m) are

(ot t2D ana (7Yool

m

2. If T <m < (e—1€)n—e; then the first two leading terms in the graded dimension of

S(n—m,1m) are

N 12D g (2 Ym0 Y ez
(eme_n)v e e and g(e(m+1)_n) + T(C(m—l)—n) V\e e s




4.3. GRADED SPECHT MODULES Sy _y;1my WITH E | N CHAPTER 4

and the last two trailing terms in the graded dimension of S(,_y, 1m) are
(e=2)n (e—=2)n

(e—2)n
n—e - n (== g my|m == Lnym
( e <e<m+2)—n)+e<em_n>>v( e+l and <e(m+1)_n>v< sz )),

€ €

3. If @ < m < n—1, then the leading and trailing terms, respectively, of the

graded dimension of S(;,_y 1my are

n—m-—1 n—m-—1

(o JetemrteD ana (% Jatmmeelz)

Proof. Let 7 = Std(n—m,1™) and T' € .7. We note that there are 2 entries congruent
(e—2)n
e

to 0 modulo e, % entries congruent to 1 modulo e (including 1), and

entries
congruent to neither 0 nor 1 modulo e lying in T. We now suppose that S,T € .7 such

that maxdeg(.7) = deg(T") and mindeg(.7) = deg(S).

1. By Lemma 2.5, T is formed from the Young diagram [(n — m, 1™)] by placing m
of the 2 entries congruent to 0 modulo e in its leg. Hence, deg(T') = m + [Z] by
Equation (2.2.2). Similarly, we form S from [(n —m, 1™)] by placing m of the ">

entries congruent to 1 modulo e in its leg, and hence deg(S) = —m + [Z].

n

2. By Lemma 2.5, T is formed from [(n — m,1™)] by placing all of the = entries
congruent to 0 modulo e in its leg, together with m — % entries congruent to neither
0 nor 1 modulo e. Hence, deg(T) = 2 4 | 2], by Equation (2.2.2). Similarly, S is
formed from [(n—m, 1"™)] by placing all of the 2 —1 entries congruent to 1 modulo
e in its leg, together with m — 2 + 1 entries congruent to neither 0 nor 1 modulo
e. Hence, deg(S) =1 -2 4 [Z].

Now let S",T" € .7 such that deg(T") = 2 4+ || — 1 and deg(S') =1 -2 + | Z].

One can see that 7" is formed from [(n —m, 1™)] by either

¢ placing 7 —1 entries congruent to 0 modulo e in its leg, together with m—2+1

entries congruent to neither 0 nor 1 modulo e,

o or by placing 7 entries congruent to 0 modulo e in its leg, together with
m — 2 — 1 entries congruent to neither 0 nor 1 modulo e, as well as 1 entry

congruent to 1 modulo e.
Further, S’ is formed from [(n —m, 1™)] by either

¢ placing % —1 entries congruent to 1 modulo e in its leg, together with m— % +2
entries congruent to neither 0 nor 1 modulo e,
o or by placing T — 1 entries congruent to 1 modulo e in its leg, together with
n

m — 2 entries congruent to neither 0 nor 1 modulo e, as well as 1 entry

congruent to 0 modulo e.
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n

3. By Lemma 2.5, T is formed from [(n —m,1™)] by placing all of the Z entries

congruent to 0 modulo e in its leg, together with all of the n — 2?” entries congruent
to neither 0 nor 1 modulo e, as well as m —n + % entries congruent to 1 modulo e.
In other words, there are n —m — 1 entries congruent to 1 modulo € in the arm of
T, and hence deg(T') = n —m + [Z]. Similarly, we form S from [(n —m,1™)] by
placing all of the 2 —1 entries congruent to 1 modulo e in its leg, together with all of
the n — 2?” entries congruent to neither 0 nor 1 modulo e, as well as m —n + 2 +1
entries congruent to 0 modulo e. In other words, there are n — m — 1 entries

congruent to 0 modulo e in the arm of S, and hence deg(S) =m —n+ 2+ [Z].

O]

Theorem 4.7. 1. If 0 < m < ==, then the leading term in the graded dimension of

D( n—e
()
m

2. If 2 < m < (6_1#, then the two leading terms in the graded dimension of

n_m71m)R 18

D, 1myr are

(e=2)n (e=2)n

; n—e n—e e w n—=2e
<e(m+1)_n)v e and . (€(m+2)_n> + <eme_n> voe ,

€ €

3. If n—% <m < n — 1, then the leading term in the graded dimension of D(yy—pm,1m)R

n—e
e vn—m—1'
n—m-—1

Proof. 1. We proceed by induction on m. For m = 0, it is obvious that grdim (D(n)) =

18

1. Now suppose that the leading term in the graded dimension of D, _, 1 1m-1)r

n—e

is < e >vm_1, for m > 0. We have
m—1

grdlm (S(n_m71m)) = ’Uim grdlm (D(n7m+1’1m71)12) + Ujm grdlm (D(nfm’l'rrz)R) 5

so that

grdim <D(nim’1m)R> =y Im (grdim (S(n_m’lm)) — v'm grdim (D(n7m+171m—l)R))
_ ymim <<’Z>Um+m R <”Ze>vmﬂm
m m
im =\ m-1, 2\ 1-m
() as) )

by Proposition 4.6. We observe that there are 2m + 1 and 2m — 1 terms, respec-

tively, in the graded dimensions of S,y 1m) and D, _,, 11 1m-1yr, and that the
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leading and trailing coefficients in the graded dimension of D,,_,, 1 1m-1)r are
smaller than those in the graded dimension of S(,,_, 1m). Hence, there are 2m + 1
terms in the graded dimension of D(,,_,, m)r. We require that the graded dimen-
sion of D(,_y, 1m)r s symmetric in v and v~!. Now, note that the difference of

the leading coefficients in the graded dimensions of S, 1m) and D(y,_p, 41, 1m-1)&

is (n%l) — (ﬁ) = (%), which equals the trailing coefficient in the graded dimen-

m

sion of S(,_y,,1m), and thus is the leading coefficient in the graded dimension of

D(;—pm,1m)r, as required.

2. We proceed by induction on m. For the base case we let m = 7. By the previous

part, together with Proposition 4.6, we have

rdim | D n\ R
& ( (n—%,l?) )
= <grdlm< ( S Z)) — "¢ grdim (D(n - 15—1)R>>
e (o) 22 () |
(n —e < ) ) pemertme)) | (e=2n (1o =)

,;< e (e=Domn o, (= D(n—en ))

l\Dm

We observe that the graded dimensions of S (n—ﬂ 1%> and D

and 27" —1 terms, respectively. For the graded dimension of D ( r to be sym-

n
n—2.1 6>
e

metric in v and v~!, then the leading coefficient of D ( nyqqno1)\" corresponds
n—o+1,1e

to the leading coefficient of S (n—ﬂ ﬁ). Thus, the leading coefficient in the graded

dimension of D, 2\R corresponds with the trailing coefficient @ in the
n—=—,le

graded dimension of S, 2) Now, the difference between the second trailing

e’

coeflicient in the graded dimension of S ( i 1%) and the trailing coefficient in the

n—2+1,1¢ n—=,le

graded dimension of D ( 2_1>R is positive, and thus D ( E)R has 2?” -1

terms, with leading degree *—<. Further, this difference gives the second leading
(e—2)n
coefficient in the graded dimension of D 2\R to be B( < ) + 2 —1, as
(n—;,l n ) e 2 e

required.

For m > %, we suppose that the first two leading terms in the graded dimension of

(e=2)n - (e=2)n (e=2)n e
D(n_m+1’1m—1)R are <emen >ve and n;e <<6(mf1)n> + <e(m61)n)) voe .

e
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Then, by Proposition 4.6, we have

grdim (D(n_mlm)za)

=y Im (grdim (S(n_me)) — v grdim (D(n,m+171m_1)3))

(e—2)n
— yim ((men%(’éﬂ’?ﬂ

(e=2)n (e=2)n

ni e n—e . nim
+ (6(5(7’“‘1)_”> +e<e(m_1)_n)>v(e+LeJ 1)_|_...

(e=2)n

(e—2)n
T ¢ ni g-ny|m)_g
i < € <€(m+2)n> * e <eme_n >> U( )

(e—=2)n

e 1-24[ 2| —1
+<e(m+1)—n>v( et )

(e=2)n

) (e=2)n e n—e fe=2n (e; e
— v <67n€_n>v e 4+ o <e(m+el)—n> + <e(m—1)—n) vV oe +---

(e—2)n

(e—2)n (e—2)n
n—e e e 2e—n I e—n
o e ((e(m+1)n> + <€(m1)n>> voe + <em—n>v ¢ >> :
e

€ €

We note that the graded dimensions of S(;, _, 1m) and Dy, _p, 1 1m-1yr have 2?" and

2?” — 1 terms, respectively. For the graded dimension of D(,_, m)r to be sym-

(e—=2)n

metric in v and v_l, the leading coefficients ( eme_n

) in the graded dimensions

of S(—m,1m) and D (—m41,1m-1yr must cancel out. Thus, the leading coefficient
(e=2)n

in the graded dimension of D(,_, ymr is <e(m+€1)—n

), which equals the differ-

e
ence in the second leading coefficients in the graded dimensions of S, _, 1m) and
D (—mq1,1m-1)r. Now, we observe that the difference between the second trailing
coefficient in the graded dimension of S(;,_;, 1m) and the trailing coefficient in the
graded dimension of D, _, 1 1m-1)r is non-zero, and thus has 27" number of terms.
We see that this difference is

(e=2)n (e—=2)n

n—e n (e—2)n (e—2)n n—e (e—2)n
e <e(m+2)—n> +g ( eme—n > o < eme—n ) = e <e(m+2)—n> + ( eme—n > ’

€ €

which is the second leading coefficient in the graded dimension of D R, as

n—m,1™)

required.

. We proceed by downwards induction on m. For m = n — 1, it is obvious that

grdim (D(ln) R> = 1. Now suppose that the leading term in the graded dimension

of D(y_pm—1,1m+1)& 18 (:_%:n)v”*m, for m < n — 1. We have grdim (S(n,mlm)) =
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v/ grdim (D(n_me)R) + vhm grdim (D(n_m_leJrl)R), so that

grdim (D(n_me)R)

— U—jm (grdim (S(n—m,lm)) — vhm grdim (D(nfmfl,lm-ﬁ—l)R))
:v—%l<( ne )U@—m+mw>+.~+-< . )v“*“*”*?”
n—m—1 n—m-—1

L hm o (n-m—2 . e (2+m—n)
e (O e S ) )

by Proposition 4.6. We observe that there are 2n —2m — 1 and 2n — 2n — 3 terms,

respectively, in the graded dimensions of S, 1m) and D, _p, 1 1m+1yr, and that
the leading and trailing coefficients in the graded dimension of D,_,,_1 1m+1)r
are smaller than those in the graded dimension of S(,_,, 1m). Hence, there are
2n —2m — 1 terms in the graded dimension of D(,,_,, ;m)r. Now, the difference of

the trailing coefficients in the graded dimensions of S(;, _y, 1m) and Dy, _p, 1 1m+1yr

n n—e n—e
is € — € = € , which equals the leading coeffi-
n—m-—1 n—m—2 n—m-—1
cient in the graded dimension of S(,_,, 1m), and thus is the leading coefficient in

the graded dimension of D(,,_, 1mr, as required.
O

Corollary 4.8. For an e-reqular partition X, [S(,—m,1m) : Dily = 0, except for the

following cases:
o [Stemim) : Dap_yJo =0l if I <m<n—1;
o [Stn—m,im) : Dx,Jo = olelifo<m<n—2.
Proof. By Theorem 4.7, it is easy to see that

o [Stmemm) : Dipemarim-1yrly = oLl T <m <n =1 -
< [S(n—m,lm) : D(n—m,lm)R]v =

o [S—m,am) : D(n,m,leH)R]v =olelifn— s<m<n—2
Now, the result follows from the definition of A, given in Equation (4.3.1). O

Example 4.9. For e = 3, part of the graded decomposition matrix for %é} comprising

110



4.3. GRADED SPECHT MODULES Sy _y;1my WITH E | N CHAPTER 4

rows corresponding to hook partitions has the form

D) Dy Dugpzy Daeny D
S6) v
5(5,1) ) 1
S 0
S5(3,19)

S(2,14)

5(16)
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CHAPTER 5

INTRODUCING SPECHT MODULES LA-
BELLED BY HOOK BIPARTITIONS

From this chapter onwards, we begin the study of graded representation theory of the
cyclotomic Khovanov-Lauda-Rouquier algebra Z2 in level two, namely the Iwahori-
Hecke algebra of type B, over C or a field of positive characteristic. For quantum
characteristic at least three, we introduce a large class of representations in this setting,
Specht modules S((;,—m),(1m)) labelled by hook bipartitions, and we investigate the action
of the generators of %/ on their basis vectors. We establish the ground work for our
ultimate end of completely determining the graded decomposition matrices comprising
rows labelled by hook bipartitions, inspired by the work of Peel [P] and Chuang, Miyachi
and Tan [CMT]. We will eventually see that these matrices split into four separate cases,
depending on k and n; the ungraded decomposition matrices in one of these cases have
the same form as given in Peel’s Theorem 4.1. The Specht modules S((n—m), (1"™)) have
a particularly nice presentation, and together with their connection with Peel’s work,
provide a suitable candidate to make progress on the Graded Decomposition Problem
for graded Iwahori—Hecke algebras of type B. We set [ = 2 and e > 3 from now on; we
forget the Z-grading on Specht modules labelled by hook bipartitions until Chapter 11.

In this chapter, we give a combinatorial description of the basis elements of Specht
modules labelled by hook bipartitions and begin our study of the action of the generators
of the cyclotomic Khovanov—Lauda—Rouquier algebra on these basis elements. The
following results are motivated for the need to establish Specht module homomorphisms
labelled by bipartitions in Chapter 6, where we later find the irreducible submodules of
S((n—m),(1m)) arise as quotients of the kernels and images of these homomorphisms. We
note that we work solely with ungraded cyclotomic Khovanov-Lauda—Rouquier modules
up to and including Chapter 13.

We define a hook bipartition of n to be a bipartition ((n —m), (1™)), for all m €
{0,...,n}. We will refer to the first component (n—m) of a hook bipartition as its arm,

and similarly, to its second component (1) as its leg. We call the node (n —m,1,1)
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lying at the end of its arm its hand node if n —m > 0, and the node (m,1,2) lying at
the end of its leg its foot node if m > 0. The Young diagram of a hook bipartition is

W

where the hand and foot nodes have been shaded.

5.1 HOMOGENEOUS BASIS ELEMENTS OF S((;,—pm),(1m))

Similarly to Chapter 3, we define the homogeneous basis elements of Specht modules
labelled by hook bipartitions. Given a standard ((n — m), (1™))-tableau T', we write
aj :=T(j,1,2) for all j € {1,...,m}. Then T is determined by ay,...,a, and we can

write
a1—1 ag—1 am—1
T=s l, S \L ... 8 \L T((nfm),(lm))-
1 2 m
aj+1-1  ajpo-1 am—1
If @i = i for some i € {1,...,m}, then T =5 | s | ...s | T(nom)am)

i+1 i+2 m
in particular, T = T((n—m),1my) if a; = i for all i € {1,...,m}. Recalling that \I!i::

Yijpj—1...1; from Section 1.3.3, we can now write

op =V | U] U] Znom),am)
1 2 m
where v is completely determined by ay, ..., an,. For brevity, we write v(ay, ..., ay) =
aj41—1  ajpa-1 am—1
vp. If a; =i for some i € {1,...,m}, thenvp =¥ | ¥ | ..U | Z((n—m),1™))>
i+1 +2 m
in particular, vy = 2((n—m),am)) if a; =i for all i € {1,...,m}.

5.2 PRESENTATION OF SPECHT MODULES LABELLED
BY HOOK BIPARTITIONS

Recall that the Specht module presentation for the cyclotomic Khovanov-Lauda—Rouquier
algebra was given in Section 1.3.2 and that we determined the Garnir elements of Specht
modules labelled by hook bipartitions in Section 1.3.1.3.

A Specht module S((;, ) (1m)) labelled by a hook bipartition is generated by z((,—m),1m))

with defining relations

© e(D)2((n—m),(1m)) = Gi(n_pmy, xmy) iZ((n—m) (1))
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© YrZ((n—m),(1m)) = 0 for all r € {1, e n};
O Yrz((nem),imy =0 forallr € {1,....m -1} U{m+1,...,n—1},

where i((;,_,),(1m)) is the e-residue sequence of the column-initial tableau T{(,—ym),(1m))-

5.3 THE ACTION OF %{1\ ON S((n_m)7(1m>> I

We determine when the basis elements vp of Specht modules labelled by hook biparti-
tions are killed by the generators 11, ..., ¢,_1 of Z2.

Lemma 5.1. Suppose that 1 < a1 < --- < am <n, and 1 < i < n.

1. Let i # 2+ ko — k1 (mod e). Then v(ay,...,anm) =0 if both i and i + 1 lie in

{al, e ,am}.

2. Let i #Z ko — k1 (mod e). Then Yv(ay,...,an) = 0 if neither i nor i + 1 lies in
{at,...,am}.

Proof. We proceed by induction on the sum a; + - - - + a,, to prove statements (1) and

(2) simultaneously, as follows.

ay—1

1. Let r be such that a, = ¢ and a,11 = ¢+ 1. If ¢ = r, then all the terms ¥ |
1

apqq -1
..W | are trivial, so we have
r+1

apqo—1 am—1
wiv(al, N ¢4 ) wz\:[/ \LZ .U J, Z((nfm),(lm))
T+ m
apa—1 am—1
r+2 m

Now assume that ¢ > r + 1, and observe that

1&'1}(&1, N am)
a;—1 —1—1 apyq1—1 am—1
=V ] v i Yithi— 1%‘1% \I’i 4 i UL Z(aem),(1m))
1 T r+1 r+1 m
a)—1 ap_1—1 ar4+1-1 am—1
= % n i Yi—19iti— 1\If¢ ‘I’i\lf L UL 2 ((em),(1m)

a)—1 ap_1-—1

= J, U i 'Lﬁi_ﬂbﬂ/}i_l’l}(l,...,’r’—l,i— 1,i,ar+2,...,am),
r—1

where ¥;_1v(1,...,7—1,i—1,i,a,49, ..., an) equals zero by induction since i —1 #

2 4 kg — k1 (mod e). Now suppose that i = k2 — k1 +3 (mod e). We note that
1—2 i—1

the terms W | W | are trivial if i = r + 1, so that

I8 r+1

apy—1 am—1
Yicv(l, . r = 1Li—1d,am40, . am) = ViV L UL 2 (nem),(1m)
r+2 m

115



5.3. THE ACTION OF %} ON S(x_ap) vy I CHAPTER 5

appo—1 am—1
=VU | U Yi1z(aem),am))
r4+2 m
= 0.
Now supposing that i > r + 2, the expression ¥;v(ai, ..., ay) becomes
a;—1 apyo—1 am—1
vl \I} \L 1/}1 112t 1\11 \l/ \I’ \l/ vl . \l/ Z((n—m),(1m))
1 I r+1 r+2
ap—1 arta—1
=v ] . v i wz 19 (Yi2vi— 11/112—1)‘I/¢ \I’i‘If \:
1 — T r+1 r+2

am—1

Y Z(nem),im)

By splitting this sum into its two terms, the first term becomes

ay—1 ap_1—1

Ul UL iaithiothi i ov(l, o r = 10— 20— 1 argo, ... am),
r—1

1

where ;_ov(1,...,7—1,i—2,i—1,a,42,...,ay) is zero by induction since i —2 #

2 4 kg — k1 (mod e). The second term is

a;—1 ap_1-1 - apyo—1 am—1

v ...v i (- 1¢z‘11¢ ‘I’i Ul UL Z(em),am))

1 T r+1 r+2 m

which becomes
aj]— ap_1—1

AT AT N T

1 s T+2

if r +1 = m. We now assume that » + 1 < m, so that the second term becomes

ai—1 ap_1-1 - ary2—=1 41 -1 apq3—1 am—1
A RO T A A A )
1 T r+1 i+2 [ r+2 r4+3 m
a1—1 ap_1-1 - apqo—1 - apy3—1
=v ] ...¥ i (- 1\1’ \L \I’ \L v ¢1¢1+1¢z\1’ \lr vl
1 — r r+1 i+2 r+2 r+3

am—1

2 (nem), 1)

If e # 3, then this term becomes

a;j—1 ap_1—1 i—2 apyo—1 i—1 apy3—1
o IR AT R R TSR PTRTSEE I A
1 r r+1 i+2 r42 r+3

am—1

YL Z(em) i)

whereas if e = 3, then the term becomes

ay—1 Ay apqp3—1
=V ] \I’ l« wz 1\11 \L \IJ \L v ~L (¢z+1¢zwz+1 - 1)‘11 i v
1 r r+1 i+2 742 r+3
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am—1

<Y Z(nem),im)

We first assume that e is arbitrary and see that the first term in its sum (and only
term if e # 3) is

ay1—1 _1-1 — aptpo—1 — aptp3—1
v 1 AR R TR A
1 T r+1 i+2 742 r+3
am—1

R (R ONCO)

a—1 ap_1-1 apyo—1
=v] ...¥ i i 1\I’¢ ‘Pi Ul Yiibiv(l, . r 4+ L args, . am),
1 r r+1 i+2
where ¥ 11v(1,...,7 4+ 1,4,ar43,...,a,) equals zero by the inductive hypothesis

of part (2) of the lemma, since i + 1 # ko — k1 (mod e) if e # 4. Assuming that
e = 4, this term becomes

ap—1 i—1 ap43—1 i apyq—1
vl ¢ R ¢ 0T et ) v
1 T r+1 r+2 +3 r+3 r4+2
am—1

Y Z(nem), i)

a;—1 ap_1-1 43 - app2—1 -1 apy3—1 i appq—1
v v wl v Lowl L diativiet | U]
1 r—1 T r+1 r4+2 1+3 r+3 r+2
am—1

. i Z((n—m),(1™))

ap—1 ap—1-1 -3 -1 ap43-1
=Vl ..v i vl ‘I’i v T \I’i Vol Yiavin
1 T r+1 i r+2 i+3

cipov(l, o r+ 2,04+ 1, gy ey Q)

where ;1 ov(1, ..., r+2,i+1,ar44,...,an) equals zero by the inductive hypothesis
of part (2) of the lemma, since i + 2 # k2 — k1 (mod 4).

Now assume that e = 3, where its second term becomes

a;—1 ap_1—-1 -3 apyp-—1 - apy3—1 am —1
-l ... i ‘I’i vl e 1‘I’¢ ‘I’i Ul UL 2((em),am))-
1 i+2 r+1 r+42 r+3 m

1—2 i—1
If i = r 4 2, then the two terms W | W | are trivial, so this becomes

r+1 r+2
a;—1 ap—1—1 -3 appa-1 ary3—1 am—1
—UL v \Iw ol o ia® L UL 2(em),am)
1 i+2 r+3 m
ap—1 ap_1—-1 j-3 apy2-1 apyp3-1 am—1
=—-U | ..U | \Il¢ vl vl UL Yic1Z(nem),am)) = 0.
1 r—1 i+2 r+3 m
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Now assuming that ¢ > r 4+ 3, we can rewrite this expression to be

ay—1 ap_1—1 AQpr42— 1 1—3 — Apr43— 1
-l ..V i vl ‘I’i Yi1hi—othi— 1‘If¢ ‘Ifi‘l’ 1
1 i+2 r+1  r+42 r+3
am—1

<Y 2 (nem) 1)

a;—1 —1—1 appa-1 -3 - art3—1
S A N A VL (hiatie Wi )Y W v
1 r—1 i+2 r+1 r+2 r+3

UL Z(nem),(am))

and again we consider its two summands. The first term is

a;—1 ar—1-1 apys-1 43 apy3—1
v ...v i vl ‘I’i Yi—oi—11hi— 2‘1% \Ifi‘l’ \
1 — i+2 r+1 42 r+3
am—1

L Hnem), )

a;—1 arp—1=1 apyo2—-1 43
:_\II\L .U \lf v \l/ \Il\l/ w’b 21/}1 1’1/]2 21)( i_27i_17aT+37"'7am)7
1 142
where ¥;_ov(1,...,7,i—2,i—1,ar43,...,an) equals zero by induction since i —2 #

2+ k2 — k1 (mod 3). The second term becomes

a;—1 —1-1 apya-1 -2 apy3—l am—1
-v . v i vl i 3‘1% ‘I’i ‘l’i Ul UL 2, (1m))-
1 42 r r+1 r+2 r+3 m

i—4 i—3 i—2
Ifi=r+3,then W] ¥ | W] is trivial, so the expression becomes

™ r+1 r+2

a;—1 ar_1—-1 apjo-1  apy3-—1 am—1
1 r—1 i+2 r+3 m

Now supposing that ¢ > r 4 4, the expression becomes

a1—1 1—1 apio— 1
- | . \Il i U | sv(l,...,r—1,i—3,i—2,i— 1,ap43,...,0m),
1 42
where 1;_sv(1,...,7 — 1,4 —3,i — 2,9 — 1,a,43,...,an) equals zero by induction

since i — 3 # 2+ ko — k1 (mod e). Thus, we have proved the first statement, as

required.

2. Let r be such that a, < i—1 and a,41 > i+ 2. If i = r — 1, then all the terms

a;—1 apyj—1
v, 0] and further, if aysj =i +j + 1 then ¥ | s trivial, for j > 0.
1 r ot
Thus

ay—1 am—1

viv(al, ... am) =YV % UL 2(nem), (1))
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ay—1 am—1

=v | ...¥ | wiz((nfm),(lm)) = 0.

1

So we can assume that ¢ > r. Now we have

wiv(al, ey am)
a;—1 am—1
=il em) am)
ay—1 ar—1 Gpg1—1 apqo—1 am—1
=v ] ...¥ i v %%H%‘I’i Ul L 2((em),am)
1 i+2 r+1 r42 m
aj—1 ar—1 apy1—1 - apqo—1 am—1
=vl ...¥ i ol ¢z+11/h¢z+1‘11¢ Ul UL Z(aem),(1m))
1 i+2 r+1 r+2 m
aj—1 ar—1 apqq1—1 .
=V \l/ g \l/ v \J/ "/}Z-‘rlwlwz—klv( 5Ty Arg2, ... 7am)
1 i+2
If i+1 # ko — k1 (mod e), then ¢, 1v(1,...,7,4,ar42,...,an) is zero by induction.
So we assume that i = kg — k1 — 1 (mod e). Now the expression ¢;v(ay,...,an)
becomes
ap—1 ar—1 @p41-—1 apy2—1  apg3-—1 am —1
vl ... i Ul ¢a? L UL UL 2(nem),(im))
1 r+1 42 r+3 m
ay—1 apr—1 apqp1—1 apyo—1 i apy3—1 am—1
=W i LU i v \L v ~L wz+1¢z+2wz+1\y¢ v \L v ‘L Z((n,m),(lm))
1 i r+1 i+3 r+2 r+3
ap—1 ar—1 Gpy1—-1 apyo—1 i ary3—1
S RN A0 AN A (ARSI A
1 r+1 i+3 r42 r43
am—1
SR (CRVORELD)

Splitting this sum into two terms, its first term is

ap—1 ar—1 @r41-1 appo-l i apt3—1 am—1

Ul LU U] it L UL L 2(em), )

1 r r+1 743 r4+2 r+3 m
a;—1 ar—1 apqp1—1 apqo—1

=V ] UL v | U] Yipatiptieu(l, o+ it L arys, e am),

r+1 i+3

where ¢, 1ov(1,...,7+1,i+1,a,43,...,an) equals zero by induction since i +2 =

ko — K1 + 1 (mod e). Its second term is

ay—1 ar—1 @p41—1  appo—1 i ap43—1 am—1
~T L LU L UL LT L T L 2wy, am)
1 7 r+1 i+3 r4+2 r+3 m
a;—1 r—1 @pg1—1 apyo—1 - apy3—1 am—1
S A i volow %‘I’i Ul UL Z((em),am))
1 r+1 i+3 r+2 r+3 m
a;—1 ar—1 apgp1—1 apqo—1 )
:_\Il\l/ \II\J/ v \L v \L ﬂ)l ( 'ar+17z>a7’+3>"'7am)>
1 r+1 i+3
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where Y;v(1,...,r+1,7,a,43,...,ay) equals zero by induction since i = kg —k1—1
(mod e). Thus, we have proved the second statement, as required, by assuming

its inductive hypothesis. O

Remark 5.2. We note that these are not the only cases when ; kills basis vector
v(a,...,am), for 1 < i < n. For example, let e = 3, k = (0,0), i = 3, and S(),13))-
Then 13v(1,2,4) = 0 where 3 & {a1,az2,a3}. In Chapter 7, we will expand on the pre-
vious lemma and give an explicit description of the action of the cyclotomic Khovanov—
Lauda—Rouquier generators ¥y, ...,%n—1 on basis elements of Specht modules labelled by

hook bipartitions.

We now show when the generators y1, ..., y, of %ﬁ act trivially on the elements v

of Specht modules labelled by hook bipartitions.

Lemma 5.3. 1. Leti =1+ ko — k1 (mod e). Then yv(ai,...,an) =0 if and only
if either i € {a1,...,am} ori+1¢ {ai,...,an}.

2. Let i = 2+ ko — k1 (mod e). Then yv(ay,...,an) = 0 if and only if either
i—1le{al,...;am} orié{al,...,am}.

3. Leti# 1,24 ko — k1 (mod e) Then yv(ay,...,am) =0.

Proof. We first proceed by simultaneous induction on the sum a; + --- + a,, to show

that y;v(ay,...,an) equals zero in the following six cases:
o i =1+ky— k1 (mode) and i € {ay,...,an};
o i=14+kKky—kK1 (mode)andi+1¢{a,...,am};
0 1=2+kKky— k1 (mode)andi—1¢€ {a,...,amn};
© 1=2+4kKky— kK1 (mode) and i & {ay,...,an};
o i—ky+ k1 Z£1,2 (mod e) and i € {ay,...,am};
o i—ke+ k1 Z1,2 (mod e) and i & {ay,...,am}-
We label these cases A, A’, B, B’, C and C’, respectively, from top to bottom.

i—1
1. (a) Suppose that i € {aj,...,a,,} and let a, = i. If i = r then ¥ | is trivial, so

T

apgp1—1 am—1
yiv(at,...,am) =y ¥ il UL 2(nem), (1))
r+ m
arp1—1 am—1
=¥ | ..U | YiZ((n—m),(1m)) = 0.
r+1 m

So suppose that ¢ > r 4+ 1. Then

yiv(ay,...,am)
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a;—1 ap_1-1 i—2  apg1—1 am—1
=Vv | ..U | oyt 1‘If¢ Ul WL Z(em),am)
1 r—1 r+1 m
a;—1 ap_1-1 — apq1—1 am—1
=v | ..U | Yy 1‘If¢ Ul UL 2(em),am)
1 r—1 r+1 m
ay—1 ap_1—1
:\I’i .U l, @Di,lyi,lv(l,...,r—1,i—1,ar,1,...,am)
1 r—1
where y;_v(1,...,7—1,i—1,a,_1,...,an) equals zero by the inductive hy-
pothesis of C.
(b) Suppose that i + 1 & {a1,...,am}, solet a, <iand a4 > i+2. Ifi=r
then y;v(ay,...,an) is trivial by part (a). So let i > r 4 1.
i. Suppose that a, =i. Then y;v(ai,...,an) =0 by part (a).
ii. Suppose that a, <i— 1. Then we have
yiv(al, ..., am)
ap—1 —1—1 ap-1 apy1—1  apqo-1 am—1
=v \l/ \IJ \L R \L yl\]:l \L v J/ U\ \L Z((n,m),(lm))
1 r—1 T r+1 r+2
a;—1 171 ap—1 app1-1 -1  apy2-1 am—1
=V ] v R A AR 4 i volo.v i Z((n—m),(1m))
1 r—1 r i+1 r+1 r+2
aj—1 ap_1-1 ar—1 apqq—1 — apqo—1
TR A A AN (TR R A
1 r—1 T i+1 r+1 r+2
am—1
L 2 (), )
The first term becomes
ap—1 ap_1-1 g.-1 apy1-—1 — apyo—1 am—1
vl ...v | v i vl wzyzﬂ\lf i Ul Ul Zmem),am)
1 r—1 i+1 r+1 r+2 m
ay—1 ap_1—1 ar—1 apq1—1 .
=0 | ...¥ L 1\ ¢ U | yirv(l, . i arga, . Q)
1 r—1 1+1
where y;11v(1, ..., 7,9, ar42,...,an) equals zero by the inductive hypoth-
esis of B. The second term becomes
ap—1 ap—1—=1  gp—1 apgp1-1 i—1  apy2—1 am—1
SR A SV AR T A A
1 r—1 142 r+1 r4+2 m
ap—1 ar_1-1  gp—1  apy1-1 )
=-Vv \L v \l/ v \L v \]/ wl+1v( aTvzaaTJrQ""?am)
1 r—1 i+2
where ¥ 1v(1, ..., 74, ar42,...,ay) equals zero by part two of Lemma 5.1
since a,42 =i+ 3 and i + 1 # ko — k1 (mod e).
2. (a) Suppose that i — 1 € {ay,...,ay} and let a, =i — 1.
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i—1
i. Suppose that ay41 =4¢. If i =r 41 then ¥ | is trivial. Then

r+1
apqo—1 am—1
yiv(al, ce ,am) = yi\Il J,Q A/ i, Z((nfm),(lm))
r+ m
apqo—1 am—1
=v \1,2 LU \L yiz((n_m)y(lm)) =0.
r+ m

Now suppose that ¢ > r + 2. Then

yiv(ar, ..., am)
ai;—1 -1-1 apyo—1 am—1
=V | . v i ‘I’i Yii— 1\1’¢ v o..v i Z((n—m),(1™))
1 r+1 r+2
ap—1 ap_1—1 i apyo—1 am—1
=v | ..U | i (Vi—1yi- 1+1)‘I’¢ Ul U Z(nem),(im))-
1 r—1 r+1 r+2 m

The first term becomes

a;—1 ap_1—1 —2  apyo—1 am—1

vl o...v i ‘I’i Yi-1Yi— 1‘1’¢ Ul UL Z(em),am)

1 r+1 r+2 m

ay—1 ap_1—1

:\IJ\L LU J, \I/:L wi_lyi_lv(l,...,r,i—1,ar+2,...,am)
r—1 T

where y;_1v(1,...,7,4—1,ar49,...,an) equals zero by the inductive hy-

pothesis of A. The second term becomes

a;—1 ap_1-1 — apqo—1 am—1
vl o i (U Q‘PL ‘Ifi Ul L Z(em),am))
1 r r+1 r+2 m
ap—1 ap_1—1
=0 | ..U | ov(l,....r—1,i—2,i—1,ar42,...,am)
1 r—1
where ¢;_ov(1,...,7—1,1—2,i—1,a,42,...,ay) equals zero by the first

part of Lemma 5.1 since i — 2 #Z 2 + kg — K1 (mod e).

ii. Suppose that a,41 > i+ 1. If i =r then ¥ i is trivial. So we have

r+1
apq1-1 aryo—1 am—1
yiv(ar,..,am) =V | yV L U 2(mm),1m)
i+1 r42 m
app1—1  apyg—1 am—1
=V L vl L i (em),(1m)
it1 r+2 m
= 0.
So suppose that i > r 4+ 1. Then
yiv(a, ..., am)
ap—1 i +1—-1 i—1  apq2—1 am—1
— ¢ . w R AR A ) Z((n—m),(1m))
i+1 r+1 42 m
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a;—1 i—2  apy1—l i—1  arqo2-1 am—1
=v] ...¥ i vl iyinv] ¥ | UL (), (1m)
1 i+1 r+1 r+2 m
ay—1 i—2 apqp1—1 .
=V \L \IJ\L v \l/ @Z)zywlv( ,T‘,Z,ar+2,.--,(lm)
1 i+l
where y;11v(1, ..., 7,4, ar42,...,an) equals zero by the inductive hypoth-
esis of C'.

