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Abstract

The cellular nature of many biological materials, providing them with low density, high
strength and high toughness, have fascinated many researchers in the field of botany
and structural biology since at least one century. Bamboo, sponges, trabecular bone,
tooth and honeybee combs are only few examples of natural materials with cellular
architecture.

It has been widely recognised that the geometric and mechanical characteristics of
the microscopic building blocks play a fundamental role on the behavior observed at
the macroscale.

Up to date, many e�orts have been devoted to the analysis of cellular materials
with empty cells to predict the structure-property relations that link the macroscopic
properties to the mechanics of their underlying microstructure.

Surprisingly, notwithstanding the great advantages of the composite solutions in
nature, in the literature a limited number of investigations concern cellular structures
having the internal volumes of the cells filled with fluids, fibers or other bulk materials
as commonly happens in biology. In particular, a continuum model has not been derived
and explicit formulas for the e�ective elastic constants and constitutive relations are
currently not available.

To provide a contribution in this limitedly explored research area, this thesis
describes the mathematical formulation and modelling technique leading to explicit ex-
pressions for the macroscopic elastic constants and stress-strain relations of biologically
inspired composite cellular materials.

Two examples are included. The first deals with a regular hexagonal architecture
inspired by the biological parenchyma tissue. The second concerns a mutable cellular
structure, composed by mutable elongated hexagonal cells, inspired by the hygroscopic
keel tissue of the ice plant Delosperma nakurense. In both cases, the predicted results
are found to be in very good agreement with the available data in the literature.

Then, by taking into account the benefits o�ered by the complex hierarchical
organisation of many natural systems, the attention is focused on the potential value of
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adding structural hierarchy into two-dimensional composite cellular materials having a
self-similar hierarchical architecture, in the first case, and di�erent levels with di�erent
cell topologies, in the second. In contrast to the traditional cellular materials with
empty cells, the analysis reveals that, in the cell-filled configuration, introducing levels
of hierarchy leads to an improvement in the specific sti�ness.

Finally, to o�er concrete and relevant tools to engineers for developing future
generations of materials with enhanced performance and unusual functionalities, a
novel strategy to obtain a honeycomb with mutable cells is proposed. The technique,
based on the ancient Japanese art of kirigami, consists in creating a pattern of cuts
into a flat sheet of starting material, which is then stretched to give a honeycomb
architecture. It emerges a vast range of e�ective constants that the so-called kirigami
honeycomb structures can be designed with, just by changing the value of the applied
stretch.
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1 | Introduction

1.1 Background
It is well known that nature has developed a large number of ingenious solutions that
served as a source of inspiration for scientists and engineers (Fratzl & Weinkamer,
2007; Gibson et al., 2010).

In the literature, many works discuss this aspect. Among others, the pioneering
textbook by Thompson (Thompson, 1992) or, more recently, by Mattheck and Kubler
(Mattheck & Kubler, 1995), where the authors extracted engineering principles from
the structure of trees.

Nowadays, terms like biomimetics or bioinspiration (Sanchez et al., 2005; Vincent et
al., 2006; Fratzl, 2007) are commonly used to describe the new approach in chemistry,
material science and engineering. That is, researchers study biological systems to find
some useful principles to create and/or improve new materials and simplify many of our
day-to-day functions. See, for example, Table 1.1. Indeed, lessons learned from nature
solved a variety of technical challenges in material science (Jeronimidis & Atkins, 1995),
architecture (Kemp, 2004), aerodynamics and mechanical engineering (Milwich et al.,
2006). For instance, most are familiar with the Velcro, inspired by the way plant burrs
stuck to animal fur (Cohen, 2005; Jenkins, 2012), with the high performance swimsuits,
modelled on the structure of shark skin to reduce drag in water (Bixler & Bhushan,
2012), or with the super adhesive fabrics that mimic the configuration of the gecko
foot (Shah & Sitti, 2004).

Di�erently from the engineer, nature has a relatively limited number of structural
elements to choose: polymers, composites of polymers and ceramic particles (Fratzl &
Weinkamer, 2007). However, even with these restrictions, nature created a wide range
of systems with distinctive functions and remarkable mechanical properties that often
surpass those of their components by orders of magnitude (Gibson, 2012), as trees,
skeletons and shells.
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In their most sophisticated form, natural systems are even able to adapt their
configuration to the changing mechanical environments (Fratzl & Weinkamer, 2011;
2007). For example, the leaves of monocotyledon plants, irises and maize (Gibson,
2012), and some tubular structures, plants stems and animal quills among others,
display a peculiar composite architecture where a foam-like core behaves like an elastic
foundation supporting the dense outer faces (Dawson & Gibson, 2007; Gibson, 2005).
Similar composite solutions can also be found in many vegetative tissues, as the
parenchyma tissue and the hygroscopic keel tissue of the ice plant, characterised by a
honeycomb structure having the internal volumes of the cells filled with fluids, fibers
or other bulk materials to better resist external stimuli. In other cases, wood, bone or
glass sponges (Aizenberg et al., 2005), natural systems have a complex hierarchical
architecture allowing the functional adaptation of the structure at all levels of hierarchy
(Fratzl & Weinkamer, 2007). That is to say, a specific property can be tuned at di�erent
levels, independently of other parameters, and adapted to the local needs (Pan, 2014;
Gao, 2010). According to Fratzl & Weinkamer (2007) and Lakes (1993), structural
hierarchy plays a key role in the exceptional mechanical properties of natural materials
and properties like superplasticity and increased toughness are due to hierarchy.

Up to date, the most investigated biological systems are cellular materials. The
latter, due to their peculiar characteristic of having remarkable mechanical properties
at low weight, inspired the man-made honeycombs and foams (Gibson et al., 2010;
Meyers et al., 2008; Altenbach & Oechsner, 2010; Gibson & Ashby, 2001; Gibson,
2012), very promising for engineering applications in a variety of industries including
aerospace, automotive, marine and constructions (Wilson, 1990; Thompson, 1992;
Bitzer, 1994). As an example, cellular solids are widely used as lightweight fillers in
sandwich panels, crash energy absorbers, thermal and acoustic insulators, negative
Poisson’s ratio materials.

1.2 Scope and outline
In the literature, many e�orts have been devoted to the characterisation of cellular
materials with empty cells. Surprisingly, notwithstanding the great advantages of the
composite solutions in nature, few investigations concern cellular materials with filled
cells.

To help filling this research gap, the present thesis aims to provide theoretical
models to predict the e�ective properties of biologically inspired filled cellular materials
and to suggest some possible ways to create/improve low-weight cellular structures. In
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Table 1.1 Biological inspiration: examples of natural systems and their selected functions

bacteria biological motor

plants
chemical energy conversion, superhydrophobicity,
self-cleaning, drag reduction, adhesion, motion, hy-
drophilicity

insects, spiders,
lizards and frogs

superhydrophobicity, reversible adhesion in dry and
wet environments

aquatic animals low hydrodynamic drag, energy production

birds aerodynamic lift, light coloration, camouflage, in-
sulation

seashells, bones,
teeth high mechanical strength

spider web biological self-assembly
moth-eye e�ect
and structural
coloration

antireflective surfaces, structural coloration

fur and skin of
polar bear thermal insulation

biological sys-
tems self-healing, sensory-aid devices
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addition, the theoretical results are verified by comparison with the available data, by
numerical simulations and by some practical applications to the biological systems.

The thesis is organised in seven chapters, including this introduction.

Initially, Chapter 2 introduces the basic concepts to describe the topological, geometrical
and mechanical properties of two-dimensional cellular materials, with reference to the
pioneering work of Gibson and Ashby (Gibson & Ashby, 2001).

Then, Chapters 3 and 4 focus on composite cellular materials and, in particular, describe
the mathematical formulation and modelling technique that lead to the closed-form
expressions of the e�ective elastic constants and constitutive equations. Two cases
are considered: the regular hexagonal architecture inspired by the parenchyma tissue
(Gibson, 2012), in Chapter 3, and the mutable microstructure having elongated cells
inspired by the ice plant Delosperma nakurense (Harrington et al., 2011), in Chapter 4.

The extension of the theory to the hierarchical configuration is presented in Chapter 5.
The study investigates how hierarchy a�ects the macroscopic elastic moduli of a two-
dimensional composite cellular material, as well as the role of material heterogeneity
and cell topologies at di�erent levels in obtaining improved sti�ness.

Chapter 6, in addition, provides the example of the kirigami-inspired honeycomb
(Neville et al., 2014). That is to say, a honeycomb obtained by applying the ancient
Japanese art of paper sculptures (from the Japanese kiru=to cut and kami=paper)
consisting in cutting a sheet of paper to create a particular pattern and then stretching
it.

Finally, Chapter 7 summarises the main findings and highlights possible scenarios for
future work.

1.3 Novelties of the thesis
With respect to the published works, this thesis introduces the following novelties.

The first consists in adopting the Euler-Bernoulli beam on Winkler foundation model
to explore the mechanical behavior of composite cellular materials. According to the
proposed strategy, employed here for the first time, a series of linear elastic springs,
the Winkler foundation, simulates the elastic material filling the cells.

The aforementioned technique, in conjunction with an energetic approach, leads to
explicit expressions for the constitutive equations and elastic moduli in the macroscopic
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description. The obtained results, verified by means of numerical simulations and by
comparison with the data available in the literature, o�er a useful tool to predict the
mechanical properties of both biological and man-made composite cellular materials.

In addition, the extension of the theory to the case of structural hierarchy provides a
novel idea to avert the detrimental e�ect on the specific sti�ness that characterises the
traditional cellular materials with empty cells.

Finally, the last part of the thesis deals with the emerging field of kirigami applications
in engineering. Specifically, the kirigami technique is adopted to create the so-called
kirigami honeycomb and, for the first time, explicit relations between the pattern of
cuts and the overall mechanical response are reported.



2 | Cellular materials: overview and basic
theoretical tools

A lesson which is relevant to all studies
of the properties of cellular solids is this:
first characterize your cells
M. F. Ashby, L. J. Gibson

2.1 Overview
At mesoscopic scale, cellular materials, honeycombs and foams, are discrete materials
characterised by a more or less clearly distinguishable architecture. They are generated
by tessellating a unit cell, a concave space bounded by edges or solids faces, throughout
the space.

The use of cellular structures, allowing a material to have good mechanical properties
at low weight, is very common in nature. Biological systems such as wood, bone, tooth,
mollusk shells, crustaceans and many siliceous skeleton species like radiolarians, sea
sponges and diatoms (Gordon et al., 2008) are some examples.

People have used natural cellular materials for millennia; wooden artefacts have
been found in the Egyptian pyramids and cork has been used for the soles of shoes
since Roman times (Gibson & Ashby, 2001). Today, the structure of natural cellular
materials is mimicked in engineering honeycombs, where the cells are obtained by
extrusion of planar faces, and foams, where the cells are polyhedra packed in the
three-dimensional space.

Because of their unique properties arising from the cellular architecture, honeycombs
and foams are widely used in a variety of applications. For example, the low density
makes them ideal core materials in lightweight and high-performance sandwich panels
used in aerospace components and sporting equipment. The low compressive strength
and the high deformation capacity provide excellent shock mitigation and energy
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absorption characteristics in impulsive phenomena. Finally, small cells and low volume
fraction lead to closed-cell foams that are excellent thermal insulators.

In addition to the relative density, defined as the ratio of the density of the cellular
solid to the density of the cell walls, two sets of parameters a�ect the mechanical be-
havior of honeycombs and foams. The first characterises the constituent material while
the second is related to the geometric and topological properties of the microstructure.

The basic theoretical tools to understand the mechanics of two-dimensional cellular
materials, topic of the present thesis, are provided in the following section.

2.2 Two-dimensional cellular materials: basic theoretical tools

2.2.1 Cell shape
Honeycombs (or planar lattices) are generated by tessellating a polygon to fill the plane
without gaps or overlaps, and such that neighbouring polygons share full edges and
have coincident vertices. In addition, angles meeting at one vertex sum up to 2fi.

Classically, honeycombs are classified as regular, semi-regular or irregular (Fleck
et al., 2010). In the first case, the tessellation is composed by a single type of regular
polygon, the square, the triangle or the hexagon, while the second is based on two or
more kinds of them. In particular, only eight semi-regular tessellations exist (Cundy
& Rolett, 1961; Lockwood & Macmillan, 1978). An example, sketched in Figure
2.1c, is the triangular-hexagonal lattice, known as the Kagome. Finally, the irregular
tessellations are constructed from two or more irregular polygons of di�erent size, like
the random Voronoi lattice (Gibson & Ashby, 2001) or the Penrose tiling (de Bruijn,
1981). In what follows, only regular honeycombs are considered.

2.2.2 Stretch and bending-dominated lattices: the role of nodal con-
nectivity

From a geometric point of view, a two-dimensional cellular material can be described
as a number of vertices, V , joined by edges, E, surrounding cells, C, related by the
Euler’s law (Gibson & Ashby, 2001)

C ≠ E + V = 1. (2.1)
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(a) (b)

(c)

Figure 2.1: The regular (a) triangular and (b) hexagonal lattices, (c) the semi-regular Kagome
tessellation

The number of edges that meet at a vertex, defined nodal connectivity Ze, can be
expressed by

Ze = 2E

V

(2.2)

since each edge connects two vertices (Gibson & Ashby, 2001). The hexagonal, square
and triangular lattices have, respectively, Ze = 3, Ze = 4 and Ze = 6.

The macroscopic properties of a honeycomb are strongly a�ected by its nodal
connectivity rather than by the regularity of its microstructure. The reason is related
to how the honeycomb responds to macroscopic loads, that is to say with a bending
or stretch-dominated behavior. The distinction of a bending and a stretch-dominated
lattice, exhaustively described in Fleck et al. (2010), is connected to the collapse
response of a pin-jointed frame of the same morphology. If the parent pin-jointed
frame has either no collapse mechanism or only a periodic collapse mechanism that do
not produce macroscopic strain, the welded-joint version (the lattice itself) is stretch-
dominated. Conversely, when the parent frame exhibits collapse mechanisms that
generate macroscopic strain, the welded-joint structure is bending-dominated.

By applying the Maxwell’s necessary condition for a planar pin-jointed frame made
up of b struts and j frictionless joints to be rigid (Deshpande et al., 2001),

b ≠ 2 j + 3 = 0, (2.3)
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Fleck et al. (Fleck et al., 2010) suggested two classes of planar lattices according to
their connectivity Ze. The first, with Ze > 4, are the rigid lattices that possess no
collapse mechanisms. If loaded, their members carry tension or compression, leading to
a stretch-dominated structure. In the second case, with Ze < 4, the lattices are not rigid
and external loads cause their members to bend. The boundary case Ze = 4 includes
both types of behavior depending on the collapse mechanism arising in the lattice.
For example, the Kagome microstructure collapses by no-strain producing mechanism
and is classified as stretch-dominated. Di�erently, the square microstructure has a
bending-dominated behavior (collapse mechanism leading to macroscopic strain) if
loaded in the diagonal direction and a stretch-dominated behavior when the load is
aligned with the walls. A detailed description, that is beyond the scope of the present
thesis, can be found in Hutchinson & Fleck (2005), where the authors proposed a
methodology based on the Bloch-wave analysis to explore the collapse mechanism of
di�erent structures.

Finally, in terms of mechanical e�ciency, one key findings of Ashby (2006) is that
the specific sti�ness and the specific strength of the stretch-dominated structures are
higher than those in which the dominant mode of deformation is by bending.

2.2.3 Honeycomb mechanics
Figure 2.2 illustrates the compressive stress-strain curves of a honeycomb subjected to
in-plane loads: Figure 2.2a in the case of a bending-dominated structure and Figure
2.2b in the case of a stretch-dominated one.

As it can be seen, there are generally three zones. Firstly, a linear elastic regime
corresponding to the bending, Figure 2.2a, or stretching, Figure 2.2b, of the cell walls.
Then, a stress plateau where the cells progressively collapse at a nearly constant stress
by elastic buckling, plastic yielding or brittle crushing. Finally, at high strains, a
regime of densification in which a great number of cells are collapsed, their opposite
walls impinge and further deformations compress the constituent material itself. In
terms of deformations, in the linear-elastic regime they are homogeneous throughout
the specimen and, as in ordinary solids, the Hooke’s law can be applied. Conversely,
in the plateau regime the deformations are strongly localised, with the formation of
bands perpendicular to the loading direction.

In the present thesis, only the linear-elastic behavior is considered.
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(a)

(b)

Figure 2.2: A schematic compressive stress-strain curve for (a) bending-dominated and (b)
stretch-dominated structures, taken from Gibson & Ashby (2001)
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2.3 Estimation of the e�ective properties by micro-mechanical
modelling: prior works and alternative techniques

As stated in Section 2.1, cellular materials have a great variety of engineering appli-
cations. In most cases, their use serves macroscopic purposes so that a continuum
description in terms of e�ective mechanical properties is of importance.

However, the formulation of a continuum model is hindered by two types of
di�culties: the spatial variability of size and morphology of the microscopic architecture,
on one side, and the crucial passage from the microscopic discrete description to the
coarse continuous one, on the other.

Regarding the first aspect, the typical approach to the continuum modelling of
cellular materials includes the assumption of periodicity and the selection of a Repre-
sentative Volume Element (RVE), or unit cell. The latter is an important concept in
the field of microstructured materials and we will come back to it later in the thesis
(cf. Sections 3.2.2 and 3.6.1) as much debate has taken place on what constitutes its
appropriate definition.

To overcome the second problem, energy equivalence concepts and micro-macro
relations in terms of forces and displacements are usually applied. Also, linear elasticity
and material isotropy, in conjunction with the underlying microstructure assumed to
be governed by the classical beam theory (Altenbach & Oechsner, 2010), are three
commonly used simplifications that provide explicit stress-strain relations and help
clarifying the basic mechanical aspects (Davini & Ongaro, 2011).

Many authors extensively studied the mechanical modelling of cellular materials
and it would be di�cult to quote without omissions the vast literature flourished
in the last years. Noteworthy contributions, suggesting di�erent assumptions and
techniques, are presented in the following sections. For the interested reader, the
suggested references can be supplemented with the reviews proposed in Christensen
(2000), Kraynik et al. (1998) and Warren & Kraynik (1997), concerning the mechanical
behavior of honeycombs and of both liquid and solid foams.

The technical aspects regarding the analysis of structural lattices and the derivation
of their equivalent constitutive equations are throughly reviewed in Noor (1988) and in
Ostoya-Starzewski (2002), where an extended list of references is also provided.
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2.3.1 The pioneering contribution of Gibson and Ashby
The most known and widely used micromechanical model is the Gibson and Ashby’s
model (Gibson, 1989; Gibson & Ashby, 2001; Gibson et al., 1982) that focuses on the
deformation mechanism of a single cell subjected to di�erent types of external loads
(Figure 2.3).

By assuming infinitesimal strains and applying the standard beam theory, the
authors obtained simple power-law relations between the microstructure’s parameters
and the macroscopic properties of a wide range of cellular materials.

For example, in the case of a hexagonal honeycomb, the in-plane elastic constants
are expressed by

E1
Es

= (t/¸)3 cos ◊

(h/¸ + sin ◊) sin2
◊

,

E2
Es

= (t/¸)3 (h/¸ + sin ◊)
cos3

◊

,

‹12 = cos2
◊

(h/¸ + sin ◊) sin ◊

,

‹21 = sin ◊ (h/¸ + sin ◊)
cos2

◊

,

G

Es
= (t/¸)3 (h/¸ + sin ◊)

(h/¸)2 (1 + 2 h/¸) cos ◊

,

(2.4)

with E1, ‹12 and E2, ‹21, respectively, the e�ective Young’s modulus and corresponding
Poisson’s ratio in the e1 and e2 direction, G the e�ective shear modulus, Es the
Young’s modulus of the constituent material. h, ¸, t and ◊ geometrically characterise
the microstructure, being, in turn, the length of the vertical and inclined cell walls,
their thickness and inclination (Figure 2.3).

In terms of the e�ective Young’s modulus, for the equilateral triangular microstruc-
ture (Figure 2.4a) Gibson & Ashby (2001) suggest

E1
Es

= E2
Es

= 1.15
3

t

¸

4
(2.5)
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Figure 2.3: The Gibson and Ashby model: (a) the unit cell, (b) compression, (c) shear



2.3 Estimation of the e�ective properties by micro-mechanical modelling: prior works
and alternative techniques | 14

while, for the square lattice (Figure 2.4b),

E1
Es

= E2
Es

= t

¸

(2.6)

and, if loaded in the diagonal direction,

E45
Es

= 2
3

t

¸

43
. (2.7)

(a)

t���
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(b)

t�
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�

Figure 2.4: The Gibson and Ashby model: (a) the triangular and (b) the square microstructures

As it can be seen from Equations (2.4) and (2.5), the macroscopic sti�ness of the
triangular and hexagonal honeycomb scales with di�erent powers of t/¸: the former
with the first power, the latter with its cube. This di�erence is related to how the
microstructure responds to macroscopic loads, that is to say with a stretch or bending-
dominated behavior (cf. Section 2.2.2). In particular, the proportionality to the first
power of t/¸, rather than to its cube, makes the stretch-dominated structures, typified
by the triangular lattice, intrinsically sti�er and stronger than the bending-dominated
ones, typified by the hexagonal microstructure. The same considerations apply in the
case of the square honeycomb: stretch-dominated behavior when the load is aligned
to the cell walls, Equation (2.6), bending-dominated one when loaded in the diagonal
direction, Equation (2.7). However, because of the deformation mechanism involving
"hard" modes (i.e., tension and compression), the stretch-dominated structures are
characterised by post-yielding softening (Figure 2.2b) as the initial yield is followed
by plastic buckling or brittle collapse of the struts (Ashby, 2006). Consequently, they
are not the ideal candidate for energy absorbing applications that require, ideally, a
stress-strain curve with a long plateau as in the case of the bending-dominated lattices
(Figure 2.2a).
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2.3.2 Equilibrium considerations and structural analysis-based tech-
nique

By applying the principles of structural analysis similar to that described in Gibson
& Ashby (2001), Wang and Stronge (Wang & Stronge, 1999) obtained the equivalent
constitutive equations for a two-dimensional hexagonal honeycomb composed of exten-
sional and flexural elements. In Wang & Stronge (1999) the problem is performed in
the context of micropolar elasticity, theory developed by Eringen (Eringen, 1967) in
1967.

A distinguishing feature of micropolar continua is the introduction of an additional
deformation variable, the microrotation field, that is independent of the translational
displacements assumed in classical elasticity. This model obviously encounters severe
philosophical di�culties if considered as representative of a continuum. For example,
the interactions between two neighbouring material elements involve the couple stresses,
related to the microrotation gradients, and the Cauchy stresses, as in classical mechanics.
Also, contrary to classical elasticity, the Cauchy tensor is not symmetric, as well as the
strain tensor.

Regarding the hexagonal microstructure analysed in Wang & Stronge (1999), the
authors described the deformation states of the representative volume element in
terms of displacements and rotations of the nodes where the cell walls, represented as
elastic beams, intersect. By taking into account the connectivity of the structure and
enforcing the equilibrium conditions at the joints, it emerges that the relations for the
normal stresses and strains obtained in Wang & Stronge (1999) are in accordance with
those proposed by Gibson and Ashby (Gibson & Ashby, 2001). Conversely, assuming
micropolarity and the possibility of wall stretching lead to di�erent results in terms
of the shear stresses and strains. In Wang & Stronge (1999) it is also confirmed the
proportionality of the e�ective sti�ness to the third power of t/¸, ratio between the
thickness and the length of the cell walls (cf. Equations (2.4)).

An analysis of the micropolar behavior of two-dimensional lattice geometries, the
square, the triangular and the hexagonal, was also provided by Warren and Byskov
(Warren & Byskov, 2002) and by Dos Reis and Gangho�er (Dos Reis & Gangho�er,
2012a). In both cases, the authors represented the lattice as a sequence of elastic beams
undergoing extensional and flexural deformations and derived the continuum model
by means of discrete homogenization (Dos Reis & Gangho�er, 2012b; Caillerie et al.,
2006). This method, whose basic idea is the periodic repetition of an elementary cell
to define an infinite lattice, may be explained as follows.
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Firstly, the periodic structure is parametrised by a small parameter, ‘, defined as
the ratio between a characteristic length of the unit cell and a characteristic length
of the entire structure. Then, Taylor’s series expansions of the displacements and
rotations are inserted into the equilibrium equations of the lattice, expressed in terms of
‘. Finally, considering the limit situation of a continuous density of cells, corresponding
to ‘ æ 0, gives the homogenized model. The e�ective properties naturally follow from
the homogenization technique.

In terms of Warren & Byskov (2002) and Dos Reis & Gangho�er (2012a), it emerges
that the predicted elastic moduli agree with those in Gibson & Ashby (2001) only
in the case of slender beams. For a slenderness of 10, the discrepancy is about 5%.
In accordance with Christensen (2000), the study in Warren & Byskov (2002) also
reveals that it is necessary to retain the second-order terms in the Taylor’s expansions
to induce micropolar e�ects. If these terms are neglected, the e�ective material is a
classical continuum whose elastic constants coincide with those presented in Gibson &
Ashby (2001).

2.3.3 Energy equivalence-based technique
An alternative approach to solve the crucial passage from micro to macro and to
derive the constitutive model for two-dimensional microstructures subjected to in-plane
deformations was adopted by Chen et al. (Chen et al., 1998), Kumar and McDowell
(Kumar & McDowell, 2004), Bazant (Bazant, 1971), Bazant and Christensen (Bazant
& Christensen, 1972) and Perano (Perano, 1983). As in Wang & Stronge (1999) and
Warren & Byskov (2002), in the aforementioned works the discrete lattice is idealised as
a sequence of Euler-Bernoulli beams while, in the macroscopic description, the discrete
structure is assumed to be represented by a micropolar continuum. Few main steps
summarise the suggested technique.

Initially, an appropriate representative unit cell is defined. Secondly, summing the
strain energies of its individual members, expressed as a function of the displacements
and rotations of the extreme nodes, gives the strain energy of the discrete structure.
Then, the discrete variables representing the joints’ displacements and rotations are
approximated by Taylor’s series expansions of the corresponding continuous fields at
the centroid of the unit cell (Bazant & Christensen, 1972; Warren & Byskov, 2002).
Substituting the Taylor’s expansions into the previously obtained discrete strain energy
provides its continuum approximation. Finally, equating the latter to the strain energy
of the hypothesised equivalent micropolar continuum and applying the standard theory
of micropolar elasticity, give the e�ective constitutive equations and elastic moduli.
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Di�erently from Chen et al. (1998) and Perano (1983), where only the first order
derivatives in the Taylor’s expansions are considered, in Kumar & McDowell (2004),
Bazant (1971) and Bazant & Christensen (1972) also the second order terms that
can be integrated by parts and converted into first order ones are retained. As
pointed out in Bazant (1971) and Bazant & Christensen (1972), this strategy is
necessary to ensure the equilibrium of the nodes and the connectivity of the structure.
Neglecting these important aspects led Chen et al. (Chen et al., 1998) to the erroneous
conclusion that the strain energy density of the equilateral triangular honeycomb in
the continuum approximation was three times that of the hexagonal one. Indeed,
the first lattice contains three times as many beams per unit volume as the second.
The authors, however, went on and calculated the e�ective elastic constants and
constitutive equations. Again, they found incorrect results in terms of couple stress-
curvature relations. Specifically, the values of the couple stresses obtained in Chen et
al. (1998) are four times those provided by the vast majority of authors (Warren &
Byskov, 2002).

