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Abstract

Facial expressions convey a wealth of information about our feelings, personality and mental

state. In this thesis we seek efficient ways of representing and analysing facial expressions of

varying intensities. Firstly, we analyse state-of-the-art systems by decomposing them into their

fundamental components, in an effort to understand what are the useful practices common to

successful systems. Secondly, we address the problem of sequence registration, which emerged

as an open issue in our analysis. The encoding of the (non-rigid) motions generated by facial ex-

pressions is facilitated when the rigid motions caused by irrelevant factors, such as camera move-

ment, are eliminated. We propose a sequence registration framework that is based on pre-trained

regressors of Gabor motion energy. Comprehensive experiments show that the proposed method

achieves very high registration accuracy even under difficult illumination variations. Finally,

we propose an unsupervised representation learning framework for encoding the spatio-temporal

evolution of facial expressions. The proposed framework is inspired by the Facial Action Coding

System (FACS), which predates computer-based analysis. FACS encodes an expression in terms

of localised facial movements and assigns an intensity score for each movement. The frame-

work we propose mimics those two properties of FACS. Specifically, we propose to learn from

data a linear transformation that approximates the facial expression variation in a sequence as

a weighted sum of localised basis functions, where the weight of each basis function relates to

movement intensity. We show that the proposed framework provides a plausible description of

facial expressions, and leads to state-of-the-art performance in recognising expressions across

intensities; from fully blown expressions to micro-expressions.
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Chapter 1

Introduction

1.1 Scope of the thesis

Facial expressions are an integral part of our lives. They are a window into our emotions, mental

state, mood and personality. Expressions also regulate our day-to-day social communications.

Not too surprisingly, the production, perception, interpretation and synthesis of facial expressions

have been widely studied in various artistic and scientific disciplines.

The computer-based analysis of facial expressions can enable novel technologies and appli-

cations in various domains including healthcare (e.g. pain analysis), driving (e.g. drowsiness

detection), lip reading, animation (e.g. facial action synthesis) and social robotics [73, 248]. The

automated analysis of expressions can also have a significant impact in cognitive sciences, as the

relation between expressions and higher-level personality traits, mental states, or cognitive states

are all actively studied problems, and computers capable of quantifying expressions can enable

reproducible research on large archives of facial data.

One of the most important questions is, how should we represent the facial expression in a

video? To put in another way, how do we convert the image sequence into a numerical represen-

tation that maps similar expressions together and different ones far apart? This is a fundamental

question for many vision-based applications, and indeed, solutions found for other applications

have been influential. One of the most-popular approaches to facial expression representation is

using generic local texture or edge descriptors, inspired from their success in other applications,

including facial identity recognition [5] or person detection [45]. Recent approaches question the

1
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optimality or practicality of such so-called engineered representations, and use machine learning

to devise representations automatically from data. This is hardly a trend unique to facial expres-

sion analysis; it is observed from object recognition to text analysis, to pedestrian detection [110].

Solutions inspired directly from other applications will have their limitations, unless they take

into account the nature of facial expressions and the way emotions are modelled. An important

characteristic of expressions is that they do not occur suddenly; the intensity of an expression

changes gradually until the expression reaches its apex. Also, the intensity at the apex is not

always the same; we can express our happiness with a fully blown smile or with a subtle lip cor-

ner movement. Existing systems tend to approach the recognition of pronounced versus subtle

expressions as two different problems; however, in our daily life we display expressions at var-

ious intensities, and a unified facial representation that covers all of them is plausible. Another

characteristic of automatic affect analysis is that the same data can be labelled in different ways.

A video of a smiling face can be labelled with ‘happiness’ if the six-basic emotion model is used,

with ‘positive’ if another discrete emotion model is used [114], or with a vector of real numbers

if a continuous emotion model is used [73]. Therefore, a caveat is in order for supervised learn-

ing: A representation learnt using the labels of a specific emotion model can be of little use when

recognising emotions labelled with another model.

In this thesis we aim to discover efficient ways of representing and analysing facial expres-

sions of varying intensities. We start by conducting a comprehensive literature review where we

decompose state-of-the-art affect analysers into their fundamental components. Thus, we aim

to gain a better understanding about which component imposes limitations on the system and

which are the practices that contribute to its success. Next, we address one of the open issues that

emerged in our analysis, namely, the problem of rigid face registration in sequences. Facial ex-

pressions generate non-rigid motions, and their analysis is facilitated when the rigid motions that

stem from camera, head or body movement are eliminated. Accurate registration is particularly

critical for analysing subtle facial movements, which are difficult to identify as they generate little

deformation in facial appearance. We propose a novel registration approach that encodes motion

(locally) with Gabor motion energy, and then converts motion energy into rigid misalignment

parameters with a set of pre-trained regressors. With comprehensive experiments we show that

the proposed method is robust to illumination variations, produces little drift error compared to

classical registration approaches and achieves very high registration accuracy, which is essential
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for learning and identifying subtle (i.e. low-intensity) facial movements.

Finally, we present an unsupervised representation learning framework that is capable of

encoding facial expressions across intensities. The proposed framework is inspired from the Fa-

cial Action Coding System (FACS) [57], which predates computer-based analysis. FACS was

developed by psychologists to measure any expression by breaking it down into its constituent

localised movements, namely, its Action Units (AUs). Each AU is associated with a score that

defines its intensity. These properties enable a compact description, as different facial expres-

sions often contain common localised movements, and intensity scores enable the usage of the

same AU to represent a subtle or an pronounced version of the same facial movement. Our

unsupervised framework mimics those two properties. Specifically, we propose to learn from

data a linear transformation that approximates the facial expression variation in a sequence as

a weighted sum of localised basis functions, where the weight of each basis function relates to

movement intensity. Since the framework is unsupervised, the representation learnt on a spe-

cific set of expression labels (e.g. pronounced six basic expressions [167]) can be used on a test

set with other expression labels (e.g. three classes of micro-expressions [114]). The proposed

model is generative, which enables us to synthesise facial expression sequences and discuss the

properties of the learnt bases. Experiments show that the proposed method achieves state-of-the-

art performance in recognising pronounced expressions and micro-expressions. The key idea

of representing via localised movements and discerning between their intensity is implemented

using local Gabor filters. This idea can be also incorporated into today’s popular hierarchical

representations, which often contain similar localised differential filters.

1.2 Face perception models in the human vision system

How do we perceive expressions or interpret their meaning? While these are still open research

questions [3], there exists a large body of research that can shine light to them. Research suggests

that the human vision system has dedicated mechanisms to perceive facial expressions [27,217],

and focuses on three types of facial perception: holistic, componential and configural perception.

Holistic perception models the face as a single entity where parts cannot be isolated. Compo-

nential perception assumes that certain facial features are processed individually in the human

vision system. Configural perception models the spatial relations among facial components (e.g.

left eye-right eye, mouth-nose). All these perception models might be used when we perceive
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expressions [4, 40, 150, 151], and they are often considered complementary [24, 254, 280].

While those three models address spatial perception, the human vision system makes also use

of the temporal variation of facial appearance throughout an expression [7]. Temporal variation

is known to be a fundamental cue for challenging tasks such as identifying subtle expressions [6]

and distinguishing between genuine and posed behaviour [234].

1.3 Models of emotions or expressions

Affect recognition systems aim either at recognising the appearance of facial actions or the emo-

tions conveyed by the actions. The former set of systems usually rely on the FACS [57]. FACS

consists of facial AUs, which are codes that describe certain facial configurations (e.g. AU 12

is lip corner puller). The production of a facial action has a temporal evolution, which plays an

important role in interpreting emotional displays [6, 7]. The temporal evolution of an expression

is typically modelled with four temporal segments [57]: neutral, onset, apex and offset. Neu-

tral is the expressionless phase with no signs of muscular activity. Onset denotes the period

during which muscular contraction begins and increases in intensity. Apex is a plateau where

the intensity usually reaches a stable level; whereas offset is the phase of muscular action relax-

ation. Although the order of these phases is usually neutral-onset-apex-offset, alternative com-

binations such as multiple-apex actions are also possible [36]. AUs and temporal segments are

well-analysed in psychology and their recognition enables the analysis of sophisticated emotional

states such as pain [129] and helps distinguishing between genuine and posed behaviour [234].

The systems that recognise emotions consider basic or non-basic emotions. Basic emotions

refer to the affect model developed by Ekman and his colleagues, who argued that the production

and interpretation of certain expressions are hard-wired in our brain and are recognised univer-

sally (e.g. [56]). The emotions conveyed by these expressions are modelled with six classes:

Happiness, sadness, surprise, fear, anger and disgust. Basic emotions are believed to be limited

in their ability to represent the broad range of everyday emotions [73]. More recently researchers

considered non-basic emotion recognition using a variety of alternatives for modelling non-basic

emotions. One approach is to define a limited set of emotion classes (e.g. relief, contempt) [11].

Another approach, which represents a wider range of emotions, is continuous modelling using

affect dimensions [73]. The most established affect dimensions are arousal, valence, power and

expectation [73].



Chapter 1: Introduction 5

1.4 Contributions

The main contributions of this thesis are as follows.

1. We present a comprehensive literature review by breaking down state-of-the-art affect anal-

ysers into their fundamental components, namely registration, representation, dimension-

ality reduction and recognition. Our in-depth analysis exposes open issues and useful

practices with the aim of facilitating the design of real-world affect recognition systems.

2. We propose a novel sequence registration framework; we show that, in iterative registra-

tion, misalignment can be estimated effectively with pre-trained regressors of Gabor mo-

tion energy and that these regressors can generalise and perform accurately on data with

illumination variations even when trained with controlled data.

3. We develop the closed-form mathematical expressions that can be used to study the motion

perception model of Adelson and Bergen [2] for 2D motion. Specifically, we provide the

formulation of Gabor motion energy for a moving line and show how to tune a spatio-

temporal Gabor filter pair to a specific type of motion.

4. We propose an analytically validated normalisation scheme that reduces the sensitivity of

Gabor motion energy to temporal illumination variations.

5. We show that the L2 norm of Gabor motion energy can be used to train multiple regressors

with different granularities and also to efficiently perform coarse-to-fine registration with

these regressors.

6. We propose a novel facial representation learning framework that is designed for analysing

expressions at a range of intensities, and has been validated for recognising both pro-

nounced expressions and micro-expressions.

7. We show that learning a sparseness-imposed generative linear model from Gabor phase

shifts of facial expression sequences yields basis functions that correspond to localised

facial movements.
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1.6 Organisation of the thesis

This thesis is organised as follows:

Chapter 1 presents the scope and the contributions of this thesis, and introduces the background

regarding the facial perception mechanisms in the human vision system as well as the models of

emotion used commonly in psychology.

Chapter 2 presents the literature review of facial affect analysis systems by decomposing them

into their fundamental components, namely registration, representation, dimensionality reduction

and recognition.

Chapter 3 presents the proposed rigid registration framework. We first discuss the motion energy

that is encoded with speed- and orientation-selective Gabor filters, and then describe how to

convert motion energy into misalignment parameters and how to handle registration failures.

Chapter 4 presents the proposed unsupervised facial representation learning framework and the

optimisation process for implementing the framework. We also discuss the movements encoded

in the learnt bases by producing synthetic sequences and also analysing real sequences, and

describe how to use the bases for automatic expression recognition.

Chapter 5 concludes the thesis with a summary of achievements, limitations and proposed future

directions.



Chapter 2

State of the art

2.1 Introduction

In this chapter we provide a comprehensive analysis of the state of the art by decomposing exist-

ing system into their fundamental processes, namely, registration, representation, dimensionality

reduction and recognition (see Fig. 2.1). Through this decomposition we aim to gain a better

understanding about which process imposes limitations to a system or improves its performance.

Each of those processes can be implemented with techniques from several categories, as we

depict in Fig. 2.1.

Arguably, the process where most research focused on is facial representation, which can

be categorised as spatial or spatio-temporal. Spatial representations encode image sequences

frame-by-frame, whereas spatio-temporal representations consider a neighbourhood of frames.

Another classification is based on the type of information encoded in space: appearance or shape.

Appearance representations use textural information by considering the intensity values of the

pixels, whereas shape representations ignore texture and describe shape explicitly.

The recent developments in deep learning [110] challenge the traditional pipeline illustrated

in Fig. 2.1, as in deep learning the components of registration, representation dimensionality

reduction and recognition can all be performed implicitly in the internal layers of the architec-

ture, or some of the components can be rendered redundant. An example to the latter is the

role of registration: some deep learning models work with only roughly registered images; those

models can in fact be deliberately trained with not very well-registered images to prevent over-

8
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fitting (e.g. [175]). The chief property of deep learning pipelines is to learn a representation and

to integrate the representation with the classifier/regressor. In the process of learning representa-

tion deep models also often perform dimensionality reduction, for example, through pooling [22]

or autoencoders [246]. We will discuss deep learning methods separately for spatial (see Sec-

tion 2.4.6) and for spatio-temporal representations (see Section 2.5.6). We will place a particular

emphasis on the latter, as this thesis proposes also a learnt spatio-temporal representation (Chap-

ter 4). We will highlight the useful practices and limitations in the state of the art in Section 2.8,

where we will also briefly discuss where deep learning stands in the state of the art.

The main challenges in automatic affect recognition are head-pose variations, illumination

variations, registration errors, occlusions and identity bias. Spontaneous affective behaviour of-

ten involves head-pose variations, which need to be modelled before measuring facial expres-

sions. Illumination variations can be problematic even under constant illumination due to head

movements. Registration techniques usually yield registration errors, which must be dealt with

to ensure the relevance of the representation features. Occlusions may occur due to head or cam-

era movement, or accessories such as scarves or sunglasses. Dealing with identity bias requires

the ability to tell identity-related texture and shape cues apart from expression-related cues for

subject-independent affect recognition. While being resilient to these challenges, the features of

a representation shall also enable the detection of subtle expressions.

While discussing existing systems, we will discuss how they deal with the above-mentioned

challenges, highlight how they relate to the facial perception models introduced in Section 1.2.

We further discuss new classifiers and statistical models that exploit affect-specific dynamics by

modelling the temporal variation of emotions or expressions, the statistical dependencies among

different facial actions and the influence of person-specific cues in facial appearance

2.2 Validation of affect recognition systems

The validation of an affect recognition system depends on which model of emotion or expression

is being used (see Section 1.3); the labels of the training/test data and the evaluation metrics are

based on this model.
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Feature

Selection

Feature

Extraction

Figure 2.1: The proposed conceptual framework to be used for the analysis and comparison of
facial affect recognition systems. The input is a single image (It) for spatial representations or a
set of frames (Iw

t ) within a temporal window w for spatio-temporal representations. The system
output Yt is discrete if it is obtained through classification or continuous if obtained through re-
gression. The recognition process can incorporate previous ({Yt−1, . . . ,Yt−n}) and/or subsequent
({Yt+1, . . . ,Yt+m}) system output(s).

2.2.1 Datasets

Most affect recognisers are validated on posed datasets, which differ from naturalistic datasets

in terms of illumination conditions, head-pose variations and nature of expressions (subtle vs.

exaggerated [73]).

Table 2.1 shows an overview of the datasets used to evaluate affect recognition systems. The

CK [96] and MMI [167] datasets are widely used posed datasets and include basic emotion as

well as AU annotations. The Enhanced CK dataset [225] provided frame-by-frame AU intensity

annotations for the whole CK dataset for 14 AUs and also modified some of the intensity labels

that were provided in CK. The CK+ dataset [130] extended CK with spontaneous recordings and

novel subjects, annotations and labels (including a non-basic emotion, contempt). A large part of

MMI is annotated with temporal segments (neutral, onset, apex, offset). MMI was also extended

with new sequences including sequences with spontaneous affective behaviour [236].

There exist non-posed datasets for several affect recognition contexts including categorical

basic/non-basic emotion recognition, AU detection, pain detection and dimensional affect recog-

nition. The GEMEP [11] dataset is collected from professional actor portrayals, and includes 12

non-basic emotions and 6 basic emotions. A subset of this database was used in the FERA chal-

lenge. Spontaneous AUs can be studied on the public DISFA [141] dataset as well as the partly

public M3 (formerly RU-FACS) [16] and UNBC-McMaster [132] datasets. Frame-by-frame AU

intensities are provided with DISFA and UNBC-McMaster datasets. Automatic pain recognition

can be studied on UNBC-McMaster and COPE datasets [23]. Dimensional affect is studied on
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Table 2.1: An overview of the affect recognition datasets.

Application and Labels Statistics and Properties

Dataset BE NBE AU DA
#Sub-

jects

#Vid-

eos

#Im-

ages

frame-by-

frame labels

CK [96] 6+N - X(+T,+I [225]†) - 97 486 - -

GEMEP [11] 6+N 12 X - 10 7000 - -

ISL Frontal-View [225] - - X+T - 10 42 - X

ISL Multi-View [224] - - X+T - 8 40 - X

Multi-PIE [71] 3+N 2 - - 100 - 4200 -

JAFFE [135] 6+N - - - 10 - 213 -

MMI [167, 236] 6+N - X+T - 75 2420 484 temp.phas.

CK+ [130] 6+N 1 - - 123 593 - -

HUMAINE [143] - - - A/V* 4 23 - X

SEMAINE [143] 3 10†† X A/E/P/V* 150 959 - X

RU-FACS [16] - - X - 100 100 - N/A

DISFA [16] - - X+I - 27 27 - X

Belfast Induced [213] 6+N Var†† - A/V* 256 1400 - X

Belfast Naturalistic [53] 4+N 12 - A/V* 125 298 - X

GENKI-4K [221] 2 - - - N/A - 4000 N/A

UNBC-McMaster [132] - Pain X+I - 25 200 - X

COPE [23] - Pain - - 26 - 204 N/A

SMIC [114] 3†+N X - - 16 264 - X

AFEW [47] 6+N - - - 330 1426 -

SFEW [48] 6+N - - - N/A N/A

AM-FED [142] - - 12 - 242 X

FER-2013 [67] 6+N - - - N/A 35887 N/A

Aff-Wild (images) [275] - - 17 - N/A 10000+ N/A

Aff-Wild (videos) [275] - - - A/V* N/A 500+ X

†See text for details. ††Refer to the original dataset paper for details.

*These dimensions may be referred to with different names.

BE: Basic emotions; NBE: Non-basic emotions; DA: Dimensional affect;

N: Neutral; +T: Temporal segments; +I: AU intensity;

A: Arousal; E: Expectancy; P: Power; V: Valence

the HUMAINE and SEMAINE datasets.

A problem studied to a lesser extent in affect recognition is the analysis of micro-expressions.
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The Spontaneous Micro-expression Corpus (SMIC) [114] can potentially be useful for validating

the representations’ performance in detecting subtle expressions and replacing the ad-hoc valida-

tion procedure used for recognising subtle expressions (i.e. recognition at onset, Section 2.5.3).

Ground truth is available for 3 emotions, which are clustered from the 6 basic emotions: positive

(happiness), negative (anger, fear, disgust and sadness) and surprise.

Recent research efforts also focus on collecting data “in-the-wild” with strong head-pose and

illumination variations, and partial occlusions. Popular image-based datasets annotated with the

six-basic emotions are the Facial Expression Recognition 2013 (FER-2013) [67] and the Static

Faces in the Wild (SFEW) datasets [48]. Acted Facial Expressions In The Wild (AFEW) [47] is a

video-based dataset annotated with the six-basic emotions. The Affectiva-MIT Facial Expression

Dataset (AM-FED) [142] contains videos annotated with AUs. Aff-Wild [275] contains two

datasets: an image dataset annotated with AUs, and a video dataset annotated with continuous

arousal and valence labels.

2.2.2 Evaluation

The standard validation protocol is subject independent cross validation. A widely adopted ver-

sion is leave-one-subject-out (LOSO) cross validation, which enables the researchers to use the

maximum data for subject-independent validation. Another validation practice, which highlights

the generalisation ability of a method further, is cross-database validation, i.e. training is on one

dataset and testing on another [92, 101, 225, 237].

Basic emotion recognition has mostly been analysed on posed data, and systems have been

evaluated using the average recognition rate or average Area Under the Curve metrics. Although

the recognition of posed basic emotions is considered as a solved problem, it is still used for proof

of concept of spatial [208, 284] and spatio-temporal representations [127, 258, 266, 267, 281] as

well as novel statistical models [33, 186].

AU recognition has been studied both for posed and spontaneous data. The problem is typi-

cally formulated as a detection problem and approached by training a 2-class (positive vs. neg-

ative) statistical model for each AU. In this setting, results are reported using metrics such as

Area Under the Curve, F1-measure or 2AFC score [91]. A typical problem encountered when

evaluating AU performance is imbalanced data, which occurs when the positive AU samples are

outnumbered by negative samples, and is particularly problematic for rarely occurring AUs. Jeni

et al. [90] argue that all above-listed AU metrics are affected negatively by this imbalance. They
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suggest to perform skew normalisation to these scores and provide a software to this end [90].

Another AU metric is event agreement [169], which, instead of a frame-by-frame basis, evaluates

AUs as temporal events and measures event detection performance. This metric is also extended

to Event-F1 [50] which provides information on not only whether the event is detected or not, but

also how successfully the boundaries of the event are identified.

Two well-studied non-basic emotion recognition problems are dimensional affect recogni-

tion and pain recognition. In [201], where affect recognition has been performed in terms of

quantised affect dimensions, performance has been measured as average recognition rate on four

affect dimensions, whereas [200] and [244] considered continuous affect recognition and eval-

uated performance using the Pearsons’ correlation — [244] considered also the recognition of

depression and evaluated performance using the mean absolute error and the root mean square

error.

In recent years affect recognition competitions emerged as an alternative way to evaluate

affect recognition systems. The Facial Expression Recognition and Analysis (FERA)’11 chal-

lenge [241] evaluated AU detection and discrete emotion classification for four basic emotions

and one non-basic emotion. FERA’15 [239] comprised two sub-challenges: one for AU occur-

rence identification and another for AU intensity estimation. The Audio/Visual Emotion Chal-

lenges (AVEC) [183, 200, 201, 244] evaluated dimensional affect models and also recognition of

depression [240, 243]. Affect recognition competitions “in-the-wild” have also been organised,

testing the ability of state-of-the-art systems in dealing with difficult head-pose variations, illu-

mination variations or partial occlusions. Two of those challenges are the Kaggle challenge [67]

and the EmotiW’15 challenge [49].

2.3 Registration

Face registration is a fundamental step for facial affect recognition. Depending on the output

of the registration process, we categorise registration strategies as whole face, part and point

registration.

2.3.1 Whole face registration

The region of interest for most systems is the whole face. The techniques used to register the

whole face can be categorised as rigid and non-rigid.
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Rigid registration

Rigid registration is generally performed by detecting facial landmarks and using their location to

compute a global transformation (e.g. Euclidean, affine) that maps an input face to a prototypical

face. Many systems use the two eye points or the eyes and nose or mouth [91,120]. The transfor-

mation can also be computed from more points (e.g. 60-70 points [38]) using techniques such as

Active Appearance Models (AAMs) [38]. Computing the transformation from more points has

two advantages. First, the transformation becomes less sensitive to the registration errors of in-

dividual landmark points. Second, the transformation can better cope with head-pose variations,

as the facial geometry is captured more comprehensively.

Non-rigid registration

While rigid approaches register the face as a whole entity, non-rigid approaches enable regis-

tration locally and can suppress registration errors due to facial activity. For instance, an ex-

pressive face (e.g. smiling face) can be warped into a neutral face. Techniques such as AAM

are used for non-rigid registration by performing piece-wise affine transformations around each

landmark [132]. Alternatively, generic techniques such as SIFT-flow [122] can also be used. The

so-called avatar image registration technique [269] adapts SIFT-flow for facial sequence registra-

tion. Avatar image registration addresses identity bias explicitly by retaining expression-related

texture variations and discarding identity-related variations.

2.3.2 Part-based Registration

A number of appearance representations process faces in terms of parts (e.g. eyes, mouth), and

may require the spatial consistency of each part to be ensured explicitly. The number, size and

location of the parts to be registered may vary (e.g. 2 large [225] or 36 small parts [288]).

Similarly to whole face registration, a technique used frequently for parts registration is AAM

— the parts are typically localised as fixed-size patches around detected landmarks. Optionally,

faces may be warped onto a reference frontal face model through non-rigid registration before

patches are cropped (e.g. [156, 288]). Alternatively, techniques that perform part detection to

localise each patch individually can also be used [279].
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2.3.3 Point-based registration

Points registration is needed for shape representations, for which registration involves the lo-

calisation of fiducial points. Similarly to whole and parts registration, AAM is used widely for

points registration. Alternative facial feature detectors are also used [235, 249]. As localisation

accuracy is important for shape representations, it is desirable to validate the feature detectors

across facial expression variations [235, 249].

Points in a sequence can be also registered by localising points using a point detector on the

first frame and then tracking them. Valstar and Pantic [237] use a Gabor-based point localiser

[249] and track the points using particle filter [170].

2.3.4 Sequence registration

So far we discussed how to perform registration spatially. This section discusses the importance

of performing (whole-face or part-based) registration for a sequence over time and the methods

that can be used for this purpose.

Sequence registration is important for spatio-temporal representations which encode the fa-

cial expression variations among subsequent frames. Accurate registration is particularly critical

for analysing subtle expressions, which cause little deformation in facial appearance. This issue

is illustrated in Fig. 2.2. Two consecutive frames from a facial sequence are shown in Fig. 2.2a.

Looking at the frames separately, it is hard to notice any expression, as the human vision system

requires to observe the temporal variation in the sequence [6]. A simple way of illustrating the

temporal variation is to subtract one image from the other; this difference image is shown in Fig.

2.2b, and highlights the expression that occurs around the eyelids. If, however, one of the im-

ages is perturbed even by a translation as small as 0.5 pixels, the difference image now becomes

dominated by the registration error and the expression is not seen clearly, as shown in Fig. 2.2d.

A straightforward way to register a sequence is to register each frame independently by first

localising facial landmarks within the frame and then performing rigid registration with any of

the approaches discussed in Section 2.3.1 or Section 2.3.2. However, jittering errors among

consecutive frames is expected in this case, as landmark localisation cannot be performed with

very high accuracy (e.g. less than one pixel error) in general [29].

An alternative way to sequence registration is to perform (rigid) whole-face or part-based

registration only for the first frame, and then to use a generic image pair registration technique



Chapter 2: State of the art 16

to register the second frame to the first, then the third frame to the second and so on. The rigid

registration techniques to use for this purpose can be grouped in three main classes, namely

keypoint, transformation-based and direct methods.

Keypoint methods perform registration using sparsely located image points that are cen-

tred on visually salient regions with rich texture [260]. While these methods are tolerant to

large outlier motions thanks to the use of robust estimators such as Random Sample Consensus

(RANSAC) [78], keypoint methods may not perform reliably when outlier motions occur around

visually salient regions (i.e. regions with texture variations). This occurs with part-based regis-

tration or when illumination variations severely reduce the number of matched features [189].

Global transformation-based methods use the invariance properties of the Fourier transform

[165, 233], Fourier-Mellin transform [103] or Radon transform [227, 260]. These methods are

generally considered to be unsuitable for challenging real-life problems as they are sensitive to

outlier motions and illumination variations [230]. Although a robust version of the fast Fourier

transform (FFT) [230] is successful against these challenges, its accuracy in simpler conditions

without illumination variations can be lower than those of keypoint-based methods [189].

Direct methods minimise an error function of a pair of misaligned frames. The Lucas-Kanade

(LK) method minimises the sum of squared difference between two frames and can be rendered

partially robust to outliers by dividing frames into blocks [12] or by employing robust estima-

tors [13]. LK methods perform minimisation via gradient descent and may therefore not perform

reliably if regions of outlier motions yield high gradient while the remaining regions are rela-

tively flat, which is likely to happen in part-based registration. Extensions of LK differ in the

error function that is optimised, the optimisation algorithm or the domain where the optimisation

is performed [10, 12, 54, 60, 134, 233]. Methods that operate on the pixel domain are particularly

sensitive to illumination variations [233]. Pre-processing with Gabor filters [10] helps improve

robustness of LK methods against illumination variations [233]. In a similar manner, performing

LK minimisation using other dense features such as LBP or HOG also improves robustness [9].

One of the most robust methods against non-uniform illumination variations is based on the di-

rect maximisation of the gradient correlation coefficient (GradCorr) [233]. GradCorr employs a

cosine kernel, which improves robustness against outliers and illumination variations by elimi-

nating local mismatches [233].

Keypoint, transformation-based and direct methods are prone to drift errors in long sequences
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(a) (b) (c) (d)

Figure 2.2: An illustration depicting the importance of accurate registration when analysing sub-
tle expressions. (a) Two consecutive images from a sequence that contains a subtle expression
around the eyelids, which is hard to notice when looking at static images. These two images
are perfectly registered. (b) The temporal variation (i.e. difference image) between the perfectly
registered images shows correctly the facial activity around the eyelids. (c) The same pair of
consecutive images but the second image has been displaced by 0.5 pixels (this displacement is
visualised with some magnification to facilitate the interpretation). (d) The temporal variation of
the unregistered images is highlighting the registration errors rather than the facial activity even
for registration errors as low as 0.5 pixels.

as they register each frame with respect to a reference frame. This problem was highlighted for

the LK framework [140] and addressed by a number of methods [140,164,199], [8], which were

validated on data with limited illumination variations only.

Table 2.2 summarises the methods discussed so far in this section. The method listed in the

last row [191] is developed as a part of this thesis’ work. We will describe this method in detail

throughout Chapter 3, and compare it with a number of techniques in Table 2.2 on sequences

with facial expressions, both for whole-face registration and for part-based registration.

An alternative to sequence registration can be to use batch alignment methods that are par-

ticularly common in registering datasets, such as congealing methods [41,82]. The advantage of

such methods is that they can have low drift error as they register frames jointly, and there exist

methods that are robust against illumination variations and gross occlusions thanks to `1 mini-

mization [171]. However, such methods need to have the entire sequence to register in advance

(i.e. they are offline).

Finally, although registration and representation are mostly considered as two different com-

ponents in a facial affect analysis pipeline, it is possible to consider those two as one joint com-

ponent. The approach of Koelstra et al. [101] extracts motion vectors from a sequence in order

to apply non-rigid registration, and then uses those vectors for representation (see Section 2.5.4).

2.3.5 Discussion

While some representations (e.g. part-based representations) are coupled with a certain type of

registration only, others can be used with various registration schemes. For instance, generic

appearance representations such as a Gabor representation can be used after performing rigid
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Table 2.2: Representative rigid registration methods and how they address illumination vari-
ations, drift errors and outlier motions. Key: (K)eypoint, (T)ransformation-based, (D)irect,
(S)tatistical Learning.

Ref. Approach
Illumination

Variations

Drift

Errors

Outlier

Motions

(K)

[18] SURF feature matching Robust features — RANSAC

[161] MSER feature matching Robust features — RANSAC

[251] SIFT feature matching Robust features Drift correction RANSAC

(T)

[165] Multi-layer Fourier transf. — — —

[260] Radon transf. — — —

[230] Robust Fourier transf. Gradient correlation — Cosine kernel

(D)

[12] Lucas-Kanade (LK) matching — — Robust estimator

[10] LK matching Gabor Filtering — Robust estimator

[199] Robust LK matching — Drift correction Robust estimator

[164] Extended LK matching — Backgr. modelling Robust estimator

[233] Gradient correlation max. Gradient correlation — Cosine kernel

(S) [191]
Optimisastion with

pre-trained regressors

3D Gabor

representation

Multi-frame

motion encoding

Pooling, training

with noisy data
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or non-rigid whole face registration [16, 33] or parts registration [279]. For such representa-

tions, the type of information encoded by the overall system depends on the registration strategy

employed. More specifically, the registration decides whether configural information will be

retained. A non-rigid registration that warps faces to a neutral face may reduce the effect of

configural information, or parts registration of individual facial components (e.g. eyes, nose and

mouth) may neglect configural information completely.

An important decision to be made for registration is how to deal with head-pose variations.

While a number of systems approach head-pose as a factor that needs to be suppressed in order

to analyse facial activity explicitly [16, 101, 186], others model both facial activity and head-

pose simultaneously, arguing that head-pose variations are part of affective behaviour [147, 156,

224]. Indeed, recent studies show that head-pose variation itself is a useful indicator of affective

state [1, 75].

Registration is crucial for analysing spontaneous affective interactions, which typically in-

volve head-pose variations. While systems validated on posed data often use simple whole face

registration techniques based on 2-4 points, systems validated on spontaneous data rely on more

sophisticated whole face, parts or points registration techniques.

AAM is a popular choice to perform whole face, parts or points registration. Although in

principle AAM is subject-independent, in practice its accuracy is higher when the model of the

subject to register exists a priori [70]. A subject-independent alternative is Constrained Local

Model (CLM) [188]. However the accuracy of CLMs is generally lower than that of AAMs [33].

The accuracy of both CLM and AAM decreases significantly in naturalistic imaging conditions

that include partial occlusions, illumination and head-pose variations [287].

There has been significant progress in developing subject-independent robust landmark lo-

calisation techniques in recent years, and a number of techniques that achieve high accuracy in

difficult conditions have been proposed [118, 231, 232, 261, 263, 265, 287]. A recently organised

facial landmark localisation “in-the-wild” competition has highlighted the progress made [187].

2.4 Spatial representations

Spatial representations encode image sequences frame-by-frame. There exists a variety of ap-

pearance representations that encode low- or high-level information. Low-level information is

typically encoded with low-level histograms and Gabor representations. Higher level informa-
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tion is encoded using for example Non-Negative Matrix Factorisation (NMF) or sparse coding.

There exist hierarchical representations that consist of cascaded low- and high-level representa-

tion layers. Several appearance representations are part-based. Shape representations are less

common than appearance representations.