(b) Suppose that i & {ai,...,am}, so that a, < i—1 and a,4; > i+ 1. Then
yiv(ai,...,amn) =0 by part the previous part 2.(a)ii

i—1
3. (a) Suppose that a, =i. If i = r then U] is trivial. Then

apt1—1 am—1

yiv(at, ..., am) =y ¥ Ll UL 2 (nem),(1mY)
r+ m
apy1-1 am—1
=v J,l U i in((n,m)’(lm)) = 0.
r4 m

So suppose that ¢ > r + 1. Then

yiv(at, ..., am)
ap—1 11 apt1-1 am —1
=0 | v ¢ Yithi— 1‘If¢ Ul UL Z(em),am)
1 r+1 m
ap—1 ap_1—1 +1—1 am—1
=Ul T L Y 1\If¢ AN ) Z((n—m),(1m))
1 r+1 m
ay—1 ap—1-1

=v | ..U | iy, r—=1d— 1 a4, .., am)
r—1

where y;_1v(1,...,7 — 1,0 — 1,ar41,...,an) equals zero by the inductive hy-
pothesis of C'if i # 3 + k2 — k1 (mod e). Now suppose that i = 3 + ko — K1

(mod e). Then we have

ap—1 ap_1-1 — app1—1 am—1
vl o...v i Yic1yi—19i— 2\If¢ vl oL i Z((n—m),(1m))
1 r+1
ap—1 ap_1—1 - apyq1—1 am—1
=V ] ...¥ i Vi1 (Yi-2yi- 2+1)‘I’¢ Ul L Znem),(1m))-
1 — r+1 m
The first term becomes
ay—1 ap_1—1 apq41—1 am—1
v ...v i Yic1Yi—2yi— 2‘I/¢ Ul UL Z(em),am))
1 r+1 m
ayp—1 ap_1—1
=V | .U L iavioyiov(l, . r =10 —2,a041,. ., Q)
1 r—1
where y;_ov(1,...,7— 1,1 — 2, ay41,...,an) equals zero by the inductive hy-
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pothesis of A. The second term becomes

ay—1 ap_1-1 -3  apy1-l am—1
v ...v i i 1‘1’¢ Ul UL Z(em),am)
1 r+1 m

=v | \I/ L @Z)i,lv(l,...,r—1,i—2,ar+1,...,am)
r—1

where ¢;_1v(1,...,7r—1,i—2,a,41, ..., an) equals zero by part two of Lemma 5.1

since i — 1 # k2 — k1 (mod e) and a,41 >+ 1.

(b) Suppose that a, > i+ 1 and a,—1 < ¢ — 1. If i =7 — 1 then U] is trivial. So

we have
ap_1—1 apy1—1 am—1
yiv(ar, .. am) =9 Ly L UL 2(hem),(1m))
i+1 r+1 m
ap—1-1  apyq1-1 am—1
=v | U | UL YZ((nem),am)
i+1 r+1 m
=0.

So suppose that ¢ > r. Then we have

a;—1 ap_1-1  qgp-1 — apq1—1 am—1
vl ...v |l v yzwzm Ul UL Z((em),am))
1 r—1 i+1 r+1 m
a;—1 ap_1-1  gp-1 — apq1—1 am—1
=v] ...v | v ¢zyz+1‘1’¢ Ul UL Z(em),am)
1 r—1 i+1 r+1 m
a;—1 ap_1—1 ar—1
=V L UL Yyiav(, r—1,4,ar41,. .., 0m)
1 r—1 i+l
where y;1v(1,...,r—1,4,ar41,...,an) equals zero by the inductive hypoth-
esis if i Z ko — k1 (mod e). Now suppose that i = k3 — k1 (mod e). Then
we have
yiv(ai,...,am)
ay—1 ar—1 aptp1—1 i apqo—1 am —1
= i LU i VIR AR A ] Z((n—m),(1™))
1+2 r+1 r+2 m
ap—1 ar—1 Gpg1—1 ] apyoa—1 am—1
=v ] ...V i A (ST | 2 AR A Z((n—m),(1m))-
1 1+2 r+1 42 m

The first term becomes

a1-1 ap—1 @r41-1 i arq2—1 am—1
vl o...v i Ul Yit1yi2¥ IR AR A Z((n—m),(1m))
1 1+2 r+1 42 m
ap—1 ar—1 @r41-1
=U il, LUl v ¢2 Vix1Yir20(L, oo ryi+ 1 arg1, ... am)
s i+
where y;pov(1, ..., 7 i+ 1,ar41,...,an) equals zero by the inductive hypoth-
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esis of B. Firstly, suppose that a,+2 =%+ 3. The the second term becomes

a;—1 ar—1 apg1—1 i i+2 am71
-Vl ... i v i U]l Ul .oV L 2Z((nem),(1m))
1 i+2 r+1 r+2 m
a1—1 r—1 apy1—1 i arq43—1 am—1
v U i v owl ¢z+2‘1’¢ Ul UL 2(n—m),am)
1 i+3 r+1 r+2 r+3 m
aj—1 r—1 Gry1-1 i i+1  arq3—1 am—1
-V ..U i VL Ul ae—yua)¥ L U L T Z((n—m),(1™))-
1 i+3 r+1 r42 r+3 m

The first term becomes

a1—1 ar—1 _ar41-1 i irl apy3—l am—1
-vl ...V i Ul gV UL W | U Z(em),1m))
1 i+3 r+1 r+2 r+3 m
a;—1 ar—1 apy1—1
=-v | v \l/ vl y2+2v(1 7T7i+17i+2aar+37"'7am)
1 i+3
where y;ov(1,...,7 0+ 1,4+ 2,a43,...,a,) equals zero by the inductive

hypothesis of B. The second term clearly equals zero by the inductive hy-
pothesis of C.

Secondly, suppose that a,42 > ¢ + 4. Then the second term becomes

a;—1 ar—1 apy1—1 P aryo—1 am—1

-] ...V l U]l ¥ TR 7} Z((n—m),(1m))
1 i+3 r+1 42 m
ay—1 ar—1 apqq1—1 .
=-v \l/ . \l/ v \L w’H—Z'U( ,r,z+1,ar+2,...,am)
1 i+3
where 1, ov(1, ..., 7, i+1,ar42,. .., an) equals zero by part two of Lemma 5.1

since i + 2 # Ky — K1 (mod e) and a,49 > 1+ 4.

We have thus shown that y;v(ay,...,an) equals zero in the six cases given above.

We now show that y; kills v(ay, ..., a) only in the above six cases. We first suppose
that i = kg — k1 + 1 (mod e),i & {a1,...,an}and i+1 € {ay,...,an}. Leta, <i—1
and a,4+1 =1+ 1. We have

yiv(at,...,am)
a;—1 ar—1 i apqo—1 am—1
1 T r+1 r+2 m
ap—1 ar—1 i apqo—1 am—1
=v] ...¥ i (7 N A ¢ Z((n—m),(1m))
1 r+4+1 r4+2
ay—1 ar—1 apyo—1 am—1
=y \l, U \l, (¢1yl+1 - 1)\If \L v \L U \L Z((n—m),(lm))'
1 r r+1 42 m
Its first term becomes
a1—1 ar—1 i—1 apyo—1 am—1
v ...v i Yiyirt VL UL UL 2o, (1m)
1 r+1 r42 m
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ay—1 ar—1

=wv \L W \L ¢iyi+llv(]-7”'7r)i7a7"+27'")am)7

1

where y;11v(1, ..., 7,4, ar42,...,an) equals zero by B’ since i + 1 ¢ {a1,...,amn}. Now

its second term is

a;—1 ar—1 i-1 arq2-1 am—1 .
- \L A\ \L \Ili v i A i z((n—m),(lm)) = —v(al,...,aT,z,aT+2,...,am),
1 7 r+1 r+2 m

which is clearly non-zero.
Finally, suppose that i = k3 — k1 +2 (mod e),i—1 & {a1,...,an}andi € {ay,...,an}.
We let a, <i—2 and a,41 = 4. Then

yiv(at, ..., amn)
a;—1 - apyo—1 am—1
=y i 7 i ‘I’i Ul U z(nem),am))
r r+1 r+2 m
a1—1 ar—1 -1 appa—l am—1
=v | ... i yz‘;[l\L vl i Z((n—m),(1m))
1 r+1 r+2
a;—1 ar—1 i—2  Gpq2-—1 am—1
=U il, R (% 1Yi—1 + 1)\11 ;ljl L \_%2 LU Z((n—m),(1m))-

The first term is

ap—1 Ap42— 1 am—1
v i LT i Yi1Yi— 1‘P¢ Ul UL Z(em),am)
r+1 r+2 m
ay—1 ar—1

=U | U] gyl i — 1 Gy, .. a),

1

where y;_1v(1,...,r i —1,ar492,...,ay) equals zero by A since i —1 € {ay,...,an}. Its

second term is

ap—1 ar—1 i—2 Gpq2—1 am—1
L \[, U \[, \I/\L v \L LU \L z((n—m),(lm)) :v(al,.. ar, -1 a,,«+2,...,am),
1 T r+1 r+2 m
which is clearly non-zero. O
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CHAPTER 6

HOMOMORPHISMS BETWEEN SPECHT
MODULES IN LEVEL TWO OF Z.)

We introduce certain Specht module homomorphisms over %{1\, involving the Specht
modules S((n—m),1m))s S((n=m,1m),2) ad S(g (n—m,1m)). The action of Z) on basis el-
ements of Specht modules, determined in the previous chapter, allows us to to estab-
lish these homomorphisms. We will see that these Specht module homomorphisms are
instrumental in finding the composition factors of Specht modules labelled by hook
bipartitions, for they arise as quotient modules of the images and kernels of these ho-

momorphisms.

6.1 SPECHT MODULES LABELLED BY HOOK PARTITIONS
IN LEVEL TWO OF %)

We consider Specht modules labelled by bipartitions A € 22, where one component of
A is a hook partition (n —m,1™) and the other component is the empty partition &,
and define their homogeneous basis elements, similarly to Section 3.1 and Section 5.1.
For a standard ((n — m,1™),@)-tableau S, we write b; := S(1,4,1) for all i €
{2,...,m+1}. Then S is determined by bs, ..., by +1. Analogously to the homogeneous

elements of ((n —m), (1™)), we write

bg—1  bg—1 bpy1—1
vs=V | V| ..U | Zp-mim)e)
2 3 m—+1
Then vg is completely determined by b, ..., by41, written v(bg, ..., bn11) := vg.
Whereas, for T € Std(((@, (n — m,1™))), we write ¢; = T(4,1,2) for all i €
{2,...,m+1}. Then T is determined by ca, ..., ¢pn+1, and we can write

co—1 c3—1 Cm41-1

vp =V | U] ..U | Zgmomim)-

2 3 m+41
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Hence, vy is completely determined by ca, . .., ¢ni1, and we write v(ca, ..., ¢pmy1) 1= 7.
By Section 1.3.1.2, we found the Garnir relations for S, 1m),2), and hence, we

also know the Garnir relations for Sig (;,—m,1m))-

Remark 6.1. S, 1m),2) is generated by z((n—m1m),z) subject only to the defining

relations
o e()2((n-m1m).2) = i m1m) 0 i%((n-m,1m),2)
O YrZ((n—m,1m),z) = 0 for allm € {1,...,n};
O UrZ((nemam)z)y =0 for allr € {1,... . myu{m+2,...,n—1};
O Y1 mt12(n=mam),z) = 0.
Similarly, S(g (n—m,1m)) s generated by 2(z (n—m,1m)) subject only to the last three defin-

ing relations that z((,_m,1m)z) satisfies together with the relation e(i)z(g (n—m,1m)) =

(5i(2,(n7m,1m)) A%(2,(n—m,1m))-

6.2 SPECHT MODULE HOMOMORPHISMS

For A\, € 972

n’

we consider Specht module ,@Q-homomorphisms H:S\,— 5, Itwil
become apparent that, for all T' € Std()\), the homomorphism H maps vy € Z2 to either
0 or a standard basis element vg, for S € Std(p). It is obvious that we will then have
i = ig when H is a non-trivial %{}—homomorphism. In fact, we arrived at the following
homomorphisms by first observing the residue sequences of standard A-tableaux for
A€ {((n=m),(1™)), ((n=m—1), A1), ((n—m,1™),2), (2, (n—m+1,1""1)), ((n—
m— 1,1t @), ((n —m — 1,1, @), (@, (n — m,1™)), (n — m + 1,1m 1), @)},

Proposition 6.2. 1. If n = ke — k1 +1 (mod e) and 0 < m < n—1, then there

exists the following non-zero homomorphism of Specht modules

Ym + S((n=m),(1m)) = S((n—m—1),(1m+1))

Z((n—m),(1m)) — U(l, o, MM, ’I’L)

2. If ko = k1 — 1 (mod e), then there exist the following two non-zero homomor-
phisms of Specht modules.
(a) Forl<m<n-—1,

Xm * S((n—m,1m),2) = S((n-m),(1m))

Z((n—m,1m),@) v(2,3,...,m+1).
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(b) For1<m <mn,

Tm * S((n—m),(1m)) = S(@,(n—m+1,1m-1))

Z((n—m),(1m)) "7 Z(@,(n—m+1,1m1))-

3. If ko =K1 —1 (mod e) and n = ky — k1 + 1 (mod e), then there exist the follow-

ing three non-zero homomorphisms of Specht modules.

(a) For0 <m<n—2,

Am 2 S((nem,1m),2) = O((n—m—1,1m+1),2)

Z((n—m,1m),@) F v(l,...,m+1,n).
(b) For0<m < n—2,

B+ S(@,(n—m,1m)) = S(@,(n—m—1,1m+1))

2(@,(n—m,1m)) — ’U(l, e, M+ 1, n)
(¢) For1<m<n-—1,

Pm : S((n—m+1,1m=1),) = S((n—m),(1m))

Z(n_m_;'_l’lmfl) — 0(27 3, ey m, n)
Proof. Residues are taken modulo e throughout.

n—1
L. Firstly, let m < n —1. We see that s | T{(—m—1),(1m+1)) is the non-zero ((n —

m+1
m — 1), (1™*1))-tableau
n—1
s b Tnomy,amy) = | m+1 [ m42] - n—1|
m—+1
1
2
n

n—1
Hence ¥ | 2((n—pm—1),am+1)) # 0.

m—+1

Recall the presentation of S(,_y,),1m)) as given in Section 5.2. We show that

n—1
U | Z((n—m—1),1m+1)) satisfies the defining relations that z(;,_m),1m)) satisfies.
m—+1

1
Entries 1,2, ..., n—1lie in the same nodes in T{(;,_),1m)) and s | T((n_m_1),(1m+1))-
m—+1

Now n lies in node (1,1,n—m) in T{(,—m),1m)), Whereas n lies in node (2, m+1,1)
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n—1
ins | T((n_m_l)’(lm#»l)). Since
m-+1

res(l,1,n—m)=rk1+n—m—1=kry —m=res(2,m+1,1),

n—1
Ti(n—m),1m)) and s | T((y_m—1),(1m+1)) share the same e-residue sequence, say i,
m+1

and thus e(i)z((n—m—l),(lthl)) = Z((n_m_1)7(1m+1)).

n—1 n—1
It is clear that y;¥ | z(n_m—1)m+1y) = 0 for all i € {1,...,m} and ;¥ |
m+1 m—+1

Z((n—m—1),1m+1)) = 0 for all ¢ € {1, e, M — 1}.

(a) Let i € {m+1,...,n—1}. Then

n—1 n—1 2
(g il Z(nem—-1)am+1)y = VL 4V | 2((nom_1),1m+1)),
m+

i+1 m+1

which clearly equals zero by part 3 of Lemma 5.3 if i Z 1,2+ ko — K1
(mod e). So suppose that i = 1+ kg2 — k1 (mod e). Then i < n—3, so

we have
n—1 i—1
Ul yithi® L Z(nem—1),1m+1))
i+1 m+1

n—1 i—1
=V | (Wiyir1 — DV L 2((nom-1)1m+1))

i+l m+1

n—1 1—1 n—1 1—1
=V | YiyinV L Z(em-1)m+ty) =V L WL Z(omo1),1m+1))

i1 m+1 i+l mA1
n—1 1—1 n—1 7—1

=Vl UYL yitr1Z(n-m-nam+y) =¥ L UL Ui 12((nomo1),1m+1))
i1 m-1 i+2  mo1

=0.

Now suppose that i = 2 + k3 — k1 (mod e). Then

n—1 i—1 n—1 n—1 i—1 n—1
Ul gy UL Ul Z(nemen)m+ty = VL Yiyir1 U L UL 2(nomo1),1m+1))

it+1 m+1 4l i+l m+1 41

n—1 i—1 n—1
=Vl V] UL yit12((nam—1),1m+1))

i+1 m+1 i+1

=0.

Finally,

n—1
Yn¥ b Z(nem-1),1m+1)) = Ypv(L,...,m,n),
m+1
which is zero by part 1 of Lemma 5.3 since n =1+ k2 — k1 (mod e).

(b) Let i € {m+1,...,n— 2}. Firstly, suppose that ¢ # k2 — k1 (mod e). Then

n—1 n—1 i—1
ViV | Z(nem—1)m+1y) = ¥ ¢2 Vi1V L Z(nem—1),1m+1))
i+ m+1

m—+1
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n—1 i—1
=V | Yin1itin1¥ L Z(nom-1),1m+1))

i+2 m+1
n—1

=V | Yit12((nom—1),1m+1))
m—+1

=0.

Now suppose that i = ke — k1 (mod e). Then

n—1
iV L Z(nem—1),1m+1))

m—+1

n—1 i—1
=V ] Yir1hi® L Z(n—m—1),1m+1))
i+2 m+1

n—1

i—1
=V | Wir1¥ihisn — DV L Z(nom—1),1m+1))

i+2 m—+1

n—1 n—1 i—1
=V | Yir1Z(n-m-1)1m+1)) =¥ L UL YipoZ((nom—1),1m+1))

m—+1 1+3 m—+1

=0.
Finally,

n—1 n—2
Un1¥ L Z(neme1)am1)) = Va1V L Z(neme1),1imiy)

m—+1 m—+1
n—2

= Wn-1—y)¥ | Z((n—m—1),1m+1))-

m—+1

The second term of this expression is clearly zero, and the first term is zero

by part 3 of Lemma 5.3 since n — 1 = kg — k1 (mod e).

Now let m = n—1. Clearly, z((,_p—1),(1m+1)) is non-zero. We see that T((,,_pm),(1m))

and T{(,,—m—1),(1m+1)) share the same e-residue sequence since
res(1,1,1) = k1 = ko + 1 —n =res(2,n, 1).

The remaining relations are trivial.

2. (a) Weshow that ¥1 ... Ym2((n_m),1m)) satisfies the defining relations that z((,_pm,1m) ¢)

satisfies in Section 6.1. Observe that we have the following standard tableaux

m

S Tnemy.amy =|_ 1 [m42] = [ 0|

m—+1
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and
Tn-mamyey =| 1 |[mt2] - o
2
3
m+1
Hence \IJWT1 Z((n—m),(1m)) 7# 0. Entries 1 and m +2,...,n lie in the same nodes
1

in ST'F T((n—m),(lm)) and T((n_m71m)’g). For 2 < j < m+1, we see that j
1

lies in node (5 — 1,1,2) in sT’F T((n—m),(1m)), Whereas j lies in node (j,1,1) in
1

T((nfm,lm),g)- We have
res(j —1,1,2) = hp +2 —i=r1 + 1 —i=res(j,1,1),

that is, sTTn T((n—m),(1m)) and T{(,—m,1m) ) share the same e-residue sequence,
1

say i, and hence e(i)\If%l Z((n—m),(1m)) = \Il%l Z((n—m),(1m)), as Tequired.
1

1

i. Firstly, by part two of Lemma 5.3, we have

Y11 - ~wmz((n—m),(1m)) = ylv(27 co,m+ ]') =0.

For allie {2,...,m+ 1},

Yi (V1 - VmZ((nem),(1m))) =V1 - - - Yi—2Yii1i - - . YmZ((n—m),(1m))
=1 ...¢i_2yﬂ)(1,...,i—2,i,i+ 1,....m+ 1)
=0

since y;v(1,...,4 — 24,0+ 1,...,m + 1) equals zero by parts one and
three of Lemma 5.3 if i # 2+ k2 — k1 (mod e). Now suppose that i =
2 + k2 — k1 (mod e). Then

Yi (V1 - Pm((n=m),(1m)))
= Y1 Yic2yiim1Yi - YmZ((n—m),(1m))
= 1. Pia(Vic1¥i-1 + Db - Pm2(nem),(1m))
= Y1 Pi2hi1Yi—1Yi - - PmZ(n—m),(1m))
+ 1. Yo Y (nem),(1m))
= Y1 Vi 2i1Vi - VmYi-12((n—m),(1m))
+ 1. imsi e Ymi22(nem),(1m))
=0.
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Clearly, for alli € {m+2,...,n}, y; (1/)1 e me((n,m),(lm))) =0.

ii. Observe

V2 PmZ((nem),(1m))

= (¥2 — y1)¥2 - - VmZ((n—m),(1m))

= Y22 PmZ((nm),(1m)) = Y1V2 - PmZ((n—m),(1m))
=y2v(3,...,m+1) = V2. . VnY12((n—m),(1m))

=0,

since yov(3,...,m + 1) equals zero by part three of Lemma 5.3.
For alli € {2,...,m}, we have

Vi (V1 -+ YmZ((nm),(1m)))
= Y1 i 2ithio1 - UmZ(nem),(1m))
:1/)1...wi_2¢iv(1,...,i—2,i,i+ 1,...,m—1—1)

since Yv(1,...,1 — 2,4,i + 1,...,m + 1) equals zero by part one of
Lemma 5.1 if i # 2 4+ k3 — k1 (mod e). So suppose that i = 2 + ko — K1
(mod e). Then

Vi (V1 Vm2((n—m),(1m)))
= Y1 Yicebivi1itigr - DmZ((n—m),(1m))
= 1. Pica(Yi1Pidio1 + DYig1 - YUmz((nem),(1m))
=1 .. icaic1iic1igt - UmZ(nem),(1m))
+ 1 iVt - UmZ((n—m),(1m))
= Y1 Yi2hi1Viit - Ymic12((n—m),(1m))
+ 1. YimsViv1 - Ymio22((nem),(1m))
=0.

Foralli € {m+2,...,n—1}, it is trivial that v (1/11 . wmz((n,m)v(lm))) =
0.

iii. By part two of Lemma 5.1,

m+1

2
V12 Vgt (V1 Pz (nem),(1m)) = 1/11‘1’% UL 2, (1))

m

:wlv(3,...,m—|—2)
=0.

e know from Remark 6.1 that z _ m—1yy satisfies the second an
b) We k fi R k h (@,(n—m+1,1 ) isfi h d and
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third defining relations that z((,_,) 1m)) satisfies, given in Section 5.2. Thus,
one need only check that e(i((n—m),(1m))) 2(@,(n—m+1,1m-1)) = 2(@,(n—m+1,1m-1));
that is, T((n—m),(1m)) and T(g (n—m+1,1m-1)) share the same e-residue sequence.

Observe that we have the following non-zero tableaux

and

Tomomiiam-1yy=| 1 |[mt1] | n |

m

Entries 1,...,m lie in the same nodes in T((,m),(1m)) and T{g (n—m+1,1m-1))-
For 1 < j < n—m, m+ j lies in node (1,7,1) in T{(,—_pm),1m)), Whereas
m + j lies in node (1, 7,2) in T(g (n—m+1,1m-1)). We see that T((,,_p),1m)) and
T(3,(n—m+1,1m-1)) share the same e-residue sequence, say i, since res(1,j,1) =
k1+j—1= ke +j = res(l,j + 1,2), and hence e(i)2(g (n_mi1,1m-1)) =

2(3,(n—m+1,1m—1))-

n—1
We see that s | T((n_m—1,1m+1)g) is the standard ((n —m — 1, 1"+ @)-

m—+2
tableau
n—1
S J, T((n_m_171m+1)7@) = 1 m—+2 ‘ """ ‘n -1 ‘
m—+2
m—+1
n

n—1
Hence ¥ \L Z((n—m—1,1m+1),®) 7é 0.

m—+2

n—1

We show that W | z(n_m_1,1m+1)g) satisfies the defining relations that
m+2

Z((n—m,1m),) Satisfies in Section 6.1.

Entries 1,2,...,n — 1 lie in the same nodes in tableaux T{(;,—m,1m) ) and
n—1

s 4 Tin-m—1,1m+1),2)- Now n lies in node (1,n —m,1) in T((y_pm,1m)0),
m—+2
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n—1
whereas n lies in node (m +2,1,1) in s | T{(p_pm—_1,1m+1),). We have
m+2

res(l,n—m,1)=rk1+n—m—-1=ke—m=krk—m—1=res(m+2,1,1).

So Ti(n—m,1m),z) and s | T((n_m—1,1m+1) ) share the same e-residue se-
m+2
n—1 n—1
quence, say i, and hence e()¥ | 2((n—m—1,1m+1)0) = ¥V I Z(n—m—-1,1m+1),2)
m—+2 m—+2
as required.

i. Clearly, y; <\If i} Z((n_m_1’1m+1)’g)> =0forallie{1,...,m}.

m—+2

Let m+2<i<n-—1. Then

n—1 n—1 i
Yi <\If \ Z((n—m—1,1m+1),@)> =V vVl Z(nem-11m+1)0),

m+2 1+1 m—+2

which equals zero by Lemma 5.3 if i Z 1 + k2 — k1 (mod e). So suppose
that i = 14 k2 — k1 (mod €). Then

n—1
Yi (‘1’ \: Z((n—m—1,1m+1),z)>

m—+2

n—1 i—1
=Vl yithi¥ | Z(n—m—1,1m+1)2)

i+1 m+2
n—1 i—1

=V | (Wyit1 =DV L 2((nom—1,1m+1),0)
i+1 m+2

n—1 i—1 n—1 i—1
=v i yi+1‘1’ i | A(n=m—1,1m1),2) ~ Ul Ul Z(nm-1,1m+1)0)

i+l m+42

— v i v i Yir12((n—m—1,1m+1) z) — v i v i 1/%+1Z( (n—m—1,1m+1) )

(3 m—+2 +2

=0.

n—1

Further, yn¥ | 2Z((n—m—1,1m+1),2) = Yn¥(1,...,m + 1,n), which equals
m—+2

zero by Lemma 5.3 part one.

ii. Clearly, v <\I/ b 2((nem—1,1m+1), @)) =0forallie{l,...,m}.
Let m+2<z<n—2 Then

n—1
(45 (‘I’ \ Z((nm1,1m+1),z)>

m—+2

n—1 i—1
=V | Yihi1hi¥ | 2((n-m—1,1m+1),0)-

i+2 m+2

This expression equals

n—1 i—1
Ul Yis1iin1¥ b 2(nom—1,1m+1),2)

42 m+2
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if i kg — k1 (mod e), and equals

n—1

i—1
Ul (iritier — DV L 2(neme1,1m+1) )

i42 m+2

if i = k9 — k1 (mod e), which is zero in both cases.
Further,

9 n—2
V1V L Z(nem—1,1m+1),0)
m+2

n—

2
= (yn*1 - yn)\IJ ! Z((n—m—1,1m+1) &)

m—+2
n—2 n—2

=Yn1¥ | Z(n-m-1,1m+1)0) —Un¥ L Z(nom—1,1m+1)0)
m+2 m+2

n—2
= ynflv(l, cee,m+1n— 1) - | YnZ((n—m—1,1m+1),2)

m+2

=0

by part three of Lemma 5.3.

(b) We similarly check that the homomorphism [, holds as «,, does in the

previous part. In particular, we see that n lies in node (1,n — m,2) in
n—1

T(3,(n—m,1m)), Whereas n lies in node (m +2,1,2) in s | Tz (n_m—1,1m+1))-
m—+2

n—1

Thus, Tig (n—m,1m)) and s | T(g (n—m—1,1m+1)) share the same e-residue se-
m—+2

quence by observing that

res(l,m —m,2) =ko+n—m—1=ke—m—1=res(m+2,1,2).

n—1
(c) We show that 1192 ... 1P | 2((n—m),1m)) satisfies the defining relations
that z((p—m41,1m-1),2) satisfies in Section 6.1,

Observe that we have the non-zero tableaux

m—1 n-—1

1 54 Tgnom,0m) =|

el
s
=l
+_
o

3
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and
Tn—mt11m-1)2)=| 1 |m+l ‘ m—+2 ‘ ...... ‘ n ‘
2
3
m
m—1 n-—1
Entries 1 and m+1,...,n —1 lie in the same node in s T s | T{(n_m),1m))
1 m

and T((n-m+1,1m-1),0)- For 2<j <m,
m—1 n—1

s T s Tin-m),amni —1,1,2) = =T (nems11m-1),0)(J; 1, 1)

m—1
where res(j — 1,1,2) = ke —j+2 = k1 +1—7 = res(j,1,1). Now s 7
1
n—1

s b Tin-m),amy(m,1,2) = n = T(_mi1,1m-1),z)(1,n —m + 1,1) where

m—1 —1

res(m,1,2) = ke +1—m=k1+n—m=res(l,n—m+1,1). Sos T s
1 m

T(n—m),(m)) and T{(p—m41,1m-1),z) share the same e-residue sequence, say i,

m—1 n—1 m—1 —1
and hence 6(1)\11 T 14 J, T((nfm),(lm)) =U T v \L T((nfm),(lm))‘
1 m 1 m

i. Firstly, by part two of Lemma 5.3, we have

n—1
Y1 <¢1 co UL Z((n—m),(l”))) = y10(2, RS n) = 0.

For alli € {2,...,m}, we have

n—1
Yi <¢1 ce wm—l\Il \L Z((nm),(lm)))

n—1
= Y1 Yicoyibic1ti - Ym1V L Z(nem),am))
=Y. Yi_oyv(l, ... i — 2,00+ 1,...,m,n)

=0

since y;v(1,...,i—2,1,i+1,...,m,n) equals zero by parts one and three of
Lemma 5.3 if i Z 2 + ko — k1 (mod e). So suppose that i = 2 + ko — K1
(mod e). Then

n—1
Yi (1/}1 N L Z((n—m),(lm))>

m

n—1
=1 Yi2yiic1Vi o Ym—1V L Z((nem),(1m))

n—1
=1 ia(ic1yior + DYi 1V L 2(mm),(1m))
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n—1
=1 Yicoic1Yi-1Vi - Pm—1Y L 2((n—m),(1m))
n—1
+ 1ot U1 L Z(nem),(1m)
n—1
=Y Y1V L Yie12(nem), 1m))

n—1
+ 1. gt U1 ) Yi2z((n—m),(1m))

=0.

Foralli e {m+1,...,n— 1}, we have

n—1
Yi <1/J1 NN T ) Z((nm),(m)))

n—1 i
=1 Pm1¥ L UiV Z((nm),(1m))

i+1 m

n—1
:¢1---¢m71‘1’$ yw(l,,m—l,z—l—l)

i+1

=0

since y;v(1, ..., m—1,i+1) equals zero by parts two and three of Lemma 5.3
if i 21+ k3 — K1 (mod e). Now suppose that i = 1+ ko — k1 (mod e).
Then

n—1
Yi <w1 R Z«nm),um)))

n—1 i—1
=P1 Um1P L YtV L Z((nem),(1m))

1+1

n—1 i—1
=1 PmaW L (i — DV L 2((mm),1m))

i+1

n—1 i—1
=1 U1V L Viyir1 VL 2(n—m),am))

i+1

n—1 i—1
— Y1 PV L UL Z(nom),(1m))

i+1 m

n—1 i—1
=Y. Ym ¥ il iV | Yit12((n—m),(1m))
i+ m

RN

142

-1
L Yit12((n—m),(1m))

=0.

n—1
Finally, vy, <1/11 R /SR > equals zero by part one of Lemma 5.3.

ii. Firstly, we have

n—1
Via . m1W L Z((nm),(1m))
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n—1
= W2 —y)¥2. Ym1¥ L 2((n—m),1m))
n—1 n—1
=yot2. . Vm—1Y | 2Z(n—m),1m) —Y1¥2 - - Um—1Y | Z((n—m),am))

n—1
=yv(1,3,...,m,n) — Y2 . Yma1V | Y12((n—m),1m))

=0

since yov(1,3,...,m,n) equals zero by part three of Lemma 5.3.

n—1
For all 7 € {2, oo, M — 1}, P, <1/}1’¢2 R S ) Z((n—m),(lm))> =0 if
i #£ 2+ ko — k1 (mod e). So suppose i =2+ k3 — K1 (mod e). Then

i (ﬂll TN ) Z((n—m),(lm)))
=1 Rt 1T L 2. (1))

n—1
= V1. Yic1 (Ui — Yi)it1 - V1P L 2((amm),amy)

:¢1...1/}i_1yi+1v(1,...,i,i+2,...,m,n)
— 1. iyv(l, i —1di+ 2,000 ,myn)
=0

since y;+1v(1,...,4,i+2,...,m,n) equals zero by part three of Lemma 5.3
and y;v(1,...,i—1,4,i4+2,...,m,n) equals zero by part two of Lemma 5.3.
Let i € {m+1,...,n—2}. Then

n—1
(0 (wl R Z«n—m),(lm)))

=1 WL (L, m— 1,0+ 2)

i+2

=0

since ¥;v(1,...,m — 1,i + 2) equals zero by part two of Lemma 5.1 if

i # ko — k1 (mod e). Instead, suppose that ¢ = k2 — k1 (mod e). Then

n—1
(05 <¢1 R (3 Z((n—m),(l’")))

n—1 i—1
=1 PV L (Vb1 )V L 2=, (1m))

42

=1 P W L (Wit — D)WL Z((n—m),(1m))

142

n—1 1—1
=1 YV L i ihi 1V L Z((nm),(1m))

42
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n—1 i—1
=1 UL UL 2(aem),(1m))

1+2 m

n—1 i—1
=1 Y1V L Vi iV L Yit12((nem),(1m))

142

n—1 i—1
=1 bV L UL iaz((nom),(1m))

i+3 m

=0.

Finally,

n—1
Yn—1 (wl R Z(<n—m>,<1m>>)
n—2
=1... Tﬁm—l%%fl‘l’ 1 Z((n—m),(1m))
n—2
=1 V1 (Un—1 — Y)Y L 2((n—m),(1m))

n—2 n—2
=1 Yma1yn—1V L Z(nem),am)) — V1 U1 L Z(nem),(1m))

m

n—2
= @bl PN ¢m71yn711}(17 e, — 1, n — 1) — wl RPN wm,1Q \l, ynz((n—m),(lm))

since yp—1v(1,...,m —1,n — 1) equals zero by part three of Lemma 5.3.

iili. Observe
n—1
P1ipa .. Py (1/11 co P Z((nm),(lm))>

2 m n—1
=10l WL VL 2(nem),am))
1 m—1 m

=11v(3,...,m+1,n)

by part two of Lemma 5.1.
O

Let v(a1,...,am) € S(n-m),am) and v(ba,...,bmy1) € S(n-m1m)z), Where 1 <
ap < - <apm<nandl<by <- <bpyr <n. Then v(a,...,an) corresponds to
the standard ((n—m), (1"™))-tableau with ay, ..., ay, lying in its leg, and v(ba, . .., bymt1)
corresponds to the standard ((n — m, 1™), @)-tableau with bg, ..., by41 lying in its leg.

Informally, we can think of the action of 7, on v(ai,...,a) by its corresponding

action on the standard ((n —m), (1™))-tableau determined by a1, ..., am,, which moves
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its hand node containing entry n to the addable node at the end of its leg as follows

Homomorphisms «,,, and (3, act similarly on standard ((n —m,1™), @)- and (&, (n —

m, 1))-tableaux, respectively.

The corresponding action of x,, on v(ba,...,bn+1) essentially splits its first row of

entries and its remaining rows of entries into two separate components as follows

N R
bo
: by
bm+1 :
bm+1
Finally, the corresponding action of ¢, acts on v(ba,...,bn+1) both by the corre-

sponding action of 7, and by the corresponding action of x,, as follows

(T o el (L] [ ]
bo
; by
bm+1 :
bm+1

We determine when the aforementioned Specht module homomorphisms act non-
trivially.

Lemma 6.3. Let S € Std((n—m), (1™)), T € Std((n —m,1™),2) and U € Std(&, (n—
m,1™)), where S, T and U are determined by {a1,...,an}, {b2,...,bym+1} and{cs,
respectively.

ey

1. Let n = Ky — k1 + 1 (mod e). Then vym(vs) # 0 if only if an, < n. Moreover, if
am < n, then

'ym(vg) = U(al, ey Qmy, n) S S((n_m_l)’(1m+l)).
2. Let kg = k1 — 1 (mod e).

(a) Then
0 # Xm(vr) = v(b2, - -, bint1) € S((n—m),1m))-
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(b) Tm(vr) # 0 if only if ay = 1. Moreover, if a; = 1, then
Tm(vT) = U(l, ag, ... ,am) € S(®7(n_m+171m71)).

3. Letn = kg — k1 + 1 (mod e) and k2 = k1 — 1 (mod e).

(a) cm(vr) # 0 if only if by+1 < n. Moreover, if by+1 < n, then
am(vr) =v(be, ..., bymy1,n) € S((n-m—1,1m+1),2)-

(b) Bm(vv) # 0 if only if cyy1 < m. Moreover, if ¢mi1 < n, then
Bm(vr) = v(ca, ..oy mt1,1) € S (nom—1,1m+1))-

(¢c) dm+1(vr) # 0 if only if byy1 < n. Moreover, if by+1 < n, then

Pm+1(vr) = v(b2, ..., bmt1,1) € S((nm—1),am+1))-
a;—1 am—1 bg—1 byt1—1
Proof. We write ¢,g =V | ... ¥ | and ¢y, =¥ | ... ¥ |
1 m 2 m—+1

1. Let a,, < n. Then

1

Y (YwsZ((n-m),(1m))) = Yws ¥ 4 Z(n-m—1),am+1)) = v(a1, ..., am,n) #0.