Starting from the calculation of the strain energy of the unit cell, Davini and Ongaro
(Davini & Ongaro, 2011) adopted the viewpoint of the homogenization theory (Braides,
2002; Dal Maso, 1993) to deduce a continuum model for a hexagonal honeycomb. As in
the previous works, the analysis is restricted to linear elasticity and the microstructure
is described in terms of Euler-Bernoulli beams. In Davini & Ongaro (2011), the
homogenized continuum, seen as the variational limit of a sequence of discrete systems
of hexagonal cells with increasingly smaller size, emerges from general theorems of
�-convergence. At variance with Chen et al. (1998), Perano (1983), Bazant (1971),
Bazant & Christensen (1972) and Warren & Byskov (2002), the limit model is a
pseudo-polar continuum, that is a material that can undergo applied distributed
couples without developing couple stresses. Regarding the e�ective elastic moduli and
constitutive equations, the predicted expressions coincide with those proposed in Dos
Reis & Gangho�er (2012a) and agree with the findings of Gibson and Ashby (Gibson
& Ashby, 2001) in the limit of slender beams.



3 | Continuum modelling of composite cel-
lular materials

3.1 Motivation and prior works
As seen in Chapter 2, many e�orts have been devoted to the prediction of the e�ective
properties of regular cellular materials with empty cells.

In reality, if examined at the microscale, many biological systems reveal a honeycomb
architecture having the internal volumes of the cells filled with fluids, fibers or other
bulk materials.

Figure 3.1: The biological parenchyma tissue. Figure taken from Razzaq (2016)

One example, that will be extensively analysed in Section 3.8, is the vegetative
parenchyma tissue (Gibson, 2012; Gibson et al., 2010; Bruce, 2003; Warner et al.,
2000; Georget et al., 2003), composed by thin-walled polyhedral cells filled with a fluid
(Figure 3.1). The latter, due to the hydrostatic pressure exerted against the cell walls,
significantly improves the resistance of the cells and, consequently, of the whole tissue.
The parenchyma, because of its low relative density, is found in many natural systems,
as the leaves of monocotyledon plants. In this case, the parenchyma constitutes the
lightweight inner core of the leaf and, similarly to an elastic substrate, supports the
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dense and strong fiber-composite outer faces. Recent studies (Gibson, 2005; Dawson
& Gibson, 2007; Gibson, 2012) reveal that this composite solution, notwithstanding
the low mechanical properties of the parenchyma, makes the leaf more performant in
terms of bending and buckling resistance.

In spite of the proven benefits distinguishing the biological composite configurations,
the scientific literature is lacking in the context of cellular materials with filled cells.

The few available investigations (Niklas, 1992; Georget et al., 2003), in most cases,
deal with the mechanical behavior of pressurised plant tissues and analytically describe
the influence of the turgor pressure on the e�ective sti�ness.

In particular, Georget et al. (Georget et al., 2003) evaluated the Young’s modulus
of the carrot tissue, modelled as a fluid-filled foam, and it emerged that the provided
results were in good agreement with the experimental values.

Warner et al. (Warner et al., 2000), who went in this direction, focused on the
deformation mechanisms of di�erent types of fluid-filled cellular solids to characterise
the elastic behavior and initial failure of food materials. According to the authors,
above a critical strain, the fluid inside the cells forces the walls to stretch rather than
to bend, as it happens in the case of hollow cellular solids. By taking into account
the considerations in Section 2.3.1, this leads to an improvement in the mechanical
resistance of the system, since the stretch-dominated structures are sti�er and stronger
than the bending-dominated ones.

In the context of sandwich panels, Burlayenko and Sadowski (Burlayenko & Sad-
owski, 2010) numerically evaluated the structural performance of aluminium hon-
eycombs filled with a polyvinyl-chloride (PVC) foam. The study suggests that the
e�ective sti�ness of the honeycomb, subjected to various loading states, significantly
increases due to the presence of the PVC filler.

Finally, from the analysis of the in-plane crush response of a honeycomb with
circular cells, D’Mello and Waas (D’Mello & Waas, 2013) found that filling the cells
with a polydimethylsiloxane (PDMS) elastomer provided an enhancement of the energy
absorption capability.

Though some of the abovementioned authors numerically and theoretically analysed
the morphology, composition and mechanical behavior of filled cellular materials, up to
date closed-form expressions for the e�ective elastic moduli and constitutive equations
have not been derived.

To make a contribution to this incomplete research area and to provide some useful
tools for practical applications, the following sections present a continuum model for
two-dimensional cellular materials with a hexagonal microstructure and the cells filled
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with a generic elastic medium. The analysis is then extended to the cases of equilateral
triangular cells, in Appendix A, and to the square microstructure, in Appendix B.

3.2 Problem statement

3.2.1 Geometric description
In terms of christallography, the configuration of the considered composite material
can be described as the union of two simple Bravais lattices,

L1(¸) :=
Ó
X œ R2 : X = n

1
l1 + n

2
l2 , with (n1

, n

2) œ Z2
Ô

(3.1)

and
L2(¸) := s + L1(¸), (3.2)

simply shifted with respect to each other.
In a global reference system, defined by the unit orthonormal vectors e1, e2 and by

the coordinate system (X, Y )T , the components of the lattice vectors, l1 and l2, and of
the shift vector, s, are

l1 =
Ë Ô

3 ¸ 0
ÈT

, l2 =
C Ô

3 ¸

2
3 ¸

2

DT

, s =
C Ô

3 ¸

2
¸

2

DT

, (3.3)

with ¸ the length (the lattice size) of the cell walls (Figure 3.2a).

3.2.2 The unit cell
In understanding how a homogenized medium can "substitute" a heterogeneous material,
it is implicitly assumed that the problem contains two well-separated scales. Namely,
the microscopic scale (or local scale), small enough to clearly identify the heterogeneities,
and the macroscopic scale (or overall scale), where the heterogeneities can be sweared-
out (Michel et al., 1999).

At the macroscopic scale, the e�ective properties of the composite can be de-
rived from the geometric and mechanical parameters of the microstructure. However,
analysing large size volumes on a microstructural level to gain an accurate estimation of
the local fields is unsuitable and, in some cases, may involve considerable e�orts. Thus,
the notion of Representative Volume Element (RVE) is of paramount importance.
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Figure 3.2: The composite cellular material: (a) the hexagonal microstructure and (b) the
unit cell
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The RVE is usually regarded as a volume V that is su�ciently large to include a
sampling of all microstructural heterogeneities and su�ciently small to be considered
as a volume element of continuum mechanics (Kanit et al., 2003; Drugan & Willis,
1996). Through the RVE-based analysis, the necessary microstructure’s parameters
are extracted and, according to the homogenization procedure, both the RVE of the
real system and the corresponding volume element of the equivalent homogeneous
continuum, if deformed, are assumed to be subjected to the same stress, strain or
energy fields (Burlayenko & Sadowski, 2010). From a conventional analysis at the
macroscopic level, the information are then transferred between the micro (RVE) and the
macro (equivalent continuum) scales and the constitutive model for the approximated
homogenized material can be obtained. Although the precise definition of the RVE is
still a matter of debate, in investigating materials with a periodic microstructure, as in
the present thesis, the repetitive unit cell of the tessellation is generally assumed as
RVE (Nemat-Nasser & Hori, 1993; Pellegrino et al., 1999).

In the examined case, the unit cell (Figure 3.2b) is composed by the three external
nodes, 1, 2 and 3, linked to the central one, 0, by the line elements 0-1, 0-2, 0-3,
respectively represented by the vectors

b1 = l1 ≠ s, b2 = l2 ≠ s, b3 = ≠s. (3.4)

From a mechanical point of view, the connecting elements are treated as Euler-
Bernoulli beams on Winkler foundation. Specifically, a series of identical and closely
spaced linear elastic springs, the Winkler foundation, simulates the elastic material
filling the cells (Figure 3.3). This assumption, along with a energy-based approach,
provide, in the following sections, closed-form expressions for the e�ective elastic moduli
and constitutive equations.

3.3 The Euler-Bernoulli beam on Winkler foundation: equiva-
lence between the biphasic continuum and the continuum-
springs system

The proposed modelling technique takes advantage of the simplifications associated
with the Winkler model, the most famous foundation model frequently used in many
engineering areas. According to this idealisation, the springs are mutually independent
and, if loaded, the provided resistance is directly proportional to the deflection of the
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beam via the Winkler constant Kw, representing the sti�ness of the springs (Hetenyi,
1946).

The most important weakness of the Winkler model is to neglect the interactions
between adjacent springs and to assume that the displacements appear only in the
loaded area. Just outside of it, the deflections are zero. This leads to a discontinuity
in the displacement field that, in reality, does not exist because of the continuity of the
material supporting the beam (Dinev, 2012).

In the past, a number of attempts have been made to overcome this shortcoming
(Avramidis & Morfidis, 2006; Vallabhan & Das, 1991; Kerr, 1964) but, in many cases,
the suggested theory involves intricate mathematical techniques that are di�cult to
apply in practice. Consequently, aiming to obtain a more analytically tractable problem,
in the present thesis the Winkler foundation is adopted to approximate the elastic
material filling the cells. Since this assumption could a�ect the prediction ability of
the resulting model, the following finite element simulations testify the validity of the
proposed strategy.

3.3.1 Relation between the Winkler foundation constant and the filler’s
elastic moduli

As Figure 3.4 shows, the simulations consider a single composite cell and, in particular,
two di�erent configurations are examined.

In the first one (Figure 3.4a) the filling material is seen as a classical isotropic
continuum having Young’s modulus Ef , Poisson’s ratio ‹f and shear modulus Gf , while
in the second (Figure 3.4b) as a Winkler foundation. Regarding the latter, for ease
of reading, in Figure 3.4b the three series of closely spaced springs in the n1, n2, n3

directions are schematically represented by a single spring in the corresponding direction.
Specifically, with reference to Figure 3.4,

n1 =
C

≠1
2 ≠

Ô
3

2

DT

, n2 =
Ë

1 0
ÈT

, n3 =
C

1
2 ≠

Ô
3

2

DT

. (3.5)

Focusing on the elastic energy of the cell,

Wc = Ww + Wf , (3.6)

obtained by summing the contribution of the walls, Ww, and of the filling material,
Wf , provides a suitable relation between Ef , ‹f , Gf and the Winkler constant Kw.
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Figure 3.4: Equivalence between the biphasic continuum and the continuum-springs system:
(a) filling material as a classical continuum, (b) filling material as a Winkler foundation

Specifically,

Wc :=

Y
_]

_[

Wc, W inkler = Ww, beams + Wf, W inkler Winkler model
Wc, continuum = Ww, walls + Wf, continuum biphasic continuum,

(3.7)

with Ww, beams, Wf, W inkler and Ww, walls, Wcontinuum, in turn, the elastic energies of the
cell walls and of the filling material in the cases of Winkler foundation model and
biphasic continuum.

By assuming
Ww, beams © Ww, walls, (3.8)

the energetic equivalence
Wc, W inkler © Wc, continuum (3.9)

takes the form
Wf, W inkler © Wf, continuum. (3.10)

The first term, Wf, W inkler, is the sum of the elastic energies of the three series of
springs:

Wf, W inkler =
A 3ÿ

i=1

1
2 �Ui

1
n

T
i Kwni

2
�Ui

B

b, (3.11)
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being �Ui the elongation of the springs in the ni direction, b the width,

Kw :=
S

U Kw 0
0 Kw

T

V (3.12)

the sti�ness matrix of the elastic foundation, Kw the Winkler constant.
When the filling material is seen as a continuum,

Wf, continuum := 1
2

⁄

V
‡

T
f ‘f dV =

31
2

⁄

A
‘

T
f Cf ‘f dA

4
b, (3.13)

with A = 3
Ô

3¸

2
/2 the area of the cell, ¸ the length of the walls,

‘f :=

S

WWU

Á11

Á22

2Á12

T

XXV Ω
S

U Á11 Á12

Á12 Á22

T

V =: Ef (3.14)

and

‡f :=

S

WWU

‡11

‡22

‡12

T

XXV Ω
S

U ‡11 ‡12

‡12 ‡22

T

V =: Tf , (3.15)

respectively, the infinitesimal strain tensor, Ef , and stress tensor, Tf , expressed in
Voigt notation, Cf the sti�ness tensor of the material within the cell, satisfying the
generalised Hooke’s law

‡f = Cf ‘f . (3.16)

In particular, for two-dimensional isotropic materials in plane stress tensional state,
Cf is defined by

Cf := Ef

1 ≠ ‹

2
f

S

WWU

1 ‹f 0
‹f 1 0
0 0 (1 ≠ ‹f )/2

T

XXV . (3.17)

In addition, from classical continuum mechanics, the strains Áij are expressed by

n

T
i Efni = � di

d

, i = 1, 2, 3, (3.18)

where � di is the elongation in the ni direction and d =
Ô

3¸ (Figure 3.4a).
The hypothesis

�Ui © � di, i = 1, 2, 3 (3.19)
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provides
n

T
i Efni = �Ui

d

, i = 1, 2, 3, (3.20)

leading to
�Ui =

1
n

T
i Efni

2
d, i = 1, 2, 3. (3.21)

Finally, substituting Equation (3.21) into Equation (3.11) gives, in view of the
equivalence in Equation (3.10),

3ÿ

i=1

1
2 d

1
n

T
i Efni

2
n

T
i Kwni

1
n

T
i Efni

2
d = 1

2
1
‘

T
f Cf ‘f

2
A. (3.22)

Considering, in turn, the deformation states defined by

‘

(1)
f :=

S

WWU

1
0
0

T

XXV , ‘

(2)
f :=

S

WWU

0
1
0

T

XXV , ‘

(3)
f :=

S

WWU

0
0
1

T

XXV , (3.23)

yields
Y
_______]

_______[

3
Ô

3 Kw

8 = Ef (‹f ≠ 1)
2(2‹f ≠ 1)(‹f + 1)

Ô
3 Kw

2 = Ef

(‹f + 1)

æ ‹f = 0.25, Ef = 5
Ô

3 Kw

8 (3.24)

and, by assuming the isotropy of the filling material,

Gf = Ef

2(‹f + 1) =
Ô

3 Kw

4 (3.25)

gives the shear modulus.
It should be noted that the proposed method, resulting in a fixed value of the

Poisson’s ratio, is in accordance with the Spring Network Theory (Alzebdeh & Ostoja-
Starzewski, 1999; Ostoja-Starzewski, 2002). This condition is not excessively limiting,
since in the present thesis we are interested in discussing general concepts and high-
lighting qualitative e�ects, rather than focusing on specific materials.
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3.3.2 Finite element implementation: results
Regarding the cell analysed in the numerical simulations, the walls, isotropic linear
elastic by assumption, have Young’s modulus Es = 79 GPa, Poisson’s ratio ‹s = 0.35,
thickness h = 1 mm, length ¸ = 10 mm and unitary width. By adopting the same
notation of Gibson & Ashby (2001), it should be noted that, here and in the following,
the subscript "s" indicates a property of the solid cell walls material.

The load conditions considered, illustrated in Figure 3.5, are uniaxial compression
in the e1 and e2 direction, Figure 3.5a the first and Figure 3.5b the second, and shear,
Figure 3.5c, simulated by applying forces of the same intensity at the boundary nodes
of the cell. Specifically, compression forces of 10≠3 N and shear forces of 10≠5 N.

Constrained nodes are also introduced to avoid rigid body motions that could lead
to an erroneous comparison between the deformed configurations of the two examined
models.

The results of the analysis, summarised in Figure 3.6, reveal that the predictions of
the Winkler model compare reasonably well with those obtained in the case of filling
material as a classical continuum. As it can be seen, the di�erence between the two
estimates of the horizontal and vertical displacements of the nodes, �UX and �UY

respectively, is generally 1 ≠ 3 %.
However, higher values of �UX emerge at node 1 in the case of horizontal com-

pression (Figure 3.6a). This is due to the limitations of the Winkler model, where
the elastic springs only connect two opposite beams: 1-2 and 4-5, 6-1 and 3-4 (Figure
3.4b). The beams 1-2 and 3-4, 6-1 and 4-5 that, in reality, are coupled by the presence
of the filling material, in the Winkler model are not connected.

Similarly, in the case of vertical compression, the high values of �UX and �UY at
nodes 1 and 4 are related to the limitations induced by the Winkler model (Figure
3.6b). Analogous considerations also apply with reference to Figure 3.6c. That is to
say, the missing connection between the beams 1-6 and 4-5 provides high values of
�UX at nodes 5 and 6.

In spite of this, it can be said that Figure 3.6 reveals the validity of the Winkler
model in approximating the mechanical deformations of the composite cell and that
the simplifications introduced slightly a�ect the prediction ability of the proposed
technique.



3.3 The Euler-Bernoulli beam on Winkler foundation: equivalence between the
biphasic continuum and the continuum-springs system | 29

(a)

EQ7a_OK

1

2

6

3

4

5

e1

e2

(b)

1

2 3

4

56

e1

e2

EQ7b_OK

(c)

EQ7c_OK

1

2 3

4

56

e1

e2

Figure 3.5: Finite element implementation of the composite cell, the load conditions: (a)
uniaxial compression in the e1 direction, (b) uniaxial compression in the e2 direction, (c)
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Figure 3.6: Filling material as a Winkler foundation vs filling material as a classical contin-
uum, comparison between the nodal displacements in the case of (a) uniaxial compression in
the e1 direction, (b) uniaxial compression in the e2 direction, (c) shear forces
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3.4 The discrete system continuum-springs: theoretical descrip-
tion

3.4.1 The Euler-Bernoulli beam on Winkler foundation element
In the global reference system (e1, e2), the configuration of the e-th beam element is
known by specifying the coordinates of its end nodes, I and J.

However, to analyse the generic component, it is more convenient using a local
reference system, specific to the considered beam and closely dependent to its geometry
(Figure 3.3). Such reference is defined by two orthonormal unit vectors, ÷

e
1 and ÷

e
2, and

by the coordinate system (x, y). In the local notation, that will be adopted hereinafter,
the extreme nodes of the beam are denoted by the indices i and j. According to the
kinematics of the two-dimensional Euler-Bernoulli beam, each node has three degrees
of freedom: two translations, u and v, and one rotation, Ï (Figure 3.3).Thus, the
following 6x1 vector completely describes the element nodal displacements

d

e :=
S

U di

dj

T

V
T

=
Ë

ui vi Ïi uj vj Ïj

ÈT
. (3.26)

With reference to the beams 0-1, 0-2 and 0-3, the vector in Equation (3.26) takes
the form

d

1 =
S

U d0

d1

T

V =
Ë

u0 v0 Ï0 u1 v1 Ï1
ÈT

, (3.27)

d

2 =
S

U d0

d2

T

V =
Ë

u0 v0 Ï0 u2 v2 Ï2
ÈT

, (3.28)

d

3 =
S

U d0

d3

T

V =
Ë

u0 v0 Ï0 u3 v3 Ï3
ÈT

. (3.29)

The knowledge of the quantities in Equation (3.26) allows the approximation of the
axial and transverse displacements at every point along the beam, denoted respectively
by u

e(›) and v

e(›):
u

e(›) :=
Ë

u

e(›) v

e(›)
ÈT

= N

e(›)de
. (3.30)

In Equation (3.30), › := 2x/¸ ≠ 1 stands for the dimensionless coordinate varying from
› = ≠1 at node i (x = 0) to › = 1 at node j (x = ¸), with ¸ the element’s length. If
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expressed as a function of ›, the components of the shape function matrix

N

e(›) :=
S

U N1 0 0 N2 0 0
0 N3 N4 0 N5 N6

T

V (3.31)

are (Zienkiewicz, 1977)

N1 = 1 ≠ ›

2 , N2 = 1 + ›

2 , N3 = 1 ≠ ›(3 ≠ ›

2)/2
2 ,

N4 = ¸(1 ≠ ›

2)(1 ≠ ›)
8 , N5 = 1 + ›(3 ≠ ›

2)/2
2 , N6 = ≠¸(1 ≠ ›

2)(1 + ›)
8 .

(3.32)

In terms of energetics, the elastic strain energy of the Euler-Bernoulli beam on
Winkler foundation element can be evaluated as the sum of three terms (Dinev, 2012):

w

e = w

e
b + 1

2 w

e,a
wf + 1

2 w

e,b
wf . (3.33)

The first,
w

e
b := 1

2 (de)T · k

e
bd

e
, (3.34)

is the classical elastic energy due to the axial and bending deformations of the beam,
the second and the third,

w

e,a
wf := 1

2 (�d

e,a)T · k

e
wf�d

e,a (3.35)

and
w

e,b
wf := 1

2
1
�d

e,b
2T

· k

e
wf�d

e,b
, (3.36)

are related to the elongation of the springs a,

�d

e,a :=
S

U �d

a
i

�d

a
j

T

V =
Ë

� u

a
i � v

a
i � Ï

a
i � u

a
j � v

a
j � Ï

a
j

ÈT
, (3.37)

and of the springs b,

�d

e,b :=
S

U �d

b
i

�d

b
j

T

V =
Ë

� u

b
i � v

b
i � Ï

b
i � u

b
j � v

b
j � Ï

b
j

ÈT
. (3.38)

As illustrated in Figures 3.7 and 3.8, the springs a and the springs b connect each beam
with the opposite one in the ≠÷

e
2 and +÷

e
2 direction, in turn.
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In particular, for the beams 0-1, 0-2 and 0-3, the quantities in Equations (3.37) and
(3.38) are, respectively,

� d

1,a =
S

U �d

a
0

�d

a
1

T

V =

S

WWWWWU

u0 ≠ u10

Ï0 ≠ Ï10

u1 ≠ u11

Ï1 ≠ Ï11

T

XXXXXV
, � u

1,b =
S

U �d

b
0

�d

b
1

T

V =

S

WWWWWU

u0 ≠ u6

Ï0 ≠ Ï6

u1 ≠ u5

Ï1 ≠ Ï5

T

XXXXXV
, (3.39)

� u

2,a =
S

U �d

a
0

�d

a
2

T

V =

S

WWWWWU

u0 ≠ u4

Ï0 ≠ Ï4

u2 ≠ u5

Ï2 ≠ Ï5

T

XXXXXV
, � u

2,b =
S

U �d

b
0

�d

b
2

T

V =

S

WWWWWU

u0 ≠ u9

Ï0 ≠ Ï9

u2 ≠ u8

Ï2 ≠ Ï8

T

XXXXXV
, (3.40)

� u

3,a =
S

U �d

a
0

�d

a
3

T

V =

S

WWWWWU

u0 ≠ u7

Ï0 ≠ Ï7

u3 ≠ u8

Ï3 ≠ Ï8

T

XXXXXV
, � u

3,b =
S

U �d

b
0

�d

b
3

T

V =

S

WWWWWU

u0 ≠ u12

Ï0 ≠ Ï12

u3 ≠ u11

Ï3 ≠ Ï11

T

XXXXXV
, (3.41)

where, for brevity,
ui :=

Ë
ui vi

ÈT
. (3.42)

Regarding the factor 1/2 in the second and third term of Equation (3.33), it is
introduced to take into account that each spring is shared between two opposite beams
and contributes only half of its strain energy to the unit cell.

Additionally, k

e
b and k

e
wf are, on order, the sti�ness matrix of the classical Euler-

Bernoulli beam and of the Winkler foundation (Janco, 2010), denoted by lowercase
letters since they are expressed in the local reference. Their components, obtained by
applying the minimum energy principle (Tsiatas, 2014), are given by

[ke
b]ij :=

Y
_____________]

_____________[

⁄ 1

≠1
C¸N

Õ

i (›)N Õ

j(›) d›, i, j = 1, 4,

⁄ 1

≠1
D¸N

ÕÕ

i (›)N ÕÕ

j (›) d›, i, j = 2, 3, 5, 6,

0, otherwise

(3.43)
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and

Ë
k

e
wf

È

ij
:=

Y
_____]

_____[

⁄ 1

≠1
KwNi(›)Nj(›) d›, i, j = 2, 3, 5, 6,

0, otherwise,

(3.44)

with
C¸ := Es h

1 ≠ ‹

2
s

and D¸ := Es h

3

12(1 ≠ ‹

2
s ) (3.45)

respectively, the tensile and bending sti�ness (per unit width) of the beams, Es, ‹s and
h their Young’s modulus, Poisson’s ratio and thickness, Kw the Winkler foundation
constant and

(·)Õ := ˆ(·)
ˆ›

, (·)ÕÕ := ˆ

2(·)
ˆ›

2 . (3.46)

Substituting the relations in Equation (3.32) into Equations (3.43) and (3.44) and
integrating over the element, lead to

k

e
b =

S

WWWWWWWWWWWU

C¸/¸ 0 0 ≠C¸/¸ 0 0
0 12D¸/¸

3 6D¸/¸

2 0 ≠12D¸/¸

3 6D¸/¸

2

0 6D¸/¸

2 4D¸/¸ 0 ≠6D¸/¸

2 2D¸/¸

≠C¸/¸ 0 0 C¸/¸ 0 0
0 ≠12D¸/¸

3 ≠6D¸/¸

2 0 12D¸/¸

3 ≠6D¸/¸

2

0 6D¸/¸

2 2D¸/¸ 0 ≠6D¸/¸

2 4D¸/¸

T

XXXXXXXXXXXV

(3.47)

and

k

e
wf =

S

WWWWWWWWWWWU

0 0 0 0 0 0
0 13 Kw/35 11 Kw¸/210 0 9 Kw/70 ≠13 Kw¸/420
0 11 Kw¸/210 Kw¸

2
/105 0 13 Kw¸/420 ≠Kw¸

2
/140

0 0 0 0 0 0
0 9 Kw/70 13 Kw¸/420 0 13 Kw/35 ≠11 Kw¸/210
0 ≠13 Kw¸/420 ≠Kw¸

2
/140 0 ≠11 Kw¸/210 Kw¸

2
/105

T

XXXXXXXXXXXV

. (3.48)

It should be noted that there are di�erent approaches in evaluating the sti�ness
matrix of the beam element on elastic foundations (Tsiatas, 2014). The two main
techniques are based on either the use of approximated shape functions (Janco, 2010;
Kuo & Lee, 1994; Hosur & Bhavikatti, 1996; Chen, 1998) or the development of exact
ones (Eisenberger & Yankelevsky, 1985; Sen et al., 1990; Razaqpur & Shah, 1991). In
the first case, both k

e
b and k

e
wf are evaluated by adopting the Hermitian cubic shape
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Figure 3.7: The two sets of elastic springs: (a) springs a, (b) springs b
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functions typical of the Euler-Bernoulli beam, listed in the set of Equations (3.32).
In the second, the shape functions are derived by solving the governing di�erential
equation of the Euler-Bernoulli beam resting on Winkler foundation (Eisenberger &
Yankelevsky, 1985). Despite the simplifications introduced, several existing studies,
dealing with a broad range of engineering problems (Janco, 2010; Tsiatas, 2014; Karkon
& Karkon, 2016), conclude that the results of the numerical implementations based on
the approximated solution compare favourably to those obtained by the exact ones.
Considering this and aiming to obtain a theoretical model that is able to address all
the relevant issues, yet easy to recall in practice, in the present thesis the approximated
approach is adopted (cf. Equation (3.44)).