2.4.1 Shape representations

The most frequently used shape representation is the facial points representation, which describes

a face by simply concatenating the x and y coordinates of a number of fiducial points (e.g. 20

[186] or 74 points [133]). When the neutral face image is available, it can be used to reduce

identity bias [133] (Fig. 2.3a). This representation reflects registration errors straightforwardly

as it is based on either raw or differential coordinate values. Illumination variations are not an

issue since the intensity of the pixels is ignored. However, illumination variations may reduce

the registration accuracy of the points (Section 2.3.5). Facial points are particularly useful when

used to complement appearance representations, as done by the winners of AVEC’12 continuous

challenge [156] and FERA’15 AU challenge [204].

Alternative shape representations are less common. One can use the distances between facial

landmarks rather than raw coordinates [83]. Another representation computes descriptors specific

to facial components such as distances and angles that describe the opening/closing of the eyes

and mouth, and groups of points that describe the state of the cheeks [223].

2.4.2 Low-Level histogram representations

Low-level histogram representations (Fig. 2.3b–d) first extract local features and encode them

in a transformed image, then cluster the local features into uniform regions and finally pool the

features of each region with local histograms. The representations are obtained by concatenating

all local histograms.

Low-level features are robust to illumination variations to a degree, as they are extracted

from small regions. Also, they are invariant to global illumination variations (i.e. gray-scale

shifts). Additionally, the histograms can be normalised (e.g. unit-norm normalisation [45]) to

increase the robustness of the overall representation. These representations are also robust to

registration errors as they involve pooling over histograms (Section 2.6.1). Low-level histogram

representations are affected negatively by identity bias, as they favour identity-related cues rather

than expressions [5, 145, 193]. These representations encode componential information as each



Chapter 2: State of the art 21

(c)

(b)

(a)

(e)

(d)
g
ra

d
ie

n
t 

a
n
g
le

g
ra

d
ie

n
t

m
a
g
.

m
a
g

.

0o 30o 180o

cell

block(s)

angle

NMF coeffs.

(i)

NMF 

coeff.

(f)

SIFT

(h)

(g) AU.1 AU.2 AU.N}

AU Dictionary (matrix) Sparse coeffs.

}

;
e.g., if AU-2 is present in image,

ideally, would be the maximal coeff.

Figure 2.3: Spatial representations. (a) Facial points; (b) LBP histograms; (c) LPQ histograms;
(d) HoG; (e) Gabor-based representation; (f) GP-NMF; (g) sparse coding; (h) part-based SIFT;
(i) part-based NMF.

histogram describes a region independently from the others. Also, depending on registration

(Section 2.3.5), they may implicitly encode configural information, since the global topology of

local histograms is retained. Low-level histogram representations are computationally simple

and allow for real-time operation [194, 205].

Low level representations, particularly Local Binary Patterns (LBP) [5] and Local Phase

Quantisation (LPQ) are very popular. LBP was used by the winner of AVEC’12 word-level

challenge [195] and FERA AU detection challenge [204], LPQ was used by prominent systems
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in FERA’11 [269] and AVEC’11 [43].

An LBP describes local texture variation along a circular region with an integer [5]. LBP

histograms simply count the LBP integers, and therefore the dimensionality of the representation

depends on the range of integers. The range of the most common LBP is [1,256]. Ahonen et

al. [5] showed that face images can be represented with a 59-element subset of these patterns

(i.e. uniform patterns), which operate like edge detectors [259].

The LPQ descriptor was proposed for blur insensitive texture classification through local

Fourier transformation [160]. Similarly to an LBP, an LPQ describes a local neighbourhood with

an integer ranged in [1,256]. Local histograms simply count LPQ patterns, and the dimensional-

ity of each histogram is 256 [160].

The Histogram of Gradients (HoG) approach [45] represents images by the directions of

the edges they contain. HoG extracts local features by applying gradient operators across the

image and encoding their output in terms of gradient magnitude and angle (Fig. 2.3d). First,

local magnitude-angle histograms are extracted from cells, and then these local histograms are

combined across larger entities (blocks) — the dimensionality increases when the blocks are

overlapping [45]. HoG was used by a prominent system in the FERA emotion challenge [44].

Another low-level histogram representation is Quantised Local Zernike Moments (QLZM),

which describes a neighbourhood by computing its local Zernike moments [194]. Each moment

coefficient describes the variation at a unique scale and orientation, and the information conveyed

by different moment coefficients does not overlap [220]. The QLZM descriptor is obtained by

quantising all moment coefficients into an integer, and the local histograms count QLZM integers.

Low-level representations can be compared from several perspectives. LBP and HoG are

compared in terms of sensitivity to registration errors and results suggest that LBP histograms are

generally less sensitive [69]. LBP and LPQ are compared in terms of overall affect recognition

performance in a number of studies, and LPQ usually outperforms LBP [91, 92, 244, 269]. This

may be due to the size of the local description, as LBPs are usually extracted from smaller

regions with 3 pixel diameter [205], whereas LPQs are extracted from larger regions of 7× 7

pixels [5, 91, 92]. LBPs cause loss of information when extracted from larger regions as they

ignore the pixels that remain inside the circular region. On the contrary, LPQ integers describe the

regions as a whole. QLZMs also describe local regions as a whole and larger regions such as 7×7

proved more useful, particularly for naturalistic affect recognition [194]. Another comparison
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that can be useful for low-level representations is dimensionality. While the local histograms of

LBP and LPQ are relatively higher dimensional (due to their pattern size), QLZM and HoG can

be tuned to obtain lower-dimensional histograms that proved successful respectively on AVEC

data [194] and FERA challenge [44].

2.4.3 Gabor representation

Another representation based on low-level features is the Gabor representation, which is used

by various systems including the winner of the FERA’11 AU detection challenge [121, 259] and

AVEC’11 [65].

A Gabor representation is obtained by convolving the input image with a set of Gabor filters

of various scales and orientations (Fig. 2.3e) [105, 255]. Gabor filters encode componential

information, and depending on the registration scheme, the overall representation may implicitly

convey configural information (see Section 2.3.5). The high dimensionality of the convolution

output renders a dimensionality reduction step essential. As the pixels of Gabor-filtered images

contain information related to neighbouring pixels, simple dimensionality reduction techniques

such min, max and mean pooling can be used. Gabor filters are differential and localised in

space, providing tolerance to illumination variations to a degree [95,255]. Similarly to low-level

histogram representations, Gabor representation suffers from identity bias as it favours identity-

related cues rather than expressions [255]. The representation is robust to registration errors to an

extent as the filters are smooth and the magnitude of filtered images is robust to small translation

and rotations [69, 105]. Robustness to registration errors can be increased further via pooling

(Section 2.6.1). Gabor filtering is computationally costly due to convolution with a large number

of filters (e.g. 40 [255]).

2.4.4 Data-driven representations

All representations discussed so far describe local texture (Fig. 2.3a–e). Implicitly or explicitly,

their features encode the distribution of edges. Recent approaches aim instead at obtaining data-

driven higher-level representations to encode features that are semantically interpretable from

an affect recognition perspective. Two methods that generate such representations are NMF

[158, 284] and sparse coding [39, 137, 274]. Alternatively, various feature learning approaches

can also be used [184].

NMF methods decompose a matrix into two non-negative matrices. The decomposition is
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not unique and it can be designed to have various semantic interpretations. One NMF-based

technique is Graph-Preserving NMF (GP-NMF) [284], which decomposes faces into spatially

independent components through a spatial sparseness constraint [81]. The decomposition into

independent parts encodes componential information, and possibly configural information (see

Fig. 2.3f and [284]).

Another NMF-based approach is Subclass Discriminant NMF (SD-NMF) [158], which rep-

resents an expression with a multimodal projection (rather than assuming that an expression is

unimodally distributed). Unlike GP-NMF, SD-NMF does not explicitly enforce decomposition

into spatially independent components. The basis images provided [158] suggest that the infor-

mation encoded can be holistic, componential or configural.

NMF creates a number of basis images, and the features of NMF-based representations are

the coefficients of each basis image (e.g. α1,α2 in Fig. 2.3f). The method performs minimi-

sation to compute the coefficients, therefore its computational complexity varies based on the

optimisation algorithm and the number and size of basis images. Since NMF relies on train-

ing, its tolerance against illumination variations and registration errors depends on the training

data — the ability of NMF to deal with both issues concurrently is limited as NMF is a linear

technique [228]. NMF-based representations can deal with identity bias by learning identity-free

basis images (Fig. 2.3f). This depends on the number of identities provided during training as

well as the capability of the technique to deal with the inter-personal variation. The dimension-

ality of NMF-based representations is low — their performance saturates at less than 100 [284]

or 200 features [158].

The theory of sparse coding is based on the idea that any image is sparse in some do-

mains, that is, a transformation where most coefficients of the transformed image are zero can be

found [28]. The transformation can be adaptive (e.g. data-driven) or non-adaptive (e.g. Fourier

transform), and is based on a so-called dictionary [28]. The flexibility of the dictionary definition

gives the researchers the freedom to define dictionaries where the elements of a dictionary are

semantically interpretable. In affect recognition, researchers defined dictionaries where each dic-

tionary element corresponds to AUs [137] or basic emotions [39]. The representation is formed

by concatenating the coefficients of dictionary elements. In an AU dictionary, the coefficient with

the maximal value would ideally point to the AU displayed in the original image (Fig. 2.3g). The

coefficients are computed by solving an `1 minimisation, therefore the computational complex-
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ity depends on the optimisation algorithm and the size of dictionary. The representation can be

designed to be robust against partial occlusions [39, 274].

An alternative high-level representation paradigm is learning features for multiple tasks con-

currently via multi-task learning [184]. One method considered the tasks of face (identity) recog-

nition and facial affect recognition [184] by deriving two independent feature sets — one for each

task. The independence assumption can reduce the effect of identity bias, however, it may be a

too strong assumption as identity and facial affect cues are often entangled [280].

2.4.5 Part-based representation

Part-based representations process faces in terms of independently registered parts and thereby

encode componential information. They discard configural information explicitly as they ignore

the spatial relations among the registered parts (Fig. 2.3h,i). Ignoring the spatial relationships

reduces the sensitivity to head-pose variation. Part-based representations proved successful in

spontaneous affect recognition tasks (e.g. AU recognition [89, 288] or dimensional affect recog-

nition) where head-pose variation naturally occurs.

Although most representations can be used in a part-based manner, two representations were

explicitly defined so: part-based SIFT [288] and part-based NMF [89].

Part-based SIFT describes facial parts using SIFT descriptors of fixed scale and orientation.

The representation inherits the tolerance of SIFT features against illumination variations and reg-

istration errors [128]. The dimensionality of the representation is proportional to the number of

SIFT descriptors. Part-based SIFT is computationally simple as it only requires the computation

of the SIFT descriptors.

Part-based NMF describes facial parts by means of a sparsity-enforced NMF decomposition

[89]. An important step in this representation is the removal of person-specific texture details

from each patch before the computation of NMF. This step enables the representation to reduce

identity bias and place higher emphasis on facial activity (Fig. 2.3i), increasing its potential to

deal with subtle expressions. However, texture subtraction may be susceptible to illumination

variation and registration errors. Since the representation is based on NMF, its sensitivity against

these issues also depends on the training process. The dimensionality of the representation is

expected to be low as reducing dimensionality is one of the main motivations behind the use

of NMF [89]. The computational complexity mainly depends on the complexity of the NMF

algorithm as well as the number of basis matrices and size of each basis matrix. The part-based
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NMF representation has been evaluated in terms of the recognition of subtle expressions and

shown to outperform spatio-temporal representations [89].

2.4.6 Deep learning

Hierarchical representations become popular in computer vision due to their ability to concur-

rently address multiple challenges. The leading paradigm for constructing hierarchical represen-

tations is deep learning [110]. Thanks to the impressive results it achieved in a variety of difficult

pattern recognition problems, such as character, object, face and speech recognition [110], deep

learning is now enjoying an increasing popularity in facial affect analysis too [275].

Overall, a representation based on deep learning often contains at least two low-level layers;

the first layer convolves the input image with a number of local filters learnt from the data, and

the second layer aggregates the convolution output through operations such as pooling [179,182]

(Section 2.6.1). However, deep learning architectures contain increasingly more layers. For

example, the widely popular AlexNet [102] contains 8 layers, and another popular architecture

includes 27 layers [216].

Deep learning architectures contain a large number of parameters to optimise, and they need

large amounts of training data and computation power for their training. However, once trained

successfully, they can achieve state-of-the-art performance in computer vision problems in un-

controlled conditions, such as object recognition and face recognition with large viewpoint and

lighting variability [110]. Therefore, deep learning architectures are promising candidates for

solving the head-pose and illumination variations that typify facial affect recognition in the wild.

Indeed, the successful participants of the recent competitions for affect recognition in the

wild typically used deep learning methods. The winner of the Kaggle competition [67] used a

deep architecture that replaced the softmax layer with linear SVM [218]. It is remarkable that

winner [99], runner up [271] and third system [152] of the static sub-challenge in EmotiW’15

have all used deep learning architectures. It must be noted that all of those challenges are image-

based and not video-based. We will return to the latter while discussing spatio-temporal learnt

representations (Section 2.5.6) and in our summary (Section 2.8).

To provide the large amounts of required data, deep architectures for facial expression usually

use large datasets such as FER-2013 or even combine multiple datasets during training [175].

The optimal depth for facial expression analysis architecture seems to be an open question; while

there exist studies that opt for deeper representations [146], a recent study shows that relatively
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shallow architectures (e.g. 4, 5, 6 layers) may outperform deeper ones (e.g. 8, 11 layers) [175].

2.4.7 Discussion

The most notable recent trend is moving from shape to appearance representations and it is

mainly due to the low-level representations. The robustness of these representations against

generic image processing issues such as illumination variation and registration errors as well as

their implementation simplicity had a significant contribution to their popularity. Yet, identity

bias remains as an outstanding issue for low-level representations. Identity bias can be reduced

in subsequent system layers such as dimensionality reduction (Section 2.6.2) or recognition (Sec-

tion 2.7.2).

Most representations are sensitive to head-pose variations, therefore may fail in generalising

to spontaneous affective behaviour. Although part-based representations reduce the effect of

head-pose variations by discarding the spatial relationships among the parts, the appearance of

each patch is still affected by the head-pose. Deep learning architectures trained with large

amounts of data are also useful for addressing head-pose variations (Section 2.4.6).

Shape representations are crucial for interpreting facial actions [139], and they are not ex-

ploited to their full potential. The current state of the art focuses on a small subset of possible

shape representations. Firstly, recently used representations are point-based. If we adopt the

definition of shape representations as the representations that ignore the intensity value of the

pixels, we can see that description through discrete points is not the only option, as one may

develop a continuous shape representation (e.g. [112, 277]). Secondly, existing representations

are vulnerable to registration errors. The state of the art overlooks the possibilities of extracting

features that are robust to registration inconsistencies (e.g. [66, 277]). Although a small number

of systems rely on subspace analysis which may remedy this issue (e.g. [136,186]), most systems

rely on absolute or differential point coordinates, which reflect registration errors directly.

A practice that proved particularly useful is using shape representations in conjunction with

appearance representations, combining various types of configural, holistic and componential

information. This is in accordance with the behaviour of the human vision system when dealing

with particularly ambiguous facial displays [24,280] or interpreting different types of expressions

[4]. Examples are the system that won the FERA’11 AU sub-challenge, which combined LBP

histograms of Gabor images with facial points [203], and the system that won the AVEC’12 fully

continuous sub-challenge, which combined componential as well as holistic PCA features with
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facial points [156].

2.5 Spatio-Temporal Representations

Spatio-temporal representations consider a range of frames within a temporal window as a single

entity, and enable the modelling of temporal variation in order to represent subtle expressions

more efficiently. They can discriminate the expressions that look similar in space (e.g. closing

eyes versus eye blinking [94, 101]), and facilitate the incorporation of domain knowledge from

psychology. This domain knowledge relates the muscular activity with higher level tasks, such

as distinguishing between posed and spontaneous affective behaviour or recognition of temporal

phases (e.g. [234, 238]). Most representations are appearance representations. The only shape

representation discussed in this chapter is Geometric Features from Tracked Facial Points.

2.5.1 Geometric features from tracked facial points

This representation aims to incorporate the knowledge from cognitive science to analyse temporal

variation and the corresponding muscular activity. It has been used for the recognition of AUs

with their temporal phases [237], and the discrimination of spontaneous versus posed smiles

[234] and brow actions [238].

The representation describes the facial shape and activity by means of fiducial points [237].

To this end, it uses the raw location of each point, the length and angle of the lines obtained by

connecting all points pairwise in space, and the differences obtained by comparing these fea-

tures with respect to their value in a neutral face. Some of these features describe componential

information such as the opening of the mouth, as well as configural information such as the dis-

tance between the corner of the eye and the nose (Fig. 2.4a). Other features aim at capturing

temporal variation. The temporal window is adjusted according to the video frame rate and the

findings of cognitive sciences about neuromuscular facial activity [237]. The representation is

computationally simple as it relies on simple operations (e.g. subtraction, angle computation).

The representation is sensitive to registration errors as its features are mostly extracted from

raw or differential point coordinates. Although the representation describes temporal variation, it

may not capture subtle expressions as it is extracted from a small number of facial points (e.g. 20

[242]) and depends on accurate point registration. The representation deals with identity bias by

including features that describe the deviation from the neutral face. Although the dimensionality
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of this representation is relatively small, it risks overfitting as the features are extracted from a

much lower number of points [237], therefore, an additional dimensionality reduction scheme is

usually applied [237].

2.5.2 Low-level features from orthogonal planes

Extracting features from Three Orthogonal Planes (TOP) is a popular approach towards extend-

ing low-level spatial appearance representations to the spatio-temporal domain (Fig. 2.4b,c).

This paradigm originally emerged when extending LBP to LBP-TOP [281]. LBP-TOP is applied

for basic emotion recognition [281, 282] and AU recognition [91, 92]. Following this method,

LPQ is extended to LPQ-TOP ((Local Phase Quantisation from Three Orthogonal Patterns)) and

used for AU and temporal segment recognition [91, 92].

As illustrated in Fig. 2.4b, the TOP paradigm extracts features from local spatio-temporal

neighbourhoods over the following three planes: The spatial plane (x-y) similarly to the regu-

lar LBP, the vertical spatio-temporal plane (y-t) and the horizontal spatio-temporal plane (x-t).

Similarly to its spatial counterpart (Section 2.4.2), this representation paradigm extracts local

histograms over (spatio-temporal) regions. Therefore, it encodes componential information and,

depending on the type of registration, it may implicitly provide configural information. In addi-

tion to these, the TOP paradigm encodes temporal variation. For AU recognition, Jiang et al. [91]

showed that the suitable temporal window can be different for each AU. LBP-TOP and LPQ-TOP

are computationally more complex than their static counterparts, however, depending on the size

of the spatial and temporal windows of the LBP- or LPQ-TOP operators, real-time processing

speed can be achieved [92].

LBP-TOP and LPQ-TOP inherit their robustness against illumination variations from their

static counterparts, however, they are more sensitive to registration errors. They assume that

texture variations are caused only by facial motion, and therefore they may interpret temporal

registration errors as facial activity. The dimensionality of these representations is higher than

their static counterparts. While LBP-TOP usually reduces dimensionality by considering only

the uniform patterns (e.g. 177 patterns per histogram [281]), LPQ-TOP lacks such a concept and

the size of possible patterns is larger (i.e. 768 per histogram [91, 92]). Both representations are

expected to be sensitive to identity bias.

Experiments show that LBP-TOP and LPQ-TOP outperform their spatial counterparts, and

LPQ-TOP outperforms LBP-TOP in the task of AU recognition [91].
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;

Figure 2.4: Spatio-temporal representations. (a) Geometric features from tracked feature points;
(b) LBP-TOP, and the TOP paradigm; (c) LPQ-TOP; (d) spatio-temporal IC filtering, the output
on an exemplar spatio-temporal filter; (e) free-form deformation representation, illustration of
free-form deformation; (f) temporal BoW; (g) Facial Bases (Chapter 4).

2.5.3 Convolution with smooth filters

An alternative approach for representing the temporal variation in texture with low-level features

is applying convolution with smooth spatio-temporal filters (see Fig. 2.4d). Two such approaches

are spatio-temporal Gabor filtering [258] and spatio-temporal Independent Component (IC) fil-

tering [127]. Both approaches target explicitly the recognition of subtle expressions.

Gabor and IC filters are localised in space and time. At the spatial level, the output of the

filtering encodes componential information. Depending on the registration strategy, the overall

representation may also implicitly provide configural information (Section 2.3.5). The main

difference between the Gabor and IC filters is that the parameters of Gabor filters are adjusted
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manually [258], whereas IC filters are obtained automatically in the process of unsupervised

Independent Component Analysis [127]. Both approaches include filters of various temporal

windows. The sensitivity of these approaches against illumination variations is expected to be

similar to the spatial Gabor filters. However, spatio-temporal Gabor and IC filters are more

sensitive to registration errors as they assume temporal registration consistency among successive

images in a sequence. The computational overhead of both representations is very high as they

involve three-dimensional convolution with a large number of filters (e.g. 240 filters [127, 258]).

Although the dimensionality of the convolution output is high, straightforward pooling strategies

such as min, max and mean pooling [127, 258] can be used.

Gabor and IC representations are used for basic emotion recognition, however, they adopted

an unusual validation scheme. Unlike most studies that recognise expressions at the apex phase,

these representations aimed at recognising the expressions at early stages (at onset). Spatio-

temporal Gabor filters outperform their spatial counterpart [258], and IC filters outperform the

manually designed spatio-temporal Gabor filters [127].

2.5.4 Free-Form deformation representation

The free-form deformation representation [101] extends free-form deformation, which is essen-

tially a registration technique, into a representation that extracts features in the process of registra-

tion by computing the pixels’ spatial and temporal displacement (Fig. 2.4e). This representation

is used for AU recognition with temporal segments [101].

Unlike approaches that extract features from uniform subregions, this representation par-

titions the volumes into non-uniform subregions through quadtree decomposition [101]. This

partitioning emphasises regions of high facial activity by allocating to them a larger number of

smaller regions. The representation is obtained by extracting a set of spatial and spatio-temporal

features (e.g. orientation histogram, curl, divergence). These features are extracted indepen-

dently for each subregion, therefore they can be considered as a form of pooling (Section 2.6.1)

that renders the representation robust against small registration errors. The features encode com-

ponential information as well as temporal variation.

The spatio-temporal representations discussed so far require temporal registration consis-

tency and rely on external registration techniques to satisfy this. The free-form deformation

representation satisfies temporal consistency with its own intrinsic registration layer — free form

deformation. Yet, free-form deformation assumes that the head-pose variations of the subject are
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limited throughout an image sequence [101]. Also, free-form deformation operates on raw pixel

intensities, therefore illumination variations can be problematic. Features such as the orientation

histogram or the average motion are robust to registration errors to an extent. The representation

features are computationally simple, however, free-form deformation is computed through an

iterative process which can keep the representation from achieving real-time processing speed.

2.5.5 Temporal bag-of-words representation

The temporal Bag-of-Words (BoW) representation is specific to AU detection [210] and can

be best explained by describing how the problem is formulated by its authors. Simon et al.

[210] assume that an AU is an event that exists in a given image sequence. The problem is then

formulated as identifying the boundaries of the existing AU event in the given sequence. The

approach was also generalized for multiple AUs [210].

Temporal BoW represents an arbitrary subset of the given image sequence with a single his-

togram which is computed as follows (Fig. 2.4f): 1) Each frame in the subset is represented using

the part-based SIFT representation (Section 2.4.5) and compressed with Principal Component

Analysis (PCA) to obtain a frame-wise vector, 2) each frame-wise vector is encoded using the

BoW paradigm that measures similarity by means of multiple vectors via soft clustering [210],

and 3) all encoded frame-wise vectors are collected in a histogram.

The sensitivity of the representation to illumination variations, registration errors, head-pose

variations and identity bias is similar to the part-based SIFT representation. Unlike the part-

based representation, temporal BoW does not encode componential information explicitly, as

PCA can create holistic features (Section 2.6.3). Unlike other spatio-temporal representations,

the temporal BoW does not encode temporal variation. The dimensionality depends on the size

of the BoW vocabulary. The computational complexity of the representation mainly depends on

the search performed on the visual vocabulary, particularly, the size of the vocabulary and the

complexity of the search algorithm.

2.5.6 Deep Learning

Similarly to spatial representations (Section 2.4.6), an increasingly popular trend is to apply

deep learning for learning spatio-temporal representations from data. A variety of deep learn-

ing architectures have been proposed. Liu et al. [124] proposed a deep architecture that learns

deformable facial parts, namely, 3D Convolutional Neural Network Deformable Action Parts
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(3DCNN-DAP). Combining appearance and shape features has also been a motivation while de-

signing architectures, and there exist at least two studies that proposed such architectures: The

Deep Temporal Appearance-Geometry Network (DTAGN) [93] and the Convolutional and Bi-

directional Long Short-Term Memory Neural Networks [88]. Elaiwat et al. [59] proposed a

restricted Boltzmann machine (RBM) network that is relatively shallow and therefore easier to

optimise. The key feature of this RBM network is to disentangle expression-related image trans-

formations from transformations that are not related to expressions. The concept of boosting-

based learning has also been incorporated into deep architectures that were built for AU recog-

nition [76, 126]. Another deep architecture is motivated by the fact that basic expressions can

be decomposed into their AUs, therefore incorporates an “AU-aware” layer [123]. In addition to

deep learning, other hierarchical representations are also proposed. Liu et al. [125] introduced

the so-called Expressionlets, which are based on clustering cuboids of pre-defined sizes extracted

from facial sequences in order to model the manifold of facial expression variations.

Owing to their multi-layered structure, deep architectures can be robust to challenges that are

present “in-the-wild”, such as head-pose or illumination variations (see Section 2.4.6). However,

compared to their spatial counterparts discussed in Section 2.4.6, spatio-temporal deep architec-

tures have not been as prominent in the affect recognition competitions that are “in-the-wild” or

those that include naturalistic affective behaviour with head-pose variations. Neither the win-

ner [270] nor the runner-up [98] of the video-based sub-challenge of EmotiW’15 have relied on

deep learning1. The third system has relied on recurrent neural networks for modelling tem-

poral evolution, however this was a relatively shallow architecture [55]. Moreover, neither the

winners of the FERA’15 occurance sub-challenge [272] and intensity sub-challenge [155], nor

the runner up system of both challenges [15] relied on deep learning2. The third system in the

occurrence sub-challenge used a deep architecture [72]; however, interestingly, this was not a

spatio-temporal representation but a spatial one. In summary, there is room for improvement for

spatio-temporal deep architectures in facial expression analysis. The ones that proved successful

are relatively shallow [55, 59, 93], partly due to the overfitting risk that is caused by the limited

size of the datasets available for video-based facial expression analysis.

1While the winning system [270] showed some performance improvement with the inclusion of one
CNN, this improvement is relatively small and the overall structure of the system is not deep.

2The performances of the systems have been provided in http://ibug.doc.ic.ac.uk/
resources/FERA15/, and the references of those systems in [88]. We have not considered in our
analysis the systems that did not participate to the competition.
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This thesis will also introduce a hierarchical learnt representation in Chapter 4, but one that

has two layers, therefore would be called shallow in today’s literature. The proposed represen-

tation will be validated on expressions of emotions. Among the above-listed representations,

the ones that were similarly proposed for expressions of emotions [59, 93, 123–125] have gen-

erally outperformed engineered features in datasets with large (i.e. pronounced) facial activity,

such as CK+ [96] or MMI [167]. However, a learnt spatio-temporal representation may have

some generalisation disadvantages. The representation may be sensitive to the frame rate of the

training sequences, or the temporal phases of the expressions; that is, if all training sequences

start with a neutral face and finish at the apex of the expression, then the representation may

require the test sequences to strictly follow this order. Those existing studies [59, 93, 123–125]

have been validated only through within dataset validation (i.e. the representations are learnt

and tested on the same dataset) where such inconsistencies are not present — further valida-

tion is needed to test whether the learnt features produce meaningful representations on test

sequences with different frame rate or different (orders of) temporal expression phases. Also,

those representations are tested on six basic expressions and use the training labels of sequences

during learning. Therefore, their usefulness in other facial expression recognition tasks such as

the recognition of arousal-valence labels and micro-expressions also requires further validation.

(Note that while Expressionlets can be used without labels, their performance drops considerably

when done so [125].) Finally, those representations are tested only in recognising pronounced ex-

pressions, even though one of the most significant advantage of spatio-temporal representations

is their ability to recognise subtle expressions. Table 2.3 summarises the learnt representations

we discussed in this paragraph. As a comparison, Table 2.3 also lists some engineered represen-

tations. Owing to their simplicity, engineered representations require no labelled sequences and

therefore are generic in terms of the final task (e.g. micro-expression recognition [173] or six

basic expressions [281]). Moreover, inconsistency in frame rate or temporal order of expressions

is not an issue for engineered representations as they require no training sequences. Also, engi-

neered representations have been validated for subtle facial expression analysis [173, 258]. The

method in the last row of Table 2.3, Facial Bases [192], is the representation that we developed

as part of this thesis’ work. The design of this method is appropriate to tackle temporal inconsis-

tencies and to recognise subtle expressions as well as pronounced expressions. Facial Bases will

be discussed throughout Chapter 4 and compared to other methods in Table 2.3.
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Table 2.3: Dynamic facial representations in the state of the art. †Representations that can be
trained without labels, but achieve lower performance in this case. N/A: Not applicable.

Ref. Approach
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Validation by
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Representation

Learning
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Pronounced

Expressions

Validated

on Subtle

Expressions

[281] LBP-TOP 3 N/A N/A N/A 3 3

[258] Gabor Motion Energy 3 N/A N/A N/A 3 3

[93] DTAGN 3 3 3

[125] Expressionlets 3 3† 3

[59] Spatio-temporal RBM 3 3 3

[124] 3DCNN-DAP 3 3 3

[192] Facial bases 3 3 3 3 3

2.5.7 Discussion

The main motivation for spatio-temporal representations is to encode temporal variation in or-

der to facilitate the recognition of subtle expressions [6]. Most systems used spatio-temporal

representations with relatively simple registration strategies such as rigid registration based on 2

points. Relying on such simple registration, however, defeats the purpose of monitoring temporal

variation, as the texture variation due to registration inconsistencies may be more evident than the

variation due to facial activity. Although the free-form deformation representation addresses reg-

istration consistency through its own registration layer, the representation may fail in naturalistic

settings (Section 2.5.4).

To address the demands of the spatio-temporal representations, Jiang et al. [92] detect a

bounding box for the facial region in the first frame, and use this as a reference to register sub-

sequent frames via Robust FFT. However, this pipeline overlooks two important factors. Firstly,

although a finer registration may be achieved at the spatial level, this pipeline still maintains

a frame-by-frame operation and does not address temporal consistency. Secondly, the subject

may display large head-pose variations throughout the sequence, in which cases registration to a

frontal face may result in failure. The registration demands that are not addressed in the current

literature may have drawn the attention away from spatio-temporal representations in real world

problems. This issue is also highlighted by the organisers of AVEC’13 [244] who despite arguing

for the spatio-temporal LPQ-TOP representations’ appropriateness, end up using LPQ due to the
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challenging registration needs of LPQ-TOP.

A recent trend is to learn high-level spatio-temporal representations from data. Even though

such representations may achieve high performance, the training sequences may impose restric-

tions on the generalisation ability of the representations. Learnt representations require further

evaluation for their ability to produce meaningful representations when there are mismatches

between the training and test data in terms of frame rate or (order of) temporal phases (Sec-

tion 2.5.6).

2.6 Dimensionality Reduction

Dimensionality reduction can be used to address several affect recognition challenges such as

illumination variation, registration errors and identity bias. Components that reduce dimension-

ality may operate across multiple layers, such as early preprocessing (e.g. downsampling input

image, applying masks) and intrinsic representation layers. In this section, we group the addi-

tional dimensionality reduction techniques that follow the facial representation into three classes,

namely pooling, feature selection and feature extraction methods.

2.6.1 Pooling

Pooling, a paradigm defined specifically for appearance representations, reduces dimensionality

over local blocks of the representation by describing the features within the blocks jointly. This

description discards the location of adjacent features and thereby increases the tolerance against

registration errors. Such functionalities of pooling have a biological motivation as they mimic

parts of mammals’ vision systems [86, 174].

Pooling is usually applied on multiple small neighbourhoods across the image. There exists a

variety of pooling techniques, such as binning features over local histograms, sampling the mini-

mum or maximum value within a neighbourhood or computing the sum or average of the features

across the neighbourhood [21, 22, 109]. Sensitivity to illumination variations is generally ad-

dressed by normalising the output of pooling (e.g. subtracting the local mean [174], or perform-

ing unit-norm normalisation [45]). Although pooling is mostly applied on the spatial domain, a

number of studies apply pooling on spatio-temporal neighbourhoods as well (e.g. [127,219,258]).

Pooling is usually considered as an intrinsic layer of the representation [111]. Representa-

tions such as the low-level histogram representations (Section 2.4.2) are defined to be dependent
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exclusively on a certain type of pooling (i.e. histograms). For these representations, we consider

pooling as an intrinsic layer. The Gabor representations (Section 2.4.3) and spatio-temporal con-

volution with smooth filters (Section 2.5.3) have been used with a variety of pooling techniques

as well as alternative dimensionality reduction schemes.