Now, supposing that a,, = n, we have

a;—1 ap—1—1 n—1 n—1
Vi (Yws 2((n-m),(1m))) = ¥ % v il v w il Z((n—m—1),(1m+1))
m— m m-+
a;—1 am—1—1

=v | ...¥ | ¢Y_v(l,....om—1,n—1,n)
m—1

1

since ¥,—1v(1,...,m — 1,n — 1,n) equals zero by the first part of Lemma 5.1.

2. (a) We have

Xim (YwrZ(n-m,1m),2)) = Yur U1 Z(-m),(1m)

by—1 bg—1 bm41—1
=V ] U] ... | 1. Y (aem),1m))
2 3 m+1
by—1 bg—1 bp41—1
=y \IL v \QL R/ \L Z((n—m),(lm))
—’U(bQ, ..,bm+1)

143



6.2. SPECHT MODULE HOMOMORPHISMS CHAPTER 6

(b) We have
Tm (wwsz((n—m),(lm») = \Ija}_l "-\Pa":{l Z(@,(n—m+1,1m—1))
=v(a1,...,am) € S(gz,(n—m+1,1m-1)),
which is clearly non-zero if a; = 1, that is, S(1,1,2) = 1. However, if

ay # 1, then the corresponding tableau wsT(g (n—m41,1m-1y) is not standard.
Hence 7., (wwsz((n_m)7(1m))) = 0 since Yuwgz((n—m),1m)) 1s not a standard

basis element of S (n—m+1,1m-1))-

3. (a) Let byy1 < n. Then, for m <n —1,

n—1
Qm (qzbwTZ((n—m,l’”),@)) = TZJMT‘IJ i Z((n—m—l,l"”'l),@) = U(bz, ce ,bm+1, n) 75 0.

m—+42

Instead, suppose that b,, 1 = n. Then

bo—1 bm—1 n—1 n—1
Om (@Z)wTZ((nfm,lm),Z)) =V i R U (A Z((n—m—1,1m+1y)

m m—+42

by—1 b —1
=0 UL Yp10(ba,. .. b —1,n)
2 m
=0,
as Yp—10(ba,...,bym,n —1,n) is zero by part one of Lemma 5.1.

(b) Similar to the previous part.

(¢) Suppose that by+1 < n. If m <n —1, then

bmt1 (VwrZ(n-m,1m),2))

m n—1
= 1/JwT‘1’T U L Z(nem—1),(1m+1))

m—+1
bp—1 b3z—1 bmy1-1 n—1
=V ] U] ... | 1o YV L 2(nme1),amt1))
2 3 m+1 m+1
bg—1 bz—1 b+1—1  n—1
=V \L v \L R/ \L \\ J/ Z((n,mfl),(l'ﬂrkl))
1 2 m m—+41
= v(b2) L) bm-i—la n)
£0.

If m =n —1, then

by—1 bg—1 bp—1—1
Pn1 (Ywrz(2,171),2) =¥ i v i LU il Y1tha . Pn—22((1),(1n1))
bo—1  bg—1 bp—1-1
= {, v i, .U Ti2 Z((l),(lnfl))
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= ’U(bg, ey bnfl)
#0.

Instead, suppose that b, 11 = n. Then

Pmt1 (VwrZ(nem,1m),2))

bo—1 bz—1 bm—1 n—1 n—1
=V \L v J/ U \l, v J/ \J J/ Z((n—m—l),(lm"’l))
m—1 m m—+1

1 2
bo—1 bg—1 by —1

—W L U U ev(l,. . m— 1,0 —1,n)

1 2 m—1

as Yp—1v(1,...,m —1,n — 1,n) equals zero by part one of Lemma 5.1.

6.3 EXACT SEQUENCES OF SPECHT MODULES

The following result introduces a useful bijection between sets of basis elements of Specht

modules, which is a restriction of the Specht module homomorphisms ~,, given above.
Lemma 6.4. Let n = ko — k1 + 1 (mod e). Define
M :={vp | T € Std((n—m),(1™)),T(1,n —m,1) =n}
and
N:={vr | T €Std((n—m—1),1™")),T(m+1,1,2) = n}.
Then ~y,, restricts to a bijection from M to N.

Proof. Let v, € 2

", not including 1,1, for a reduced expression w € &,,. It follows,

by the definition of the homomorphism for 7, in Proposition 6.2, that
n—1
m (VZ(nem), 7)) = V¥ L 2(nmm-),amet)-

That is, under 7,, we remove node (1,n—m, 1) containing entry n from 7" and move it to
node (m+1,1,2) in S, where vp € M, vg € N. By performing the opposite action, the

inverse map between M and N is well defined, and we arrive back at T', as expected. [J

We now determine standard basis elements of the kernels and images of the Specht

modules homomorphisms given in Proposition 6.2.
Lemma 6.5. 1. Ifn=ky— k1 + 1 (mod e), then

(a) im(vm) =span{vr | T € Std ((n —m —1),(1™*)), T(m+1,1,2) =n};
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(b) and ker(yy,) =span{vr | T € Std ((n —m), (1™)),T(m,1,2) =n}.
2. If ke = k1 — 1 (mod e), then
(a) i im(xm) =span{vr | T € Std ((n —m),(1™)),T(1,1,1) =1};
it. ker(xm) =0;
(b) i im(7y) = S(@,(n—m-i—l,lm*l));
ii. ker(ry,) =span{vy | T € Std((n —m),(1™)),T(1,1,1) = 1}.
3. If ke =K1 — 1 (mod e) and n = ky — k1 + 1 (mod e), then
(a) im(cw,) = span {vp | T € Std((n —m — 1,1™%1), @), T(m +2,1,1) = n};
(b) im(pBy,) = span {UT | T € Std(@, (n —m — 1,1 ) T(m+2,1,2) = n};
(c)
span{vy | T € Std ((n — m), (1™)),
im(ép,) = T(1,1,1) =1,T(m,1,2) = n} ifm<n-—1;
span{or | T € Std ((1), (1"™1)) ,7(1,1,1) =1} ifm=n—1.
Proof. The images of the Specht module homomorphisms v, Xm, ®m, Bm and ¢, are
immediate from Lemma 6.3, where we determined where every standard basis element

maps to under each of these homomorphisms. In particular, recall that the standard

generators are mapped under these Specht module homomorphisms as follows:
S Ym (Z((n_m)’(lm))) = U(l, cee, M, n);
¢ Xm (Z((n—m,lm),ﬁ)) = U(27 37 s, m A+ 1)7

o Tin (%((n—m),(1m))) = Z(@,(n—m+1,1m-1));

O (Z((n,m71m)7@)) v(l,...,m—l— 1,n);
o Bm (Z(g’(n,m’l‘ln))) =v(l,...,m+1,n)
<& d)m (Z((n,m+171m—1))) = ’0(2, 3, e,y ’I’L)

We subsequently know which basis vectors are killed under these homomorphisms,

thus determining the spanning sets of the respective kernels.
¢ The kernel of +,, is obvious since we know the image of ,,.
o Checking dimensions, dim (im(x:m)) = dim (S((,—m,1m) 2 ), and thus ker(x,) = 0.

¢ By comparing the residue sequences of a standard basis vector vr of S((n—m),1m))
and 7, (vr), we know that 7,,(vy) # 0 if 1 lies in the leg of T', and hence vy €
ker(7,,) if 1 lies in the arm of 7.

146



6.3. EXACT SEQUENCES OF SPECHT MODULES CHAPTER 6

An immediate consequence is the following result, which aids us in finding the com-

position factors of Specht modules labelled by hook bipartitions.

Lemma 6.6. 1. If n = kg — k1 + 1 (mod e), then we have the following exact se-

quence

Y Y it
0= S(n).2) — S(n—1),1)) —>S((n-2),12)) —* "

Tn—2 Tn—1
o S(),an-1) S(,any = 0.

2. If ke = k1 — 1 (mod e), then the following sequence is exact

Xm

0— S((n—m,l’"),@) — S((n—m),(lm)) T—m) S(@7(n,m+171m—1)) — 0.

3. Ifn =k — k1 + 1 (mod e) and ko = k1 — 1 (mod e), then the following sequences
are exact:
(a)

a1

0— S((n),g) ﬂ) S((nflyl)yg) —)S((n_2’12)7@) % L

Qn—3 Qn—2

S((271n72)’g) e S((ln)@) — 0;

(b)
B B
0 = S(om) 2 S(an-1,1)) > S(a,ns,12)) 2> -+

Br— Br—
s —)3 S(@’(2,1n72)) —)2 S(@7(1n)) — 0.

We show that our exact sequences fit into a commutative diagram under certain
conditions, in particular, we see that ¢,,11 is a composition of two other homomorphisms

given in Proposition 6.2.

Lemma 6.7. If ko = k1 — 1 (mod e) and n =0 (mod e), then
1. Bm—10Tm = Tm+1 © Ym, and
2. Ym © Xm = Xm+1© Qm = Om1.

Proof. To check the above equalities, we show that they are satisfied on the generator
Z((n,m)’(lng)

1. We first observe that

Brm—1 (Tm (z((n,m),(lm)))) = Bm-1 ©0(2,3,...,m)) =v(2,3,...,m,n),

which equals zero if and only if m < n by part (3b) of Lemma 6.3. We now observe
that

Tm41 (%n (Z((n_m)’(lm)))) =Tmt+1 (v(1,...,m,n)) =v(2,3,...,m,n),
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which equals zero if and only if m < n by the first part of Lemma 6.3, as required.

2. We first observe that

Ym (Xm (Z((n—m),(lm)))) = Ym (1)(2, 3,....,m+ 1)) = 1)(2, 3,....,m+ l,n),

which is non-zero if and only if m 4+ 1 < n by the first part of Lemma 6.3. We now
observe that

Xm-+1 (am (Z((n,mylm)’@))) = Xm+1 (v(1,....m+1,n)) =v(2,3,...,m+1,n),

which is non-zero if and only if m +1 < n by the part (3a) of Lemma 6.3. Finally,
we observe that ¢, 1 (Z((n_m,lm)7®)) =v(2,...,m+1,n), which is non-zero if and

only if m + 1 < n by part (3¢) of Lemma 6.3, as required.

This leads us to the following result.

Lemma 6.8. If ko = k1 — 1 (mod e) and n = 0 (mod e), then the following diagram

consists entirely of exact sequences where every square commutes.

0 0
0 —— S(mye) —— S((n)e) ————— 0
¢1
aQ Yo
0 —— S(n-1.1),0) — S((n-1),1)) — S(ey(n)) — 0
a1 92 Y1 Bo
X2

a2 Y2 B£1
Qan—1 Yn—1 Brn—2
0 —— S(@1m-2).0) —— S((2)(1n-2)) —— S(o3,17-3)) — 0
Qp—2 Pn-1 Yn—2 Brn—3
0 —— S(am,0) —— S(a),(1n-1)) — S(o,@,1n-2)) — 0
Yn—1 Bn72
0 ————— Sig,an) —— Sg,an) — 0
0 0

148



149



CHAPTER 7

COMPOSITION SERIES OF S((j,_y,) (1m))

In this chapter, we completely determine the composition factors of Specht modules
labelled by hook bipartitions up to isomorphism with quantum characteristic at least
three, recalling that we are still forgetting the grading on these Specht modules. The
composition series of Specht modules labelled by hook bipartitions split into four dis-
tinct cases, depending whether or not n = k2 — k1 + 1 (mod e) and whether or not
k2 = k1 — 1 (mod e). We will see that the composition factors of S((;,—,) 1m)) arise as
quotients of the images and kernels of the aforementioned homomorphisms in Proposi-
tion 6.2.

7.1 THE ACTION OF %Za ON S((_m) (1m)) 11

We let A = ((n—m), (1)) throughout this section. In order to do determine irreducibil-
ity of %’ﬁ—submodules of Specht modules labelled by hook bipartitions, namely of S},
we now establish results toward this end.

Each basis vector vr of a Specht module labelled by a hook bipartition equals 1,2
for a 1., € #Zp, that depends on a reduced expression of wr € &,. We wish to deter-
mine the non-trivial mappings between these basis vectors by the cyclotomic Khovanov—
Lauda—Rouquier generators 1, ...,%,_1. Appealing to Lemma 5.1 and Lemma 5.3, we
explicitly describe the action of these generators on the basis vectors of Sy, which act

non-trivially only in a small number of cases.

Theorem 7.1. Let 1 <1< n—1,T € Std(\), and for 1 <r <m, set a, :=T(r,1,2).
Then
Y(at, ... am) =0

for every T', except in the following cases.

(i) Suppose that a, =1 for some 1 < r < m, and that either r = m or ay41 > 1 + 2.
Then

WU(al, cee 7am) = v(ala LR arfhl + 1; Ar41, .- - 7am)' (711)
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(ii) Suppose that | = ke — k1 (mod e) and |l <n — 1.

o Suppose ar =1+ 1 and ar+1 =1+ 2 for some 1 < r <
r=1ora—_1 <l—1. Then

n — 1, and that either

Yv(ar, ... am) =v(ar,...,ap—1, 0,0+ 1, ar42, ..., am). (7.1.2)

o Suppose a, = 1+2 for some 1 < r < m, and that eitherr =1 ora,_1 <1 —1.
Then

Y(at, ... am) = —v(a1, ..., Gr_1,l,Qrg1, ..oy Q). (7.1.3)
(11i) Suppose that | =2+ ko — k1 (mod e).

o Suppose a, =1 and a,41 =1+ 1 for some 1 < r < m—1, and that either
r=1ora—_1 <l—2. Then

Yv(ar, ... am) =v(ar,...,ap—1,0 — Ll arg2, ..., am). (7.1.4)

o Suppose a, = 1+1 for some 1 < r < m, and that eitherr =1 ora,_1 <1 — 2.
Then

'l/ﬁ'l)((ll, s 7a’r‘—lal+ 17a7’+17 s 7am) = —’U(al, <o Oy lal - 1aa’r+17 . -7am)-

(7.1.5)

(iv) Suppose that | + k1 — ke # 0,1,2 (mod e), a, =1+ 1 for some 1

<r<m, and
ettherr =1 ora,—1 <1l —1. Then

Yo(ar, ... am) =v(ar, ..., a¢r—1,0,Qrs1, ..., Q). (7.1.6)

Proof. We consider ¢Yyv(ai,...,ar—1,0r,@r41,...,0n), for all a, > 1.

1. We let a, =1 and suppose a,4+1 = I + 2. Then

ay—1 ap_1—1 -1 Qpr41— 1 am—1
Yoo(ar,....am) = L .0 | U] ¥ | T
1 r—1 r r+1 m
aj—1 ap—1-1  p  appq1—1

=0 U | WU | T oz

1 r—1 r r+1 m
= U(ah . 'aarflyl + 17a1“+17 s ,am)v

which satisfies Equation (7.1.1).

2. Suppose a,_1 +1 <1< a, —3. We have

ay—1 11 ar—1 Apr41— 1 am—1
wlv(al,...,a ) QM\I/J, . ‘l’ \L \I/\L v i, R i ZN

r+1 m
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ap—1 ap_1—1  gp—1 I+1  Gpp1—1 am—1
=v] ...¥v | \uwmqw A5
1 r—1 1+2 r41 m
a;—1 ar—_1—-1  aqp-1
=v | ...0 | \I/l¢ Pv(l, r—1,142,ar41,---,am)-
1 r—1 +2

By part two of Lemma 5.1, ¢yv(1,...,r — 1,1 4+ 2,a,41,...,ay) equals zero if

| # ky — k1 (mod e). Suppose instead | = k2 — k1 (mod e). Then Yv(ay,...,an)
becomes
ay—1 - ar—1 -1 am—1
vl v i ‘I’i ¢l¢z+1¢l‘ﬂi\1’ i UL 2y
1 r—1 1+2 r+1 m
a;—1 ap_1-1 ar—1 - apy1—1 am—1
v L 8 Wt 8L L 0T
1 r—1 142 r r4+1 m
ap—1 ap_1—1 ar—1 Qpr41— 1 1+2 apyo—1 am—1
=v | ...¥ | ‘Ifi vl vl vl ---‘I’i Z)
1 r—1 +3 r+1 r+2
ap—1 ap—1—1  q.-1 apy1—1 +3 apq2—1 am—1
-vl ..l v ‘Ifi‘I/ U} SN R A 2
1 r—1 143 T 1+4 r+1 r+2 m
a;—1 ar_1-1  gp—1 apy1-1
=v \l/ . \L v \L v \l/ ¢l+1v( 7r7l+37a7’+27"'7am)
1 r—1 43
a1—1 —1-1  ap-1 — apqq—1
- v \l/ \IJ \L v \L \Il\l/ v \lf ¢l+21}( 7ral+4aa7’+2a"'aam)‘
1 r—1 1+3 r 1+4
By part two of Lemma 5.1, ¢ qv(1,...,r 0 + 3,ar42,...,ay) equals zero since
|l # ko — kK1 — 1 (mod e) and Yy iov(l,...,r 14+ 4,a,49,...,a,) equals zero since

| # ko — k1 —2 (mod e).
3. Let a, =1+ 2 and suppose that a,_; <1 —1.

(i) Suppose | = ka — k1 — 1 (mod e). Firstly, let [ < n — 2. Then

Yo(ay, ..., am)
a;—1 ap—1=1 141 app1-1 am—1
i RIEA A A SRR e
r r+1 m
ap—1 ap_1—1 -1 app1—1 am—1
=v | ...¥ i wzl/nﬂ?ﬂz‘l’i vl L oz
1 r+1 m
ap—1 ap_1-1 — apy1—1 am—1
SR AN mﬂmmH@¢w.L T
1 r41
ap—1 ar—1—1 41 apq1-l apqo—1 am—1
=v| ..v | vV | ¢l+11/1l+2¢l+1‘1’¢ volo.v i 2\
1 r—1 r 1+3 r+1 r+2
a;—1 ap_1—1 I+1 apy1—1 apyo—1 am—1
=v| ...¥ | vV | (¢l+2¢l+1¢l+2*1)‘1’¢ vl P oz
1 r—1 T 1+3 r+1 r+2 m

The first term becomes

a;—1 —1=1 141 arg1-1 apyo-—l 143 apy3—1 am—1
v v "l ‘I’i‘l’ bl Wl L T 2y
1 r—1 r+1 +4 r+2 r+3 m
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ap—1 ap—1—1 41 app1—-1 apyo-—1
=V B NS \II\L A wl—i-QU( >T+17l+47ar+37"'7am)7
1 r—1 r+1 I+4
where ¢y ov(1, ..., 7+1,1+4, ary3, ..., an) equals zero by part two of Lemma 5.1

since | # k2 — k1 — 2 (mod e). If a1 > 1 + 4 then the second term becomes

a;—1 ap—1—1 41 appr—1 l apyo—1 I+4 apy3—1 am—1
S R U S R I A AU R PN
1 r—1 r 1+4 r+1 145 r+2 r+3 m

a;—1 ap_1—1 41 apy1—1 apyo—1
=—0 | ..U | U|U | \1/¢\1/¢
1 r—1 r 1+4 r+1 1+5

'¢l+3v(]—a"'7r+17l+5aa7“+3a"'aam)a

where ¥ 3v(1,...,r+1,14+5,ar43,...,an) equals zero since | # kg — k1 — 3.

Now suppose a,+1 = [ 4+ 3. Then the second term becomes

a;—1 ap—1-1 141 l apq2—1 am—1
S TR AU A A TR
1 r—1 T r+1 r+2
a1—1 ap_1—1 apqo—1 am —1
=-vl ..V i mwm ‘Pi‘l’ Lol oz
1 ™ r+1 r4+2 m

ay—1 ap_1—1

=-U | ..U | Yol or=110L1+1ar42,...,am).
r—1

If e > 3 then Yyv(1,...,7— 1,1, 4+ 1, a,42,an) equals zero by the first part of

Lemma 5.1 since [ = k9 — k1 — 1. So suppose e = 3. Then the second term

becomes
a;—1 -1 apq2—1 am—1
-vl . v i ¢z+1¢ﬂ/n ﬂbz\Ifi vlpw | ...¥ i 2\
1 T r+1 42
ap—1 ap_1-1 - apyo—1 am—1
==V L b RN R A U A
1 7 r+1 r4+2 m
The first term becomes
aj— ap_1—1 am—1
—‘I’i v i Y11 1‘Ifi \I’¢‘If i ---‘I’i 2\
1 r r+1 r+2 m

a;—1 ap_1-1

=-v \L U \l/ ¢l+1¢l—1¢l¢l—1v(17 cee, T — 17l - 1717 Ar42, -+, am)7
r—1

1

where ¢¥;_qv(1,...,7r—=1,1—1,1,a,42,...,an) equals zero by the first part of

Lemma 5.1 since [ # 0 (mod 3). Now the second term becomes

ay—1 —1—1 — -1 arq43—1 am—1
ST 1wl TS A TR SR TR R
1 r— r r+1 1+3 r+2 r+3 m
ap—1 ap_1—-1 -2 (-1 apy2-1
S TR A I T
1 r r+1 1+3
apy3—1 am—1
(¢z+2¢z+1¢l+2—1)‘1/¢ L2 N
r+2 r+3 m
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a;—1 ap_1-1 - - ary2—1 app3z—1 1+3 am—1
=v | ..¥ | ‘Ifi‘Pi‘Ifi Ul eV ‘Ifi Z)
1 r—1 r r+1 r+2 l+4 r+3
ap—1 ap_1—1 —2 - apyo—1 l apy3—1 144 am—1
+v ] v \I’i‘lfi\l’i Ul v | ] .. 0 oz
1 r—1 r r+1 1+4 r+2 I+5 r+3 m
ap—1 ap_1-1 -2 |- ary2—-1 apy3-—1
=0 | ..U ¢ R AR A
1 r r+1 r+2 1+4
cov(l, oo+ 2L+ 4 gy Qi)
ap—1 1-1 -1 app2-l l apy3—1
+\1:¢.\1:¢ viwl v w, v
1 r— r r+1 +4 r+2 45

csv(l, o+ 2L+ 5 Ay e Q).

By part two of Lemma 5.1, ¢y ov(1, ..., 7+ 2,144, ar44,...,an) equals zero
since | # ko — Kk — 2 (mod e) and ¢l+3v( T +2,145, arya, . . ., am) equals
zero since | #Z kg — k1 (mod e).

Secondly, let  =n — 2. Then r = m and a,,_1 < n — 4, so that

wn72v(ala .. ,(Im)

ap—1 am—2—1  apm_1-1

—l/)nz‘l/i- v i v i ‘PLZA

m—

ap—1 am—2—1 am—1-1

=V \L U J, v J/ wn 211)% 1'¢n 2\Ij¢ ZX\
1
a;—1 am—2—1 am—1—1

=y i .U \lr Y \L I,Z)n ld}n 2¢n 1\1le Z\
1
a;—1 2—1 am—1—1

=¥ \I’i ‘Pi ‘I’iibnm

(ii) Suppose | = kg — k1 (mod e). Then

Yv(a, ..., am)
a;—1 —1=1 41 apg1-1 am—1
=0 | . v ¢ U0 | U] 2y
1 T r+1 m
a;—1 ap_1—-1 — apqp1—1 am—1
=v | ...¥ | (wz@blﬂi/}l)‘l’i vl o ...v i 2\
1 r—1 r+1
ap—1 e apy1—1 am—1
S8 VRN A (mwlwlﬂ—l)w LR AN
1 r—1 r+1 m
The first term becomes
ap—1 —1 apyq—1 am—1
v ¢ wmwlwmw L
1 r+1 m

ayp—1 ap_1—1

=V \L LU J, 1/)[+11/Jl¢l+11)(1, ey T — 1,l,a7~+1, .o .,am),
r—1
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where ¥ qv(1,...,r—=1,1,a,41,...,an) equals zero by part two of Lemma 5.1

since | # kg — K1 — 1 (mod e). Now the second term becomes

a;—1 ap—1—1 -1 appq1-1 am—1

ST A 2 SRS
1 r—1 r+1 m
:*U(alv'",arflvl7ar+17"')am)~

Hence Equation (7.1.3) is satisfied.
(iii) Suppose that [ + k1 — k2 #Z —1,0 (mod e). We have

Y(ar, ... am)
a1—1 ar—1—-1 41 apy1-1 am—1
SiCA A IR B 2 JRVENE A
r—1 r r+1
ayp—1 —1-1 - apy1—1 am—1
S IR T e AR AR
1 r+1 m
ayp—1 —1—1 -1 am—1
=V | ‘I’ i ¢l+1¢ﬂ/1z+1‘l’¢ \1’ i .U i Z)
1 r+1
a;—1 ap—_1-1 (41 apqp1-1 42  apg2—1 am—1
=v | .0 | U] U | ¢y UL U | T 2
1 r—1 T I+3 r+1 r+2 m
ap—1 ar—1—1 141 app1-1
=wv \Jf .U \L \IJ\L v \l/ wl+lv( 7T7l+37ar+27"'7am)7
1 r—1 r 1+3
where ¥ qv(1, ..., l4+3, aryo, .. ., an) equals zero by part two of Lemma 5.1

since [ # kg — k1 — 1 (mod e).

4. (a) Let a, =1+ 1 and suppose that a,_1 <1 — 1.

i. Suppose | = kg — k1 (mod e). Let [ < n — 1, and firstly suppose that
ars+1 =2 I+ 3. Then we have

ay—1 l am—1
¢lv(a1,...,am):¢qui \I/\L\I/\L Z\
1 T m

ap—1 9 1—1
=T L RTL LT 2
1 s

ap—1 -1 am—1

=vU \L ...(yl—lerl)\I/i, A J, %

1 T m

The first term is

ay—1 1—1 ap—1

vl o..yvl . v ¢ on={ ¢ ey r =1L arg - a),
1 T

where yjv(1,...,7—1,1,a,41 ... ay) equals zero by part three of Lemma 5.3

since [ # 1,2 (mod e). The second term is

ay—1 -1 am—1

— T oy T 2y

1 T m
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ap—1 - apqq—1 apyo—1 am—1
= \uw (R RYRR A A TR S
1 1+2 r+1 r42
a;—1 -1 apqg1-1 aryo—1 am—1
=-v | ‘Ifi vl (1/Jl+1yl+2—1)‘1’¢ vl U] oz
1 1+2 r+1 r+2 m

Its first term becomes

a;—1 -1 apg1—1 apyo—1 am—1

1
vl ‘I’i‘l’ ! ¢l+1yz+2‘1’¢‘11 A --‘Ifi Z)
1 1+2 r+1 r42
a;—1 - ary1—1  apyo-1 I 142 ap43-1 am—1
—w vl v pawl el v e
1 T 141 +3 r+1 r+2 r+3 m
ayp—1 - app1—1  apqo-1
=-Vv \L \I/l, v \l/ v \l/ ?/l+27)(1 ,r,l+1,l+3,ar+3,...,am),
1 r 141 143
where ypov(1,...,r I+ 1,1+ 3,a,43,...,a,) equals zero by part two of

Lemma 5.3. Whereas, its second term becomes

ay—1 +1-1 i appo—1 am—1
1 r 42 r+1 42
a;—1 _ apy1—1  apgo-—1 l +3 ary3-1 am—1
=0 ] . ‘Ifi‘I’ LWl Ul WL W | W 2
1 r 1+3 1+4 r+1 r+2 r+3 m
ap—1 - app1—1  apyo—1
=V \Ij\l/ v \l/ vl ¢l+2'l)( 7Tal+17l+4aar+37"'aam)7
1 r 143 I+4
where ¥ 0v(1, ..., I+ 1,144, a,43,...,an) equals zero by part two of

Lemma 5.1 since | # —2 (mod e).
Secondly, suppose a,11 =1+ 2. We have

Yv(a, ... am)
a;—1 ap_1—1 1 I+1 apyo—1 am—1
_zpqu¢.qf¢ VUL U | LT 2y
r—1 T r+1 r+2 m
ay—1 ap_1—1 9 1—1 apqpo—1 am—1
=v| ..V i Yl ‘Pi‘l’ 3 --‘I’i 2z
1 T r+1 r+2
a;—1 ap_1-1 -1 141  apq2-1 am —1
=] ...V | (y-y)¥L v ¥ | T oz
1 r—1 r r+1 r+2 m

The first term becomes

ap—1 ap_1—1 -1  1+1 Gpg2—1 am—1
Ul .U L yUlL Ul W | T 2
1 r—1 r r+1 r+2 m
ay—1 ap_1—1
=U | ..U | yv@d,...,r=LLI+2a42,...,0m),
1 r—1
where yiv(1,...,r — 1,114+ 2,a,42,...,ay) equals zero by part three of
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Lemma 5.3. The second term becomes

a1—1 ar—1-1 1+1  apq2-l am—1
-vl ...V i ‘Ifi (/RS R NS .-‘Ifi Z)
1 r+1 r+2
ap—1 ap_1—1 apqo—1 am—1
=0 ¥ \Iw (¢l+1yz+2—1)‘1’¢1‘lf [N A
r— r+ T+ m

Its first term becomes

ag—1 ap_1—1 apyo—1 am—1

-vl ...V i ‘Ifi ¢z+1yz+2‘11¢ vl .. i Z)
1 r— r+1 r+2
a;—1 ap_1—=1 -1 apyo-—1 l I+2  apy3—1
=-v ] ..U | vV | Yyl V] ¥ |
1 r—1 r 1+3 r+1 r+2 r+3
am—1
U \L 2\
a;—1 —1—1 j-1 apga-1
v v ¢ VAR
1 r— r +3

cayrov(L, oo L+ LU+ 3, arg s,y )

where yyov(1,...,7l+ 1,14+ 3,ar43,...,an) equals zero by part two of

Lemma 5.3. Whereas, its second term becomes

ay—1 ap_1-1 — apyo—1 am—1

viwl viwl vl 0 2
1 r— s r+1 r+2 m

:U(ala"warflal,l—i_17a7‘+27"'7am)7

which satisfies Equation (7.1.2).

Now let I =n —1. Then r =m and a,,—1 <1 — 1, so that

wn_lv(al, e ,am)

a;—1 2—1 Ay —1—1

¥} \P%L v’y \m 2

ap—1 amp—o—1 app—1—1
vl v T O
1 m—1 m
a;—1 A —2—1 am—1—1 n—2
=3 2R A A (VR ) AU
1 m—2 m—1 m
a;—1 am—2—1 apm_1-1 n—2
=0 ..¥ | U oy oz,
1 m—2 m—1 m

which equals zero by part three of Lemma 5.3.

ii. Suppose l =1+ kg — k1 (mod e). Then

a1 —

1 -1 am—1
Y(at,...,am) =T | 3T ..U | 2z, =0.
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ili. Suppose | =2+ k2 — k1 (mod e). Then

Yv(at, ..., am)
ay—1 ap_1-1 l apy1—1 am—1
TR AR AR A R A AN
1 r—1 T 41 m
a;—1 ap—1-1 -1 +1—1 am—1
R ] ¢\1:¢\1:¢ TS
1 r—1 r+1
a;—1 ap—1—1 -1 apg1-1 am—1
SRR AR R UL SN AN
r— T+ m

The first term equals zero by part three of Lemma 5.3. The second term

becomes
ay—1 ap_1-1 -1 apqg1-1 am—1
-v] ...v yz‘Ifi‘If 1 --‘Pi Z)
1 r—1 r+1
a;—1 ap_1—1 -2 ar41-1 am—1
=-v] ...V | (¢ 1yl1+1)‘1’¢‘1’ U AR 2y
1 r—1 r+1 m
Its first term becomes
ap—1 ap_1-1 -2 apqg1—1 am—1
-vl .. ‘Pi ¢z1yl1‘1’¢‘1f¢ R )
1 r+1 m
ay—1 ap_1—1
=-Vv \]/ U \lf ¢l 1Y1— 1U(1 ar_17l_17a1“+17"',am)7
1 r—
where y;_qv(1,...,r — 1,0l — 1,ay41,...,a,) equals zero by part one of

Lemma 5.3. If a,_1 <1 — 2 then its second term becomes

ay—1 ap_1—1 -2 apy1—1 am—1
SN AT 2 SR A
1 r—1 r+1 m
= _/U(ala s 7a7‘—lal - ]-aaT-i-l) s 7am))

which satisfies Equation (7.1.5). Whereas, if r > 1 and a,—; = [—1, then

its second term becomes

ap—1 ap_9-1 |_ - 11 am—1
—vlov | \11¢\If¢\1z¢ LU 2
1 m

r— —1 r+1

ay—1 ap_1—1

=-U | ..U | Yrov(,...,r—=11-2/1—1,ar41,...,am),
r—1

1

where ;_ov(1,...,7—1,1—2,1—1,ar41,...,an) equals zero by part one
of Lemma 5.1 since | # 4 + k2 — k1 (mod e).

iv. Suppose | + k1 — k2 #0,1,2 (mod e). We have

Yo(a, ..., am)
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ap—1 ap_1—1 l a'r#—lfl am—1
S R R 1R AR A A
1 r—1 T r+1 m
ap—1 ap_1-1 9 -1 11 am—1
ST AT AR A R
1 r4+1 m
a;—1 ap_1—1 -1 apy1—1 am—1
Sh R RTTE N T AR A
1 r—1 r+1 m
=v(a1,...,0r—1,l,Qrq1,...,0p),

which satisfies Equation (7.1.6).

(b) Suppose a, = a,_1 + 1. Firstly, suppose [ # 2 + k2 — k1 (mod e). Then

wlv ai,...,a

a;—1 —1—1 1— apyo—1 am—1

m\I’i.\Ifi \I!¢\I/¢\If¢ LU z,\)
1 r—1 r r+1 r+2 m

ay—1 —1—1

=v \l/ . \I, l/ Q;Z)Z/U( _1al7l+17ar+25"'7am)a

1 —
where Yv(1,...,7—1,1,l+1,a,42,...,an) equals zero by part one of Lemma 5.1

since | # 2 + kg — k1 (mod e).

Now suppose that | =2 + k3 — k1 (mod e). Then

¢lv(a17 7am)
ay—1 ap_1-1 aptpo—1 am—1
=1l)l<‘1’¢ S ‘I’i ‘Ifi‘I’ \EER) ZA)
1 r—1 r r+1 r4+2 m
a;—1 —1-1 -2 — aptpo—1 am—1
=" v i (AT RITA ‘1’¢‘1’ U )
1 r r+1 r4+2 m
ayp—1 ar—1— — appo—1 am—1
=] ... | (1/% 1¢l¢l1+1)‘1’¢ ‘I’i‘l’ Loz
1 r—1 r r+1 r+2 m
The first term becomes
a;—1 — aptpo—1 am—1
‘I’% v i ¢l 1Wir— 1‘1f¢ ‘I’t‘lf t R )

ay—1 anp -1

=wv \l/ U iL ¢Z_1¢l¢l_1v(1,...,r—1,l—1,l,ar+2,...,am),
r—1

where ¥;_jv(1,...,7 — 1,0 — 1,l,ar42,...,ay) equals zero by part one of
Lemma 5.1 since l Z3 + Ky — k1 (mode). Ifr=1orr>1landa,—1 <1 —2

then the second term becomes

ap—1 ap_1—1 - - apyo2—l am—1

v L e el v T s
1 r—1 r r+1 r+2 m
:U(al,...,ar,hl—1,l,(17«+2,...,(1m),

which satisfies Equation (7.1.4). Whereas, if r > 1 and a,_1 = [ — 1 then the
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second term becomes

ap—1 ap_og—1 apyo—1 am—1
v L wlwl L w T s
1 r—2 r—1 Id r+1 r4+2 m

ay—1 ap_o—1

=0l U | (. r—20—=21— 1,1 arsa,- .., am),
r—2

where ¥, ov(1,...,r — 2,1 =21 —1,1l,a,42,...,an) equals zero by part one

of Lemma 5.1 since | # 2+ k2 — k1 (mod e).

5. Suppose a, =1 and a,4+1 = [+ 3. Then

ay—1 ap_1—1 —1 Qpr41— 1 am—1
dilar ) =0 L 0L AR T
1 r— s r+1 m
=0(a1, .. Qro1, Ly Qpg 1y ey Q)

which satisfies Equation (7.1.1). Now suppose a,4+1 = [ + 2. Then

a;—1 —1-1 apyo—1 am—1

dvfonvan) = UL 0 L vl e e
1 r r+1 r+2 m
ay—1 ap_1—1
=U | ..U | Yo, r=10L1+1,ar42,...,am).
1 r—1
By part one of Lemma 5.1, ¥v(1,...,7 — 1,1,l + 1,a,492,...,an) equals zero if

| # 2+ ko — k1 (mod e). Suppose instead that | = 2+ k2 — k1 (mod e). Firstly,
let a,—1 <1 — 2. Then

1/11'0(0,1, N am)
aj—1 -1-1 apyo—1 am—1
=w | v i Y- ﬂbz‘l’i \I’i‘l’ A '-‘I’i Z)
1 T r4+1 42
a1—1 ar—1 apyo—1 am—1
=vl ..v | R I N AR AR T Y
1 r r+1 r+2 m
The first term becomes
a1—1 apyo—1 am—1
vl v i ¢z 10— 1\1’¢ \I’i\l’ T 2
1 T r+1 742 m
a;—1 ap_1—1

:\IJJ, U \L wl,ﬂpﬂ/}l,ﬂ}(l,...,r—1,[—1,l,ar+2,...,am),
r—1

1

where ¢y_1v(1,...,7—1,1—1,1,a,49, ..., an) equals zero by part one of Lemma 5.1

since [ # 3 + k2 — k1 (mod e). Whereas, the second term becomes

a;—1 ap_1—-1 - aptpo—1 am—1

AU AR R AR AR T B
1 r—1 r r+1 r+2 m
:U(ala"'aar—hl_lalvaT-f—Q;am)?
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and hence Equation (7.1.4) is satisfied. Now let a,_; = — 1. Then the second

term becomes

a;—1 ap—1—1 -2 -2 -1 apq2-—1 am—1
U] .0 | LU U W | LT o2y
1 r—1 r r+1  r+2 r+2 m

ay—1 —1—1

— UL U L Pav(lye = L= 20— 1,1, a2, s am),
1 r—1
where ¥;_ov(1,...,r — 1,1 — 2,1 — 1,l,a,42,...,ay) equals zero by part one of
Lemma 5.1 since [ # 4 + k2 — k1 (mod e).