Finally, similarly to Equation (3.33), the forces and couples acting at the extreme
nodes of the beam,

f

e :=
S

U fi

fj

T

V =
Ë

fxi fyi mi fxj fyj mj

ÈT
, (3.49)

are obtained by adding the contribution of the Winkler foundation,

f

e,a
wf := k

e
wf �d

e,a (3.50)

and
f

e,b
wf := k

e
wf �d

e,b
, (3.51)

to that of the classical Euler-Bernoulli beam,

f

e
b := k

e
b d

e : (3.52)

f

e = f

e
b + 1

2 f

e,a
wf + 1

2 f

e,b
wf . (3.53)

Again, as the springs are shared between opposite beams, the factor 1/2 is introduced
in the last two terms of Equation (3.53).

3.4.2 Elastic energy of the discrete problem
For any given deformation, the elastic energy representative of the whole discrete
structure, W , can be evaluated from that of the three beams composing the unit cell
of the periodic array (Figure 3.2b), 0-1, 0-2 and 0-3.

As it can be seen in Figure 3.2b, the first node of each beam coincides with the central
point 0. Accordingly, if d0 and �d

a
0, �d

b
0 denote, respectively, the displacements of
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Figure 3.8: The triplet of elastic beams with focus on springs: (a) beam 0-1, (b) beam 0-2,
(c) beam 0-3
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the beam and the elongation of the springs a and of the springs b at joint 0, Equation
(3.53) takes the form

f

e =
S

U f0

fj

T

V =
S

U kb,01 dj + kb,00 d0

kb,11 dj + kb,10 d0

T

V

+ 1
2

S

U kwf,01 �d

a
j + kwf,00 �d

a
0

kwf,11 �d

a
j + kwf,10 �d

a
0

T

V + 1
2

S

U kwf,01 �d

b
j + kwf,00 �d

b
0

kwf,11 �d

b
j + kwf,10 �d

b
0

T

V
, (3.54)

where f0 and fj are, in turn, the forces and couples at the nodes 0 and j = 1, 2, 3,

kb,11 :=

S

WWWWWWWWU

C¸

¸

0 0

0 12D¸

¸

3 ≠6D¸

¸

2

0 ≠6D¸

¸

2
4D¸

¸

T

XXXXXXXXV

, kwf,11 :=

S

WWWWWWWU

0 0 0

0 13Kw

35 ≠11Kw¸

210

0 ≠11Kw¸

210
Kw¸

2

105

T

XXXXXXXV

,

kb,10 :=

S

WWWWWWWWU

≠C¸

¸

0 0

0 ≠12D¸

¸

3 ≠6D¸

¸

2

0 6D¸

¸

2
2D¸

¸

T

XXXXXXXXV

, kwf,10 :=

S

WWWWWWWU

0 0 0

0 9Kw

70
13Kw¸

420

0 ≠13Kw¸

420 ≠Kw¸

2

140

T

XXXXXXXV

,

kb,01 :=

S

WWWWWWWWU

≠C¸

¸

0 0

0 ≠12D¸

¸

3
6D¸

¸

2

0 ≠6D¸

¸

2
2D¸

¸

T

XXXXXXXXV

, kwf,01 :=

S

WWWWWWWU

0 0 0

0 9Kw

70 ≠13Kw¸

420

0 13Kw¸

420 ≠Kw¸

2

140

T

XXXXXXXV

,

kb,00 :=

S

WWWWWWWWU

C¸

¸

0 0

0 2D¸

¸

3
6D¸

¸

2

0 6D¸

¸

2
4D¸

¸

T

XXXXXXXXV

, kwf,00 :=

S

WWWWWWWU

0 0 0

0 13Kw

35
11Kw¸

210

0 11Kw¸

210
Kw¸

2

105

T

XXXXXXXV

(3.55)

the sub-matrices obtained by partitioning k

e
b and k

e
wf .
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Also, after writing Equation (3.54) in the global reference system (see Appendix
C), imposing the equilibrium conditions at point 0 and condensing the corresponding
degrees of freedom, lead to

W = Wb + 1
2W

a
wf + 1

2W

b
wf © W

1
D̃, �D̃

a
, �D̃

b
2

, (3.56)

with
Wb := 1

2D̃

T · K̃bD̃, (3.57)

W

a
wf := 1

2
1
�D̃

a
2T

· K̃wf�D̃

a
, (3.58)

W

b
wf := 1

2
1
�D̃

b
2T

· K̃wf�D̃

b
, (3.59)

K̃b and K̃wf the global sti�ness matrices suitably re-arranged,

D̃ :=

S

WWU

D1

D2

D3

T

XXV =
Ë

U1 V1 Ï1 U2 V2 Ï2 U3 V3 Ï3
ÈT

(3.60)

and

�D̃

a :=

S

WWU

�D

a
1

�D

a
2

�D

a
3

T

XXV =
Ë

�U

a
1 �V

a
1 �Ï

a
1 �U

a
2 �V

a
2 �Ï

a
2 �U

a
3 �V

a
3 �Ï

a
3

ÈT
,

(3.61)

�D̃

b :=

S

WWU

�D

b
1

�D

b
2

�D

b
3

T

XXV =
Ë

�U

b
1 �V

b
1 �Ï

b
1 �U

b
2 �V

b
2 �Ï

b
2 �U

b
3 �V

b
3 �Ï

b
3

ÈT
,

(3.62)
the vectors of nodal displacements and elongation of the two sets of springs expressed
in the global reference system.

In particular,

� D

a
1 =

Ë
D1 ≠ D11

È
=

S

U U1 ≠ U11

Ï1 ≠ Ï11

T

V
, (3.63)

� D

a
2 =

Ë
D2 ≠ D5

È
=

S

U U2 ≠ U5

Ï2 ≠ Ï5

T

V
, (3.64)
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� D

a
3 =

Ë
D3 ≠ D8

È
=

S

U U3 ≠ U8

Ï3 ≠ Ï8

T

V (3.65)

and

� D

b
1 =

Ë
D1 ≠ D5

È
=

S

U U1 ≠ U5

Ï1 ≠ Ï5

T

V
, (3.66)

� D

b
2 =

Ë
D2 ≠ D8

È
=

S

U U2 ≠ U8

Ï2 ≠ Ï8

T

V
, (3.67)

� D

b
3 =

Ë
D3 ≠ D11

È
=

S

U U3 ≠ U11

Ï3 ≠ Ï11

T

V
, (3.68)

with
Ui :=

Ë
Ui Vi

ÈT
(3.69)

for conciseness.
It is worth noting that, here and in the following, uppercase letters are used to

di�erentiate the global variables from the local ones.

3.5 The continuum model

3.5.1 Elastic energy
One of the most powerful tools to predict the e�ective properties of microstructured
composite materials is the homogenization method. Its main idea consists in finding a
globally homogeneous continuum, equivalent to the original discrete structure, such
that the energies stored in the two systems are assumed to be approximately the same.

In the examined case, it is possible to derive the continuum form of W by introducing
the equivalent, continuous fields of displacement and microrotation

ˆ

U(·) :=
S

U Û(·)
V̂ (·)

T

V and Ï̂(·), (3.70)
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and by assuming that in the limit ¸ æ 0 the discrete variables Uj, Vj, Ïj in Equations
(3.60) and (3.63)-(3.68) can be expressed by

Uj :=
S

U Uj

Vj

T

V = ˆ

U0 + Ò ˆ

U bj, Ïj = Ï̂0 + ÒÏ̂ bj, j = 1, 2, 3, 5, 8, 11, (3.71)

with ˆ

U0 and Ï̂0 the values of ˆ

U(·) and Ï̂(·) at the central node of the cell in the
continuum description,

Ò ˆ

U(·) :=

S

WWWWWWU

ˆÛ(·)
ˆX

ˆÛ(·)
ˆY

ˆV̂ (·)
ˆX

ˆV̂ (·)
ˆY

T

XXXXXXV
=

S

WWU

Û1,1 Û1,2

Û2,1 Û2,2

T

XXV (3.72)

and

ÒÏ̂(·) :=

S

WWWWWU

ˆÏ̂(·)
ˆX

ˆÏ̂(·)
ˆY

T

XXXXXV
=

S

WWU

Ï̂,1

Ï̂,2

T

XXV (3.73)

the gradient of the displacement and rotation fields, bj the vectors defined in Figure
3.9.

2
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e2

unit_cell_bi

8 5

11 

b8 b2 b5

b3 b1

b11

Figure 3.9: The composite cellular material: bi vectors



3.5 The continuum model | 42

Then, substituting the relations (3.71) into Equation (3.56) and dividing the
expression that turns out from the calculation by the area of the unit cell, A0 = 3

Ô
3¸

2
/2,

give the strain energy density in the continuum approximation, w:

W (U, Ï)
A0

≥=
W ( ˆ

U, Ï̂)
A0

© w. (3.74)

It emerges that w is a quadratic form of the infinitesimal strains,

Á–— := 1
2

1
Û–,— + Û—,–

2
, –, — = 1, 2, (3.75)

and infinitesimal rotation,
Ê := 1

2
1
Û1,2 ≠ Û2,1

2
, (3.76)

typical of classical continuum mechanics, and of the microrotation gradients, Ï̂,–:

w = (Á2
11 + Á

2
22) (C2

¸ ¸

4 + 36D¸C¸¸
2) + 2Á11Á22(C2

¸ ¸

4 ≠ 12D¸C¸¸
2) + 96D¸C¸¸

2
Á

2
12

4
Ô

3¸

3(12D¸ + C¸¸
2)

+
12D¸C¸¸

3
Á12Ï̂,2 + 6D¸C¸¸

3 (Á22 ≠ Á11) Ï̂,1 + 2D¸¸
2(3D¸ + C¸¸

2)
1
Ï̂

2
,1 + Ï̂

2
,2

2

Ô
3¸

3(12D¸ + C¸¸
2)

+ 12D¸(3D¸ + C¸¸
2) (Ê ≠ Ï̂)2

Ô
3¸

3(12D¸ + C¸¸
2)

+ Kw (271 (Á2
11 + Á

2
22) + 408Á

2
12 + 134Á11Á22)

832
Ô

3

+
Kw¸

1
¸(Ï̂2

,1 + Ï̂

2
,2) + 6Ï̂,1(Á11 ≠ Á22) ≠ 12Á12Ï̂,2

2

96
Ô

3
.

(3.77)

It is not di�cult to note the di�erent physical dimensions of the coe�cients in Equation
(3.77): all of them are independent of ¸, with the exception of the microrotation gradients
that scale with first order in ¸. Accordingly, in the limit ¸ æ 0 the contribution of Ï̂,–

is missing and Equation (3.77) can be written as

w © w (Á–—, (Ê ≠ Ï̂), Ï̂,– = 0) , (3.78)

leading to a resulting not-polar equivalent continuum.
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3.5.2 Constitutive equations
As in classical mechanics, the constitutive equations of the homogenized continuum
are given by

‡“” := ˆw

ˆÛ“,”

, “, ” = 1, 2, (3.79)

where w is the strain energy density defined in Equation (3.78) and ‡“” denote the
components of the Cauchy-type stress tensor.

Also, from the chain rule,

‡“” = ˆw

ˆÁ–—

ˆÁ–—

ˆÛ“,”

+ ˆw

ˆÊ

ˆÊ

ˆÛ“,”

, –, —, “, ” = 1, 2. (3.80)

By observing that

ˆw

ˆÁ–—

ˆÁ–—

ˆÛ“,”

= 1
2

A
ˆw

ˆÁ“”
+ ˆw

ˆÁ”“

B

= ˆw

ˆÁ“”
(3.81)

and
ˆw

ˆÊ

ˆÊ

ˆÛ“,”

= 1
2

ˆw

ˆÊ

(”1“ ”2” ≠ ”2“ ”1”) = 1
2

ˆw

ˆÊ

e“”, (3.82)

with e“” the alternating symbol (e11 = e22 = 0, e12 = ≠e21 = 1) and ”ij the Kronecker
delta (”ij = 1 if i = j, ”ij = 0 if i ”= j), it emerges that, in general, the stress tensor is
not-symmetric:

‡“” = ˆw

ˆÁ“”
+ 1

2
ˆw

ˆÊ

e“”, (3.83)

being
‡

sym
“” := ˆw

ˆÁ“”
(3.84)

and
‡

skw
“” := 1

2
ˆw

ˆÊ

e“”, (3.85)

respectively, its symmetric and skew-symmetric parts.
The latter, in particular, depends on the di�erence (Ê ≠ Ï̂), result that fits with

the general format of the theory of continua with microstructure (Nemat-Nasser &
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Hori, 1993):

‡11 = (C2
¸ ¸

2 + 36D¸C¸)Á11 + (C2
¸ ¸

2 ≠ 12D¸C¸)Á22

2
Ô

3 ¸(12D¸ + C¸¸
2)

+ Kw(271Á11 + 67Á22)
416

Ô
3

,

‡22 = (C2
¸ ¸

2 + 36D¸C¸)Á22 + (C2
¸ ¸

2 ≠ 12D¸C¸)Á11

2
Ô

3 ¸(12D¸ + C¸¸
2)

+ Kw(271Á22 + 67Á11)
416

Ô
3

,

‡

sym
12 = ‡

sym
21 = 24D¸C¸Á12Ô

3 ¸(12D¸ + C¸¸
2)

+ 51Kw Á12

52
Ô

3
,

‡

skw
12 = ≠‡

skw
21 =

Ô
3 D¸ (Ê ≠ Ï̂)

¸

3 ,

‡12 = ‡

sym
12 + ‡

skw
12 , ‡21 = ‡

sym
21 + ‡

skw
21 .

(3.86)

3.5.3 E�ective elastic constants
Let us consider the stress state ‡11 ”= 0, ‡22 = ‡12 = ‡21 = 0. By recalling the relations
in Equation (3.86) and the Hooke’s law ‡11 = E1 Á11, straightforward calculations give
the e�ective Young’s modulus in the e1 direction,

E1 := ‡11
Á11

= (13 Kw (1 ≠ ‹

2
s ) + 16⁄Es) (51 (1 + ⁄

2) Kw (1 ≠ ‹

2
s ) + 208⁄

3
Es)

4
Ô

3 (1 ≠ ‹

2
s ) (271 (1 + ⁄

2) Kw (1 ≠ ‹

2
s ) + 208 (⁄ + 3⁄

3) Es)
, (3.87)

and the related Poisson’s ratio,

‹12 := ≠Á22
Á11

= 67 (1 + ⁄

2) Kw (1 ≠ ‹

2
s ) ≠ 208⁄ (⁄2 ≠ 1) Es

271 (1 + ⁄

2) Kw (1 ≠ ‹

2
s ) + 208⁄ (1 + 3⁄

2) Es
, (3.88)

where, for brevity, ⁄ := h/¸ stands for the ratio between the thickness and the length
of the cell arms.

Similarly, the stress state in the e2 direction, ‡22 ”= 0, ‡11 = ‡12 = ‡21 = 0, yields

E2 = E1 © E and ‹21 = ‹12 © ‹. (3.89)

Finally, the stress condition ‡

sym
12 ”= 0, ‡11 = ‡22 = 0 leads to the e�ective tangential

elastic modulus

G := ‡

sym
12

2Á12
= 51 (1 + ⁄

2) Kw (1 ≠ ‹

2
s ) + 208⁄

3
Es

208
Ô

3 (1 + ⁄

2) (1 ≠ ‹

2
s )

. (3.90)
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In accordance with the conclusions of Gibson and Ashby (Gibson & Ashby, 2001),
the derived elastic moduli of the limit continuum, E, ‹ and G, satisfy the classical
relation

G = E

2 (1 + ‹) , (3.91)

revealing the material isotropy.

It should be noted that the composite microstructure analysed in the present thesis
is represented by a sequence of elastic beams of unitary width, b = 1. This assumption,
in conjunction with the Winkler foundation to model the filler, leads to the above
closed-form expressions for the e�ective elastic constants. Nevertheless, as a first
approximation, the proposed results can be extrapolated to three-dimensional cellular
materials with closed-cells by assuming a not unitary width of the beams. Accordingly,
in the matrices k

e
b and k

e
wf defined in Section 3.4, the quantities

D¸ := Es h

3

12(1 ≠ ‹

2
s ) , C¸ := Es h

1 ≠ ‹

2
s

, Kw (3.92)

are replaced by
D

ú
¸ := D¸ b, C

ú
¸ := C¸ b, K

ú
w := Kw b, (3.93)

with D¸ and C¸, respectively, the bending and the axial sti�ness of the beam, Kw the
Winkler foundation constant, b the width.

Alternatively, to correctly capture the three-dimensional mechanical behavior and
to obtain more accurate results, the beams should be replaced by plates. However,
from a mathematical point of view, this leads to a less tractable problem and, probably,
a closed-form expression for the e�ective elastic constants and constitutive equations
could not be derived.

3.6 Validation of the theoretical results
As seen in the previous sections, the e�ective mechanical properties of composite cellular
materials can be predicted by knowing the constitutive laws and spacial distribution
of their components. In particular, it emerges that the macroscopic constants and
stress-strain relations are strongly a�ected by the geometric and mechanical properties
of the microstructure, such as the ratio ⁄ := h/¸ or the infill’s sti�ness, Kw. Before
addressing a parametric analysis to investigate further this influence (Section 3.7),
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the proposed analytical results are verified by comparison with the numerical ones, in
Section 3.6.1, and with those of the other authors, in Section 3.6.2.

3.6.1 Comparison between the analytical and numerical homogenization
A di�erent way to solve homogenization problems of heterogeneous materials, having a
more or less periodic microstructure, is to use numerical techniques.

Numerical simulations, based on the finite element method (FEM), have been
developed for periodic microstructures at the end of 1960 (Adams & Doner, 1967;
Needleman & Void, 1972) and rapidly drawn considerable attention in the field of
materials science. More recently, e�orts have been made to consider more complex
microstructures (Brockenborough et al., 1991; Moulinec & Suquet, 1995; Moulinec &
Suquet, 1997) and various mathematical techniques have been introduced. Authors,
initially, focused on linear constituents (Sanchez-Palencia, 1974; Bensoussan et al.,
1978) but, since these pioneering studies, the method has been extended to plastic
materials (Bouchitte & Suquet, 1991).

Referring the interested reader to Gusev (1997), Sab (1992) and Drugan & Willis
(1996) for a more detailed discussion, in the following the main concepts to numerically
evaluate the e�ective properties of microscopically heterogeneous media are outlined.
Emphasis is on the FEM-based technique but the same ideas are also applicable to
other types of discretization, as the finite di�erence method (FDM) or the finite volume
method (FVM).

3.6.1.1 Numerical homogenization: overview

It is a well-understood fact that the overall response of heterogeneous materials is
highly influenced by the material behavior and geometric arrangement of the distinct
phases. Such research venture inevitably involves analyses on di�erent length scales
and makes a detailed description of the whole structure practically intractable, even
on modern powerful computers.

Another complication comes from the fact that, generally, the microstructural
configuration is not periodic and does not comply with the idealised geometries
frequently encountered in the literature. Formally, this di�cult can be resolved by
assuming the periodicity of the microstructure that, for real materials, may appear
to be rather artificial and inappropriate. However, the numerical studies in Terada
& Kikuchi (2001) and Terada et al. (2000) reveal that the periodicity conditions are
surprisingly well suited for the analysis of materials with disordered microstructure.
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In addition, due to the requirement of computational feasibility, numerical methods
of homogenization usually consider a smaller sample of the heterogeneous material (Sun
& Vaidya, 1996), the so-called Representative Volume Element (RVE), that is used
to determine the corresponding e�ective properties of the homogenized macroscopic
model. According to the commonly adopted homogenization approach (i.e., statistical
homogenization), the RVE must contain a su�cient number of microheterogeneities,
like grains, inclusions, voids or fibers (Kanit et al., 2003), to statistically represent the
whole composite and to provide the same macroscopic response as the real system.

Once a suitable RVE has been identified, appropriate boundary conditions are
imposed to model di�erent loading situations and to induce a microscopic stress, ‡,
and a microscopic strain, ‘. Through homogenization assumptions, the RVE is then
regarded as a classical material element of an equivalent homogeneous medium whose
e�ective properties are obtained by an average process (Sun & Vaidya, 1996) (Figure
3.10). That is to say, the macroscopic stress, ‡, and the macroscopic strain, ‘, treated
as the e�ective stress and the e�ective strain fields, are calculated by averaging their
local counterparts over the considered heterogeneous domain of volume V :

‡ :=< ‡ >= 1
V

⁄

V
‡ dV, ‘ :=< ‘ >= 1

V

⁄

V
‘ dV. (3.94)



3.6 Validation of the theoretical results | 48

Under the assumption of linearly elastic material behavior, the relation between ‡

and ‘ is expressed by the classical Hooke’s law,

‡ = C ‘, (3.95)

or, by using the Voigt notation,
S

WWU

‡11

‡22

‡12

T

XXV =

S

WWU

C11 C12 C13

C21 C22 C23

C31 C32 C33

T

XXV

S

WWU

Á11

Á22

2 Á12

T

XXV , (3.96)

with Cij the components of the e�ective sti�ness tensor, C.
To highlight the e�ective engineering constants, Young’s moduli, E1 and E2, Pois-

son’s ratios, ‹12 and ‹21, and shear modulus, G, the constitutive law in Equation (3.96)
can be rewritten in terms of the homogenized compliance tensor, S = C

≠1:
S

WWU

Á11

Á22

2 Á12

T

XXV =

S

WWU

S11 S12 S13

S21 S22 S23

S31 S32 S33

T

XXV

S

WWU

‡11

‡22

‡12

T

XXV , (3.97)

being

S11 = C22 C33 ≠ C23 C32
det C

© 1
E1

, S12 = ≠C13 C32 ≠ C12 C33
det C

© ≠‹21
E2

,

S22 = C11 C33 ≠ C13 C31
det C

© 1
E2

, S21 = ≠C23 C31 ≠ C21 C33
det C

© ≠‹12
E1

,

S33 = C11 C22 ≠ C12 C21
det C

© 1
G

,

S13 = C12 C23 ≠ C13 C22
det C

, S23 = C13 C21 ≠ C11 C23
det C

,

S31 = C21 C32 ≠ C22 C31
det C

, S32 = C12 C31 ≠ C11 C32
det C

.

(3.98)

3.6.1.2 Boundary conditions

In the literature, three types of boundary conditions are usually prescribed on the RVE
(Kanit et al., 2003), kinematic uniform boundary conditions (KUBC), static uniform
boundary conditions (SUBC), periodic boundary conditions (PERIODIC), so as to
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produce a macroscopic strain, ‘, or a macroscopic stress, ‡, within a homogeneous
material having the same size of the RVE.

In particular, in the KUBC case, the boundary points of the RVE, x œ ˆV , are
subjected to a homogeneous displacement, u, such that

u := ‘ · x, ’x œ ˆV, (3.99)

while, in the SUBC case, to a homogeneous traction, t, given by

t := ‡ · n, ’x œ ˆV, (3.100)

with n the unit normal to ˆV .
By taking into account that composite materials can be represented as a periodical

array of RVEs, PERIODIC conditions enforce periodic displacements, u, and anti-
periodic tractions, t, on the RVE’s boundary (Figure 3.11):

Y
_]

_[

u := ‘ · x + u

ú : u

+ = u

≠
, ’x œ ˆV,

t := ‡ · n : t

+ = ≠t

≠
, ’x œ ˆV,

(3.101)

where u

ú is a periodic fluctuation, generally unknown, dependent on the applied global
loads (Dinev, 2012; Pellegrino et al., 1999). The conditions in Equation (3.101) imply
that, in the composite, each RVE has the same deformation mode and that there is no
separation or overlap between the neighbouring RVEs.

As pointed out in Michel et al. (1999), when both the loading and the RVE’s
geometry exhibit su�cient symmetry, Equations (3.101) can be reduced to the usual
boundary conditions in Equations (3.99) or (3.100). However, in the case of multi-axial
stress states, the abovementioned symmetry considerations can not be invoked and the
periodicity conditions in Equation (3.101) can not be done away with.

In addition, KUBC, SUBC and PERIODIC, along with the stress and strain
quantities defined in Equations (3.94), satisfy the Hill-Mandel theorem (Pellegrino et
al., 1999; Ptaszny & Fedelinski, 2011), ensuring the micro-macro equivalence

< ‡ · ‘ >= ‡ · ‘, (3.102)

with
< ‡ · ‘ >:= 1

V

⁄

V
‡ · ‘ dV (3.103)
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Figure 3.11: Periodic boundary conditions on the RVE

half of the averaged energy density of the heterogeneous RVE. Note that, if the boundary
conditions are homogeneous as in Equations (3.99), (3.100) and (3.101), Equation
(3.102) is valid for any material, homogeneous, heterogeneous or piecewise homogeneous.
If the requirement of homogeneity is not fulfilled, the Hill-Mandel theorem does not
apply, since the mean value of a product is generally not equal to the product of mean
values.

3.6.1.3 Numerical implementation and results

Regarding the numerical simulations performed to validate the analytical predictions of
Section 3.5.3, Figure 3.12 and Table 3.1 illustrate, respectively, the considered domain
and the boundary conditions.

As in can be seen in Figure 3.12, the calculations involve a 75x50 mm rectangular
domain discretized in an increasing number of hexagonal cells having gradually smaller
length, ¸. The cell walls, treated as Euler-Bernoulli beams on Winkler foundation
elements, have Young’s modulus Es = 79 GPa, Poisson’s ratio ‹s = 0.35 and thickness
h = 0.1¸. Also, two values of the Winkler foundation constant are assumed: Kw =
10≠2

Es and Kw = 10≠3
Es.

To obtain the e�ective elastic constants, three load conditions are considered: the
first, uniaxial compression in the e1 direction (Figure 3.13a), and the second, uniaxial
compression in the e2 direction (Figure 3.13b), to get the Young’s moduli E1, E2 and
Poisson’s ratios ‹12, ‹21, the third, pure shear (Figure 3.13c), to gain the shear modulus
G. The loading states are simulated by forces acting at the unconstrained boundary
nodes of the domain, as summarised in Table 3.1.
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Figure 3.12: Analysed domain in the numerical simulations

Table 3.1 Boundary conditions used in the numerical simulations

Properties Surface ˆVA Surface ˆVB Surface ˆVC Surface ˆVD

S11, S21, S31 Free ≠t1 = ≠‡11 Free t1 = ‡11
E1, ‹12

S12, S22, S32 ≠t2 = ≠‡22 Free t2 = ‡22 Free
E2, ‹21

S13, S23, S33
t21 = ‡12 t12 = ‡12 ≠t21 = ≠‡12 ≠t12 = ≠‡12

G
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Operationally, the problem reduces to the solution of the boundary value problems
corresponding to the three loading situations described and to the computation of the
displacements at the extreme points of the beams. The displacements and derived
quantities (i.e., stress, ‡

(·)
ij , and strain, Á

(·)
ij ) at every point along the beams are calculated

by interpolation (cf. Section 3.4.1). Finally, the homogenized moduli are a consequence
of Equations (3.94), (3.97) and (3.98).