2.6.2 Feature selection

Feature selection aims at refining the facial representation by selecting a subset of its features,

and optionally weighting the selected features. This process may be designed to have a seman-

tic interpretation, such as discovering spatial [205, 266, 268, 285] or spatio-temporal [101, 282]

regions of interest. Such applications of feature selection may reduce identity bias, as they are

expected to discover the regions that are informative in terms of expressions rather than iden-

tity. Alternatively, the feature selection process may be designed to reduce dimensionality in a

rather straightforward manner, without emphasis on the physical correspondence of the selected

features [16, 91, 237].

Feature selection can be performed with a range of techniques. A simple form is selecting

and weighting certain spatial regions manually [205]. Most systems rely on data-driven feature

selection and the most popular paradigm is boosting. Boosting refers to a set of generic tech-

niques, which are designed for prediction (classification/regression) [63]. Many affect recognis-

ers neglect the prediction role of boosting techniques and use them only for feature selection.

AdaBoost and GentleBoost [63] are the most widely employed boosting techniques. In addition

to generic feature selection techniques, approaches tailored to affect recognition are also devel-

oped, for example to learn informative spatial regions by observing the temporal evolution of

expressions [116].

The above-listed methods are supervised. One question while training supervised feature se-

lectors is how the label information will be utilised. These techniques select features according

to a two-class separation criterion (positive vs. negative). However, training datasets often in-

clude more than two classes. A common practice is to learn features separately for each class and

group data as one-versus-rest (e.g. [91, 101, 116, 205]). Alternatively, features may be selected

to facilitate the separation of all class pairs independently, i.e. one-versus-one training. Such

feature selection schemes may be more useful, particularly for discriminating similar-looking

expressions of different classes such as sadness and anger [282].
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2.6.3 Feature extraction

Feature extraction methods extract novel features (e.g. holistic features) from the initial repre-

sentations. They map an input representation onto a lower dimensional space to discover a latent

structure from the representation. This transformation can be non-adaptive or adaptive (learnt

from training data).

The most popular non-adaptive transformation is the Discrete Cosine Transformation (PCA)

whereas the most popular adaptive transformation is Principal Component Analysis (PCA). PCA

computes a linear transformation that aims at extracting decorrelated features out of possibly

correlated features. Under controlled head-pose and imaging conditions, these features capture

the statistical structure of expressions efficiently [26]. PCA is used by many systems including

the winner of the AVEC continuous challenge [156].

A supervised alternative to the unsupervised PCA is Linear Discriminant Analysis (LDA).

LDA uses label information to learn how to discriminate between differently labelled represen-

tations, and group similarly labelled representations. LDA can handle more than two classes as

it considers only whether two arbitrary samples have the same or different labels. Most affect

recognition systems train LDA using multiple classes simultaneously [23, 117, 157]. Alternative

training schemes are also proposed. Kyperountas et al. [104] proposed a scheme where multiple

LDA models are involved, and each model discriminates between a pair of classes.

The above-listed linear transformations are often used with representations that model the

whole face [94, 129, 156, 241]. In such cases, they may render the overall pipeline susceptible to

partial occlusions [226], as these transformations encode holistic information [185, 229].

Unsupervised [32, 136, 176] or supervised [206, 283] non-linear feature selection techniques

are less popular than linear techniques. Shan et al. [207] showed that supervised techniques are

usually more useful than unsupervised techniques. There is no strong evidence on the superiority

of linear over non-linear feature extraction, or vice versa [207].

2.6.4 Discussion

The dimensionality of representations is often exploited to move representations to a higher level

by discovering the spatial or spatio-temporal regions of interest, or selecting/extracting features

that enhance the discrimination of similar-looking expressions of different emotions. To these

ends, the vast majority of existing systems rely on generic dimensionality reduction techniques.
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The optimality of such techniques, however, is being questioned in the scope of affect recogni-

tion, and new trends address the importance of making use of domain knowledge explicitly when

developing dimensionality reduction techniques [252, 285].

2.7 Recognition

While the typical output of affect recognition systems is the label of an emotion or facial action,

recent studies provide also the intensity of the displayed emotion or facial action [31, 74, 89, 94,

136, 186, 196, 244]. For AU recognition, the output can be enhanced significantly by providing

the temporal phase of the displayed AU [101, 237, 242]. Also, to render the output more suitable

to spontaneous behaviour, several studies recognise combinations of AUs [137, 224] rather than

individual AUs as spontaneously displayed AUs rarely appear in isolation.

Except from a small number of unsupervised knowledge-driven approaches [115, 166], all

affect recognisers use machine learning techniques. As any machine learning application, the

performance of an affect recognition system depends on the quality and quantity of training data

as well as the selected machine learning model.

2.7.1 Data

Labelling data is a challenging and laborious task, particularly for spontaneously displayed ex-

pressions and emotions. The annotation of spontaneously displayed emotions is challenging

mainly due to the subjective perception of emotions [144], which is often addressed by using

multiple annotators. However, combining multiple annotations is a challenge of its own [144].

Also, when annotation is carried out over sequences, there usually exists a delay between the

perception and annotation of the annotator, which needs to be considered when combining the

annotations. Recent attempts consider these issues and develop statistical methodologies that aim

at obtaining reliable labels [144, 154].

Spontaneous AUs require frame-by-frame annotation by experts, and unlike posed AUs,

where the subjects are instructed to display a particular (usually single) AU, the annotator has

to deal with an unknown facial action which may be a combination of AUs [224]. A number of

studies addressed the challenges in AU annotation and developed systems to assist annotators.

De la Torre et al. [46] proposed a system that increases the speed of AU annotation with temporal

phases, mainly by automating the annotation of onset and offset. Zhang et al. [278] developed an
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interactive labelling system that aims at minimising human intervention and updates itself based

on its own errors.

2.7.2 Statistical modelling

Most affect recognition systems rely on generic models such as Support Vector Machines (SVMs).

Affect recognition has its own specific dynamics and recent studies aimed at tailoring statistical

models for affect recognition. The new models address several issues such as modelling the

temporal variations of emotions or expressions, personalising existing models, modelling statis-

tical dependencies between expressions or utilising domain knowledge by exploiting correlations

among affect dimensions.

Temporality — Modelling the temporal variation of facial actions or emotions proved useful

[153, 237]. Typically used models are Hidden Markov Models (HMMs), which have been com-

bined with SVM [237] or Boosting [101] to enhance prediction. Also, various statistical models

such as Dynamic Bayesian Network (DBN) [224], Relevance Vector Machine (RVM) [153] or

Conditional Random Fields (CRF) [14] are developed to learn temporal dependencies. Temporal

variation is often modelled by systems that recognise the temporal phases of AUs [101, 237].

Personalisation — Identity cues render the generalisation of classifiers/regressors challenging.

To deal with this, Chu et al. [34] proposed a method that can be used in conjunction with available

discriminative classifiers such as SVM. The technique adapts the training data to a test sample

by re-weighting the training samples based on the test subjects’ identity cues.

Statistical Expression Dependencies — Facial activity is limited by face configuration and

muscular limitations. Some facial actions cannot be displayed simultaneously, whereas some

tend to co-occur. A number of AU recognition systems improve performance by exploiting these

dependencies through statistical models such as DBNs [224, 225] or restricted Boltzmann ma-

chines [252].

Correlated Affect Dimensions — Although ignored by most dimensional affect recognisers,

affect dimensions such as valence and arousal are intercorrelated [73]. Studies that extended

RVM [153] and CRF [14] showed that modelling the correlation among affect dimensions may

improve performance.
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2.7.3 Discussion

The research efforts on creating affect-specific models (Section 2.7.2) are promising for affect

recognition. However, to enable these models to focus on high-level semantics such as the tem-

poral dependencies among AUs or inter-correlations between affect dimensions, the representa-

tions provided to the models must enable generalisation — the effects of illumination variations,

registration errors, head-pose variations, occlusions and identity bias must be eliminated.

One way to provide informative features may be cascading two statistical models. For in-

stance, the output of multiple SVM [237] or Boosting-based classifiers [101, 224, 225] may be

passed to HMMs [101, 237] or DBNs [224, 225]. In such approaches, however, the first statisti-

cal model still suffers from challenges such as illumination variations unless they are addressed

explicitly at representation level.

2.8 Summary

In this chapter we analysed facial affect recognition systems by breaking them down into their

fundamental components and we highlighted their potentials and limitations.

The appearance representations that extract local features or involve local filtering are robust

against illumination variations to an extent. Moreover, performing illumination normalisation

at pooling (Section 2.6.1) can reduce the effect of illumination further. Illumination variations

can be problematic for high-level representations that are extracted from raw pixel values. Such

operations are common not only for the low-level histogram representations (see Section 2.4.2)

and the Gabor representation (Section 2.4.3), but also for higher-level hierarchical representations

(see Section 2.4.6). Shape representations are not affected by illumination as they ignore pixel

intensities. However, (point) registration accuracy can decrease with illumination variations, thus

degrading the performance of shape representations.

There has been significant progress in landmark localisation in recent years, and there ex-

ist multiple techniques that are robust to head-pose variations, occlusions and to illumination

variations (see Section 2.3.5). Moreover, appearance representations are robust against small

registration errors due to pooling or usage of smooth filters. Therefore, registration can be

considered as a solved problem for affect analysis pipelines that utilise static appearance rep-

resentations. Registration errors are problematic for shape representations (Section 2.4.7). Also,

spatio-temporal representations that encode temporal variation suffer from registration errors as
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they may interpret temporal registration errors as facial activity (Section 2.5.7).

Most representations encode componential features and deal with occlusions to an extent

as the features extracted from unoccluded regions remain unaffected — a number of studies

measured performance in presence of occlusions explicitly [39, 85, 147, 284]. Yet, representing

irrelevant information from occluded regions can be problematic for subsequent steps such as

dimensionality reduction (Section 2.6.3). Sparse representations can address occlusions more

explicitly (Section 2.4.4). Another approach can be detecting occluded regions and removing

them from the representation [85].

Head-pose variations remain mostly unaddressed at representation level. Part-based rep-

resentations can address the problem partially (Section 2.3.5) and they have been preferred by

some winning systems in affect recognition competitions with data that includes head-pose vari-

ations [155,156,272]. An alternative solution to dealing with head-pose variations is to learn the

relationship between head-pose and expression variation at recognition level through statistical

modelling [224], however, this approach may impose a large burden on the recognition process.

Deep architectures trained with large amounts of data can also address head-pose variations suc-

cessfully (Section 2.4.6). It must be noted that suppressing head-pose variations to favour the

analysis of (non-rigid) facial motions is not the only way to facial affect analysis, as recent stud-

ies show that head-pose variation itself is a useful indicator of affective state (Section 2.3.5).

Identity bias is problematic for the popular low-level representations, which are adapted

straightforwardly from face recognition. The majority of affect recognition systems do not ad-

dress identity bias, but those that address it benefit from doing so. For example, in FERA’11

emotion challenge, the winner was the only system that considered identity bias through avatar

image registration [269]. Similarly, the runner up of the FERA’15 intensity sub-challenge and

AU occurrence sub-challenge addressed identity bias explicitly [15]. Indeed, when it comes to

distinguishing the intensity of facial actions addressing identity bias can be particularly impor-

tant [89]. Several representations address identity bias subject to the availability of the neutral

face, which is a strong assumption for real-life applications. Identity bias can be tackled fur-

ther at recognition level by adding a personalisation component [34] to discriminative classifiers

(Section 2.7.2).

Combining shape and appearance features is one of the strategies that proved useful for the

past decade and keeps being relevant also for today’s more sophisticated systems. The win-
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ning systems in various affect recognition competitions combined shape and appearance fea-

tures [15, 155, 156, 203]. The advantage of combining features is that it is a design principle

that can be implemented in multiple ways; while earlier approaches relied on relatively sim-

pler strategies (e.g. training multiple classifiers and performing decision-level fusion), recent

approaches designed deep architectures that learn features from appearance and shape represen-

tations concurrently [88, 93]. Combining features in general is in accordance with the behaviour

of the human vision system when dealing with particularly ambiguous facial displays [24, 280]

or interpreting different types of expressions [4].

Deep learning had a high impact in facial affect analysis recently (Section 2.4.6), and the in-

terest in exploring deep architectures is expected to grow even further. Methods that rely on deep

learning enjoy operating “in-the-wild” thanks to their multi-layered structure. The success of

deep learning is very visible for spatial representation pipelines; the winners of image-based “in-

the-wild” competitions employ, by and large, deep learning (Section 2.4.6). However, the picture

is not the same for spatio-temporal representations yet. The winners of recent competitions for

affect analysis “in-the-wild” or in naturalistic conditions with head-pose variations seldom relied

on deep learning (Section 2.5.6).

While data-driven spatio-temporal representations are likely to receive increasing attention,

learning a facial representation from time-dependent data may impose restrictions that are not

visible through standard within-database evaluation protocols (Section 2.5.6). Let us conclude

this chapter with three remarks that can be useful while devising data-driven spatio-temporal

representations for naturalistic facial expressions.

• Systems must recognise both subtle and pronounced expressions. While spatio-temporal

representations offer an important capability for recognising subtle expressions, many of

recent data-driven spatio-temporal representations are validated exclusively on pronounced

expressions (see Section 2.5.6). In general, systems are tested either on subtle or pro-

nounced expressions. From the perspective of a real-world application, it is more plausible

to approach automatic facial affect recognition as a unified problem across expression in-

tensities.

• Cross-database validation is essential for learnt spatio-temporal representations. Cross-

database tests become more and more widespread for static representations, however, this

is not generally the case for spatio-temporal representations. In fact, cross-database rep-
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resentations are particularly important for the latter. Spatio-temporal representations can

develop sensitivity to the frame rate, or to the order of observed temporal phases (e.g.

neutral-onset-apex), particularly if all the training sequences contain strictly the same tem-

poral phases. Expressions do not always follow a standard order of temporal phases (Sec-

tion 1.3); moreover, in naturalistic affective interactions, some of the temporal phases may

not be visible due to partial occlusions, motion blur or sudden changes in head-pose.

• Depending on a single emotion model may limit the representation’s applicability. Un-

like a typical machine learning problem, the label of samples in facial expression analysis

varies based on the emotion model that is being used. Supervised learning based only on

one specific model may limit the relevance of the learnt representation, particularly if the

model itself is limited in its ability to represent daily-life emotions (e.g. the six-basic emo-

tions, see Section 1.3). Also, the optimal representations for more comprehensive emotion

models can be fundamentally different from those for the simpler models. For example,

the continuous emotion models benefit from machine learning pipelines that capture the

temporal correlations within sequences (see Section 2.7.2).



Chapter 3

Registration of facial sequences

3.1 Introduction

As we discussed in the previous chapter, spatio-temporal representations are useful particularly

for recognising the subtle expressions that are prevalent in daily life, however, those representa-

tions require accurate sequence registration (see Section 2.3.4). This chapter presents a robust

registration technique that can be used both for whole-face and for part-based sequence registra-

tion.

Rigid registration for facial analysis needs to address multiple challenges, namely non-uniform

illumination variations, occlusions and facial activity itself, which generates non-rigid motions

that become outliers for rigid registration. Moreover, significant drift errors may accumulate over

time with online registration, even when individual registration errors remain under a tolerance

threshold, thus leading to registration failures. Undetected registration failures then become false

references for subsequent frames, thus generating additional registration errors.

Registration is often approached as an optimisation problem and solved with a gradient-

descent method [12, 60, 148, 164, 233]. However, gradient descent may underperform with un-

textured regions, particularly when high-gradient regions are associated with outlier motions.

An emerging approach to optimisation in computer vision is using statistical learning [51, 215,

231, 261]. The general idea is to construct an algorithm by learning the relationship between the

parameters to be optimised and the error caused by non-optimal parameters [38]. We argue that

optimisation based on learning is also promising for rigid facial registration, as invariance to non-

45
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rigid motions can be improved by training with sequences that contain facial activity. Moreover,

robustness to non-uniform illumination variations can be improved with a robust feature extrac-

tion scheme without analytically modelling the relationship between features and misalignment

parameters.

The framework presented in this chapter uses optimisation via statistical learning for rigid

facial registration. This iterative framework (Fig. 3.1) reduces drift errors by computing Gabor

motion energy with respect to multiple reference frames and can identify and correct registra-

tion failures via probabilistic learning. We show that, in iterative registration, misalignment can

be estimated effectively with a pre-trained regressor of Gabor motion energy and that this re-

gressor can generalise and perform accurately on data with illumination variations even when

trained using controlled data. Moreover, we show that the `2 norm of Gabor motion energy can

be used to train multiple regressors with different granularities and also to efficiently perform

coarse-to-fine registration with these regressors. We refer to the proposed framework as MU-

MIE (Multiple regressors for Misalignment Estimation), and evaluate it both for whole-face and

part-based registration and obtain significantly higher accuracy than classical registration frame-

works. Particularly notable is the part-based registration performance of the proposed framework

in the presence of large facial activity due to facial expressions, and its robustness to non-uniform

illumination variations.

The rest of this chapter is organised as follows. Section 3.2 presents the problem formulation.

Section 3.3 outlines the proposed registration scheme. Section 3.4 describes the computation of

illumination-normalised Gabor motion energy that is used as input for the regressors. Section 3.5

describes how Gabor motion energy is converted into rigid misalignment parameters. Section 3.6

explains how registration failures are identified and corrected. Experimental results are discussed

in Section 3.7. Section 3.9 concludes the chapter.

3.2 Problem formulation

Let S = (I1, I2, . . . , It , . . . , IT ) be a sequence of arbitrary length T with unregistered frames It . The

goal is to generate a registered sequence S̄ = (Ī1, Ī2, . . . , ĪT ) with no rigid misalignment between

any two frames Ī j, Īk. When S is acquired via streaming, a frame It must be registered as soon as

it is obtained (online registration), where I1 is the reference frame that subsequent frames will be

registered to (i.e. Ī1 = I1).
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Figure 3.1: Overview of the proposed MUMIE framework. The top part represents the training
of the misalignment estimators. The bottom part represents the iterative registration scheme, fol-
lowed by a convergence test. The input to registration is an ordered set of reference frames Īt−1,
the misaligned frame It and the initial misalignment estimation p̂t . The dashed lines represent
the conditional paths that are followed when the labelled conditions hold (C1/C2) or do not hold
(C̄1/C̄2), and || · || is the `2 norm. †The condition C2 is satisfied also if a maximal number of
iterations, Kmax, is reached.

Let pt be the parameters of the rigid motion responsible for the misalignment in It . Īt can be

obtained by transforming It with a warping operator W(x;pt) that maps each pixel x = (x,y)T

based on pt [12]:

Īt(W(x;pt)) = It(x). (3.1)

The critical task is to obtain an accurate estimation of rigid motion, p̂t . The rigid motion in It

can be estimated with respect to a single frame (for example the most recently registered frame,

Īt−1); or by considering multiple past reference frames. For example, one can use an ordered

set that contains the last TR registered frames Īt−1 = (Īτ , Īτ+1, . . . , Īt−1) where τ = max{1, t −

TR}. We refer to registration with TR = 1 as single-frame registration and TR > 1 as multi-frame

registration.

3.3 Registration via learning

Faces are non-planar objects and compensating for rigid motion with an affine or projective

transformation may distort facial geometry and undermine facial activity analysis. Therefore, we

model rigid motion as a Euclidean transformation.

Let pt be pt = (p1, p2, p3, p4), where the elements define the horizontal and vertical trans-

lation, scale and rotation, respectively. Registration via optimisation starts computing the rigid



Chapter 3: Registration of facial sequences 48

L
K

M
U

M
IE

Figure 3.2: Illustration of drift errors that can occur over time, through an exemplar sequence
that starts and ends with the same eye expression. Registration output of a Lucas-Kanade (LK)
method [233] (top) and MUMIE (bottom). LK is prone to drift errors, as seen by comparing
the first and last frames of the registered sequences. Drift errors are highlighted in the last col-
umn where the difference between the first and last frames is depicted. (Dark values indicate
registration errors.)

motion between two images Īt−1, It with an initial estimate p̂t that is then updated iteratively as:

p̂t ← p̂t +∆p̂t , (3.2)

until the norm of the increment, ||∆p̂t ||, is smaller than a threshold ε . ∆p̂t is often computed

with variations of the LK algorithm [148, 164], which use gradient descent for optimisation.

Convergence is successful under constant illumination conditions and limited occlusions [12].

Extensions of LK can tackle illumination variations and occlusions using a robust estimator [13]

or a cosine kernel that eliminates outliers caused by local texture mismatches [233]. However,

algorithms based on gradient-descent may underperform when high-gradient image regions are

related to outlier motions.

Registration for facial analysis needs to cope with the non-rigid motions caused by facial

activity, which affect a large proportion of pixels and are problematic for part-based registration.

Facial activity evolves slowly and may not be eliminated as a local mismatch, thus causing drift

errors. Fig. 3.2 illustrates this problem: the first and last frame should be aligned as they depict

the same eye expression at two different instants of a sequence; however, another expression

appearing in the in-between frames causes drift errors for the LK-based algorithm [233].

An emerging approach to optimisation is to perform the updates with a pre-computed func-

tion [38,231,261]. The increment ∆p̂t can be computed with a regressor that models the relation-

ship between misalignment and the errors caused by misalignment. We use regression for rigid

facial registration. At each iteration, we compute the rigid motion between Īt−1 and It (or more

generally, between Īt−1 and It) with a regressor f as:

∆p̂t = f(Φ(Īt−1, It);Θ), (3.3)
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where Θ is the vector of input-independent regressor parameters, and Φ(·) is a feature extraction

process that we discuss later in this section. Θ is computed from a dataset D = {(Īn, In,pn)}N
n=1

that contains N misaligned samples and their misalignment labels. Invariance against an outlier

can be encouraged by augmenting D with training samples that are affected by the outlier [19].

Moreover, invariance against illumination variations can be encouraged with a robust feature

extraction scheme. Unlike algorithms based on gradient descent (e.g. LK), the computation in

(3.3) does not require a differentiable expression to minimise. For this reason, we can employ

feature extraction schemes that are difficult to differentiate or not differentiable. However, while

optimisation with regression provides an efficient means for dealing with outliers, an important

issue has to be addressed for a pre-computed regressor, namely the generalisation to unseen faces

and imaging conditions.

3.4 Encoding local motion with speed- and orientation-selective filters

Generalisation can be improved with a feature extraction scheme that is sensitive to rigid motion

and insensitive to irrelevant factors, such as skin colour and illumination variations. To this end,

we use a spatio-temporal Gabor representation, which encodes motion without computing motion

vectors explicitly [2] and is robust against illumination variations. The Gabor representation

encodes the motion between two frames Īt−1 and It by convolving this pair with speed- and

orientation-selective Gabor filters that are defined as [172]

gφoff
v,θ (x,y, t

′) =
γ√

8π3σ2τ
e−

x̄2+γ ȳ2

2σ2 −
(t−µt )

2

2τ2

cos
2π

λ
(x̄+ vt ′+φoff) (3.4)

where x̄ = xcosθ + ysinθ and ȳ = −xsinθ + ycosθ , and the phase offset φoff can be set to

φoff = 0 to obtain an even-phased (cosine) filter and to φoff =
π

2 to obtain an odd-phased (sine)

filter — the two filters together form a quadrature pair. The parameters θ and v define the

orientation and speed of motion that the filter is tuned for (see [172] for the definition and details

of the remaining parameters). An important property of the Gabor representation is direction

selectivity (e.g. distinguishing between leftwards and rightwards motion), which is acquired by

computing the Gabor motion energy through a quadrature filter pair as [2]:

EIt = (It ∗g0
v,θ )

2 +(It ∗g
π

2
v,θ )

2, (3.5)

where ∗ denotes convolution and It is defined as It = (Īt−1, It).
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(c) Large, vertical translation(b) Small, horizontal translation(a) Small, vertical translation

Figure 3.3: Illustration of the usefulness of the Gabor motion energy for registration via three
example cases (a–c) that involve different types (horizontal/vertical translation) and amounts
(small/large) of misalignment. For each case, the Gabor motion energy is computed with four
different filter pairs tuned to a particular speed (vS(mall) or vL(arge)) and orientation (θh(orizontal) or
θv(ertical)). The energy always becomes maximal when the filters are in tune with the misalign-
ment.

Fig. 3.3 illustrates why the Gabor representation is useful for registration. We plot three pairs

of images along with the motion energies computed through four pairs of Gabor filters. The en-

ergy produced with filters tuned to small, vertical motions gets maximal when the misalignment

involves a small, vertical translation, as illustrated in Fig. 3.3a. More generally, misalignments

in different directions or magnitudes activate different Gabor filters. This property is critical for

optimisation, as it implicitly guides which direction each optimisation step should take, and what

the step size should be. The usage of such a motion representation enables generalisation; if

we would replace the images Īt−1, It in Fig. 3.3 with the images of other subjects, the energy

output would change, however, the essential relationship would not: each filter would still reach

its maximal response only if the rigid motion (i.e. the misalignment) is in tune with the filter

parameters.

3.4.1 Motion energy of a moving line

The motion energy, which models the lower layers of the visual cortex, is typically analysed

based on the response of a visual cell to a moving line [2]. We also analyse motion energy over

an exemplar moving line, as the moving line has a closed-form mathematical expression and

therefore its response can be studied analytically. The closed-form expression of a moving line
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has been computed for a line with one (spatial) dimension [177], however, to the best of our

knowledge, it has not been computed for a line with two spatial dimensions. In this section we

first obtain the closed-form expression of Gabor motion energy for a (two-dimensional) moving

line, and then show how to tune a Gabor filter to a particular speed and direction. We will then

discuss how to reduce the illumination sensitivity of the Gabor motion energy, and then return to

its usage for estimating rigid misalignment.

Let Il =
∆ Il(x,y, t) denote a sequence of a moving line as:

Il(x,y, t) =
∆ cδ (xcosθl− ysinθl− tvl) , (3.6)

where δ is Dirac’s delta, x,y, t denote spatial coordinates and time; θl defines the orientation of

Il; vl ≥ 0 defines the speed and c > 0 is the luminance value of Il . The computation of the line’s

energy, EIl = (Il ∗g0
v,θ )

2+(Il ∗g
π

2
v,θ )

2, is difficult due to the triple integrals involved in the convo-

lutions. With the help of the Convolution Theorem, we compute the EIl using Mathematica R© as

(see Appendix A.1):

EIl =
c̄2

1+ v2
l

e
−

vgvl cos θgl+4tyvl sin θl−4x cos θl (tvl+y sin θl )

1+v2
l

e
−

1+4x2+4y2+2v2
g+(2+8t2)v2

l −cos 2θgl+4(x2−y2) cos 2θl
4(1+v2

l ) . (3.7)

Then, using the second derivative test, it can be shown that in order to tune the filter pair to a line

moving with spatial orientation θl and speed vl , the filter parameters vg and θg must be defined

as follows (see Appendix A.2):

vg = vl, (3.8)

θg = π−θl +2πk. (3.9)

We can obtain a complete motion representation by computing multiple energy functions, each

involving a different filter pair tuned to a different speed and orientation [2]. Such a represen-

tation enables the identification of the speed and direction of an unknown line: the Gabor filters

that are tuned to a motion similar to that of the unknown line would produce a higher energy than

other filters. In Fig. 3.4a we show how the motion energy computed from multiple Gabor filters

enables us to identify the orientations of two different lines (one at each row) that move with the

same speed. The line at the top of Fig. 3.4a moves with an orientation of π

2 and the maximal

energy is produced with the spatio-temporal Gabor filter that is tuned to the speed of the line,
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Figure 3.4: Two exemplar cases that illustrate how Gabor motion energies computed from mul-
tiple pairs of spatio-temporal Gabor filters enable the identification of motion speed and orien-
tation. (a) Two lines that are moving with the same speed but in different orientations (90◦ and
45◦): The maximal energy for each line is produced with the filter pair that is tuned to the lines’
orientation. (b) Two lines that are moving in towards the same direction but with different speeds
(16 and 32): The maximal motion energy is produced with the filter that is tuned to the lines’
speed.

that is, according to (3.9), θg =
π

2 . Similarly, the maximal energy for the line at the bottom of

Fig. 3.4a is produced by the filter with θg =
3π

4 as this is the filter that is tuned to the orientation

of the line (i.e. π

4 ). A similar discussion applies for the examples in Fig. 3.4b, where we show

how energy can be used to discover the speed of two lines: The maximal motion energies are

produced by the filters that are tuned through (3.8) to the speed of each line.

3.4.2 Contrast normalisation for motion energy

The motion energy is sensitive to the brightness of the moving elements; this can be seen in (3.7)

where the energy is proportional to the brightness-related coefficient, c2. Brightness/illumination

sensitivity is an undesired property for a motion representation. In this section we propose a

normalisation scheme to reduce illumination sensitivity. We show how this scheme eliminates

the dependence on the initial brightness of a moving line and we extend it to tackle temporal

illumination variations for generic sequences.

Normalisation of Line Brightness

We aim to obtain a normalised sequence Ĩl =
∆ Ĩl(x,y, t) such that the energy of this sequence,

EĨl
, is illumination-independent and yet its functional form is still equal to that of EIl . Such a

sequence can be obtained by dividing the frames of Il with a coefficient that is proportional to

c2; this is akin to the contrast normalisation that is arguably employed by the mammal visual

cortex [79, 250]. We now show how such a coefficient can be obtained.



Chapter 3: Registration of facial sequences 53

x

y

t

t0

t1

x

y

t

x

y

t

(a) (b) (c)

Figure 3.5: Illustration of how we create static sequences. (a) I: sequence of a line that moves
horizontally. (b) It0 : static sequence created from I using the frame at time t0; (c) It1 : static
sequence created from I with the frame at t1.

Let us assume that we have a sequence of a static line whose luminance value is c. Then,

according to (3.7), the energy of the static line will be proportional to c2 and, because the line

is not moving, the energy will be constant over time. The energy of this static line provides us

with the coefficient that we need for normalisation: A coefficient that is constant over time and

proportional to c2.

In fact, we do have a way of obtaining such a sequence: We can take a frame from Il at any

time tk, and obtain a static sequence, Itk
l ∈ R3, by replicating this frame over time. We illustrate

this for the exemplar horizontally moving line in Fig. 3.5a by creating two static sequences,

It0
l ,I

t1
l (see Fig. 3.5b,c). Such static sequences obtained from a sequence Il can be defined as

Itk
l (x,y, t) =

∆ Il(x,y, tk).

Let us obtain our normalisation coefficient using the static line at time tk = 0. The speed of

this static line, vl , is zero, and therefore according to (3.7) its energy is:

EI0
l
= c̄2e−

1+4x2+4y2+2v2
g+4(x2−y2) cos 2θl−cos 2θgl−8xy sin 2θl

4 . (3.10)

As expected, the energy of this static line is constant over time and proportional to c̄2 (and c2).

To complete our normalisation, we need to extract a single coefficient from the function EI0
l
. This

can be achieved by integrating EI0
l

over the entire sequence domain, Ω = X×Y ×T . Let ZIt
l

be a

function that computes the normalisation coefficient as:

ZIt
l
=∆
∫
Ω

EIt
l
(x′)dx′, (3.11)

where x′ = (x′,y′, t ′). Then, the normalisation coefficient of EI0
l

can be computed as:

ZI0
l
=
∫
Ω

EI0
l
(x′)dx′ = c̄2

∫
Ω

EI0
l
(x′)

c̄2 dx′ =
c2

8π4 S, (3.12)
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where S denotes the output of a definite integral that is another constant but one that does not

depend on the illumination of the line. Finally, we obtain the normalised sequence as:

Ĩl =
1√
ZI0

l

Il =
2
√

2π2
√

S
δ (xcosθl− ysinθl− tvl). (3.13)

As desired, the energy of this line, EĨl
, will be independent of c, and its functional form would

be equal to that of EIl .

Normalisation of Temporal Illumination Variations

The normalised sequence in (3.13) was obtained by dividing the sequence with a single coeffi-

cient. To tackle temporal variations in a generic sequence (i.e. beyond a moving line), we divide

each frame of the sequence with a separate (time-dependent) coefficient ZIt :

Ĩ(x,y, t) =
1√
ZIt

I(x,y, t), (3.14)

where ZIt is computed as in (3.11) but, because now it is computed from a generic sequence

without a closed-form expression, I, we can represent it only as a definite integral.

To show that this extension is able to tackle temporal illumination variations for sequences

without closed-form expressions, we recast the problem of illumination normalisation as follows.

Consider a sequence Ip =
∆ Ip(x,y, t) where there are no illumination variations, and another se-

quence Iq that contains the same motion as Ip but is affected by a temporal variation such as

Iq(x,y, t) =
∆ (αt +β )Ip(x,y, t). Our goal with illumination normalisation is to have normalised

versions of these sequences that have equal energies, that is, EĨp
= EĨq

.

The energies of normalised sequences can be written as:

EĨp
=

[∫ Ip(u)√
ZIw

p

ge(x̄)du

]2

+

[∫ Ip(u)√
ZIw

p

go(x̄)du

]2

, (3.15)

EĨq
=

[∫ Iq(u)√
ZIw

q

ge(x̄)du

]2

+

[∫ Iq(u)√
ZIw

q

go(x̄)du

]2

, (3.16)

where u=(u,v,w) and x̄= x−u. Note that Iw
q (x,y, t)= Iq(x,y,w)= (αw+β )Ip(x,y,w)= (αw+

β )Iw
p(x,y, t), and because the convolution involved in energy computation is a linear operator, we

can compute ZIw
q

as:

ZIw
q
=
∫
Ω

EIw
q
(x′)dx′ =

∫
Ω

(αw+β )2EIw
p
(x′)dx′

= (αw+β )2
∫
Ω

EIw
p
(x′)dx′. (3.17)
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Therefore, we can rewrite (3.16) as:

EĨq
=

[∫
(αw+β )Ip(u)
(αw+β )

√
ZIw

p

ge(x̄)du

]2

+

[∫
(αw+β )Ip(u)
(αw+β )

√
ZIw

p

go(x̄)du

]2

=

[∫ Ip(u)√
ZIw

p

ge(x̄)du

]2

+

[∫ Ip(u)√
ZIw

p

go(x̄)du

]2

, (3.18)

As desired, the energies of the sequences EĨp
and EĨq

are equal, which can be seen by comparing

(3.15) and (3.18).