O]

Corollary 7.2. The matriz of the action of ¥y on S((n_m),1m)) with respect to our

chosen standard basis has at most one non-zero entry in each row and in each column.

Ultimately, when Sy is irreducible, we will show that we can map any basis vector
of S under the action of ,%’,/L\ to the standard generator zy. If S is not irreducible, then
our following results aid us to map every basis vector vr of its composition factors to a
basis vector vg, where S is a more dominant A-tableau than 7.

For S,T € Std()\) and a reduced expression w € &,,, we explicitly map each standard
basis vector vr of S to another standard basis vector vg by a 1, € %,/l\, where S is

indeed more dominant than T'.

Proposition 7.3. Suppose that a; > i. Then there exists an element x € Z»

, equal to

+1,, for some w € &,, and some choice of reduced expression of w, such that
(1, . i — 1G5, @41, yam) =0(1, .00 0 — 1d, G401, .-, am),

where x is given as follows.
1. Let i =14 kg — k1 (mod e).
(a) If a; =1+ ko — k1 (mod e) and a; # n when i = m, then

a;—1

—Yo, ¥ T if a1 = a; + 1,
_ it+1
N\ if ai41 = a; + 2.

i+1

xr =

(b) If a; =2+ ko — k1 (mod e) and

. a; =1+ 1, then x = _¢12+1~
a;—2
ii. a; >i+1, thenx =¥ 1 |
i+1
a;—1
(c) If a; + K1 — ko Z 1,2 (mod e), then . = =¥ 1 .

i+1

2. Let i =2+ ky — k1 (mod e) and suppose that i # 1 when k2 = k1 — 1 (mod e).
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(a) If a; =14 Ky — k1 (mod e) and a; # n when i = m, then

a;—1

¢ai\:[l\l/ v T Zf ai+1 = a5 + 17

i-1 Q41

x = R
vl U if ai11 = a; + 2.
=1 41
i a;—2
(b) If a; =2+ ko — k1 (mod e), thenxz =—-V¥ | U 1 ;
i—1 41

a;—1

(¢c) If a; + k1 — k2 Z 1,2 (mod e), then:r:\I/i v

i—1 i+l

3. Let i+ k1 — ko # 1,2 (mod e).
(a) If a; =14 Ky — k1 (mod e) and a; # n when i = m, then

a;—1

%i‘lf T if Ai+1 = a; + 1,

*\I’/F if i1 = a; + 2.

xr =

a;—2

(b) If a; =2+ ko — k1 (mod e), then z = -V 1 ;

a;—1

(c) If aj + k1 — ko # 1,2 (mod e), thenz =T 1 .

Proof. Let i = k2 — k1 + 1 (mod e).

1. Suppose that a; = 1+ ke — k1 (mod e) and a;y1 > a; +2. Then a; = @ + ke
for some k > 0. We proceed by induction on k. Set ¢ = 1 4+ k3 — k1 and a; =

1+ ko — k1 + e for the base case, so that

l+kg—kKy+te
v(l,...;i— 1,1+ Ko — K1 +e€ait1,...,0m)
2+Ko—K1
K9 —K]t+e .
=U 1 o(l,...,i—1,24 Ky — K1 +€,ai41,-..,an,) by Equation (7.1.1)
2+Kg—K]
Kkg—k]+e—1
=-v 7 v(l,...,i—1,ke — K1 + €,ai+1,...,am,) by Equation (7.1.3)

2+Kg—K1

= —Voipy—w V(1,0 — 1,34+ Ko — K1, Qit1y -5 Q) by Equation (7.1.6)

=v(l,...,i— 1,14+ Ko — K1,Qi41y--,Cm) by Equation (7.1.5) ,
i+ke
as required. Now assume that ¥ 1 ov(1,...,i—1,i+ke, ajt1,...,am) =v(1,... i—
i+1
1,%,Gi41, ..., an) for some k > 0. Observe
i+(k+1)e
v(l,...;i—=1 i+ (k+ 1De,ait1,...,am)
i+1
i+(k+1)e—1
=¥ 1 v(l,...;i—=1 i+ (k+ e+ 1,ai41,...,am) by Equation (7.1.1)
i+1
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i+(k+1)e—2

=-v 1  o{,...,i—1i+(k+1e—1,a;41,...,ay,) by Equation (7.1.3)
i+1
i+ke+1
=0 1 wvl,...;i—1i+ke+2ai+1,.-.,0m) by Equation (7.1.6)
i+1
i+ke
=01t ol,...;i—1i+ke ai1,...,an) by Equation (7.1.5)
i+1
=o(l,...,i—1,4,ai41,---,am),

by the inductive hypothesis as required.
The other parts are similarly proven using induction on <. ]

If ko = k1 — 1 (mod e), then there does not exist a reduced expression v, of w for
which 1,v(2,a2,...,a,) = v(1,az,...,a,). Instead, we map every basis vector of Sy
to v = Y1y ... Wy 2y, where 2,3,...,m 4+ 1 lie in the leg of T

Lemma 7.4. If ky = k1 — 1 (mod e), then there exists an element 1, € %Y, for a
reduced expression w € &y, such that Yyv(ar,as,...,am) =v(2,a9,...,ay) as given in

the following cases.
1. If a1 =1+ k2 — k1 (mod e) then

ap—1

%i‘l’ ) (al-‘rl =a1+ 1)7
2

1/}11) = aj
Ut (a1+1 > a1+ 1).
2

ay—2

2. If a1 =2+ Ky — K1 (mod e) then Y, =V T .
2

ay—1

3. If ap — k1 + Ko £ 1,2 (mod e) then 1, =¥ 1 .
2

The next result will be a useful addition for determining irreducibility of certain

2 -modules in the following chapter.
Corollary 7.5. Let 1 <i<m—1.

1. If ko # k1 —1 (mod €), then there exists an element ¢, € Z, for a reduced

expression of a w € &, such that
Yv(1, oyt — 1 a, ... am) =01, .0 0,041, - -, Qm)-

2. Let kg = k1 — 1 (mod e).

(a) If a; > i+ 1, then there exists an element ¢, € Z2, for a reduced expression
of a w € &, such that

V(2,00 Qe ey Qp—1,m) = V(2,0 i+ 1, @41, ooy Gp—1, ).
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(b) If a; > i > 1, then there exists an element 1)y, € z@f}, for a reduced expression
of a w € &, such that

Yv(1, oyt — 1 a, . am) =01, .00 0,041, - - Q-

7.2 LINEAR COMBINATIONS OF BASIS VECTORS

To ascertain irreducibility of a non-zero submodule, say M, of a Specht module labelled
by a hook bipartition, we need to ultimately show that this submodule is generated
by any element in the basis of M. However, it is non-trivial that an arbitrary, non-
zero submodule of S) even contains a single basis element of S). To this end, we
first introduce a result necessary for understanding the action of Z2 on non-zero linear

combinations of standard basis elements of S).

Proposition 7.6. Let S,T € Std((n—m), (1™)) be distinct standard tableaux such that
is = ip. Then there exists x € R of the form x = 1)y, for some w € &, or x = e(i) for

some i€ I™, such that exactly one of xvg and xvr is zero.

Proof. Set a, := T'(r,1,2) and b, := S(r,1,2) for 1 < r < m and first suppose that
am = bm.

If a, > b, then observe that T'(r,1,2) = S(1,a, — r,1) = a, where res(r,1,2) =
ke +1—r, res(l,a, —1,1) = K1 +a, —r—1. Thus, eg # er if a, Z 2+ K2 — K1
(mod e), hence er(v(ai,...,am)+v(b1,...,bm)) =v(ai,...,an) and eg(v(a,...,am)+
v(bi,...,bm)) =v(b1,...,bm).

If m = 1 then a; = i > b;. We have ep # eg if i # 2+ k2 — k1 (mod e). So
suppose i = 2 + kg — k1 (mod e). Then ¥;v(a1) = v(i+1) by Equation (7.1.1), whereas

by—1 by—1

1
Yiv(by) =¥ | 2y =V | iz =0.
1 1
Now suppose m > 1 and let » be maximal such that a, # b, without loss of generality.

Set a, =i > b, and a,41 = brg1 = J.

1. Suppose j =i+ 3. Then ;v(by,...,by,) = 0, whereas, by Equation (7.1.1),
viv(ar, ... am) = Yiv(a, ..., ar—1,0,J, @42, - .. Q) = v(a1,...,ar_1,i+1, j, ary2).

2. Suppose j =1+ 2.

(a) Suppose j # 2+ kg — k1 (mod e). Then ;v(b1,...,by) =0, whereas
viv(al, ... am) =v(ay,...,ap—1,i+1,i4+2,ar42,...,an), by Equation (7.1.1).

(b) Suppose j = 24 ko — k1 (mod e). Then eg # ep since i Z 2+ Ky — K2
(mod e).

3. Suppose that j =i+ 1.
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(a) Suppose j # 3+ ko — k1 (mod e). Then eg # er since i # 2+ Ko — K1
(mod e).

(b) Suppose j =3+ k2 — k1 (mod e). Firstly, let r # 1.

i. Suppose a,—1 = i — 1. By Theorem 7.1, 9;_jv(ai,...,an) = 0 and
Yiv(a, ..., ay) =0. Whereas, if b, =i — 1 then

wiflv(blv . ’bm) = U(bla . 'abrflaiai + ]-abTJer . "bm)a
by Equation (7.1.1); if b, < i — 2 then
1/%11(()17 .- 7bm) = _U(bly .- '7b1”—17 <i— 271 - ]-7b1”+27 s 7bm)’

by Equation (7.1.5).
ii. Suppose a,—1 <17 — 2.

A. Suppose b, =i — 1. Then

¢iv(a17-'~,am) = U(alw cey A2, < 1 — 27Z - 17i7a1”+27"‘ 7am)7

by Equation (7.1.4), whereas ¥;v(by,...,by) = 0.
B. Suppose b, < i — 2. Then

V2v(ar,. .. am) =w(ag,. .. ap 1, <i—2,i—1,%,ar19,...,07)

:U(ala"wa’r‘—hgZ._Qai_lvi+17a7‘+27"'7am)7
by Equation (7.1.1) and Equation (7.1.4), whereas
w?v(blw"vbm) = _wiv(bla"-abelagi_27i_1ab7“+27"'7bm) :07

by Equation (7.1.5).
Now let r = 1. If b, =i — 1 then

viv(ar, ... am) =v(i —1,4,a3,...,an),
by Equation (7.1.4), whereas ¥;v(bi1,...,by) = 0. If b, <i— 2 then
Yiciv(at, ... am) = Yi—1v(i — 1,4,a3,...,a,) =0,
by Equation (7.1.4), whereas

wz;ﬂl)iv(bl, e ,bm) = — wi,lv(g 7 — 2,i — 1, as, ... ,am)

=—v(<i—2,i,a3,...,0m),

by Equation (7.1.1) and Equation (7.1.5).
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Now suppose that a,, # b,,. It is sufficient to consider the following three cases:
O Um—1 =bm—1 =1, Gy =7 > by,
O Ame1 =1 > bm—1, Qm =7 > by,
O A1 =1 < bm—1, @ =7 > byy.

Observe that T'(m,1,2) = S(1,j5 — m,1) = j where res(m,1,2) = k1 +1—m and
res(l,7 —m,1) = k1 +j —m — 1. Thus, if j #Z 2+ k2 — k1 (mod e) then er # eg. So
suppose j =2+ k3 — k1 (mod e). If j < n then

Yi((v(ar,...,am) +v(bi,....bn)) =¥j(v(al,...,am) =v(al,...,am-1,5 +1),

by Equation (7.1.1). Now suppose j = n and let b,, < n —2. We have T'(1,n —m, 1) =
S(1,n —m —1,1) where res(1,n —m,1) =k + 1 —m # kg —m =res(l,n —m — 1, 1),
and thus er # eg. Whereas, if b,, = n — 1 then

¢n—1(v(al7 ce 7am) + 'U(bl, sy bm)) = wn—lv(bla v 7bm) = (b17 v 7bm—17 n)a
by Equation (7.1.1). O

Lemma 7.7. Any non-zero submodule of S((n—m),(1m)) contains a standard basis vector
vy, for some T € Std((n —m), (1™)).

Proof. Let 0 # M C S((n—m),(1m)) and consider an arbitrary non-zero element v of M.
Then v is an F-linear combination of r distinct basis vectors of S((,,—m), 1m)), for r = 1.
We write ;
v = ZCiUTw 0#c¢; €F,
i=1
where vr, # v, for all 1 <@ # j < r. We can instead replace v with e(i)v such that
e(i)v = v, and thus assume that iy, =iz, for all 4,5 € {1,...,r}.
We choose v with » > 1 minimal. If r = 1, we are done, so we suppose that r > 1.
Then, by Proposition 7.6, we can find an 2 = 1, € Z2 for w € &,, such that exactly

one of xvr,, xvp, is zero. Without loss of generality, we let vy, = 0. Then we have

-
M > xv = Z *civr,
i=2

where, for all i € {2,...,r}, czvr equals zero or *c;vg, for some standard ((n —
m), (1™))-tableau S;. Moreover, by Corollary 7.2, we know that i = j whenever s; = s,

for i,j € {2,...,r}. We have thus contradicted the minimality of r, and hence there

must exist an z € Z2 such that zv = avr, where a € F and vy € S((n—m),(1m))- O
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7.3 CASE I: COMPOSITION SERIES OF S((,—),(1m)) FOR
Ko Z K1 — 1 (mod e€) AND n # ko — k1 + 1 (mod e)

For this case, we claim that Specht modules labelled by hook bipartitions are irreducible,

and thus are generated by any standard basis element.

Theorem 7.8. Ifrg # k1 — 1 (mod e) andn # kg — k1 + 1 (mod e), then S((—m),(1m))

1s irreducible.

Proof. We have S((,—p),1my) = span{vy | T" € Std ((n —m),(1™))}. Since we know
from Lemma 7.7 that any non-zero submodule of S((,,_,) (1m)) contains a standard basis
element vy, it suffices to show that any standard basis element v(ay, ..., a,,) generates
S((n—m),(1m))- We know that v(1,...,m), which equals zy, generates S(u_m),1m)), SO
we now let ¢ be minimal such that a; > ¢, for some i € {1,...,m}, and proceed by

downwards induction on i. By Corollary 7.5, there exists an element v, € %2 such

that Y,v(l,...,i—1,ai,...,am) =v(1,...,%,Gi41,...,0n), for a reduced expression of
w € &,. By induction, we know that v(1,...,4,ai41,...,am) generates S((,—m),(1m))
and thus, v(ay, ..., an) also generates S(n_m),(1m))-

(]

Example 7.9. Set e = 3 and k = (0,0). We know that S(() 13y) s an irreducible
FD -module, so, for all S,T € Std((2),(1%)), there exists an expression 1, € Z> for
which b, = Fvg, for a reduced expression w € &,,. Recall that a standard ((2), (13))-
tableau is completely determined by the three entries in its leg. We represent the basis
elements of S((2),13)) by the legs of the corresponding ((2), (13))-tableaus, together with
the only non-trivial relations between these elements. Observe that we can find a directed
path from any standard ((2), (13))-tableau to any other standard ((2),(1%))-tableau, as
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expected.

EIRN

U1

[ fee] ]

7.4 CASE II: COMPOSITION SERIES OF \S((;,—p),(1m)) FOR
ko Z k1 — 1 (mod e) AND n =0 (mod e)

Here, we claim that the images of the homomorphisms ~,, given in Lemma 6.5, for
0 < m < n—1, appear as composition factors of Specht modules labelled by hook

bipartitions. We first determine irreducibility of these Z*-modules.

Proposition 7.10. If ke Z k1 — 1 (mod e) and n = ko — k1 + 1 (mod e), then im(7yy,)

is an irreducible Z2-module. Further, im(yy,) = (v(1,...,m,n)) C S((n—m—1),(1m+1Y)-

Proof. By Lemma 6.5 part 1(a),
im(v,,) = span {vT | T € Std ((n —m—1), (1m+1)) ,T(m+1,1,2) = n} ,

that is the image of ,, is spanned by all standard vy where n lies in the leg of T', where
T is a standard ((n —m — 1), (1™*1))-tableau. We can write a non-zero standard basis
element v of im(7,,) as v(ai,...,am,n).

Since we know from Lemma 7.7 that any non-zero submodule of S((;,_p) 1m)) con-
tains a standard basis element vy, it suffices to show that any standard basis element
v(ai,...,am,n) generates im(7y,,). We know that v(1,...,m,n) generates im(7y,), so
we now let ¢ be minimal such that a; > 4, for some i € {1,...,m}, and proceed by
downwards induction on ¢. By Corollary 7.5, there exists an element ¢, € %’,{} such that

Yov(l,...00 — 1,a4,ai41, - am,n) = v(l,...,0 — 1,i,ai41,...,am,n), for a reduced

168



7.4. CASEII: k3 # k1 — 1 (MOD E) AND N =0 (MOD E) CHAPTER 7

expression of w € &,,. By induction, we know that v(1,...,i — 1,4,a;41,...,Gm,n)

generates the image of v,,, and hence, v(aq, ..., am,n) generates im(~,,) too. O

An immediate consequence of this result, together with part one of Lemma 6.6, is

the following theorem.

Theorem 7.11. Let ko # k1 —1 (mode), n = ke —Kk1+1 (mode) and 1 < m <

n — 1. Then S((n—m),(1m)) has the composition series

0 Cim(ym—1) € S((m-m),(1m));
where its composition factors are im(Ym—1) and im(yy,) from bottom to top.

Example 7.12. Let e = 3 and k = (0,1). Then S) 13y) has the composition series
0C im(’)/Q) C S((2)7(13))

where S((9) 13))/im(7y2) = im(y3). The basis elements of im(v2) = (z((2),(13))) correspond
to the ((2), (1®))-tableaus

(45 [3]5] [2]5] [1]5]

5
and the basis elements of im(y3) = <\I/¢ z((2)7(13))> correspond to the ((2), (13))-tableaux
3

(3[4l [2]4] [2]3] [1]4] [1]3] [1]2]

We know that im(y2) and im(v3) are irreducible, so for R, S € Std((2), (1%)) such
that vr,vs € im(ye), there exists an element 1, € Z2 for which 1, vs = vg, for
a reduced expression of wi € &, and similarly, for T,U € Std((2),(1®)) such that
vp,vy € im(y3), there exists an element 1), € %,jl\ for which Y, vy = vr, for a reduced
expression of we € &,,. Recall that a standard ((2), (13))-tableau is completely determined
by the three entries in its leg. We represent the basis elements of S(2) 1)) by the legs of
the corresponding ((2), (13))-tableaux, together with the only non-trivial relations between
these elements. Observe that we can find a directed path from any standard ((2), (13))-
tableau in im(y2) to any other standard ((2), (13))-tableau in im(vy2), and similarly, we
can find a directed path from any standard ((2),(13))-tableau in im(y3) to any other
standard ((2), (13))-tableau in im(y3).
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7.5 CASE III: COMPOSITION SERIES OF \S((;,—),(1m)) FOR
Ko = k1 — 1 (mod €) AND n # ko — k1 + 1 (mod e)

We need only understand the homomorphism y,, to determine the composition factors
of Specht modules labelled by hook bipartitions in this case. Let us first confirm their
irreducibility.

Proposition 7.13. If ko = k1 — 1 (mod €) and n # ko — k1 + 1 (mod e), then im(x.,)
and S((n—m),(1m))/ 0 (Xm) are irreducible FD -modules. Moreover, im(xm) = (v(2,...,m +1)).

Proof. We know that y,, is injective and 7, is surjective by the exact sequence given by
Lemma 6.6 part two, so that im(xm) = S((n—m,im),e) and im(7,;,) = S(gy(ln_m_'_l’lm—l)).
By appealing to the v-analogue of Peel’s Theorem (see Proposition 4.2 or [CMT, The-
orem 1(1)]), S(n—m,1m) and S _,q1,1m-1y) are both irreducible, and hence, so are
S((n—m,1m),z) and S(Z7(1n,m+1’1mfl)). Thus, im(xm) and S((n—m),1m))/im(xm) are ir-
reducible, as required. O

Hence, for 1 < m < n — 1, it is immediately obvious that 0 C im(X:m) C S((n—m),(1m))
is a composition series for S((n_m)7(1m)) when k9 = k1 — 1 (mod e) and n # kg — K1 + 1
(mod e).

Example 7.14. Let e = 3 and k = (0,2). The composition series of Ss) 12y 5
0C im(XQ) C S((g)’(IZ)).

Elements of im(x2) correspond to the ((3), (12))-tableauz

1314]5] [2][4]5] [2]3]5] [2]3]4]
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and elements of S((3),(12))/im(x2) correspond to the ((3), (12))-tableauz

(1[al5] [1]3]5) [1]3]4] [1]2]5] [1]2]4] [1]2]3].

We know that im(x2) and S((s) (12))/ im(x3) are irreducible, so for R, S € Std((3), (1))
such that vg,vs € im(x2), there exists an element 1, € Z> for which 1., vs = vg,

for a reduced expression of wy € &y, and similarly, for T,U € Std((3), (1)) such that
vr,vp € Sys),a2))/im(xs), there exists an element vy, € FD for which wyvy = vr,

for a reduced expression of we € &,,. Recall that a standard ((3), (12))-tableau is com-
pletely determined by the two entries in its leg. We represent the basis elements of
S((3),(12)) by the legs of the corresponding ((3), (12))-tableauz, together with the only non-
trivial relations between these elements. Observe that we can find a directed path from
any standard ((3), (12))-tableau in im(x2) to any other standard ((3),(1%))-tableau in
im(x2), and similarly, we can find a directed path from any standard ((3), (12))-tableau
in S(a),a2))/im(x3) to any other standard ((3), (1?))-tableau in S 12y)/ im(x3).

;vr\ (31 vf "1

’ 1 ~
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7.6 CASE IV: COMPOSITION SERIES OF S((,—) (1m)) FOR
Ko = k1 — 1 (mod e) AND n =0 (mod e)

The composition series of Specht modules labelled by hook bipartitions are the most
complicated in this case, where each Specht module has up to four composition factors.
We determine the irreducibility of Z2-modules im(¢,,) and ker(yy,)/ im(épm,).

Proposition 7.15. If k9 = k1 —1 (mod e) and n = 0 (mod e), then im(¢,,) and

ker(Vp)/ im(¢m) are irreducible #2-modules. Moreover,
1. im(¢p,) = (v(2,...,m,n))

2. and ker(ym) = (v(1,...,m —1,n)).
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Proof. 1. By Lemma 6.5 part 3(c), we have
lm(d)m) = Spa‘n{vT | T € Std ((n - m)a (1m)) 7T(17 17 1) = 17T(m7 17 2) - n}a

that is the image of ¢,, is spanned by all standard vy where 1 lies in the arm of
T and n lies in the leg of T', for a standard ((n — m), (1™))-tableau T

Since we know from Lemma 7.7 that any non-zero submodule of S((;,—m) 1m))
contains a standard basis element v, it suffices to show that any standard basis
element v(ay,...,am—1,n), with a; > i foralli € {1,...,m—1}, generates im(¢p, ).
We know that v(2,...,m,n) generates im(¢,), so we now let ¢ be minimal such
that a; > i+ 1 for alli € {1,...,m — 1} and proceed by downwards induction on
i. By Corollary 7.5, there exists an expression 1, € Z2 such that

Yov(2, ...y 0, a4, ..y ame1,n) =0(2,. .., i+ 1, Q41,0 .y Gp—1,M),
for a reduced expression w € &,. By induction, we know that v(2,...,7 +
1,ai41,...,am—1,n) generates im(¢,,), and thus, so does v(ai,...,am-1,n).

2. By Lemma 6.5 part 1(b), we have
ker(’Ym) - span{vT ‘ T € std ((n - m)? (1m>) 7T<m7 1, 2) = n}v

that is ker(7,,) is spanned by all standard vy where n lies in the leg of T. Let 0 # v
be an arbitrary element of ker(v,,) that is not contained in im(¢,,), so that v is
equal, modulo im(¢,, ), to a linear combination of r distinct standard basis vectors,
none of which is in im(¢,,), for » > 1. That is, v = ayvpy, + - -+ + a,v7,. where
al,...,op € Fand vp,...,vr € ker(ym,)/im(¢m). We proceed by induction on r
to show that v generates ker(v,,)/im(¢.,).

For r = 1, we write v = cv(aq,...,am—1,n) for some 0 # ¢ € F. Now let i be

minimal such that a; > ¢, for some i € {2,...,m — 1}, and proceed by downwards
induction on . By Corollary 7.5, there exists 1, € 92’7/1\ such that

Yov(l, . i — 1 a4, .. am—1,n) =v(1, .. 0, Qg1 ey Qp—1,M),

for a reduced expression of w € &,,. By induction, we know that v(1,...,4,air1,...,Qm-1,M)

generates ker(7yy,)/im(¢y,), and thus, so does v.
Now suppose that » > 1. Then by induction on r, there exists an 2 € Z such

that

TV = qur + Q- xuT,,

where o € F, vp € ker(y,)/im(¢y,). If z kills apvr,, then we are done. Otherwise,
suppose that a,zvr, = Bvg, where § € F and vg is a standard basis vector lying

in ker(7,,) but not in im(¢, ).
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Take v(1,az,...,am-1,n) € ker(vy,)\ im(¢,,) and observe that, by Theorem 7.1,
Piv(l, a2, ... am—1,n) = v(2,a2,...,0n-1,n) € im(¢y,,), which is non-zero if and
only if 2 < ag < --+ < am—1 < n. Moreover, we also observe from Theorem 7.1
that there exists no ¥y € {¢1,...,9¥,_1} such that

Yv(2,a9,. .., am—1,n) =v(1,ba, ..., byp—1,n) € ker(vy,)\ im (o),

where 1 < by < -+ < b1 < n. We now consider the element /911, €
%ﬁl\ such that 1, does not contain 1, for w,w’ € &,. If we suppose that
Yyv(l,ag,...,am—1,n) # 0, then Y1¢,v(1,az,...,am—1,n) is a non-zero element

in im(¢,). Moreover, im(¢,,) always contains ¥, ¥1¢,v(1, ag,. .., am—1,n).

Then, by appealing to Proposition 7.6 and Theorem 7.1, there exists an #’ = 1), €
2 that doesn’t contain ¢y, for w € &, such that exactly one of az’vy and fz'vg
is zero. Hence x’zv = Ba2'vg = yvg, where v € F and v is a standard basis vector
lying in ker(7,,) but not in im(¢,,), and thus v generates ker(v,,)/im(¢.,), for
r> 1.

O

Theorem 7.16. Let ko = k1 —1 (mod e) and n =0 (mod e).

1. Then S((n—1),(1)) has the composition series

0 Cim(¢1) Cim(x1) C S((n-1),1))>
which has composition factors S &), im(¢2) and im(¢3) from bottom to top.

2. Let2<m<n-—2. Then S((n_m)7(1m)) has the composition series
0 C im(¢m) Cim(xm) C ker(ym) +im(Xm) C S((n-m),(1m));

which has composition factors im (¢, ), im(dm+1), ker(Vim )/ im(ém) and ker(Yim41)/ im(dpm41)
from bottom to top.

3. Then S(1y,(1n-1y) has the composition series
0cC im(ﬁbnfl) C im(’}/n72) C S((l)v(ln—l)),

which has composition factors im(¢n—1), im(yn—2)/im(¢n—1) and Sz (1n)) from
bottom to top.

Proof. 1. From Lemma 6.8 we know that S(;_1) 1)) has the filtration im(¢1) C
im(x1) € S(n-1),1))-
We know from Proposition 6.2 that v; o ¢1 = 0, so that by Lemma 6.8 the middle
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factor in the filtration of S((,_1,1),(1)) 18
im(x1)/im(¢1) = im(y1 0 x1)/im(71 © ¢1) = im(7y1 © x1) = im(¢2).
By Lemma 6.5, we have
ker(7;) = span{T € Std ((n — 1),(1)),7(1,1,1) = 1.}
Now, by using Lemma 6.4, the top factor in the filtration of S((,_1) 1)) is given by

S(n-1),1)/ m(x1)

= S((n-1),1)/ ker(11)

= span{vr | T € Std ((n — 1), (1)),7T(1,1,2) =1}

= span{ys o y2(vr) | T € Std ((n — 1), (1)), 7T(1,1,2) = 1}

= span{vr | T € Std ((n — 3), (1%)),7(1,1,2) = 1,7(3,1,2) = n}
= im(¢3).

2. Let 2<m < n— 2. By Lemma 6.8, we know that S((,_,),1m)) has the filtration
im(¢r) Cim(xm) C ker(ym) +1im(xm) C S(n-m),1m))-

We know from Proposition 6.2 that 7, o ¢, = 0. Thus, together with Lemma 6.8,

we know that the second from bottom factor in the filtration of S((;,—p,1m)) 18

lm(Xm)/lm(¢m) = im(’)/m © Xm)/ im(’)/m © ¢m) = im(')’m © Xm)

= im(¢m1).

Using Lemma 6.8, we find that the second from top factor in the filtration of
S((n—m,m)) 18

(ker(vp) +1im(xm)/ im(xm)) = ker(ym)/ (ker(ym) N im(xm))
= ker(ym)/ (im(ym—1) N im(xXm))
= ker(vm)/im(ém).

Finally, using Lemma 6.8, the top factor in the filtration of S((,_y, 1m)) is

S(n—mamy)/ (ker(vm) +im(xm)) = (Im(vm) +im(xm+1)) /0 (Xm41)
= (ker(ym+1) +Im(Xm+1)) / im(Xm+1)
= ker(vm+1)/ (ker(ym+1) Nim(xm+1))
= ker(ym+1)/im(¢m1)-
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3. It is clear from Lemma 6.8 that im(¢pn—1) C im(v—2) C S((1),(1n-1y) is a filtration
of S((1)7(1n71)).
Also by Lemma 6.8, the top factor of Syqyin-1) is

S(),an-1y/ im(ym—2) = (ker(yp—1 +im(yn-1)) /im(yn—2)

= (ker(yn—1 + im(vn-1)) / ker(vn—1)
im(yn—1)/ ker(yn—1) Nim(y,—1)
im(yn-1)

12

Sz, (1)

Example 7.17. Let e = 3 and k = (0,2). S((3),13)) has the composition series
0 C im(¢3) C im(x3) C ker(v3) +im(x3) C S((3),12))

where im(x3)/im(¢s) = im(da), (ker(ys) +im(xs3)) /im(xs) = ker(ys)/im(¢s3) and
S(@3),a2))/ (ker(ys) +1im(xs)) = ker(ya)/im(¢a). The elements of im(¢3) = <w1wz@g 2((3),13))
correspond to the ((3), (13))-tableaux

(1[4]5] [1]3]5) [1]2]5] [1]3]4] [1]2]4] [1]2]3].

im(xs) = wlwgwgz( (13) > so the elements of im(¢4) correspond to the ((3),(1%))-

tableauz

1[sl6) [1]4]6] [1]3]6] [1]2]6].

ker(y3) +im(x3) = <\I/¢ 2((3), (13))> so the elements of ker(~ys)/im(¢s) correspond to the
3
((3), (13))-tableauz

3[4]5] [2]4]5] [2]3]5] [2]3]4].

S((3),(13) = (2 2((3),(13) > so the elements of ker(vy /Hn ¢4) correspond to the ((3), (1%))-
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tableauz

(4516 [3]5]6] [3]4]6] [2[5]6][2]4]6][2]3]6].

We know that im(¢3), im(¢4), ker(ys)/im(y3) and ker(vys)/im(ys) are irreducible.
Recall that a standard ((3), (13))-tableau is completely determined by the three entries

in its leg. We represent the basis elements of S((3),13)) by the legs of the corresponding
((3), (13))-tableauz, together with the only non-trivial relations between these elements.
Observe that for any vr,vs € im(x3) we can find a directed path from R to S. Similarly,
for any vr,vy € im(¢4), v, vx € ker(ys)/im(vy3) and vy, vz € ker(vy)/im(y4) we can
find a directed path from T to U, from W to X and from'Y to Z, respectively.

NEEE

A ~
/f, -'Rt \l\'sT'LbQ
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Thus, in Cases II-1V, S((,_m),(1m)) has at least two composition factors for 1 < m <
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n — 1. We need only determine if these factors, in each case, are non-isomorphic, to

deduce part of the decomposition matrix for %’,/l\ comprising rows that correspond to

hook bipartitions.
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CHAPTER 8

RESTRICTION AND INDUCTION

OF S((n—m),(1m))

In this chapter we introduce specific restriction functors and their ‘dual’ induction func-

tors over %2, which will assist us to obtain the labels of the composition factors of

n>
Specht modules labelled by hook bipartitions. Our general approach for determining
these labels is given as follows.

We exploit Brundan and Kleshchev’s i-restriction functors e; : £ — 2} | and
i-induction functors f; : Z» — %{L‘H, given in Section 1.6, and apply them to Specht
modules. Since the composition of exact functors is exact, we compose these restric-
tion functors in a certain fashion, introducing several functors, including arm and leg
functors, e,m and ejeg respectively; we analogously introduce induction functors farm
and fieg. Appealing to Proposition 1.50, the Z2-module M obtained by applying one
of these restriction functors, say €arm, t0 S((n—m),(1m)) is irreducible. Furthermore, if we
then apply the analogous induction functor, fai;m here, we find one of the composition
factors of S((;—m),1m)). Since all of the other composition factors of S((,—m),1m)) are
killed by this induction functor, the surviving composition factor is, in fact, the socle of
farm M.

We define [ to be the residue of ko—r1 modulo e throughout, so that [ € {0,...,e—1}.

8.1 IRREDUCIBLE LABELS OF ONE-DIMENSIONAL SPECHT
MODULES

We know S((,),2) = {z((n)@)} and S(g (1n)) = {Z(@7(1n))} are both one-dimensional Z-
modules, and hence are both irreducible. In fact, S().g) = D((n),z)- We now determine
the bipartition p € %32,% where S(g (1n)) & Dy

For, 1 < r < n, S(g,r) only has one removable node, namely (r,1,2) where

res(r, 1,2) = kg +1—7 (mod e). So, exyr1-r : Z2-mod — Z2 | -mod is the only restric-
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tion functor which acts non-trivially on S(g (1r)) where €.y +1-+S(z,(17)) = S(g,17-1))-
Define the sgn-restriction functor to be eggn 1= €4, 0 €xy—1 0 -+ 0 €xyt 1y, With the

property that
Csgn : #2 -mod — Z -mod; esgnS(@,(17)) = S(2,2)-

We see that egg, is the only composition of restriction functors which acts non-trivially
on S(g (1)) Define the sgn-induction functor to be fsgn = fry+1-n 0 frg+2-n 00 fuy,
where

fsen : %{} -mod — %,/1\ -mod.

The sgn-induction functor acts non-trivially on S5 ); we determine the socle of fsnS(g,z)-

Definition 8.1. For a € N°, we write

o[ [ |2

that is, the weakly decreasing sequence of e — 1 integers that sum to a and differ by at

most 1.

We are now ready to give an explicit description of the e-regular bipartition p where

S(e,my) = Dy
Lemma 8.2. 1. Ifn <1, then S(®7(1n)) = D(@y(ln)).
2. If n > 1, then S(@,(ln)) = D(({n—l}),(ll))'

Proof. Let 1 <7 < nand Sig (1ny) = D), for some bipartition p. By [BK2, Lemma 2.5],

‘%T[l\ ~J
e A Sz,(1m)) = esgnS(z,(17))-

For any r > 1, there is only one removable (k2 + 1 — r)-node of [(&,(1"))], so that
€ra+1-r5(g,(17)) = 1. Thus, by Corollary 1.44,

esgnS(g7(1n)) = S(@’(ln))vesgn & S(@7(1n))Vﬁ2+l7nVr€2+27n.,.VN2 & S(@VQ)

Define 17, (2,9) :=1h, 41 nThytoon - Thy (8,9). Since Sy (1ny) is irreducible, then
Sz, = DT;Lgn(z7@) by Proposition 1.50. To calculate 13, (&, @) we add n nodes to
[(@, @)] by successively adding the highest conormal node of e-residues ka, k2a—1, ..., Ko+
1 — n, respectively.