When the forces act horizontally, Equation (3.97) leads to
S

WWU

Á

(1)
11

Á

(1)
22

2 Á

(1)
12

T

XXV =

S

WWU

S11 S12 S13

S21 S22 S23

S31 S32 S33

T

XXV

S

WWU

‡11

0
0

T

XXV =

S

WWU

S11 ‡11

S21 ‡11

S31 ‡11

T

XXV , (3.104)

where ‡11 is the applied stress (Table 3.1) and Á

(1)
ij the corresponding strain given by

Á

(1)
ij := 1

V

⁄

V
Á

(1)
ij dV, i, j = 1, 2, (3.105)

with V the volume of the examined domain. The latter, as shown in Figure 3.12, is
composed by a number of beams, nb, having the same length, ¸, the same thickness, h,
and width b. Accordingly,

Á

(1)
ij =

b

⁄

�
Á

(1)
ij d�

nbÿ

m=1
b ¸m hm

=
bh

nbÿ

m=1

3⁄

s
Á

(1)
ij (s) ds

4

m

nb b ¸ h

=

nbÿ

m=1

3⁄

s
Á

(1)
ij (s) ds

4

m

nb ¸

, i, j = 1, 2,

(3.106)
where � is the area of the domain, s = (cos Ëm, sin Ëm) a parametric coordinate such
that 0 Æ s Æ ¸ (Figure 3.12), ¸m, hm, Ëm, respectively, the length, the thickness and
the inclination of the m-th beam.
Also, if

Áij(s) := 1
2

Q

aˆu

(1)
i (s)

ˆXj
+

ˆu

(1)
j (s)

ˆXi

R

b (3.107)

and

ˆu

(1)
i (s)

ˆXj
= ˆu

(1)
i (s)
ˆs

ˆs

ˆXj
,

ˆu

(1)
j (s)

ˆXi
=

ˆu

(1)
j (s)
ˆs

ˆs

ˆXi
, i, j = 1, 2 (3.108)
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are substituted into Equation (3.106), it follows

Á

(1)
ij =

nbÿ

m=1

1
2

A1
u

(1)
i (¸) ≠ u

(1)
i (0)

2
ˆs

ˆXj
+

1
u

(1)
j (¸) ≠ u

(1)
j (0)

2
ˆs

ˆXi

B

m

nb ¸

, (3.109)

with

ˆs

ˆXj
= cos Ëm ”1j + sin Ëm ”2j,

ˆs

ˆXi
= cos Ëm ”1i + sin Ëm ”2i, i, j = 1, 2, (3.110)

”ij the Kroneker delta, u

(1)
i (s) and u

(1)
j (s) the displacements of the points along the

beams due to the application of ‡11. Finally, Equations (3.98) and (3.104) lead to

S11 = Á
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11

‡11
© 1

E1
, S21 = Á

(1)
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‡11
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With analogous calculations, forces acting vertically provide
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and
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, S22 = Á

(2)
22

‡22
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while, in the case of pure shear,
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and

S13 = Á

(3)
11

‡12
, S23 = Á

(3)
22

‡12
, S33 = 2 Á

(3)
12

‡12
© 1

G

. (3.115)

Again, ‡22 and ‡12 are the applied stress, Á

(2)
ij and Á

(3)
ij the corresponding strain calculated

as in Equation (3.109).

The outcome of the analysis is presented in Tables 3.2-3.5.
Firstly, a convergence study is conducted to determine the number of elements

required to produce converged material properties. This is achieved by starting with
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Figure 3.13: Finite element implementation, the load conditions: (a) uniaxial compression in
the e1 direction, (b) uniaxial compression in the e2 direction, (c) pure shear
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a small number of elements (10x7 cells) and continuously refining the mesh, i.e., the
number of cells, until no variation in the results is observed. It is found that a 500x350
cells discretization is enough to get converged numerical results and to correctly capture
the essential properties of the composite.

Tables 3.2-3.5 also illustrate the comparison between the theoretical and numerical
solutions in terms of elastic moduli, Tables 3.3 and 3.5, and Sij constants, Tables
3.2 and 3.4. Note that the analytical value of the latter quantities is obtained by
substituting

C11 = C22 = C

2
¸ ¸

2 + 36D¸C¸

2
Ô

3 ¸(12D¸ + C¸¸
2)

+ 271 Kw

416
Ô

3
,

C12 = C21 = C

2
¸ ¸

2 ≠ 12D¸C¸

2
Ô

3 ¸(12D¸ + C¸¸
2)

+ 67 Kw

416
Ô

3
,

C33 = 24D¸C¸Ô
3 ¸(12D¸ + C¸¸

2)
+ 51 Kw

52
Ô

3
,

C13 = C23 = C31 = C32 = 0,

(3.116)

derived in Section 3.5.2, into Equations (3.98).
Generally, it emerges a good agreement between the analytical and numerical

predictions, especially for Kw = 10≠2
Es. For example, let us focus on the elastic

moduli. As it can be seen, for Kw = 10≠3
Es, the analytical results are averagely 2.1%

smaller than the numerical ones (Table 3.3), but the data reduces to averagely 1%
when Kw = 10≠2

Es (Table 3.5). Apparently, the di�erence could be related to the
simplifying assumptions of the theoretical model, such as the use of linear interpolants
of nodal displacements and rotations instead of asymptotic expansions (Chen et al.,
1998; Dos Reis & Gangho�er, 2012a; Gonella & Ruzzene, 2008). Another source of
di�erence could be the Saint-Venant border e�ect, captured by the finite element
simulations and neglected by the analytical approach.

However, considering the very close comparison, it can be said that the results of
the numerical homogenization validate the theoretical ones.

3.6.2 Comparison with the existing literature
To further establish the validity of the presented modelling strategy, the theoretical
findings of Section 3.5.3 are compared with the existing literature focusing on the same
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Table 3.2 Comparison between the analytical and numerical predictions, with Kw = 10≠3Es:
Sij constants (GPa≠1)

No. cells ¸ (mm) S11 S22 S33 S12 S21 S13, S23, S31, S32

10x7 5 1.03 1.04 16.38 -1.01 -1.00 0
50x35 1 1.05 1.05 16.39 -1.02 -1.01 0
100x70 0.5 1.06 1.06 16.40 -1.03 -1.02 0
200x140 0.25 1.07 1.08 16.41 -1.04 -1.03 0
250x175 0.2 1.08 1.09 16.42 -1.04 -1.04 0
400x280 0.125 1.09 1.09 16.42 -1.04 -1.04 0
500x350 0.1 1.09 1.09 16.42 -1.04 -1.04 0

Analytical results 1.12 1.12 16.67 -1.06 -1.06 0

Table 3.3 Comparison between the analytical and numerical predictions, with Kw = 10≠3Es:
elastic moduli

No. cells ¸ (mm) E1 (GPa) E2 (GPa) G (GPa) ‹12 ‹21

10x7 5 0.97 0.96 0.08 0.97 0.97
50x35 1 0.95 0.95 0.06 0.96 0.97
100x70 0.5 0.94 0.94 0.06 0.96 0.97
200x140 0.25 0.93 0.92 0.06 0.96 0.96
250x175 0.2 0.92 0.91 0.06 0.95 0.95
400x280 0.125 0.91 0.91 0.06 0.95 0.95
500x350 0.1 0.91 0.91 0.06 0.95 0.95

Analytical results 0.89 0.89 0.06 0.95 0.95

Table 3.4 Comparison between the analytical and numerical predictions, with Kw = 10≠2Es:
Sij constants (GPa≠1)

No. cells ¸ (mm) S11 S22 S33 S12 S21 S13, S23, S31, S32

10x7 5 0.39 0.39 6.13 -0.35 -0.35 0
50x35 1 0.39 0.39 6.15 -0.35 -0.35 0
100x70 0.5 0.39 0.39 6.16 -0.35 -0.35 0
200x140 0.25 0.40 0.39 6.18 -0.35 -0.35 0
250x175 0.2 0.40 0.40 6.19 -0.35 -0.36 0
400x280 0.125 0.40 0.40 6.20 -0.36 -0.36 0
500x350 0.1 0.40 0.40 6.20 -0.36 -0.36 0

Analytical results 0.40 0.40 6.25 -0.36 -0.35 0
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Table 3.5 Comparison between the analytical and numerical predictions, with Kw = 10≠2Es:
elastic moduli

No. cells ¸ (mm) E1 (GPa) E2 (GPa) G (GPa) ‹12 ‹21

10x7 5 2.55 2.56 0.16 0.90 0.91
50x35 1 2.54 2.55 0.16 0.90 0.90
100x70 0.5 2.52 2.53 0.16 0.89 0.89
200x140 0.25 2.51 2.52 0.16 0.89 0.89
250x175 0.2 2.50 2.51 0.16 0.89 0.89
400x280 0.125 2.50 2.50 0.16 0.89 0.89
500x350 0.1 2.50 2.50 0.16 0.89 0.89

Analytical results 2.48 2.48 0.16 0.89 0.89

issue. This often-adopted Popperian approach (Popper, 1965) uses the comparison
with the available results as a conceptual mirror to gauge the robustness of a newly
suggested theory.

However, as already pointed out (cf. Section 3.1), there is only a limited body of
literature concerning the mechanical characterisation of cellular materials with filled
cells. Consequently, in order to include a more comprehensive discussion, the results
proposed in Section 3.5.3 are also compared with those reported in several recent works
dealing with the analytical modelling of unfilled cellular materials. In the selected
works, in particular, the authors obtained the equivalent properties of the lattice by
means of di�erent assumptions and techniques.

3.6.2.1 Traditional cellular materials with not-filled cells

Starting with the case of not-filled cellular materials and considering an aluminium
honeycomb with Es=79 GPa and ‹s=0.35 as in Section 3.6.1, the outcome of the
aforementioned comparison is illustrated in Figure 3.14 and Table 3.6.

It emerges that the elastic constants in Equations (3.87)-(3.90), now expressed by

E1 = E2 © E = 4⁄

3
EsÔ

3 (1 ≠ ‹

2
s )(1 + 3⁄

2)
, (3.117)

‹12 = ‹21 © ‹ = 1 ≠ ⁄

2

1 + 3⁄

2 , (3.118)

G = ⁄

3
EsÔ

3 (1 ≠ ‹

2
s )(1 + ⁄

2)
, (3.119)
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as the presence of the filler is neglected by assuming Kw = 0, are generally in accordance
with those predicted in Davini & Ongaro (2011), Gibson & Ashby (2001), Dos Reis &
Gangho�er (2012a) and Gonella & Ruzzene (2008).

Specifically, in the framework of homogenization theory, Davini and Ongaro (Davini
& Ongaro, 2011) obtained the constitutive model for a honeycomb subjected to in-
plane deformations through an energy-based approach. In Davini & Ongaro (2011)
the microstructure is represented as a sequence of elastic beams and, similarly to the
present thesis, the introduction of the linear interpolants of nodal displacements and
rotations into the discrete energy of the system provides its continuum approximation.
General theorems of �-convergence give the elastic constants of the homogenized model
that, as shown in Figure 3.14 and Table 3.6, coincide with Equations (3.117)-(3.119).

Regarding Gibson & Ashby (2001), the equivalent elastic moduli, obtained by
applying the principles of structural analysis to the representative volume element
of the lattice, agree with those expressed in Equations (3.117)-(3.119) in the limit of
slender beams. For instance, after writing Equation (3.117) in terms of the Young’s
modulus in Gibson & Ashby (2001), EGA, it emerges that the two estimates di�er by a
quantity related to the ratio ⁄ := h/¸, decreasing as ⁄ æ 0:

E = EGA

(1 + 3⁄

2) (1 ≠ ‹

2
s ) . (3.120)

Di�erently from Davini & Ongaro (2011), the homogenization technique in Gonella
& Ruzzene (2008) interprets the discrete lattice according to the finite di�erence
formalism. The equivalent continuum, slightly less sti� than that of the present work
(Figures 3.14a and 3.14b), derives from the application of Taylor’s series expansions
of the nodal displacements and rotations, motivated by the multi-scale nature of the
considered problem.

An alternative approach, suggested in Dos Reis & Gangho�er (2012a), exploits a
method in the context of micropolar elasticity, where the interactions between two
neighbouring points involve both the the Cauchy stress, as in classical mechanics,
and the couple stresses (Eremeyev, 2013). By describing the hexagonal lattice as a
sequence of extensional and flexural elements, the authors obtained the homogenized
stress-strain relations and elastic constants. As Figure 3.14 shows, the latter are in
good agreement with Equations (3.117)-(3.119) in the limit ⁄ æ 0.

An analysis of the micropolar behavior of the honeycomb microstructure is also
provided in Chen et al. (1998), where the periodic medium is represented as an assembly
of Euler-Bernoulli beams. An energy-based approach, in conjunction with Taylor’s
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Figure 3.14: Comparison with the existing literature in the case of not-filled cellular materials:
(a) normalised Young’s modulus, (b) normalised shear modulus, (c) Poisson’s ratio
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Table 3.6 Comparison with the existing literature: not-filled honeycomb

Young’s modulus Shear modulus Poisson’s ratio
Chen et al. (1998)
ECH

Es
= 2⁄(1 + ⁄

2)Ô
3 (1 ≠ ‹

2
s )(3 + ⁄

2)
GCH

Es
=

Ô
3 ⁄(1 + ⁄

2)
12 (1 ≠ ‹

2
s ) ‹CH = 1 + ⁄

2

3 + ⁄

2

Davini & Ongaro (2011)
EDO

Es
= 4

Ô
3⁄

3

3 (1 ≠ ‹

2
s )(1 + 3⁄

2)
GDO

Es
=

Ô
3 ⁄

3

3 (1 ≠ ‹

2
s )(1 + ⁄

2) ‹DO = 1 ≠ ⁄

2

1 + 3⁄

2

Dos Reis & Gangho�er (2012a)
EDG

Es
= 4

Ô
3⁄

3

9 (1 ≠ ‹

2
s )(4 + ⁄

2)
GDG

Es
= 4

Ô
3 ⁄

3

(1 ≠ ‹

2
s )(12 + ⁄

2) ‹DG = 12 ≠ ⁄

2

3(4 + ⁄

2)

Gibson & Ashby (2001)
EGA

Es
= 4⁄

3
Ô

3
GGA

Es
= ⁄

3
Ô

3
‹GA = 1

Gonella & Ruzzene (2008)
EGR

Es
= 4

Ô
3⁄

3

3(1 + 3⁄

2)
GGR

Es
=

Ô
3 ⁄

3

3 (1 + ⁄

2) ‹GR = 1 ≠ ⁄

2

1 + 3⁄

2

expansions of the nodal degrees of freedom, displacements and rotations, provides the
equivalent mechanical properties. If compared to Davini & Ongaro (2011), Gibson
& Ashby (2001), Dos Reis & Gangho�er (2012a) and Gonella & Ruzzene (2008), the
method in Chen et al. (1998) ignores the connectivity of the beams and the equilibrium
conditions at the nodes, leading to a much sti�er behavior (Figure 3.14).

3.6.2.2 Filled cellular materials

In the case of filled cellular materials, Table 3.7 shows that the e�ective elastic constants
derived in Section 3.5.3 match those available in the literature, proposed in Murray et
al. (2009) and Burlayenko & Sadowski (2010).

Specifically, Murray et al. (Murray et al., 2009) focused on the in-plane Young’s
modulus, EM , of a metallic honeycomb filled with a polymeric material. In Murray
et al. (2009) the predictions are obtained through a finite element-based analysis of
the unit cell, where the cell walls and the filler are modelled, respectively, as beam
elements and plane-stress shell elements.
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Regarding Burlayenko & Sadowski (2010), a three-dimensional finite element analy-
sis is proposed to investigate the mechanics of aluminium honeycombs filled with a
PVC foam. On the basis of the numerical model developed, the equivalent in-plane
Young’s moduli, E1,B and E2,B, and shear modulus, GB, are derived by the strain
energy homogenization technique of periodic media, summarised by the following two
steps.

In the first, three independent loading states are imposed to the unit cell: uniaxial
compression in the e1 direction, uniaxial compression in the e2 direction, pure shear.
The second consists in evaluating the corresponding strain energy density, U , and
numerically di�erentiating U with respect to the volume average components of the
strain, Áij:

1
E1,B

= ˆ

2
U

ˆ

2
Á11

,

1
E2,B

= ˆ

2
U

ˆ

2
Á22

,

1
GB

= ˆ

2
U

2 ˆ

2
Á12

. (3.121)

For sake of clarity, it should be noted that the values of the Winkler constant, Kw,
listed in Table 3.7 are related to the Young’s modulus of the filler in Murray et al.
(2009), Ef,M , and in Burlayenko & Sadowski (2010), Ef,B, via Equation (3.24).

In conclusion, although there is a little amount of literature in the field of filled
cellular materials with which to compare and contrast the findings of the present thesis,
it can be said that what is available contains strong similarities and appears to lend
credibility to the proposed theory.

3.7 Parametric analysis
By assuming Es=79 GPa and ‹s=0.35 (aluminium alloy) as in the previous sections,
Figure 3.15 illustrates the influence of ⁄ := h/¸ in the macroscopic elastic constants of
the examined composite honeycomb.

In general, for fixed Kw, the normalised Young’s modulus, E/Es, and the normalised
shear modulus, G/Es, increase with increasing ⁄. Namely, when the cell walls become
thick. For instance, E/Es shows an increase of averagely more than 20% when ⁄ varies
from 0 to 0.2 (Figure 3.15a). A slightly di�erent trend emerges in the case of G/Es: a
slow increase for small values of ⁄ (0 < ⁄ < 0.1), followed by a more significant increase
for ⁄ > 0.1 (Figure 3.15b). Specifically, in the latter case, even a small increase of ⁄

provides a large increase of G/Es. This makes varying ⁄ a good design method to
obtain a material with improved sti�ness.

Regarding the influence of Kw, Figures 3.15a and 3.15b suggest that, for fixed ⁄, to
an increase of Kw corresponds an increase of both E/Es and G/Es. This is consistent
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Table 3.7 Comparison with the existing literature in the case of filled microstructure

Murray et al. (2009) Present
Es=70 GPa, Es=70 GPa,

‹s=0.35, ⁄ = 0.1 ‹s=0.35, ⁄ = 0.1
Ef,M E1,M = E2,M Kw E1 = E2

(GPa) (GPa) (GPa) (GPa)
0.001 0.3 ÷ 0.4 0.001 0.35
0.01 0.3 ÷ 0.4 0.009 0.37
0.1 0.5 0.094 0.45
1 1.2 ÷ 1.3 0.94 1.3

Burlayenko & Sadowski (2010) Present
Es=72.2 GPa, Es=72.2 GPa,

‹s=0.34, ⁄ = 0.0125 ‹s=0.34, ⁄ = 0.0125
Ef,B E1,B = E2,B GB Kw E1 = E2 G

(GPa) (MPa) (MPa) (GPa) (MPa) (MPa)
0.056 0.627 0.238 0.053 0.610 0.235
0.105 0.788 0.282 0.099 0.760 0.267
0.230 1.061 0.386 0.216 0.885 0.338

with the result that one expects by increasing the sti�ness of the material filling the
cells, i.e. the parameter Kw. Also, the higher Kw, the higher will be the increase. For
make it more clear, let us focus on the normalised Young’s modulus of Figure 3.15a.
As it can be seen, increasing Kw from 10≠4

Es to 10≠3
Es provides an average increase

of only 105% while, for Kw varying from 10≠2
Es to 10≠1

Es, the increase is averagely
of 180%. Thus, it can be said that not only ⁄ but also Kw is an important parameter
to improve the sti�ness of low-weight cellular structures.

Finally, in terms of the influence of ⁄ in the e�ective Poisson’s ratio, ‹, from Figure
3.15c it emerges that, for fixed Kw, an increase in ⁄ results in an increase of ‹, that is
more significant for small values of Kw (10≠4

Es, 10≠3
Es). In other words, the bigger

Kw, the smaller will be the influence of ⁄. In addition, when ⁄ is fixed, Figure 3.15c
shows a decrease of ‹ by increasing Kw. Specifically, increasing Kw from 10≠3

Es to
10≠2

Es leads to a significant decrease of ‹, averagely of 170%. Conversely, the average
decrease is of only 90% by varying Kw from 10≠2

Es to 10≠1
Es.

Again, these results reveal the possibility to obtain a large control in the design of
composite cellular materials through the variation of the geometric, ⁄, and mechanical,



3.7 Parametric analysis | 63

(a)

comp7_thesis

λ

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

E
/E

s

0

0.06

0.12

0.18

0.24

0.3 Kw/Es = 10−4

Kw/Es = 10−3

Kw/Es = 10−2

Kw/Es = 10−1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.06

0.12

0.18

0.24

0.3

�

E
/E

s

(b)

comp8_thesis

�λ
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

G
/E

s

0

0.005

0.01

0.015

0.02

0.025 Kw/Es = 10−4

Kw/Es = 10−3

Kw/Es = 10−2

Kw/Es = 10−1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.005

0.01

0.015

0.02

0.025

G
/E

s

(c)

comp9_thesis

�λ
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ν

0.2

0.4

0.6

0.8

1

1.2 Kw/Es = 10−4

Kw/Es = 10−3

Kw/Es = 10−2

Kw/Es = 10−1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.2

0.4

0.6

0.8

1

1.2

�

Figure 3.15: In-plane elastic constants versus the parameter ⁄ for various Kw: (a) normalised
Young’s modulus, (b) normalised shear modulus, (c) Poisson’s ratio
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Kw, parameters of the microstructure. As seen, a wide range of mechanical properties
can be easily achieved.

3.8 An application to the biological parenchyma tissue
The proposed theoretical model is inspired by the high e�ciency of the biological
composite structures that include, among others, the parenchyma tissue.

The parenchyma, briefly described in Section 3.1, is a plant tissue revealing a
microstructure composed by thin-walled cells having the internal volumes filled with
an incompressible fluid. As stated, the pressure exerted by the fluid, known as turgor
pressure, is responsible for the strength and rigidity of the cell walls, leading to an
improvement in the mechanical resistance of the whole cell (Van Liedekerke, 2010).

In the parenchyma, the fluid content plays a significant role in withstanding the
external forces, but it is not the only factor. Load resistance also depends on the
volume of intercellular spaces and on how closely the cells are packed together. Indeed,
in densely packaged tissues, the freedom of the cell walls to deform is restrained and
many experimental data indicate that bulky parenchyma cells are sti�er than their
counterparts, although they are made of the same material (Cohen, 2011).

As pointed out in Zhu & Melrose (2003), the overall mechanical properties of
the parenchyma tissue, e�ective moduli and stress-strain relations, are related to the
characteristics of the individual components: cell walls, turgor pressure and cell-to-cell
interactions.

A first attempt to describe the e�ects of the turgor pressure and the contribution
of the cell walls’ geometry on the macroscopic constants of the parenchyma is due to
Nilsson et al. (Nilsson et al., 1958). The authors, based on the analysis of the hydrostat,
derived the Young’s modulus of the whole tissue by analysing a single spherical cell,
composed by a linear elastic material, subjected to infinitesimal deformations. The
proposed relation,

E = 3
C

1 + 7 ≠ 5‹s

20(1 + ‹s)

D

p +
CA

3(7 ≠ 5‹s)
10(1 ≠ ‹

2
s )

B
Es h

r

D

, (3.122)

is a function of the turgor pressure, p, cell’s radius, r, and cell walls’ properties:
thickness, h, Young’s modulus, Es, Poisson’s ratio, ‹s. Despite the limiting assumptions
behind, Equation (3.122) highlights a fundamental aspect of the parenchyma tissue, as
well as of pressurised plant tissues in general. That is to say, the variable nature of the
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tissue’s sti�ness, as both the turgor pressure and the walls’ properties change with age
and environmental constraints (Cohen, 2011; Niklas, 1992).

However, the mechanical behavior of the parenchyma is much more complex than one
might think and Equation (3.122) fails to capture several other mechanical traits. For
example, if subjected to an external load, the parenchyma tissue manifests properties
that parallel those of elastic, plastic and viscoelastic solids. As a matter of fact, its
resulting stress-strain diagram exhibits short-term elastic recovery, long-term plasticity,
stress relaxation and creep (Cohen, 2011).

In addition, the physical properties of living tissues are very di�cult to measure
experimentally (Wu & Pitts, 1999).

Recalling that the stress is the applied force divided by the cross-sectional area
through which the force is applied, it often emerges that, unlike ordinary solids, the
stress-strain diagram of such tissues depends on the dimensions of the examined sample,
preventing us the opportunity to obtain an accurate value of the mechanical properties
(Niklas, 1992). In their study on the parenchyma, Falk et al. (Falk et al., 1958) showed
the dependence of the elastic modulus of the tissue on the cross-sectional area of the
sample used in mechanical testing, even when the loading forces were normalised with
respect to that variable. Specifically, increasing the cross-sectional area led to an
increase in the elastic modulus. The reason is related to the more and more higher
amount of cells involved in the test: the greater the number, the sti�er the parenchyma
sample, as less cell walls are free to deform.

It clearly emerges that the analysis of the parenchyma and, more generally, of
fluid-filled biological tissues, is extremely complicated without great simplifications
and assumptions.

A question that arises is whether the results of our model could provide some useful
information on the mechanical properties of such vegetative tissues.

Being a rigorous analysis well beyond our aim, and considering the small amount of
available data, only the e�ective Young’s modulus, E, is examined. Its value is given
by Equation (3.87), reported here for ease of reading:

E = (13 Kw (1 ≠ ‹

2
s ) + 16⁄Es) (51 (1 + ⁄

2) Kw (1 ≠ ‹

2
s ) + 208⁄

3
Es)

4
Ô

3 (1 ≠ ‹

2
s ) (271 (1 + ⁄

2) Kw (1 ≠ ‹

2
s ) + 208 (⁄ + 3⁄

3) Es)
. (3.123)

According to Equation (3.123), E is related to the cell walls’ characteristics, Young’s
modulus, Es, Poisson’s ratio, ‹s and thinness ratio, ⁄, derived from the experimental
published results. Regarding the Winkler foundation constant, Kw, the following
additional considerations have to be made.
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Restricting the analysis to the two-dimensional space and assuming, for simplicity,
a microstructure composed by hexagonal cells, the parenchyma tissue is schematically
illustrated in Figure 3.16.

Two configurations are considered: in the first, Figure 3.16a, the filling material is
represented by a pressurised fluid, in the second, Figure 3.16b, by the Winkler model.

As in Section 3.3.1, a suitable relation between the inner pressure, p, and the
constant Kw is provided by the energetic equivalence

Wc, W inkler © Wc, fluid, (3.124)

being
Wc, W inkler = Ww, beams + Wf, W inkler (3.125)

and
Wc, fluid = Ww, walls + Wf, fluid (3.126)

in turn, the elastic energy of the unit cell (Figure 3.16c) in the Winkler foundation
model and in the fluid-filled configuration. Also, Ww, beams, Wf, W inkler and Ww, walls,
Wf, fluid stand, respectively, for the elastic energies of the cell walls and of the filler
in the two considered cases. It should be noted that in expressing the energy of a
pressurised lattice as in Equation (3.126) it is implicitly assumed that the fluid phase
acts as an external field on the cellular structure. Its contribution, given by the work
done by the fluid from the undeformed area, A0, to a generic deformed one, A, takes
the form (Guiducci et al., 2014)

Wf, fluid = 1
2 p

A ≠ A0
A0

A0 = 1
2 p (A ≠ A0). (3.127)

By adopting the same notation and assumptions of Section 3.3.1 (see Appendix D for
a detailed description), simple mathematical manipulations provide (Figure 3.16c)

Wf, fluid = 1
2 p (l2 ◊ e3 · Ef l1 + e3 ◊ l1 · Ef l2) , (3.128)

with l1 and l2 the lattice vectors defined in Equation (3.3) and Ef the infinitesimal
strain tensor introduced in Equation (3.14).
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Figure 3.16: The parenchyma tissue: (a) the fluid-filled configuration, (b) the Winkler model,
(c) the unit cell
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Similarly, Wf, W inkler, obtained by summing the contribution of the springs in the
ni directions, is expressed by (cf. Equation (3.11))

Wf, W inkler =
3ÿ

i=1

1
2 �Ui

1
n

T
i Kwni

2
�Ui ©

3ÿ

i=1

1
2 d

1
n

T
i Efni

2
n

T
i Kwni

1
n

T
i Efni

2
d,

(3.129)
where �Ui and Kw are, in turn, the elongation and the sti�ness matrix of the elastic
springs, d =

Ô
3¸.