The ZIw
p

in (3.18) that remains after cancelling out the temporal illumination variations de-

pends on time w. This may cause the trend of the energy function to change during normalisation,

which is prohibitive, as the tuning of the filter parameters vg,θg was based on the energy function

to follow a specific trend. Fortunately, ZIw
p

shows little sensitivity to time w (see Appendix A.3),

and therefore the trends of the normalised and un-normalised energy functions are similar.

It must be noted that our normalisation scheme is most applicable when local slices of a

sequence are processed and normalised independently from one another, particularly in the pres-

ence of non-uniform illumination variations. Local processing and illumination normalisation are

also biologically plausible [174] and are employed by state-of-the-art spatial [111] and spatio-

temporal [219] image processing pipelines. However, local normalisation can be computationally

expensive, particularly if normalisation is computed on spatially overlapping portions of the in-

put images. In Appendix A.4 we describe how the locally normalised energy can be computed

efficiently through the summed area tables [42].

3.4.3 Pooling with respect to multiple frames

Now that we showed how to normalise illumination, let us return to the usage of Gabor mo-

tion energy for estimating the rigid motion between the pair of images in It = (Īt−1, It). This

corresponds to single-frame registration (see Section 3.2), but we will shortly discuss the corre-

sponding multiframe extension.

The overall representation that we use to estimate rigid misalignment from a pair, Φ
′(Īt−1, It)=

(φt,1,φt,2, . . . ,φt,d , . . . ,φt,D), is computed by pooling the normalised energy matrices EĨt
after par-

titioning them into M×M non-overlapping subregions. An advantage of pooling is to facilitate

generalisation in terms of image size. While the size of the energy matrices EĨt
depends on the

size of the images Īt−1 and It , after pooling we have M×M = M2 coefficients per energy matrix

independently of image size. The dimensionality of the overall representation is D = M2×KG,
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where KG is the number of Gabor filter pairs, or, equivalently, the number of energy matrices.

The implementation details of the representation are provided in Section 3.7.3.

To reduce drift errors, we can compute the overall representation with respect to multiple

reference frames, Īt−1. We denote this multi-frame motion representation between It and Īt−1 as

Φt = Φ(Īt−1, It). Φt computes pair-wise motion representations between the misaligned frame

and each of the reference frames in Īt−1, and then averages them over time:

Φt = Φ(Īt−1, It) =
1

t− τ

t−1

∑
t′=τ

Φ
′(Īt′ , It), (3.19)

where τ = max{1, t−TR}.

3.5 Mapping motion energy into misalignment parameters

Throughout Section 3.4 we discussed how to encode the local motion between the misaligned

frame It and the reference frame(s) in It . This section describes how to convert local motion to

rigid motion parameters as proposed in (3.3). For brevity, we rewrite this equation as

∆p̂t = f(Φt ;Θ) (3.20)

and denote the training set for the regressor f as DΦ = {(Φn,pn) : Φ
n = Φ(Īn, In)}N

n=1.

As Fig. 3.3 exemplifies, there is a non-linear relation between the Gabor representation (in-

put) and rigid motion parameters (output). Therefore, it is reasonable to choose a non-linear

regression function to model the intended input-output relationship. We choose f to be a single-

hidden-layer neural network as it is a well-established non-linear regressor and one whose prop-

erties are well understood [138]. Then the parameter vector Θ includes the hidden-layer weights,

output layer weights and biases [19]. The optimal parameters Θ
∗ are those that minimise the

regularised mean squared error on DΦ:

Θ
∗ = argmin

Θ

N

∑
n=1
||pn−∆p̂n||2 +α||Θ||2, (3.21)

where ∆p̂n = f(Φn;Θ) and α ∈ (0,1] is the regularisation parameter defined during training

through cross-validation.

The iterative process in Fig. 3.1 can achieve accurate registration if the errors of the estimator

f get smaller as the amount of rigid motion in It gets smaller. However, the initial error in a given

It may be high, therefore D must contain samples with both large and small misalignments. In
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a dataset with such a broad range of input–output mapping, because of the bias/variance trade-

off [64] the estimator may not be able to attain the desired level of accuracy. Although bias

can be reduced by increasing model complexity, this would increase the variance of the estima-

tor, thus increasing the risk of overfitting [64]. We address this problem with a coarse-to-fine

misalignment estimation, as discussed next.

To improve the bias/variance trade-off, one can employ a coarse-to-fine cascade of K es-

timators {fk}K
k=1 with coarse estimators tuned to large amounts of misalignment and fine es-

timators tuned to small amounts of misalignment (e.g. [286]). Such a cascade produces bet-

ter bias/variance trade-offs as each estimator models an input-output mapping with a smaller

range [64]. However, typical coarse-to-fine estimation schemes use all the estimators in the cas-

cade, even when the initial registration is small and the finest estimator would suffice [106].

Coarse-to-fine estimation is more efficient when coarse estimators are used only if the initial

registration error is large. However, this can be achieved only if we have a prior cue about the

amount of misalignment in It . Interestingly, our spatio-temporal Gabor representation provides

this cue: Large-magnitude motion activates Gabor filters with large spatial support [172], as was

exemplified in Fig. 3.3. For this reason, the `2 norm (magnitude) of the representation,

ρ̃t = ||Φt ||=
D

∑
d=1

φ
2
t,d , (3.22)

generally gets larger as rigid motion gets larger. Fig. 3.6 illustrates this relationship, which allows

us to use the `2 norm of a representation as a prior on the amount of misalignment It .

We exploit magnitude while constructing the estimators of different granularities, {fk}K
k=1.

We choose all estimators fk to have the same structure, therefore the estimators differ in their

granularity due to the dataset they are trained with. Coarse estimators are trained with samples

of larger magnitude and fine estimators with samples of smaller magnitude.

Let us denote the training dataset of each estimator as Dk
Φ

, with
⋃K

k=1Dk
Φ
= DΦ. A simple

way to create the sets {Dk
Φ
} is to first compute the magnitudes of all training samples,Dρ̃ = {ρ̃n :

ρ̃n = ||Φn||, ∀(Φn,pn)∈DΦ}, and to partition the range of [min{Dρ̃},max{Dρ̃}] into K uniform

intervals. However, this partitioning would be sensitive to the sample with maximal magnitude

max{Dρ̃}, as a large max{Dρ̃} value would affect all intervals. Instead, we allow for non-

uniform lengths. To this end, we cluster the set Dρ̃ into K clusters by using a Gaussian Mixture

Model. Each cluster is a distribution N (ρ̃|µk,σ
2
k ) where the variance σ2

k controls distribution

width and is learnt from data. We create a subset Dk
Φ

by picking the samples that are close to
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Figure 3.6: Illustration of the correlation between the magnitude of the Gabor representation and
the amount of misalignment. This correlation suggests that the magnitude of the representation
provides information about the amount of misalignment.

the kth center. Specifically, we create Dk
Φ

as Dk
Φ
= {(Φn,pn) : N (ρ̃n|µk,σk) ≤ 2σk} (i.e. we

cover approximately 95% of the distribution with the 2σk rule [159]). Then, we train each fk by

applying the empirical risk minimisation in (3.21) using the dataset Dk
Φ

.

We estimate misalignment at each iteration as:

∆p̂t = fk∗(Φt), (3.23)

where k∗ = argk maxN (ρ̃t |µk,σk). For clarity, we dropped the regressor parameters.

If no registration failure occurs, the procedure described in this section can register a se-

quence S by registering each It sequentially for t = 2, . . . ,T (Fig. 3.1). However, when the

registration of a frame fails, the corresponding frame must be identified and removed prior to

registering subsequent frames, otherwise it becomes a false reference for subsequent frames to

register. This problem is addressed in the next section.

3.6 Failure identification and correction

To account for possible registration failures, it is desirable to generate a second output in addi-

tion to the registered sequence S̄. This second output, a vector λ , should indicate whether the

registration at each frame was successful: λ = (λ1,λ2, . . . ,λT ), where λt = 1 indicates that Īt was

registered correctly and λt = 0 indicates that registration failed.

Let 〈p̂t ,pt〉c define the average error in the estimation of canonical points [12] between two
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Figure 3.7: Failure identification performance on the Synthesised dataset (left) and on the PIE
dataset (right) illustrated via ROC curves. The FPR range is restricted to [0,0.05] for better
interpretation. Each curve is computed from 500 positive and 500 negative samples for εy = 1.
Results suggest that the Gabor representation is more robust against illumination variations than
the optical flow representation.

registered frames Īt , Īt−1. We choose two canonical points1 x1,x2 as the leftmost and rightmost

points in the vertical middle of the image plane. Then, 〈p̂t ,pt〉c can be computed as:

〈p̂t ,pt〉c =
2

∑
i=1

√
||W(xi; p̂t)−W(xi;pt)||. (3.24)

When this error is smaller than a convergence threshold εy, the registration is considered

successful. We can cast failure identification as a binary classification problem where the two

classes are converged (i.e. 〈p̂t ,pt〉c ≤ εy) and not converged (i.e. 〈p̂t ,pt〉c > εy). For convenience

we denote those two classes with a binary variable ỹ ∈ {0,1}.

This problem could be solved with a classifier trained with a labelled dataset D̃Φ = {(Φn, ỹn)}.

However, if we mislabel a frame Īt as converged, then the mislabelled frame will become a false

reference to all subsequent frames; therefore, false positives are more costly than false negatives.

A minimal false positive rate is therefore desirable, even if this causes a relatively higher rate of

false negatives. False positives can be reduced if we have a confidence measure associated with

each estimation, and we reject labelling a sample as converged unless the estimation confidence

is above an acceptance threshold θconv. A probabilistic classifier can be used to this end, as the

confidence value we seek is the probability assigned with the estimation.

We compute the convergence probability via Bayesian learning as [19]:

p(ỹt = 1|Φt ,D̃Φ) =
∫

p(ỹt = 1|Φt ,Θ̃)p(Θ̃|D̃Φ)dΘ̃, (3.25)

1Two points suffice to define Euclidean motion.
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where Θ̃ is the vector of classifier parameters, p(Θ̃|D̃Φ) is the prior distribution over parameters

Θ̃, and p(ỹt = 1|Φt ,Θ̃) is the probability of a segment with motion representation Φt having

converged when the parameters are Θ̃.

The closed-form expression of p(ỹt = 1|Φt ,Θ̃) depends on the classifier type, and the type of

the distribution p(Θ̃|D̃Φ) is usually selected in a way that would allow (3.25) to have a closed-

form approximation (i.e. conjugate prior) [19]. Since the processes of failure identification and

misalignment estimation share a common input space (i.e. spatio-temporal Gabor representa-

tion), we choose statistical models with the same structure, and use a single-hidden-layer neural

network as a classifier. We implement Bayesian learning on this classifier through evidence ap-

proximation [149].

The decision on failure identification, λt , is defined as

λt = λ (Φt) =


1 if p(ỹt = 1|Φt ,D̃Φ)> θconv

0 otherwise.
(3.26)

We set the threshold θconv automatically as follows. We compute the ROC (receiver operating

characteristic) curve of the failure identification function of λ by evaluating the true positive rate

(TPR) and false positive rate (FPR) on a validation set for a range of threshold values θconv, and

select the θconv that produces a low false positive rate (e.g. 0.01) on the ROC curve.

Fig. 3.7 illustrates the failure identification performance of the employed Bayesian neural

network on two validation sets: one with constant illumination and one with illumination varia-

tions (the datasets are described in Section 3.7.2). To highlight the importance of a robust motion

representation, we also compare the performance with an optical flow representation [61] that

replaces the Gabor representation in the pipeline. Fig. 3.7a shows that a Bayesian neural network

enables reliable failure identification with a TPR larger than 0.90 for a FPR as low as 0.01 for

both representations. Fig. 3.7b shows that the Gabor representation is significantly more robust

against illumination variations than the optical flow representation.

Let t f denote a time when a registration failure occurs. This failure may be corrected by

registering with respect to temporally farther frames. To this end, we search for a reference

within a set of previously registered frames

Ī = {Īτ : Īτ = Īτmin , Īτmin+1, . . . , Īt f−1∧λτ = 1}, (3.27)

where τmin = max{t f −TD,1} and TD is the length of the temporal window within which correc-

tion is attempted. If a reference frame is found, then the failure is corrected and the registration
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Algorithm 1 Procedure CORRECT

Input Failed frame, aligned frames: (It f , Ī)

Output Registered frame, convergence index: (Īt f ,λt f )

for Ī ∈ Ī do

Īt f ← IterativeRegistration(Ī, It f )

λt f ← λ (Φ(Ī, It f ))

if λt f = 1 then

break

end if

end for

return (Īt f ,λt f )

index is updated as λt f = 1. The correction process is summarised in Algorithm 1. Note that

IterativeRegistration refers to the set of operational blocks with the same label in the lower part

of Fig. 3.1.

The likelihood of a correction can be increased by using frames after the failure time t f , that

is, by constructing Ī as

Ī = {Īτ : Īτ = Īτmin , Īτmin+1 , . . . , Īτmax ∧λτ = 1}, (3.28)

where τmax = min{T, t f + TD}. In this case, the registration process will have a delay of TD

frames. However, delays may become acceptable with small TD values.

3.7 Experiments

In this section we validate the ability of the proposed framework to prevent drift errors, to perform

robustly in the presence of facial expressions and non-uniform illumination variations, to iden-

tify failures reliably and to generalise to unseen conditions. We first compare multi-frame and

single-frame registration for MUMIE. Then we compare MUMIE with state-of-the-art methods

on sequences with facial expression variations and on sequences with non-uniform illumination

variations; the latter cause registration failures, enabling us to evaluate the failure identification

and correction of the proposed framework. Next, we evaluate efficiency by depicting perfor-

mance with respect to the number of iterations. Finally, we evaluate how the performance of the
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method varies when the size of the registered frames is different from those used in the training.

We validate generalisation by always conducting experiments in a cross-database manner, that

is, by training only on one dataset and testing on different ones.

3.7.1 Evaluation measures

We validate sequence registration performance by evaluating the ability of a method to reduce

the overall registration error and its tendency to generate drift errors. To identify and compare

drift errors, we also illustrate sequence registration performance by visualising the error variation

over time.

We measure accuracy in terms of registration errors. We measure the registration error es,t of

the tth frame of the sth sequence by measuring the error in the estimation of the canonical points

(see Section 3.6):

es,t =
1
2

2

∑
i=1

√
||xi,t −W(x′i,t ; p̂s

t )||, (3.29)

where p̂s
t is the estimated transformation, xi,t is a canonical point and x′i,t is the canonical point

after perturbation by a rigid motion ps
t . The average error ēs over a sequence s is:

ēs =
1

T −1

T

∑
t=2

es,t , (3.30)

where T is the sequence length. (Note that the error is measured with respect to the initial frame.)

The overall average error ē for a dataset is:

ē =
1

NS

Ns

∑
s=1

ēs, (3.31)

where NS is the number of sequences in the dataset. The average drift error ēdri f t is defined as:

ēdri f t =
1

NS

NS

∑
s=1

es,T . (3.32)

Since drift error accumulates over time, the registration error between the first and last frames of

the sequences serves as a useful metric to measure drift [180]. Finally, we use the percentage of

converged frames measure, c, which is commonly used for registration algorithms [12, 233]:

c = 100×
|{es,t : es,t < 1,s ∈ N[1,NS], t ∈ N[2,T ]}|

NS(T −1)
, (3.33)

where | · | denotes set cardinality. The measure c is a useful alternative to the overall average error

when the average error is biased by a few frames with a high registration error.
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Figure 3.8: Sample frames from the PIE dataset. All the sequences in this dataset undergo similar
illumination variations.

Following [12], we introduce a registration error to sequence frames by perturbing the canon-

ical points with a random value drawn from a Gaussian white noise distribution with σperturb stan-

dard deviation. Since we focus on measuring registration accuracy and tendency to drift errors,

we set σperturb = 2 when comparing with other methods, as LK methods may not converge for

larger values [233]. However, we test our method with larger σperturb values when analysing the

performance of our method for coarse-to-fine registration in Section 3.7.6.

3.7.2 Test datasets

To validate performance with real sequences of facial expression variations, we perform registra-

tion on three facial datasets: CK+ [131], MMI [168] and AFEW [47]. CK+ and MMI contains

sequences of posed facial expressions of frontal faces. AFEW comprises sequences cropped

from movies; the challenges of this dataset include out-of-plane head pose variations, illumina-

tion variations and background motion. Registered videos from these sequences are available for

qualitative analysis on ftp://spit.eecs.qmul.ac.uk/pub/es/s.zip.

To quantify robustness against illumination variations we use the Pose, Illumination and

Expression (PIE) dataset [209]. This dataset is collected from subjects that are sitting stably in

front of a camera while the illumination conditions are changed rapidly in a controlled manner

(see Fig. 3.8). We use 67 sequences (all the sequences that contain a frontal face). Each sequence

is 21 frames long.

To quantify robustness against non-rigid facial motions we synthesised facial sequences with

expression variations. We will refer to this as the Synthesised dataset. The need for such a
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Figure 3.9: The apex frame of the six-basic expressions in the Synthesised dataset. The top-left
facial image shows the cropping regions for part-based registration.

test sequence arises from the goal of having only expression variations without head or body

movements. People tend to move while displaying an expression even in controlled datasets

such as MMI [168] and therefore a ground truth for rigid registration cannot be obtained. To

produce realistic faces, we use Autodesk Maya and two publicly available facial rigs2, Old Man

(Subject 1) and Ilana (Subject 2). Subject 1 is an old male with a wrinkled face, whereas Subject 2

is a young female who has a smooth skin (see Fig. 3.9). We created sequences that contain

the six basic expressions by using the Action Units that are associated with those expressions.

All sequences start with a neutral facial appearance, reach the apex, and then return to neutral

appearance. We also include one sequence where there are no expression variations, thus yielding

to a total of 14 sequences for the two subjects. The expressive-sequences of the Synthesised

dataset are depicted in Fig. 3.10 and Fig. 3.11.

Prior to registration, we crop and resize the frames for all datasets. For whole-face registra-

tion, we first crop faces based on eye locations, and then resize the cropped frames to 200×200

pixels. For part-based registration, we first locate the centres of both eyes and mouth, and then

crop each of these components so that the eye/mouth sits in the centre of frame after cropping.

The cropped frames are then resized to 50× 50 pixels. Fig. 3.9 illustrates the boundaries of

2http://facewaretech.com/sdm_categories/rigs/
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(a) (b) (c) (d) (e) (f)

Figure 3.10: Sequences of Subject 1; each column contains the sequence of one of the six-basic
emotions. (a) Happiness, (b) anger, (c) surprise, (d) disgust, (e) sadness, (f) fear. To enhance
visibility, we display only the part of the sequence between neutral and apex, and we skip every
other frame.
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(a) (b) (c) (d) (e) (f)

Figure 3.11: Sequences of Subject 2; each column contains the sequence of one of the six-basic
emotions. (a) Happiness, (b) anger, (c) surprise, (d) disgust, (e) sadness, (f) fear. To enhance
visibility, we display only the part of the sequence between neutral and apex, and we skip every
other frame.
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Figure 3.12: Left: average registration error against the number of estimators, K, suggests that
K < 4 estimators are insufficient for accurate registration. Right: The mean and standard devia-
tion of misalignment of samples in each dataset Dk

Φ
against the average magnitude of represen-

tations in Dk
Φ

, highlights the coarse-to-fine structure of the set of 5 estimators.

the cropped components. For the Synthesised dataset we locate the centres of eyes and mouth

manually, for the PIE and CK+ datasets we use the facial landmarks provided with the dataset.

For the MMI and AFEW datasets we detect faces using OpenCV and locate landmarks using the

Supervised Descent Method (SDM) [261].

3.7.3 Implementation details and parameter sensitivity

To compute the Gabor representation, we partition the energy matrices into M×M = 3×3 pool-

ing subregions. We use standard deviation pooling (i.e. compute the standard deviation of the

values in each subregion), as it outperforms mean and max pooling [189]. We use Gabor fil-

ters across 8 orientations, {0◦,45◦, . . . ,315◦} and 3 scales, {2 j}2
j=0, yielding a filter bank with

KG = 24 filters, and an overall representation with D = 9×24 = 216 features.

For optimisation we used the scaled conjugate gradients algorithm. We conducted the train-

ing on MATLAB R© using the NETLAB [149] library and the testing on a C++ implementation.

We set the convergence threshold εy to 1 pixel, which is the value used for the evaluation of the

LK framework [12]. During correction, the width of the temporal window is set to TD = 5 and

we apply correction with a temporal window that considers also subsequent frames (i.e. online-

with-delay). We created the training samples from CK+ [131] by perturbing frames from 20

sequences where we perceived no head or body motion. We fix the number of training samples

to N = 15,000. We set the maximum number of iterations to Kmax = 12, which is sufficient for

convergence for σperturb = 2 (see Section 3.7.1). Note that in Section 3.7.6 we analyse perfor-
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Figure 3.13: Registration performance against the (a) number of iterations, (b) number of hidden
nodes and (c) σnoise of the training samples. Adding noise to training samples with a σnoise of ap-
proximately 0.6 enables the best generalisation against image blur, white noise and illumination
variations.

mance against large registration errors with more iterations.

The number of estimators is K = 5, the number of hidden nodes in the neural network is

Nhidden = 10, and the number of iterations is Niter = 500. We will present below an experimental

analysis that shows the effect of varying these parameters. For this purpose, we create testing

data from the 6-basic expression sequences of the Synthesised dataset; specifically, we create

misaligned image pairs (i.e. two-frame sequences) by picking all consecutive image pairs and

perturbing the second image with σperturb = 2, and thus obtain NS = 228 two-frame sequences.

Fig. 3.12 (left) reports the performance in terms of overall average error, ē, when varying

K. The error is particularly high for K = 1, which suggests that a single neural-network cannot

model the entire range of input-output mapping efficiently (see Section 3.5). In fact, when K = 1,

the optimisation algorithm stops after only 26 iterations, which is a symptom of inefficient learn-

ing. Limited improvement is obtained when K is increased up to 3 as, similarly, training stops

early. When K = 4 (and beyond) there is a significant performance improvement. In Fig. 3.12

(right) we illustrate the coarse-to-fine structure of the K = 5 estimators through the statistics of

their corresponding datasets, {Dk
Φ
}5

k=1. Specifically, we show the average and the standard de-
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viation of the registration error of all the samples in a Dk
Φ

against the average magnitude of the

representations in Dk
Φ

. Some estimators have a coarse structure as their training samples have

large misalignment (e.g. k = 2,5), and others have a fine structure as their training samples have

smaller misalignment (e.g. k = 1,4).

To prevent overfitting, it is useful to add a random noise to the motion representations com-

puted from the training images. This noise is drawn from an isotropic zero-mean Gaussian dis-

tribution with standard deviation σnoise = 0.5. Other well-known strategies to prevent overfitting

are reducing Nhidden (i.e. using a simpler model) or reducing Niter (i.e. performing early termina-

tion) [19]. Fig. 3.13 compares the efficiency of these three approaches in preventing overfitting,

by providing the average convergence rate in the presence of three additional image variations.

The first two variations are image blur with a Gaussian kernel of standard deviation 2, and ad-

ditive white noise with standard deviation of 8 (similarly to [12]); these variations are applied

to the second images of the test pairs created from the Synthesised dataset. The third variation

is illumination, for which we created NS = 400 two-frame test sequences from the PIE dataset.

Fig. 3.13a shows that adjusting the Niter parameter provides no performance improvement against

image variations. The Nhidden parameter can be adjusted to improve performance against white

noise, however, only limited improvement can be achieved against blur and illumination vari-

ations. Adding noise to training samples, on the other hand, can improve performance signifi-

cantly; with σnoise = 0.5, σnoise = 0.6, the performance in the presence of blur, white noise or

illumination variations becomes similar to the performance without those variations.

3.7.4 Methods under comparison

We compare the proposed framework, MUMIE, with a method from each of the categories listed

in Table 2.2. We selected the robust methods with available software. In categories where there

are multiple methods, we select experimentally the best-performing ones based on the prelimi-

nary experiments that we conducted; we considered only the best methods for the sake of com-

pactness, as we report the detailed performance of the method by showing their error frame-

by-frame for each sequence (see Fig. 3.18, 3.20, 3.21 and 3.22). Based on the afore-mentioned

criteria, we finally compare with the following three methods. (i) The SURF-based method

(Speeded Up Robust Features) as the keypoint-based method, which generally outperformed the

MSER method (Maximally stable extremal regions). (ii) The Robust FFT (R-FFT) method [230]

as the transformation-based method, which, to the best of our knowledge, is the only method that



Chapter 3: Registration of facial sequences 70

G
ra

d
-

C
o
rr

R
-F

F
T

M
U

M
IE

Figure 3.14: Registration results for R-FFT, GradCorr our method, MUMIE, on a sequence with a
disgust expression followed by blinking. MUMIE accumulates little drift error and is not affected
by the sudden motions that occur during blinking.

proved robust against illumination variations and other outliers. (iii) The GradCorr method [233],

which systematically outperformed three other LK methods in our pre-liminary we experiments

(both for whole-face and for part-based registration), namely, IC-LK [12], ECC-LK [60] and

Fourier-LK [10].

We also compare with SDM [261], a registration based on landmark localisation. Specifi-

cally, we perform registration by computing an Euclidean transformation based on the eye cor-

ners, which are useful reference points for rigid registration. However, SDM requires the entire

face for localising landmarks and therefore we perform only whole-face registration.

3.7.5 Results and discussion

The results produced by MUMIE to register real sequences from the CK+, MMI and AFEW

datasets with various types of facial activity (e.g. talking and facial expressions other than those

of the six-basic emotions), out-of-plane head pose variations, occlusions and background motion

are provided as supplementary material.

Fig. 3.14 shows registered frames from an 80-frame long MMI sequence that contains a

disgust expression. The sequence contains also a blinking expression, which is a challenging

quick facial action that may cause other algorithms to fail. MUMIE achieves accurate registration

and a considerably smaller drift error.

Fig. 3.15 shows results from an anger sequence that contains a pitch rotation. Whole-face

registration causes a downward motion around the eyes, which may be detrimental to the analysis

of facial activity. When the eyes are registered independently, the effect of head rotation is

reduced to a better extent. Sequences with head pose variation highlight the importance of doing

part-based registration instead of whole-face registration.

We now quantify the benefits of using multiple reference frames and then compare MUMIE
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t=1 t=37 t=1 t=37

t=1 t=37

Figure 3.15: Illustration that depicts the advantage of part-based registration for addressing out-
of-plane rotations. The subject displays a small pitch rotation between the neutral phase (t = 1)
and the apex phases (t = 37) of the expression. With whole-face registration (left), the effect of
head-pose rotation is more evident, as the eye corners move visibly downwards in t = 37. The
effect is less visible in part-based registration for left and right eye, as the eye corners are better
aligned.
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Figure 3.16: Average drift error, edri f t , and overall average error, ē, on the Synthesised dataset
for varying numbers of reference frames, TR.

with other methods.

Fig. 3.16 depicts the overall average error and average drift error on the Synthesised dataset

when varying the number of reference frames, TR. When TR = 2 instead of TR = 1 the error

decreases consistently. The average registration errors for the whole-face, left eye, right eye and

mouth decrease respectively to 13%, 55%, 64%, 78% when TR is set to 2 instead of 1. When TR is

larger than 2 the error decreases generally at a lower rate and sometimes increases. The fact that

performance saturates with TR = 2 is desirable from a computational complexity perspective, as

computation time increases with TR. In the remaining experiments, we therefore set TR = 2 while

obtaining the multi-frame registration results for our method. The averaging that takes place

when we integrate information from multiple frames as in (3.19) may be responsible in providing

little improvement when TR > 2. While taking the average has the advantage of keeping the input

representation at a limited length that is independent of TR, it also reduces the weight of each

individual frame as TR increases, since the average is computed by dividing the contribution of

each frame with TR.

Fig. 3.17 compares the average registration error of MUMIE with other methods on the

Synthesised dataset. Overall, Fig. 3.17 suggests that MUMIE outperforms other methods sig-
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Figure 3.17: Sequence registration performance in terms of average registration error over 14
sequences (Synthesised dataset).

nificantly on sequences with facial expression variations. The error variation for each sequence

over time is plotted in Fig. 3.18 for whole-face registration. Small landmark localisation errors

among consecutive frames cause jittering when using landmark-based registration. Fig. 3.19

shows the difference between a sample pair of consecutive frames from the neutral sequence of

Subject 1. A similar jittering can also be observed when using the R-FFT method. On the other

hand, registration using SURF, GradCorr and MUMIE produces only little jittering, also for non-

neutral sequences (registered sequences are provided as supplementary material). Even though

the registration error may increase with expression variations (see Fig. 3.18), this increase hap-

pens gradually without a jittering effect, and the registration error at the end of the sequences

becomes low, which is indicative of low drift error. The best results are obtained with MUMIE

(multi-frame), and, expectedly, MUMIE (single-frame) produces higher drift errors compared to

its multi-frame variant.

However, the whole-face registration performance of SURF and GradCorr do not gener-

alise to part-based registration, as can be seen for the left-eye, right-eye or mouth sequences in

Fig. 3.20, Fig. 3.21, Fig. 3.22, respectively. SURF keypoints are extracted from regions with

rich texture. In part-based registration, frames contain less texture and relatively higher non-

rigid motions; therefore, finding keypoints for rigid registration becomes more challenging. The

part-based registration error of GradCorr generally increases gradually over time, however, un-

like whole-face registration, the error is not reversed in the offset of the expression; therefore,

part-based registration with GradCorr yields visible drift errors. While the failure of a generic
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Figure 3.18: Registration error for whole-face sequences on the Synthesised dataset, depicted
separately for the two subjects of the dataset and separately for each method. Each line represents
the error over time, es,t , for one sequence (see legend for the expression in each sequence).
MUMIE (multi-frame) results are obtained with TR = 2.

Landmark-based R-FFT GradCorr SURF MUMIE

Figure 3.19: Difference images computed from a consecutive pair of images from the neutral
sequence of Subject 1 of the Synthesised dataset. Grey levels visualise the registration errors.
GradCorr, SURF and MUMIE produce little jittering error.

rigid registration method fwhen the input has considerable non-rigid variations is not surprising,

the large error for the neutral sequences is an unexpected result. This may suggest that GradCorr
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Figure 3.20: Registration error for left-eye sequences on the Synthesised dataset, depicted sepa-
rately for the two subjects of the dataset and separately for each method. Each line represents the
error over time, es,t , for one sequence (see legend for the expression in each sequence). MUMIE
(multi-frame) results are obtained with TR = 2.

requires some texture variation to operate reliably, even for simple cases without outlier motions.

Part-based registration is problematic also for R-FFT: see for example the large performance

difference between the left and right eye of Subject 2 in Fig. 3.20 vs. Fig. 3.21. While investi-

gating this irregular outcome further, we noticed a difference between the unregistered versions

of the left and the right eye sequences. The initial registration error in left eye sequences of

Subject 2 was causing the facial contour to appear in some frames and disappear in others. The

R-FFT method operates on gradient images, and the contour of the face produces a high gradient

which may be misleading the FFT-based algorithm.

The part-based registration errors of MUMIE are considerably smaller than those of other

methods (Fig. 3.17 and Fig. 3.20, 3.21,3.22). The error for whole-face registration does gen-

eralise to part-based registration; that is, even though the error grows as the expression evolves
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Figure 3.21: Registration error for right-eye sequences on the Synthesised dataset, depicted sepa-
rately for the two subjects of the dataset and separately for each method. Each line represents the
error over time, es,t , for one sequence (see legend for the expression in each sequence). MUMIE
(multi-frame) results are obtained with TR = 2.

to apex, the error decreases during offset. MUMIE outperforms other methods, even when it is

used with a single reference frame, i.e. TR = 1. The performance of MUMIE with TR = 2 is

particularly high, as the final error is less than 1 pixel for all sequences except the mouth se-

quences of Subject 1 and 2 for the surprise expression (see Fig. 3.22), which is the expression

that involves arguably the largest non-rigid variation. The left and right eye performance of each

subject is quite similar, which implies that symmetrical non-rigid motions of the same subject

yield consistent results. The surprise and fear expressions cause higher errors when registering

the eyes of Subject 2; this may be due to the eyebrows of Subject 2 being raised higher than those

of Subject 1. (For both subjects, we raised eyebrows as much as possible when synthesising se-

quences, however, there are differences between facial rigs of the subjects.) Other inter-subject

performance differences may be due to the skin texture; while Subject 1 has wrinkles, the skin of
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Figure 3.22: Registration error for mouth sequences on the Synthesised dataset, depicted sepa-
rately for the two subjects of the dataset and separately for each method. Each line represents the
error over time, es,t , for one sequence (see legend for the expression in each sequence). MUMIE
(multi-frame) results are obtained with TR = 2.

Subject 2 is smooth. Wrinkles may be advantageous as additional texture if they are not moved

by the expression, or, they may be disadvantageous if they cause more non-rigid motion.