Firstly, we successively add the highest | conormal nodes of e-residues ko, ko —
1,...,ko — L+ 1, respectively. Since k1 = ky — [ (mod e), it is easy to see that (&, (1%))
has (kg — i)-signature +, corresponding to node (i 4+ 1,1, 2), for each i € {0,...,l — 1}.
Hence

Tllﬁz—l-i-l/l\flig—l-i-Q e Tflig (Q, @) = (@7 (11))
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In particular, if n < I, then we are done. So suppose that n > [.
We now successively add the highest e conormal nodes to (@, (1!)) of e-residue
k1,k1 — 1,...,K51 + 1, respectively. Notice that ((1%),(1")) has (k1 — 4)-signature +,

corresponding to node (i 4+ 1,1,1), for ¢ € {0,...,e — 1}, except in the following cases:

o The r;-signature of (&, (1!)) is ++, corresponding to nodes (1,1, 1) and (1+1,1,2),
respectively. Thus 1, (2, (11)) = ((1), (1}));

o The (k1 41+ 1)-signature of ((1¢71), (1%)) is ++, corresponding to (e —1,1,1) and
(1,2,2), respectively;

o The (k1+1)-signature of ((1¢7=1), (1%)) is ++—, corresponding to (1,2, 1), (e, 1,1)
and (I,1,2), respectively. Moreover, if [ = 0, then (1,2,2) is also a conormal
(k1 + 1)-node of ((1¢71), (14).

It follows that
TK1+1TI€1+2 cee Tm (Qa (1l)) = ((27 16_2)’ (1l))’

and so the first component of 1%, (&, @) has e — 1 rows.

We successively add the remaining nodes to the first component of ((2,1¢72), (1%)),

n
sgn
down each column from left to right. There are n — [ — r 4+ 1 nodes in

[Teen (@, 2\((1,1,2),...,(1,1,2)) U ((1,1,1),...,(r = 1,1,1))],

for all » € {1,...,e — 1}. Since there are e — 1 rows in the first component of u, there
(2,9). O

%‘WJ nodes in the rth row of the first component of 71

are L p

n
sgn

8.2 LEG AND ARM FUNCTORS

We construct two particular restriction (resp. induction) functors €legs €arm (resp. fieg,
farm) that are pivotal in determining the labels of the two distinct composition factors
of S((n—m),(1m)) for 1 < m < n —1. We define k to be the residue of n — 1 —1 modulo e,
so that k € {1,...,e —1}.

Let a4+ b=7r <nsuch that 1 <b < r —1. Then there are two removable nodes of
any Young diagram [((a), (1°))], namely (1,a,1) and (b, 1,2). If res(1,a,1) # res(b, 1,2),

then there are two distinct restriction functors
. A A
€res(1,a,1)s Cres(b,1,2) * ‘%r - ’%r—l’

corresponding to the two removable nodes of [((a), (1°))] of distinct e-residues. These
are the only functors that act non-trivially on S 1v)) Where €res(1,4,1)S((a),10)) =

S((afl),(lb)) and eres(b,l,Q)S((a),(lb)) = S((a)y(lb—l)). Whereas, if res(l,a, 1) = res(b,1,2)
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then there is one (divided power) restriction functor

(@) . gph A
eres(l,a,l) : ’%T - ‘@7"*2’
corresponding to the two removable nodes of [((a), (1°))] of equal e-residue. This is the
only functor that acts non—trivially on S((a),(lb)) where 652(1,@71)5(@),(1[’)) = S((a,1)7(1b—1)).
Notice that we lie in the former case if r # [ 4+ 2 (mod e).
We define

(67;1o...oeir)*;:firo...ofil and eilo"‘oeir3:€iro"'06i1~

For brevity, we write e; instead of e; .z, for i € Z. We now introduce the restriction

functors g;, g;, hi and h;, and their corresponding induction functors g5, g7 and fL;‘ and
hi

(2) —x (2)

gi =€, 0€_20--0€j120 €41, g; = f;_40oficeo---0 fixao fit1,
= . . (2) * _ p . ) (2)
Ji =€i110€;420 --0€,20¢; ", gi = fit10 fixa o0 figo fi74,
hi=e® oejino--0eg0e; hi = (z)of- o---0fi_g0f;

i = €;41 0 €42 €i—20€;—1, i — Jit+1 i+2 1—2 i—1,
7 (2) * (2)
hi=e;10ei 20 - -0e;120€ ], hi = fic10 firao---0 fiyao fi17.

One sees that each of the restriction functors g;, g;, h; and h; restrict an %’fl\-module

A
(n—e

0. Then g; restricts along the leg of [((n — m), (1™))] when i = k2 —m (mod e) by

S((n—m),(my) to an Z )—module as follows. Firstly, suppose that n — [ has e-residue

removing e — 1 nodes from its leg together with its hand node

Ira—mS(n—m),1m)) = S((n—m—1),(1m=e-1));

whereas, h; restricts along the arm of [((n — m), (1™))] when i = k3 —m (mod e) by

removing e — 1 nodes from its arm together with its foot node

s —mS((n=m), (1)) = S((n—m—e+1),(1m=1))-

Secondly, suppose that n — [ has e-residue 2. Then h; restricts along the leg of
[((n—m),(1™))] when i = ko —m (mod e) by removing e —1 nodes from its leg together
with its hand node

Pry—mS((n—m),(1m)) = S((n—m—1),(1m—c+1));

whereas, g; restricts along the arm of [((n —m), (1™))] when i = ko — m + 2 (mod e)

by removing e — 1 nodes from its arm together with its foot node

Gra—m+25((n—m),am)) = S((n—m—e+1),(1m-1))-
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Clearly, each of the induction functors g}, g7, Bf and A} induce an 2 -module to an

A

A
% (nte)

(n+e)
these functors is less straightforward.

-module. However, obtaining the labels of an Z -module by induction under

We have defined ¢; and h; to restrict S((n—m),(1m)) by successively removing nodes
from [((n —m), (1™))] that correspond to the consecutive e-residues in its arm. Thus,
we notice that the restriction of S((;,—m),(1m)) under g; and h; gives us Sy, where the arm
of X is larger than its leg. Whereas, under h; and g; we obtain S, where the leg of 1
is larger than its arm. These four restriction functors, coupled with their corresponding
induction functors, form the backbone of the two crucial functors required to determine
the labels of the composition factors of Specht modules indexed by hook bipartitions,

namely the leg functor and the arm functor of S,_m) 1m)).-

8.2.1 LEG FUNCTORS

We require the following specific functors in order to define the leg functor and its
variations. Restricting along the remaining nodes left in the leg of [((n — m), (1™))],

when its leg is substantially longer than its arm, we obtain the restriction functor
remleg, 1= €4, 0 €xy—10 "0 €xy_m+1,
consisting only of i-restriction functors, where
remleg,, : %T/L\ -mod — %{}I_m) -mod, remleg,,, S((n—m),(1m)) = S((n-m),2)-

We set remleg, = id. Its corresponding induction functor is remleg), = fuiy—m+10---0

ffiz—l © friz .
Further, restricting along the last k—1 nodes in the end of the leg of [((n—m), (1™))],

we obtain the restriction functor
endleg 1= €4, mik—10 """ 0 €ryt2—m O €rgtlom,
consisting only of i-restriction functors, where
endleg : Z2 -mod — %(/:L—k‘-i-l) -mod, endleg S((n—m),1m)) = S((n-m),(am—k+1y)-

If £ < 2, then we set endleg = id. Its corresponding induction functor is endleg* =

fng—&—l—m o f52+2—m 0--+0 fn27m+k71-

8.2.2 'THE MAIN LEG FUNCTOR

We define the first main functor to be the composition of at most m restriction functors
corresponding to the increasing e-residues of nodes in the leg of [((n —m), (1"))], from

bottom to top. We call this functor the leg restriction functor of Si—pm) 1my), written
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as eleg. Informally, eeg acts on S((,—m),(1m)) by successively evaluating the residue of
each node up the leg of ((n —m), (1™)), starting at its foot node. For each node A in

its leg with residue ¢, we either apply

¢ the corresponding functor e; if the respective hand node does not have residue i,

¢ or the corresponding divided power 652) if the respective hand node also has residue
i.

The former functor only removes node A, whilst the latter functor removes the respective
hand node too. We continue this algorithm until we have removed every node from the
leg of ((n —m), (1™)).

We first consider a special case of the main leg functor, the small leg functor, denoted
€smlleg- For m < k — 1, no node in the leg of ((n —m), (1)) shares the same e-residue
as its hand node. Thus, we define the small leg functor to be the composition of m

j-restriction functors as follows

€smlleg ‘= €kg O €ko—1 0" * Exotl—m-

For m > k — 1, we introduce four main functors dependent on if n =1+ 1 (mod e) or
not, and depending on the bounds of m. We will see by the construction of this functor
that the boundaries for m are strictly distinct for the two cases n =1+ 1 (mod e) and
n #Z 1+ 1 (mod e), so we write these cases separately. We will observe that by applying
the main arm functor to S((,—m),1m)), for n = [+ 1 (mod e), we remove at most
nodes from the arm of [((n — m),(1™))], and thus we define different functors when

the leg of ((n —m), (1)) contains at most n — 2

nodes and when its leg contains at
least n — 2 + 1 nodes. However, for n # [ +1 (mod e), the main arm functor acts on
S((n—m),(1m)) by removing at most % + 1 nodes from the arm of [((n —m), (1™))], and
hence we introduce different functors when the leg of ((n —m), (1™)) contains at most

n — % — 1 nodes and when its leg contains at least n — 2 nodes.

n

8.2.2.1 THE MAIN LEG FUNCTOR WHENn =0+ 1 (mode) ANDI <m <n—2

e

In this case, we define the main leg functor to have the property that
Clog : Z) -mod — Z#» -mod
leg - #n n—m—|(m—1)/(e—1)]| ’

where

€legS((n—m),(1m)) = S((n—m—[(m-1)/(e-1)]),2)"

We construct this leg restriction functor of S((,_m),1m)) as follows. By removing the
last node in the leg of [((n — m),(1™))], we obtain the restriction functor e,,ti—m :
ZD -mod — %;/L\_l -mod with the property that

€ra+1-mS((n—m),(1m)) = S((n—m),(1m-1))-
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Suppose we successively remove nodes corresponding to the e-residues of nodes in the
leg of [((n —m), (1™~1))], from bottom to top. Observe that every (e — 1)th node we
remove from its leg shares the same e-residue of the removable node in its arm. Thus,

removing nodes successively up the leg corresponds to restricting under the functor

A

gﬁ27m+171' . %([}H—(l—z)e—l) —HlOd — %(n—ze—l) —mOd,

with the property that
Gz =m+1=i5 (nm—it1), (1m0 1) = S((noni) (1mHiG--1)),

for 0 < i < [(m—e)/(e—1)]. Finally, we obtain the following restriction functor by

removing the remaining m + (1 —e) [(m —1)/(e —1)| — 1 nodes in its leg

. g A
I‘emlegmfef(efl) L(’H’L7€)/(671)J . %n—l—eL(m—l)/(e—l)J —mOd % %n—m—L(m—l)/(e—l)j —mOd,

where

reHﬂeg(m—e—(e—l)L(m—e)/(e—l)J) S((n_m_ Lm_1J>, <1m1+(1e) {%J ))

Thus, by taking a composition of these functors we obtain the leg functor

Cleg := Temleg,,_c_(c—1)|(m—e)/(e~1)| ®ra—mt+1-|(m—e)/(e~1)] © "

© O 0ka—m © Gko—m+1 © Exg—m+1-

Example 8.3. Let e = 3, K = (0,2). We evaluate the restriction functor e =
remj 0gs © gg © €g = €3 O e1® o ep o es® oey 0y, where Cleg %’{\2 -mod — ;@f -mod
such that e1egS((6),(16)) = S(a),2)- Each restriction functor corresponds to removing at
most two removable nodes from our Young diagram; these removable nodes are shaded
in the following diagrams. Observing the e-residues of [((6), (1°))], node (6,1,2) at the
end of its leg has e-residue 0. So, restricting S 16)) by eo corresponds to removing
node (6,1,2) from [((6), (1%))]

of1]2]of1][2]—==[0]1][2][0]1]2]
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that is, eoS((6),(16)) = S((6),(15))- By the definition of the functor go, we remove e — 1
nodes in the leg of [((6), (1°))] together with the node at the end of its arm

(2)
go:[0]1]2]0]1]2]"[o]1]2]o1 Bl —— [o[1]2]o]1]

0] 0] 0]

2]

that is, goS(),(15)) = S((5),(13))- Simalarly, restricting S((s) (13)) under g corresponds to

removing two nodes from the leg of [((6), (1°))] and one node from its arm

(2)
g :[0]1]2]0[1] > [0]1]2[o il —— [o]1]2]0]

that is, g25((5),(13)) = S((4),(1))- One sees there is a single node remaining in the leg of

[S((a),(1))]: so restricting S((4) (1)) under rem; we have

ol1][2]o]—=[0][1]2]0]
2 @
that is, remy S((4),(1)) = S((4),2), as we wanted.

Using the induction functor g/, we now introduce the leg induction functor of

S((n—m),(lm))a written flega to be

* *
fleg = fnz—m—i-log;@ferl ©Gko—m© """

1O Gy 1 (me)/(e-1)) © TG o (e-1) (m-1)/(e-1)) -

By the definition of the leg restriction functor above, one deduces that

remleg s —e—(e—1) (m—e)/te=1)) 5 (n-m-| 2=L]) ) = S((nmLmID <1m6(81)w_fj)> |

8.2.2.2 THE MAIN LEG FUNCTOR WHEN n =1[+1 (mod e) AND n —2 <m <

n—1

We similarly define the leg restriction functor of S,y 1m)) to be

€leg 1= remlegem+n(1_e)_1 OFko—n+2 9 " O Grkg—m © Gra—m+1 © €xg—m+1,
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with the property that
€leg - %ﬁ -mod — %6\ -mod, elegS((n,m),(lm)) = S(g’@).

One notices there are precisely n—m divided powers of two functors in this definition,
and hence, as we restrict up the leg of [((n —m), (1))], we remove each node in its arm.

We induce Sz g to an ZM-module under the leg induction functor

L * * * *
fleg = fﬂ2—m+1 ©0ko—m+1°ko—m © """ ©YGky—n+2° remlegem+n(176)71 .

Example 8.4. Set e = 3, k = (0,2) and n = 12, as in the previous example, and

evaluate elegS((3)7(19)). We can check that

o - (o) o (100) o (§100)
leg = remlegyogiogaogpoeg =ez0eq ey oez)o(ef oep)oley oer)oeg.

[a

We claim that eieg restricts S 19)) to the R, -module S(z,0)- Clearly, eoS((3),19))
S(3).a%))- Applying go to S((s) asy) we have

(2)
go:[0]1]2] % [o]1 Bl ——[0]1],

[o]=[re]o[=]w]

- DRRNCEN
B o[~ [>[o]~]~]

50 g0S((3),(18)) = S((2),(16))- Now applying g2 we have

g2 0] 1]

Bl =[]~ I
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50 925((2),(16)) = S((1),(14))- Now applying g1 we have

@
.>—>®

50 g15((1),(14)) = S(@,12))- Finally, applying remlegy we have

remleg, : @ 5 @ 2 @,
. -
so remlegy S (12)) = S(g,2), and hence elegS((3),(19)) = S(z,0) a5 we wanted.

8.2.2.3 THE MAIN LEG FUNCTOR WHEN n %[+ 1 (mod e) AND I <m <n—2=2

e

In this case, we define the main leg functor to have the property that

eleg % -mod — %A \_(m—i—e—k—l)/(e—l)] -mod,

n—m-—

where

€legS((nfm),(lm)) = S((nfmf {MD@) :

e—1
We construct this leg restriction functor as follows.
Firstly, under endleg, S((,—m),(1m)) is restricted to the %( Hl)—module S((n=m),(1m—k+1))-

Now removing nodes successively up the leg corresponds to restricting under the functor
h RN , -mod — ZA .y -mod
ke—m+k—i + H(pn_k4+1—(i—1)e) (n—k+1—ie) ’

where

2

BI{Q7m+k7is((n_m+1_i),(1m—k—(i—l)(e—1)+1)) S((n_m_i)’(lm—k—i(e—l)-kl)) y

for 1 <i< |(m—k)/(e—1)]. Observe that the hand node and foot of [((n —m — [(m —
k)/(e—1)]), (1 k+i=(e=Dlm=k)/(e=D]))] share e-residue kg —m~+k+(e—1)| (m—k)/(e—
1) ], so under €,y k4 (e—1)|(m—k)/(e—1)] We restrict to the %&Jgiet(mik)/(efl”)-module

Finally, by restricting along the remaining nodes in the leg by remleg,, 11— (c—1)|(m—k)/(e-1)))
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we restrict this Specht module to the %T/L‘_m_L(mﬂ_k_l)/(e_m—module

S +e—k—1 )
(=[5 1) 2)
as expected. Thus, by taking a composition of these restriction functors we define
Clog 1= TeMICE; 11 (c1)|j/(e~1)] ©Cha—ji+(e—1)i/(e~1)] Py —j—ji/(e—1)] © "
<o-0 hfw,j,Q o hfw,j,l o endleg,
where j = m — k.

Example 8.5. Let e = 3 and k = (0,0). We apply the restriction functor e =

remleg, oegohgohyoendleg to S((6)7(15)). One can check that ejeg = 682) 0620652) oeooeg).

We claim that eiegS((s),(15)) = S((3),2)- We first observe that h1S(e),15)) = S((s),019))

(2)
ha:[0[1]2[0] 1B ——[o]1]2]o[1] [o]1]2]0]1]

[o[=[r]=]

Applying hg to S((5),13)), we have
_ o) .
ho:[0[1]2]0 [ll——[0[1]2][0]=~[0]1][2]0]
0] 0]

S0 EOS((5)7(13)) = S((4),1))- Finally, if we apply e(()z) to S((4),(1)), then we have the mapping

@)
——[0]1]2]
0] %)

so that 682)5((4)7(1)) = 5((3),2), as we wanted.

8.2.2.4 THE MAIN LEG FUNCTOR WHEN n Z [+ 1 (mod e) AND n — 2 < m <

n—1

Similarly to the previous case, we define the leg restriction functor to be

Cleg ‘= remlege(m—n)+n—k+1 ohlﬂ—l ©---0 hnzfmeJrk © h,{2,m,1+k o endleg,
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which has the property that
Cleg -— %n —IIlOdA — %{) —modA, elegS((n,m%(lm)) = S(@@).

Example 8.6. We set e = 3 k = (0,0) and n = 11, as in the previous example. We

evaluate eegS((3),(18)). One can check that

€leg = remleg, ohg o hg o hy o endleg = e 0 eg © <61 o 6(()2)) o (62 o e§2)) o (60 o eg2)> .

We claim that ejeg Testricts S(z) 13y to the %{)\-module S(@,2)- Applying hy to S(3),(1%))

we have

@)
hy: [0 1JB—— [0]1]+ [0]1],

ENERSE

o[=[w]o] [

S0 BOS((Q)’OS)) = S((1)7(14)). Now applyz'ng BQ to S((1)7(16)) we have

e

Bg:.|0—>®|—>®,

o] o
2] [2]
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S0 BQS((1)7(14)) = S(z,12))- Finally, applying remlegy to S(g (12)) we have

remleg, : @ V2 & % @,

L

so remlegy S (12)) = S(g,2), and hence elegS((3),(18)) = S(z,0) a5 we wanted.

8.2.3 THE FIRST VARIATION OF THE LEG FUNCTOR

The leg restriction functor corresponds to the increasing e-residues in the leg of [((n —
m), (1™))], from bottom to top. Restricting S((,—m),1m)) under this leg functor, cer-
tain nodes are also removed from the first component of [((n — m), (1™))]. Supposing
that we remove one less node from the first component of [((n — m), (1™))], restrict-
ing S((n—m),(1m)) in the same fashion as ejeg, brings us to the first variation of the leg

restriction functor, written as €jeg.

8.2.3.1 THE FIRST VARIATION OF THE LEG FUNCTOR WHEN n = [+ 1 (mod e)

The first variation of the leg functor is only defined in this case forn — 2 <m <n — 1.
We define this functor to be

Cleg ‘= I'enﬂegm—(efl)(nfmfl)fl O0ks—n+3° """ O 0kys—m © Gro—m+1 © €xo—m-+1,

where

6/1% : %711\ -mod — %{X -mod, @S((n—m),(lm)) = S((l)@).

Example 8.7. As in Example 8.4, we set e = 3, k = (0,2), and evaluate €15 S((3),(19))-
One can check that

— 2 2
€leg = remleg, 0go 0 gg 0 €9 = €20 €1 0 € 0 €3 © (eg ) 060> o <eé ) oel> 0 ep.

~

We claim that 6/1%5((3),(19)) = S((l),®)~ By Example 8.4, we have g2 o gg o 605((3),(19))
S((l),(14))- Applying remleg, to S((1)7(14)) we have

0]+ (0]
h

so remlegy S((1),14)) = S((1),2), as we claimed.

remleg, :

o),
o
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8.2.3.2 THE FIRST VARIATION OF THE LEG FUNCTOR WHEN n # [+ 1 (mod e)

In this case, the first variation of the leg functor is only defined for n — 2 <m <n — 1.
We define this functor to be

Cleg ‘= remlege(m—n—i—l)—i—n—k‘ Ohl‘ﬂ o h1€1+1 ©---0 h,{Q,m,1+k o endleg,

where

Cleg 1 Z -mod — 71 -mod, ez S((n_m),(1m)) = S((1),0)-

Example 8.8. We set e = 3 and x = (0,0) as in Ezample 8.6, and we evaluate
€legS((3),(18))- One can check that

€leg = remleg, ohg o hy o endleg = egoez0eg 0ego (62 o 652)) o (eo o eg)) .

We claim that 6/1;5((3),(18)) = S((l)yg). By Example 8.6, we have EooﬁloendlegS((3)7(1g)) o
S((l),(14))- Applying remleg, to S((1)7(14)) we have

remlegp@&@@@&@& @,

T

so remlegy S((3),(18)) = S((1),2) as we wanted.

8.2.4 'THE SECOND VARIATION OF THE LEG FUNCTOR

Suppose that n =1+ 1 (mod e) and k2 = k1 — 1 (mod e). Then the second variation of
the leg restriction functor of S((,_,),(1m)) is formed by first removing node (1,7 —m, 1),

then restricting in the same fashion as ejo, without removing node (1,1,1).

8.2.4.1 THE SECOND VARIATION OF THE LEG FUNCTOR FOR g <m<n-— g

We define the second variation of the leg functor to be

Clog 1= remleg,, (c—1)[m/(e—1)] ©9ra—m+1—[m/(e~1)] © *** © Gra—m—1 © Grz—m © €xz—m;

where

eleg : %,;/7/\ -mod — %&7mflftm/(efln) —I’Ilod7

Cleg 7 S((n—m),(1m)) = S((n-m—1—|m/(e~1)]),2)-

Example 8.9. We sete = 3, k = (0,2) as in Ezample 8.3, and we evaluate eieg S (g),(16))-
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One can check that

= - (ea)e (o) (o)
leg = remlegpogp 0 g1 ©gaoeg = (€5 0e€1) 0 |€ey O0€z) O (e Oeq| Oeg,

and claim that eiegS((6),(16)) = S((2),0)- Clearly, by removing the hand node of ((6), (1%))
we have 625’((6)’(16)) = S((5)7(16)). Applyz'ng g2 to S((5)7(16)) we have

(2)
g2:[0]1]2[0]1] % [o]1]2]0 il —— [o0]1]2]0],

50 925((5),(16)) = S((4),(11))- Now applying g1 we have

(2)
g :[0]1]2]0]~= [0]1]2 |8 —— [o]1]2]

50 915((4),(14)) = 5((3),(12))- Now applying go we have

(2)
go:[0[1]2] - [o]1 Bl —— [o0]1]
-

50 g0S((3),(12)) = S((2),0) as we wanted.

8.2.4.2 THE SECOND VARIATION OF THE LEG FUNCTOR FOR n—-<ms<n— 2

We define the functor ey by

€leg = remleg(,,_9)(1_c)tem O9ra—n+3 © O Gra—m—1 © Gry—m © €xy—m,

where

1

Cleg - %T/L\ -mod — %{X —IIlOd, él\eéS((nfm),(lm)) S((l),@)-

Example 8.10. We set e =3, k = (0,2) as in Example 8.4, and evaluate eegS((3),(19))-
One checks that

— 2
eleg:remleg10g20622620610600620610600620<6g)060)062,
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and claim that eiegS((3),(19)) = S((1),)- By removing the hand node of ((3), (19)) we have
€25((3),(19)) = S((2),(19))- Now applying g2 we have

(2)

go b—e—0—>

[e[o]=]e[o]=we] [

B[]~ ][]~ ﬁ

B —[2[o]~e]o[=]v] E

50 925((2),(19)) = S((1),(17))- Finally, applying remleg; we have

remlegy :[ 0]~ [0] = [0] = [0] = [0] = [0] =

0 (o],
S

. RSN

so remlegy S((1),(17)) = S((1),2) @8 we wanted.

8.2.5 ARM FUNCTORS

The arm functors of a Specht module labelled by a hook-bipartition ((n —m), (1™))
are a composition of functors, where each functor corresponds to a node in the arm of
((n —m), (1™)). We first introduce specific functors necessary to define the main arm
functor and its variations.

When the arm of a hook bipartition ((n —m), (1)) is substantially larger than its

leg, we define the restriction functor
remarily, = €xq O €141 0 "+ O €x4+m—2 © €xy+m—1,
where
remarmy, : Zn-mod — Z(,_my,)-mod,  remarmy, S((y),(1n-m)) = S(g,(1n-m)).-

We set remarmg = id.

We define its corresponding induction functor to be remarm’, = fi,+m—10 fx;+m—20°
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0 fffl-‘rl °© fﬁl'
By restricting along the last £ — 1 nodes in the end of the arm of [((n —m), (1))],

we define the restriction functor
endarm = €y, 42 0+ O €xymtk—1 O €xy—mtks
where
endarm : %, -mod — Z(,_g+1)-mod, endarmS((,—m),(1m)) = S((nom),(1m-F+1))-

If k < 2, then we set endarm = id.

We define its corresponding induction functor to be endarm® = fi, 4% fry—m+k—10

...0 fn27m+2-

8.2.6 THE MAIN ARM FUNCTOR

We define the second main functor to be the composition of at most n — m restriction
functors corresponding to the decreasing e-residues in the arm of [((n —m), (1™))], from
right to left. We call this functor the arm restriction functor of S((n—_m),1m)), written
as €arm. Informally, we can think of e,m as acting as the of ‘dual’ functor to ejeg on
S((n—m),(1m))- That is, eam acts by successively evaluating the residue of each node
along the arm of ((n —m), (1™)) from its hand node. For each node A in its arm with

residue i, we either apply

¢ the corresponding functor e; if the respective foot node does not have residue i,

(2)

¢ or the corresponding divided power e, if the respective foot node also has residue

i.

The former functor only removes node A, whilst the latter functor removes the respective
foot node too. We continue this algorithm until we have removed every node from the
arm of ((n —m), (1™)).

Similar to the small leg functor, we introduce the small arm functor, a special case
of the main arm functor. For m > n — k + 1, no node in the arm of ((n —m), (1™))
shares the same e-residue as its foot node. So, we define the small leg functor, denoted

by esmiarm, to be the composition of n — m i-restriction functors as follows

€smlarm = €x1 © €xk14+1 09 " O €xi4+n—m—1-

Now suppose that m < n—k+ 1. Then similarly to the main leg functor, we
introduce four main arm functors dependent on if n =1+ 1 (mod e) or not, as well as

depending on the bounds of m.
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8.2.6.1 THE MAIN ARM FUNCTOR WHEN n=1[+1 (mode) AND1 <m <2

e

We define the main arm functor in this case to have the property that
72 A ~
€arm - ‘%n -mod — 9?0 -mod, earmS((n_m)’(lm)) = S(@’@)

where this arm restriction functor of S((;,—_m),(1m)) is constructed as follows. By removing

the last node in the arm of [((n — m), (1™))], we obtain the restriction functor
Cro—m * %;} -mod — %(/}171) -mod, el@z—mS((n—m),(lm)) = S((n—m—l),(lm))'

Suppose we successively remove nodes corresponding to the e-residues of nodes in the
arm of [((n —m — 1), (1™))], from right to left. Observe that every (e — 1)th node we
remove from its arm shares the same e-residue of the removable node in its leg. Thus,

removing nodes successively along the arm corresponds to restricting under the functor
h B . -mod — Z» _. -mod
ke—m—14i - HZ(n4(1—i)e—1) (n—ie—1)

where

Psam—14i5((n—mt (1= 1) (1) -1), (1 =+1)) = S(m-m-+i(1-e)-1),(17 )

for all 1 < ¢ < m. Finally, by removing the remaining n — em — 1 nodes in its arm we

obtain the restriction functor
remarmy, _em—1 %&%mfl) -mod — t@é\ -mod, Temarmy,—em—1S((n—em—1),2) = S(2,0)-
Thus, by taking a composition of these functors we obtain the arm functor

€arm = T€Marmy_em—10R,—1 00 Rky—mt1 0 Ryy—m O €xym.

8.2.6.2 'THE MAIN ARM FUNCTOR WHEN n = [+ 1 (mod e) AND z<m<n—1

In this case, we construct the arm restriction functor of S((;,—p),(1m)) to have the property
that
Carm %T/L\ -mod — %ﬁ_t(n_m_l)/(e_m -mod,

where

6armS((nfm),(17")) = S( < m{nmllJ)) .
a,|1 €—

Firstly, by removing the last node in the arm of [((n —m), (1™))], we have

€ra—mS((n—m),1m)) = S((n-m—1),(1m))-
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Again, removing nodes successively along the arm corresponds to restricting under the

functor Ay, —pm—i, which restricts S((,—m(i—1(1—e)—1),(1m—i+1)) to the R -module

(n—ie—1)
S((n=m+i(1—e)—1),(1m-1y) for 1 <i < [(n —m —1)/(e — 1)]. Finally, if welet | = n—m—1,

then by removing the remaining | + (1 —¢) [{/(e — 1)] nodes in its arm we obtain the
restriction functor
7\ A
remarml,(efl) Ll/(E*l)J : ‘@(nflfetl/(efl)J) -mod — %(mi U/(efl)J) -mod
where
remarm;_ (e 1)(i/(e—1)] S((H—(l—e) [1/(e=1)]),(1m—Lie=D])) = S(zy(lmftl/(efl)J)).
Thus, by taking a composition of these functors we obtain the arm functor

€arm ‘= TEMAIM_ (¢ 1)[1/(e—1)] “Pey—m—1+4[1/(e~1)] © " © Nsg—m+1 © Mgy —m © €xp—m.-

8.2.6.3 THE MAIN ARM FUNCTOR WHEN n # [+ 1 (mod e) AND 1 < m <

o3

For this case, we define the main arm functor by
€arm 1= T€MAIM (, _f 41— em) Oka+1 O *** © Jry—m+3 O Grg—m~+2 O endarm,

with the property that

I

€Carm - t@é\ -mod — e@é\ —mod, earmS((n_m),(lm)) S(@7@)-

We leave the details of the construction of this functor to the reader.

8.2.6.4 THE MAIN ARM FUNCTOR WHEN n # [+ 1 (mod e) AND 2 <m <n —1

In the fourth case, the main arm functor is defined to be

€arm 1= TEMAIM; 49 (e—1)|j/(e—1)] €ri+j+1—(e—1)[j/(e—1)] © Tra—m+1+[j/(e=1)] © "~

“** 0 Jhg—m+3 © Jry—m+2 © endarm,
where j =n —m — k — 1, satisfying
Carm : Z -mod — '%é}n—l—Lj/(e—l)J) -mod,  €armS((n—m),(1m)) = S(g,(1m-1-Li/(c~1]))-
Again, we leave the reader to understand its construction.

8.2.7 'THE FIRST VARIATION OF THE ARM FUNCTOR

We can similarly think of the first variation of the arm functor e, as the ‘dual’ functor

of the first variation of the leg functor in the following sense.
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The arm restriction functor corresponds to the decreasing e-residues along the arm
of [((n —m), (1™))] from right to left. Restricting S(,—m),1m)) under this arm functor,
certain nodes are also removed from the second component of [((n — m), (1™))]. Sup-
posing that we remove one less node from the second component of [((n — m), (1™))],
restricting S((y—m),(1m)) in the same fashion as eam, brings us to the first variation of

the arm restriction functor, written as €am.

8.2.7.1 THE FIRST VARIATION OF THE ARM FUNCTOR WHEN n = [+ 1 (mod e)

The following variation of the arm functor is only defined for 1 < m < %

€arm ‘= Ie€Marilly, 4 ¢(1—m)—2 Oh5272 ©:--0 hmgferl © h,$2,m O €ko—m,

where
e;;n : %7/: -mod — %{X -mod, (B/a;nS((n_m)7(1m)) = S(&(l))-
8.2.7.2 'THE FIRST VARIATION OF THE ARM FUNCTOR WHEN n # [+ 1 (mod e)

In this case, for 1 < m < 2, we define the first variation of the arm functor to be

€arm 1= T€MAIMy, 4t o(1—m) kg © " * © Grg—m+3 © Jrg—m+2 © endarm,

where

efa;l : %7/1\ -mod — %{\ -mod, e/a;nS((n_lim)) = S(@,(l))-

8.2.8 THE SECOND VARIATION OF THE ARM FUNCTOR

Let n=1+1 (mod e) and k3 = k1 — 1 (mod e). Again, we view this second variation
of the arm functor earm as the ‘dual’ to the second variation of the leg functor ejeg in
the following sense.

We form the second variation of the arm restriction functor of S, 1m)) by first
removing its foot node (m, 1, 2), and then restricting in the same fashion as eayp,, without

removing node (1,1, 2).

8.2.8.1 THE SECOND VARIATION OF THE ARM FUNCTOR WHEN 2 < m < g

We define the second variation of the arm functor in this case to be

Carm ‘= IC€MAarilly 4 ¢(2—m)—2 Ohy—2 0+ 0 Ny 2 m © Py t1—m © €xytr1—m,

where

eaf;r/n : e@é\ -mod — %{X -mod, efa;r/nS((n_m)’(lm)) = S((@7(1)).
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8.2.8.2 THE SECOND VARIATION OF THE ARM FUNCTOR WHEN % <m<n— f

In this case, the second variation of the arm functor is defined to be

Carm 1= T€MAIM, _py_(e—1)| (n—m)(e—1)| OPro—m+|(n—m)(e=1)] © " *

c++ 0 hli2+27m o hnnglfm O €xo+1—m>

where

€arm * %7/1\ -mod — *@7[7\1—1—L(n—m)/(6—1ﬂ -mod

€arm F S((n_m)7(1m)) = S(g’(lmflfL(nfm)/(efl)J)).
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CHAPTER 9

LABELLING THE COMPOSITION
FACTORS OF S((j,_pp) (1m))

We draw on the arm and leg functors defined in Section 8.2 to find all of the irre-
ducible labels A\ € #2272 of %#2-modules that factor Specht modules labelled by hook

bipartitions. Recall that [ is the residue of k3 — k1 modulo e.

9.1 LABELLING THE COMPOSITION FACTORS OF
S((n—m),(my) FOR k3 # k1 — 1 (mod e)

Let ko # k1 — 1 (mod e) throughout this section.
Forn # 1+ 1 (mod e), we recall from Theorem 7.8 that S((;,—m),1m)) is an irreducible
Z2-module, that is, S((n—m),(1my) = D) for some bipartition A € R

Definition 9.1. Letn #1041 (mod e). For 1 < m < n —1, we define

((n—m), (1™)) ifl<m<l+1<e—1,
pnm = (n—=m,{m —1—1}),(1"))  fl+1<m<n-2,
({m—=1},n—m—1),1")) ifn-2<m<n—1.
We claim that A\ = fiy, p,, for 1 < m < n —1. Now observe that the irreducible la-
bel A can be obtained either by applying the restriction functor eje; from Sections 8.2.2.3

and 8.2.2.4, or the restriction functor earm from Sections 8.2.6.3 and 8.2.6.4, 10 S((n—m),(1m))»

together with their respective induction functors.
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Example 9.2. Lete = 3, k = (0,0). Observe that S(4),4)) has the following 3-residues

0]1]2]o}
0]
0]

We have earmS((a),(11)) = S(z,12)) & D((12),2), by Lemma 8.2, where eam = €g © eg )

es 0682) and elegS((4) (14)) = S((Q) 2) = D(2),0) where ejeg = € oeg) oeq oe( ) Notice that
as the arm and leg are of the same length, the arm and leg functors of S((4) 1)) are of
the same length, hence neither are simpler to apply to S((4) 14))- Firstly, applymg farm

to D((12),z), we have

0] 4 [0] 25 [0]

o @

0]

so that S(4),14)) = D(,2,1),0) = Duss- Now, applying fieg to D((2) z), we check that we
obtain the same label, i34

(2)
1]2]~~

DRESORENOn BN 1]2

0 0

2

Z 0] o) [1]
0] 0]

For n = [+1 (mode) and 1 < m < n—1, we recall from Theorem 7.11 that

S((n—m),(1m)) has two composition factors, namely im(yy,—1) and im (7, ). Thus, im (7, 1) =

Dy and im(v,,) = D,, for some bipartitions \, u € Z22.