From the hypothesis
Ww, beams © Ww, walls (3.130)

and the equivalence in Equation (3.124), it follows

Wf, W inkler © Wf, fluid (3.131)

or, in view of Equations (3.128) and (3.129),

3ÿ

i=1

1
2 d

1
n

T
i Efni

2
n

T
i Kwni

1
n

T
i Efni

2
d = 1

2 p (l2 ◊ e3 · Ef l1 + e3 ◊ l1 · Ef l2) .

(3.132)
Finally, considering the deformation state

Ef :=
S

U 1 0
0 1

T

V (3.133)

and substituting Equation (3.133) into Equation (3.132), lead to

Kw =
Ô

3
3 p. (3.134)

As summarised in Tables 3.8-3.10, three cases are investigated: the parenchyma
tissue of the apple, Table 3.8, of the potato, Table 3.9, and of the carrot, Table 3.10.

Generally, the predictions of Equation (3.123) agree with the results of the other
authors, derived from three-dimensional finite element simulations of an isolated
parenchyma cell (Wu & Pitts, 1999), from experimental tests (Gibson, 2012; Georget
et al., 2003), or from simplified analytical models (Gibson et al., 2010; Nilsson et al.,
1958).

The discrepancies that emerge are related to various factors.
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Table 3.8 Young’s modulus of the apple parenchyma tissue

E (MPa)
Present
⁄ = 0.02 ÷ 0.2 (by assumption) 1 ÷ 1.6
p = 0.8 MPa ∆Kw = 0.47 MPa
Es=52.8 MPa, ‹s=0.24 (Wu & Pitts, 1999)

Gibson et al. (2010) 0.31 ÷ 3.46

Nilsson et al. (1958) 0.9 ÷ 9.7

Table 3.9 Young’s modulus of the potato parenchyma tissue

E (MPa)
Present
⁄ = 0.0087 (Gibson, 2012) 4 ÷ 4.2
p = 0.8 MPa ∆Kw = 0.47 MPa
Es = 500 ÷ 600 MPa, ‹s=0.5 (Gibson, 2012)

Gibson (2012) 5 ÷ 6

Nilsson et al. (1958) 8 ÷ 9.6

Experimental value (Gibson, 2012) 3.5 ÷ 5.5

Table 3.10 Young’s modulus of the carrot parenchyma tissue

E (MPa)
Present
⁄ = 0.02 ÷ 0.2 1.7 ÷ 2
p = 0.8 MPa ∆Kw = 0.47 MPa
Es = 100 MPa, ‹s=0.33 (Niklas, 1992)

Georget et al. (2003) 1.6 ÷ 14.2

Nilsson et al. (1958) 1.7 ÷ 18.6

Experimental value (Georget et al., 2003) 7 ± 1
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Firstly, to the di�erent cells’ shape considered: hexagons in the present thesis,
spheres in Wu & Pitts (1999) and Nilsson et al. (1958).

Secondly, to the approximated value of the cell walls’ length, ¸, and turgor pressure,
p, assumed in Tables 3.8-3.10. ¸, in particular, derives by considering the characteristics
of the mature cell in Sanchis Gritsch & Murphy (2005), where the authors described
the structure of the parenchyma cell at di�erent stages of development. Regarding p,
for simplicity, the value indicated by Georget et al. (Georget et al., 2003) in the case
of carrot parenchyma (p = 0.8 MPa), it is assigned to all the examined tissues.

However, Tables 3.8-3.10 reveal that the theory proposed in the present work could
be applied in biology to gain some insights into the mechanics of composite tissues.
This result is also confirmed in Chapter 5 by extending the analysis to composite
cellular materials having a mutable elongated hexagonal microstructure.



4 | The elastic response of hierarchical com-
posite cellular materials: synergy of
hierarchy, material heterogeneity and
cell topology

4.1 Introduction and state of the art

4.1.1 Introduction
Natural materials are typically built from a limited number of polymeric (e.g. proteins
or polysaccharides) and ceramic (e.g. calcium salts or silica) components, having
relatively poor intrinsic properties (Wegst et al., 2015).

However, despite this limited toolbox, nature assembled an astounding range of
structures, perfected over millions of years of evolution, that are able to combine the
desirable properties of their building blocks and, often, perform significantly better
than the sum of their parts (Wegst et al., 2015; Mann, 2001). In most cases, the
resulting systems o�er unique combinations of mechanical properties that, in man-made
materials, tend to be mutually exclusive.

Bone and nacre, for instance, are natural materials that combine strength and
toughness at low weight, a distinctive quality that synthetic structural materials are
still far from achieving. Indeed, strong materials are invariably brittle, whereas tough
materials are frequently weak (Wegst et al., 2015; Ritchie, 2011).

Other examples include bamboo and palm, two highly porous materials whose
exceptional structural e�ciency, in terms of mechanical performance per unit weight,
fascinated a lot of scientists and engineers (Wegst, 2011; Wegst & Ashby, 2004). Such
plants, in particular, are equally light, strong and flexible, three characteristics that in
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engineered materials di�culty coexist: when high porosity is needed, it is usually at
the expense of mechanical stability.

Contemporary characterisation and modelling tools allowed researchers to begin
deciphering the intricate interplay of mechanisms that endow natural systems with
their unusual properties. Unfortunately, identifying the salient strategies providing the
astonishing combinations of sti�ness, strength and toughness at low weight, is not a
trivial undertaking and it is an open question how nature succeeded in doing this.

Some authors, however, analysed di�erent types of natural materials and, after
finding common design themes among them, suggested a number of possible techniques.

The majority of investigations conclude that hierarchy is nature’s key of success
(Fratzl, 2007; Pan, 2014; Gao, 2010; Chen & Pugno, 2013b). That is to say, the superior
traits of natural structures stem from their complex hierarchical architecture spanning
from the molecular to the macroscopic scale, in conjunction with the confluence of
mechanisms that interact at multiple length scales. Hierarchy, in particular, allows the
organism to be multifunctional and, through the optimisation of its architecture at
each structural level, to perform both biological and mechanical functions to the best
of its abilities (Fratzl & Weinkamer, 2007).
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for the increased strength of the collagen. This makes possible a large 
regime of dissipative deformation once plastic yielding has begun. 
As in most materials, plasticity and the resultant ductility provide a 
major contribution to the intrinsic toughness by dissipating energy 
and forming plastic zones surrounding incipient cracks, which fur-
ther serves to blunt crack tips, thereby reducing the driving force for 
cracking.

However, an even larger contribution to the fracture resistance 
of bone arises from mechanisms of extrinsic toughening at coarser 
length scales, in the range of ~10–100 μm. Specifically, once the crack 
begins to grow, mechanisms within the microstructure are activated 
to inhibit further cracking; indeed, the primary drivers for this are 
the nature of the crack path and its interaction with the bone-matrix 
structure. Two salient toughening mechanisms can be identified22,23: 
crack bridging and crack deflection/twist (Fig. 3). Crack bridging 
occurs as microcracks form ahead of the crack tip, primarily along 
the hypermineralized interfaces at the boundary of the osteons, and 
producing the so-called uncracked-ligament bridges, which act as 
intact regions spanning the crack wake to inhibit its progress. Crack 
deflection is particularly potent in the transverse orientation, where 
cracks are aligned perpendicular to the osteons. As the crack begins 
to grow, structural features such as osteocyte lacunae and porosity 
can deflect the crack path. However, the largest features, specifically 
secondary osteons and in particular their brittle interfaces (cement 
lines), are most effective at crack deflection. Such crack deflection 

toughens normal bone by diverting the crack path from the plane of 
maximum tensile stress; as such, crack-tip stress intensity decreases 
(typically by a factor of two or more), and a larger applied force 
is required to propagate the crack further. Indeed, it is because of 
this that the fracture toughness of bone, which in the longitudinal 
direction is typically 1–5 MPa m½, can be many times higher in the 
transverse direction, where cracks deflect at the cement lines. It is 
such extrinsic toughening (vertical arrows in Fig. 1b), resulting in 
increased resistance to both initiated and growing cracks, that is so 
effectively used in natural materials.

It should be noted that the small-scale intrinsic and larger-scale 
extrinsic processes are coupled. When the intrinsic toughness, gen-
erated at small length scales through fibrillar sliding, is degraded by 
biological factors (such as altered collagen crosslinking due to age-
ing and disease), the bone alternatively dissipates energy at higher 
length scales by microcracking. This is a form of plasticity that pro-
motes extrinsic toughening at the microscale through the formation 
of deflected and bridged crack paths. Of course, a major charac-
teristic of bone is its ability to remodel itself to repair damage — a 
trait that is difficult to replicate in synthetic materials. Indeed, there 
may be a coupling between bone inelasticity due to microcracking 
and the signalling that promotes such repair, as the microcracks are 
thought to severe the canaliculi, which are the means by which the 
osteocytes (osteoblasts that have become trapped within the bone 
matrix) remain in contact with other cells in bone.
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Figure 4.1: The hierarchical structure of bamboo, taken from Wegst et al. (2015)

The aforementioned bamboo, for example, is a hierarchical fibre-reinforced cellular
material, composed of parallel cellulose fibres embedded in a lignin-hemicellulose matrix
shaped into honeycomb-like cells (Wegst, 2011). The feature responsible for the high
e�ciency of the plant, in terms of flexural rigidity per unit weight, in the not-uniform
distribution of the load-bearing fibres across the numerous length scales, in addition
to a not constant cell walls’ thickness (Figure 4.1). The plant, in particular, creates
a gradient of density and modulus of fibres, with higher values of density where the
stresses are larger (Wegst et al., 2015). This solution leads to an optimised hierarchical
architecture where the plant, to perform its functions, at each structural level uses the
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smallest quantity of the most highly e�cient cell walls’ material. In other words, it
can be said that, under a considerable number of constraints, every structural level is
a local design optimum.

It clearly emerges that, in a system, hierarchy is reflected by three characteristics:
multiscality, heterogeneity and anisotropy (Pan, 2014; Barthelat & Mirkhalaf, 2013). As
a consequence, many mathematical laws and material sciences’ principles, which assume
isotropy and homogeneity, must be carefully applied when dealing with structural
hierarchy.

4.1.2 State of the art
There is an enormous amount of literature focusing on the characterisation of a wide
range of both biological and man-made hierarchical materials and it would be impossible
to review the subject adequately. Consequently, in this introductory part we only
consider the contributions related to the problem touched in the present thesis and we
refer the interested reader to the recently published review articles Fratzl & Weinkamer
(2007), Gibson (2012), Chen & Pugno (2013b), Pan (2014) and Wegst et al. (2015)
and to the references therein for further discussions.

The pioneering work devoted to the analysis of hierarchical systems, fibre composites
and cellular solids among others, is attributed to Lakes (Lakes, 1993), who recognised
the importance of hierarchy in obtaining enhanced mechanical properties (e.g. stress
attenuation, superplasticity, increased toughness).

The study was then extended by Bosia et al. (Bosia et al., 2012), who introduced an
analytical method to evaluate how hierarchy a�ects the structural strength of various
hierarchical architectures of fibre bundles. The authors, by performing multiscale
calculations, concluded that, in the case of di�erent types of fibres, increasing the
number of hierarchical levels led to an improvement in the material’s strength.

In the context of cellular solids, Carpinteri and Pugno (Carpinteri & Pugno, 2008;
Pugno & Carpinteri, 2008), Chen and Pugno (Chen & Pugno, 2013a; 2012), Haghpanah
et al. (Haghpanah et al., 2014), Fan et al. (Fan et al., 2008) and Taylor et al. (Taylor
et al., 2012; 2011) investigated the role of hierarchy on the in-plane mechanical behavior
of hierarchical honeycombs (Figure 4.2).

In particular, in Chen & Pugno (2012) and Haghpanah et al. (2014) the authors
addressed the problem of elastic stability while in Carpinteri & Pugno (2008), Chen &
Pugno (2013a), Fan et al. (2008) and Pugno & Carpinteri (2008) derived numerical
and theoretical models, force or energy based, to describe the macroscopic strength,
toughness and sti�ness.
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In addition, Zhao et al. (Zhao et al., 2012) designed, fabricated and experimentally
tested ultra-light hierarchical honeycombs with one level of hierarchy and woven textile
sandwich walls (Figure 4.2b).

Another sandwich application was examined by Sun et al. (Sun et al., 2014; Sun
& Pugno, 2013), who suggested a multifunctional hierarchical honeycomb made of
negative Poisson’s ratio cell walls in order to achieve tunable sti�ness (Figures 4.2f and
4.2g).

From these studies it emerges that hierarchy is detrimental to the specific sti�ness.
However, to avoid reducing the in-plane elastic properties, one e�ective strategy is to
iteratively replace each three-edge node of a base hexagonal network with a smaller
hexagon. Pioneered by Ajdari et al. (Ajdari et al., 2012), this technique leads to a
fractal-appearing structure, often called self-similar hierarchical honeycomb, up to 3.5
times sti�er than the not-hierarchical counterpart having the same mass (Figure 4.2h).

Specifically, a self-similar structure exhibits statistically similar characteristics when
examined both locally, at the level of individual components, and globally, at the level
of the whole system. In other words, the same general characteristic is independent of
the scale at which the observation is made (Katz, 1999). This bio-inspired principle
mimics the self-similar hierarchical design of biological systems, as the sticky foot of the
Gecko (Chen & Pugno, 2013b), muscles and tendons (Galvanetto et al., 2010; Fratzl,
2008) and the intriguing collagen (Figure 4.3), whose hierarchical organisation spans
from the nano- to the macro-scale (Buehler, 2008).

In the last decade, due to the advent of additive manufacturing technologies, several
attempts have been made to further explore the potential advantages of self-similar
hierarchical structuring. Among them, starting from the study in Ajdari et al. (2012),
Haghpanah et al. (Haghpanah et al., 2013) presented a theoretical method to evaluate
the in-plane sti�ness and plastic collapse strength of first- and second-order self-similar
hierarchical honeycombs, based on the classical plastic limit analysis (Chen et al.,
2007). With the benefits and insights a�orded by the analytical machinery, the authors
indicated possible ways to achieve optimised hierarchical structures of actual use, in
terms of tailored combinations of sti�ness and strength. For instance, how to lower
the value of the sti�ness while increasing the strength, in order to obtain a cellular
material that is easily deformed but resistant to rupture.

An extension of the concepts of classical Fracture Mechanics to cracks propagating
in a self-similar regime is discussed in Borodich (1999). The analysis focuses on scaling
laws defining the transition between the properties belonging to di�erent lengths of



4.1 Introduction and state of the art | 75

H2

In these specimens, the edge length of all primary cells D0 is 9 mm,
as denoted in Fig. 2(d)–(f). The edge length of 1st order honeycomb
cell D1 is 3 mm, as shown in Fig. 2(e) and (f). The edge length of 2nd
order honeycomb cell D2 is 1 mm, shown in Fig. 2(f). Furthermore,
because 1st and 2nd order HHHs included smaller hexagons of cell
size 3 mm and 1 mm, two supplementary models – 0th order
(3 mm) and 0th order HHH (1 mm), were constructed for compar-

ison purposes. The bulk dimensions are equivalent with aforemen-
tioned ones, as shown in Fig. 2(g) and (h).

2.3. FE models

Based on the listed geometric details in Fig. 2, the FE models of
HHHs with different hierarchical orders and sizes are developed
and presented in Fig. 3. The length and width of all specimens

Fig. 1. Hierarchical cellular materials reported in literature (a) [32] (b) [33] (c) [34] (d) [35] (e) [38,39] (f) [36] (g) [37] (h) [40–42].

Y. Zhang et al. / Composite Structures 144 (2016) 1–13 3

In these specimens, the edge length of all primary cells D0 is 9 mm,
as denoted in Fig. 2(d)–(f). The edge length of 1st order honeycomb
cell D1 is 3 mm, as shown in Fig. 2(e) and (f). The edge length of 2nd
order honeycomb cell D2 is 1 mm, shown in Fig. 2(f). Furthermore,
because 1st and 2nd order HHHs included smaller hexagons of cell
size 3 mm and 1 mm, two supplementary models – 0th order
(3 mm) and 0th order HHH (1 mm), were constructed for compar-

ison purposes. The bulk dimensions are equivalent with aforemen-
tioned ones, as shown in Fig. 2(g) and (h).

2.3. FE models

Based on the listed geometric details in Fig. 2, the FE models of
HHHs with different hierarchical orders and sizes are developed
and presented in Fig. 3. The length and width of all specimens

Fig. 1. Hierarchical cellular materials reported in literature (a) [32] (b) [33] (c) [34] (d) [35] (e) [38,39] (f) [36] (g) [37] (h) [40–42].

Y. Zhang et al. / Composite Structures 144 (2016) 1–13 3

In these specimens, the edge length of all primary cells D0 is 9 mm,
as denoted in Fig. 2(d)–(f). The edge length of 1st order honeycomb
cell D1 is 3 mm, as shown in Fig. 2(e) and (f). The edge length of 2nd
order honeycomb cell D2 is 1 mm, shown in Fig. 2(f). Furthermore,
because 1st and 2nd order HHHs included smaller hexagons of cell
size 3 mm and 1 mm, two supplementary models – 0th order
(3 mm) and 0th order HHH (1 mm), were constructed for compar-

ison purposes. The bulk dimensions are equivalent with aforemen-
tioned ones, as shown in Fig. 2(g) and (h).

2.3. FE models

Based on the listed geometric details in Fig. 2, the FE models of
HHHs with different hierarchical orders and sizes are developed
and presented in Fig. 3. The length and width of all specimens

Fig. 1. Hierarchical cellular materials reported in literature (a) [32] (b) [33] (c) [34] (d) [35] (e) [38,39] (f) [36] (g) [37] (h) [40–42].

Y. Zhang et al. / Composite Structures 144 (2016) 1–13 3

In these specimens, the edge length of all primary cells D0 is 9 mm,
as denoted in Fig. 2(d)–(f). The edge length of 1st order honeycomb
cell D1 is 3 mm, as shown in Fig. 2(e) and (f). The edge length of 2nd
order honeycomb cell D2 is 1 mm, shown in Fig. 2(f). Furthermore,
because 1st and 2nd order HHHs included smaller hexagons of cell
size 3 mm and 1 mm, two supplementary models – 0th order
(3 mm) and 0th order HHH (1 mm), were constructed for compar-

ison purposes. The bulk dimensions are equivalent with aforemen-
tioned ones, as shown in Fig. 2(g) and (h).

2.3. FE models

Based on the listed geometric details in Fig. 2, the FE models of
HHHs with different hierarchical orders and sizes are developed
and presented in Fig. 3. The length and width of all specimens

Fig. 1. Hierarchical cellular materials reported in literature (a) [32] (b) [33] (c) [34] (d) [35] (e) [38,39] (f) [36] (g) [37] (h) [40–42].

Y. Zhang et al. / Composite Structures 144 (2016) 1–13 3

In these specimens, the edge length of all primary cells D0 is 9 mm,
as denoted in Fig. 2(d)–(f). The edge length of 1st order honeycomb
cell D1 is 3 mm, as shown in Fig. 2(e) and (f). The edge length of 2nd
order honeycomb cell D2 is 1 mm, shown in Fig. 2(f). Furthermore,
because 1st and 2nd order HHHs included smaller hexagons of cell
size 3 mm and 1 mm, two supplementary models – 0th order
(3 mm) and 0th order HHH (1 mm), were constructed for compar-

ison purposes. The bulk dimensions are equivalent with aforemen-
tioned ones, as shown in Fig. 2(g) and (h).

2.3. FE models

Based on the listed geometric details in Fig. 2, the FE models of
HHHs with different hierarchical orders and sizes are developed
and presented in Fig. 3. The length and width of all specimens

Fig. 1. Hierarchical cellular materials reported in literature (a) [32] (b) [33] (c) [34] (d) [35] (e) [38,39] (f) [36] (g) [37] (h) [40–42].

Y. Zhang et al. / Composite Structures 144 (2016) 1–13 3

In these specimens, the edge length of all primary cells D0 is 9 mm,
as denoted in Fig. 2(d)–(f). The edge length of 1st order honeycomb
cell D1 is 3 mm, as shown in Fig. 2(e) and (f). The edge length of 2nd
order honeycomb cell D2 is 1 mm, shown in Fig. 2(f). Furthermore,
because 1st and 2nd order HHHs included smaller hexagons of cell
size 3 mm and 1 mm, two supplementary models – 0th order
(3 mm) and 0th order HHH (1 mm), were constructed for compar-

ison purposes. The bulk dimensions are equivalent with aforemen-
tioned ones, as shown in Fig. 2(g) and (h).

2.3. FE models

Based on the listed geometric details in Fig. 2, the FE models of
HHHs with different hierarchical orders and sizes are developed
and presented in Fig. 3. The length and width of all specimens

Fig. 1. Hierarchical cellular materials reported in literature (a) [32] (b) [33] (c) [34] (d) [35] (e) [38,39] (f) [36] (g) [37] (h) [40–42].

Y. Zhang et al. / Composite Structures 144 (2016) 1–13 3

In these specimens, the edge length of all primary cells D0 is 9 mm,
as denoted in Fig. 2(d)–(f). The edge length of 1st order honeycomb
cell D1 is 3 mm, as shown in Fig. 2(e) and (f). The edge length of 2nd
order honeycomb cell D2 is 1 mm, shown in Fig. 2(f). Furthermore,
because 1st and 2nd order HHHs included smaller hexagons of cell
size 3 mm and 1 mm, two supplementary models – 0th order
(3 mm) and 0th order HHH (1 mm), were constructed for compar-

ison purposes. The bulk dimensions are equivalent with aforemen-
tioned ones, as shown in Fig. 2(g) and (h).

2.3. FE models

Based on the listed geometric details in Fig. 2, the FE models of
HHHs with different hierarchical orders and sizes are developed
and presented in Fig. 3. The length and width of all specimens

Fig. 1. Hierarchical cellular materials reported in literature (a) [32] (b) [33] (c) [34] (d) [35] (e) [38,39] (f) [36] (g) [37] (h) [40–42].

Y. Zhang et al. / Composite Structures 144 (2016) 1–13 3

In these specimens, the edge length of all primary cells D0 is 9 mm,
as denoted in Fig. 2(d)–(f). The edge length of 1st order honeycomb
cell D1 is 3 mm, as shown in Fig. 2(e) and (f). The edge length of 2nd
order honeycomb cell D2 is 1 mm, shown in Fig. 2(f). Furthermore,
because 1st and 2nd order HHHs included smaller hexagons of cell
size 3 mm and 1 mm, two supplementary models – 0th order
(3 mm) and 0th order HHH (1 mm), were constructed for compar-

ison purposes. The bulk dimensions are equivalent with aforemen-
tioned ones, as shown in Fig. 2(g) and (h).

2.3. FE models

Based on the listed geometric details in Fig. 2, the FE models of
HHHs with different hierarchical orders and sizes are developed
and presented in Fig. 3. The length and width of all specimens

Fig. 1. Hierarchical cellular materials reported in literature (a) [32] (b) [33] (c) [34] (d) [35] (e) [38,39] (f) [36] (g) [37] (h) [40–42].

Y. Zhang et al. / Composite Structures 144 (2016) 1–13 3

(a) (b) (c)

(d)

(e)

(f)

(g) (h)

Figure 4.2: Hierarchical cellular materials examined in the literature: (a) Fan et al. (2008),
(b) Zhao et al. (2012), (c), (d) Taylor et al. (2012; 2011), (e) Chen and Pugno (2013a;
2012), (f), (g) Sun & Pugno (2013), (h) Ajdari et al. (2012)



4.1 Introduction and state of the art | 76

!
 

Figure 4.3: The hierarchical structure of tendon, taken from Earle (2013)

scale and it emerges that the fracture energy is an exponential function whose exponent
is only related to the considered length of scale.

Finally, an attempt to numerically solve boundary value problems for self-similar
domains structured on a large number of scales is reported in Soare & Picu (2007).
The suggested finite element procedure employs modified shape functions in order to
capture the complexity of the geometry at no additional computational cost.

Considering the abovementioned works, it can be said that, in the context of
hierarchical cellular materials, a great variety of analytical and numerical techniques
have been proposed and exhaustively discussed. Particular attention is given to avert
the aforesaid detrimental e�ect on the specific sti�ness and some possible ideas have
been suggested. However, similarly to the not-hierarchical case addressed in Chapter
3, the available investigations are only concerned with hierarchical microstructures
having empty cells.

Taking into account the doubtless benefits o�ered by the composite solutions in
nature (cf. Section 3.1), this chapter provides an alternative technique to improve
the specific sti�ness of traditional honeycombs by structural hierarchy and material
mixing. In particular, the study focuses on the potential value of adding hierarchy into
two-dimensional composite cellular materials similar to that analysed in Chapter 3.
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Two examples are considered: the self-similar hierarchical organisation and the case in
which di�erent levels have di�erent cell topologies.

4.2 The hexagonal microstructure: analytical modelling

4.2.1 Basic concepts and assumptions
Let us consider the composite cellular material analysed in Chapter 3 and let us imagine
to modify its architecture at successively smaller length scales. The modification,
consisting of replacing each cell wall with a structural element having a hexagonal
microstructure with filled cells (i.e., the same microstructure of the starting material),
creates a novel class of hierarchical cellular materials, that will be referred to as
hierarchical composite cellular material.

As illustrated in Figure 4.4, the substitution can be iterated to generate ever-finer
structural detail while preserving the structure’s sixfold symmetry, a su�cient condition
for in-plane isotropy in the linear elastic regime (Christensen, 1987). In particular,
Figure 4.4 shows a schematic of the geometrical replacements resulting in the level-[n]
hierarchical honeycomb, being n, the hierarchical order, defined as the number of levels
of scale with recognised structure (Lakes, 1993).

For each level of hierarchy, i, two sets of parameters define the configuration:
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By assuming that the size of the cell walls’ microstructure is fine enough to be

negligible with respect to the level-[i] structure (Lakes, 1993), each cell arm can be
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Accordingly, the e�ective elastic constants and stress-strain relations of the level-[i]
hierarchical honeycomb can be evaluated by adopting the same approach of Chapter 3.
That is to say, by initially representing the composite microstructure as a sequence
of Euler-Bernoulli beams on Winkler foundation and calculating the elastic energy of
the unit cell, illustrated in Figure 4.4 by bold lines. Specifically, the latter quantity is
obtained by summing the energetic contribution of the three elastic beams and those
of the two sets of springs (Figure 4.4). Finally, the continuum model follows from the
hypothesis that, in the limit, the discrete displacements and rotations of the nodes can
be expressed in terms of the corresponding continuous fields (cf. Equation (3.71)).