Non-uniform illumination variations typically cause registration failures on the PIE dataset,

rendering the average sequence registration error of little use for quantitative evaluation. There-

fore, we discuss the compared methods using the error visualised over time, where the perfor-

mance of methods before and after failure is observed directly. Fig. 3.23 illustrates the per-

formance of all compared methods for 5 randomly selected PIE sequences. (The results of all

67 sequences are shown as videos in the supplementary material.) Landmark-based registration

deteriorates in the presence of illumination variations due to increased error in landmark local-

isation. SURF-based registration does not perform reliably in the PIE dataset as the number of

matched keypoints falls significantly.
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Figure 3.23: The performance of compared methods on five randomly selected PIE sequences,
illustrated as error per frame over time, es,t . Each sequence is represented with a different colour.
Note that we depict error at two different scales by inserting a break into the vertical axis. Even
the robust R-FFT and GradCorr methods accumulate significant drift errors over time, whereas
MUMIE produces little drift error, particularly in a multi-frame setting (i.e. with TR = 2).

R-FFT is only slightly affected by illumination variations due to the robustness in the design

of this method. R-FFT fails while registering the 17th frame of almost all PIE sequences, due to

the sudden illumination variation in this frame (see Fig. 3.8). GradCorr is also designed to be

robust, and its performance deteriorates only slightly with illumination variations. Similarly to

R-FFT, registration via GradCorr typically fails in the 17th frames of the sequences. Compared

to SURF or landmark-based registration, both R-FFT and GradCorr achieve significantly better

performance in the presence of illumination variations. However, both methods accumulate drift

errors over time.

Fig. 3.23 depicts the performance of MUMIE in after failure identification and correction.

Uncorrected failures occurred only in two frames of Subject-34’s sequence with MUMIE (single-

frame). Overall, Fig. 3.23 suggests a considerable difference between MUMIE and other meth-

ods: the error is lower than that of other methods and, even though error does increase over time,

the increase is lower than R-FFT or GradCorr. MUMIE (multi-frame) performs particularly well,

as the error in the last frame is smaller than 1 pixel for all sequences.

Finally, Fig. 3.24 (bottom row) shows the average error ēs for each sequence of MUMIE

(multi-frame) with and without failure identification and correction. The former is computed by
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Figure 3.24: Performance of MUMIE (multi-frame) for each sequence of the PIE dataset. (Top):
The percentage of successfully registered frames. (Bottom): The average registration error with
and without failure identification and correction.

eliminating the frames where correction was not possible — Fig. 3.24 (top row) shows the ratio of

those frames. The performance of our method is notably accurate after failures are automatically

corrected, with an average error smaller than 1 pixel for 65 out of 67 sequences. Our method

has successfully corrected most of failures of the PIE sequences (see Fig. 3.24 top). However,

correcting a failure within a sequence may not be possible if a sudden appearance variation (e.g.

out-of-plane head rotation) makes a frame visually dissimilar from all preceding frames. This

may cause subsequent registration failures, and a reasonable action to take after a number of

automatically-detected failures is to restart the registration process by changing the reference

frame to the one where the sudden appearance variation caused the registration failure.

3.7.6 Computation time and convergence rate

We report the computation time of the proposed framework and highlight the usefulness of em-

ploying the magnitude of the motion representation as prior information while performing coarse-

to-fine estimation.

Fig. 3.25 (left) shows the computation time per frame with respect to the amount of initial

registration error. The overall average computation takes 2.74 seconds when all estimators are

applied in a cascaded manner, and 1.59 seconds when estimators are selected at each iteration

based on the magnitude of the motion representation (i.e. adaptively). For the cascaded approach,

we allowed 6 iterations for the estimators except the finest one, as allowing for less iterations

prevented convergence for some samples. The adaptive approach is on average faster, as coarse

estimators are employed only when the initial registration error is large. Also, even when coarse
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Figure 3.25: The efficiency improvement achieved by choosing the estimators based on the mo-
tion representation’s magnitude (i.e. adaptively) instead of applying all estimators in a cascaded
manner. Left: Computation time against initial registration error, shows that registration takes
less time with the adaptive approach as coarse estimators are used only when misalignment is
large. Right: Registration error against the number of iterations, depicted separately for samples
of small misalignment and large misalignment. Note that error decreases monotonically with the
adaptive approach.

estimators are used, they are generally used for less iterations, as we need not define a termination

criterion for each estimator in the cascade.

Fig. 3.25 (right) highlights the advantage of the adaptive approach by showing the error

against the number of iterations on two different test sets: one that includes samples with a reg-

istration error up to 4 pixels (i.e. small misalignment) and one where the registration error of

samples reaches up to 15 pixels (i.e. large misalignment). As registration error decreases, the

magnitude of the representation also decreases, and therefore the adaptive approach proceeds

registration with finer estimators, which results in a monotonic decrease in average error, and

an earlier convergence compared to the cascaded approach when misalignment is small. With

the cascaded approach, error is not always reduced monotonically as in some cases the coarse

estimators reach the limit of their granularity before they reach their limit of iterations, in which

case they cannot reduce the registration error further. The cascaded and adaptive approaches re-

duce error at a similar rate on the set with samples of large misalignment. However, the cascaded

approach is still slower on average, as in some cases the convergence occurs before the last (i.e.

finest) estimator, yet, the cascaded approach needs to proceed with the subsequent estimators in

the cascade at least for one iteration.

The maximal amount of registration error that can be tackled by our method depends on the
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Table 3.1: Convergence rate against the amount of registration error. A representation com-
puted from Gabor filters across 5 scales, {2 j}4

j=0, can tackle larger registration errors than one
computed from filters at 3 scales, {2 j}2

j=0.

Amount of registration error (pixels, ±1)

4 6 8 10 12 14 16 18

Convergence rate with 3 scales 100 100 100 66.7 38.9 16.7 16.7 0.0

Convergence rate with 5 scales 100 100 100 100 100 100 100 79.2

scale of the Gabor filters that we use to compute the representation. We used filters at three scales,

{2 j}2
j=0, which may not converge if the registration error is 10 pixels or larger (see Table 3.1).

However, larger filters can tackle larger errors, as we report in Table 3.1, where we trained a

model that is based on a representation computed from filters at five scales, {2 j}4
j=0.

3.7.7 Sensitivity to image size

During training we use frames with a specific size (e.g. 200× 200 for whole-face, see Sec-

tion 3.7.3). This section shows how the performance of the method varies when it is applied

to frames with different sizes. The component of our framework that allows its usage with

differently-sized images is the pooling of the representation (see Section 3.4.3), which makes

the representation’s dimensionality size independent. The type of pooling we employ is standard

deviation (Section 3.7.3); below we first show how the output of standard deviation varies with

image size, and then quantify registration performance.

As an example, let φ be the standard deviation of the top-left subregion of an energy matrix

that is partitioned into 3× 3 subregions. Fig. 3.26a visualises the φ computed from an image

pair that has been rescaled to various sizes; specifically, the figure shows how φ varies against

the amount of misalignment (i.e. vertical translation). φ is sensitive to image size because the

thickness of the edges in an image changes as the image is resized and this affects the outcome

of the convolution with the Gabor filters. However, the encoding of the misalignment is possible

with all image sizes, because φ has a similar variation against the amount of translation for

any size. Moreover, as the misalignment gets smaller, the difference between the φ values of

differently sized images also gets smaller (and therefore an iterative registration scheme can

converge). To illustrate this, Fig. 3.26b,c shows the registration performance of our method

(trained only with 200×200-sized frames) on test sets with different image sizes. For these tests,
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Figure 3.26: Impact of image size on the performance of the proposed method. (a) Variation of
φ against the amount of misalignment, where φ is the standard deviation of the values within
the top-left subregion of an energy matrix; the energy values are computed with a Gabor filter
pair of scale 2 and orientation π

2 . (b) Convergence ratio for each tested image-size (note that the
proposed method was trained only with 200×200-sized images). (c) Average RMS error against
the number of iterations for the same samples in (b); the error is computed only from samples
that converged after 25 iterations.

we generate 100 test pairs for each tested image-size by perturbing the canonical points with

a noise of σperturb = 4. Although registration needs more iterations for some image-sizes than

for others, in most cases all test samples are registered with 100% convergence rate. The only

exception is for 400×400 images whose convergence rate is 98%.

3.8 Limitations

The proposed method can tackle head pose variations only to a degree; although an initially non-

frontal head pose does not cause problems even though the model is trained with frontal faces,

head pose variation within the sequence can cause registration failures with sudden variations.

Sudden head pose variations cause repetitive registration failures, and a useful strategy is to

restart registration with a new reference frame after a number of consecutive failures.

While the Gabor motion energy is critical for accuracy and robustness against illumination

variations, the computation of energy is involved and compromises real-time performance on

conventional computers or mobile devices. Since convolution with Gabor filters is ubiquitous in

computer vision, researchers considered efficient hardware-based solutions for this process [178].

Applying such solutions can be a straightforward approach to making the proposed registration

framework computationally efficient. An alternative future direction is exploring and designing

efficient approximations of speed- and orientation-selective Gabor filters [77].
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3.9 Summary

We proposed a novel rigid registration framework based on optimisation via statistical learning

that can cope with outlier non-rigid facial motions, drift errors and registration failures. Extensive

experiments showed that using multiple reference frames during registration reduces drift errors

and the proposed framework performs accurate registration in the presence of facial expressions

or non-uniform illumination variations. Overall, the proposed framework performs reliably and

consistently across various scenarios, both for whole-face or part-based registration.

The proposed registration framework will be used in the next chapter to register the training

and test sequences for the unsupervised representation learning scheme.



Chapter 4

Bases of facial activity

4.1 Introduction

Having described sequence registration, we now proceed with the description of the proposed un-

supervised representation learning framework. The proposed framework addresses three of the

major issues that were identified for learnt spatio-temporal representations (see Section 2.5.6).

That is, the framework is designed to recognise subtle expressions as well as pronounced expres-

sions, to have little sensitivity to temporal inconsistencies (i.e. frame rate and observed temporal

phases) between training and test sequences, and to be applicable with automatic recognition

pipelines where the labels of the test sequences are not included in the sequences where the

representation is learnt from.

Our framework is inspired from the standard facial representation that has been used in psy-

chology even before computer-based analysis, namely, the FACS [57]. FACS is similar to a

dictionary of elementary facial movements (i.e. AUs) that can be assembled into more complex

facial expressions. The AUs describe localised movements (e.g. AU1 is inner brow raising, AU4

is brow lowering), and each AU is associated with an intensity score. These two properties are

fundamental for an effective representation: localised movements promote a compact represen-

tation, as different facial expressions may contain some common movements (e.g. AU1 occurs

both in expressions of sadness and fear); and intensity scores enable the usage of the same AU to

represent a subtle or a pronounced version of the same facial movement. Owing to those proper-

ties, FACS can describe nearly 7,000 expressions [197] as a combination of only 51 AUs [58].

83
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Our representation is designed to mimic those two properties of FACS. Specifically, it is

based on learning a linear model in which basis functions correspond to localised facial move-

ments and basis coefficients relate to movement intensity. A representation learnt in this way has

a number of generalisation advantages. Firstly, the fact that coefficients are designed to be pro-

portional to intensity renders the learnt representation suitable for analysing expressions across

a range of intensities, from subtle to pronounced expressions. The same property also allows for

the usage of the representation when there are differences between the frame rates of the training

and test videos (see Section 4.3). Furthermore, since the framework is unsupervised, the repre-

sentation learnt using sequences having a specific set of expression labels (e.g. pronounced six

basic expressions [167]) can be used with an automatic recognition pipeline to recognise expres-

sions with other labels (e.g. three classes of micro-expressions [114]). We refer to the proposed

representation as Facial Bases.

We first discuss our motivation for building a representation that mimics properties of AUs

rather than recognising the AUs themselves (Section 4.2). Then we formulate the problem of

learning Facial Bases (Section 4.3), describe our framework (Section 4.4) and the optimisation

for its implementation (Section 4.5). Next, we visualise the bases by synthesising sequences

(Section 4.6). We then elaborate on the main advantages of the representation by visualising

the representation coefficients computed from real sequences (Section 4.7). We finally describe

how Facial Bases can be used for automatic expression recognition (Section 4.9), the implemen-

tation details (Section 4.10) and the experimental results for automatic expression recognition

(Section 4.11).

The technical contributions we present in this chapter are the following: we show that (i)

to learn a linear model where basis coefficients are proportional to movement velocity, we must

convert sequences into a representation where monotonic increases in movement velocity corre-

spond to monotonic variations; and (ii) basis functions that correspond to localised facial activity

can be learnt by training a sparsity-imposed linear model with Gabor phase shifts computed from

facial videos. The proposed model is generative, which enables us to synthesise facial expression

sequences and discuss the properties of the learnt bases. Our framework draws upon the devel-

opments in human vision research and is similar to that of Cadieu and Olshausen [25] in that

it models higher-level structure from the phase and magnitude of (complex) local coefficients.

However, their model produces global basis functions rather than localised bases. Global ba-
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sis functions are suitable for arguing for the existence of motion-sensitive but shape-insensitive

representation in the human visual cortex [25]. On the contrary, our localised bases are shape-

selective as each basis pertains to a specific facial region.

4.2 Comparison to automatic AU recognition

As we discussed in Chapter 2, the recognition of AUs is a popular research problem in auto-

matic facial expression analysis. Naturally, one may consider that constructing a representation

that mimics some properties of AUs may not be necessary if AUs themselves can be identified

reliably. The output of multiple AU recognisers can be combined into an intermediate repre-

sentation; this representation would be similar to what we aim to develop, and it could be used

for higher-level recognition tasks, such as the recognition of the six basic emotions [245] or

pain [129].

However, automatic AU recognition is a difficult problem on its own, particularly when it

comes to recognising the intensities of the AUs. The main difficulties stem from the fact that

AUs are defined in human (natural) language, and transferring their definition into a machine

language is a non-trivial supervised machine learning problem. On the other hand, learning

localised facial movement patterns from data in an unsupervised manner eliminates the need to

transfer human knowledge to machines, as the bases are defined directly in machine language.

Some of the challenges related to constructing automatic AU recognisers can be listed as fol-

lows. The first challenge is data annotation: AU labelling is a time consuming task as it can take

up to 100 minutes to label one minute of video [37]. At least two FACS coders who have under-

gone a specialised training are required and labels cannot be used without inter-coder agreement,

which can be particularly low for low-intensity AUs [247]. To learn different intensities of the

same AU, statistical learning algorithms need AU labels across a range of intensities, thus in-

creasing exponentially the need for data. Moreover, even if algorithms could recognise each AU

perfectly, it is not guaranteed that a new AU combination will be recognised as AU combinations

are not always additive [35]. Discovering useful mappings via statistical learning from annotated

data is another challenge, due to data imbalance between positive and negative samples [90] or

to generalisation across subjects (i.e. identity bias) [190]. As a result, the recognition of AUs,

and their intensities in particular, is still an open problem.
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4.3 Problem formulation

Let S∈RX×Y×T be an image sequence that contains either a whole face or part of a face (e.g. the

mouth). Let us assume that rigid registration errors have been removed with a rigid registration

technique (e.g. the technique discussed in Chapter 3). Moreover, let us assume that the motion

between two consecutive frames of the sequence, It−1 and It , is due to facial expression variations

only1. Let f (It−1, It) be a function that represents the motion between It−1 and It at a local level

(e.g. an optical flow function).

We aim to find a linear transformation that can reconstruct the overall facial activity in terms

of local movements. Let {Ak}KA
k=1 be the set that contains the KA basis vectors of this transforma-

tion. Then, we can represent the linear transformation we seek as:

f (It−1, It) =
KA

∑
k=1

Akut,k + ε t , (4.1)

where ε t represents reconstruction error. We want the basis coefficients, ut,k, to be proportional to

movement velocity, as the latter relates to expression intensity (see Section 4.4.1). For example,

if the basis vector Ak corresponds to an eyebrow raising, then a small (large) ut,k value should

mean that the pair It−1, It contains a slow (large) eyebrow movement.

This linear transformation has two advantages: (i) it enables the separation of subtle and

large facial motions through the magnitude of coefficients; and (ii) the bases {Ak}KA
k=1 can be

used independently from the video frame rate, as variations in video frame rate (i.e. apparent

motion speed) cause variation only in the rate at which the coefficients ut,k change over time

(Fig. 4.1).

4.4 The learning framework

4.4.1 Dynamic bases

Facial expressions increase in their intensity gradually until they reach their apex [58]. In this

process, the velocity of a facial component first increases from zero to a peak, then decreases back

to zero [211]. The peak velocity is expected to become higher when the expression is of larger

intensity (see also Section 4.7). Importantly, the changes in the velocity are gradual [211]; to

capture this aspect via Eq. (4.1), the magnitudes |ut,k| should also vary gradually over time. The

bases Ak are fixed, which implies that for Eq. (4.1) to hold we must use a motion representation

1Whereas in Chapter 3 we represented a registered frame with Īt , in this chapter for clarity we represent
a registered frame with It . Similarly, in this chapter S represents a registered sequence
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Figure 4.1: Illustration that depicts how a basis can provide useful information on videos with
different frame rates. Let a basis Ak model the lip corner pulling that occurs during a smile. When
a sequence is recorded at a lower rate, the apparent motion speed increases and the expression-
related movement occurs at a higher apparent speed. If the basis coefficient ut,k is proportional to
movement velocity as in Eq. (4.1), then the basis Ak can help recognise the smile independently
of whether it is collected at a high or low frame rate. The only difference the frame rate change
causes is the rate at which ut,k increases.

f (It−1, It) whose elements are also changing gradually; that is, a monotonic increase in movement

velocity should correspond to monotonic increases in f (It−1, It) over time. Therefore, we cannot

simply use the difference between the frames (i.e. derivative, It − It−1) as derivatives undergo

abrupt changes. One representation can be computing motion vectors via optical flow. However,

motion vectors can be erroneous, particularly when representing subtle movements [257] or when

computed from untextured regions such as cheeks [262].

To encode local motion without requiring the computation of motion vectors explicitly we

chose to infer local motion through Gabor wavelets [62]. A frame It can be recovered from DW

complex Gabor wavelets {Wd}DW
d=1 as [113, 162]:

It =
DW

∑
d=1
<{z∗t,dWd}, (4.2)

where <{·} is the real part of the argument, ∗ is conjugation and zt = (zt,1,zt,2, . . . ,zt,DW ) is the

vector of complex Gabor coefficients. Each zt,d can be decomposed into its phase, ψt,d , and

magnitude, ρt,d , as:

zt,d = ρt,de jψt,d . (4.3)

Gabor wavelets have limited spatial support. The magnitude ρt,d and phase ψt,d take non-zero

values when a visual element (e.g. an edge) within the wavelet’s spatial support causes texture

variation. The phase ψt,d is sensitive to the position of the element and, compared to the magni-

tude ρt,d , is less sensitive to the intensity of the element (see Fig. 4.2). Since phase is sensitive to

position, the phase shift

ψ̇t,d = ψt,d−ψt−1,d (4.4)
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is sensitive to motion [162]. Importantly, phase varies proportionally with the position, as shown

in Fig. 4.2d. Since a Gabor wavelet Wd has local spatial support and is tuned to a specific ori-

entation [113], the phase of one wavelet, ψt,d , can represent motion only locally and has limited

ability to represent motion in arbitrary orientations. A complete motion representation can be

obtained with a set of wavelets, {Wd}DW
d=1, that span the whole image and are tuned to various

orientations [113]. Such a representation allows us to encode rigid (e.g. global rotations, transla-

tions) or non-rigid motions (e.g. local rotations, translations) across the image [62].

We can rephrase our objective as follows. We aim to learn a generative linear model that can

represent any expression-induced phase shift pattern ψ̇ t = (ψ̇t,1, ψ̇t,2, . . . , ψ̇t,DW ) as:

ψ̇ t =
KA

∑
k=1

Akut,k + ε
u
t = Aut + ε

u
t . (4.5)

Note that this equation is a special form of (4.1). The term εu
t , which accounts for modelling

errors, is assumed to be drawn from a von Mises distribution whose random variables, εu
t,d , are

independent from one another and are modelled as P(εu
t,d) ∝ exp[κ cos(εu

t,d)] where κ is the

concentration parameter.

In generative learning, the basis transformation (i.e. A) that best describes a given dataset of

N i.i.d. samples, Dψ̇ = {ψ̇n}N
n=1, is the one that maximises the likelihood [163]:

P(Dψ̇ |A) =
N

∏
n=1

P(ψ̇n|A)

=
N

∏
n=1

∫
P(ψ̇n|A,u)P(u)du. (4.6)

However, maximising P(Dψ̇ |A) alone may not necessarily yield localised bases.

We guide the maximisation process to learn localised bases by incorporating prior distribu-

tions on coefficients ut,k and by imposing constraints on bases Ak. A facial expression generally

involves a small proportion of all possible atomic movements that a face can produce. For ex-

ample, FACS represents any of the six basic expressions with at most 7 out of the 46 AUs [58].

Therefore, only a small proportion of coefficients ut,k must have large values, and the remaining

coefficients must be zero or relatively very small. This can be enforced by using a prior distribu-

tion on ut,k that favours ut,k being zero with a high and kurtotic peak, such as a zero-mean Cauchy

distribution [163]. Also, the prior should favour small differences in ut,k−ut−1,k as expressions

evolve gradually over time. This can be incorporated with a Gaussian distribution centred on

ut,k−ut−1,k [87]. Then the overall prior on ut,k becomes:

P(ut |ut−1) =
1

Zu e−λ̃u log(1+u2
t )e−βu(ut−ut−1)

2
, (4.7)
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Figure 4.2: Illustration that highlights the ability of Gabor phase to encode motion. (a) Exemplar
sequence that contains a horizontal bar moving vertically with a constant speed. (b) A sequence
that is identical to the one in (a) except that the pixel intensity of the bar is multiplied by 0.5. (c)
The magnitude, ρt , computed from a Gabor wavelet that is located in the center of the moving
images. (d) The phase computed from the same Gabor wavelet. Note that the magnitude changes
non-monotonically over time and is sensitive to the intensity of the bar. The phase of the Gabor
coefficient, ψt , increases monotonically and is not sensitive to the intensity of the bar.
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where λ̃u and βu are the scale and precision parameters of the Cauchy and Gaussian distribution,

respectively, and Zu is the normalisation coefficient ensuring that the distribution sums to 1. Note

that the subscript k is dropped for clarity.

For a basis Ak to be localised, most of its elements must be zero, and non-zero elements

should pertain to spatially nearby regions. Hoyer [81] proposed a technique to produce such

localised bases by enforcing the following sparseness metric:

S(Ak) =

√
DW − ||Ak||1

||Ak||2√
DW −1

, (4.8)

where || · ||1 and || · ||2 denote the `1 and `2 norms, respectively. The sparser Ak, the higher the

S(Ak). Sparse and localised bases are obtained by pre-defining a sparseness rate SA and enforcing

all bases to follow this rate (i.e. S(Ak) = SA) during optimisation (see Section 4.5).

4.4.2 Static bases

When there is no expression variation in a sequence, there is no motion and the phase shifts ψ̇ t

become zero. The model must therefore be capable of analysing the expression from the facial

configuration; that is, the appearance variation that has already been generated by the expression

(Fig. 4.3). This can be achieved by learning static bases, in a similar fashion to learning dynamic

bases. Dynamic bases were learnt from phase shifts ψ̇ t , whereas static bases are learnt from

magnitudes:

ρ t = (ρt,1,ρt,2, . . . ,ρt,DW ), (4.9)

which relate to the persistent structure in images [25]. While a dynamic basis pertains to a

localised facial movement (e.g. raising an eyebrow), a static basis describes a particular facial

configuration localised in space (e.g. a raised eyebrow).

We seek to learn a generative linear model that can represent a magnitude pattern, ρ t , gen-

erated by any facial configuration. Specifically, we use the log-magnitudes, as taking logarithm

linearises the dependencies between magnitudes [25]:

logρ t =
KB

∑
k=1

Bkvt,k + ε
v
t = Bvt + ε

v
t , (4.10)

where {Bk}KB
k=1 are the static bases, vt,k are the static coefficients and εv

t is a noise term that is

drawn from a Normal distribution, i.e. p(εv
t )∼N (0,σρ). During learning, we impose priors and

constraints similar to the dynamic bases. We assume that logρ t can be recovered sparsely, that

is, using a small proportion of bases, and that the facial appearance changes gradually over time.
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(a) (b) (c)

Figure 4.3: Example of the importance of the magnitude to recognize an expression. For clarity,
magnitude and phase responses are illustrated only for one Gabor filter. (a) The phase shift pro-
vides useful information when there exist expression variations between consecutive frames. (b)
The phase shifts are not informative in the absence of expression variations. (c) The magnitude
computed from a (static) frame provides useful information to recognise the expression in the
absence of expression variations.

The resulting prior P(vt,k|vt−1,k) is identical to Eq. (4.7) in form but differs in its parameters;

the scale of the Cauchy distribution, the precision of the Gaussian and the normalisation coeffi-

cient are denoted respectively with λ̃v,βv and Zv. The overall pipeline of the proposed model is

illustrated in Fig. 4.4. The variables referred to in Fig. 4.4 are listed in Table 4.1 along with their

dimensionality.

4.4.3 On alternative motion encoding schemes

Although we encode motion using Gabor phase shifts, any motion encoding scheme that lin-

earises motion can be used as the representation in the left-hand-side of (4.1), as we discuss in

Section 4.4.1. That is, the encoding scheme is required to be such that a gradual and monotonic

increase (decrease) in the movement speed of a facial component must correspond to a gradual

and monotonic increase (decrease) in the encoded motion. The Gabor phase shifts representation

satisfies this requirement and we have used it simply to start with a simple solution that proved to

be useful [25]. Yet by no means Gabor phase shifts are the only solution. In fact, any optical flow

method can be used, as the motion vectors satisfy the afore-mentioned requirement of providing

quantities proportional to the speed of facial motion. However, the absence of texture in a smooth

facial skin can cause optical flow failures. There have recently been proposed robust optical flow

methods [181,253] that are appropriate to substitute the motion representation in (4.1), including
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Figure 4.4: Illustration of how bases are learnt from a dataset, {Sn}N
n=1. The subscript n is

dropped in later stages for clarity. The depicted variables are listed in Table 4.1 along with their
dimensionality.

methods tailored for faces such as Face Flow [212]. Such methods could be used to improve the

robustness of the proposed framework against illumination variations or occlusions.

4.5 Optimisation

4.5.1 Learning the bases

We can formulate the learning of static and dynamic bases as the following optimisation problem.

Problem 1 Given a dataset of phase shifts, Dψ = {ψ̇n}N
n=1, a dataset of magnitudes, Dρ =

{ρn}N
n=1, the number of dynamic and static bases, KA, KB, and sparseness ratios SA, SB, find

A∗ ∈ RDW×KA and B∗ ∈ RDW×KB that satisfy:

A∗ = argmax
A

[
logP(Dψ̇ |A)

]
, (4.11)

B∗ = argmax
B

[
logP(Dρ |B)

]
, (4.12)

under the constraints

S(Ak) = SA, ∀k ∈ {1,2, . . . ,KA}, (4.13)

S(Bk) = SB, ∀k ∈ {1,2, . . . ,KB}. (4.14)

Maximising the likelihoods in Eq. (4.11–4.12) is equivalent to minimising the negative log-

likelihoods, denoted as Eψ =− logP(Dψ̇ |A) and Eρ =− logP(Dρ |B).

To minimise Eψ and Eρ , we need their closed-form expressions, which are intractable due to

the integrals such as those in (4.6). We simplify the integrals by assuming that the integrands are

highly peaked around the coefficients u (or v) that maximise the integrands, and by replacing the
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Table 4.1: List of variables with their symbols and their dimensions.

S ∈ RX×Y×T An image sequence

It ∈ RX×Y tth frame of S

DS = {Sn}N
n=1 Dataset to learn the bases from

z ∈ CDW×T Gabor coefficients of an S

ψ̇ ∈ RDW×(T−1) Phase shifts computed from z

ρ ∈ RDW×T Magnitudes computed from z

ψ̇ t ,ρ t ∈ RDW Phase shift, magnitude for tth frame

A ∈ RDW×KA Dynamic basis transformation matrix

Ak ∈ RDW kth dynamic basis (i.e. kth column of A)

SA ∈ R[0,1] Sparseness ratio of bases Ak

u ∈ RKA×(T−1) Dynamic basis coefficients of S

ut ∈ RKA Dynamic basis coefficients of It

B ∈ RDW×KB Static basis transformation matrix

Bk ∈ RDW kth static basis (i.e. kth column of B)

SB ∈ R[0,1] Sparseness ratio of bases Bk

v ∈ RKB×T Static basis coefficients of S

vt ∈ RKB Static basis coefficients of It

integrals with the maximal value of their integrands [163]. Then, using the fact that εu
t,d ,ε

v
t,d are

generated from von Mises and Normal distributions respectively, and using the priors P(ut |ut−1)

and P(vt |vt−1), we can approximate Eρ ,Eψ as [25]:

Eψ ≈
N

∑
n=1

T

∑
t=2

DW

∑
d=1

[
κ cos(ψ̇n

t,d− [Aun
t ]d)+

λ̃u log(1+un
t,d)+βu(un

t,d−un
t−1,d)

2
]
, (4.15)

Eρ ≈
N

∑
n=1

T

∑
t=1

DW

∑
d=1

[ 1
σ2

ρ

(logρ
n
t,d− [Bvn

t ]d)
2+

λ̃v log(1+ vn
t,d)+βv(vn

t,d− vn
t−1,d)

2
]
, (4.16)

where [·]i indicates the ith element of its (vector) argument.

Since the approximations above use only the u,v values that maximise the integrands in Eq.

(4.6), we must follow a two-fold optimisation scheme [163]: First, fix A (or B) and minimise
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w.r.t. u (or v), and then vice versa. This two-fold minimisation is carried out until a maximal

number of iterations τmax
A (or τmax

B ) is reached. This minimisation requires the gradients of Eq.

(4.15–4.16) with respect to the basis functions, ∆Adk,∆Bdk, and with respect to the coefficients,

∆un
t,k,∆vn

t,k. The former are (up to constant divisive factors):

∆Adk =κ

N

∑
n=1

T

∑
t=2

sin(ψ̇n
t,d− [Aun

t ]d)u
n
t,k, (4.17)

∆Bdk =
N

∑
n=1

T

∑
t=1

2
σ2

ρ

(logρ
n
t,d− [Bvn

t ]d)v
n
t,k. (4.18)

The gradients with respect to the coefficients are (up to constant divisive factors):

∆un
t,k =κ

DW

∑
d=1

(sin ψ̇
n
t,d− [Aun

t ]d)Adk

− λ̃u
1

2+2(un
t,k)

2 −2βu(un
t,k−un

t−1,k), (4.19)

∆vn
t,k =

2
σ2

ρ

DW

∑
d=1

(logρ
n
t,d− [Bvn

t ]d)Bdk

− λ̃v
1

2+2(vn
t,k)

2 −2βv(vn
t,k− vn

t−1,k). (4.20)

Using these gradients, we compute ut , A by updating them iteratively, where the update rules for

an iteration τ are:

un
t,k← un

t,k +α
(τ)
u ∆un

t,k, (4.21)

Adk← Adk +α
(τ)
A ∆Adk, (4.22)

where α
(τ)
u ,α

(τ)
A are the learning rates for iteration τ . (Similar update rules are defined for

vt ,B.) While the learning rates can simply be set to fixed values, this may cause very slow

convergence [149]. Efficient algorithms use learning rates defined automatically at each update

step [149]. To this end, we use the Barzilai-Borwein method [17] for estimating α
(τ)
u and adaptive

steepest descent for estimating α
(τ)
A . We use the two respective algorithms while also computing

the learning rate for static bases, α
(τ)
B , and the learning rate for static coefficients, α

(τ)
v .

The constraints in Eq. (4.13–4.14) can be satisfied with a number of `1 regularisation algo-

rithms [264]. We use the projection algorithm proposed by Hoyer [81] as it has already proved

successful in creating localised bases for facial data. We denote this projection algorithm as

project(·) and use it to update Ak,Bk in order to satisfy Eq. (4.13–4.14) as:

Ak← project(Ak;SA), (4.23)

Bk← project(Bk;SB). (4.24)
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Algorithm 2 Learn dynamic bases

Require: Dataset of facial videos DS = {Sn}N
n=1, τmax

A , τmax
u

Ensure: Dynamic basis transformation A ∈ RDW×KA

1: Compute Gabor coefficients Dz = {zn}n from DS

2: Compute phases Dψ = {ψn}n from Dz

3: Compute phase shifts from Dψ̇ = {ψ̇n}n from Dψ

4: Initialise Ak with random values ∀k ∈ {1,2, . . . ,KA}

5: Initialise un with random values ∀n ∈ {1,2, . . . ,N}

6: τA← 0

7: repeat

8: for each sample ψ̇
n do

9: τu← 0

10: repeat

11: un← un +α
(τu)
u ∆un

12: τu← τu +1

13: until τmax
u is reached

14: end for

15: for each Ak do

16: Ak← Ak +α
(τA)
A

17: Ak← project(Ak;SA)

18: end for

19: τA← τA +1

20: until τmax
A is reached

Although Hoyer [81] originally proposed the algorithm for non-negative vectors, in the same

paper he defines how the algorithm can be extended to be used for vectors that contain negative

values too. The latter is critical for our work as the vectors that we aim to sparsify are the

bases {Ak}KA
k=1,{Bk}KB

k=1 that can contain negative values. For the sake of being self-contained,

we outline the project(·) algorithm in Algorithm 3. This is essentially identical to the second

algorithm by Hoyer [81] except step 1 and step 20, which we included to explicitly show how the

algorithm is applied for vectors with negative values. To summarise, the first step in Algorithm 3
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is to store the signs of the values of the input vector in order to later apply them to the sparsified

vector. The given vector is modified iteratively until its `1 and `2 norms reach the targeted values

L1 and L2. The targeted `2 norm, L2, is simply the initial `2 norm of the vector. The targeted

`1 norm, L1, depends on the targeted sparsification rate S and through (4.8) it can be computed

as in step 3. The vector is updated through the projection that takes place in steps 8-10. If

the updated vector contains negative values, then those values are set to zero and the process is

re-initiated, otherwise, we have arrived at the desired solution. By the end of the process, the

positive/negative signs that are stored in the beginning are applied to the sparsified vector. Note

that in our application we aim to have basis vectors that are not only sparse (most of the elements

to be zero) but also localised (most non-zero elements to be spatially connected). Although

Algorithm 3 guarantees only sparseness, its application on facial images produced bases that

are local too even though there is no explicit locality constraint [81]; therefore we have been

motivated to primarily try this algorithm. The results that are shown below and in Section 4.6

show that this algorithm attains locality as well as sparsity also on the representation of Gabor

phase shifts.