Definition 9.3. Letn =141 (mod e). For 0 < m < n — 1, we define

[((n—m), (™)) fo<m<l+1,

((n—m,{m—1-1}), (1)) ifl+1<m<n—-12,
i = ({m=14+1},n—m=2),(1")) fn-2<m<n-2,

({n—1}), (1Y) ifm=n—1.

\

Notice that pipm—1 and p, ., are distinct. We claim that the two labels A,y of the
composition factors of S((,_y,),(1m)) are, in fact, pin m—1 and iy m, respectively, and hence
that these factors are non-isomorphic. We also claim that these labels are obtained by

independently applying the arm functor e,y from Sections 8.2.6.1 and 8.2.6.2, and the
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leg functor ejeg from Sections 8.2.6.1 and 8.2.6.2, to S((—m),(1m)), together with their

respective induction functors.

Example 9.4. Lete = 3, k = (0,0). Observe that S(s),14)) has the following 3-residues

ol1]2]of1]2]

We have earmS((ﬁ)’(ﬂ)) & S,a2) & S((lz),@) where €ym = €g © e?) 0eg9 0 6(()2) 0e1 0 ey

and €elegS((6),14)) = S((5),2) = D((5),0) where eleg = €0 © e§2) oeyoey. Applying fam to

D12),0), we have

@)
mmm REN
Bl

1
0 1]

16}

1 2[00 [o]1]2]0[1 B,

@ ‘HMO

0

2

1
50 D62,1),(1)) = Dpioa s a composition factor of S 4)).- Now, applying fieg to
S((6),(14))7 we have

(2)
fo1]2]o]1]% o]t 201201 2 o] 1 ]@ L - -

Z [0]

0]

e

1[2[o[1]2 @I,

1[2]0]1]2]>

0
12
|1

0
2
50 D((7.12),(1)) = Dpyo 5 18 the second composition factor of S, 14y)-

We require the following combinatorial result in order to confirm our claims.

Lemma 9.5. 1. Ifn=1 (mod e), then
Hn,m Tng—m: Hn+1,m- (911)

2. Ifn #1 (mod e), then
Hnm Tho—m= Hnt1m1- (9.1.2)
Proof. (i) Let 1 < m <141 < e—1. Observe that [((n — m), (1"))] has addable
(kg — m)-node (m + 1,1,2), as well as (1,n —m + 1,1) if n = [ (mod e), and
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has removable (k2 — m)-node (1,n —m,1) if n = [+ 1 (mod e). We note that
addable nodes (2,1, 1) and (1,2,2) cannot have residue k3 —m as m < 1+ 1. So,

if n =1 (mod e) then ((n —m), (1™)) has (k2 — m)-signature ++, corresponding
to conormal nodes (1,n —m + 1,1) and (m + 1,1,2). Adding the higher of these

conormal nodes, we have

Mnm Tho—m= ((n —m), (1™) Thy—m= ((n —m +1),(1™)) = Hn+1,m-

However, if n =141 (mod e) then ((n — m), (1™)) has (k2 — m)-signature —+,
and if n — kg + k1 0,1 (mod e) then ((n —m), (1)) has (k2 — m)-signature +.

The conormal node in each sequence is (m + 1,1,2), whereby adding this node

gives

pngm Trg—m= ((n = m), (1)) Tey—m= ((n = m), A"*)) = pin41m1.

(i) Let I +1 < m < n— |2]. Observe that ((n —m,{m — 1 — 1}), (1'*1)) has the

following addable/removable (ko — m)-nodes

&

o

o

o

o

o

addable node (1,n —m +1,1) if n =1 (mod e),
removable node (1,n —m,1)if n=1+1 (mod e),

addable node at the end of the |(m+e—1—2)/(e—1)]|th column in the first

component,

addable node (e + 1,1, 1) and removable node (I +1,1,2) if m =1 (mod e),
addable node (1,2,2) if m = —1 (mod e),

addable node (I +2,1,2) if m =1+ 1 (mod e).

Suppose that n = [ (mod e). Then ((n —m,{m —1 —1}), (1)) has (ko — m)-

signature

o

o

o

&

+++—ifm=1 (mod e),
++++ifm=—-1 (mode) and l = e — 2,

+++ifm=-1 (mode)andl #e—2orm# —1 (mod e) and m=1+1
(mod e),

++ for all other cases.

Adding the highest conormal (k2 — m)-node in these sequences, (1,n —m + 1, 1),

we have

Mn,m Tm—m = ((n —m, {m —1- 1})7 <1l+1)) Tm—m
= ((n -—m+1, {m -1 - 1})7 (ll+l))

= Un+1,m-
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(iii)

Now, suppose that n = [ +1 (mod e). Then ((n —m,{m — 1 — 1}), (1**1)) has
(kg — m)-signature

o —++—if m=1 (mod e),

o —4+++ifm=-1 (mode)and l =e— 2,

o —++ifm=-1(mode)andl #e—2o0orm# —1 (mode) and m=1+1
(mod e),

o —+ for all other cases.
And, when n—1 # 0,1 (mod e), ((n—m, {m—1—1}), (1*1)) has (ko —m)-signature

o ++—if m=1 (mod e),
o +++ifm=-1 (mode)andl =e—2,

o ++ifm=-1 (mode)and | #e—2or m #Z —1 (mode) and m =1 +1
(mod e),

o + for all other cases.
So, for n #Z 1 (mod e), we observe that the highest conormal (k2 —m)-node in each

signature is the addable node lying at the bottom of the [(m+e—1—2)/(e—1)|th

column in the first component. Adding this node, we have

pnm Tho—m = ((n—m,{m —1-1}), (1l+1)) Tho—m
= ((n=m,{m—1}),a"")

= Un4+1,m+1-

Let m > n — [2]. Firstly, suppose that n # [+ 1 (mod e). Observe that (({m —
1},n —m —1),(1"1)) has the following addable/removable (ko — m)-nodes

o addable node at the bottom of the | (m +e—1—2)/(e —1)th column in the

first component,

¢ addable node (e,n —m,1) if n =1 (mod e),

o addable node (e + 1,1, 1) and removable node (I 4+ 1,1,2) if m =1 (mod e),

o addable node (1,2,2) if m = —1 (mod e),

o addable node (I +2,1,2) if m=1+1 (mod e).
For n = | (mod e), it follows that (({m — I},n —m — 1), (1"1)) has (kg — m)-
signature

o +++—if m=1 (mod e),

o ++++ifm=—-1 (mode)andl =e—2,

o 4+++ifm=-1(mode)andl #e—2o0orm# —1 (mode) and m=1+1
(mod e),
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o +-+ for all other cases.

For n —1# 0,1 (mod e), (e,n —m,1) is no longer an addable (k2 — m)-node, so
(({m —1},n —m — 1), (1't1)) has (kg — m)-signatures + + —, + + +, ++ and +.
So, for n # 141 (mod e), the highest conormal (k2 — m)-node in each (k2 —m)-
signature of (({m —I},n —m — 1), (1"*1)) is the addable node at the bottom of
the |[(m+e—1—2)/(e —1)|th column in the first component. Hence

finm Toa—m = ({m —1},n —m — 1), (1l+1)) Tha—m
=(({m—1+1},n—m—1), (1))

Hont1,m ifn=10 (mod e),

Pntimy1 fn—101%#0,1 (mod e).

Secondly, suppose that n =1+ 1 (mod e). Observe that ({m —{+1},n —m —
2), (171)) has the following addable or removable (k2 — m)-nodes
o addable node (e,n —m —1,1),
o addable node (e + 1,1, 1) and removable node (I 4+ 1,1,2) if m =1 (mod e),
o addable node (1,2,2) if m = —1 (mod e),
o addable node (I +2,1,2) if m =141 (mod e),
o the removable (k2 —m)-node at the bottom of the (|(m+e—1—1)/(e—1)])th

column in the first component.
Hence, (({m — 1+ 1},n —m — 2), (1*t1)) has (ky — m)-signature
o —++—if m=1 (mod e),
o —+++ifm=-1 (mode)and | =e — 2,

o —++ifm=-1 (mode)andl #e—20orm# —1 (mode) and m=1[1+1
(mod e),

o —- for all other cases.

The highest conormal (k2 — m)-node in each sequence is (e,n —m — 1,1), and

adding this node we have

Hn,m THZ*m = (({m -1+ 1}777’ —-—m— 2)’ (1l+1)) T@*m
= (({m—1+1},n—m—1), (117

= Un+1,m+1-

Theorem 9.6. Letn Z1+ 1 (mod e) and 1 < m <n—1. Then

S((n—m),amy) =D

Hn,m*
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Proof. We proceed by induction on n.

1. Suppose that n —1 # 2 (mod e). We obtain the irreducible label of S((,_p),(1m))
by first restricting it to an %{}_l—module by removing its foot node of residue
#2 +1—m modulo e, and then inducing up to an Z2-module by adding its highest
conormal (kg +1—m)-node. We have ejegS((n—1),(1)) = )
By Equation (9.1.2), ((n — 1),2) tx,= ((n — 1),(1)), and hence S(pn_1)1)) =
D (n-1),(1)) by Proposition 1.50.

Assuming that S(,—m),am-1)) = Dy, 4 ,, , for m > 1, then

Erat1=m (n—m),(1m)) = S((n-m),am=1)) = Dy 101+

By Proposition 1.50, and by S((,—m),(1m)) being an irreducible ZN-module,

S(n-m),(1m) = Dyt m—1tng—ms1 = Dyt
by Equation (9.1.2).

2. Suppose that n —1 =2 (mod e). We obtain the irreducible label of S((;,_m) (1m))
by first restricting it to an %’fl\_g—module by removing its hand node and its foot
node of residue k2 + 1 —m modulo e, and then inducing up to an :@fl\—module by
adding its two highest conormal (k2 + 1 — m)-nodes. We have €legS((n—1),(1)) =
9222)5((1171),(1)) = S((n-2),2)- By Equation (9.1.1) and Equation (9.1.2)), ((n —
2),9) 12,= ((n = 1),9) Ts,= ((n = 1),(1)). Hence S(m-1),1)) = D(n-1),1)) by
Proposition 1.50.

Assuming that S(,—m-1),am-1)) = Dy, 5, , for m > 1, then

@) ~ ~
Chy—mt19((n—m),(1m)) = S((n-m-1),am1)) = Dy 3 -

By Proposition 1.50, and by S((,—m),(1m)) being an irreducible ZN-module,

S((n=m),(1my) =D =D (Equation (9.1.1))

/anf2,m71)ri2,m+1 Mn—l,m—lTng—m-‘—l

=D (Equation (9.1.2)).

Hn,m

g

Theorem 9.7. Let 1 <m<n—1. Ifn=1+1 (mod e), then the composition factors

of S((n—m),(m)) are

D and D

Hn,m—1 Hn,m*

Moreover, D,,, . = im(vp).

Proof. We obtain the label of each of the two composition factors of a Specht module

indexed by a hook bipartition ((n —m), (1™)) by first restricting it to an %2 ;-module
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by either (1) removing its foot node of residue k2 +1 —m, or (2) by removing its hand
node of residue k9 — m, and then inducing up to an %’fl\—module by adding the highest

conormal node of residue k2 + 1 —m or kg — m, respectively.

1. By removing the foot node of [((n — m), (1™))], we have

€ra—m+15((n—m),(1m)) = S((n—m),(1m-1)),

and by Theorem 9.6, this is isomorphic to Dy, , ,,, ;. Equation (9.1.1), tn—1,m—14,, 41 =

pn,m—1. Then, by Proposition 1.50, D, ., is a composition factor of S((,—_m) (1m))-

2. By removing the hand node of [((n —m), (1™))], we have

Ery—mS((n—m),1m)) = S((n-m—1),(1m));

and by Theorem 9.6, this is isomorphic to Dy, _, .. By Equation (9.1.1), ttn—1m Try—m=

tn,m- Then, by Proposition 1.50, D is a composition factor of S((,—m),1m))-

Hn,m
Furthermore, from Theorem 7.11, we know that im(+;,—1) and im(~,,) must somehow

correspond to Dy, .., and D for 1 < m < n — 1. Moreover, im(7,,) is a composition

Hn,m>

factor of both S((—m),1m)) and S((n—m—1),(1m+1)), and hence must be isomorphic to
D

as required. O

Hn,m>

9.2 LABELLING THE COMPOSITION FACTORS OF
S((n-m),(1m)) FOR kg = K1 — 1 (mod e)

Let ko = k1 — 1 (mod e) throughout this section.
For n #2 0 (mode) and 1 < m < n—1, we recall from Proposition 7.13 that
S((n—m),(1m)) has two composition factors, namely im(xy,) and S(pm—m),1m))/im(xXm)-

Thus im(xm) = Dy and S(n—m),(1m))/ im(xm) = D,, for some bipartitions A, u € RP2.

Definition 9.8. Suppose that n £ 0 (mod €). For 1 < m < n—1, define

_ J((n—m,{m}),2) flr<m<n-—4,
finm = ({m+1}n—1-m),2) ifn—-2<m<n—1,
and
((n —m), (1)) flr<m<e,
pn2m+1 = § ((n —m,{m —e}), (2,1°72)) ife<m<n-—7%,
({m—e+1},n—1-m),(2,1°?) ifn—2<m<n—1

Notice that g, 2m and p, om41 are distinct. We claim that the labels A, 1 of the

two composition factors of S((,—m),(1m)) are pn2m and pin,2m+1, respectively, and hence
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that these factors are non-isomorphic. We also claim that these labels are obtained by
independently applying certain restriction functors to S((—m),(1m)), together with their

respective induction functors. In particular,
o if 1 <m < %, we apply €amm from Section 8.2.6.3 (or ejeg from Section 8.2.2.3) and
€arm from Section 8.2.7.2,

o if T <m <n—7, we apply €arm from Section 8.2.6.4 and ejeg from Section 8.2.2.3,

e’

o if n— % <m < n—1, we apply eam from Section 8.2.6.4 (or €leg from Sec-
tion 8.2.3.2) and ejeg from Section 8.2.2.4.

Example 9.9. Lete = 3, k = (0,2). Observe that S(s),12)) has the following 3-residues

of1]2]o]1]2]

(2) (2)

Now, earmS((6)7(12)) =~ S(@’@) = D(@,z) where earm = €9 0 €1 0e; Oeyo e O ey,
€egS((6),(12)) = S((5),2) = D((5).2), ad €armS((6),(12)) = S(2,(1)) = Dyo,(1)) where €am =
60061062060061 o en.

Applying farm to Dz gz, we have

(2)
2 &.A@.f@& 0[1]2]8
%)

%) %)

1[2[0 [ [oT1T2 o[ 18

0
12
1]

%]

50 D(5,12),27) = Dy 4 i a composition factor of S),12))- Now, applying fieg to D((5),2),

we have

1[2[0]1]2]

(2)
o[1l2lol1] L [of1 2 o1 B2 [0
2
o [
%)

1]

so either S((),(12)) has two composition factors isomorphic to Dy, or the same factor

s obtained by applying the arm and leg functor independently.
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Now, when we apply E;n to D g (1)), we have

o @l (ol o[ 1B 0] 1 ]2 8
(2)
I foTiT2[o @ % [0]1]2]0]1 B

Thus, D (),(12)) = Duss s a composition factor of S((),12)), and hence S) 12)) has

two non-isomorphic composition factors.

For n = 0 (mod e), we recall from Theorem 7.16 that S((,—y) (1m)) has four com-

position factors im(¢m,), Im(Pm41), ker(vm)/im(py,) and ker(vm+1)/im(ppm1) if 2 <
m < n— 2, and that S(,_1),1)) and S((),1n-1)) both three composition factors. Thus

im(¢,) & Dy, im(dm1) = Dy, ker(ym)/ im(ém) = D, and ker(ym+1)/ im(¢m+1) = Dy,
for some bipartitions \, u, v,n € ZP2.

Definition 9.10. Let n =0 (mod e). For 2 < m < n — 1, define

(n—m+1,{m—1}),9) if2<m<nf%,
Hn,2m =

({m+1},n—m—-1),@) ifn-2<m<n-—1,
and

((n—m+1),(171)) fr<m<e
Pnzmi1 =1 (n—m+1,{m—e—1}),(2,1°72)) ife<m<
({m—e+1},n—m—1),(2,1°72)) ifn—2<m<n—1.

e

n
'I’L—E,

We notice that iy 2m, fn2m+1, fn2mt2 and (i, omi2 are distinct bipartitions. We
claim that the labels A, u, v, 1 of the four composition factors of S((;,—m) (1m)) are fin 2m,
Hn2m+2, Pn2m+1 and fin2m43 for 2 < m < n—2, and hence these factors are non-
isomorphic. We also claim that these labels are obtained by independently applying
four distinct restriction functors to S((,—m),1m)), together with their respective induction

functors. In particular,

cif2<n<

e
from Section 8.2.8.1 and €., from Section 8.2.7.1,

we apply ejeg from Section 8.2.2.1, eam from Section 8.2.6.1, €arm

oif T <m < n—%, we apply ejeg from Section 8.2.2.1, ejeg from Section 8.2.4.1,

€arm Irom Section 8.2.6.2 and €,rm from Section 8.2.8.2,

o ifn—=2 <m < n— 2, weapply eam from Section 8.2.6.2, ejoy from Section 8.2.2.2,

€leg from Section 8.2.4.2 and €jeg from Section 8.2.3.1.
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Example 9.11. Let e = 3, k = (0,2). Observe that S 14)) has the following 3-

residues
of1]2]of1]

We have elegS((5)7(14)) = S((4),0) = D((4),0) where ejeg = €20 e( ) o € o e, %S((5)7(14)) x>
S(@2).2) = Dy(2).0) where eiog = €5 oeroeg” oez0er, carmS((5),14)) = S(z,12)) = Dio12))
where €arm = 602 o e1 o 6%2) o ey oer, and 6;;;18((5)7(14)) =

(2) (2)

Carm = €00 €] O€g0€; Oe€p0e.

Sie,1)) = D(o,a)) where

Applying fieg to D(4),0), we have

0[1]2]0 0[1]2]0 o[1][2[o %> 012\0\1\ o[1[2]o]1]8],
2 210
[ l L
1] %] 1]
so that D((ﬁg%) = Dy is a composition factor of Ss) 14))-
Applying fieg to D(2),z), we have
)
o114 o1 [0]1]3]% o1 22 Tol1]2]0]% [o]1[2]o [,
2 2 210 210
2 [1] l 1B 1]2
%]
%] 1] %)

50 D((522),0) = Dyg 1 15 a composition factor of S 14))-

Applying farm to Dz 12)), we have

(2)

(2)
o L@ oM o[t B o[ 2@ (o]t [2]0 .
2 2
2/0] - -
1] 2/0] 2/0] 2/0]
1 1 1

s0 D((s,l),(g,l))/iDug,n is a composition factor of S(s),(14))-
Applying farm to D(z 1)), we have

(2) (2)
L@l LS (ol (o[ 1B 0] 1 ]2 8l
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L [0 12T Jll # [o[1 2 o[ 1Bl

2[0] 2[0]
1 1

50 D((6),(2,1)) = Duoo s a composition factor of S 14y)-
To confirm our claims, we require the following combinatorial result.

Lemma 9.12. 1. Ifn#0 (mod e), then

Hn,2m Tlﬁz*m: Hn+1,2m+2, (921&)

Hn,2m+1 Tnzfm: Hn+1,2m+3- (921b)
2. If n =0 (mod e), then

Hn,2m Tng—i-l—m = Mn+1,2m, for m<n—1, (922&)
m <

1<
Hn,2m+1 Thogtl-m = Hn+1,2m+1, Jor 2 < n—1. (922b)

Proof. 1. Suppose that n # 0 (mod e) and let i = kg — m.

(i) Let 1 < m < e. Then ((n—m,{m}), @) has the following addable/removable

t-nodes

o addable node (1,n —m+1,1) if n =1 (mod e),

o removable node (1,n —m, 1) if n =0 (mod e),

o addable node at the bottom of the [(m +e—2)/(e—1)|th column in the

first component,

o addable node (e +1,1,1) if m = —1 (mod e),

o addable node (1,1,2) if m =0 (mod e).
So, when n =1 (mod e), the i-signature of ((n — m, {m}), @) is either ++ if
m # —1,0 (mod e), or is +++ if m = —1,0 (mod e). The highest conormal

node in each sequence is (1,n —m + 1, 1), and adding this node gives

pinzm Ti= (0 —m, {m}), @) ti= ((n —m +1,{m}), &) = pini1,2m+2.

Now, if n —1 # 0,1 (mod e), then the i-signature of ((n — m,{m}), ) is
either + if m # —1,0 (mod e) or is ++ if m = 0,1 (mod e). The highest
conormal node in each sequence is the addable node at the end of the |(m +

e —2)/(e —1)]th column in the first component, and hence
Hn,2m ti= ((n —m, {m}), @) ti= ((n -—m, {m + 1})a @) = Hn+1,2m+2-

We now observe that ((n — m),(1™)) has the following addable/removable

7-nodes
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o addable node (1,n —m +1,1) if n =1 (mod e),
o removable node (1,n —m, 1) if n =0 (mod e),
o addable node (1,2,2) if m = —1 (mod e),
o addable node (m + 1,1,2).
We note that (2,1, 1) cannot have residue ¢ modulo e as m < e.

Suppose that n = [ (mod e). Then ((n —m), (1™)) has i-signature ++ if

m < e — 1, with highest conormal i-node (1,n —m + 1,1). Hence

Hn,2m+1 Ti= ((n - m)? (1m)) ti= ((TL —m+ 1)a (1m)) = Hn+1,2m+3-

However, if m = e — 1, then ((n — e+ 1), (1°71)) has i-signature + + +, with
highest conormal (k2 —m)-node (1,n—e+2,1). Thus fy2:—1 Ti= tn+1,2e+1-
Instead, suppose that n — 1 # 0,1 (mod e). Then ((n —m), (1)) has i-
signature + if m < e — 1, corresponding to cornomal node (m + 1,1,2).

Hence

Hn,2m+1 Ti= ((n - m)v (1m)) ti= ((n - m)? (1m+1)) = Hn+1,2m+3-

However, if m = e —1, then ((n —m), (1™)) has i-signature ++, with highest

conormal node (1,2,2). Hence
pnze—1 Ti= (0 — e+ 1), (171)) ti= (0 — e + 1), (2,1°7%)) = tnt1,2e41-

Let e <m < n — [Z]. By the first part, it follows that i, 2m 7= tnt1,.2m+2
if n 20 (mod e).
We now observe that ((n —m, {m — e}), (2,1°72)) has the following addable
and removable -nodes

o addable node (1,n —m+1,1) if n =1 (mod e),

o removable node (1,n —m,1) if n =0 (mod e),

o addable nodes (e+1,1,1), (e, 1,2) and removable node (1,2,2) if m = —1

(mod e),

o addable node (2,2,2) if m =0 (mod e),

¢ addable node (1, 3,2) and removable node (e—1,1,2) if m = —2 (mod e).
Suppose that n = [ (mod e). Then ((n—m, {m—e}), (2,1°72)) has i-signature
+++ifm=0 (mode), +++—+ifm=-1 (mode), +++—if m= -2
(mod e), and ++ otherwise. The highest conormal node in each of these

sequences is (1,m —m + 1,1), and hence

Hn,2m+1 Tz = ((n -—m, {m - e})v (27 16_2)) TZ
= ((n—m+1,{m—e}),(2,1°7?))
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(iii)

= HUn+1,2m+3-

Now, suppose that n —1 # 0,1 (mod €). Then ((n —m, {m — e}), (2,1°72))
has i-signature ++ if m = 0 (mod e), + + —+ if m = —1 (mod e), + + —
if m = —2 (mod e), and + otherwise. The highest conormal node in each of
these sequences is the addable node at the bottom of the | (m —e)/(e —1) |th

column in the first component. Hence

Hn,2m+1 Tl = ((n —m, {m - 6}), (27 16_2)) TZ
= ((n—m,{m—e+1}),(2,1°7%))

= HUn+1,2m+3-

Let [Z] < m < n—1. We observe that (({m + 1},n —m — 1), ) has the
following addable/removable i-nodes

o addable node at the bottom of the [(m+e—1)/(e—1)|th column in the

first component,

¢ addable node (e,n —m,1) if n =1 (mod e),

o removable node (e,n —m —1,1) if n =0 (mod e),

o addable node (e +1,1,1) if m = —1 (mod e),

o addable node (1,1,2) if m =0 (mod e).
So, suppose that n =1 (mod e). Then (({m+1},n—m—1), &) has i-signature
++ ifm# —1,0 (mod e), and ++ + if m = —1,0 (mod e). Whereas, when
n—1#0,1 (mod e), ({m+1},n—m—1),d) has i-signature + if m # —1,0
(mod e), and ++ if m = —1,0 (mod e). The highest conormal node in each of
these sequences is the addable node at the bottom of the | (m+e—1)/(e—1)|th

column in the first component. Hence

Hn,2m T’L = (({m + 1},” —m — 1),@) T’L
=(({m+2},n—m-1),9)

= HUn4+1,2m-+2-

We now observe that (({m — e+ 1},n —m — 1),(2,1°72)) has the following
addable/removable i-nodes
¢ addable node in the [(m — 1)/(e — 1) |th column of the first component,
o addable node (e,n —m,1) if n =1 (mod e),
o removable node (e,n —m —1,1) if n =0 (mod e),
o addable node (2,2,2) if m =0 (mod e),
¢ addable node (e+1,1,1), (e, 1,2) and removable node (1,2,2) if m = —1
(mod e),
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¢ addable node (1, 3,2) and removable node (e—1,1,2) if m = —2 (mod e).
Suppose that n = (mod e). Then (({m —e+1},n —m —1),(2,1°72)) has
i-signature +++ if m =0 (mod e), +++—+if m = —1 (mod e), +++— if
m = —2 (mod e), ++ otherwise. Instead, suppose that n —1 # 0,1 (mod e).
Then (({m—e+1},n—m—1),(2,1°72)) has i-signature ++ if m = 0 (mod e),
++—+ifm=-1 (mode), ++—if m = —2 (mod e), + otherwise. In each
of these sequences, the highest conormal i-node is the addable node in the

[(m —1)/(e — 1)]th column of the first component, and hence

Hn 2m+1 Tz = (({m —e+ 1}7n —-—m — 1)7 (27 1672)) TZ
= (({m —e+ 2}7n —m—= 1)7 (27 1672))

= Hn+1,2m+3-

2. Suppose that n =0 (mod e) and let i = ko + 1 — m.

(a) Let 1 < m < e. We observe that ((n —m+ 1,{m — 1}), &) has the following
removable/addable i-nodes
o removable node (1,n —m +1,1),

¢ addable node at the bottom of the [ (m +e—3)/(e —1)|th column in the

first component,
o addable node (e +1,1,1) if m =0 (mod e),
o addable node (1,1,2) if m =1 (mod e).
The i-signature of (n —m+1,{m —1}),2) is —+ if m # 0,1 (mod e), or is
—++if m=0,1 (mod e). The highest conormal i-node in each sequence is
the addable node at the bottom of the |(m +e—3)/(e —1)]|th column in the

first component, and adding this node we have

Hn,2m Thotl—m = ((n —-m+1, {m - 1})7 @) Thot1-m
=((n—m+1,{m}), )

= HUn+1,2m-

For m > 1, we now observe that ((n —m + 1),(1™~!)) has the following
removable/addable i-nodes

o removable node (1,n —m + 1,1),

o addable node (1,2,2) if m =e,

o addable node (m, 1, 2).
The i-signature of ((n—m+1), (1™ 1)) is —+ if m # e, and is —++ if m = e,

The highest conormal i-node in each sequence is (m,1,2), and adding this
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node we have

fn2m+1 Thot1-m = ((n —m + 1), (1m71)) That1—m
=((n—m+1),1™))

= HMn+1,2m+1-

Let e <m < n — %. By the previous part, pin2m Tryt1-m= Mnt1,2m-
We observe that ((n—m+1,{m—e—1}),(2,1°72)) has the following addable
and removable i-nodes

o removable node (1,n —m+1,1),

¢ addable node at the bottom of the [(m — e)/(e — 1)]th column in the

first component,
¢ addable node (1, 3,2) and removable node (e—1,1,2) if m = —1 (mod e),
o addable nodes (e + 1,1,1) and (e, 1,2), and removable node (1,2,2) if
m =0 (mod e),
¢ addable node (2,2,2) if m =1 (mod e).
So (n—m+1,{m — e —1}),(2,1°72)) has i-signature —+ if m # —1,0,1
(mod e), —++—ifm=—1 (mod e), —++—+if m =0 (mod e), and —++
if m =1 (mod e). The highest conormal i-node in each of these sequences
corresponds to the addable node at the bottom of the [(m — e)/(e — 1) [th

column in the first component, and adding this node we have

Hn,2m+1 Tng-‘rl—m = ((TL —m+ 17 {m —€— 1})7 (27 16_2)) TKQ-H—W
= ((n—m+1,{m—e}),(2,1°72))

= HUn+1,2m+1-

Let m — 2 <m < n — 1. We observe that (({m +1},n —m — 1), @) has the

following addable/removable i-nodes

o the removable node at the bottom of the |(m+e—1)/(e —1)|th column

in the first component,

o addable node (e,n —m,1),

¢ addable node (e +1,1,1) if m =0 (mod e),

o addable node (1,1,2) if m =1 (mod e).
The i-signature of ({m +1},n—m —1),2) is —+ if m # 0,1 (mod e), and
is —++ if m =0,1 (mod e). The highest conormal i-node in each sequence

corresponds to (e,n —m, 1), and adding this node we have

fn2m Toat1—-m = ({m+1}n —m —1),9) Tuy41-m
=(({m+1},n—m),2)
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= HUn+1,2m-

We now observe that (({m—e+1},n—m—1), (2,1°72)) has removable/addable
i-nodes
o the removable node at the bottom of the [(m — 1)/(e — 1)]th column in
the first component,
o addable node (e,n —m,1),
o addable nodes (e + 1,1,1) and (e, 1,2), and removable node (1,2,2) if
m =0 (mod e),
¢ addable node (1, 3,2) and removable node (e—1,1,2) if m = —1 (mod e),
o addable node (2,2,2) if m =1 (mod e).
The i-signature of (({m —e+1},n—m —1),(2,1¢72)) is —+ if m # —1,0,1
(mod e), —++—+ifm =0 (mod e), —++—if m = —1 (mod e), and —++
if m =1 (mod e). The highest conormal i-node in each of these sequences is

(e,n —m,1), and adding this node we have

Pn,2m+1 Tro+l-—m = ({m—e+1}n—m—1),(2, 1672))
=(({m—e+1},n—m),(2,1°%)

= Hn+1,2m+1-
O

Theorem 9.13. Suppose that n #Z 0 (mod e) and 1 <m < n—1. Then S—m),1m))
has composition factors Dy, ,.. and Dy, ,... ;-

Moreover, Dy, ,,. = im(xXm) and Dy, .01 = Sn—m),am))/ im(xm)-

Proof. We first show that D), , is a composition factor of S((,_1),(1))- We have

f(?_ls((n—l),(l)) = 5,2y n=—1 (mode),

K

and
fra=1S((n-1),1)) = S((n-1),a2)) fn# -1 (mod e).

by downwards induc-

2
Hz—l'

Forn = —1 (mod e), S((,),(12)) has composition factor Dy, , ;,
tion on n. Hence, by Proposition 1.50, S((,,—1),(1)) has composition factor Dy, ., |

We have

((n—=1), (1)) 12,-1= pn3 Thy1 = fint15 Tho1 (Equation (9.2.1b))
= [n42,5 (Equation (9.2.2b))

= ((n), (1%)).

2

Its inverse gives us fin3 = Hn+t25 45,1

and hence D, , is a composition factor of

S((n-1),(1))-
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Similarly, for n # —1 (mod e), S(n_1),12)) has composition factor Dy, ., ;. So by

Proposition 1.50, S((,—1),(1)) has composition factor Dy, ,, ; Jx,—1. Observe that

((TL - 1)7 (1)) Tm*l: Hn,3 Tnz*lz Hn+1,5 = ((n - 1)? (12))>

by Equation (9.2.1b). Its inverse gives us fn3 = fnt1,5 $ro—1, and hence D, , is a

composition factor of S(,_1),(1))-

1. Suppose that n —1 % 2 (mod e). We have €xy+1-mS((n—m),(1m)) = S((n=m),(1m~1))s
and by induction, S((;,—,),1m-1y) has composition factors Dy, , ,,, , and Dy, 5, .
It follows from Proposition 1.50 that S((,_y,),1m)) has composition factors
D,Ufn—l,Qm—QTn2+1—m a'nd D
[n,2m by Equation (9.2.1a), and ftn—1,2m—1 Tho+1—m= Hn,2m+1 by Equation (9.2.1b).

fin—1,2m—1 TRyt 1—m " We observe that fi,—12m—2 Thot1—-m=

Thus S((—m),1m)) has composition factors Dy, ,,, and Dy, 5.,

2. Suppose that n—l =2 (mod e). We have 61(422)+17m5((n—m),(1m)) = S((n,mfl)’(lm—l)),
and by induction, S((;,—p,—1),(1m~1)) has composition factors Dy, ,,,, ,and Dy, ., ;.
We have

Hn—22m—2 Ti2+17m = Un—1,2m—2 T52+1—m (qulation (9223))

= lin2m (Equation (9.2.1a)).

So, by Proposition 1.50, D,,,, ,,, is a composition factor of S(,_pm),(1m))-

We also have that

fin—22m—1 Tos1—m = Hn—12m—1 Thot1—m (Equation (9.2.2b))
= [n,2m+1 (Equation (9.2.1b)).

Thus, by Proposition 1.50, D is another composition factor of S((,—m),1m))-

Hn,2m-+1

Furthermore, from Proposition 7.13, the composition factors D, ,,, and Dy, , ., of

S((n=m),(1m)) must correspond to im(x.,) and S((—m),1m))/ im(Xm). By Lemma 6.5,
im(xm,) =span{vy | T € Std((n —m),(1™)),T(1,1,1) =1},
and hence
S((n=m),(1myy/ im(Xm) = span{vr | T € Std((n —m), (1)), T(1,1,2) = 1}.

Now let S,T" € Std((n —m), (1)) such that 1 lies in the arm of 7" and 1 lies in the leg
of S. Clearly, every tableau T has residue sequence (k1,12,...,i,), and every tableau S
has residue sequence (kg,1i2,...,%,). The first component of i, 2y, is its only non-zero

component, whereas both of the components of (i, 2,,+1 are non-zero. Thus, only the

218



9.2. LABELS WHEN k2 = k1 —1 (MOD E) CHAPTER 9

residue sequence of fin 2m+1 can begin with residue x2, and hence D, ,, = im(xm,) and

Dty omir = S((n-m),(1m))/ im(xm), as required. 0

Theorem 9.14. If n =0 (mod e), then the following statements hold.

1.

2.

3.

S((n-1),(1)) has composition factors Sin) z), Du,, and Dy, ;.

For 2. < m < n—2, S(n_m),am)) has composition factors Dy, ..; Dy, o1
D and D

Mn,2m+2 Hn,2m43°

S(),(1ny) has composition factors S(z (1)), Dypon_o and Dy, 5, -

Moreover, Dy, ,.. =im(¢m) and Dy, ,,.., = ker(vp)/im(¢m).

Proof. (i) Firstly, by removing the foot node of S((,_1) 1)), we have

€r15((n-1),(1)) = S((n-1),2) = D((n-1),0)-

The ko-signature of ((n — 1), ) is ++, corresponding to conormal nodes (1,n,1)
and (1,1,2). Adding the higher of these nodes, ((n — 1), d) 14,= ((n), &), and by
Proposition 1.50, D((y),g) is a composition factor of S(,_1),(1))-

Now suppose that 2 < m < n — 1. By removing the foot node of ((n —m), (1™)),
we have

Erp+1-mS((n—m),am)) = S((n—m),am-1))-
and D
by Theorem 9.13. Observe that ft,—12m—2 Tho+1—-m= fn,2m by Equation (9.2.1a),

We know that S((;,—m),(1m-1)) has composition factors D

Hn—1,2m—2 Hn—1,2m—1"

and that fin—12m—1 Thot1-m= tn2m+1 by Equation (9.2.1b). Thus, by Proposi-

tion 1.50, Dy, ,,, and D are composition factors of S((y_m),1m))-

Hn,2m+1
First suppose that 1 < m < n — 2. By removing the hand node of ((n—m), (1™)),
we have

Crz=m((n=m), (1)) = S((n-m-1),(17)-

and D
Observe that ft,—12m Tro—m by Equation (9.2.1a), and that fin—12m+1 Tho—m=

Hn—1,2m Hn—1,2m+1"

By Theorem 9.13, S((n—m—1),(1m)) has composition factors D

pin,2m+3 by Equation (9.2.1b). Thus, S((;—m),1m)) also has composition factors

D and D by Proposition 1.50.