It should be noted that, in the following, the description is abbreviated, as the
present analysis is an extension of that presented in Chapter 3. In particular, for
concision, only the e�ective elastic constants will be considered.

4.2.2 The equivalent continuum

4.2.2.1 Elastic constants

As it can be seen in Figure 4.4, the level-[1] hierarchical honeycomb coincides with
the composite material examined in Chapter 3. Consequently, its Young’s modulus,
E

[1], shear modulus, G

[1], and Poisson’s ratio, ‹

[1], in the continuum approximation
are given by
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with K

[1]
w the Winkler foundation constant, E

[0] © Es and ‹

[0] © ‹s, on order, the
Young’s modulus and Poisson’s ratio of the cell walls, the level-[0], ⁄

[1] := h
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/¸
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the thinness ratio of the cell walls at level-[1]. In addition, to facilitate reading,
v
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[0] 2 .
The above relations, due to the assumptions in Equation (4.2), correspond to the

cell walls’ elastic moduli in the case of two levels of hierarchy, n = 2. Also, as stated,
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Figure 4.4: The hierarchical composite cellular material: (a) springs a, (b) springs b
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the analysis adopted in Chapter 3 still applies and substituting E
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Analogous considerations lead to the Young’s modulus, E

[n], shear modulus, G

[n],
and Poisson’s ratio, ‹

[n], of the level-[n] hierarchical honeycomb. In particular, replacing
E

[0], ‹

[0] and ⁄

[1], K

[1]
w by E

[n≠1], ‹

[n≠1] and ⁄

[n], K

[n]
w into Equations (4.3)-(4.5) gives

E

[n] =

1
13K

[n]
w v

[n≠1] + 16⁄

[n]
E

[n≠1]
2 1

51
1
1 + ⁄

[n] 22
K

[n]
w v

[n≠1] + 208⁄

[n] 3
E

[n≠1]
2

4
Ô

3v

[n≠1]
1
271 (1 + ⁄

[n] 2) K

[n]
w v

[n≠1] + 208 (⁄[n] + 3⁄

[n] 3) E

[n≠1]
2

,

(4.6)

G

[n] =
51

1
1 + ⁄

[n] 22
K

[n]
w v

[n≠1] + 208⁄

[n] 3
E

[n≠1]

208
Ô

3 (1 + ⁄

[n] 2) v

[n≠1] , (4.7)

‹

[n] =
67

1
1 + ⁄

[n] 22
K

[n]
w v

[n≠1] ≠ 208 ⁄

[n]
1
⁄

[n] 2 ≠ 1
2

E

[n≠1]

271 (1 + ⁄

[n] 2) K

[n]
w v

[n≠1] + 208 ⁄

[n] (1 + 3⁄

[n] 2) E

[n≠1]
, (4.8)

being E

[n≠1], ‹

[n≠1] and ⁄

[n] := h

[n]
/¸

[n], in turn, the Young’s modulus, Poisson’s ratio
and thinness ratio of the cell arms, K

[n]
w the Winkler constant (Figure 4.4). Again,

v

[n≠1] := 1 ≠ ‹

[n≠1] 2 .

4.2.2.2 Density

Let us focus on the level-[1] structure in Figure 4.4.
From the rule of mixtures, the density of this composite configuration, fl

[1], takes
the form

fl

[1] = f

[1]
fl

[1]
f + (1 ≠ f

[1]) fls, (4.9)

with f

[1] := V

[1]
f /V

[1]
tot the porosity, V

[1]
f and V

[1]
tot , respectively, the volume of the filling

material and of the entire cell, fls and fl

[1]
f the density of the cell walls, the first, and of

the filler, the second (Figure 4.5).
Simple geometrical considerations provide

f

[1] =
A

[1]
f b

A

[1]
tot b

=
Ô

3 ≠ 2 ⁄

[1]
Ô

3
, (4.10)

where A

[1]
tot and A

[1]
f are, on order, the total area of the cell and of the filling material, b

the width and ⁄

[1] the quantity previously defined. Accordingly, by replacing Equation
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(4.10) into Equation (4.9),

fl

[1] =
AÔ

3 ≠ 2 ⁄

[1]
Ô

3
fl

[1]
f + 2 ⁄

[1]
Ô

3

B

fls (4.11)

or, to simplify the notation,

fl

[1] = a

[1]
fl

[1]
f + b

[1]
fls, (4.12)

with
a

[1] :=
Ô

3 ≠ 2 ⁄

[1]
Ô

3
, b

[1] := 2 ⁄

[1]
Ô

3
. (4.13)

density

�s

�[1], h[1]

�[1]
f

Figure 4.5: Density of the level-[1] hierarchical structure

In view of the hypothesis in Section 4.2.1, consisting in approximating each cell
arm with an equivalent continuum, fl

[1] can also be treated as the cell walls’ density in
the case of two levels of hierarchy, n = 2. As a consequence,

fl

[2] = a

[2]
fl

[2]
f + b

[2]
fl

[1] (4.14)

gives the density of the level-[2] hierarchical composite, being fl

[2]
f the density of the

filler, a

[2] and b

[2] derived by substituting ⁄

[2] := h

[2]
/¸

[2] for ⁄

[1] into Equations (4.13).
Similarly, in the case of n levels of hierarchy, the density is expressed by

fl

[n] = a

[n]
fl

[n]
f + b

[n]
fl

[n≠1]
, (4.15)

with fl

[n]
f and fl

[n≠1], in turn, the density of the filling material and of the cell walls, a

[n]

and b

[n] obtained as before.
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4.2.2.3 Sti�ness-to-density rato

In practical applications, the sti�ness-to-density ratio is an important parameter, often
used to optimise the structural design and reduce cost. The utility of the sti�ness-to-
density ratio, also known as specific sti�ness, is to find materials with high sti�ness at
low weight, ideal candidates for the construction of airplane wings, bridges, masts or
bicycle frames, among others. Wegst and Ashby (Wegst & Ashby, 2004), for example,
analysed the mechanical e�ciency of many natural materials and plotted the so-called
Ashby’s maps, a common method for choosing the best material for a given application.

Regarding the hierarchical composite material examined in the present thesis, a
closed-form expression for the specific sti�ness can be obtained from the relations in
Sections 4.2.2.1 and 4.2.2.2. Specifically, for the level-[n] structure, Equations (4.6)-(4.8)
and (4.15) lead to

E

[n]

fl

[n] = E

[n]

a

[n]
fl

[n]
f + b

[n]
fl

[n≠1]
, (4.16)

G

[n]

fl

[n] = G

[n]

a

[n]
fl

[n]
f + b

[n]
fl

[n≠1]
. (4.17)

4.2.2.4 Parametric analysis

According to the above formulation, this section aims at understanding how the mi-
crostructure’s parameters a�ect the macroscopic elastic moduli in the case of structural
hierarchy.

The analysis involves a three-level hierarchical honeycomb having a hexagonal
microstructure with filled cells at all levels.

The starting element of the hierarchical structure, the level-[0] in Figure 4.4, has
Young’s modulus Es, Poisson’s ratio ‹s and thinness ratio ⁄. For simplicity, it is
assumed that the self-similar condition (Chen & Pugno, 2012)

⁄

[i] © ⁄, i = 1, 2, 3, (4.18)

holds true.
Similarly, the hypothesis that the density of the filling material, fl

[i]
f , is the same at

all levels, provides
fl

[i]
f © flf = – fls, i = 1, 2, 3, (4.19)

with – a positive constant depending on the material inside the cells. If the filler is a
standard hexagonal honeycomb, as commonly happens in nature (Gibson & Ashby,
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2001), the classical relations (Gibson & Ashby, 2001)

fl

[i]
f

fls,f
= 2Ô

3
⁄

[i]
f ,

E

[i]
f

Es,f
= 4Ô

3
⁄

[i] 3

f , i = 1, 2, 3 (4.20)

provide its (e�ective) Young’s modulus, E

[i]
f , and density, fl

[i]
f , as a function of the

cell walls’ properties, i.e., the thinness ratio, ⁄

[i]
f , the density, fls,f , and the Young’s

modulus, Es,f .
By taking into account the result of the energetic equivalence in Section 3.3.1 (cf.

Equation (3.24)),
K

[i]
w = 8

5
Ô

3
E

[i]
f , i = 1, 2, 3, (4.21)

together with the assumption

fls,f © fls, Es,f © Es, (4.22)

simple mathematical manipulations give

K

[i]
w = 4

Ô
3

5 Es

Q

afl

[i]
f

fls

R

b
3

, i = 1, 2, 3, (4.23)

a suitable relation between the Winkler constant, K

[i]
w , and the filler’s density. Finally,

in view of Equation (4.19),

K

[i]
w © Kw = 4

Ô
3

5 –

3
Es, i = 1, 2, 3, (4.24)

equation on which the present study is based.
In particular, four values of – are considered: 0.4, 0.2, 0.1, 0.05, leading to

Kw = (10≠1
Es, 10≠2

Es, 10≠3
Es, 10≠4

Es), respectively. It is also assumed Es = 79 GPa,
‹s = 0.35, fls = 2900 kg/m3 (aluminum alloy) (Gibson et al., 2010).

The outcome of the analysis is summarised in Figure 4.6, where the specific sti�ness,
E

[3]
/fl

[3] and G

[3]
/fl

[3], and Poisson’s ratio, ‹

[3], are plotted versus the parameter ⁄.
In terms of the sti�ness-to-density ratio, Figures 4.6a and 4.6b suggest that, for

fixed Kw, an increase in ⁄ provides an increase in E

[3]
/fl

[3] and G

[3]
/fl

[3], which is more
significant for ⁄ < 0.1. As a matter of fact, for ⁄ > 0.1 the increase in E

[3]
/fl

[3] is
averagely of 1%, while for ⁄ < 0.1 the average increase is more than 15% (Figure 4.6a).
A similar trend emerges in the case of G

[3]
/fl

[3]: an increase of only 10% for ⁄ > 0.1,
larger one (20%) when ⁄ < 0.1 (Figure 4.6b).
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In addition, when ⁄ is fixed, Figures 4.6a and 4.6b illustrate an improvement in
the specific sti�ness by increasing Kw. In particular, as expected, for high values of
Kw (10≠1

Es, 10≠2
Es) the increase in both E

[3]
/fl

[3] and G

[3]
/fl

[3] is higher than that
occurring for small ones (10≠3

Es, 10≠4
Es). That is to say, the higher the sti�ness of

the material filling the cells, the higher will be the resulting hierarchical composite. For
example, E

[3]
/fl

[3] shows an average increase of more than 180% when the parameter
Kw varies from 10≠2

Es to 10≠1
Es.

To summarise, it can be said that the presented graphs illustrate the large range of
achievable specific sti�ness permitted by varying the geometrical, ⁄, and mechanical,
Kw, parameters of the microstructure.

A similar consideration can be derived by focusing on the Poisson’s ratio, ‹

[3],
plotted in Figure 4.6c. Generally, for fixed Kw, increasing ⁄ provides a decrease in ‹

[3],
that is more evident for high values of ⁄. For instance, when Kw = 10≠4

Es, varying
⁄ from 0.05 to 0.1 leads to a decrease of average 60% while, for 0.1 < ⁄ < 0.2, the
decrease is averagely of 130%.

Regarding the influence of the Winkler constant, it emerges that, for small values
of ⁄ (⁄ < 0.05), ‹

[3] is not a�ected by Kw, being ‹

[3] = 0.3332 regardless of Kw.
Conversely, when the beams become more and more thicker (0.05 < ⁄ < 0.2), even a
small increase of Kw leads to a high increase in ‹

[3]. Indeed, as Figure 4.6c illustrates,
varying Kw from 10≠3

Es to 10≠2
Es provides an increase of 35% at ⁄ = 0.15 and

of 90% at ⁄ = 0.2. This finding, that could be of actual use, reveals the possibility
to obtain optimised hierarchical structures having desirable and, perhaps, actively
tailorable properties. In particular, for particular values of ⁄ (⁄ < 0.05), it is possible
to improve the specific sti�ness of the material, by varying Kw, but without modifying
its Poisson’s ratio.

4.2.3 Filled vs not-filled cells
To throughly analyse the influence of the microstructure’s properties in the specific
sti�ness of a hierarchical cellular material, this section deals with a self-similar hierar-
chical honeycomb having three levels of hierarchy and a hexagonal architecture at all
levels.

Similarly to Section 4.2.2.4, the cell walls are made of aluminium alloy with Es = 79
GPa, ‹s = 0.35, fls = 2900 kg/m3 (Gibson et al., 2010). The cells, initially empty as in
the traditional hierarchical honeycomb (Chen & Pugno, 2012), are then alternately
filled with an elastic medium at some levels while leaving empty the others.
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Figure 4.6: The influence of ⁄ in the (a), (b) specific sti�ness and (c) Poisson’s ratio of a
three-level hierarchical composite cellular material
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Table 4.1 Hierarchical configurations considered

level-[1] level-[2] level-[3]
configuration k=1 not-filled cells not-filled cells not-filled cells
configuration k=2 filled cells not-filled cells not-filled cells
configuration k=3 filled cells filled cells not-filled cells
configuration k=4 filled cells not-filled cells filled cells
configuration k=5 not-filled cells filled cells not-filled cells
configuration k=6 not-filled cells filled cells filled cells
configuration k=7 not-filled cells not-filled cells filled cells
configuration k=8 filled cells filled cells filled cells

The investigated configurations, listed in Table 4.1, reveal that the sti�ness-to-
density ratio of a hierarchical composite honeycomb is a�ected not only by the pa-
rameters ⁄, Es, ‹s, Kw, but also by having filled cells at one level rather than at
another.

For example, let us consider the configurations k = 2, k = 5 and k = 7, with filled
cells at only one level: the first, the second and the third, respectively (Table 4.1). It
emerges that the resulting specific sti�ness,

1
E

[3]
/fl

[3]
2

k
and

1
G

[3]
/fl

[3]
2

k
, normalised by

the specific sti�ness of the standard hierarchical honeycomb (i.e., configuration k = 1),1
E

[3]
/fl

[3]
2

k=1
and

1
G

[3]
/fl

[3]
2

k=1
, have di�erent values in the three examined cases

(Table 4.2). In particular, the presence of the filler at small levels, as in configurations
k = 2 and k = 5, makes the corresponding hierarchical structure 70% and 65% less
sti� than the structure in configuration k = 7, where the elastic medium fills the
cells at higher levels. As pointed out in Gao (2010), it can be said that, in terms
of macroscopic mechanical behavior, the smaller the level, the less important is the
presence of the filling material. This result is confirmed by focusing on configurations
k = 3, k = 4 and k = 6, having filled cells at two levels: the first and the second, the
first and the third, the second and the third, in turn (Table 4.1). As expected, the
maximum and the minimum value of normalised specific sti�ness occurs, on order,
in the case of configurations k = 6 and k = 3. Again, the e�ective properties of the
hierarchical composite honeycomb are less a�ected by having filled cells at small levels,
i.e., configuration k = 3, rather than at larger ones, i.e., configurations k = 4 and
k = 6.

Moreover, Table 4.3 suggests that the specific sti�ness of a traditional hierarchical
honeycomb can be significantly improved by filling its cells at all levels (i.e., configu-



4.2 The hexagonal microstructure: analytical modelling | 87

Table 4.2 Filled vs not-filled: normalised specific sti�ness with Kw = 10≠2 Es

1
E

[3]
/fl

[3]
2

k
/

1
E

[3]
/fl

[3]
2

k=1

⁄ = 0.2 ⁄ = 0.1 ⁄ = 0.05 ⁄ = 0.02

configuration k=2 1.21 1.20 1.18 1.18
configuration k=3 1.28 1.24 1.20 1.20
configuration k=4 1.92 1.86 1.86 1.85
configuration k=5 1.26 1.24 1.21 1.21
configuration k=6 2.70 2.70 2.50 2.50
configuration k=7 1.92 1.87 1.87 1.86
configuration k=8 3.30 3.30 3.20 3.20

1
G

[3]
/fl

[3]
2

k
/

1
G

[3]
/fl

[3]
2

k=1

⁄ = 0.2 ⁄ = 0.1 ⁄ = 0.05 ⁄ = 0.02

configuration k=2 1.25 1.23 1.20 1.20
configuration k=3 1.31 1.28 1.23 1.22
configuration k=4 2.10 2.00 1.92 1.90
configuration k=5 1.29 1.27 1.24 1.24
configuration k=6 3.10 3.00 2.90 2.90
configuration k=7 2.20 2.10 1.94 1.92
configuration k=8 3.80 3.60 3.60 3.40
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Table 4.3 The level-[3] hierarchical cellular material: comparison between the composite
configuration and the traditional one

(E[3]
/fl

[3])k=8/(E[3]
/fl

[3])k=1

⁄ = 0.2 ⁄ = 0.1 ⁄ = 0.05 ⁄ = 0.02

Kw = 10≠4
Es 1.35 1.12 1.10 1.16

Kw = 10≠3
Es 1.83 1.65 1.62 1.53

Kw = 10≠2
Es 3.30 3.30 3.20 3.20

Kw = 10≠1
Es 4.71 4.32 4.31 4.11

(G[3]
/fl

[3])k=8/(G[3]
/fl

[3])k=1

⁄ = 0.2 ⁄ = 0.1 ⁄ = 0.05 ⁄ = 0.02

Kw = 10≠4
Es 1.43 1.14 1.13 1.17

Kw = 10≠3
Es 1.82 1.81 1.74 1.60

Kw = 10≠2
Es 3.80 3.60 3.60 3.40

Kw = 10≠1
Es 5.41 5.33 5.11 5.02

ration k = 8). Specifically, an improvement up to 5 times is observed by varying the
filler’s sti�ness, Kw, from 10≠4

Es to 10≠1
Es (Table 4.3).

4.2.4 Optimal values
Motivated by the increasing trend in the maximum values of specific sti�ness observed
for the level-[3] composite hierarchical honeycomb in comparison with the traditional
counterpart, one question that arises is whether introducing additional levels of hierarchy
leads to a further improvement.

As illustrated in Figures 4.7 and 4.8, where the analysis is extended up to the
level-[6] hierarchical order, the answer is a�rmative, provided that the filler is sti�er
than a critical value. In particular, only for Kw = 10≠1

Es adding the fourth order of
hierarchy provides an enhancement in the specific sti�ness of a three-level hierarchical
honeycomb. Conversely, introducing the fifth and the sixth level does not result in a
significant improvement (Figure 4.8).

However, the significance of the present investigation is more evident when examining
the e�ects of adding hierarchical levels to the level-[1] composite honeycomb. That
is to say, in contrast to the classical cellular materials where hierarchy is detrimental
for the specific sti�ness (Chen & Pugno, 2013a; 2012), in the cell-filled configuration
increasing the number of hierarchical levels leads to an increase in the sti�ness-to-
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density ratio (Figure 4.7). Nevertheless, high values of Kw, 10≠1
Es and 10≠2

Es,
provide an higher improvement than that which occurs for Kw = 10≠3

Es. Conversely,
when Kw = 10≠4

Es, the specific sti�ness decreases by increasing the hierarchical levels,
as in the traditional honeycomb.

Thus, in accordance with Bosia et al. (2012), it can be concluded that both hierarchy
and material heterogeneity are necessary to obtain improved sti�ness. In addition, an
optimal number of hierarchical levels naturally emerges: level-[4] for Kw = 10≠1

Es,
level-[3] for Kw = 10≠2

Es, level-[2] for Kw = 10≠3
Es (Figure 4.8).

It should be noted that Figures 4.7 and 4.8 are based on an aluminium honeycomb
(Es = 79 GPa, ‹s = 0.35, fls = 2900 kg/m3) with ⁄ = 0.1, assumption that does not
a�ect the outcome of the analysis, being minimum the e�ect of ⁄ on the sti�ness-to-
density ratio (cf. Figure 4.6a). Also, as in Sections 4.2.2.4 and 4.2.3, the self-similar
conditions in Equations (4.18), (4.19) and (4.24) are adopted.

However, beyond the specific improvements a�orded by the particular hierarchical
structure examined, this comprehensive study may suggest new avenues for the under-
standing and development of novel bioinspired materials via structural hierarchy and
material mixing.

4.3 Di�erent levels with di�erent cell topologies
As noted in the previous sections, the e�ective elastic constants of a hierarchical
composite honeycomb are generally a�ected by the geometric and mechanical properties
of the microstructure at each level. It also emerged that, in terms of specific sti�ness,
having filled cells at one level rather than at another plays an important role.

To go further in this direction and to examine more closely how the microstructure’s
parameters can be optimised to improve the macroscopic performance of the material,
this section deals with a three-level hierarchical structure having di�erent cell topologies
at each level: the hexagonal, the square and the equilateral triangular.

Similarly to Sections 4.2.2.4-4.2.4, in the considered architectures, listed in Table
4.4 and schematised in Figure 4.9, the cell walls have Young’s modulus Es=79 GPa,
Poisson’s ratio ‹s=0.35, density fls = 2900 kg/m3 (aluminium alloy) and the self-similar
conditions still apply.

The outcome of the study reveals that the examined configurations are not isotropic,
being the derived macroscopic moduli, Young’s modulus, E

[3]
k , shear modulus, G

[3]
k ,
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Figure 4.9: Di�erent levels with di�erent cell topologies, schematic representation of the
considered configurations: (a) k = 9, (b) k = 10, (c) k = 11, (d) k = 12, (e) k = 13, (f)
k = 14
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Table 4.4 Hierarchical configurations with di�erent cell topologies

level-[1] level-[2] level-[3]
configuration k=9 square hexagonal triangular
configuration k=10 square triangular hexagonal
configuration k=11 hexagonal square triangular
configuration k=12 hexagonal triangular square
configuration k=13 triangular square hexagonal
configuration k=14 triangular hexagonal square

and Poisson’s ratio, ‹

[3]
k , directionally dependent and such that the classical relation

G

[3]
k = E

[3]
k

2
1
1 + ‹

[3]
k

2
, (4.25)

is not satisfied.
Thus, to provide a more complete description, the mechanical response associated

with di�erent orientations is investigated: 0¶, 30¶, 45¶, 60¶, measured counterclockwise
from e1, e2 (Figure 4.10). The corresponding elastic constants, plotted in Figures
4.11-4.14 as a function of Kw, are denoted by (·)[3]

0¶ , (·)[3]
30¶ , (·)[3]

45¶ and (·)[3]
60¶ , respectively.rotated

e1

e2

e30�

1

e30�

2

e60�

2

e45�

2 e45�

1

e60�

1

Figure 4.10: Mechanical response associated with di�erent orientations

A common feature in the proposed graphs is the increase in the specific sti�ness
provided by increasing Kw but, as expected, di�erent results come from the six
considered cases.
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For example, it emerges that having a hexagonal, configurations k = 10 and k = 13,
or a square, configurations k = 12 and k = 14, microstructure at the third level
leads to the highest values of (E[3]

0¶ /fl

[3])k (Figure 4.11a) while, in terms of (G[3]
0¶ /fl

[3])k,
configurations k = 12 and k = 14 are the least performant (Figure 4.11b). Conversely,
configurations k = 10 and k = 13 could be the best solution to obtain a hierarchical
material with superior shear modulus, (G[3]

0¶ )k, and minimum weight. Also, Figure
4.11b reveals the existence of a particular value of Kw, K

ú
w = 0.76 ◊ 10≠3

Es, such that
Q

aG

[3]
0¶

fl

[3]

R

b

k=9,11

>

Q

aG

[3]
0¶

fl

[3]

R

b

k=10,13

for Kw < K

ú
w, (4.26)

Q
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[3]
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[3]

R

b

k=9,11

<

Q

aG

[3]
0¶

fl

[3]

R

b

k=10,13

for Kw > K

ú
w. (4.27)

That is to say, small values of Kw, Kw < K

ú
w, make the hierarchical organisations

k = 9 and k = 11 sti�er than those in configurations k = 10 and k = 13. An opposite
trend emerges for Kw > K

ú
w.

As illustrated in Figures 4.12-4.14, the specific sti�ness associated with the axis
rotated by 30¶, 45¶ and 60¶ exhibits very low values if compared to the plots in Figure
4.11. The reason is that, due to the alignment of the cell walls in the loading direction,
the sti�ness of the square microstructure is higher in the e1 and e2 orientations,
rather than in the other ones, where the values are very low. However, neglecting
this quantitative aspect, the previous considerations still apply. Namely, in terms of
(E[3]

30¶/fl

[3])k and (G[3]
30¶/fl

[3])k, configurations k = 10, k = 13 and k = 12, k = 14 have,
on order, the highest and the lowest values (Figure 4.12). Conversely, regarding Figures
4.13 and 4.14, the hierarchical architectures with a triangular microstructure at the
third level, i.e., configurations k = 9 and k = 11, are less sti� than those having a
hexagonal architecture as cases k = 10 and k = 13.

Finally, Figures 4.11c, 4.12c, 4.13c and 4.14c suggest that the e�ect of Kw on the
e�ective Poisson’s ratio is generally minimal, with the exception of configurations k = 9
and k = 11, where an increase in Kw provides a decrease in (‹ [3]

(·))k. As before, di�erent
values can be observed by considering di�erent directions. In addition, it should be
noted that configurations k = 12 and k = 14 are not plotted in Figures 4.11c, 4.13c
and 4.14c as their Poisson’s ratio vanish (see Appendix B).

These findings, unique in exploring a new class of complex hierarchical materials
with tailored parameters at each level, in the practical context could assist the designer
in the selection of the cell topology that best suits a given requirement.
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Figure 4.11: The hierarchical honeycomb with di�erent cell topologies: influence of Kw in the
(a), (b) specific sti�ness and (c) Poisson’s ratio associated with the axis (e1, e2) in the case
of ⁄=0.02
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Figure 4.12: The hierarchical honeycomb with di�erent cell topologies: influence of Kw

in the (a), (b) specific sti�ness and (c) Poisson’s ratio associated with the axis rotated
counterclockwise by 30¶ from (e1, e2) in the case of ⁄=0.02
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Figure 4.13: The hierarchical honeycomb with di�erent cell topologies: influence of Kw

in the (a), (b) specific sti�ness and (c) Poisson’s ratio associated with the axis rotated
counterclockwise by 45¶ from (e1, e2) in the case of ⁄=0.02
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Figure 4.14: The hierarchical honeycomb with di�erent cell topologies: influence of Kw

in the (a), (b) specific sti�ness and (c) Poisson’s ratio associated with the axis rotated
counterclockwise by 60¶ from (e1, e2) in the case of ⁄=0.02



5 | Mutable cellular materials: theoretical
model and homogenization of the dis-
crete system

5.1 Introduction
As pointed out in Chapter 3, cellular structures having the internal volumes of the
cells filled with fluids, fibers or other bulk materials are very common in nature. This
composite solution has been credited with playing an important role in the mechanical
e�ciency of biological systems.

In the previously examined parenchyma tissue, for instance, the pressure exerted
by the fluid within the cells against the cell walls leads to an improvement in the
load-bearing capacity of the tissue.

Another example, concerning the nature’s wonders of design, is the hygroscopic
keel tissue of the ice plant Delosperma nakurense (Figure 5.1).