Fig. 4.5 exemplifies the learning process over iterations by visualising a training sequence and

the evolution of the bases that take part in its reconstruction. Since the bases are initialised with

random values (see Algorithm 2), they do not contain a particular structure after the first iteration,

and the sequence that they reconstructed does not approximate the sequence reconstructed with

the original phase values. In fact, all the frames of the sequence reconstructed with the estimated

phases are nearly identical after the first iteration. Over the iterations, a structure emerges in the

bases. After the 120th iteration, the leftmost basis focuses on the movement around the inner

part of the eyebrow, the basis in the middle focuses on the movement around the outer part

of the eyebrow. The rightmost basis captures a movement located just below the other bases,

which corresponds to the eyelid. The sequence reconstructed after the 120th iteration shows an

expression with a gradually increasing intensity, which is consistent with the intended purpose

of the framework.

4.5.2 Inferring coefficients in a given sequence

Once the basis transformations A,B are learnt, we compute the coefficients u,v for a new se-

quence S as follows. First we compute the sequence’s Gabor coefficients, z. Then, we compute

ψ̇ and logρ from z. To obtain u, we initialise u with random values as in step 5 in Algorithm 2,
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Algorithm 3 The projection algorithm proposed by Hoyer [81]

Require: An input vector x = (x1,x2, . . . ,xDx), a targeted sparseness rate S.

Ensure: The sparsified vector s = (s1,s2, . . . ,sDx)

1: Store signs κx = (κ1,κ2, . . . ,κxDx
), i.e. κi← sign(xi)

2: Set L2← ||x||2

3: Set L1← L2× [
√

Dx−S(
√

Dx−1)]

4: Set s = (s1,s2, . . . ,xDx) such that si← |xi|+(L1−∑i |xi|)/Dx

5: Set Z ←∅

6: k← 0

7: repeat

8: Set mi such that if i ∈ Z then mi← L1/(Dx−|Z|), otherwise mi← 0

9: Set s← (s1,s2, . . . ,sDx)

10: Set s←m+α(s−m) where α ≥ 0 is set such that the resulting s satisfies the desired `2

norm value, L2.

11: Zk←{i : si < 0}

12: if |Zk|= 0 then

13: break

14: end if

15: Set Z ←Z∪Zk

16: Set si← 0, ∀i ∈ Z

17: Set si← si− (∑i si−L1)/(Dx−|Z|), ∀i /∈ Z

18: Set k← k+1

19: until k = Dx

20: Set si← siκi, ∀i ∈ {1,2, . . . ,Dx}

and finally compute u iteratively as in steps 8–11 of Algorithm 2. A similar procedure follows

for computing v.

4.6 Synthesis for visualising the bases

An advantage of a generative framework is its ability to synthesise sequences. This ability is

useful for visualising and interpreting the information encoded in the bases. To visualise a basis
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Reconstruction using original phase shifts

Reconstruction using estimated phase shifts

Iteration 1:

Iteration 2:

Iteration 9:

Iteration 10:

Iteration 120:

Iteration 75:

Figure 4.5: Illustration that depicts the learning of the bases over training iterations. On the left
we illustrate three bases. On the right we depict a sequence that is reconstructed using (i) the
original phase shift values and (ii) the phase shifts estimated through the proposed framework.
To facilitate the visual interpretation we perform reconstruction using only the phase values of
the Gabor coefficients, ignoring their magnitudes; and while visualising the bases, we consider
only the basis values from Gabor wavelets at one scale and orientation and reshape those basis
values into a square.

Ak, we first select a facial image, I0
k , and then synthesise frames that reflect the movement encoded

in Ak. Using Eq. (4.2–4.3), we can represent I0
k as:

I0
k =

DW

∑
d=1
<{ρ0

k,de−ψ0
k,dWd}. (4.25)
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Figure 4.6: Illustration of the movement encoded in some of the dynamic bases. To illustrate a
basis, Ak, or a combination of bases, Ak+i, we synthesise three images with three coefficients:
Î0
k (u), Î0

k (2u) and Î0
k (3u). (Note that we drop the subscript k and superscript 0 for clarity.) We

encircle the regions with facial movements, and provide the difference images of consecutive
frames that also highlight those regions.

Synthesising an image amounts to altering the phase pattern, ψ0
k , using phase shifts generated

through Eq. (4.5) as:

Î0
k(u) =

DW

∑
d=1
<{ρ0

k,de− j(ψ0
k,d+[Aku]d)Wd}. (4.26)

We can also synthesise a sequence that visualises a combination of bases, for example, a pair

of bases as:

Î0
k+i(u) =

DW

∑
d=1
<{ρ0

k,de− j(ψ0
k,d+[Aku]d+[Aiu]d)Wd}. (4.27)

For representative purposes, we visualise bases learnt from the MMI dataset [167], which

contains facial actions with their entire temporal evolution. We set the number of bases to KA =

60 (see Section 4.11.3 for a discussion on the choice of the number of bases for automatic facial

expression recognition experiments). To test whether the bases learnt on one dataset enable

meaningful inference on another dataset, we choose the frames that are used for synthesising,

I0
k , from the CK+ dataset [96]. We learn separate sets of bases for the left eye, right eye and

mouth, rather than learning one set of bases for the whole face. The main advantage of this

part-based representation is to reduce the temporal texture variation caused by out-of-plane head

variations [190] that may interfere with the modelling of facial activity.

Let us consider for example the bases for the left eye and the bases for the mouth. With
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KA = 60 bases per part, the total number of bases is 120. Let A1−60 denote the bases for the left

eye and A61−120 denote the bases for the mouth.

Fig. 4.6 visualises the bases learnt by the proposed model. We synthesise three images with

three coefficients, u,2u and 3u. To highlight where the movement occurs, we show the difference

between consecutive frames, i.e. Î0
k (2u)− Î0

k (u) and Î0
k (3u)− Î0

k (2u). The difference images show

that movement occurs only in a limited spatial region (i.e. bases are localised). Furthermore,

localised bases are additive in terms of appearance; that is, when a combination of bases is

visualised, the appearance variation caused by each basis is identical to that caused by basis alone,

given that the bases in the combination are not overlapping spatially. Examples of combinations

of bases are illustrated in the two bottom rows of Fig. 4.6.

It is interesting to notice similarities between some AUs of FACS and the bases Ak shown in

Fig. 4.6. For example, the bases A11, A13,A110,A116 resemble the onset phases of AU 45 (blink),

AU 1+2 (inner, outer brow raiser), AU 11 (nasolabial deepener) and the lip corner pulling that

occurs with AU 6+12+25 (cheek raiser, lip corner puller, lips part), respectively. We illustrate

more bases in supplementary material2.

Fig. 4.6 also highlights correlations among bases, which correspond to redundancy in the

information provided by some bases. For example, A11 and A19 represent a similar eyelid move-

ment. Such correlations are due to person-specific differences in the location of the facial fea-

tures (e.g. eyebrow) or the fact that different bases are modelling different fragments of the

same movement (e.g. one basis models the onset of a movement while another models a later

phase). Nearly half of the bases are not directly linked to a specific facial region or location

(i.e. are not localised, see Fig. 4.7). Note that learning a generative model aims at reconstructing

training samples and non-localised bases may be employed by the generative model to produce

the residuals that are needed for the reconstruction of some training samples. In other words,

non-localised bases may facilitate the creation of localised bases by producing the residuals that

cannot be captured efficiently with localised bases.

4.7 Conceptual advantages of analysis via Facial Bases

In this section we highlight the two advantages of the bases. Firstly, the bases provide a plausible

description of facial physiology that allows the usage of the same bases to identify pronounced

2Please see ftp://spit.eecs.qmul.ac.uk/pub/es/supp.zip.
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Figure 4.7: Sample bases that model non-localised texture variations.

(a) A left eye sequence, representing the emotion of disgust.

(b) Coefficients ut,k computed from the entire sequence above jointly.
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(c) Coefficients ut,k computed for disjoint segments of the sequence in (a) independently.
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Figure 4.8: Illustration that depicts the coefficients ut,k computed from an exemplar sequence.
Computing the sequence from the entire sequence or from its disjoint segments makes little
difference as compared in (b) versus (c). For clarity, we depict only the coefficients ut,k obtained
from the four most activated bases Ak. See Fig. 4.9 for the corresponding mouth sequence.

expressions and subtle expressions. While discussing this point, we will also comment on the

identity bias of the bases. Secondly, the coefficients are consistent whether all the temporal

phases of the expression are observed or not. As we will discuss, this is an important ability for

representing naturalistic facial expressions.
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Fig. 4.8b shows the coefficients computed from the MMI sequence displayed in Fig. 4.8a.

The coefficients are near to zero whenever there is no facial activity; that is, in the neutral phase

(e.g. between the frames t = 1 and t = 5) and also in the apex where the expression reaches a

stable level (e.g. between the frames t = 20 and t = 35). (The corresponding mouth sequence

and its coefficients are depicted in Fig. 4.9.) In moments of facial activity, the magnitude of coef-

ficients undergo a smooth increase from (near) zero to a peak, and then they start decreasing also

smoothly towards zero, consistently with the velocity of the movement produced by the mus-

cles [108,211]. This property of coefficients not only allows us to monitor the intensity variation

within a sequence, but also to use the same bases to analyse different sequences across a variety

of intensities, from micro-expressions to pronounced expressions. Fig. 4.10a depicts the move-

ments from a micro-expression sequence of the SMIC dataset [114]. This sequence is labelled as

‘positive’, and contains a lip corner pulling that is indicative of happiness [57]. Our representa-

tion captures this movement with the activated ut,116 coefficient. (Recall that A116 encodes a lip

corner pulling as shown in Fig. 4.6). The sequence in Fig. 4.10b contains an even more subtle lip

corner movement, hence the even smaller-magnitude (but non-zero) ut,116 coefficients. On the

other extreme, pronounced happiness expressions produce high-magnitude ut,116 coefficients, as

depicted in Fig. 4.11 and in Fig. 4.12. That the same basis, A116, is activated for the same move-

ment type across different datasets and subjects with different facial characteristics is a desirable

outcome for defeating identity bias.

However, there is not always such a one-to-one mapping between facial movement types

and bases. Fig. 4.13a and Fig. 4.13b show micro-expression sequences with a similar eyebrow

movement. While the eyebrow movement is not very visible in Fig. 4.13a, we can identify it

through the activated ut,13 coefficients (see A13 in Fig. 4.6 and Section 4.6). However, the basis

A13 is not activated in Fig. 4.13b, but the basis A25 is activated. In fact, A25 encodes a similar

movement to the one in A13, as can be seen in the supplementary videos3. Having multiple bases

for one type of movement is probably due to identity bias; for example, the location, thickness or

slanting of the eyebrows in different people may lead to having different bases. Fortunately, this

has a limited impact on automatic facial expression recognition with the Facial Bases, because a

unique encoding of different expressions — there is a one-to-many mapping.

Let us now proceed to the second advantage of the coefficients — that they do not require

3See ftp://spit.eecs.qmul.ac.uk/pub/es/supp.zip
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(a) A mouth sequence, representing the emotion of disgust.

(b) Coefficients ut,k computed from the entire sequence above jointly.
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(c) Coefficients ut,k computed for disjoint segments of the sequence in (a) independently.
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Figure 4.9: Illustration that depicts the coefficients ut,k computed from an exemplar sequence.
Computing the sequence from the entire sequence or from its disjoint segments makes little
difference as compared in (b) versus (c). For clarity, we depict only the coefficients ut,k obtained
from the four most activated bases Ak.

the entire sequence for their computation. Since our model is linear, the sign of the coefficients

ut,k controls the direction of the movement. The onset and offset phases of an expression can

therefore be modelled with the same coefficients but reversed in their sign, as can be observed

in Fig. 4.8b by comparing the onset (i.e. frames between t = 5 and t = 20) and the offset (i.e.

frames between t = 40 and t = 60) coefficients. (Similar observations can be made for Fig. 4.9

and Fig. 4.11–4.12, and for the additional illustrations in Appendix B.1). This implies that the

onset and offset are encoded uniquely. Importantly, we do not need to observe the neutral or onset

phases of the expression to encode the offset in the same way. Fig. 4.8c shows the coefficients

ut,k that are computed separately from four disjoint segments of the sequence in Fig. 4.8a. The

ut,k in the third quadrant of Fig.4.8b are computed from a segment that starts with the apex, yet

they are very similar to the corresponding ut,k that are computed from the entire sequence jointly
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Figure 4.10: Two micro-expression sequences that contain a subtle lip corner movement. The
movement in (b) is more subtle than the one in (a), hence the smaller coefficients (note that the
y range of the latter plot is smaller). However, the basis A116 has the largest contribution in
describing both sequences. The same basis is responsible also for describing the larger-intensity
lip movements in Fig. 4.11–4.12

(a) A mouth sequence, representing the emotion of happiness.

(b) Coefficients ut,k computed from the entire sequence above jointly.
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(c) Coefficients ut,k computed for disjoint segments of the sequence in (a) independently.
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Figure 4.11: Illustration that depicts the coefficients ut,k computed from an exemplar sequence.
For clarity, we depict only the coefficients ut,k obtained from the four most activated bases Ak.



Chapter 4: Bases of facial activity 105

(a) A mouth sequence, representing the emotion of happiness.

(b) Coefficients ut,k computed from the entire sequence above jointly.
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(c) Coefficients ut,k computed for disjoint segments of the sequence in (a) independently.
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Figure 4.12: Illustration that depicts the coefficients ut,k computed from an exemplar sequence.
For clarity, we depict only the coefficients ut,k obtained from the four most activated bases Ak.

(see the range of t ∈ [40,60] in Fig.4.8b). This is an important ability for encoding naturalistic

expressions, firstly because naturalistic expressions do not always follow the standard temporal

phase order of neutral-onset-apex-offset (see Section 1.3). Moreover, even if the expression does

follow this standard order, some of the phases of the expressions may not be visible. For example,

the head pose may vary significantly between the onset and the offset, or there may be a partial

occlusion or motion blurring in one of the phases.

In Appendix B.1 we visualise more coefficients that are computed from the six-basic emotion

sequences of the first two MMI subjects.

4.8 Relationship with Slow Feature Analysis and Linear Dynamical Systems

In this section we discuss the similarities and differences between the proposed framework and

two related approaches; slow feature analysis [256] (SFA) and a standard linear dynamical system
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Figure 4.13: Two micro-expression sequences that contain subtle eyebrow movements.

(LDS).

The main similarity between our work and SFA is that we also add the slowness as a con-

straint as seen in (4.7). However, in our application slowness has a very specific role — to

incorporate the prior knowledge that the speed of facial components changes gradually due to

physical constraints [108]. In this regard, our slowness constraint is more akin to a classical tem-

poral smoothness (or coherence) constraint that is employed when analysing motion [20]. On

the contrary, SFA uses slowness for the much broader goal of extracting higher-order structures

from data, and the slowness in SFA is not limited to motion. Below we briefly summarise SFA

to compare it with our work further.

A video can be considered as data generated by latent variables; for example, in a video

where individual objects enter and leave the visual scene one at a time, two latent variables can

be considered to be the identity of the objects (i.e. “what” information) and their location (i.e.

“where” information) [256]. Such a video explains well the motivation behind SFA [256]: Even

though the raw sensory (i.e. pixel intensities) would generally undergo fast and abrupt changes,

the latent variables undergo slow changes. For example, the “identity of the object” (i.e. “what”)

variable would be remain constant as long as the same object appears in the video, and the

“location of the object” (i.e. “where”) variable(s) would change gradually as the object enters

and exits the scene. SFA aims at finding a transformation that would generate slowly changing

features, with the motivation that those slow variables relate to the latent variables in the video.

This aim is achieved by minimizing the (first-order) derivative of the learnt features and imposing

three constraints. One of the constraints (the uncorrelated features constraint) provides SFA with
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the property that the variables are ordered according to how slowly they change. This is the

a key property for SFA; the slowest-changing (i.e. first) output can be considered to relate to

the highest-order latent variable. For example, in an application to scene classification, the first

variable can relate to the most important variable (i.e. the scene class) [222], and in application

of AU phase detection, the first variable can directly relate to the phase of the AU [273].

On the contrary, in our framework there is no ordering in terms of the slowness of the learnt

features (and consequently no constraint to impose an ordering). Each of the features has a pre-

determined specific role: to reveal whether a particular type of motion took place. That is, even

though each feature is different (it corresponds to a different type of motion), all of the features are

conceptually same (they correspond to a particular type of motion). In contrast, in SFA features

can be conceptually different and some may relate to motion while others not; for example, in an

application to object recognition [256], some of the variable(s) would relate to the object identity,

while others would relate to the object size or location with the aim of gaining invariance to such

irrelevant factors. In our framework, the invariances that are considered are addressed prior to

extracting the features ut ; registration aims to eliminate size/location differences, and the Gabor

phase shifts aim at partly reducing illumination variations.

Given the generality of the term LDS [19], the inference that takes place in (4.5) can also

be considered as inference in an LDS. More specifically, the inferred features are related with a

first-order Markov chain as (4.7) suggests. Inference in a standard LDS can be achieved using

the Kalman filter equations (given that all the distributions are Gaussian) [19]; this would lead

to a fully probabilistic approach and the benefits of adopting such an approach are very clear

in some circumstances. For example, in a typical tracking problem the features that we aim to

extract (ut) would correspond to the true location of an object whereas the Gabor phase shifts

(ψ̇ t) would correspond to (noisy) measurements. The Kalman equations would find at each time

the optimal value ut by considering the amount of estimated noise in the measurement ψ̇ t and the

previous state ut−1. Our solution to (4.5), however, is deterministic. Our usage of a probabilistic

framework is limited to arriving at the model (i.e. the a posteriori distribution logP(Dψ̇ |A)) for

learning the features; once we obtain this model, we convert it to an energy function which is

solved deterministically. That is, we make point estimates of the features ut without estimating

the noise. Taking noise into account with a fully probabilistic approach can be beneficial in

the cases where data can be noisy due, for example, to non-uniform illumination variations,
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to large motion blur or to partial occlusions. However, a fully probabilistic approach is not

straightforward for our model, as the Kalman equations cannot be used with the non-Gaussion

distribution in (4.7) as the indefinite integral of (4.7) is intractable.

4.9 Automatic expression recognition with the bases

The learnt bases can be used to extract features for recognising the facial expression in a sequence

S. The features can be used as input to a multi-class classifier trained from a set of sequences,

{Sn}N
n=1 (see Fig. 4.14).

The first step is computing the static, v = (v1,v2, . . . ,vT ), and dynamic, u = (u1,u2, . . . ,uT ),

basis coefficients for all frames of S, as described in Section 4.5.2. Since the facial expression

in S may not be temporally aligned with the training sequences {Sn}N
n=1, we do not use those

coefficients directly as features. Instead, we extract features by applying temporal pooling to

introduce tolerance against delays or other sources of temporal inconsistencies among test and

training sequences.

To extract features from dynamic coefficients u, we first split the coefficients into TA slices

over time, (u1,u2, . . . ,uTA), where each slice uτ is a set that contains QA = d T
TA
e coefficient

vectors, i.e.:

uτ = {u(τ−1)QA+1,u(τ−1)QA+2, . . . ,uτQA}. (4.28)

Then, we compute histograms for each uτ . Specifically, we compute a histogram of HA bins per

basis k such that:

hτ,k = hist({ut′,k : ut′,k = [ut′ ]k, ∀ut′ ∈ uτ}), (4.29)

where hist(·) is the operator that computes the histogram of its input set. We use histogram

pooling as it outperformed simpler approaches (e.g. mean, max or standard deviation pooling)

in our experiments. We concatenate the histograms computed for all τ = 1,2, . . . ,TA and k =

1,2, . . . ,KA. The length of the concatenated histograms is HA×KA×TA.

We extract features from static coefficients v in a similar manner, by splitting v into TB slices

over time, (v1,v2, . . . ,vTB). However, in this case we use mean and standard deviation pooling,

which have lower dimensionality than histogram pooling and generally achieved comparable

performance to histogram pooling in our experiments. Specifically, we compute the mean and

standard deviation on each of the sets vτ for each basis k. We denote the output of these two

pooling operators as µτ,k and σ τ,k, respectively. The vector of the static features is obtained by
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Figure 4.14: Block diagram of the proposed end-to-end process to predict ŷ, the expression in a
sequence S, with a pre-trained classifier.

concatenating the pooling output for all τ = 1,2, . . . ,TB and k = 1,2, . . . ,KA. The length of this

vector is 2×KB×TB.

Finally, Φ̃, the feature vector of S, is obtained by concatenating the pooling output of the dy-

namic coefficients and the static coefficients. The performance of the proposed facial expression

classification process is validated in the next section.

4.10 Implementation details and computation time

We learn a part-based representation to reduce the effect of out-of-plane head pose variations,

as discussed in Section 4.6. We first crop the left eye, the right eye and the mouth compo-

nents in each frame of a sequence after localising the center of each component with the SDM

technique4 [261]. We crop each component as a square and avoid overlap among different com-

ponents. The edge size of squares, relative to the inter-ocular distance, δiod, is set to 1.9δiod

(as Fig. 4.15a suggests, smaller squares may reduce performance on CK+ and MMI). Then we

register temporally the cropped sequences with the MUMIE technique that we introduced in

Chapter 3 in [189]. Finally, we re-scale the patches in the registered sequences to 32×32 pixels.

As Fig. 4.15b shows, 32×32 achieves a good balance among the CK+, MMI and SMIC datasets.

We use a Gabor wavelet set with 4 orientations and 5 scales, which yields DW = 4468 Gabor

wavelets for frames of size 32× 32. We use 4 orientations, instead of the more commonly

used 8 [113], to reduce the dimensionality DW , as the reconstruction performance with 4 and 8

orientations is similar on our images (see Fig. 4.16). The noise and prior parameters needed in

Eq. (4.17–4.20) are set as λ̃v, λ̃u = 10;κ = 4;σρ = 0.25; λ̃v, λ̃u = 0.2. We set λ̃v, λ̃u,κ and σρ

4The SDM technique provides the corners of the left eye, the right eye and the mouth. We compute
the center of those components as the average of the corner positions.
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Figure 4.15: Performance variation with the dynamic bases with respect to (a) the size of the
cropping rectangle in terms of inter-ocular distance, δiod, and (b) the size of the cropped patches
after re-scaling (KA = 60 for the MMI dataset and KA = 100 for the CK+ and SMIC datasets).
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Figure 4.16: Reconstruction performance of sets that contain wavelets at 2, 4 and 8 different
orientations. (a) Facial image from the CK+ dataset. (b), (c), and (d) show the reconstruction
performance of wavelet sets that contain wavelets at 2, 4 and 8 orientations, respectively. Note
that when increasing the number of orientations from 2 to 4 there is a significant improvement
in reconstruction quality, whereas there is little improvement when increasing the number of
orientations from 4 to 8.

based on previous research [25], and λ̃v, λ̃u based on experiments after noticing little sensitivity

to them within the range of 0.1− 0.4. We limit maximum iterations as τmax
v ,τmax

u = 1000 and

τmax
A ,τmax

B = 250, which are generally sufficient for convergence. SA and SB, are set to 0.75, and

we observed qualitatively similar results for the range of 0.65− 0.85. We learn separate linear

models for each facial part (i.e. left eye, right eye and mouth). The learning parameter that has the

most significant effect on performance is the number of bases, KA,KB. For simplicity, we always

set those two quantities to be the same (i.e. KA = KB) rather than optimising them separately.

We perform experiments for various values of KA and analyse its effect in our discussion. For

gradient descent optimisation we use [198] and for the project(·) algorithm we use [81].

We process all sequences to have the same length of frames. In CK+, where the sequences

end with the apex of the expressions, we use the last 8 frames as all sequences have at least 8

frames. In MMI and SMIC, the apex of the expressions is unknown and we use all frames; for

those datasets, we resize training sequences via temporal interpolation (similarly to [114]) to 10

frames when learning the bases. Temporal interpolation effectively changes the frame rate of
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the sequences. We analyse sensitivity to frame rate by experimenting on test sequences that are

resized to various numbers of frames T . Whenever unspecified, T is set as T = 8 for CK+ and

T = 20 for MMI and SMIC. We set HA = 6 for the tests on CK+ and MMI, and HA = 12 for

SMIC. The parameter TA is set based on the sequence length as TA = bT
5 c. TB is set as TB = 1.

The training for all the facial components (i.e. left eye, right eye, and mouth) takes approx-

imately 90 minutes in total (MATLAB R© implementation running on a laptop with an Intel-i5

CPU). The average computation time for our representation is 0.432 seconds per frame. The

bottleneck in this process is the computation of the Gabor coefficients (0.354 seconds). Once the

Gabor coefficients are obtained, computing the dynamic coefficients, u, takes 0.042 seconds and

computing the static coefficients, v, takes 0.036 seconds. For comparison, the average computa-

tion time of the standard LBP-TOP [281] representation on the same sequences is 0.023 seconds

per frame.

4.11 Experiments

To validate the proposed representation, we test its generalisation ability with the recognition of

two extreme situations, namely pronounced expressions and micro-expressions. We also evaluate

the ability of the learnt bases to recognise facial expressions and to generalise across tasks and

databases with different frame rates.

4.11.1 Datasets

We validate the generalisation ability of the learnt bases on the Cohn-Kanade (CK+) dataset, the

MMI dataset and the SMIC micro-expression dataset, which differ in frame rate, temporal phases

of the facial expressions, and magnitude of the expressions (see Table 4.2 and Fig. 4.17).

The CK+ dataset [96] is useful to rank a technique compared to the state of the art as many

facial expression recognition systems are evaluated on this dataset. CK+ includes the six basic

emotions (anger, disgust, fear, happiness, sadness, surprise) and a non-basic emotion (contempt).

We follow the standard protocol of the dataset, i.e. LOSO cross validation [96]. We use 327

sequences of 118 subjects, i.e. all emotion-labelled sequences. The sequences start with a neutral

expression and finish at the apex. The MMI dataset [167] is commonly used for the recognition

of the six basic emotions. The sequences contain all phases of facial expressions (i.e. neutral-

onset-apex-offset), and the apex frame is unknown. We use all frontal sequences that are labelled
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Table 4.2: Datasets used for validation and their properties. Ne: Neutral, On: Onset, Ap: Apex,
Of: Offset.

Dataset CK+ MMI SMIC

Frame Rate (fps) 12 25 100

Temporal Phases Ne-On-Ap Ne-On-Ap-Of-Ne Mixed

Expression

Intensity
Pronounced Pronounced

Micro-

expression

Expression Classes

Six-basic

emotions

+contempt

Six-basic

emotions

Surprise, Pos-

itive, Negative

with an emotion. 205 sequences from 31 subjects fit these criteria. We also perform LOSO

cross validation. The SMIC micro-expression dataset [114] is useful to evaluate a model’s ability

to recognise subtle expressions. There are two tests: micro-expression detection, which aims

to identify whether or not a micro-expression exists in a given sequence, and micro-expression

recognition, which aims to classify the micro-expression in a sequence as positive, negative or

surprise (3-class problem) [114]. We use the data collected with a high-speed (100 fps) camera:

164 sequences with micro-expressions and 164 sequences with no micro-expressions.

4.11.2 Protocols

We use a C-SVM classifier with linear kernel [30] for CK+ and MMI tests by fixing the C param-

eter to 103 with no further optimisation. The baseline method in SMIC [114] uses a polynomial-

kernel SVM, and we also use this kernel when testing on SMIC. We use the same kernel param-

eters, and learn the C parameter on SMIC with cross-database validation.

As the evaluation metric we use the classification accuracy in all tests:

α =
|{yn : yn = ŷn}N

n=1|
N

, (4.30)

where | · | denotes set cardinality, N is the number of test sequences, and yn, ŷn are respectively

the ground truth and predictions for the nth sequence.
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Figure 4.17: Examples from the CK+, MMI and SMIC datasets with a neutral frame and a frame
with surprise expression, depicting that an emotion can be shown with expressions of different
intensities. In the rightmost example, surprise is manifested with a subtle expression that involves
an eyebrow movement.
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Figure 4.18: Performance with respect to (resized) sequence length T indicates sensitivity to
frame rate, as the apparent motion speed changes when a sequence is resized temporally. Results
are obtained with dynamic bases only.

4.11.3 Discussion

We first analyse how the frame rate of test sequences and the number of bases affect performance.

During these tests we use only dynamic bases. Then, we compare the performance of our method

with that of state-of-the-art dynamic representations.

The length of the original MMI sequences varies from 32 to 244 frames. Fig. 4.18 (top)

shows how performance varies on the MMI dataset when the sequences are downsampled to

various lengths T . We report performance for various temporal pooling windows TA, as the

optimal value of this parameter may depend on the sequence length. The lowest performance

occurs when test sequences are resized to 5 frames. There is limited variation when sequences

are resized to 20 frames or longer, which suggests that the performance has little sensitivity to the

frame rate of the sequences that are used while learning the bases. The best performance is not

attained when T takes the value used while learning the bases (i.e. T = 10, see Section 4.10). The

original SMIC sequences vary between 13 and 60 frames. The performance on SMIC becomes

particularly low when sequences are downsampled to short lengths such as T = 5 frames. The

micro-expressions in SMIC are fleeting, and therefore difficult to recognise when the frame rate

is too low [114]. However, the performance of our method shows little variation for sequences
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Figure 4.19: Performance of the dynamic features our method with respect to the number of
bases KA on the CK+, MMI and SMIC datasets.

Table 4.3: Performance of our method on CK+, MMI and SMIC, when bases are learnt in a
within-database manner.

of T = 20 frames or longer. This suggests that the proposed method has little sensitivity to frame

rate variations when recognising micro-expressions, given that the frame rate is not too low.

Fig. 4.19 shows the performance variation with respect to the number of bases, KA. The

performance saturates with relatively small KA values for the CK+ and MMI datasets, such as

KA = 40, and there is little improvement, or even a decrease in performance, for larger KA values.

Higher values such as KA = 80 or KA = 100 achieve better performance on the SMIC dataset.

Table 4.3 lists the best results obtained by our method on all datasets for within-database learn-

ing with LOSO cross-validation, and reports the performance of static features as well. Static

features are sufficient to achieve high performance on the CK+ dataset. This is not surprising

as other static representations (e.g. [194, 208]) achieve similar performance on this dataset. The

dynamic features are useful on the more challenging MMI and SMIC datasets. The high perfor-

mance achieved with dynamic features on SMIC is consistent with the findings in psychology

that highlight the importance of temporal variation for recognising subtle expressions [6].

Finally, we report results on all datasets with a unified representation — a representation

learnt from a specific dataset for a fixed KA value. To have a unified representation that is rel-

atively compact and achieves good performance on both large- and small-intensity expressions,

we set KA = 60. We train the unified representation on MMI, which is the most comprehensive

of the three datasets as it includes the onset, apex and offset phases (see Table 4.2).

We compare with state-of-the-art dynamic representations that were validated on the CK+,

MMI and SMIC datasets. We consider only the studies that used the entire sequences on the MMI

dataset without using the manually annotated apex frames. The learnt representations that we
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Table 4.4: Classification accuracy on CK+, MMI and SMIC. The ‘within-dataset’ column refers
to the condition when the test dataset is used both to learn the representation and to set its pa-
rameters. The (optional) second reference refers to the source that the results are collected from.
†These results are obtained with a version of the Expressionlets method that requires supervised
learning.

Ref. Method

Needs

Training

Labels

Within-

dataset

validation

Cross-

dataset

validation

Accuracy

on CK+

(α)

Accuracy

on MMI

(α)

Accuracy

on SMIC

(α)

[85] CFD-WL N/A N/A 92.32 – –

[281], [125] LBP-TOP N/A N/A 88.99 59.51 –

[100], [125] 3D-HOG N/A N/A 91.44 60.89 –

[202], [125] 3D-SIFT N/A N/A 81.35 64.39 –

[119] Optical strain N/A N/A – – 53.56

[84] STLBP-IP N/A N/A – – 57.93

[107] AdaBst+STM N/A N/A – – 44.34

[281], [114] LBP-TOP N/A N/A – – 49.30

[252] ITBN N/A N/A 86.30 59.70 –

[93] DTAGN 3 3 96.94 66.33 –

[124] 3DCNN-DAP 3 3 92.40 63.40 –

[125] Expressionlets 3 91.13 65.37 –

[125] Expressionlets† 3 3 94.19 75.12 –

Proposed: FaceBases
3 96.02 75.12 65.64

3 89.29 – 60.36

compare with on the CK+ and MMI datasets are Expressionlets [125], DTAGN [93] and 3DCNN-

DAP [124] (see Table 2.3 for the extensions of the abbreviations). We further compare with

Interval Temporal Bayesian Network (ITBN) [252], a method that proposes semantic modelling

of expressions, as well as the (engineered) 3D-HOG [100], 3D-SIFT [202] and LBP-TOP [281]

representations. We take the results reported in the papers.