Hn,2m+2 Hn,2m+3

Secondly, by removing the hand node of S((1) 1n-1)), we have

er19((1),(1n1)) = S(z,an-1)) = D({n-e},(1e-1));

by Lemma 8.2. The xi-signature of ({n — e}, (1¢71)) is + + +, corresponding
to conormal nodes (1, [(n —2)/(e —1)] +1,1), (1,2,2) and (e, 1,2). Adding the
highest of these nodes, we have ({n — e}, (1°71)) 14,= ({n — e+ 1}, (1°71)). By
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Lemma 8.2, D(n_cy1},(1e-1)) = S(z,(17)), and by Proposition 1.50, S(g (1ny) is a
composition factor of Sy 1n-1)).

Furthermore, from Theorem 7.16, we know that the composition factors Dy, ,, .,
Dyt smirs Dypnomye @0d Dy oo 0f S((—m), 1m)) must somehow correspond to im(éy,),
im(¢m+1), ker(vm)/im(ép,) and ker(vim+1)/im(¢m+1), for 2 < m < n — 2. Moreover,
im(¢m+1) and ker(ym41)/ im(ém+1) are composition factors of both S, _,,(1my) and
S((n—m—1),(1m+1), and hence must somehow correspond to Dy, ,,,., and Dy, 5, 5.

We now let vr € {im(¢m,), im (1), ker(vm)/ im(édm), ker(Ym+1)/ im(Pm+1)} such
that T € Std((n —m), (1™)). By Lemma 6.4 and Lemma 6.5, we have that

im(¢my1) = span{vr | T € Std((n —m),(1™)),T(1,1,1) = 1,T(1,n —m,1) = n}
and
ker(ymi1) & span{vp | T € Std((n —m),(1™)),T(1,n —m,1) = n}.
Hence

ker(Ym+1)/im(dm+1) Zspan{vp | T € Std((n —m), (1)),
7T(1,1,2)=1,T(1,n—m,1) =n}.

It follows, together with Lemma 6.5, that
o T(1,1,1) = 1 if vy lies in im(¢yy,) or im(Pm+1);

o T(1,1,2) = 1 if vy lies in ker(yy,)/ im(¢pm) or ker(Vm41)/im(¢m1)-

Now observe that only the first component of (i, 2,, is non-empty, whereas both compo-
nents of i, 2,41 are non-empty. It follows that 1 can only lie in the leg of T" if vy lies
in Dy, 501 OF Dy gys, and hence Dy, o, = im(¢y,) and Dy, .00 = ker(7,)/im(¢m),
as required.

O
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UNGRADED DECOMPOSITION NUMBERS

In the previous chapter, we found the labels A € 2972 of the irreducible factors Dy of
Specht modules labelled by hook bipartitions. We now draw on these results to find the
ungraded multiplicities [S((,—m),(1m)) : Da] of irreducible Z2-modules Dy, appearing as
composition factors of S((;,—m),1m)), for all A € (@gz%

For all n and &, recall that the trivial representation for Z2 is S(n),2) = D(n),2)s

and by Lemma 8.2, the sign representation is

D n ifn<l;
N ) Damy) ;
S@,amr = Dg,an)r = .
Dn-tp,ay =1,

where [ is the residue of k9 — k1 modulo e.

10.1 CASEI: WHEN ko Z K1 — 1 (mod e) ANDn Z [+ 1
(mod e)

We remind the reader that we found that S((,—),(1m)) is irreducible in Theorem 7.8, for

all 0 < m < n, and by Theorem 9.6, S((;,—m),(1m)) = D leading us to the following

Hn,m>)

result.

Theorem 10.1. Let ko # k1 —1 (mod e) and n #1041 (mod e). Then, by a specific
ordering on the columns, part of the (ungraded) decomposition matriz for %T[L\ comprising

of rows corresponding to hook bipartitions is

Sn) 1
Stu1) 10
s 0
S 1
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10.2 CASE II: WHEN Ky # k1 — 1 (mod e) AND n =
[+1 (mod e)

and D for

1 < m < n—1, and hence Dy, ,, is a composition factor of both S, 1m)) and

From Theorem 9.7, the composition factors of S((,—m),(1m)) are Dy, ., finm s

S((n=m—1),1m+1y), for 1 < m < n —2. Also, note that D, , = D) e) and Dy, , , =
D (g (1n))r. Furthermore, since the bipartitions pn,o, fin1;- .-, fnn-1 are distinct, the
D

irreducible modules D , Dy, ._, are non-isomorphic, which leads us to the

Hn,00 ~fn,1s

following result.

Theorem 10.2. Let kg # k1 — 1 (mod e) and n = ko — k1 + 1 (mod €). Then, by a
specific ordering on the columns, part of the (ungraded) decomposition matriz for %)

comprising of rows corresponding to hook bipartitions is

S((n).0) 1

S(n-1),(1)) 11 0

S(n-2),(12)) L1

S((n-3),01%) L 0
S@,am) 1

10.3 CAsE III: WHEN k9 = k1 — 1 (mod e) AND n Z 0
(mod e)

for

and D
1 < m < n — 1. Furthermore, since the bipartitions ((n), @), fin.2; ftn3; - - - » Hon—1, (F, (1"))F

From Theorem 9.13, the composition factors of S((, ), (1m)) are D

Hn,2m Hn,2m+1)

are distinct, the irreducible modules D) &), D D

T Hn,2

D D(®7(1n,))R are

HKn,39° Hn,2n—17

non-isomorphic, leading us to the following result.

Theorem 10.3. Let k3 = k1 — 1 (mod e) and n Z 0 (mod e). Then, by a specific

ordering on the columns, part of the (ungraded) decomposition matriz for Z> comprising
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of rows corresponding to hook bipartitions is

S((n),2) 1
S((n-1),(1) L1 0
S((n-2),(12)) L1

S((n-3),13)) L1

S(z,am)

10.4 CASE IV: WHEN kg = k1 — 1 (mod e€) AND n =0
(mod e)

From Theorem 9.14, the composition factors of S((nfm),(lm)) are
¢ D((n),2), Dpn,a and Dy, 5, for m =1;

D D

o D and Dy, 5,05, for 2<m <n —2;

Hn,2m ) Hn,2m-+17 Hn,2m+2

o D D and D(@}(ln))R, form=mn — 1,

Hn,2n—27 Hn,2n—1

and hence Dy, ,,. ., and D, , ., are composition factors of both S;,_p,) 1m)) and
S((n—m—1),(1m+1)), for 1 < m < n — 2. Furthermore, since the bipartitions s, 2, tin 3, - - - , fn,2n—1
are distinct, the irreducible modules D, ,, Dy, 5, - - -, Dy, ,,_, are non-isomorphic, which

leads us to the following result.

Theorem 10.4. Let kg = k1 — 1 (mod e) and n = 1+ k3 — K1 (mod e). Then, by a
specific ordering on the columns, part of the (ungraded) decomposition matriz for %

comprising of rows corresponding to hook bipartitions is

S(me) (1
S-nap |1 11 0
S-pazp | 1 1 11
S((n-3),12) 1111
S((n—4),(14)) 1 1 1 1 O

S((2),an-2)) 1
S((l)’(lnfl)) O 1 1 1

S(z,(1m)
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GRADED DIMENSIONS OF S((;, _y;) (1m))

From now on, we study graded Specht modules labelled by hook bipartitions, consid-
ering the combinatorial Z-grading defined on these %#-modules. In this self-contained
chapter, we determine the graded dimensions of S((;,—pm),(1m)), motivated to determine
the graded decomposition matrices whose rows correspond to hook bipartitions. Recall
from Section 1.3.4 that the graded dimension of Sy, denoted grdim (S((n_m)7(1m))), is
the Laurent polynomial
> ot (e ).
TeStd(N)
We first understand how the entries in the leg of a standard ((n —m), (1"))-tableau

affect its degree.

Lemma 11.1. Suppose 1 < i < k. Then ((k — i), (1%)) has neither an addable nor a
removable (ke +1—1)-node in the first row of the first component, except in the following

cases.

(i) If k = 1+ 1 (mod e), then (1,k — i+ 1,1) is an addable (k2 + 1 — i)-node for
((k —1i),(17).
(i) If k=142 (mod e) and k > i, then (1,k —1i,1) is a removable (k2 + 1 — i)-node
for ((k —1), (1%)).
Proof. Let T € Std((n — m), (1™)). Since we want to determine if ((k — i), (1)) has

an addable or a removable (k2 + 1 — i)-node, which will lie in the first row of the first

component if one exists, we have 7'(i,1,2) = k.

1. Suppose that T'(i,1,2) =1+ 1+ «e for some o > 0. Then the entries 1,...,l 4 ae
lie in the set of nodes {(1,1,2),...,(i —1,1,2)} U {(1,1,1),...,(1,7,1)}, where
j=1l4+ae—i+ 1. There are j = | + e — i + 1 entries strictly smaller than
I+ 1+ ce in the arm of T and there are i — 1 = [ + ae — j entries strictly smaller
than [ + 1 + ae in the leg of T. We now observe that

res(l,j+1,)=r1+j=r1+l+ae—i+1=kre—i+1=res(i1,2),
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and since T'(i,1,2) > T'(1, j,1), it follows that (1,541, 1), which equals (1,5 —i+
1,1), is an addable (kg + 1 — 4)-nodes for ((k — 1), (1%)).

2. Suppose that T'(i,1,2) = [+2+e for some a > 0. Then the entries 1,...,l+1+ae
lie in the set of nodes {(1,1,2),...,(i —1,1,2)} U {(1,1,1),...,(1,7,1)}, where
j=14+2+ ae—1i. There are j =1+ 2 + ae — i entries in the arm of T strictly
smaller than [ 4+ 2 + ae and there are i — 1 = [ 4+ 1 4+ e — j entries in the leg of T
strictly smaller than [ + 2 + ce. We now observe that

res(1,j,1)=rk1+j—1=r1+l+1+ae—i=ry+1—1i=res(il,2),

and since T'(1,7,1) < T'(i,1,2), it follows that (1, j,1), which equals (1,k —1), is a
removable (kg + 1 — i)-node for ((k — i), (1%)).
Moreover, if T'(i,1,2) > T(1,1,1), then it is clear that ((k —1i), (1?)) does not have

a removable (k2 + 1 — i)-node.

3. Suppose that T'(i,1,2) = I+ k + ae for some « > 0 such that k € {3,...,e}. Then
the entries 1,...,l+ k + ae — 1 lie in the set of nodes {(1,1,2),...,(: —1,1,2)} U
{(1,1,1),...,(1,4,1)}, where j =l + k + ae —i. There are j =1l +k + ae — i
entries strictly smaller than [ + k + «e in the arm of T and there are i = 1 =
l+k+ ae—i—j entries strictly smaller than [+ k4 ae in the leg of T. We observe

that res(i, 1,2) = ko + 1 — i, whereas
res(1,j,1) =rk1+j—1=r1+l+k+ae—i—1=rot+k—i—1=res(l,j+1,1)—1.

Hence res(i,1,2) # res(1,j,1),res(1,5 + 1,1) since k # 1,2, and it thus follows
that ((k — i), (1")) does not have a removable or an addable (k2 + 1 — i)-node in

the first row of the first component.
O
Now we are able to obtain the degree of an arbitrary standard ((n—m), (1"))-tableau.
Lemma 11.2. Let T € Std((n —m), (1™)) and 1 < i < m. Then the degree of T is

|mbesl=2 | (B |2 (i [ T(3,1,2) =1+ 1 (mod e)}
—#{i|T(i,1,2) =1+2 (mod e)}.

Proof. Suppose that T'(i,1,2) = k for i < k < n, so that Ty has shape ((k — 1), (1)).
Let d/eTg(Tgk) be the summand in deg(7<y), defined similarly to deg(T<y), except that
we only attach a non-zero degree to a (k2 +1—i)-node (i,1,2) in Ty, if ((k—1), (1°)) has

either an addable or a removable (k24 1—1i)-node in the first row of the first component.
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Thus, it follows from Lemma 11.1 that

deg(Tp)+1 ifk=1+1 (mod e);

deg(Tex) = | —
deg(T<r) —1 ifk=1+2 (mode)and k > i.

The two remaining summands in deg(7<y) are defined similarly to deg(T<y), except

that we only attach a non-zero degree to a (k2 + 1 —4)-node (4,1,2) in Ty
o if ((k — 1), (1%)) has addable (k1 — 1)-node (2,1, 1),
o if ((k —1), (1Y) has addable (k2 + 1)-node (1,2,2),
taken over all k. The former holds if k£ > i and the latter holds if i = 0 (mod e).

The number of nodes in the leg of T with residue k1 — 1 is

Lm+e—l—2J + LMJ _ Lmﬂe_l_ﬂ ifl#e—1
‘ ‘ [m=1] 41 ifl=e—1,

[

and there are L%J nodes in the leg of T" with residue ko + 1. Hence

deg(T') = #{i | (¢,1,2) has addable (k1 — 1)-node (2,1,1)}
+ #{i | (¢,1,2) has addable (k2 4+ 1)-node (1,2,2)}
+ #{i ] (¢,1,2) has addable (k2 + 1 — i)-node in the first row of T'}
— #{i| (i,1,2) has removable (k2 + 1 — i)-node in the first row of T'}
=#{i|i=1+2 (mode),k>i}
+#{i]i=0 (mode)}
+#{i|k=1+1 (mode)}
—#{i|k=1+2 (mode),k>i}
=#{i|i=14+2 (mode)}—#{i|i=1+2 (mode) k=71}
+#{i|i=0 (mode)}
+#{i|k=1+1 (mode)}
—#{i|k=1+2 (mode)}+#{i|k=1+2 (mode) k=1}
=#{i|i=1+2 (mode)}
+#{i|i=0 (mode)}
+#{i|k=1+1 (mode)}
—#{i|k=1+2 (mode)},

and thus we obtain our desired result. O

The following result is a trivial consequence of Lemma 11.2.
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Lemma 11.3. We have

grdim (S(m).2)) = 1;  grdim (Sig ny)) = [2] + [2F2 + [HE]

To our end, it is sufficient to only obtain the leading and trailing terms, and in
some cases the second leading and second tailing terms too, of the graded dimensions
of Specht modules labelled by hook bipartitions. For any T' € Std((n — m), (1)), we
define

ar =#{1|T(,1,2)=1+1 (mode)} —#{i|T(;1,2)=1+2 (mode)}.
Then, for any non-empty subset .7 of Std((n —m), (1™)), we define the set
Az ={ar | T e T}.

We say that the mazimum degree of 7 is the largest degree of all tableaux in .7, written
maxdeg(.7) = max{deg(T) | T € T}.

Similarly, the minimum degree of 7 is the smallest degree of all tableaux in .7, written
mindeg(.7) = min{deg(T) | T € T}.

By Lemma 11.2, it follows that

maxdeg(7) := LWJ - V T IJ + [@J + max(Az)

e e e
and I—2|  [1+1
mindeg(.7) := {m+ee— — J + { t J + L—J + min(Az)

We now set
n,i=0l+1 (mode)},

I<i<
b=#{i|1<i<n,i=1+2 (mode)},
1<i<ni—1#1,2 (mode)}.

Lemma 11.4. Let .7 = Std((n —m), (1™)).
1 If1<m < %, then max(Ag) = m and min(Ag) = —m.
2. If 2 <m<n—2, then max(Az) = a and min(Az) = —b.
3. Ifn—2<m<n~—1, thenmax(Ag) =n—m+a—band min(Az) = m—n+a—>b.

Proof. Let S,T € .7 where deg(T) = maxdeg(.7) and deg(S) = mindeg(.7). We have
a,be {[2],[%] + 1}, depending on « and n.
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1. We can place an entry congruent to [ + 1 modulo e in each node in the leg of T',
and similarly, we can place an entry congruent to [ + 2 modulo e in each node in
the leg of S.

2. The legs of S and T contain at least L%J + 1 nodes, and so we can place every
entry congruent to [ + 2 modulo e in the arm of T', and similarly, we can place

every entry congruent to [ + 1 modulo e in the arm of S.

3. The arms of S and T contain at most L%J + 1 nodes. Thus we place an entry
congruent to ! + 2 modulo e in every node in the arm of 7. Then the leg of T
contains a entries congruent to [ 4+ 1 modulo e, b—n +m entries congruent to [ +2
modulo e, and n — a — b entries congruent to neither [ + 1 nor congruent to [ + 2
modulo e. Similarly, we place an entry congruent to [ + 1 modulo e in every node
in the arm of S. Then the leg of S contains a — n + m entries congruent to [ + 1
modulo e, b entries congruent to [ + 2 modulo e, and n — a — b entries congruent

to neither [ + 1 nor congruent to [ + 2 modulo e.

O]

Proposition 11.5. Let 7 = Std((n—m), (1)). Then the graded dimension of S((n—m),1m))

18

max(Ag)—min(Ag) [max(Ag)

2 2 ((m | +j> (?) <z —623')) e

i=0 §=0

Proof. Let T € 7. By Lemma 11.2, there are at most max(A ) entries in the leg of T
congruent to [+ 1 modulo e, and at most — min(A #) entries congruent to [+ 2 modulo e.
Thus, there exists a tableau with degree max(Az) —i+ 2] 4 | 2t=2 | 4 | HH | for all
i €{0,...,max(Az) —min(Az)}, so grdim(S((,—m),(1m))) has max(Az) —min(Az) +1
terms.

Suppose that T" has degree max(As) —i+ L%J + Lmef_l_ﬂ + LHTIJ for some 7, and
suppose that there are j entries congruent to [+2 modulo e in the leg of T'. These j entries
contribute —j to the degree of T'. Hence, there must be m — i + j entries congruent to
I4+1 modulo e in the leg of T'; and the remaining i —2j nodes in the leg of T" must contain
entries congruent to neither [ 4+ 1 modulo e nor congruent to [ +2 modulo e. Thus, there

are (, %)) (b) (,.%;) standard ((n —m), (1™))-tableaux with this combination of entries

m—i+j/ \j 25 .
in its leg for some j € {0, ey L%J }, and summing over j gives the number of standard
((n —m), (1™))-tableaux with degree max(Agz) —i + | 2] 4 |2te=l=2| 4 |EL], O

Corollary 11.6. The first and last two terms in the graded dimension of S(n—m),(1m))

respectively, are given in the following cases.
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1. Forlémﬁ%,

m

(a>v(m+LTJ+LWJ+LTJ)+C< a >v(m—1+L’:J+L””:”J+LTJ)+...
m—1

..+C< b >U(l—m+L?J+Lm+€;l‘2J+LTJ)+(b)U(—mHZ’JHm*tl‘QHLTJ)

m—1 m
n n
2. For 2 <m<n-—2,

< ¢ >v<a+m+w+z”J+W;J>
m

—a

+(a ¢ +b ¢ plo—TH LB+ 2 )
m—a-+1 m—a—1

. ¢ ¢ (1=bk 2]+ == [ B )
+ <b<m—b+1> +a<m—b—1)>v

+< : b>v<bﬂ?J+t’"*2”J+t“ﬁJ>.
m_

3. Fornfggménfl,

( b >U(nm+ab+L?J+|—m+eelzJ+\_ltlJ)
n—m

T b v(n—m—i—a—b—l-l—L%J-f—LMef_l_QH‘LH—le) I
n—m-—1

Cte a p(IFm—nta—b |2 || mEel=2 | L))
n—m-—1

w9 \plmomrabrlm e )
n—m

Proof. 1. We obtain the leading term in the graded dimension of S((,_pm) 1m)) by
setting ¢ = j = 0 in Proposition 11.5, the second term term by setting ¢ = 1 and
j = 0, the trailing term by setting ¢ = 2m and j = m, and the second trailing

term by setting : =2m — 1 and j =m — 1.

2. We obtain the leading term in the graded dimension of S((,_ym),1m)) by setting
i = m — a and 5 = 0 in Proposition 11.5, the second leading term by setting
i=m—a+1and j€ {0,1}, the trailing term by setting i = m+b and j = b, and
the second leading term by setting i = m +b— 1 and j € {b— 1,b}.

3. We obtain the leading term in the graded dimension of S((,_y,) 1m)) by setting
1 =2m —2a —cand j = m — a — ¢ in Proposition 11.5, the second leading term
by setting : = 2m —2a —c+1 and j = m — a — c+ 1, the trailing term by setting
1 =2b+ c and j = b, the second trailing term by setting i = 2b+c—1 and j = b.

O
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11.1. CASEI: ko # kK1 —1 (MOD E) ANDN #L+1 (MOD E) CHAPTER 11

We now apply this result to Specht modules labelled by hook bipartitions dependent
on whether ko = k1 — 1 (mod e) or not and whether n = k2 — k1 + 1 (mod e) or not,
explicitly giving the corresponding result in each case, which will be useful to refer to
in Chapter 13. We let T € Std((n —m), (1™)).

11.1 CASE I: grdim (S((n—m),(lm))> WHEN
Ko Z k1 — 1 (mod e) AND nZ [+ 1 (mod e)

For k3 # k1 —1 (mod e) and n # [+ 1 (mod e), there are |2 | entries in T that are
congruent to [ + 1 modulo e, and | % | entries in 7' that are congruent to [ + 2 modulo e,

leading us to the following result by Corollary 11.6.

Proposition 11.7. Let ko # k1 —1 (mod e) and n Z1+ 1 (mod e). Then the leading

and trailing terms of grdim(S((p—m),1m))), Tespectively, are as follows.

. <LZJ+1>U<m+LzJ+LWJ> an d(t J+1> (et 222 ) e o o

e, "

g,ﬁ” <§ <11> By m | mbest2 ) (nT;f(LLngjl)> (4 etz )
BIA 1 o[22y g (LT o2 o [tz )y

G o (G

Example 11.8. Lete = 3, k = (0,1). There are siz tableauz that index the basis vectors

Of S((2)7(12)), namely

T =[3]4], =2[4] Ty =[2][3] Ty =[1[4] Ts =[1[3] Ty =[1]2]
It is easy to check that deg(T1) = deg(T5) = 1, deg(Tz) = deg(Ts) = —1 and deg(T3) =
deg(Ty) = 0, so that grdim (S((Q)’(lz))) =20+2+2071,

112 CASE II: grdim (S((—m) (1m))) WHEN
Ko Z k1 — 1 (mod e) AND n =1+ 1 (mod e)

For kg #Z k1 —1 (mod e) andn =1+ 1 (mod e), there are | 2 | +1 entries in T' congruent
to I 4+ 1 modulo e, and [ %] entries in T" congruent to I + 2 modulo e, which leads us to

the following result by Corollary 11.6.
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11.3. CASEIIL: k3 = k1 — 1 (MOD E) AND N #0 (MOD E) CHAPTER 11

Proposition 11.9. Let kg Z k1 —1 (mod e) and n =1+ 1 (mod e). Then the leading
and trailing terms of grdim(S((n_m),(lm))), respectively, are as follows.

L <V§J * 1>v<m+v:J+U"+z“J> and <*ZJ>U(m+VZJ+Lm*Z”J) fl<men,
m m

5 <” —2le)- 1)U(L:J+1+L?J+Lm+e;2—’J) and <n 28] - 1>v(—LZJ+L?J+Lm+e;2"J)
m—|g] -1 m =[]
if2<m<n-—12,
9 ( | %] >U(nm+1+L'§J+Lm+E&“J) and (LEJ + 1>v(mn+1+L’gJ+L’”1” ) ifn—
n—m n—m
% <m<n-—1.

11.3  CASE III: grdim (S((,—m) (1m))) WHEN
Koy =K1 — 1 (mod e) AND n # 0 (mod e)

For g = k1 — 1 (mod e) and n # 0 (mod e), there are |2 | entries in 7' congruent to

[+ 1 modulo e, and [2] + 1 entries in T' congruent to [ + 2 modulo e, which leads us to

the following result by Corollary 11.6.

Proposition 11.10. Let ko = k1 — 1 (mod e) and n # 0 (mod e). Then the leading

and trailing terms of grdim(S((p,—m),(1m))), Tespectively, are as follows.

N <LZJ>U(m+L?J+L”£J+1) and <L2J + 1>U(m+L*§J+L’”elJ+1) Fl<m<n,

m m

n=2[2] =1\ (npapm e metyan) o (M 2L ST e e )
gg ol ) iy
if T <m<n-—7%,

3. (L’;J +1>v<n—m—1+m+tm;w+l> and ( 2]

n—m

n—m
z<m<n—1L

>v(m—n—1+LTJ+L"t1J+1) ifn—

114 CASE IV: grdim (S((n_m)7(1m))> WHEN
ko = k1 — 1 (mod e) AND n =0 (mod e)

For k3 = k1 — 1 (mod e) and n =0 (mod e), there are 2 entries in 7" congruent to [+ 1
modulo e, and % entries in 7" congruent to [ + 2 modulo e, leading us to the following

result by Corollary 11.6.

Proposition 11.11. Let ke = k1 — 1 (mod e) and n =0 (mod e). Then the first and

last two terms of grdim(S(y,—m),(1m))) are given in the following cases.
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11.4. CASEIV:ka =K1 —1 (MOD E) AND N =0 (MOD E) CHAPTER 11

n
e

1. For1<m <

7

<?>U(W+L’:J+LmelJ+1) T

(e—=2)n o o
<eme_n)v<e+tej+t —t]41)
+ n (6762)71 . (eer)n U(Q_H_LmJ_*_Lqu_H) n
e m — Z +1 m — % -1
(e=2)n (e=2)n B

+n(< ‘ >+( ¢ ))Ml—”ﬂeJﬂ’”elJH)

e % +1 m — % _

(e—2)n I -

+ <eme_n>v(—e+LeJ+L =1 ]41).

Lt <e—g>: <nmgj 1) (rmene 2 4| 252 |+)
(n }m)m—nﬂﬂﬂmmn
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CHAPTER 12

(GRADED DIMENSIONS OF COMPOSITION
FACTORS OF S((j,_pp) (1m))

In this chapter, we study the graded composition factors of Specht modules labelled by
hook bipartitions, which arise as ungraded composition factors together with a grading
shift, and determine results concerning their graded dimensions. Our results rely on the
basis elements of these irreducible % -modules, which we deduce from the bases of the
images and kernels given in Lemma 6.5.

For \ € %92, recall from Proposition 1.36 that the graded dimension of the irre-
ducible %’fl\-module D), is symmetric in v and v~!, and by Corollary 1.37, the graded
dimension of D) that is spanned by {vp | T € T} is

grdim(Dy) = v* Z pdes)
TeT

where 2i = —maxdeg(.7) — mindeg(.7).

We now determine the leading terms in the graded dimensions of composition factors
of S((n—m),(1m)), dependent on whether or not k2 = r1 — 1 (mod e) and whether or not
n =1+1 (mod e) or not. By symmetry of the graded dimensions of irreducible Z2-

modules, we automatically recover their trailing terms.

121 CASE I: ko Z k1 —1 AND n# [+ 1 MODULO ¢

Let ko # K1 —1 (mode) and n # [+ 1 (mod e). Recall from Theorem 7.8 that
S((n—m),(1m)) is an irreducible Z#»-module, and by Theorem 9.6, S((n=m),am)) = Dy, (7)

as graded Z2-modules for some i € Z.

Proposition 12.1. Let ke Z k1 — 1 (mod e) and n Z1+ 1 (mod e). Then the leading
term of grdim(D,,,, ,.) is

L 1
1. (L6J+>vmif1§m<2+l,
m
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12.2. CASEIL: ks # ki —1 (MOD E) ANDN=L+1 (MOD E)  CHAPTER 12

n_2(L%J_1) rn n
2. < m—|2] -1 >zf€+1<m<n—e—1,

L 1
3. <L6J+ )v”mifn—’;—lgmgn—l.
n—m

Moreover, Dy, ., = S((n_m)’(lm)) <_L%J _ I.WH_ETMJ>

Proof. Since S((n—m),(1m)) is irreducible, the coefficient of the leading degree in the

graded dimension of D equals the coefficient of the leading degree in the graded

finm
dimension of S((, ), 1m)), established in Proposition 11.7.

Let .7 be the set of all standard ((n —m), (1™))-tableaux. If 1 <m < 2 + 1, then
maxdeg(7) = m + | 2] + | ™22 | and mindeg(7) = —m + | 2] + |22 by
Proposition 11.7. So, the highest degree in the graded dimension of D(,_p) 1m)) is
3 (maxdeg(.7) — mindeg(.7)) = m. One can similarly deduce the leading degree in the
other two cases.

Moreover, we determine i € Z where D(p—m),am)) = Sin-m),am)(). I 1 <
m < 2 +1, then maxdeg(7) = m + || + |2+==2| and mindeg(7) = —m +
| 2] + |2+te==2 | by Proposition 11.7. By the definition of the graded dimension of
D((n—m),(1m)), we know that i = —1 maxdeg(.7) —  mindeg(7) = —| 2| — | E=2

as required. We similarly determine the same grading shift for T +1<m <n—-1. 0O

122 CASE II: k9 ZKk1 — 1 AND n =1+ 1 MODULO ¢

Let ko # k1 —1 (mode) and n = [+ 1 (mod e). For 1 < m < n—1, recall from
Theorem 9.7 that S((,—m),1m)) has graded composition factors Dy, ., = im(ym,—1)(i)

and D = im(ym)(j), for some i, j € Z.

Hn,m

Proposition 12.2. Let ko # k1 — 1 (mod e) and n =1+ 1 (mod e). Then the leading
term of grdim(D,,,, ,.) is

n

1. <L6J)um fo<m< L,
m
2. (n—2LZJn— 1)1)“—” fi<m<n—12,
m— [ 2] ¢ ©
2]

3. ( 1>v”_m_1 if T <m<n—1.
n—m —

Moreover, D,,, ., = im(v,) <—Lm+efMJ — L%D

Proof. Let 7 ={T € Std((n—m), (1™))|T(1,n—m,1) = n}. By Lemma 6.5, we know
{vr | T € 7} is a basis for im(~,,), where T' € .7. By Corollary 1.37, we have

grdim (D, ) = v’ grdim (im(y,,)) = v* Y v,
TeT
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12.2. CASEIL: ks # ki —1 (MOD E) ANDN=L+1 (MOD E)  CHAPTER 12

where 2i = — maxdeg(.7 ) —mindeg(.7"). Now suppose that 1" € 7. We note that there
are | 2| + 1 entries in 7" congruent to I + 1 modulo e, n being one such entry, and [ %]
entries in ' congruent to [ + 1 modulo e, and hence there are n — 2|2 | — 1 entries in T
congruent to neither / 4+ 1 nor [ 4+ 2 modulo e. We now consider the three cases in the

proposition.

1. The tableaux in .7 with the maximum degree are those tableaux formed by placing
m of the remaining [ 2] entries congruent to [ + 1 modulo e in the m nodes in
their legs. Hence, max(A5) = m. Whereas, the tableaux in .7 with the minimum
degree are those tableaux formed by placing m of the |Z] entries congruent to
[ + 2 modulo e in the m nodes in their legs. Hence min(A») = —m. Thus,
3 (maxdeg(.7) — mindeg(.7)) = 5 (max(A7) — min(Az)) = m.

2. The tableaux in .7 with the maximum degree are those tableaux formed by placing
the remaining [%2] entries congruent to [ + 1 modulo e in their legs, together
with m — |2 | entries congruent to mneither / + 1 nor [ + 2 modulo e. Hence,
max(Az) = [2]. Whereas, the tableaux in .7 with the minimum degree are
those tableaux formed by placing the [2] entries congruent to I 4 2 modulo e

in their legs, together with m — [2] entries congruent to neither / + 1 nor [ + 2

modulo e. Hence, min(Az) = —|2]. Thus, 3 (maxdeg(.7) — mindeg(.7)) =
3 (max(Az) —min(A7)) = | 2].

3. The tableaux in 7 with the maximum degree are those tableaux with the least
amount of entries in their legs congruent to [4+2 modulo e, that is, we place n—m—1
of the [ 2] entries congruent to [ + 2 modulo e in the remaining n — m — 1 nodes
in their arms. Thus in the legs of these tableaux there are | 2] nodes congruent to
[+1 modulo e, | 2] —n+m+1 nodes congruent to /+2 modulo e, and n—2[ % | —1
nodes congruent to neither [+ 1 nor [ 4+2 modulo e. Hence, max(As) =n—m—1.
Whereas, the minimum degree are those tableaux with the least amount of entries
in their legs congruent to [+1 modulo e, that is, we place n—m—1 of the remaining
| 2| entries congruent to [ +2 modulo e in the remaining n —m — 1 nodes in their

arms. So in the legs of these tableaux there are |Z| entries congruent to [ + 2

modulo e, | 2] —n +m + 1 nodes congruent to [ + 1 modulo e, and n —2[%| — 1
nodes congruent to neither 4 1 nor [ 4+2 modulo e. Hence, min(Az) = m—n+1.

Thus, 3 (maxdeg(.7) — mindeg(7)) = 3 (max(Az) — min(Az)) =n—m— 1.

Moreover, notice that min(A5) = —max(Az), for all m. Thus, 2i = — maxdeg(.7) —
. _ -2 .
mindeg(7) = —2|™+=2| — 2|2 |, as required. O

Example 12.3. Let e =3, k = (0,0), n =7 and = {T € Std((5), (12)) | T(2,1,2) =
7}. By Lemma 6.5, it follows that im(+1) is spanned by {vy | T € F}. There are siz
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possible such tableauzx, namely

S=12]3[4[5/6] s15=[1]3]4[5[6] s2s15=[1]2[4[5]6]

8382815 = , 848382815 = , 85848382815 = .
6

By Lemma 11.1, if T € 7 where deg(T) = maxdeg(7), then T(1,1,2) € {1,4},
whereas, if T € 7 where deg(T) = mindeg(7), then T(1,1,2) € {2,5}. Hence,
deg(S) = deg (s352515) > deg (s251.5) = deg (s5545352515) > deg (s15) = deg (s45352515).
One can check that deg(S) = 3, deg (51.5) 1 and deg (s2515) = 2, so that

grdim (im(v;)) = 20° + 20% + 20.

By Lemma 9.12, im(v1) = Dy, , = D((),1)) as ungraded e@é\—modules, and so by shifting
the grading for im(~y1) we see that

grdim (D) (1)) = grdim (im(71){~2)) = 20+ 2+ 207,

12.3 CASE III: ko = k1 — 1 AND n # 0 MODULO e

Let ko = k1 —1 (mod e) and n # 0 (mod e). For 1 < m < n—1, we recall from
Theorem 9.13 that S((,—m),1m)) has graded composition factors Dy, ,, = im(xm)(i)
and D = (S((n_m)’(lm))/lm(¢m))<j>7 for some 1,] € 7.

Hn,2m+1

Proposition 12.4. Let kg = k1 — 1 (mod e) and n Z 0 (mod e).

1. The leading term of grdim(D,,,, ,,.) s

m

(b) <n ;12—&{{;] 1)ULZJ if2<m<n-—7%,

]

(c) < 1>v("_m_1) ifn—%2<m<n— 1
n—m—

@ (f)omyremes

Moreover, Dy, ,.. = im(xm) (—2] — |l — 1).

2. The leading term of grdim(D,,, ,,..,) is

(a) ( L] )v’"‘l fl1<m<,

m—1
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) <"2L6J 1)ULZJ ifr<m<n-—n,
m_

1-[2]

(c) (nLZJ )U”_m ifn—2<m<n—1

—m

Moreover, Dy, 51 = S(n—m),(1m))/ im(xm) (= 22| — [2]).

n

Proof. We note that in the set {1,...,n} there are 2] entries congruent to [+1 modulo

e, | 2] + 1 entries congruent to ! + 2 modulo e (including 1), and hence n —2[ 2] — 1

congruent to neither [ + 1 nor ! + 2 modulo e.

1. Let 7 ={T € Std((n —m), (1™)) | T'(1,1,1) = 1}. By Lemma 6.5, we know that
im(xm) is spanned by {vr | T € 7}. By Corollary 1.37, we have

grdim (D, ,,,) = v! grdim (im(xm)) = v° Z paes(D)
TeT

where 2¢ = — maxdeg(.7) — mindeg(.7).

(a)

The tableaux in 7 with the maximum degree are those tableaux constructed
by placing m of the [ 2] entries congruent to [ + 1 modulo e in the m nodes
in their legs. Hence, max(A5) = m. Whereas, the tableaux in .7 with
the minimum degree are those tableaux constructed by placing m of the
remaining | %] entries congruent to / 4+ 2 modulo e in the m nodes in their

legs. Hence, min(Az) = —m.

The tableaux in 7 with the maximum degree are those tableaux constructed
by placing the [Z] entries congruent to [ + 1 in their legs, together with
m— |2 | of the n—2|2 | —1 entries congruent to neither /41 nor /42 modulo
e. Hence, max(Az) = [Z]|. Whereas, the tableaux in 7 with the minimum
degree are those tableaux constructed by placing the remaining [ %] entries
congruent to [+2 in their legs, together with m—[% | of the n—2[% | —1 entries

congruent to neither / + 1 nor [ + 2 modulo e. Hence, min(Az) = —[%2].