The ice plant grows in the arid regions of Africa and, to prevent the premature dis-
persion of the seeds, adapted its anatomy and material architecture to the unfavourable
environmental conditions. As Figure 5.1a shows, the plant produced a special seed
capsule where, in the dry state, five petal-like sections, the protective valves, cover the
seed compartment as a box-like lid. When it rains, the valves, unfolding backwards,
reveal a seed compartment partitioned in five seed chambers from which, within few
minutes, most of the seeds are splashed out by the falling water (Lockyer, 1932). Then,
when the capsule dries up, the valves return to the original position.

The specialised organ promoting this sophisticated origami-like movement mecha-
nism for seed dispersal is the hygroscopic keel tissue composed, in the dry state, by a
network of elongated cells filled with a swelling cellulosic inner (CIL). Due to the high
adsorption and desorption capability of the CIL, the influx/e�ux of water into the
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water

Figure 5.1: (a) The seed capsule, taken from Grootscholten (2005), and the keel tissue, taken
from Guiducci et al. (2014), of the ice plant Delosperma nakurense in the dry (left) and wet
(right) state, (b) the schematic representation of the keel tissue
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cells leads to a volume increase/decrease of the CIL, resulting in cells having the ability
to open and close upon wetting/drying cycles. From this point of view, experimental
observations (Guiducci et al., 2014) reveal that the filler contains a soft inclusion, having
Young’s modulus Eincl ¥ 0, that behaves like an elongated thin septum partitioning
the internal volume of the cell. Consequently, the cell walls’ coupling e�ect due to the
presence of the filling material is compromised (cf. Section 3.2) and this particular
configuration, where the cell walls act independently from each other, could facilitate
the reversible expansion/contraction of the cells (Figure 5.1b). It follows a reversible
change in the original geometry and sti�ness of the whole tissue, that is thus able to
combine load bearing and morphing functions (Burgert & Fratzl, 2009; Guiducci et al.,
2015; Li & Wang, 2017).

Existing studies investigated the morphology and composition of the keel tissue,
although under di�erent assumptions, techniques and scope.

Among them, Guiducci et al. (Guiducci et al., 2014) represented this intriguing
tissue as a honeycomb-like structure internally pressurised by a fluid phase. Their
attention was focused on describing the mechanical aspects related to the hygroscopic
actuation of the ice plant but the finite element-based analysis performed confirmed
the improvement in the macroscopic sti�ness of the keel provided by the filler. Similar
results are presented in Guiducci et al. (2015), where the aforementioned concepts are
generalised to pressurised honeycombs with L-shaped and Tetris tiles-like cells.

By shifting our attention from plant biology to plant-inspired morphing engineered
systems, Vos et al. (Vos & Barrett, 2011; Vos et al., 2011) developed a pressure
adaptive honeycomb (PAH) by inserting air pouches into a conventional honeycomb
having a hexagonal texture. Specifically, when pressurised, the pouches expand in
volume and induce a change in the cells’ shape and e�ective sti�ness. Regarding the
latter, the authors experimentally demonstrated the central role played by the inner
pressure in providing extra rigidity to the whole system.

In addition, Khire et al. (Khire et al., 2006) evaluated the variable sti�ness of
a honeycomb-type inflatable structure by means of finite element simulations and it
emerged that the overall rigidity primarily came from the internal pressure.

Referring the interested reader to Dumais & Forterre (2012), Forterre (2013),
Martone et al. (2010) and Razghandi et al. (2014) for a systematic and comprehensive
review on the engineering aspects of plant-inspired morphing systems, it can be said
that over the last decade there has been a steady rise of interests in applying the
principles of reversible plant movements to create synthetic mutable materials (Li &
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Wang, 2017). In particular, such adaptive systems are able to autonomously alter their
external shape and can advance the state of the art of many applications.

For example, high performance aircrafts can benefit from integrative morphing
wings to control their flights paths without sacrificing the aerodynamic streamline and
fuel economy (Vasista & Tong Land Wong, 2012). Also, kinetic architectures capable of
altering their internal configurations can provide extra freedoms for indoor environment
control and human-building interaction (Fortmeyer & Linn, 2014). Finally, sensing
devices and soft robots can exploit the shape changing materials for miniaturisation
(Guiducci et al., 2015).

It is widely recognised that a full understanding of the interplay between their
architecture and mechanical performance would facilitate the design of new mate-
rials, providing an e�cient, alternative route to the time-consuming experimental
investigations for predicting their macroscopic response.

However, in the context of mutable materials, little is known about the relation
between the mechanics of the underlying microstructure and macroscopic properties.
Specifically, a continuum model has not been derived and explicit formulas for the
e�ective elastic constants and constitutive equations are currently not available in the
literature. It clearly emerges that this limitedly explored research area needs further
e�orts in order to o�er concrete and relevant tools to engineers for developing future
generations of mutable materials and structures having the attractive characteristics of
plants.

To provide a contribution in this direction, and considering the main topic of the
present thesis (i.e., composite cellular materials), this chapter presents a continuum
model for two-dimensional mutable cellular materials inspired by the keel tissue of
the ice plant. That is to say, a composite honeycomb having a mutable hexagonal
architecture composed by elongated hexagonal cells filled with an elastic medium.

5.2 Mathematical description of the discrete system

5.2.1 Geometry
The examined material can be conceived as an interconnected network of discrete
elements whose extreme nodes are identified by the two shifted lattices

L1(¸) :=
Ó
X œ R2 : X = n

1
l1 + n

2
l2 , with (n1

, n

2) œ Z2
Ô

(5.1)
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and
L2(¸) := s + L1(¸). (5.2)

Similarly to Section 3.2.1, l1, l2 and s denote, in turn, the lattice vectors and the
shift vector. In Cartesian components, they are given by (Figure 5.2)

l1 =
S

U 2 ¸ cos ◊

0

T

V
, l2 =

S

U ¸ cos ◊

¸(1 + sin ◊)

T

V
, s =

S

U ¸ cos ◊

¸ sin ◊

T

V
, (5.3)

with ¸ and ◊, respectively, the length (the lattice size) and inclination of the cell walls.

5.2.2 The unit cell
The lattice vectors define the unit cell of the periodic array, composed by the line
elements 0-1, 0-2, 0-3, treated as Euler-Bernoulli beams on Winkler foundation (cf.
Section 3.3), connecting the external nodes 1, 2, 3 to the central point 0 (Figure 5.2b).

Each beam is supported by two sets of springs: the springs a, in the ≠÷

e
2 direction

(Figure 5.3a), and the springs b, in the direction of ÷

e
2 (Figure 5.3b), anchored at the

nodes of the lattice L3 defined by

L3(¸) := 2 s + L1(¸). (5.4)

In both cases, the reactions of the springs are not orthogonal to the beams but, for
symmetry reasons, the tangential components cancel each other out. As we will see in
Section 5.2.3, this allows using the sti�ness matrix k

e
wf defined in Equation (3.48) to

evaluate the elastic energy of the beams 0-1, 0-2 and 0-3.
Also, as illustrated in Figure 5.2a, the nodes of L3 are connected to those of the

lattice L2 by means of the line elements 0-4, 0-5, 0-6, represented by the vectors

b4 = s, b5 = ≠l1 ≠ s, b6 = (s ≠ l2)/2. (5.5)

From a mechanical point of view, they are modelled as Euler-Bernoulli beams whose
sti�ness is assumed to be much smaller than that of the beams composing the principal
lattices L1 and L2 (i.e., the cell walls). Consequently, in evaluating the elastic energy
of the unit cell (cf. Section 5.2.3), the contribution of 0-4, 0-5, 0-6 can be neglected
with respect to 0-1, 0-2, 0-3 composing the skeleton of the cells.

It is noteworthy that, as mentioned in Section 5.2.1, the examined composite hon-
eycomb is inspired by the keel tissue of the ice plant, where a thin septum partitioning
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Figure 5.2: The mutable composite honeycomb: (a) the hexagonal microstructure, (b) the
unit cell
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Figure 5.3: The two sets of springs supporting the elastic beams in the mutable composite
honeycomb: (a) springs a, (b) springs b

the internal volume of the cells compromises the cell walls’ coupling e�ect due to the
presence of the filler.

Since the theoretical model described in Chapter 3, where the springs connect
two opposite beams, does not adequately represent the examined configuration, in
the present chapter the missing coupling e�ect caused by the septum is modelled by
anchoring the springs at the nodes of L3, where it is assumed located the "disconti-
nuity" of the filler. This condition, o�ering a viable way to analytically represent the
investigated microstructure, is not too limiting since a rigorous study of the biological
tissue does not coincide with our scope; we are interested in exploring general concepts
and highlighting qualitative/quantitative e�ects arising from the considered problem,
rather than focusing on a specific behavior.

5.2.3 Elastic energy
In view of the previous assumptions, the elastic energy of the unit cell, W , is obtained
by considering the contribution of the beams 0-1, 0-2, 0-3. In particular, by following
the procedure described in Section 3.4, the elastic energy of each beam takes the form

w

e = w

e
b + w

e,a
wf + w

e,b
wf , (5.6)

where w

e,a
wf , w

e,b
wf and w

e
b , respectively related to the elongation of the springs and to the

axial and bending deformations of the beam, are expressed in Equations (3.34)-(3.36).
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Similarly, as it can be seen in Figure 5.2b, the first node of each beam coincides
with the central point 0, where it is imposed the balance of forces and moments. This
condition guarantees the equilibrium of the examined cell and allows us to condense
the degrees of freedom of 0, leading to

W = Wb + W

a
wf + W

b
wf © W

1
D̃, �D̃

a
, �D̃

b
2

, (5.7)

where Wb, W

a
wf , W

b
wf are given in Equations (3.57)-(3.59) and

D̃ :=

S

WWU

D1

D2

D3

T

XXV =
Ë

U1 V1 Ï1 U2 V2 Ï2 U3 V3 Ï3
ÈT

, (5.8)

�D̃
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(5.9)

�D̃
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S

WWU

�D
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1

�D

b
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�D

b
3

T

XXV =
Ë

�U
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(5.10)
are, in turn, the global vectors of nodal displacements and elongation of the springs
(cf. Section 3.4.2). In particular,

� D

a
1 =

Ë
D1 ≠ D6

È
=

S

U U1 ≠ U6

Ï1 ≠ Ï6

T

V
, (5.11)

� D

a
2 =

Ë
D2 ≠ D4

È
=

S

U U2 ≠ U4

Ï2 ≠ Ï4

T

V
, (5.12)

� D

a
3 =

Ë
D3 ≠ D5

È
=

S

U U3 ≠ U5

Ï3 ≠ Ï5

T

V (5.13)

and

� D

b
1 =

Ë
D1 ≠ D4

È
=

S

U U1 ≠ U4

Ï1 ≠ Ï4

T

V
, (5.14)
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� D

b
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Ë
D2 ≠ D5

È
=

S

U U2 ≠ U5

Ï2 ≠ Ï5

T

V
, (5.15)

� D

b
3 =

Ë
D3 ≠ D6

È
=

S

U U3 ≠ U6

Ï3 ≠ Ï6

T

V
, (5.16)

with
Ui :=

Ë
Ui Vi

ÈT
. (5.17)

With reference to the equilibrium conditions of the anchorage points 4, 5, 6, in
addition to those enhanced in Figure 5.2b, i.e., 0-1, 0-2 and 0-3, the springs of other
walls are anchored to the nodes 4, 5, 6. Nevertheless, it is not necessary to include
such additional beams in the unit cell and impose the equilibrium of forces in 4, 5,
6 since the forces brought to the anchorage points by the springs balance with one
another because of the symmetry of the hexagonal cells.

5.3 The homogenized model

5.3.1 Elastic energy
As in Section 3.5, the homogenized model follows by writing the nodal degrees of
freedom in Equation (5.7) in terms of the gradient of the two continuous fields of
displacements and rotations ˆ

U(·) and Ï̂(·):

Uj :=
S

U Uj

Vj

T

V = ˆ

U0 + Ò ˆ

U bj, Ïj = Ï̂0 + ÒÏ̂ bj, j = 1, 2, ..., 6. (5.18)

Substituting Equations (5.18) into Equation (5.7) and dividing the resulting ex-
pression by the area of the unit cell, A0 = 2¸

2 cos ◊(1 + sin ◊), lead to the strain energy
density of the limit problem:

w © w (Á–—, (Ê ≠ Ï̂), Ï̂,– = 0) , (5.19)

revealing that the equivalent continuum is not-polar (more details are provided in
Appendix E).
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5.3.2 Constitutive equations
The constitutive equations of the limit continuum have a structure identical to the
relations in (3.86).

Again, simple mathematical manipulations reveal that the stress tensor is not-
symmetric, being its symmetric, ‡

sym
“” , and skew-symmetric, ‡

skw
“” , parts given by

‡11 = C¸c (Á11 (24c

4
D¸ + c

2 (C¸¸
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2
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2
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2 (2s + f14)) ≠ 24D¸sf0) Á12
2¸

3
f0 (2C¸¸

2
c

2 + 3D¸ (4sf0 + 3))

+ 6D¸ (3c

4
D¸ + C¸¸

2
c

6 + 3D¸s
2
f

2
0 ) Á12

¸

3
f0c (2C¸¸

2
c

2 + 3D¸ (4sf0 + 3)) + Kw f5 Á12
208cf0f3

,

‡

skw
12 = ≠‡

skw
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,

‡12 = ‡
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skw
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sym
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(5.20)

with C¸ and D¸ the tensile and bending sti�ness of the beams (cf. Equation (3.45)), Kw

the Winkler foundation constant, Á–— and Ê the infinitesimal strains and infinitesimal
rotation. Also, to simplify the notation, c and s stand, respectively, for cos ◊ and sin ◊,
while fi = fi(cos ◊, sin ◊) are the polynomial expressions listed in Appendix E.

5.3.3 Elastic moduli
The derivation presented in Section 3.5.3 to predict the e�ective elastic constants of
the composite honeycomb with a regular hexagonal microstructure can be applied to
the case of the mutable architecture.

As expected, the macroscopic elastic moduli are a function of the angle ◊, via the
terms c := cos ◊, s := sin ◊ and the polynomials fi = fi(cos ◊, sin ◊), as well as of the
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geometric and mechanical properties of the cell walls, i.e., thinness ratio, ⁄ := h/¸,
Young’s modulus, Es, Poisson’s ratio, v := (1 ≠ ‹

2
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(5.21)

with E1, ‹12 and E2, ‹21 denoting, in turn, the Young’s modulus and corresponding
Poisson’s ratio in the e1 and e2 direction, G the shear modulus.

The analysis of the derived quantities reveals the system isotropy only in the
particular case ◊ = 30¶ (i.e., regular hexagons), being
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such that
G = E

2 (1 + ‹) . (5.23)
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5.4 Application of the theory to the keel tissue of the ice plant

5.4.1 Comparison with the available data
Let us express the stress-strain relations in Equations (5.20) by using the Voigt notation
(cf. Section 3.6.1) S
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(5.25)

are the components of the e�ective sti�ness tensor obtained in Section 5.3.2.
Even though a detailed analysis of the hygroscopic keel tissue does not coincide

with our scope, in order to verify the validity of the adopted modelling technique,
the Cij constants in Equations (5.25) are compared to the solutions available in the
literature. For this purpose, we have considered the work by Guiducci et al. (Guiducci
et al., 2014), where the e�ective sti�ness of the keel tissue, represented as a pressurised
honeycomb, is derived by numerical homogenization and theoretical modelling based
on the Born rule.

As Table 5.1 summarises, four configurations are investigated, characterised by
di�erent values of cell walls’ inclination, ◊, and inner pressure, p.
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Table 5.1 A practical application to the keel tissue of the ice plant: comparison with the
existing literature

Guiducci et al. (2014)
Es=1 GPa, ‹s=0.3, ⁄ = 0.07

◊(¶) p (MPa) C22 (GPa) C11 (GPa) C33 (GPa) C12 = C21 (GPa)
75 0 0.1÷0.3 0.002 0.004÷0.012 0.028
48 2.5 0.03 0.020÷0.027 0.03÷0.086 0.020÷0.026
47 5 0.025 0.03÷0.05 0.03÷0.086 0.015
46 6 0.02 0.03÷0.04 0.02÷0.096 0.02

Present
Es=1 GPa, ‹s=0.3, ⁄ = 0.07

◊(¶) Kw (MPa) C22 (GPa) C11 (GPa) C33 (GPa) C12 = C21 (GPa)
75 0 0.15 0.002 0.004 0.025
48 1.33 0.028 0.02 0.04 0.018
47 2.35 0.022 0.046 0.057 0.014
46 3.25 0.02 0.04 0.054 0.019

Notwithstanding the di�erent strategies adopted, Table 5.1 reveals that the agree-
ment is generally very good, being the discrepancy between the two estimates of
averagely 1.5 %.

From this point of view, the source of di�erence is mainly related to geometric and
mechanical aspects. The first can be attributed to the di�erent cells’ shape considered,
diamond-shaped cells in Guiducci et al. (2014) and elongated hexagons in the present
thesis; the second to the di�erent way in which the interaction between the filler and
the cell walls is mimicked.

In particular, the aim of Guiducci et al. (Guiducci et al., 2014) was to explore
the hygroscopic actuation of the ice plant and special attention was given to the
swelling of the hygroscopic material (CIL) inside the cells of the keel tissue due to
the adsorption of water. Consequently, to better describe the relation between water
content and swelling properties, in Guiducci et al. (2014) the CIL is replaced by a
fluid domain occupying the cavities of the cells, whose walls are thus subjected to a
uniform hydrostatic pressure, p.

In spite of this, the comparison in Table 5.1 confirms the validity of our model
for evaluating the e�ective elastic properties of biological tissues having a mutable
hexagonal architecture.
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In addition, the advantage of the proposed theory is that an explicit relation
between the inner pressure, p, and the Winkler foundation constant, Kw, can be
obtained by extending the energetic equivalence in Section 3.8 to the case of elongated
cells. Specifically, it emerges (cf. Appendix D for more details)

Kw(p) = cos ◊ (1 + sin ◊)
2 cos2

◊ + sin ◊ (1 + sin ◊) p, (5.26)

relation on which Table 5.1 is based.

5.4.2 Optimal values of pressure and cell walls’ inclination
One question that arises is if there exist an optimal value of p, p̃, that maximises the
area of the hexagonal cell, A0, expressed by

A0(p) = 2¸

2 cos ◊ · (1 + sin ◊), (5.27)

with ¸ and ◊ = ◊(p), in turn, the length and inclination of the cell walls.
As known from mathematics, p̃ can be found by evaluating the stationary points of

the di�erentiable function in Equation (5.27) and, in particular, by focusing on the
points ◊̃ where the first derivative of Equation (5.27),

ˆA0
ˆ◊

= ˆA0
ˆ sin ◊

d sin ◊

d◊

+ ˆA0
ˆ cos ◊

d cos ◊

d◊

= 2¸

2(cos2
◊ ≠ sin2

◊ ≠ sin ◊), (5.28)

vanishes.
As illustrated in Figure 5.4, the stationary point located at ◊ © ◊̃ = 30¶ identifies the

maximum of Equation (5.27) and the corresponding value of p, derived from Guiducci
et al. (2014), is given by p̃ ¥ 15 MPa. It should be noted that, for simplicity, in Figure
5.4 we have assumed ¸ = 1 mm, being the outcome of the analysis not a�ected by the
particular value of cell walls’ length considered.

5.4.3 The smart mechanism of the biological tissue
A schematic representation of the smart mechanism of the keel tissue is illustrated in
Figure 5.5 and it can be described as follows.

Initially, in the dry state at zero pressure, the tissue is composed by elongated cells
characterised by an high value of ◊, ◊0 © ◊(p = 0) ¥ 75¶ (Guiducci et al., 2014), and
minimum capability to absorb water (Figure 5.5a). When it starts raining, the filler
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Figure 5.4: An application to the hygroscopic keel tissue: optimal value of ◊

absorbs more and more large amounts of water, leading to an increase in the inner
pressure and, consequently, to a decrease in ◊. In particular, decreasing ◊ provides
an increase in A0 (cf. Figure 5.4), as well as an increase in the absorption capability
(Figure 5.5b). At ◊ = 30¶, the stationary condition of maximum absorption is reached
(Figure 5.5c). Then, when the rain stops, the pressure inside the cells decreases, as
the absorbed water starts to evaporate (Figure 5.5d). It follows an increase in ◊ and a
decrease in A0, until the original configuration is restored (Figure 5.5e).

5.4.4 Parametric analysis
From a macroscopic point of view, a variation in the cell walls’ inclination, ◊, and inner
pressure, p, strongly a�ects the e�ective sti�ness of the biological keel tissue.

To examine such influence, let us focus on the in-plane elastic and shear moduli
given in Equations (5.21) and let us assume Es = 1 GPa, ‹s = 0.3, ⁄ := h/¸ = 0.07,
typical values of the lignified cell walls of the keel tissue (Guiducci et al., 2014).

The results are presented in Figures 5.6 and 5.7, where the macroscopic constants
are plotted as a function of ◊ = ◊(p). It should be noted that the curves are obtained
by substituting Equation (5.26) into Equations (5.21).

As it can be seen in Figure 5.6, in the dry state (i.e., ◊ © ◊0 ¥ 75¶) the elastic
response of the keel tissue is strongly anisotropic and it emerges that E2/Es is bigger
than E1/Es by roughly one order of magnitude. Then, Figures 5.6a and 5.6b suggest
that a decrease in ◊, provided by the increase in the inner pressure due to the influx
of water, leads to an increase in E1/Es and to a decrease in E2/Es. This is not
surprising since the smaller the angle ◊, the more elongated in the e1 direction will
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Figure 5.5: The smart mechanism of the hygroscopic keel tissue: (a) dry state, (b) when it
starts raining, the filler absorbs water leading to an increase in the absorption capability, (c)
stationary condition, maximum absorption, (d) the rain stops and the water absorbed starts
to evaporate, until (e) the original configuration is restored

be the resulting cell. Consequently, the smaller ◊, the higher E1. In the stationary
condition of maximum absorption, at ◊ = 30¶, the tissue exhibits a completely isotropic
behavior, with E1 = E2. Also, at ◊ = 30¶, Figures 5.6a and 5.6b reveal that E1/Es

and E2/Es have, respectively, their maximum and minimum values. Finally, due to
the e�ux of adsorbed water, a decrease in p provides an increase in ◊, followed by a
decrease in E1/Es and an increase in E2/Es.

Conversely, Figure 5.7 shows that the normalised shear modulus, G/Es, is less
a�ected by the variation of ◊. In particular, the maximum value of G/Es occurs in the
dry state, at ◊ © ◊0 ¥ 75¶, while G/Es attains its minimum when ◊ = 30¶.

In addition, to provide a more complete description, in Figures 5.6 and 5.7 two
additional values of ⁄ are explored: ⁄ = 0.01 (i.e., slender beams) and ⁄ = 0.2 (i.e.,
thick beams). Interestingly, it can be observed that the above considerations apply
irrespective of the considered value of thinness ratio, ⁄.
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Figure 5.6: The e�ective elastic constants of the mutable honeycomb as a function of ◊: (a),
(b) normalised Young’s moduli and (c) corresponding elastic anisotropy ratio
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6 | A new class of cellular materials in-
spired by the ancient Japanese art of
kirigami

6.1 Motivation
The ability of the biological systems to adapt their shape and properties in response
to external stimuli has gained a rising interest in recent years, as a rich source of
bio-inspired design of smart materials.

In the previous chapter we have investigated the mechanics of the so-called mutable
honeycomb, inspired by the keel tissue of the ice plant, where the adsorption/desorption
of water, in conjunction with the swelling of the cellulosic inner layer (CIL) inside the
lumen of the cells, leads to a change in the cells’ shape and e�ective sti�ness of the
whole tissue.

As stated, various authors transferred the physical principles behind the shape
changing characteristics of the plants into synthetic materials, providing enhanced
performance and novel functionalities in di�erent fields, such as architecture (Tibbits &
Cheung, 2012), robotics (Petralia & Wood, 2010; Cappello et al., 2015) or aeronautics.
In the context of cellular materials, such mutable features are usually replicated by
pressurising the cells of traditional honeycombs, for example by inserting inflatable air
pouches into the cells and varying their inner pressure (Vos & Barrett, 2011).

An alternative strategy to obtain a mutable honeycomb is based on the kirigami
technique, a variation of the ancient Japanese art of origami.
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6.2 Origami, kirigami and their applications in engineering:
state of the art

Origami, from ori meaning folding and kami meaning paper, consists in transforming a
simple sheet of paper into a strong, lightweight and flexible three-dimensional structure
by applying a prescribed sequence of folds (Tachi, 2010).

Within the past 50 years, a great deal of e�orts has gone into exploring the breadth
of attainable origami structures and these results have been extended far beyond the
art itself. Indeed, origami is currently finding many engineering applications and the
recent advances in computer science, number theory and computational geometry
have paved the way for powerful new analysis and design techniques based on origami
concepts.

From the engineering point of view, the use of origami has two significant features:
the capability of producing a foldable/deployable structure and the provision, at the
same time, of a reinforcement function.

In optics, for instance, these two characteristics inspired the Foldscope (Cybulski et
al., 2014), a minimalistic microscope that can be assembled from a flat sheet of paper
and several other small components in under ten minutes. Although it costs less than a
dollar, this device, which is small enough to fit in a pocket (70x20x2 mm3) and weighs
less than 9 g, can provide 2000x magnification and sub-micron resolution.

Origami also inspired a novel class of biomedical devices, specifically designed for
accessing the hard-to-reach areas of the human body in a minimally invasive way
(Kuribayashi et al., 2006), and improved the performance of many industrial products,
as in the case of the robotic systems, capable of complex tasks, that can be printed on
planar sheets and subsequently folded into some final state (Onal et al., 2011).

This low-cost and extremely fast manufacturing process having, as stated, great
advantages such as rigidity in the folded configuration and flat-foldability to facilitate
storage and transportation, has been employed in architecture to develop a foldable
hallway connecting two o�sets and uniquely-sized openings between buildings (Tachi,
2010).

Deployable shelters, used primary for disaster relief and military operational bases,
represent an additional origami-inspired application, whose key traits include lightweight
frames, insulation toward energy e�ciency in heating and cooling, high volume expan-
sion ratio and rigid foldability (Thrall & Quaglia, 2014; Martinez-Martin & Thrall,
2014; Chen & Feng, 2012).
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Another closely related example is Foldcore (Eidini & Paulino, 2015), a zigzag-
shaped sandwich panel core based on the Miura-ori geometry, a classic origami folding
pattern whose main constituents are parallelogram facets connected along fold lines
(commonly used for folding and unfolding maps). Foldcore, in particular, di�erently
from the conventional honeycomb cores often characterised by accumulation of humidity,
complicated manufacture process and vulnerability against impact loads (Liu et al.,
2015), possesses a number of intriguing properties, as open ventilation channels, superior
energy absorption capability and impact strength, in-plane auxetic behavior.

It is worth noting that, being not limited to any material or scale, the origami
technique shows large potential for manufacturing on very small scales. As a matter
of fact, in recent studies it has been explored the folding behavior of mono- and
multilayer graphene sheets (Cranford et al., 2009; Lee et al., 2008; Booth et al., 2008),
providing a starting point for graphene origami, an emerging method that can be used
in the implementation of wearable, flexible and foldable electronic devices, such as
smartphones, tablets, watches or microscopic robots.

It can be said that the above examples encompass the majority of current research
in the promising field of origami applied to engineering.