Table 4.4 reports the results of the methods under analysis on all three datasets. The other

learnt representations are validated through within-dataset experiments, i.e. the representations

are trained and tested on the same dataset, with different learning parameters for each dataset.

We also report results for within-database validation and the cross-database validation results by

using the representation learnt on MMI for testing on CK+ and SMIC. DTAGN attains the best

accuracy on CK+ and our method achieves comparable results through within-database valida-

tion. Most methods achieve high performance (over 90%) on the CK+ dataset, which contains
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exaggerated expressions with time-aligned sequences (all finish at the apex of the expressions).

Recognition results on MMI are generally lower than those on CK+. Although MMI also

contains posed expressions, the fact that the apex frames are not known a priori is a challenge,

as an expression is recognised most easily at its apex. Moreover, unlike the CK+ dataset, some

of the subjects are wearing glasses, headcloth, or have beard or moustache. Two methods stand

out with their high performance on MMI: our method and Expressionlets. However, the latter

obtains good results only when the representation is augmented with discriminative learning,

which requires a separate training with emotion labels, whereas our method (i) does not require

training labels and (ii) can be applied on sequences with labels that are not included in the training

set.

On the SMIC dataset, we provide a comparison with LBP-TOP [114], Optical Strain [119],

STLBP-IP [84] and a method that uses LBP-TOP with AdaBoost and Selective Transfer Machine

(AdaBst+STM) [107]. All these representations are engineered. To the best of our knowledge,

there exists no learnt representation tested on the SMIC dataset.

Our method achieves the highest performance on SMIC (rightmost column of Table 4.4),

using within-dataset validation (with nearly a 7% improvement compared to other methods) and

with cross-database validation, i.e. testing with the representation that was trained and optimised

on MMI. This highlights the generalisation ability of our representation: The training dataset

(MMI) contains sequences of posed expressions recorded with relatively low temporal resolu-

tion (∼25 fps), whereas the test dataset (SMIC) includes sequences of spontaneous expressions

recorded with higher resolution (100 fps). Moreover, the MMI dataset includes 6 classes of

pronounced expressions, whereas the SMIC dataset contains 3 classes of subtle expressions.

In summary, the proposed method achieves state-of-the-art or comparable performance when,

similarly to other representations, is validated through within-database validation. Moreover, the

cross-database results highlight the generalisation capabilities of the proposed method, as the

same representation achieves comparable performance with other methods even when the train-

ing dataset differs from the test dataset in terms of frame rate, temporal phases of expressions,

the expression labels, and the intensity of expressions (see Table 4.2).

4.12 Limitations

The Gabor phase shifts that we use to encode motion can be sensitive to non-uniform illumination
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variations within a sequence. Robustness against illumination variations can be improved at least

in two ways: by replacing the representation or by adopting a probabilistic inference of the basis

coefficients. As discussed in Section 4.4.3, the Gabor phase shifts representation can be replaced

with recent optical flow methods that are capable of working on faces (i.e. capable of dealing

with the potential absence of texture in facial skin). A probabilistic inference of the coefficients

would allow the estimation of the noise on the images and thus find an optimal solution that

weights past estimations and the current observation appropriately (see Section 4.8).

Since even part-based 2D registration cannot completely eliminate the motions caused by

out-of-plane head rotations, applying the Facial Bases on data with such rotations may not yield

a meaningful representation. Dealing with the head rotations requires training with a dataset that

comprises various head poses, and a more sophisticated modelling that allows for non-frontal

initial head poses (e.g. conditional modelling [214]) as well as head pose variations within se-

quences.

Moreover, we have observed some redundancy in the information provided by the bases:

multiple bases can encode a similar facial movement, for example due to person-specific differ-

ences in facial appearance (see Section 4.6 and Section 4.7). This redundancy is a limitation of

the proposed framework and it should ideally be eliminated not only to render the representa-

tion more compact, but also to allow for an easier semantic interpretation of the representation.

That is, having a representation where one form of localised movement (e.g. eyebrow raising)

corresponds to only one basis would be more desirable than having multiple bases.

The research conducted for other computer vision or human vision understanding problems

provides fruitful future directions to reduce the redundancy of the representation proposed in

this chapter. For example, one way to reduce redundancy is to add an additional layer to the

framework that learns the relationships among bases (e.g. [97]), thus can identify the similarity

of bases that encode a similar movement. An alternative approach is to use a model that can

recognise the different transformations (e.g. spatial shift) of the same movement, such as a

bilinear model [68].

Another limitation of the proposed representation is that for tractability we assumed indepen-

dence between phase shifts and magnitudes and proposed to encode facial expressions with two

distinct sets of bases — the static and the dynamic bases. However, phase shifts and magnitudes

are dependent and a more accurate modelling requires to take this dependency into account. This
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can be achieved by modelling phase shifts and magnitudes jointly, or by modelling dynamic

bases conditioned on static bases.

4.13 Summary

In this chapter we proposed a novel dynamic representation for facial expression analysis that

characterises facial expression variations with a linear combination of basis functions corre-

sponding to localised movements. When a sequence is decomposed through this linear model,

each basis coefficient enables inference on whether a particular movement exists in the sequence,

and the magnitude of the coefficient provides information about the intensity of the movement.

With this design the learnt representation efficiently recognises facial expressions across a range

of intensities and shows little sensitivity to frame rate. Importantly, unlike other learnt represen-

tations, the proposed approach achieves state-of-the-art performance without using the expres-

sion labels of training sequences when learning the features. To the best of our knowledge, we

proposed the first learnt representation that is designed to model expressions across a range of

intensities and is validated in recognising both pronounced and micro expressions.

Future directions for the proposed work are to reduce the identity bias, illumination and head

pose sensitivity of the model as suggested in Section 4.12. Moreover, a natural extension of the

proposed work is to use it for AU detection and AU phase recognition. Given the similarities be-

tween some of the learnt bases and the AUs (see Section 4.6), the proposed method can be tested

for unsupervised detection for at least some of the AUs. Moreover, considering that the activation

time of the coefficients typically corresponds to the onset and offset of the facial expressions (see

Section 4.7 and Appendix B.1), the proposed method is promising in terms of recognising the

temporal phases of the AUs in an unsupervised manner.
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Conclusion

5.1 Summary of findings and achievements

In this thesis we presented a comprehensive review of state-of-the-art affect analysers to identify

the open issues and the practices that are common in successful systems. We addressed one of

the open issues, namely, sequence registration, and proposed a robust facial sequence registration

technique. We proposed a representation learning pipeline that represents facial expressions in

terms of localised movements and is capable of recognising expressions across varying intensi-

ties.

In the literature review we presented in Chapter 2, we decomposed existing affect recogni-

tion systems into their fundamental components. In our summary (Section 2.8) we highlighted

which system components help reducing sensitivity to illumination variations; we discussed the

sensitivity of existing systems to registration errors; we outlined the ways in which head pose

variations are addressed in the literature; we drew attention to the problem of identity bias; and

we highlighted the benefits of combining multiple types of features such as appearance and shape

representations.

Our summary in Section 2.8 also points to the increasing popularity of learning spatio-

temporal representations from data, and to the potentials of such representations. However, we

argue that learning a representation from time-varying facial data requires further validation to

ensure that the representation is not sensitive to the frame rate, to the specific order of temporal

phases, or to the intensity of expressions in the training sequences. We also argue that the appli-

119
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cability of a representation pipeline to multiple models of emotion is a desired ability, and that

the representations which are more suitable for some emotion models (e.g. continuous models)

can be fundamentally different from those for other models (e.g. six-basic emotions).

We also argued that accurate registration is fundamental for the accurate analysis of facial

motions, and developed a novel sequence registration technique that can be used for whole-

face or part-based registration even under challenging illumination variations (Chapter 3). The

summary of achievements and findings during the development of this technique are as follows.

• While rigid registration is a well-studied problem in computer vision, the existing methods

that we used for evaluation have not been able to achieve reliable performance for part-

based registration, i.e. when a facial feature (e.g. left eye, right eye or mouth) is cropped

and registered independently from the rest of the sequence. Part-based registration is a

difficult problem because the input sequence contains little texture/high-gradient regions

and it undergoes non-rigid motions due to facial expressions.

• We proposed a novel registration framework that is based on computing motion locally

with Gabor motion energy and then converting local motion into global motion with a set

of pre-trained regressors.

• We computed the closed-form expressions of Gabor motion energy for a moving line and

showed how to tune motion energy for a line moving with a specific speed and orientation.

• We showed that pre-trained regressors can accurately model the relationship between Ga-

bor motion energy and rigid misalignment parameters, and that they can generalise and

perform accurately on data with illumination variations even when trained using controlled

data.

• We showed that drift errors that typify online registration can be reduced when the Gabor

motion energy in the proposed framework is computed with respect to multiple frames.

Finally, in Chapter 5 we presented the proposed unsupervised representation learning frame-

work. The summary of findings and achievements of this chapter are listed below.

• To the best of our knowledge, we presented the first learnt representation that mimics FACS

by representing facial expressions in terms of localised facial movements and assigning an

intensity-related coefficient to each movement.
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• We showed that learning a generative linear model from Gabor phase shifts computed from

facial videos produces basis functions that correspond to localised facial movements.

• With cross-database experiments we proved that the proposed framework has important

generalisation abilities, as it achieves state-of-the-art performance even when the frame

rate of the sequences varies by a factor of approximately 4, and even when a framework

trained with posed and exaggerated expressions is used to recognise micro-expressions.

5.2 Limitations and future work

We discussed the limitations and future work for the methods proposed in this thesis separately

for the registration framework (Section 3.8) and for the unsupervised representation learning

scheme (Section 4.12), and here we provide a summary. The registration framework generally

fails in the presence of large out-of-plane head pose variations, and the typical failure symptom

is consecutive registration failures. In such cases it is suggested to restart registration by setting

the most recent frame as the new reference for registration. Further future work for registration

is to improve the computational efficiency that is compromised by the computationally complex

spatio-temporal Gabor filters (see Section 3.8).

The limitations of the proposed unsupervised representation framework include sensitivity to

out-of-plane head pose variations and to temporal illumination variations. Furthermore, visual

analysis of the learnt bases suggests that some bases may suffer from identity bias and that

multiple bases encode similar kinds of movement. As discussed in Section 4.12, the afore-listed

sensitivities can be remedied by replacing the motion representation (i.e. Gabor phase shifts)

with a more robust alternative, by adopting a probabilistic inference of the basis coefficients, and

by employing a more complex modelling that can exploit the redundancy among different bases.

A natural future direction for the proposed method is to apply it for AU detection and AU phase

recognition in a supervised or unsupervised manner (Section 4.12).

5.3 Closing remarks and outlook

A few years ago two of the major research directions identified for facial affect recognition

were [276]: (i) the recognition of affect “in-the-wild” and (ii) the recognition of subtle expres-

sions.

In today’s literature, the former of the two issues is being addressed increasingly more – at
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least by spatial affect analysis pipelines – thanks to the development of robust facial landmark

localisation techniques and the hierarchical representation pipelines such as deep architectures.

However, such systems have generally been validated for relatively large-intensity (i.e. pro-

nounced) facial expressions and for the six-basic emotions model. One problem is that the six-

basic emotions are limited in their ability to represent everyday emotions [73]; therefore, even

a system that achieves perfect accuracy may have a limited relevance for a real-life application.

While continuous models are a promising alternative for representing daily-life emotions (see

Section 1.3), efforts to collect data “in-the-wild“ and annotate it with continuous models started

only recently [275].

This brings us to the second of the above-mentioned research directions. Identifying subtle

expressions, which are associated with low-intensity emotions, was one of the most important

motivations to employ spatio-temporal representations instead of the simpler spatial represen-

tations (see Section 2.5.2). The direction taken by the literature in this regard has been rather

unexpected, if not puzzling. Sophisticated data-driven spatio-temporal representations have been

developed recently; however, most of them have not exploited the capability of a spatio-temporal

approach to recognise subtle expressions.

An outstanding issue in today’s literature is to devise systems that are capable of operating

“in-the-wild” and also identifying subtle expressions. Hierarchical spatio-temporal representa-

tions devised through machine learning have the potential to address those two issues concur-

rently, as hierarchical representations encourage robustness and spatio-temporal representations

facilitate the analysis of subtle expressions. With the overwhelming research on sophisticated

deep architectures [110] and with tech giants such as Microsoft [52] and Google [80] investing

in emotion recognition, the progress can happen at an unexpectedly fast rate.

This thesis hopes to have contributed to this progress threefold. Firstly, we aimed to under-

pin useful practices in the design and the evaluation of data-driven spatio-temporal approaches

(Section 2.8). Secondly, we drew attention to the importance accurate registration for analysing

subtle expressions and proposed a sequence registration technique (Chapter 3). Finally, we pro-

posed a novel spatio-temporal representation for facial analysis (Chapter 4). This representation

is based on the simple idea of describing facial expressions in terms of localised movements and

discerning between the different intensities of the same movement. While the representation pro-

posed in this thesis would be called shallow in today’s literature, this simple idea that lead to its
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success is implemented through localised differential filters that are commonplace in hierarchical

representations, therefore can be incorporated into novel shallow or deep architectures.
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Appendix A

Gabor motion energy

A.1 Computing motion energy of a moving line

In this section we compute the energy of a moving line, which will enable us to study the prop-

erties of motion energy analytically. For brevity, we denote the moving line with I (instead of

Il); and the even- and odd-phased Gabor filters respectively with ge and go. To compute the

energy of the moving line, EIl , we must compute the convolutions I∗ge and I∗go. The convolu-

tion I∗ge requires the computation a triple integral that can be challenging even for a computer

algebra system. Therefore we make use of the Convolution Theorem, which states that, under

suitable conditions, the convolution of two functions is equivalent to the pointwise product of

their Fourier transforms, i.e. F{I∗g}=F{I}F{g}. The Fourier transforms of I, ge are denoted

respectively with Î, ĝe and are computed using Mathematica R© as (see Appendix C.1):

Î(ξ1,ξ2,ξ3) = c

√
2π

cosθl
δ (ξ1vl secθl +ξ3)

δ (ξ1 tanθl +ξ2), (A.1)

ĝe(ξ1,ξ2,ξ3) =
1

4
√

2π
√

π

(
1+ eξ3vg+ξ1 cosθg+ξ2 sinθg

)
e−

2ξ2 sin θg+1+ξ
2
1 +ξ

2
2 +(ξ3+vg)2+2ξ1 cos θg

4 . (A.2)
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I ∗ ge is obtained with an inverse transform, I ∗ ge = F−1{Îĝe} (see Appendix C.1 and Ap-

pendix C.2):

I∗ge =
csgn(secθl)

2
√

2π2
√

1+ v2
l

cos
(vgvl− cosθgl)(tvl− xcosθl + ysinθl)

1+ v2
l

e
−

vgvl cos θgl+4tyvl sin θl−4x cos θl (tvl+sin θl )

2(1+v2
l )

e
−

1+4x2+4y2+2v2
g+(2+8t2)v2

l −cos 2θgl+4(x2−y2) cos 2θl
8(1+v2

l ) , (A.3)

where θgl =
∆

θg +θl . The convolution with the odd-phased filter, I∗go, produces a similar output

— the only difference is that the first cos function is replaced with−sin. Finally, using I∗ge and

I∗go, we can compute the energy for the moving line EI = (I∗ge)2 +(I∗go)2 as:

EI =
c̄2

1+ v2
l

e
−

vgvl cos θgl+4tyvl sin θl−4x cos θl (tvl+y sin θl )

1+v2
l

e
−

1+4x2+4y2+2v2
g+(2+8t2)v2

l −cos 2θgl+4(x2−y2) cos 2θl
4(1+v2

l ) , (A.4)

where c̄ =∆ c
2
√

2π2 . An interactive plot that shows how EI varies with filter parameters θg,vg and

line parameters θl,vl is provided in ftp://spit.eecs.qmul.ac.uk/pub/es/s.zip.

A.2 Tuning direction and velocity for Gabor motion energy

In order to tune a Gabor filter pair to a particular speed vl and spatial orientation θl , we should

find the vg and θg values that maximise EI. To this end, we first find all extrema of EI, and then

find which of these are the maxima.

To find extrema, we compute the first-order partial derivatives of EI with respect to vg and

θg:

∂EI

∂vg
=− 1

1+ v2
l
(vg + vl cosθgl)EI, (A.5)

∂EI

∂θg
=− 1

1+ v2
l
(cosθgl− vgvl)sinθglEI. (A.6)

The solutions that make both partial derivatives zero can be considered as four sets, S1,S2,S3,S4,
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that are defined as:

S1 =
∆ {(vg,θg) : (0,−π/2−θl +2π k),k ∈ Z}, (A.7)

S2 =
∆ {(vg,θg) : (0,π/2−θl +2π k),k ∈ Z}, (A.8)

S3 =
∆ {(vg,θg) : (vl,π−θl +2π k),k ∈ Z}, (A.9)

S4 =
∆ {(vg,θg) : (−vl,−θl +2π k),k ∈ Z}. (A.10)

We eliminate S4 as we assume vl,vg ≥ 0, so the only solution to satisfy S4 is vl = vg = 0, which

implies that the line is not moving. To determine whether there is a maximum among the remain-

ing solutions, S1,S2, S3, we use the second derivative test. The second partial derivatives of EI

are:

∂E2
I

∂ 2υg
=
[
vl cosθgl(2vg + vl cosθgl)−1+ v2

g− v2
l
] EI

(1+ v2
l )

2 , (A.11)

∂E2
I

∂ 2θg
=
[
(1+ v2

l )(vgvl cosθgl− cos2θgl)+(cosθgl− vgvl)
2 sin2

θgl
] EI

(1+ v2
l )

2 , (A.12)

∂E2
I

∂θg∂vg
=
[
vl(3−2v2

g +2v2
l + cos2θgl)−2vg cosθgl(v2

l −1)
] EI sinθgl

2(1+ v2
l )

2 . (A.13)

To perform the second partial derivative test, we construct the Hessian matrix H and compute its

determinant as a function D(vg,θg) as follows:

H =

 ∂E2
I

∂ 2vg

∂E2
I

∂vg∂θg

∂E2
I

∂θg∂vg

∂E2
I

∂ 2θg

 , (A.14)

D(vg,θg) =
∆ det(H) =

∂E2
I

∂ 2vg

∂E2
I

∂ 2θg
−
(

∂E2
I

∂θg∂vg

)2

. (A.15)

To determine whether the solutions S1, S2 or S3 are extrema, we denote the determinants of those

solutions respectively as DS1 ,DS2 ,DS3 and compute them as (see Appendix C.3):

DS1 = DS2 =−Ke
2(y2−x2) cos 2θl−8tyvl sin θl+4xy sin 2θl

1+v2
l

e
− 8txvl cos θl−1−2x2−2y2−v2

l −4t2v2
l

1+v2
l , (A.16)

DS3 = Ke
− 4

1+v2
l
(tvl−xcosθl+y sinθl)

2

, (A.17)

where K = c2

(2
√

2π2)4(1+v2
l )

3 > 0. Since the outcome of the exp function is always positive, DS1 ,DS2

are always negative; therefore, S1, S2 contain saddle points and not extrema. On the other hand,

S3 contains extrema as DS3 > 0. To check whether S3 contains maxima or minima, we check the
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partial derivative ∂E2
I

∂ 2vg
for the solutions of S3:

∂E2
I

∂ 2vg

∣∣∣∣
(vg,θg)∈S3

=
−ce

− 2(y sin θl+tvl−x cos θl )
2

1+v2
l

8π4(1+ v2
l )

2 . (A.18)

This expression is always negative, therefore (vg,θg) ∈ S3 are maxima. In conclusion, to tune the

filters ge,go to a line moving with spatial orientation θl and speed vl , the filter parameters vg and

θg must be defined as follows:

vg = vl, (A.19)

θg = π−θl +2πk. (A.20)

A.3 Variation of normalisation coefficients against time

We show that the ZIw
p

coefficient that appears in (3.18) after illumination is cancelled out changes

slowly with time w, and therefore causes little variation in the trend of the signal we aim to

measure (i.e. motion energy). This is important, as it ensures that during normalisation we are

not altering the characteristic behaviour of motion energy, which was discussed throughout Sec-

tion 3.4. We analyse the sensitivity of ZIt to t on a sequence I where there is a global translation

and no illumination variations — a sequence that adheres to the definition of Ip in Section 3.4.2.

We may show that ZIt varies slowly with time by showing that the `1 distance between the co-

efficients of two frames, |ZItm −ZItn |, is small. To compute ZItm ,ZItn , we first need to obtain the

static sequences Itm ,Itn . Since the only difference between the frames of I is a global transla-

tion, the static sequences are translated versions of each other (similarly to Fig. 3.5b,c), that is,

Itm(x) = Itn(x+ τ) for some τ = (τx,τy,0).

To compute ZItm as in (3.11), we first need to compute the energy, which is based on convo-

lution. Let hn(x,g) =∆ (Itn ∗ g)(x) and hm(x,g) =∆ (Itm ∗ g)(x). Since translation commutes with

convolution, hm can be rewritten as:

hm(x,g) = hn(x+ τ,g). (A.21)
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The energies EItn (x) and EItm (x) can then be computed as:

EItn (x) =(hn(x,ge))2 +(hn(x,go))2 , (A.22)

EItm (x) =(hm(x,ge))2 +(hm(x,go))2

=(hn(x+ τ,ge))2 +(hn(x+ τ,go))2

=EItn (x+ τ). (A.23)

Then, for a volume Ω =∆ X×Y ×T =∆ (x0,x f )× (y0,y f )× (t0, t f ), the coefficients ZItn , ZItm can be

computed as:

ZItn =
∫
Ω

EItn (x′)dx′, (A.24)

ZItm =
∫
Ω

EItm (x′)dx′ =
∫
Ω

EItn (x′+ τ)dx′. (A.25)

The distance |ZItn −ZItm | can rewritten with a change of variable in the integral of ZItm . Let

X ′ =∆ (x0 + τx,x f + τx), Y ′ =∆ (y0 + τy,y f + τy) and Ω
′ =∆ X ′×Y ′×T . Then, it can be shown that:

|ZItn −ZItm |=

∣∣∣∣∣∣
∫
Ω

EItn (x′)dx′−
∫
Ω′

EItn (x′)dx′

∣∣∣∣∣∣ . (A.26)

We can interpret (A.26) better by excluding the region of intersection, Ω∩Ω
′: This region will

have no contribution to the distance in (A.26), as the integrands of the two integrals in (A.26)

are equal, and their difference would yield zero when the integration is done over the same

region. The non-zero contribution to (A.26) can only come from the non-intersecting regions:

Ω\Ω′ and Ω′\Ω. These regions depend on the amount of translation: if translation is small, then

Ω\Ω′,Ω′\Ω become small, and therefore |ZItn −ZItm | is likely to be small.

In Fig. A.1 we show quantitatively how two successive coefficients ZI0 , ZI1 change with

respect to the amount of translation. To this end, we crop N = 1000 image samples, {In}N
n=1,

each of size 2P×2P, from randomly picked regions in the first frames of the test sequences. We

synthesize two-frame sequences such as In,τ = (In, I′n), where In denotes a sample and I′n denotes

the same sample after being translated horizontally by τ pixels. We synthesise 10 sequences per

sample, In,τ0 ,In,τ1 , . . . ,In,τ9 , such as τi = i/2. We can measure how ZIt
n,τ

varies between the two

frames of In,τ through the ratio ZI1
n,τ
/ZI0

n,τ
. Specifically, we use the average of this ratio over all

sequences,

δ Z̄τ =
∆

N

∑
n=1

ZI1
n,τ

ZI0
n,τ

. (A.27)
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Figure A.1: Illustration which depicts that the ZIt coefficient shows small variation over time
(left), and that this variation causes a negligible change in the trend of the motion energy function.
Results are obtained with two pairs of filters tuned to different orientations θg but to a common
speed vg = 1.

In Fig. A.1 (left) we show how δ Z̄τ changes with τ , for coefficients computed with two filter

pairs tuned to different orientations. We note that δ Z̄τ generally deviates from 1 proportionally

to τ , which is in accordance with the conclusion we reached after (A.26). However, this increase

is relatively small; the deviation in δ Z̄τ never exceeds 2.5%, which shows that ZIt
n,τ

has little

sensitivity to amount of translation, τ .

We now analyse whether this increase is significant: We illustrate how normalisation with

the time-dependent ZIt coefficients changes the trend of the signal that we aim to measure — the

Gabor motion energy. For this purpose, we compute how the pooling output of the sequences

varies with τ:

δ φ̄τ =
∆

N

∑
n=1

φn,τ

φn,τ0

, (A.28)

where φn,τ is the output of mean pooling of the normalised energy of In,τ . We compare δ φ̄τ with

the original (i.e. un-normalised) energy, by computing the following ratio:

δψ̄τ =
∆

N

∑
n=1

ψn,τ

ψn,τ0

, (A.29)

where ψn,τ denotes a pooling output computed from the un-normalised energy. Note that δ φ̄τ and

δψ̄τ can be compared fairly, because both are divided with the pooling output of the non-moving

sequence. Ideally, we would like δψ̄τ and δ φ̄τ to be the same for any τ value.

Finally, in Fig. A.1 (right) we compare δ φ̄τ with δψ̄τ : The difference between δ φ̄τ and δψ̄τ

is small even for the largest τ value. It is therefore reasonable to assume that the ZIt coefficients
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cause a negligible change in the trend of the energy, given that the sequence they are computed

from contains no illumination variations.

A.4 Efficient computation of normalised motion energy

Applying the normalisation proposed in Section 3.4.2 locally can be computationally involved,

because each local region requires its own normalisation coefficients. In this section we show

how the summed area tables [42] can be used to perform pooling of Gabor motion energy effi-

ciently. Let us consider the computation of mean pooling of energy over a P×P-sized region

centred anchored at the pixel (i, j):

φ
i j =

1
P2

P+δP

∑
x,y=δP+1

EĨi j
[x,y], (A.30)

where with Ii j =
∆ (Ii j,0, Ii j,1) we denote the part of the image sequence that the local energy will

be computed from; that is, Ii j,t is the P×P-sized region of the image It centred on (i, j).

We first compute the convolutions required for energy on the entire input images and then use

the necessary values for φ i j. Note that for a filter g, the equality (Ii j,t ∗g)[x,y] = (It ∗g)[x+ i,y+ j]

holds due to our definition of Ii j,t and the fact that translation commutes with convolution. Let

Axy
t ,Bxy

t be Axy
t =∆ (It ∗ ge

Tg−1−t)[x,y] and Bxy
t =∆ (It ∗ go

Tg−1−t)[x,y]. Using the afore-mentioned

equality, we can perform the pooling in (A.30) as:

φ
i j =

1
P2 ∑

x,y


Tg−1

∑
t=0

1√
ZIt

i j

Axy
t

2

+

Tg−1

∑
t=0

1√
ZIt

i j

Bxy
t

2


=

∑
x,y
(Axy

0 )2

P2ZI0
i j

+

∑
x,y
(Axy

1 )2

P2ZI1
i j

+

∑
x,y
(Bxy

0 )2

P2ZI0
i j

+

∑
x,y
(Bxy

1 )2

P2ZI1
i j

+
2

P2
√

ZI0
i j
ZI1

i j

(
∑
x,y

Axy
0 Axy

1 +∑
x,y

Bxy
0 Bxy

1

)
, (A.31)

where we dropped the dependence of φ
i j
k to k for clarity. The the sums in the right-hand-side run

over (x,y)∈N[i+1,i+P]×N[ j+1, j+P]. After writing the sums as in (A.31), we can employ summed-

area tables, which enable the computation of each sum with four instead of P2 operations [42].

The integrals (i.e. sums) required for ZI0
i j
,ZI1

i j
can also be computed in a similar manner, once the

summed-area table of the static energies, EI0 ,EI1 , where I =∆ (I0, I1), are pre-computed.
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Additional illustrations

B.1 Basis coefficients from six-basic emotions

This section visualises the basis coefficients ut,k (see Section 4.7) computed from the sequences

of the first two subjects of the MMI dataset [167]. Fig. B.1–B.6 display the anger, disgust, fear,

happiness, sadness, surprise sequences for Subject 001, and Fig. B.7–B.12 respectively display

the sequences of those emotions for Subject 002. Each figure can be split vertically into two

sub-figures: one for the left eye and one for the mouth. Each of those sub-figures is constructed

in the same way as the corresponding figures in Section 4.7 (e.g. see Fig. 4.8); that is, we

split the sub-figure into three parts where the top part represents the input sequence, the middle

part represents the coefficients computed from the entire sequence jointly, and the bottom part

represents the coefficients computed from four disjoint segments of the sequence independently.

132



Appendix B: Additional illustrations 133

10 20 30 40 50 60 70 80

−5

0

5

t

 

 
ut,3 ut,4 ut,11 ut,13 ut,19 ut,52

10 20

−5

0

5

t

10 20

t

10 20

t

10 20

t

10 20 30 40 50 60 70 80

−5

0

5

t

 

 
ut,70 ut,76 ut,95 ut,98 ut,102 ut,117

10 20

−5

0

5

t

10 20

t

10 20

t

10 20

t

Figure B.1: Subject 1, expression of anger.
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Figure B.2: Subject 1, expression of disgust.
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Figure B.3: Subject 1, expression of fear.
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Figure B.4: Subject 1, expression of happiness.
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Figure B.5: Subject 1, expression of sadness.
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Figure B.6: Subject 1, expression of surprise.



Appendix B: Additional illustrations 139

10 20 30 40 50 60 70 80 90

−5

0

5

t

 

 
ut,3 ut,4 ut,11 ut,13 ut,50 ut,52

5 10 15 20 25

−5

0

5

t

5 10 15 20 25

t

5 10 15 20 25

t

5 10 15 20 25

t

10 20 30 40 50 60 70 80 90

−5

0

5

t

 

 
ut,70 ut,76 ut,84 ut,86 ut,95 ut,117

5 10 15 20 25

−5

0

5

t

5 10 15 20 25

t

5 10 15 20 25

t

5 10 15 20 25

t

Figure B.7: Subject 2, expression of anger.
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Figure B.8: Subject 2, expression of disgust.
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Figure B.9: Subject 2, expression of fear.
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Appendix C

Mathematica R© Files

C.1 Application of Convolution Theorem for computing motion energy

This section provides the Mathematica R© notebook file that is used to compute the Gabor motion

energy of a moving line through the application of the Convolution theorem.