The tableaux in .7 with the maximum degree are those tableaux with the
least amount of entries congruent to [ + 2 modulo e in their legs, that is, we
place n —m — 1 of the remaining [ %] nodes congruent to [ 4 2 modulo e
in the remaining n — m — 1 nodes in their arms. Thus, in the legs of these
tableaux there are | %] entries congruent to /41 modulo e, [2] —n +m + 1
entries congruent to [ + 2 modulo e, and n — 2|2 | + 1 entries congruent to
neither [+ 1 nor [+ 2 modulo e. Hence, max(Az) = n—m —1. Whereas, the
tableaux in 7 with the minimum degree are those tableaux with the least
amount of entries congruent to [ + 1 modulo e in their legs, that is, we place
n —m — 1 of the [2] entries congruent to [ 4+ 1 modulo e in the remaining
n —m — 1 nodes in their arms. Thus, in the legs of these tableaux there are

| 2| entries congruent to [ +2 modulo e, [%Z| —n+m+ 1 entries congruent to
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[+ 1 modulo e, and n — 2| 2| + 1 entries congruent to neither [ 4+ 1 nor [ + 2

&
modulo e. Hence, max(Az) = —n+m+ 1.

Moreover, notice that min(As) = —max(A ) for all m. Thus, 2 = — maxdeg(.7)—
mindeg(7) = —2| 2] — 2| ™ | — 2, as required.

e

2. Let ¥ ={T € Std((n —m),(1™)) | T(1,1,2) = 1}. By Lemma 6.5, we know that
S((n—m),(1my)/ IM(Xsm) is spanned by {vp | T € #}. By Corollary 1.37, we have

grdim (Dun72m+1) = ¢ grdim (S((nfm),(lm))/lm(Xm)) =t Z ,Udeg(T)7
Tes

where 2i = — maxdeg(.¥’) — mindeg(.¥).

(a) The tableaux in . with the maximum degree are those tableaux constructed
by placing m — 1 of the [Z] entries congruent to [ 4+ 1 modulo e in the
remaining m — 1 nodes in their legs. Hence, max(A4») = m — 2. Whereas,
the tableaux in . with the minimum degree are those tableaux constructed
by placing m — 1 of the remaining |2 | entries congruent to [ 42 modulo e in
the remaining m — 1 nodes in their legs. Hence, min(A ») = —m.

(b) The tableaux in .#” with the maximum degree are those tableaux constructed
by placing the | 2] entries congruent to [ 41 modulo e, together with m —
2] —1 of the n —2[ 2] — 1 entries congruent to neither /+ 1 nor [ +2 modulo
e, in the remaining m — 1 nodes in their legs. Hence, max(Ay) = [%] — 1.
Whereas, the tableaux in . with the minimum degree are those tableaux
constructed by placing the remaining | 2] entries congruent to I + 2 modulo
e, together with m — |2 | — 1 of the n — 2| 2| — 1 entries congruent to neither
[ 4+ 1 nor | + 2 modulo e, in the remaining m — 1 nodes in their legs. Hence,
min(Ay) =—|%2] - 1.

(c) The tableaux in .7 with the maximum degree are those tableaux with the
least amount of entries congruent to [ 4+ 2 modulo e in their legs, that is, we
place n—m—1 entries of the remaining | 2 | congruent to /42 modulo e in their
arms. So, there are [ 2] entries congruent to / +1 modulo e, [2] —n+m+1
entries congruent to [ + 2 modulo e, and n — 2[ 2] — 1 entries congruent to
neither [ 4 1 nor 42 modulo e. Hence, max(A ) = n—m —1. Whereas, the
tableaux in .7 with the maximum degree are those tableaux with the least
amount of entries congruent to [ + 1 modulo e in their legs, that is, we place
n—m— 1 entries of the |2 | entries congruent to /+1 modulo e in their arms.

Hence, min(Ay) =m —n — 1.

Moreover, notice that min(A.y») = —max(Ay) — 2. Thus, 20 = —maxdeg(.7) —
mindeg(.7) = —2| 2L | — 2| |, as required.
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Example 12.5. Lete =3, k = (0,2), n =5 and = {T € Std((3), (12)) | T(1,1,1) =
1}. By Lemma 6.5, im(x2) is spanned by {vr | T € T}. There are siz tableauz in 7,

namely

T=[1]4]5], ssT =[1[3]5], sussT =[1]3]4],

8283T = , 828483T = , 83828483T = .

By Lemma 11.1, one can check that deg(T') = deg(s28453T) = 2, deg(s3T') = deg(s3sas453T) =
0 and deg(s4s3T) = deg(sas3T) = 1, and hence

grdim (im(x2)) = 2v% + 2v + 2.

By Theorem 9.13, im(x2) = Dy, = D((3,12),0) as ungraded #2 -modules, and one sees
that we obtain D3 12) &) by shifting the degree of im(x2) by —1. In other words,

grdim (S((312),0)) = grdim (im(x2)(—1)) = 2v + 2+ 2071,

Let ¥ = {S € Std((3),(1%)) | S(1,1,2) = 1}. It follows from Lemma 6.5 that,
S((3),(12))/ im(x2) is spanned by {vs | S € S}. There are four tableauz in .7, namely

S1=[3[4[5], 525 =[2]4]5], 53505 =[2[3[5] sus3s05 =[2]3[4]

It can be easily checked that deg(S) = deg(s4s3525) = 0, deg(s2S) = 1 and deg(s3s25) =
—1, and hence

grdim (S((g)’(p))/lm(XQ)) =v+2+ 1}_1.

We know Sy a2y)/im(x2) = Dys, = D((),12)) as ungraded #L -modules by Theo-
rem 9.13. Since grdim (S((3)7(12))/ im(x2)) is symmetric inv and v™?, S((3),(12))/ im(x2) =
D (3),(12)) as graded %g\—modules.

124 CASE IV: ko = k1 —1 AND n =0 MODULO ¢

Let kg = k1 —1 (mod e) and n = 0 (mod e). We know that S(—_m),1m)) has un-
graded composition factors Dy, ,,, = im(¢y,) and Dy, ,,.., = ker(vm)/im(¢,) by The-
orem 9.14. Under grading shifts, D, ,,. (i) and Dy, ,..,(j) are graded composition

factors of S((p_ym),(1m)), for some 4, j € Z, which we determine. In this section, we not
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only find the leading terms in the graded dimensions of the graded composition factors
Dy 5 (1) and Dy, 500 (5) of S((n—m),(1m)), and hence the trailing terms, but the second
leading terms, and hence the second trailing terms too. We will see in Chapter 13 that
these extra terms are necessary to determine the graded decomposition numbers in this
case, since from Theorem 9.14 we know that S((,_p) 1m)) has up to four composition

factors.
Proposition 12.6. Let ky = k1 — 1 (mod e) and n =0 (mod e).

1. The first two leading terms of grdim(D,,, ,,,) are
n—e n—e
¢ mo1 (e=2)n (BTN s ey
(e) <m—1>v ’ e m—2)" if

(e—2)n (e—2)n
vie n—e e + e ’UTH726 if 2 < m <
T e m—2+1 m—2— e h

n—e n—e
—m—1 (6—2)71 =9 . (71)+
(c) <n_e_1>vnm 7€<n_;l_2>,unm iFrere <o 1

N

m< %

)

Moreover, Dy, ,,, = im(¢p) (-1 — 2] —2).

e

2. The first two leading terms of grdim(D,,, ,,..,) are

(a) < n—e >Um_27 (6_2)71( nge )’Um_3 if2<m< %’

e
m — 2 e m—3
(e—2)n

(6_72)71’ n—e n —e w \e—a)n e 1
(b) (6(m€1)n)ﬂe, - <men>+<e(m62)n> vTif%<m<@

e € e

(c) < i )v”—m, (6_2)n< g )”n_m‘l if M < m < - 1,

e
n—m e n—m-—1

Moreover, Dy, ,..., = ker(ym)/ im(dm) <—Lme_1J i >

Proof. In the set {1,...,n}, there are 2 entries congruent to / + 1 modulo e (including

n), and there are 2 entries congruent to [ + 2 modulo e (including 1).

1. Let 7 ={T € Std((n —m), (1™))|T'(1,1,1) = 1,T(m,1,2) = n}. By Lemma 6.5,
we know that {vr | T € I} is a basis for im(¢,,). By Corollary 1.37, we have

grdim(Dy, ,,,) = v’ grdim(im(gy,)) = o' Y 0280,
TeT
where 2i = — maxdeg(7) — mindeg(.7). We let S,T € 7 such that max(As) =

ar and min(Az) = ags.

(a) The degree of T' is obtained by placing the remaining “>¢ entries congruent
to I + 1 modulo e in the remaining m — 1 nodes in the leg of T'. Thus every

entry in the leg of T is congruent to [ + 1 modulo e. Hence max(A5) = m.
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Whereas, we obtain the degree of S by placing the remaining "¢ entries
congruent to [ + 2 modulo e in the remaining m — 1 nodes in the leg of T'.
Thus there is one entry in the leg of S congruent to I + 1 modulo e in the
leg of S, and there are % entries congruent to [ + 2 modulo e in the leg of S.
Hence min(Az) =2 — m.

Thus, 3(maxdeg(7) — mindeg(7)) = 3(max(Ay) — min(Az)) =m —1, as
required.

We obtain the degree of T' by placing the remaining *>< entries congruent to
[ +1 modulo e, together with m — % entries congruent to neither /+1 modulo
e nor congruent to [ + 2 modulo e, in the remaining m — 1 nodes in the leg
of T. Thus there are % entries in the leg of T' congruent to [ + 1 modulo e.

n

Hence, max(Az) = 2.

€
n—e

Wheareas, we obtain the degree of S by placing the remaining *_< entries
congruent to [ +2 modulo e, together with m — % entries congruent to neither
[ 4+ 1 modulo e nor [ + 2 modulo e, in the remaining m — 1 nodes in the leg
of S. Thus there is one entry in the leg of S congruent to [ + 1 modulo e,
and there are < entries in the leg of S congruent to [ + 2 modulo e. Hence,
min(Az) =2 - 2.

Thus, 3(maxdeg(.7) — mindeg(7)) = 3(max(Az) — min(4y)) = =<, as
required.

We obtain the degree of T' by placing the remaining % — 1 entries congruent
to [ + 2 modulo e in the remaining n — m — 1 nodes in the arm of 7. Thus

there are %

entries congruent to [ + 1 modulo e in the leg of T, and there
are T — n + m entries congruent to [ + 2 modulo e in the leg of T. Hence,
max(Ay) =n—m.

Whereas, we obtain the degree of S by placing the remaining 7 — 1 entries
congruent to [ + 1 modulo e in the remaining n — m — 1 nodes in the arm of
S. So, there are T — 1 entries congruent to [ + 2 modulo e in the leg of S,
and there are 2 —n +m + 1 nodes congruent to [ + 1 modulo e in the leg of
S. Hence, min(Ay) =m —n + 2.

Thus, 3(deg(7) — deg(7)) = i(max(Ay) — min(Az)) = n—m —1, as

required.

Moreover, notice that min(Az) = —max(Az) + 2, and thus 2i = —max(Azs) —
min(Ag) = —2[2] — 2| ™=1] — 4, as required.

2. Let & ={T € Std((n—m), (1™)) |T(1,1,2) = 1,T(m,1,2) = n}. By Lemma 6.5,
we know that ker(v,,)/im(¢,,) is spanned by {vpr | T € #}. By Corollary 1.37,

we have

grdim (Dun,2m+1) = grdim (ker (v, )/ im(¢n,) = v Z vdeg(T),
Te?
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where 2i = —maxdeg(.#’) — mindeg(.#). We let S,T € .# such that max(A.») =
ar and min(Ay) =ag.

(a) We obtain the degree of T' by placing the remaining "¢ nodes congruent to
I + 1 modulo e in the remaining m — 2 nodes in the leg of T'. Thus there are
m — 1 entries in the leg of T congruent to I + 1 modulo e, and there is one

entry in the leg of T' congruent to [ + 2 modulo e. Hence, max(A) = m — 2.

Whereas, we obtain the degree of S by placing the remaining *—< nodes

congruent to [ + 2 modulo e in the remaining m — 2 nodes in the leg of S.
Thus there is one entry in the leg of S congruent to I + 1 modulo e, and
there are m — 1 entries in the leg of S congruent to [ + 2 modulo e. Hence,
min(A) =2 —m.

Thus, 3 (maxdeg(.#) — mindeg(.#)) = 3(max(Ay) — min(Ay)) = m — 2, as
required.

(b) We obtain the degree of T' by placing the remaining »=¢ entries congruent

e

n(e—2)

to I + 1 modulo e in the leg of T, and then place entries congruent

to neither [ + 1 modulo e nor congruent to [ + 2 modulo e in the remaining

n—e
e °

m — % — 1 nodes in the leg of T". Hence, max(A4.») =

n—e
e
entries congruent to [ 4+ 2 modulo e in the leg of S, together with @

entries congruent to neither / + 1 modulo e nor congruent to [ 4+ 2 modulo e

Whereas, we obtain the degree of S by placing all of the remaining

in the remaining m — % — 1 nodes in the leg of S. Hence, min(A4.») = <™.

Thus, %(maxdeg(y) — mindeg(.¥)) = %(max(Ay) —min(Ay)) = "2, as
required.

(c) We obtain the degree of T' by placing the remaining "Z¢ entries congruent
to [ + 2 modulo e in the arm of T. Thus T has % entries congruent to [ + 1
modulo e in the leg of T', together with 2 — n + m entries congruent to [ + 2
modulo e in the leg of T. Hence, max(Ay) =n —m.

Whereas, we obtain the degree of S by placing the remaining "< entries
congruent to [ +1 modulo e in the arm of S. Thus S has % entries congruent
to [ +2 modulo e in the leg of S, together with £ —n + m entries congruent
to I + 1 modulo e in the leg of S. Hence, min(A.») = m — n.

Thus, 3(maxdeg(.#) — mindeg(.#)) = 3(max(Ay) — min(Ay)) = n—m, as

required.

Moreover, notice that min(Ay) = —max(Ay), and thus 2i = —max(Ay) —
min(Ay) = —2[2] — 2| ™=1] — 2, as required.

e

O

Example 12.7. Lete =3, k = (0,2), n =6 and = {T € Std((3), (1%)) | T(1,1,1) =
1,7(3,1,2) = 6}. From Example 7.17, im(¢3) is spanned by {vr | T € T}. There are
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siz tableauz in T, namely

T=[1]4]5], ssT =[1[3]5], sussT =[1]3]4],

d d d
8283T = , 828483T = , 83828483T = .
d d d

One can check that deg(T) = deg(s2s4s3) = 4, deg(s3T) = deg(sgsasassT) = 2 and
deg(s4s3T) = deg(s2s3T) = 3, and hence

grdim (im(¢3)) = 20? + 203 + 202

We know im(¢3) = Dyg e = D((4,12),0) a8 ungraded FL-modules. Now, by shifting the
grading on im(¢3) so that its graded dimension is symmetric in v and v~—', we have
D((4,12),0) = im(¢p3)(—3) as graded FL -modules.

Let ¥ = {S € Std((3), (1%))| S(1,1,2) = 1,5(3,1,2) = 6}. Also from Ezample 7.17,
ker(vys)/im(¢p3) is spanned by {vs | S € .#}. There are four tableauz in ., namely

S=[3]4]5] 528 =[2]4]5] 53505 =[2[3[5] 5453525 =[2[3]4]

6] 6] 6]

One can check that deg(S) = deg(sss3s2) = 2, deg(s25) = 3 and deg(s3s25) = 1, and
hence
grdim (ker(y3)/im(¢3)) = v + 20* + v.

We have ker(73)/im(¢3) = Dy, = D((4),(12)) as ungraded z@é\—modules. By shifting the
grading on ker(q3)/im(¢3) so that its graded dimension is symmetric in v and v, we

have D(4),12)) = ker(vys)/ im(¢3){—2) as graded R -modules.
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CHAPTER 13

(GRADED DECOMPOSITION NUMBERS

In this chapter we deduce the graded decomposition matrices for 2 comprising rows
corresponding to Specht modules labelled by hook bipartitions. We draw on Chapter 10,
where we determined the analogous ungraded decomposition matrices for 2, together
with Chapter 11 and Chapter 12, where we found the graded dimensions of S((,_),(1m))
and of their composition factors, respectively. In fact, we observe that knowing these
findings in Chapters 10 to 12 is equivalent to solving part of the Graded Decomposition
Problem, which we now provide an answer to.

Recall from Section 1.5 that the graded decomposition numbers are defined to be the
Laurent polynomials [Sy : Dyly = > ;c5[9x : Dy (i)]0f, for A € 2% and p € RP!.

We first determine the grading shifts on the ungraded trivial and sign representations
to obtain the analogous graded representations. The trivial representation S((,) g is
generated by vr,,, . It is clear that deg(t((n),))) = 0, 80 S((n),2) = D((n),2) as graded
ZM-modules, and hence [S((n),2)) : D((n),o))]v = 1. By Lemma 8.2, S (1ny) = Dy where

((fn—11),(1") ifn>1,
(@, (1) itn<l.

A:

We now find i € Z where Sz (1)) = D) ().
Lemma 13.1. 1. If sy =1 — 1 (mod e), then [Siz (1n)) : Dialo = v2le ]
2. If ko # k1 — 1 (mod e), then [S(g (1n)) : Daly = (L2401
Proof. We have grdim (D) = 1, whereas grdim (S(g (1)) = deg(t(z,(1n))), so that

[S(&(l")) : D(@,(w))]v = pdeslte,amy)

If e | 4, then (@,(1")) has addable (kg + 1)-node (1,2,2) strictly above (i,1,2), for
1 <i < n. Hence, d®1? (@, (1%)) = 1 when e | i. Further, there are || nodes (i, 1,2)

where e | i.
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1. If e | 4, then (@, (1%)) also has addable xi-node (1,1, 1) strictly above (i, 1,2), for
1 <i<n. Sod® (@, (1%) = 2 when e | i, and hence, deg(t(z,(1n)) = 2[ %]

2. For a > 0, (@, (10+429)) has addable ky-node (1,1, 1) strictly above (1 4 1 +
ae, 1,2), so ditHeel?) (g (1(0+H+ae))) — 1. There are | ==L | + 1 nodes (4, 1,2)
with i =1+ 1 (mod e). Thus, deg(t(z 1n))) = [ %] + Lm%l_lj + 1

O

In other words, if ko = k1 —1 (mod €), then Sy (1ny) = Dy (2|2]), and if ky #
#1 — 1 (mod e), then S(g (1ny) = Dy ([ 2] + | =11 4-1), as graded %2-modules.

For \ € # 272, we now establish the graded composition multiplicities [S((n=m),1m)) :
D,], of irreducible %’fl\—modules D) arising as composition factors of S((;—m),1m)), for
1 <m < n—1, depending on whether or not k3 = k1 — 1 (mod e) or not and whether

ornot n =141 (mod e) or not.

131 CASEIl: kg Z Ky —1 (mod e) ANDn Z [+ 1 (mod e)

Let ko # k1 —1 (mod e) and n # [+ 1 (mod e). We recall from Theorem 9.6 that
S((n—m),(1my) is irreducible and isomorphic to D, ,, as an ungraded Z2-module, for all
m € {1,...,n}. To find the graded multiplicity of D (;,_,),(1m)) arising as a composition
factor of S((n—m),(1m)), it suffices to find the grading shift on D((,_y,),(1m)) so that it is

isomorphic t0 S((,—m),1m)) as a graded Z2-module.

Theorem 13.2. Let ko # k1 —1 (mod e) and n # 1+ 1 (mod e). Then
m m+te—1—2
[S((nmmy (1) * Dy oo = ol LD,

Proof. We determine i € Z where [S((n_m)7(1m)) : D((n_m)y(lm))]v = o', which is equiv-
alent to finding i € Z where S((,—_m),(1m)) = D((n—m),(1m)) (i) as graded Z2-modules.
Thus, the result follows from Proposition 12.1. O

Example 13.3. Let e = 3, k = (0,0). Then the submatriz with rows corresponding to
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Specht modules labelled by hook bipartitions is

S(®).e) (1
S((7),(1)) 1 0
S((6),12)) v
S((5),13)) v

132 CASE II: k9 # k1 —1 (mode) AND n = [+1
(mod e)

Let kg # k1 —1 (mode) and n = [+ 1 (mod e). Recall from Theorem 9.7 that
S((n—m),(1my) has ungraded composition factors Dy, .., and Dy, ., for 1<m <n—1.
We now determine the grading shifts 4, j € Z so that Dy, ., (i) and D, . (j) are graded

composition factors of S((,—m),1m))-

Theorem 13.4. Let ko # k1 — 1 (mod e) and n =141 (mod e). Then, for all m €
{1,...,n—1},

L[Sy, 1)) : Dy Jo = o LEHLZEEEID),

2. 1S(n-m),am) * Dyl = o{LEIFL=H0),
Proof. We determine x,y € Z where grdim(s((nfm)»(lm))) =* grdim(Dun,mfl )+oY grdim(Dunﬂm).

1. Let 0 < m < [Z]. By Proposition 11.9, the leading and trailing terms, respectively,

in the graded dimension of S((,_p,) 1m)) are

(VZJ * 1>v(m+m+v’”if—ln and (L2J>v(—mﬂrgjﬂm*ef‘lj)’
m

m

and by Proposition 12.2, the leading terms in the graded dimensions of im(7y,,—1)

and im(~,,), respectively are

(1Yot ()

Firstly, the graded dimensions of Dy, .. and S((;,—m),(1m)) both have 2m +1 terms,
and hence y = | 2| 4 [ ™=2=L | Thus, z— |2 | — | 2+=2=L | = 0,1 since the trail-

ing coefficients in the graded dimensions of D, ,, and S((,_y,) (1m)) are equal. Now
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observe that the sum of the leading coefficients in the graded dimensions of Dy, .,
and Dy, ., give the leading coefficient in the graded dimension of S(,—m),(1m))-

Hence, z = | 2| 4 [mte=2=t] 4,

2. Let [Z] <m < n—[2]. By Proposition 11.9, the leading and trailing terms in

the graded dimension of S((,_,),1m)), respectively are

<” —2le) - 1)U(L2J+1+L$J+w+zﬂj) and <” —2lel - 1>U(—L:J+L?J+LWJ)_
m %] -1 m— 2

€ €

By Proposition 12.2, the leading terms in the graded dimensions of D, . _, and

D respectively, are

(” —2lel - 1>ULZJ and <" —2lel - 1>UL2J_
L 1

m—| m— %]

Observing that the leading coefficients in the graded dimensions of S((;,—m),1m))
and D are equal, we deduce that x = [2] + [™Fe=2=1| 4 1 Similarly,

e
observing that the trailing coefficients in the graded dimensions of S((,—m),1m))

Hn,m

Hn,m—1

Lm+e;271 J .

and Dy, ,, are equal, we deduce that y = [Z| +

3. Let [2] < m < n—1. By Proposition 11.9, the leading and trailing terms in the

graded dimension of S((;,—m),(1m)) are

( e >v(n_m+1+t’:J+Lm+1”J) and (LZJ + 1>v(m—n+l+\_?j+Lm+Z2lJ)’
n—m

n—m

respectively, and by Proposition 12.2, the leading terms in the graded dimension

of D and D respectively, are

Hn,m—1 Hn,m>?

(nngm >v<nm> and (n el 1)v<nml>.

Firstly, the graded dimensions of S((;,—p),(1m)) and Dy, ., both have 2n —2m+1
terms, and hence z = [2] + [™Fe2=L] 1. Thus, y — 2] — |2Fe2=l) =
0,1, since the leading coefficients in the graded dimensions of S((;,_m) 1m)) and
Dy, .._, are equal. Now observe that the sum of the trailing coefficients in the

graded dimensions of D, ., and D gives the trailing coefficient in the graded

MHn,m

dimension of S((n_m%(lm)), Hence, y = L%J + L%—Q—ZJ
O

Example 13.5. Let e = 3, k = (0,0). Then the submatriz with rows corresponding to
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Specht modules labelled by hook bipartitions is

Sin,e) (1
Sey,ay |v 1 0
S((5),(12)) ve

13.3 CASEIIIL: ko =K1 — 1 (mod e) ANDn Z 0 (mod e)

Let kg = k1 —1 (mod e) and n # 0 (mod e). Recall from Theorem 9.13 that the
ungraded composition factors of S((,—m),1m)) are Dy, ,, and Dy, ., for all m €
{1,...,n —1}. Hence as graded #}-modules, the composition factors of S((n=m),(1mY)

are Dy, ,,. (i) and Dy, ,.. (j) for some integers i and j, which we now determine.

Theorem 13.6. Let ko = k1 — 1 (mod e) and n # 0 (mod e). Then, for all m €
{1,...,n—1},

m m+e—1
L. [S(m), (7)) ¢ Dy o = o),

m m-+te—1|_
2. [S(n-m),(1m)) * Do = o{LE LTI,

Proof. We determine x,y € Z where

grdim(S((n—m),(amy)) = v* grdim(Dy,, ,,.) + v¥ grdim(D

Hn,2m+1 ) .

n

1. Let 1 < m < [2]. By Proposition 11.10, the leading and trailing terms in the

graded dimension of S((,_pm),(1m)), respectively, are

<L3J>v<m+m+tm*:%> and <V$J + 1>v(m+m+tm+:w>.

m m

By Proposition 12.4, the leading terms in the graded dimensions of D, , . and

Dy, 541> TESPECtiVEly, are

(%J>vm and (mL_J 1)v<m—l>.

Firstly, the graded dimensions of S((;,—m),(1m)) and D,,, ,.. both have 2m+1 terms,
and hence z = |2 + |Z£t¢=1] Thus, we have y — 2] — | 2te=1| = —1 0 since

the leading coefficients in the graded dimensions of S,y 1m)) and D are

Hn,2m
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equal. Observing that the sum of the trailing coefficients in the graded dimensions
Of DM"”?"" and Dun,2m+1
S((n—m),(1m)), and hence y = | = | + L%HJ 1

equals the trailing coefficient in the graded dimension of

2. Let [2] <m <n — [2]. By Proposition 11.10, the leading and trailing terms in

the graded dimension of S((,_y,) 1m)) are

<” —2e) - 1>U<L’;J+L’:J+L’"+:l ) and (" —2le) - 1>v(—L2J—1+L?J+Lm+§1J),

m— [¢] m—[2] -1
respectively. By Proposition 12.4, the leading terms in the graded dimensions of
Dy, 5, and Dy, ., are

(e (1 e

respectively. Observe that the graded dimension of S((,_pm),1m)) has 2[Z] + 2

fimom+1 DOth have 22| +1
_ —1 _ _ 1| _

terms. Hence, v = |2] + |21 =y +lory = [2] 4+ [ =z + 1.

Observing that the leading coefficients in the graded dimensions of S((;,—pm),(1m))

terms, whereas the graded dimension of Dy, , . and D

and Dy, ,, are equal, and the trailing coefficients in the graded dimensions of

S((n—m),(myy and Dy, , ., are equal, the former case holds.

3. Let n— [ 2] <m < n — 1. By Proposition 11.10, the leading and trailing terms in

the graded dimension of S((,_y,),1m)) are

(LZJ + 1)U(n_m—1+L’ZJ+L”+§1J) and (

n—m

2]

n—m

I

>v(m_n_1+m+m+:w)

respectively. By Proposition 12.4, the leading terms in the graded dimensions of

D and D are

Hn,2m Hn,2m+1

( | 2] ),U(n—m—l) and < [ 2] ),U(n—m)’
n—m-—1 n—m

respectively. The graded dimensions of S((;,—m),(1m)) and Dy, ,,. ., both have 2n —
2m + 1 terms, and hence y = || + L%‘a_lj — 1. Observing that the sum of the

leading coefficients in the graded dimensions of D, ,  and D equals the

Hn,2m+1
leading coefficient in the graded dimension of S((;_m), (1m)), we have x = 2] +
Lm+eflJ

=

O]

Example 13.7. Let e = 3, k = (0,2). Then the submatriz with rows corresponding to
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Specht modules labelled by hook bipartitions is

Sn.e) (1
5((6),(1)) v 1 0
S((5),12) v 1

S((4),1%) v w 0
5((3),a%) G

5((2),0%) L

S((1),09)) 0 vt 0P
S(e,17) v

134 CASEIV:ky =k — 1 (mod e) ANDn =0 (mod e)

Let ko = k1 — 1 (mod e) and n = 0 (mod e). Recall from Theorem 9.14 that D, ..,
D D
for 2 < m < n—2; Sn-1),(1)) and S((1),(1»)) both have three composition factors. Hence

and Dy, ,,, ., are the ungraded composition factors of S((y—m),(1m)),

Hn,2m+2) Hn,2m+1

as graded Z2-modules, S((n—m),(1m)) has composition factors Dy, ,,. (1), Dy, 502 (2),
Dy, omia (i3) and Dy, o (ia), for some iy, i2,143,14 € Z, which we now determine.
Firstly, one observes that the graded dimension of D, ,, equals the graded dimen-

sion of D under a grading shift.

Hn,2m+3)

Lemma 13.8. Let ko = k1 — 1 (mod e) and n =0 (mod e). Foralll < m <n—2,

V2 [S((n-m), 1) * Do 3o = [S(n=m),(170)) * Dol
Proof. Follows immediately from Proposition 12.6. O
Theorem 13.9. Let ke = k1 — 1 (mod e) and n =0 (mod e). Then
L [S(n=m),1m)) * Dy oo = U(L%HL%HJH), fort<m<n—1;
2. [S(tn-m),(1m)) * Dy amsalv = U(L%HL%HJ), for1<m<n-—2;

8. [S(nmy. (1)) Dyl = v EFHTD), for 2 <m<in = 2;

m m+e—1_
4 18,1 * Dpmamsalo = v EFZTIT for 1 <m < — 2,

Proof. 1. We have D, . = ker(y2)/im(¢2), D, , = im(¢2) and Dy, , = im(¢p1) =
S((n),2) as ungraded Z2-modules.

By Lemma 13.8, v? [S((n=1),(1)) * Ppnslo = [S((n=1),1)) * Dpun2Jv- So we determine
x,y € Z where

grdim(S((n_l)j(l))) = 0" grdim(Dy,, ,) +v¥ grdim(D,,, ,) + vt grdim(D,,, ;).
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By Proposition 11.11 and Proposition 12.6, we have

. n e—2)n n
grdlm(S((n—1),(1))) = EU2 + (e)v + .

T <n—ev+ (e—2)n+n—evl> g
e e e

Thus, by equating terms, y =1 =z — 1.

2. By Lemma 13.8, UQ[S((n,m)’(lm)) : Dun,2m+3]v = [S((nfm),(lm)) : DMQO]U. holds for

2 <m < n—2. So we determine z,y, z € Z where

grdim (S((n_m)V(lm))) =v* grdim(D,,,, ,,,) + v grdim(Dy, ,,,.,)
+ Uz grdim(DIJ«n,2m+2) + Ua:_2 grdim(Dﬂn,2m+3)'

(a) Firstly, let 2 < m < 2. By the first part of Proposition 11.11, the first two
leading terms of grdim (S((n_m)y(lm))) are

(Z‘)U(mﬂmﬂmfw) and (6—2>"< ¢ )v(m—uvgjﬂ’”*:ln’

m e m—1

respectively, and the last two trailing terms of grdim (S((n,m)’(l'm))) are

(6—2>n< ¢ )v(l_m+U;J+Lm+:—1J) and <Z)U(—m+LTZJ+Lm+§_IJ)7

e m—1 m

respectively. By Proposition 12.6, the first two leading terms of the graded

dimensions of Dy, ,  and D are

Hn,2m+2

BN L (e=2n( 2
m—1 ’ e m — 2
nge oM™ (6 — 2)n n;e Um—l
m ’ e m—1 ’

respectively, and the first two leading terms of D

and

and D are

Hn,2m+1

n—e n—e
e m—2 (e — 2)” e m—3
(m — 2) v e m—3)"
n;e Umfl (6 — 2)” nge ,Um72
m—1 ’ e m— 2 ’

both have 2m+1 terms,

Hn,2m+3

and

respectively.
The graded dimensions of S(;,—m),(1m)) and D
and hence z = | 2] 4 [2te=L |,

Observe that the graded dimensions of D

Hn,2m+2

Lin.2m and Dun,2m+3 both have 2m —1
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terms, so together with Lemma 13.8, x = | 2] 4 [2te=d| 4 1.
Clearly, —2 < y— | 2| — |™+t==L1] < 2. Now observe that the sum of the
second leading coeflicients in the graded dimensions of D and D

form the second leading coefficient in the graded dimension of S((;,—),(1m))-

Hn,2m Hn,2m~+2

Also, the sum of the second trailing coefficients in the graded dimensions
of D and D

dimension of S((n—m),(lm))- Hence, Yy = L%J + L%HJ'

form the second trailing coefficient in the graded

Hn,2m+2 Hn,2m+3

Let T <m < @ By the second part of Proposition 11.11, the leading

and trailing terms of grdim S(;,_,) 1m)) are

(e—=2)n
< eme—n >U(

respectively. By Proposition 12.6, the leading terms of grdim(D,,, ,, ) and

o3

em—n
€

(e—2)n
BN ana ([, )oCHRIE)

grdim D are, respectively,

(e—2)n e (e—2)n e
( ° )ve and( € )v c .
eme n m — % -1

The graded dimension of S((;_,),(1m)) has 27" + 1 terms, whereas D
Dty omys Doth have 22 — 1 terms. Hence z =1+ | 2] 4 [2te=d |,

Clearly, |2 + [2te=l] — 1 < y,z < [ 2] + L%HJ + 1. Now, observing
that the leading coefficients in the graded dimensions of S, 1m)) and
D
S((n-m),m)) and D

Hn,2m+1

fin.2m and

1in.2m ar€ equal, and that the trailing coefficients in the graded dimensions of

tim.am+s are equal, we deduce that y = z = | 2] 4 | Zte=1]

as required.

Let @ < m < n — 2. By the third part of Proposition 11.11, the first two

leading terms in grdim S((,_y,),(1m)) are

n—m e n—m-—1

<Z>U(nm+L’ZJ+L’“:1J)+(e_2)”< ¢ )v(nmlﬂ’ZHLm*le),

respectively, and the last two trailing terms in grdim S((,_p),(1m)) are

e n—m-—1 n—m

(6—2)"< ¢ >v(1n+m+LT§J+Lm+§1J)’< . )v(mnﬂffjﬂ’"*;lj)'

By Proposition 12.6, the first two terms in the graded dimension of Dy, ,..

— -2
nee ,Un—m—l and (6 B 2)” n? Un—m—Z,
n—m-—1 e n—m-—2

are
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respectively, and the first two terms in the graded dimension of Dy, . ., are
% ™™ and (6 — 2)“ n;e Un—m—l
n—m e n—m-—1 ’

both have 2n —

respectively.
Since the graded dimensions of S((,—_m) 1m)) and D
2m + 1 terms, y = [ + L%HJ

Hn,2m+1

Observe that the graded dimensions of Dy, ,  and Dy, ,. ., both have 2n —
2m — 1 terms, so together with vQ[S((n_m)’(lm)) Dyt aislo = [S(n—m),am)) :
Dyt vr @ = 2] + [E=] + 1.

Clearly, —2 < z — [2] — |™t¢=1] < 2. One observes that the sum of the
second leading coefficients in the graded dimensions of Dy, ,,. and Dy, , ..,
form the second leading coeflicient in the graded dimension of S((,—m) 1m)).-
Similarly, the sum of the second trailing coefficients in the graded dimensions
of D and D

dimension of S((,—m),(1my). Hence z =[] + |

equal the second trailing coefficient in the graded

Hn,2m+1 Hn,2m+3

—1
m—i—: J )
3. By Lemma 8.2, we know S(g (1n)) = D) as ungraded Z2-modules, where

(({n—1}),(1Y) ifn>1
(2, (1m)) ifn < L.

A:

We observe that grdim(D,,,, ,,_,) = grdim(S(g (1ny)) = 1, where D, ,,_, = im(¢p_1)
as ungraded Z-modules. We know that im(¢,,_1) is spanned by ¥1¢s . . . Ymz((1),(1n-1))
and Sz (1)) is spanned by z((1) (1n-1)). One finds that

deg(V1tpz - . . Ymz((1),(an-1y)) = 2|2 ] + 2 = deg(z((1),an-1y)) + 2,
SO
VS, am) + St ample =[Sy, an-) - im(dn-1)le,
and hence v[S((1),(1n-1)) : Dalv = [S(1),(1n=1)) * Dppam_nJv- Thus we determine

x,y € Z where

grdim(S((l)V(ln_l)))
= v" grdim(D,,, ,,_,) + v¥ grdim(ker(D,,, ,,_,) + v*~* grdim(D)).

By Proposition 11.11 and Proposition 12.6, we have

grdim(S((1)7(1n71))
= ()l | <<6—2‘>n> RS () (L2t )

& € €
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_ _9 _
=v® + Y <n v + (e )n + n ev_1> + "2,
e e e

: _ fe—1| _
Equating terms, we deduce that y = [ + |™ ] =z — 1.

O]

Example 13.10. Let e = 3, k = (0,2). Then the submatriz with rows corresponding to
Specht modules labelled by hook bipartitions is

Sere) (1

Sy [v? v 1 0

S(@,a2) v v 1

S((3),(19) v 0w 0
S((2),04) vtoo? 0 0

S(),0%) 0 vt 0 0P
S(2,(18)) vt
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