145
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Clear@g, ge, go, f, x, y, tD;H*filters and line*L
Clear@Γ, Λ, Τ, Σ, cD;
H*fixed filter parameters-- Subscript@Μ,tD=0 for good!*L
Clear@Υg, Υl, Θg, ΘlD; H*speed of the filter HΥgL and the line HΥlL,
orientation of the filter HΘgL and the line HΘlL*LH*The'source filter'*L
g@x_, y_, t_D = Γ � H2 Π Σ^2L Exp@-HHx^2 + y^2 + t^2L � H2 Σ^2LLD

Cos@H2 ΠL � Λ Hx Cos@ΘgD + y Sin@ΘgD + Υg tL + ΦD 1 � HSqrt@2 ΠD ΤL;

H*fix unrelated parameters*L
Γ = 1; Λ = 2 Π; Τ = Σ = 1 � Sqrt@2D; c = 1;

H*HeLven-x and HoLdd-phased filters for t=0 and t=1*L

assumptions = Im@uD � 0 && Im@vD � 0 && Im@zD � 0 && Im@xD � 0 &&

Im@yD � 0 && Im@tD � 0 && Im@ΥlD � 0 && Im@ΥgD � 0 && Im@ΘgD � 0 &&

Im@ΘlD � 0 && Υg > 0 && Υl > 0 && Π > Θg > 0 && Π > Θl > 0 && Im@Csc@ΘlDD � 0 &&

Sin@ΘlD ¹ 0 && Cos@ΘlD ¹ 0 && Im@Cot@ΘlDD � 0 &&¥ > Cot@ΘlD > -¥ &&

Α Î Reals && Β Î Reals && Α > 0 && Im@ccD � 0 && Im@ddD � 0 && Cos@ΘlD > 0;

ge@x_, y_, t_D = g@x, y, tD �. 8Φ ® 0<
H*go@x_,y_,t_D=g@x,y,tD�.8Φ®Π�2<*L

H*the line'generator'*L

f@x_, y_, t_D = c DiracDelta@x Cos@ΘlD - y Sin@ΘlD - Υl tD;

H* Fourier transforms of the filter and line respectively *L
fg = FourierTransform@ge@x, y, tD, 8x, y, t<, 8w1, w2, w3<D �� FullSimplify

ff = FourierTransform@f@x, y, tD,
8x, y, t<, 8w1, w2, w3<, Assumptions ® assumptionsD

H* Multiply line with filter in the Fourier domain *L
fr = ff * fg �� FullSimplify

H* THIS IS NOT USED DIRECTLY! It is restructured manually,

specifically, the Cosh@D¡Sinh@D's are converted to Exp@¡D's
SEE NEXT CELL! *L

ã-t2-x2-y2
Cos@t Υg + x Cos@ΘgD + y Sin@ΘgDD

Π3�2

1

4 2 Π3�2

H1 + Cosh@w3 Υg + w1 Cos@ΘgD + w2 Sin@ΘgDD + Sinh@w3 Υg + w1 Cos@ΘgD + w2 Sin@ΘgDDL

CoshB
1

4

I1 + w1
2

+ w2
2

+ Hw3 + ΥgL2
+ 2 w1 Cos@ΘgD + 2 w2 Sin@ΘgDMF -

SinhB
1

4

I1 + w1
2

+ w2
2

+ Hw3 + ΥgL2
+ 2 w1 Cos@ΘgD + 2 w2 Sin@ΘgDMF
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1

4 Π

DiracDelta@w3 + w1 Υl Sec@ΘlDD DiracDelta@w2 + w1 Tan@ΘlDD Sec@ΘlD

H1 + Cosh@w3 Υg + w1 Cos@ΘgD + w2 Sin@ΘgDD + Sinh@w3 Υg + w1 Cos@ΘgD + w2 Sin@ΘgDDL

CoshB
1

4

I1 + w1
2

+ w2
2

+ Hw3 + ΥgL2
+ 2 w1 Cos@ΘgD + 2 w2 Sin@ΘgDMF -

SinhB
1

4

I1 + w1
2

+ w2
2

+ Hw3 + ΥgL2
+ 2 w1 Cos@ΘgD + 2 w2 Sin@ΘgDMF

fgRes =
1

4 2 Π
3�2

H1 + Exp@w3 Υg + w1 Cos@ΘgD + w2 Sin@ΘgDDL

ExpB-
1

4

I1 + w1
2

+ w2
2

+ Hw3 + ΥgL2
+ 2 w1 Cos@ΘgD + 2 w2 Sin@ΘgDMF

ã

1

4
I-1-w12-w22-Hw3+ΥgL2-2 w1 Cos@ΘgD-2 w2 Sin@ΘgDM I1 + ãw3 Υg+w1 Cos@ΘgD+w2 Sin@ΘgDM

4 2 Π3�2

H* Restructure fourier output,

and then compute the inverse -- which is the output of convolution *L

resFr =
1

4 Π

DiracDelta@w3 + w1 Υl Sec@ΘlDD

DiracDelta@w2 + w1 Tan@ΘlDD Sec@ΘlD H1 + Exp@w3 Υg + w1 Cos@ΘgD + w2 Sin@ΘgDDL

ExpB-
1

4

I1 + w1
2

+ w2
2

+ Hw3 + ΥgL2
+ 2 w1 Cos@ΘgD + 2 w2 Sin@ΘgDMF

ifr = InverseFourierTransform@resFr, 8w2, w1, w3<, 8y, x, t<D;

1

4 Π

ã

1

4
I-1-w12-w22-Hw3+ΥgL2-2 w1 Cos@ΘgD-2 w2 Sin@ΘgDM I1 + ã

w3 Υg+w1 Cos@ΘgD+w2 Sin@ΘgDM

DiracDelta@w3 + w1 Υl Sec@ΘlDD DiracDelta@w2 + w1 Tan@ΘlDD Sec@ΘlD

H* ifr is a very long expression,

needs simplification. Simplify@D here takes very long HhoursL but works. *L
sifr = Simplify@ifr, Assumptions ® assumptions, TimeConstraint ® 300000D

1

8 2 Π2
1 +

1

Υl2
Υl Abs@Sec@ΘlDD

Sec@ΘlD 1 +
1

Υl2
Υl

ErfB
1

2

H2 ä t Υl - Υg Υl - 2 ä x Cos@ΘlD + Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL2

1 + Υl2
F

H2 ä t Υl - Υg Υl - 2 ä x Cos@ΘlD + Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL +

2 - ä ErfiB
2 t Υl + ä Υg Υl - 2 x Cos@ΘlD - ä Cos@Θg + ΘlD + 2 y Sin@ΘlD

2 1 + Υl2

F

-I1 + Υl
2M H2 t Υl + ä Υg Υl - 2 x Cos@ΘlD - ä Cos@Θg + ΘlD + 2 y Sin@ΘlDL2

ICoshA1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
+ 8 ä t Υg Υl

2
+

4 ä x Cos@ΘgD - 8 x H2 t + ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD -

- + -

2     convolution3D_fourier.nb
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4 ä x Cos@ΘgD - 8 x H2 t + ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD -

4 y
2
Cos@2 ΘlD - 8 ä t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD + 4 ä x Cos@Θg + 2 ΘlD + 4 ä y Sin@ΘgD + 16 t y Υl Sin@ΘlD +

8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD - 4 ä y Sin@Θg + 2 ΘlDME -

SinhA1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
+ 8 ä t Υg Υl

2
+

4 ä x Cos@ΘgD - 8 x H2 t + ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD -

4 y
2
Cos@2 ΘlD - 8 ä t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD + 4 ä x Cos@Θg + 2 ΘlD + 4 ä y Sin@ΘgD + 16 t y Υl Sin@ΘlD +

8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD - 4 ä y Sin@Θg + 2 ΘlDMEM �

J -I1 + Υl
2M H2 t Υl + ä Υg Υl - 2 x Cos@ΘlD - ä Cos@Θg + ΘlD + 2 y Sin@ΘlDL2 N +

ErfB
1

2

H2 ä t Υl + Υg Υl - 2 ä x Cos@ΘlD - Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL2

1 + Υl2
F

H2 ä t Υl + Υg Υl - 2 ä x Cos@ΘlD - Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL2
+

2 ä + ErfiB
2 t Υl - ä Υg Υl - 2 x Cos@ΘlD + ä Cos@Θg + ΘlD + 2 y Sin@ΘlD

2 1 + Υl2

F

H2 t Υl - ä Υg Υl - 2 x Cos@ΘlD + ä Cos@Θg + ΘlD + 2 y Sin@ΘlDL

ICoshA1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
- 8 ä t Υg Υl

2
-

4 ä x Cos@ΘgD - 8 x H2 t - ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD -

4 y
2
Cos@2 ΘlD + 8 ä t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD - 4 ä x Cos@Θg + 2 ΘlD - 4 ä y Sin@ΘgD + 16 t y Υl Sin@ΘlD -

8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD + 4 ä y Sin@Θg + 2 ΘlDME -

SinhA1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
- 8 ä t Υg Υl

2
-

4 ä x Cos@ΘgD - 8 x H2 t - ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD -

4 y
2
Cos@2 ΘlD + 8 ä t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD - 4 ä x Cos@Θg + 2 ΘlD - 4 ä y Sin@ΘgD + 16 t y Υl Sin@ΘlD -

8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD + 4 ä y Sin@Θg + 2 ΘlDMEM �

H2 ä t Υl + Υg Υl - 2 ä x Cos@ΘlD - Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL

H* The output of Simplify is still very long,

needs further simplification Hdone manuallyL.
Simplify_3DConvolution.nb is written for this purpose. *L

convolution3D_fourier.nb     3
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C.2 Simplification of Fourier Transform output for completing

application of Convolution Theorem

The outcome of the Convolution Theorem in Section C.1 is cluttered and Mathematica R© can-

not simplify it further fully automatically. We have completed the simplification partly through

manual computation. This section provides the Mathematica R© notebook file that leads to the

simplified version of the convolution output presented in Section C.1.
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H* This script defines a procedure

to simplify the output of the 3D convolution

of a moving line with a spatio-temporal Gabor filter *L

H* This cell defines some functions for dealing with the simplification,

mainly about reformulating exponential expressions *L
ClearAll@"Global`*"D

H* Multiply all elements in a list *L
listProduct@x_ListD := Times �� x

H* Check if an expression contains ä *L
ImaginaryQ@expr_D := ! FreeQ@expr, _ComplexD

H* restructure the exponential term to keep ONLY IMAGINARY PARTS!

The argument of the exponential must have been Expand@D'ed IN ADVANCE!

i.e. required form Exp@a�2+b�2D rather than e.g. Exp@Ha+bL�2D

First obtain a list only of all imaginary

components and then multiply all the elements in the list

ðð&@D: This is the expression that destroys itself

Hand is removed automatically from the listL *L
restExpImag@x_D := Table@ If@ ImaginaryQ@ x@@2DD@@nDDD, Exp@x@@2DD@@nDDD ��

ExpToTrig, ðð &@DD, 8n, 1, Length@x@@AllDD@@2DDD<D �� listProduct

H* restructure the exponential term to keep ONLY REAL PARTS!

The argument of the exponential must have been Expand@D'ed IN ADVANCE!

i.e. required form Exp@a�2+b�2D rather than e.g. Exp@Ha+bL�2D *L
restExpReal@x_D := Table@ If@ ImaginaryQ@ x@@2DD@@nDDD, ðð &@D, Exp@x@@2DD@@nDDDD,

8n, 1, Length@x@@AllDD@@2DDD<D �� listProduct

H* Simplify an exponential expression and keep using the routines above!

This outputs a form where complex coeffs of the exp. are a

converted to trig. expressions while real coeffs are kept exp.

e.g. output: HCos@aD-ä Sin@bDLExp@cD
PS: Something is probably wrong in the functions below,

they are not used in the script anyway.

But they must be checked if they are going to be used!

*L
simplifyExpImag@x_D := Module@8expr, arg<,

expr = Simplify@restExpImag@xDD;
arg = Last@First@exprDD �� FullSimplify;

Cos@argD + First@Last@exprDD Sin@argD
D

H* Sometimes the above cannot handle complicated expressions

and the output contains Cosh@D Sinh@D functions Hwhich were supposed

to be raised in the exp. expressionL *L
fullSimplifyExpImag@x_D := Module@8expr, arg<,

expr = FullSimplify@restExpImag@xDD;
arg = Last@First@exprDD �� FullSimplify;

Cos@argD + First@Last@exprDD Sin@argD
D
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D

H* Use the functions above to fully *L
restExpFullSimplified@x_D := fullSimplifyExpImag@xD restExpReal@xD
restExpSimplified@x_D := simplifyExpImag@xD restExpReal@xD

H* The expression to simplify. This is the output

of the 3D convolution of a moving line with a Gabor

filter Hobtained from the file convolution3D_fourier.nbL.
It is obtained by using the convolution theorem. The expression below

is the output of the InverseFourierTransform HSimplify@D'ed onceL. *L
e = H1 � H8 Sqrt@2D Π^2 Sqrt@1 + 1 � Υl^2D Υl Abs@Sec@ΘlDDLL Sec@ΘlD

HHHSqrt@1 + 1 � Υl^2D Υl Erf@1 � 2 Sqrt@H2 I t Υl - Υg Υl - 2 I x Cos@ΘlD +

Cos@Θg + ΘlD + 2 I y Sin@ΘlDL^2 � H1 + Υl^2LDD
H2 I t Υl - Υg Υl - 2 I x Cos@ΘlD + Cos@Θg + ΘlD + 2 I y Sin@ΘlDL +

H2 - I Erfi@H2 t Υl + I Υg Υl - 2 x Cos@ΘlD - I Cos@Θg + ΘlD + 2 y Sin@ΘlDL �
H2 Sqrt@1 + Υl^2DLDL Sqrt@-H1 + Υl^2L

H2 t Υl + I Υg Υl - 2 x Cos@ΘlD - I Cos@Θg + ΘlD + 2 y Sin@ΘlDL^2DL
HCosh@1 � H8 H1 + Υl^2LL H1 + 4 x^2 + 4 y^2 + 2 Υg^2 + 2 Υl^2 + 8 t^2 Υl^2 +

8 I t Υg Υl^2 + 4 I x Cos@ΘgD - 8 x H2 t + I ΥgL Υl Cos@ΘlD + 4 x^2 Cos@2 ΘlD -

4 y^2 Cos@2 ΘlD - 8 I t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD + 4 I x Cos@Θg + 2 ΘlD + 4 I y Sin@ΘgD + 16 t y Υl Sin@ΘlD +

8 I y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD - 4 I y Sin@Θg + 2 ΘlDLD -

Sinh@1 � H8 H1 + Υl^2LL H1 + 4 x^2 + 4 y^2 + 2 Υg^2 + 2 Υl^2 + 8 t^2 Υl^2 +

8 I t Υg Υl^2 + 4 I x Cos@ΘgD - 8 x H2 t + I ΥgL Υl Cos@ΘlD + 4 x^2 Cos@2 ΘlD -

4 y^2 Cos@2 ΘlD - 8 I t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD + 4 I x Cos@Θg + 2 ΘlD + 4 I y Sin@ΘgD + 16 t y Υl Sin@ΘlD +

8 I y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD - 4 I y Sin@Θg + 2 ΘlDLDLL �
HSqrt@-H1 + Υl^2L H2 t Υl + I Υg Υl - 2 x Cos@ΘlD - I Cos@Θg + ΘlD + 2 y Sin@ΘlDL^2DL +

HHErf@1 � 2 Sqrt@H2 I t Υl + Υg Υl - 2 I x Cos@ΘlD -

Cos@Θg + ΘlD + 2 I y Sin@ΘlDL^2 � H1 + Υl^2LDD
Sqrt@H2 I t Υl + Υg Υl - 2 I x Cos@ΘlD - Cos@Θg + ΘlD + 2 I y Sin@ΘlDL^2D +

H2 I + Erfi@H2 t Υl - I Υg Υl - 2 x Cos@ΘlD + I Cos@Θg + ΘlD +

2 y Sin@ΘlDL � H2 Sqrt@1 + Υl^2DLDL
H2 t Υl - I Υg Υl - 2 x Cos@ΘlD + I Cos@Θg + ΘlD + 2 y Sin@ΘlDLL

HCosh@1 � H8 H1 + Υl^2LL H1 + 4 x^2 + 4 y^2 + 2 Υg^2 + 2 Υl^2 + 8 t^2 Υl^2 -

8 I t Υg Υl^2 - 4 I x Cos@ΘgD - 8 x H2 t - I ΥgL Υl Cos@ΘlD + 4 x^2 Cos@2 ΘlD -

4 y^2 Cos@2 ΘlD + 8 I t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD - 4 I x Cos@Θg + 2 ΘlD - 4 I y Sin@ΘgD + 16 t y Υl Sin@ΘlD -

8 I y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD + 4 I y Sin@Θg + 2 ΘlDLD -

Sinh@1 � H8 H1 + Υl^2LL H1 + 4 x^2 + 4 y^2 + 2 Υg^2 + 2 Υl^2 + 8 t^2 Υl^2 -

8 I t Υg Υl^2 - 4 I x Cos@ΘgD - 8 x H2 t - I ΥgL Υl Cos@ΘlD + 4 x^2 Cos@2 ΘlD -

4 y^2 Cos@2 ΘlD + 8 I t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD - 4 I x Cos@Θg + 2 ΘlD - 4 I y Sin@ΘgD + 16 t y Υl Sin@ΘlD -

8 I y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD + 4 I y Sin@Θg + 2 ΘlDLDLL �
H2 I t Υl + Υg Υl - 2 I x Cos@ΘlD - Cos@Θg + ΘlD + 2 I y Sin@ΘlDLL

1

8 2 Π2
1 +

1

Υl2
Υl Abs@Sec@ΘlDD

Sec@ΘlD 1 +
1

Υl2
Υl
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ErfB
1

2

H2 ä t Υl - Υg Υl - 2 ä x Cos@ΘlD + Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL2

1 + Υl2
F

H2 ä t Υl - Υg Υl - 2 ä x Cos@ΘlD + Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL +

2 - ä ErfiB
2 t Υl + ä Υg Υl - 2 x Cos@ΘlD - ä Cos@Θg + ΘlD + 2 y Sin@ΘlD

2 1 + Υl2

F

I-1 - Υl
2M H2 t Υl + ä Υg Υl - 2 x Cos@ΘlD - ä Cos@Θg + ΘlD + 2 y Sin@ΘlDL2

ICoshA1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
+ 8 ä t Υg Υl

2
+

4 ä x Cos@ΘgD - 8 x H2 t + ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD -

4 y
2
Cos@2 ΘlD - 8 ä t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD + 4 ä x Cos@Θg + 2 ΘlD + 4 ä y Sin@ΘgD + 16 t y Υl Sin@ΘlD +

8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD - 4 ä y Sin@Θg + 2 ΘlDME -

SinhA1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
+ 8 ä t Υg Υl

2
+

4 ä x Cos@ΘgD - 8 x H2 t + ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD -

4 y
2
Cos@2 ΘlD - 8 ä t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD + 4 ä x Cos@Θg + 2 ΘlD + 4 ä y Sin@ΘgD + 16 t y Υl Sin@ΘlD +

8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD - 4 ä y Sin@Θg + 2 ΘlDMEM �

J I-1 - Υl
2M H2 t Υl + ä Υg Υl - 2 x Cos@ΘlD - ä Cos@Θg + ΘlD + 2 y Sin@ΘlDL2 N +

ErfB
1

2

H2 ä t Υl + Υg Υl - 2 ä x Cos@ΘlD - Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL2

1 + Υl2
F

H2 ä t Υl + Υg Υl - 2 ä x Cos@ΘlD - Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL2
+

2 ä + ErfiB
2 t Υl - ä Υg Υl - 2 x Cos@ΘlD + ä Cos@Θg + ΘlD + 2 y Sin@ΘlD

2 1 + Υl2

F

H2 t Υl - ä Υg Υl - 2 x Cos@ΘlD + ä Cos@Θg + ΘlD + 2 y Sin@ΘlDL

ICoshA1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
- 8 ä t Υg Υl

2
-

4 ä x Cos@ΘgD - 8 x H2 t - ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD -

4 y
2
Cos@2 ΘlD + 8 ä t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD - 4 ä x Cos@Θg + 2 ΘlD - 4 ä y Sin@ΘgD + 16 t y Υl Sin@ΘlD -

8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD + 4 ä y Sin@Θg + 2 ΘlDME -

SinhA1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
- 8 ä t Υg Υl

2
-

4 ä x Cos@ΘgD - 8 x H2 t - ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD -

4 y
2
Cos@2 ΘlD + 8 ä t Υl Cos@Θg + ΘlD + 4 Υg Υl Cos@Θg + ΘlD -

Cos@2 HΘg + ΘlLD - 4 ä x Cos@Θg + 2 ΘlD - 4 ä y Sin@ΘgD + 16 t y Υl Sin@ΘlD -

8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD + 4 ä y Sin@Θg + 2 ΘlDMEM �
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H2 ä t Υl + Υg Υl - 2 ä x Cos@ΘlD - Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL

H* The final expression is considered in three parts,

1L the constant part HkL,
2L e1: the first component that is included within the parentheses,

3L e2: the second element

This cell defines k and reformulates e1.

*L

Clear@∆, Γ, Α1, exp1Arg, exp1, e1f, e1D

k =
1

8 2 Π2
1 +

1

Υl
2

Υl Abs@Sec@ΘlDD

Sec@ΘlD �� FullSimplify;

H* elements that are included in a number of parentheses *L
Γ = 1 + Υl

2
;

Α1 = H2 ä t Υl - Υg Υl - 2 ä x Cos@ΘlD + Cos@Θg + ΘlD + 2 ä y Sin@ΘlDL;

H* The argument of the exponential within e1 -- Exp@D is not seen directly,

it is the sum of Cosh@.D-Sinh@.D *L
exp1Arg =

1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
+ 8 ä t Υg Υl

2
+ 4 ä x Cos@ΘgD -

8 x H2 t + ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD - 4 y

2
Cos@2 ΘlD - 8 ä t Υl Cos@Θg + ΘlD +

4 Υg Υl Cos@Θg + ΘlD - Cos@2 HΘg + ΘlLD + 4 ä x Cos@Θg + 2 ΘlD + 4 ä y Sin@ΘgD +

16 t y Υl Sin@ΘlD + 8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD - 4 ä y Sin@Θg + 2 ΘlDM;

H* argument negative because Cosh@.D-Sinh@.D,
Expand@D because will be passed to restExpImag@.D *L
exp1 = Exp@-exp1Arg �� ExpandD;

H* e1f: reformulate e1 as a function.

Ε is the REAL part of the exponential, which is common in both e1,e2.

Ε will be kept as a variable until the very

end so that Mathematica can simplified it easily *L

e1f @Α_, Ε_D =
1

Sqrt@-∆D H-Α äL
Sqrt@∆D

Υl
Υl ErfB

1

2 Sqrt@∆D
ΑF Α +

2 - ä ErfiB
1

2 Sqrt@∆D
H-Α äLF HSqrt@-∆D H- ä ΑLL Ε restExpImag@exp1D

e1 = ∆ ErfB
1

2

HΑL2

1 + Υl2
F Α + 2 - ä ErfiB

-HΑ äL

2 ∆

F H-∆L H-HΑ äLL2

HCosh@exp2ArgD - Sinh@exp2ArgDL � H-∆L H-HΑ äLL2
;
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1

Α -∆

ä Ε -ä Α -∆ 2 - ErfB
Α

2 ∆

F + Α ∆ ErfB
Α

2 ∆

F

CosB
t Υg Υl2

1 + Υl2
F - ä SinB

t Υg Υl2

1 + Υl2
F CosB

x Cos@ΘgD
2 H1 + Υl2L

F - ä SinB
x Cos@ΘgD
2 H1 + Υl2L

F

CosB
x Υg Υl Cos@ΘlD

1 + Υl2
F + ä SinB

x Υg Υl Cos@ΘlD
1 + Υl2

F

CosB
t Υl Cos@Θg + ΘlD

1 + Υl2
F + ä SinB

t Υl Cos@Θg + ΘlD
1 + Υl2

F

CosB
x Cos@Θg + 2 ΘlD

2 H1 + Υl2L
F - ä SinB

x Cos@Θg + 2 ΘlD
2 H1 + Υl2L

F

CosB
y Sin@ΘgD
2 H1 + Υl2L

F - ä SinB
y Sin@ΘgD
2 H1 + Υl2L

F

CosB
y Υg Υl Sin@ΘlD

1 + Υl2
F - ä SinB

y Υg Υl Sin@ΘlD
1 + Υl2

F

CosB
y Sin@Θg + 2 ΘlD

2 H1 + Υl2L
F + ä SinB

y Sin@Θg + 2 ΘlD
2 H1 + Υl2L

F

H* This cell reformulates e2. Comments would be similar to previous cell. *L
Clear@Γ, Α2, exp2Arg, exp2, e2f, e2D

Γ = 1 + Υl
2
;

Α2 = 2 ä t Υl + Υg Υl - 2 ä x Cos@ΘlD - Cos@Θg + ΘlD + 2 ä y Sin@ΘlD;
exp2Arg =

1 � I8 I1 + Υl
2MM I1 + 4 x

2
+ 4 y

2
+ 2 Υg

2
+ 2 Υl

2
+ 8 t

2
Υl

2
- 8 ä t Υg Υl

2
- 4 ä x Cos@ΘgD -

8 x H2 t - ä ΥgL Υl Cos@ΘlD + 4 x
2
Cos@2 ΘlD - 4 y

2
Cos@2 ΘlD + 8 ä t Υl Cos@Θg + ΘlD +

4 Υg Υl Cos@Θg + ΘlD - Cos@2 HΘg + ΘlLD - 4 ä x Cos@Θg + 2 ΘlD - 4 ä y Sin@ΘgD +

16 t y Υl Sin@ΘlD - 8 ä y Υg Υl Sin@ΘlD - 8 x y Sin@2 ΘlD + 4 ä y Sin@Θg + 2 ΘlDM;
exp2 = Exp@-exp2Arg �� ExpandD;
H*exp2 = restExpImag@exp2D restExpReal@exp2D;*L

e2f @Α_, Ε_D =
1

Α

ErfB
1

2 Sqrt@∆D
ΑF Α + 2 ä + ErfiB

1

2 Sqrt@∆D
H-Α äLF H-Α äL Ε restExpImag@exp2D;

e2 = ErfB
1

2

HΑL2

∆
F HΑL2

+ 2 ä + ErfiB
H-Α äL

2 ∆

F H-Α äL

HCosh@expArg2D - Sinh@expArg2DL � Α;
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H* reformulate the expression EXCEPT its constant, k1 *L
Clear@expr, exprsD
expr@Β1_, Β2_, Ε_D = e1f@Β1, ΕD + e2f@Β2, ΕD;

H* Two-step simplification *L
exprs@Β1_, Β2_, Ε_D = expr@Β1, Β2, ΕD �� Simplify;

exprs@Β1_, Β2_, Ε_D = exprs@Β1, Β2, ΕD = FullSimplify@exprs@Β1, Β2, ΕDD;

$Aborted

H* This is the output of the simplification *L
exprs@Β1, Β2, ΕD =

1

-∆

Ε 4 -∆ CosB
1

1 + Υl2
HΥg Υl - Cos@Θg + ΘlDL Ht Υl - x Cos@ΘlD + y Sin@ΘlDLF -

J -∆ - ä ∆ N ErfB
Β1

2 ∆

F

CosB
1

1 + Υl2
HΥg Υl - Cos@Θg + ΘlDL Ht Υl - x Cos@ΘlD + y Sin@ΘlDLF -

ä SinB
1

1 + Υl2
HΥg Υl - Cos@Θg + ΘlDL Ht Υl - x Cos@ΘlD + y Sin@ΘlDLF ;
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H* k is manually restructured from its definition made way above *L
kRes = Sign@Sec@ΘlDD � I8 Π

2
SqrtA2 IΥl

2
+ 1MEM

H* The coefficients of the exponential are also taken from above

REAL part of the exponential only!!! *L
exponential =

ExpBTogetherB-
1

8 I1 + Υl2M
-

x
2

2 I1 + Υl2M
-

y
2

2 I1 + Υl2M
-

Υg2

4 I1 + Υl2M
-

Υl2

4 I1 + Υl2M
-

t
2 Υl2

1 + Υl2
+
2 t x Υl Cos@ΘlD

1 + Υl2
-
x
2
Cos@2 ΘlD

2 I1 + Υl2M
+
y
2
Cos@2 ΘlD

2 I1 + Υl2M
-

Υg Υl Cos@Θg + ΘlD
2 I1 + Υl2M

+

Cos@2 HΘg + ΘlLD
8 I1 + Υl2M

-
2 t y Υl Sin@ΘlD

1 + Υl2
+
x y Sin@2 ΘlD

1 + Υl2
FF;

H* Final otput of the convolution, plug exponential back in.

The convolution with the odd-phased filter is identical to even-

phased EXCEPT Cos@D is replaced with Sin@D. *L
exprFinalCos =

kRes Ε 4 CosB
1

1 + Υl2
HΥg Υl - Cos@Θg + ΘlDL Ht Υl - x Cos@ΘlD + y Sin@ΘlDLF �.

Ε ® exponential

exprFinalSin =

kRes Ε 4 SinB
1

1 + Υl2
HΥg Υl - Cos@Θg + ΘlDL Ht Υl - x Cos@ΘlD + y Sin@ΘlDLF �.

Ε ® exponential;

Sign@Sec@ΘlDD

8 2 Π2
1 + Υl2

1

2 2 Π2
1 + Υl2

ã

-1-4 x2-4 y2-2 Υg2-2 Υl2-8 t2 Υl2+16 t x Υl Cos@ΘlD-4 x2 Cos@2 ΘlD+4 y2 Cos@2 ΘlD-4 Υg Υl Cos@Θg+ΘlD+Cos@2 HΘg+ΘlLD-16 t y Υl Sin@ΘlD+8 x y Sin@2 ΘlD
8 I1+Υl2M

CosB
1

1 + Υl2
HΥg Υl - Cos@Θg + ΘlDL Ht Υl - x Cos@ΘlD + y Sin@ΘlDLF Sign@Sec@ΘlDD

energy = exprFinalCos
2

+ exprFinalSin
2 �� Simplify

1

8 Π4 H1 + Υl2L
ã

-
1+4 x2+4 y2+2 Υg2+2 Υl2+8 t2 Υl2-16 t x Υl Cos@ΘlD+4 Ix2-y2M Cos@2 ΘlD+4 Υg Υl Cos@Θg+ΘlD-Cos@2 HΘg+ΘlLD+16 t y Υl Sin@ΘlD-8 x y Sin@2 ΘlD

4 I1+Υl2M

Sign@Sec@ΘlDD2

energyDraw = energy �. 8Sign@Sec@ΘlDD ® 1<

1

8 Π4 H1 + Υl2L
ã

-
1+4 x2+4 y2+2 Υg2+2 Υl2+8 t2 Υl2-16 t x Υl Cos@ΘlD+4 Ix2-y2M Cos@2 ΘlD+4 Υg Υl Cos@Θg+ΘlD-Cos@2 HΘg+ΘlLD+16 t y Υl Sin@ΘlD-8 x y Sin@2 ΘlD

4 I1+Υl2M
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C.3 Extrema analysis to tune Gabor motion energy

This section provides the Mathematica R© notebook file that was used to complete the extrema

analysis for tuning Gabor motion energy to the orientation and speed of a moving line.
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H* Notebook for finding how to tune the energy to a particular motion.

I.e. what should Υg and Θg should be set to in order to maximise energy.

�author Evangelos Sariyanidi -- sariyanidi@atDgmail@dotDcom *L

H* The energy function, copied from Simplify_Convolution3D.nb *L

energy =
1

8 Π4 I1 + Υl2M

ã
-
1+4 x2+4 y2+2 Υg2+2 Υl2+8 t2 Υl2-16 t x Υl Cos@ΘlD+4 Ix2-y2M Cos@2 ΘlD+4 Υg Υl Cos@Θg+ΘlD-Cos@2 HΘg+ΘlLD+16 t y Υl Sin@ΘlD-8 x y Sin@2 ΘlD

4 I1+Υl2M
;

H* Compute the first order partial derivatives;

find critical points. *L
dΥg = D@energy, ΥgD �� Simplify;

dΘg = D@energy, ΘgD �� Simplify;

criticPts = Reduce@dΥg � 0 && dΘg � 0 && Im@ΥlD � 0, 8Θg, Υg<D

KΥl Î Reals && C@1D Î Integers &&

KKΥl ¹ 0 && KΘg � -
Π

2

- Θl + 2 Π C@1D ÈÈ Θg �
Π

2

- Θl + 2 Π C@1DO && Υg � 0O ÈÈ
HΘg � Π - Θl + 2 Π C@1D && Υg � ΥlL ÈÈ HΘg � -Θl + 2 Π C@1D && Υg � -ΥlLOO ÈÈ

KC@1D Î Integers && Υl � 0 && KΘg � -
Π

2

- Θl + 2 Π C@1D ÈÈ Θg �
Π

2

- Θl + 2 Π C@1DO && Υg � 0O

H* The secon-order partial derivatives for the determinant of the Hessian;

The determinant will be used to classify critical points,

i.e. are they maxima,minima etc. *L
dΥg2 = D@energy, 8Υg, 2<D �� Simplify;

dΘg2 = D@energy, 8Θg, 2<D �� Simplify;

dΥgΘg = D@dΥg, ΘgD �� Simplify;

det = dΥg2 dΘg2 - dΥgΘg^2 �� Simplify;

det = det �� FullSimplify;

H* Test the first set sof solutions *L
det �. 8Υg ® Υl, Θg ® HΠ - ΘlL<;
FullSimplify@%D

ã
-
4 x

2+4 y2+2 Υl2+I2+8 t2M Υl2+4 I-Υl2+Hx-yL Hx+yL Cos@2 ΘlD+4 t y Υl Sin@ΘlD-4 x Cos@ΘlD Ht Υl+y Sin@ΘlDLM
2 I1+Υl2M H-1 - Υl2L2

64 Π8 H1 + Υl2L5

ã
-
4 Ht Υl-x Cos@ΘlD+y Sin@ΘlDL2

1+Υl2

64 Π8 H1 + Υl2L3
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H* The expression above is always positive,

if dΥg2 is neg. for the same solution, then we have a local maximum *L
dΥg2 �. 8Υg ® Υl, Θg ® HΠ - ΘlL<
Simplify@%D
FullSimplify@%D

ã
-
4 x

2+4 y2+8 t2 Υl2-16 t x Υl Cos@ΘlD+4 Ix2-y2M Cos@2 ΘlD+16 t y Υl Sin@ΘlD-8 x y Sin@2 ΘlD
4 I1+Υl2M H-1 - Υl2L
8 Π4 H1 + Υl2L3

-
ã

-
2 Ht Υl-x Cos@ΘlD+y Sin@ΘlDL2

1+Υl2

8 Π4 H1 + Υl2L2

-
ã

-
2 Ht Υl-x Cos@ΘlD+y Sin@ΘlDL2

1+Υl2

8 Π4 H1 + Υl2L2

H* This concludes the sec. part. deriv. test HΥg,ΘgL =

HΥl,Π-ΘlL is a local maximum. *L
H* Let's test the remaining solutions *L

det �. :Υg ® 0, Θg -> -
Π

2

- Θl>;

Simplify@%D;
FullSimplify@%D

det �. :Υg ® 0, Θg ->
Π

2

- Θl>;

Simplify@%D;
FullSimplify@%D

-ã
-
1+2 x2+2 y2+Υl2+4 t2 Υl2+2 Hx-yL Hx+yL Cos@2 ΘlD+8 t y Υl Sin@ΘlD-8 x Cos@ΘlD Ht Υl+y Sin@ΘlDL

1+Υl2 � I64 Π
8 I1 + Υl

2M3M

-ã
-
1+2 x2+2 y2+Υl2+4 t2 Υl2+2 Hx-yL Hx+yL Cos@2 ΘlD+8 t y Υl Sin@ΘlD-8 x Cos@ΘlD Ht Υl+y Sin@ΘlDL

1+Υl2 � I64 Π
8 I1 + Υl

2M3M

dΥg2 �. 8Υg ® 0, Θg ® -Θl< �� FullSimplify

-ã
-
2 Ix2+y2M+I1+4 t2M Υl2+2 Hx-yL Hx+yL Cos@2 ΘlD+8 t y Υl Sin@ΘlD-8 x Cos@ΘlD Ht Υl+y Sin@ΘlDL

2 I1+Υl2M � I8 Π
4 I1 + Υl

2M3M

det �. :Υg ® 0, Θg -> -
Π

2

- Θl>;

H* The above expressions are always negative,

therefore according to sec. part. deriv. test

they are saddle points and not extrema.*L
H* Therefore the local maximum HΥg,ΘgL =

HΥl,Π-ΘlL is also a global maximum. *L
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