However, not only origami, but also the related art of kirigami (Castle et al., 2014),
allowing the paper to be cut, is currently receiving broad attention from scientists
and engineers, that are adapting this technique to di�erent two-dimensional starting
materials to create structures from the macro- to the microscale (Wang-Iverson et al.,
2011; Hawkes et al., 2010). The kirigami cuts, in particular, help determine the final
three-dimensional shapes and, di�erently from the origami, alleviate stresses that could
otherwise cause the material to fracture. In addition, kirigami can make a sheet of
paper stretchable just by adding parallel cuts dividing it into an array of thin strips
with short cross connections. Then, when the paper is pulled perpendicular to the
cuts, they open up and allow the sheet to stretch, while the strips buckle into a tilted
wavy arrangement (Figure 6.1).

Notably, Blees et al. (Blees et al., 2014) built a version of this springy structure
out of a graphene sheet (Figure 6.2) and their experiments revealed that the so-called
graphene kirigami had extremely high elongation limits (≥ 240%) and mechanical
robustness if compared to the uncut graphene.

Similar results are proposed in Shyu et al. (2015), where it emerges that graphene
oxide polyvinyl alcohol (GO-PVA) nanocomposite sheets acquire unusual high ex-
tensibility after microscale kirigami patterning, opening up a wide range of novel



6.2 Origami, kirigami and their applications in engineering: state of the art | 119

Figure 6.1: An example of kirigami, taken from Blees et al. (2014)

Figure 6.2: The graphene kirigami, taken from Blees et al. (2014)
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technological solutions for stretchable electronics and optoelectronics devices, among
other possible applications.

As demonstrated in a patent filed by Dean in 1921 (Dean, 1921), kirigami principles
can also be exploited to create a hexagonal honeycomb configuration, as the cuts in
the sheet material open up into hexagonal holes, coinciding with the honeycomb cells.

Moreover, by considering the space filling models of classical geometries, Saito et al.
(Saito et al., 2014) developed a mathematical definition of the cutting patterns leading
to kirigami honeycombs and cellular structures with complex functional geometries,
together with the associated manufacturing technique.

Taking into account the results in Saito et al. (2014), Neville et al. (Neville et
al., 2017; 2016; 2014) reported how a class of kirigami honeycombs showed large
shape and volume deformations. This result provides a potential platform for unusual
multifunctional and shape-changing materials that could be used for morphing airframe
components or space deployable structures applications. The authors, in particular,
started by creating a pattern of cuts into a flat sheet of thermoplastic polymer,
which was then corrugated and folded repeatedly to give a honeycomb architecture.
Interestingly, the finite element simulations in Neville et al. (2017) reveal that relatively
small changes in the fold angle lead to a "Poisson’s switch", that is a transition from
positive to negative values of the Poisson’s ratio of the resulting material.

Recently, Zhang et al. (Zhang et al., 2015) and Zheng et al. (Zheng et al., 2016)
explored the mechanical behavior of sophisticated three-dimensional mesostructures
obtained from multilayered two-dimensional precursors with a predefined pattern of
cuts via the kirigami approach. In accordance with the abovementioned works, the
studies in Zhang et al. (2015) and Zheng et al. (2016) prove the ability of the kirigami
technique to increase the ultimate strain and to prevent the unpredictable local failures
of the final material.

Finally, kirigami has also been a subject of intense scientific investigations in
the biological field, since several natural systems (e.g. birds’ wings) have periodic
polyhedral designs that could easily be reproduced in terms of kirigami techniques
(Sareh & Rossiter, 2015).

However, despite the important scientific interest in the novel field of kirigami
applications in engineering, there still remains a large domain to be investigated. In
particular, one of the key issues of the kirigami approach, consisting in establishing a
relation between the arrangement of the cuts and the overall mechanical response, have
not been explored. Such relation, if available, could be useful for designing commercial,
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engineering or artistic kirigami structures with tunable properties and the intention of
the following sections is to make a contribution to this open field of research.

6.3 The kirigami honeycomb

6.3.1 Basic idea
The basic idea of the kirigami honeycomb, illustrated in Figures 6.3 and 6.4, consists
in cutting and stretching a single sheet of starting material of length A1, height A2

and unitary width. As it can be seen (Figure 6.4), the stretch causes the cuts to
open, leading to a sequence of honeycombs with di�erent geometric and mechanical
properties. In particular, the final configuration is closely related to the length, lc,
and distance, dc, of the cuts, as well as to the considered value of stretch, given by
(Barbieri et al., 2017)

– := 1 + ū

A2
, (6.1)

with ū the applied displacement (Figure 6.3).
As the following sections will explain more in detail, the cuts pattern plays an

important role in determining the elongation limit of the sheet material and, conse-
quently, the maximum value of attainable –. Thus, only a particular set of kirigami
honeycombs can be obtained from a given arrangement of cuts.kir_bas1

A1

A2

lc

a2

ū
lc
2

dc

Figure 6.3: The kirigami honeycomb: schematic representation of the pattern of cuts indicating
the most relevant geometric parameters
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Figure 6.4: The kirigami honeycomb: snapshots of the configurations corresponding to the
applied stretch of (a) – = 1.5, (b) – = 1.7, (c) – = 1.9
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For the sake of clear disclosure, it should be noted that the numerical simulations
in Figure 6.4, performed by the J-integral-based arc length solver proposed in Barbieri
et al. (2017), concern a kirigami honeycomb obtained from a rubber sheet material
with

A1 = 340 mm, A2 = 100 mm, lc = 12 mm, dc = 3 mm, a2 = 8 mm. (6.2)

Finally, in terms of mechanical properties, the following values are adopted: Young’s
modulus Es=2.5 MPa and Poisson’s ratio ‹s = 0.5 (Gibson & Ashby, 2001), fracture
energy Gc=10 kJ/m2 (Barbieri et al., 2017).

6.3.2 E�ective properties
From a theoretical point of view, it is possible to derive explicit formulas for the e�ective
elastic constants (i.e., Young’s moduli, Poisson’s ratios, shear modulus) of the kirigami
honeycombs obtained at each deformation state by means of the strategy presented
in the previous chapters. Namely, by representing each deformed configuration as a
sequence of discrete elements forming a periodic array of mutable hexagonal cells (cf.
Chapter 5).

In particular, let us focus on Figure 6.5, illustrating a portion of the –-kirigami
honeycomb provided by subjecting the patterned sheet in Figure 6.3 to the generic
stretch –.

Its continuum description follows by analysing the unit cell of the periodic arrange-
ment (Figure 6.5b), identified by the lattice vectors

l1 =
S

U 2 ¸– cos ◊–

0

T

V
, l2 =

S

U ¸– cos ◊–

¸– sin ◊– + h–

T

V
, s =

S

U ¸– cos ◊–

¸– sin ◊–

T

V
, (6.3)

and composed by the elements 0-1, 0-2, 0-3 treated as Euler-Bernoulli beams.
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Figure 6.5: (a) The kirigami honeycomb in the theoretical description, (b) the unit cell and
its geometric parameters
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Again, by applying the energetic approach described in Section 3.4, it emerges that
the macroscopic elastic moduli of the –-kirigami honeycomb take the form

E1,– = c– ⁄
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(6.4)

with E1,–, E2,– and ‹12,–, ‹21,– the Young’s moduli and Poisson’s ratios in the e1 and
e2 directions, G– the shear modulus.

The derived expressions reveal that the equivalent properties are closely related
to the geometric parameters of the considered configuration (subscript –) via the
terms —– := ⁄t–/⁄s– and ”– := h–/¸–, with ⁄t– := t–/h– and ⁄s– := s–/¸– denoting,
respectively, the thinness ratio of the vertical and inclined cell walls, c– := cos ◊–,
s– := sin ◊– and the polynomials fi,– = fi,–(c–, s–, ⁄t–,⁄s–), with ◊– the shape angle
(see Appendix F for a detailed discussion).

In Figure 6.6 it is interesting to see the vast range of e�ective constants that the
kirigami honeycomb structures can be designed with, just by changing the value of the
applied stretch, –.

Regarding the normalised Young’s moduli, Figure 6.6a illustrates that varying –

from 1 to 1.9 (the maximum value that the material can withstand before fracture)
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Table 6.1 Geometric parameters of the kirigami honeycombs corresponding to di�erent values
of stretch

– h– (mm) ¸– (mm) ⁄t– ⁄s– ◊–(¶)
1.1 5.17 3.32 0.29 0.48 84.4
1.2 5.13 3.38 0.29 0.47 78.8
1.3 5.08 3.43 0.30 0.47 73.3
1.4 5.04 3.49 0.30 0.46 67.7
1.5 5.00 3.54 0.30 0.45 62.2
1.6 4.96 3.59 0.30 0.45 56.7
1.7 4.92 3.65 0.30 0.44 51.1
1.8 4.88 3.70 0.31 0.43 45.5
1.9 4.84 3.76 0.31 0.43 40.1

results in an increase in E1–/Es and to a decrease in E2–/Es. Specifically, the honey-
combs corresponding to small values of stretch (– < 1.3) exhibit a strongly anisotropic
mechanical behavior and it emerges that E2– is approximately 20 times higher than E1–.
This result is determined by the particular geometry of the honeycombs, composed, as
it can be seen in Figure 6.4a, by hexagonal cells strongly elongated in the e2 direction.
Conversely, increasing the value of – leads to a decrease in the shape angle ◊–, providing
a more and more regular hexagonal honeycomb with E1– approaching E2– (Figures
6.6a and 6.6c).

Similar considerations apply in the case of the normalised shear modulus, G–/Es.
As illustrated in Figure 6.6b, varying – from 1 to 1.9 could be a good design method
for decreasing G–/Es of 150%.

6.4 Cuts pattern and e�ective properties
The scenario described in Figure 6.6 shows that a great number of kirigami honeycombs
with substantially di�erent mechanical properties can be obtained just by changing
the value of the applied stretch, –.

To go one step further in the analysis, in this section we aim at investigating how
the e�ective elastic constants of the kirigami honeycombs are a�ected not only by the
value of –, but also by the characteristics of the cuts (i.e., distance, dc, and length, lc).

Along the lines of the previous example, the discussion involves a kirigami-style
structure made of rubber with the alternating pattern of cuts illustrated in Figure 6.3
and such that

A1 = 340 mm, A2 = 100 mm. (6.5)
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Figure 6.6: The e�ective elastic constants of the kirigami honeycomb: (a) normalised Young’s
moduli, (b) normalised shear modulus and (c) corresponding elastic anisotropy ratio
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Table 6.2 The role of cuts pattern on the e�ective properties of the kirigami honeycomb:
examined configurations

dc (mm) lc (mm)
K1 7.5 15
K2 4.5 15
K3 6.5 20
K4 6.5 15

As summarised in Table 6.2, four di�erent configurations are considered: K1 and K2,
where the cuts have di�erent spacing but same length, K3 and K4, with cuts having
di�erent length but same spacing.

Figures 6.7 and 6.8 illustrate that the cuts pattern dictates the range of attainable
kirigami honeycombs since, as anticipated in Section 6.3.1, the elongation limit of the
sheet material is strongly a�ected by the position of the cuts.

In particular, in the case of cuts having same length, lc, but di�erent spacing, dc, it
emerges that small values of dc lead to a more stretchable material and, consequently,
to a wider range of kirigami honeycombs. Also, the honeycombs corresponding to closer
cuts (i.e., configuration K2) are characterised by a smaller value of the thinness ratio
(Table 6.3), providing smaller values of Young’s moduli and shear modulus. As expected,
independently of dc, the kirigami honeycombs obtained by applying small (– < 1.8)
or high (– > 2.7) values of stretch display a strongly anisotropic mechanical behavior
(Figure 6.8b), being their cells strongly elongated in the e2 direction, in the first case,
or approaching a brick-like arrangement, in the second (Table 6.3). Interestingly,
the analysis reveals that the values of – providing a more regular honeycomb, with
E1– = E2–, are di�erent in the two examined cases: – = 2.55 for the configuration K1,
– = 2.7 for the configuration K2.

A similar trend can be found by comparing the configurations K3 and K4, where
the cuts have same spacing but di�erent length. As it can be seen in Figure 6.8b,
notwithstanding the value of lc, when – is small the cellular structures exhibit large
anisotropy, with E2– much higher than E1– (Figure 6.7b). Then, an increase in –

leads to a decrease in the shape angle ◊– (Table 6.4), providing a set of honeycomb
structures with a more and more isotropic behavior. However, it should be mentioned
that longer cuts (i.e., configuration K3) result in a more stretchable sheet material,
which implies a wider range of attainable kirigami honeycombs.

In addition, Figures 6.7b and 6.8a show that the e�ective Young’s moduli and shear
modulus of the kirigami honeycombs are less a�ected by the values of lc rather than
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Figure 6.7: The role of cuts pattern on the normalised Young’s moduli of the kirigami
honeycomb in the case of (a) cuts with di�erent spacing but same length and (b) cuts with
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6.4 Cuts pattern and e�ective properties | 130

(a) α

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

G
α
/E

s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
K1

K2

K3

K4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b) α

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

E
1
α
/E

2
α

0

0.5

1

1.5

2

2.5

3

3.5
K1

K2

K3

K4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.5

1

1.5

2

2.5

3

3.5

Figure 6.8: Cuts pattern and e�ective properties of the kirigami honeycomb: (a) normalised
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Table 6.3 Geometric parameters of the kirigami honeycombs corresponding to di�erent values
of stretch in the case of cuts with same length but di�erent spacing

K1
– h– (mm) ¸– (mm) ⁄t– ⁄s– ◊–(¶)

1.2 7.92 5.22 0.48 0.35 82.1
1.4 7.80 5.39 0.47 0.35 74.3
1.6 7.67 5.56 0.45 0.36 66.1
1.8 7.55 5.73 0.44 0.37 58.2
2 7.43 5.90 0.43 0.37 50.4

2.2 7.29 6.07 0.42 0.38 42.3
2.4 7.17 6.24 0.41 0.38 34.5
2.6 7.05 6.41 0.40 0.39 26.4
2.8 6.92 6.58 0.39 0.40 18.5

K2
– h– (mm) ¸– (mm) ⁄t– ⁄s– ◊–(¶)

1.2 8.31 5.47 0.29 0.25 82.8
1.4 8.17 5.65 0.28 0.25 75.6
1.6 8.04 5.83 0.27 0.26 68.5
1.8 7.91 6 0.27 0.26 61.2
2 7.78 6.18 0.26 0.27 54.2

2.2 7.65 6.36 0.25 0.27 47.1
2.4 7.52 6.54 0.25 0.28 39.9
2.6 7.38 6.71 0.24 0.28 32.7
2.8 7.25 6.89 0.23 0.29 25.6
3 7.12 7.07 0.23 0.29 18.4

those of dc. As a matter of fact, the curves corresponding to the configurations K3 and
K4 are more close to each other, if compared to those corresponding to K1 and K2.

This knowledge, in conjunction with the previous findings, increases the potentials of
the kirigami technique to contribute significantly to the development of new structural
and functional materials. Ideally, this technique can be adopted to obtain a great
number of honeycombs having a wide range of desirable properties just by changing
the characteristics of the starting sheet material and tailoring the cuts pattern and
applied stretch.
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Table 6.4 Geometric parameters of the kirigami honeycombs corresponding to di�erent values
of stretch in the case of cuts with same spacing but di�erent length

K3
– h– (mm) ¸– (mm) ⁄t– ⁄s– ◊–(¶)

1.2 8.08 5.33 0.44 0.31 82.5
1.4 7.96 5.49 0.43 0.31 75.8
1.6 7.83 5.67 0.42 0.32 68.3
1.8 7.7 5.85 0.40 0.43 61.4
2 7.57 6.02 0.39 0.42 54.2

2.2 7.44 6.19 0.38 0.41 47.6
2.4 7.31 6.37 0.37 0.39 39.9
2.6 7.19 6.54 0.36 0.38 32.8
2.8 7.05 6.72 0.35 0.37 25.5
3 6.93 6.89 0.34 0.36 18.7

K4
– h– (mm) ¸– (mm) ⁄t– ⁄s– ◊–(¶)

1.2 7.77 5.11 0.44 0.31 82.5
1.4 7.64 5.28 0.43 0.32 74.1
1.6 7.52 5.45 0.41 0.32 66.4
1.8 7.39 5.61 0.4 0.33 58.2
2 7.27 5.78 0.39 0.33 50.2

2.2 7.15 5.95 0.38 0.34 42.3
2.4 7.03 6.12 0.37 0.34 34.4
2.6 6.91 6.28 0.36 0.35 26.7
2.8 6.79 6.45 0.35 0.36 18.5
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7.1 Conclusions
Modern engineering applications demand ever-increasing structural performances, with
materials that are stronger, tougher, lighter and multifunctional.

Since simple homogeneous materials are not able to fulfil these requirements,
researchers drove their attention towards the development of new structural materials,
filling the gaps and pushing the limits of the Ashby’s materials performance maps.
Often, biological systems served as a source of inspiration, as in the case of cellular
materials.

Commonly observed in nature, cellular materials o�er useful combinations of
structural properties and low weight, yielding the possibility of coexistence of what
used to be antagonistic physical properties within a single material. Due to their peculiar
characteristics, they are very promising for engineering applications in a variety of
industries including aerospace, automotive, marine and constructions. However, their
use is conditional upon the development of appropriate constitutive models for revealing
the complex relations between microstructure parameters and macroscopic behavior.
From this point of view, a great variety of analytical and numerical techniques have
been proposed and exhaustively discussed in recent years.

The majority of works concern cellular structures with empty cells but, in reality,
in many natural systems the cells are filled with fluids or other bulk materials to better
resist external stimuli.

This thesis, taking into account the doubtless advantages o�ered by the afore-
mentioned composite configurations and to provide a contribution in this limitedly
investigated research area, deals with the analysis of composite cellular materials bio-
logically inspired and describes the mathematical formulation and modelling technique
leading to a continuum model.

Initially, inspired by the biological parenchyma tissue, the attention is focused on a
regular hexagonal microstructure having the cells filled with an elastic medium. In the
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framework of linear elasticity and by modelling the microstructure as a sequence of
Euler-Bernoulli beams on Winkler foundation, an energetic approach provides closed-
form expressions for the macroscopic elastic constants and stress-strain relations. In
particular, the treatment of the problem is simplified by introducing the classical
shape functions of the Finite Element Method in order to represent the displacements
within each beam in terms of its end values of displacements and rotation. This allows
to write the elastic energy of the discrete system as a quadratic function of them.
Finally, assuming the Born rule and expressing the variables defined to represent the
nodal degrees of freedom as a function of the gradient of the two continuous fields
of displacements and rotation give the continuum model. The predicted results are
verified by means of numerical simulations and by comparison with the available data
in the literature. In both cases, it emerges a very good agreement. In addition, the
application of the theoretical model to estimate the e�ective sti�ness of the biological
parenchyma tissue reveals that the proposed modelling strategy could be useful to
gain some qualitative/quantitative information on the mechanical properties of natural
systems.

The assumption of the Born rule, in conjunction with an energetic approach, is
also employed to investigate the mechanics of mutable cellular materials composed by
mutable elongated hexagonal cells filled with an elastic medium. The problem is inspired
by the peculiar behavior of the hygroscopic keel tissue of the ice plant Delosperma
nakurense, where the adsorption/desorption of water, together with the swelling of
the cellulosic inner layer (CIL) inside the lumen of the cells, leads to a reversible
change in the cells’ shape and e�ective sti�ness of the whole tissue. Similarly to the
previous case, the system is conceived as an interconnected network of Euler-Bernoulli
beams on Winkler foundation and the homogenized model follows by introducing
the a�ne interpolants of nodal displacements and rotation. Even though a detailed
analysis of the keel tissue is well beyond our scope, the derived quantities, constitutive
equations and elastic moduli in the macroscopic description, are in accordance with
those obtained by the other authors, where the biological tissue is represented as a
pressurised honeycomb. In particular, an energetic equivalence gives an explicit relation
between the inner pressure and the Winkler foundation constant. Optimal values of
pressure and cell walls’ inclination also emerge.

Then, inspired by the complex organisation of many natural systems, the thesis
investigates the e�ects of introducing structural hierarchy into a two-dimensional com-
posite cellular material. Interestingly, in contrast to the traditional cellular materials
with empty cells, it emerges an improvement in the specific sti�ness, provided that the
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filler is sti�er than a critical value. Specifically, two cases are considered: the self-similar
configuration and the case in which di�erent levels have di�erent cell topologies. In
the first, the analytical expressions for the in-plane elastic constants derived reveal
the system isotropy as for the not-filled hierarchical cellular structures, while, in the
second, indicate a synergy of hierarchy, material heterogeneity and cell topology in
obtaining improved sti�ness.

Finally, due to the steady rise of interest in applying the principles of reversible
plant movements to create synthetic mutable materials with unusual functionalities,
the last part of the thesis presents a novel strategy to obtain a honeycomb with mutable
cells. The technique is based on kirigami, a variation of the Japanese art of origami,
and consists in cutting and stretching a flat sheet of starting material, leading to a
sequence of honeycombs with di�erent geometric and mechanical properties. One of
the key issues of the kirigami approach, that is obtaining a relation between the pattern
of cuts and the overall mechanical response, is explored for the first time. Notably, the
study shows that a great number of honeycombs can be obtained just by changing the
position of the cuts and the applied stretch.

As a conclusion, with respect to the published works, the novelties of the present
thesis can be summarised as follows.

Firstly, the beam on Winkler foundation has never been applied to investigate the
mechanics of composite cellular materials. Despite the simplifications introduced, the
obtained results are found to be in very good agreement with the published data.

Secondly, the explicit formulas derived o�er a full understanding of the interplay
between the macroscopic properties and the underlying microstructure of both engi-
neering and biological composite cellular materials, suggesting an alternative route
to the time-consuming experimental investigations for predicting their macroscopic
response.

Thirdly, the analysis provides a contribution into the role of structural hierarchy
on the in-plane elastic properties of composite cellular materials, as well as some
possible ways to improve low-weight cellular structures by mixing di�erent materials
and varying the cell topology.

Finally, it presents the potentials of the kirigami technique in creating a vast range
of honeycombs with tailored features and a relation between the arrangement of the
cuts and the mechanical properties is derived.
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7.2 Future perspectives
Based on the present thesis, a number of directions for further research can be formu-
lated. The main issues can be summarised as follows.

The proposed work deals with the in-plane analysis of composite cellular materials
to derive explicit formulas for their e�ective elastic constants and stress-strain relations.
Thus, a first possible extension consists in exploring also the out-of-plane behavior
and taking into account other possible deformation and failure mechanism, such as
buckling, plasticity or debonding. The environmental e�ects, e.g. temperature, on the
mechanical properties could also be included to provide a more comprehensive model
and to o�er a further advance in the field of composite cellular structures.

As stated, the analytical predictions are verified by means of numerical simulations
and by comparison with the results available in the literature. Mechanical experiments
could be conducted to further testify the validity of the suggested approach.

Mechanical experiments, together with additional numerical simulations, could also
be done in the case of the kirigami honeycomb to investigate, for example, di�erent
types of sheet material, larger samples or more complicated cuts patterns (e.g. inclined
or hierarchical cuts).

Negative Poisson’s ratio materials are undoubtedly fascinating, mainly because
of their counterintuitive mechanical behavior. A possible way for further research
would be to derive a continuum model for composite cellular materials having auxetic
microstructures. Besides, the association of auxetics with hierarchy would probably
give rise to some interesting new composites.



A | Continuum modelling of the compos-
ite honeycomb with equilateral trian-
gular microstructure

A.1 The discrete system
As in Chapter 3, a sequence of Euler-Bernoulli beams on Winkler foundation represents
the triangular composite microstructure in the discrete description.

The unit cell of the periodic configuration (Figure A.1) is composed by the the six
beams 0-1, 0-2, 0-3, 0-4, 0-5, 0-6 connecting the external nodes 1, 2, 3, 4, 5, 6 to the
central one, 0. In the global reference system (e1, e2), the beams are described by the
vectors (Figure A.1c)
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(A.1)

respectively.
The elastic energy of the unit cell, W , is obtained by summing the energetic

contribution of the beams it consists, given by
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due to the axial and bending deformations of the beam,
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related to the elongation of the springs a (Figure A.2a),
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the first, and of the springs b (Figure A.2b),
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the second.
Specifically, for the beams 0-1, 0-2, 0-3, 0-4, 0-5, 0-6, the terms in Equations (A.6)

and (A.7) are expressed by (Figure A.3),
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Also, in Equation (A.2), the factor 1/2 takes into account that each member is
shared between two adjacent cells and contributes only half of its strain energy to the
representative cell.

The forces and couples acting at the extreme nodes of the beams,
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are obtained from
f
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with f
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b , typical of the Euler-Bernoulli beam, and f
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e,b
wf , related to the elastic springs,

provided by Equations (3.50)-(3.52).
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Figure A.3: The unit cell with focus on springs in the equilateral triangular microstructure:
(a) beam 0-1, (b) beam 0-2, (c) beam 0-3, (d) beam 0-4, (e) beam 0-5, (f) beam 0-6
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From Figure A.1b it is not di�cult to see that the first node of each beam coincides
with the central point 0. Consequently, as already discussed in Section 3.4.2,
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where kb,ij and kwf,ij are the matrices defined in Equations (3.55).
Furthermore, by expressing Equation (A.16) in the global reference system, imposing

the balance of forces and moments in 0 and condensing the corresponding degrees of
freedom, it emerges
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the elongation of the springs in the global reference (cf. Section 3.4.2).
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A.2 The equivalent continuum

A.2.1 Elastic energy
Similarly to Section 3.5, the continuum model is obtained by writing the nodal degrees of
freedom in Equations (A.18)-(A.20) as a function of the equivalent fields of displacement,
ˆ

U(·), and rotation, Ï̂(·):
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where ˆ

U0 and Ï̂0 are the values of ˆ

U(·) and Ï̂(·) at the central point of the cell in the
limit problem ¸ æ 0.

Again, substituting Equations (A.21) into Equation (A.17) and dividing the resulting
expression by the area of the unit cell, A0 =
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As it can be seen, in the limit ¸ æ 0 the contribution of the microrotation gradients,
Ï̂,–, is missing (cf. Section 3.5.1), leading to a not-polar equivalent continuum. It
should be noted that in Equation (A.22) the same notation of Section 3.5 has been
adopted.

A.2.2 Constitutive equations
Referring to Section 3.5.2 for a more detailed description, the explicit formulas for the
constitutive equations are derived by
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with ‡

sym
“” and ‡

skw
“” , in turn, the symmetric and skew-symmetric parts of the Cauchy

stress tensor.
In particular, it emerges
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A.2.3 Elastic constants
Simple mathematical manipulations provide the elastic constants of the equivalent
continuum (cf. Section 3.5.3).

The Young’s modulus and corresponding Poisson’s ratio in the e1 and e2 direction
are given, respectively, by
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and
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with ⁄ := h/¸ denoting the thinness ratio.
Finally, the e�ective shear modulus takes the form
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A.3 Numerical implementation and validation of the theoreti-
cal results

A procedure similar to that proposed in Section 3.6.1 can be employed to verify the
analytical results.

That is to say, by considering a 75x50 mm domain discretized in a number of
gradually smaller equilateral triangular cells, modelled as a sequence of Euler-Bernoulli
beams having Es = 79 GPa, ‹s = 0.35 and h = 0.1¸, supported by elastic springs of
sti�ness Kw = 10≠2

Es. The three examined load conditions, uniaxial compression in
the e1 direction, uniaxial compression in the e2 direction and pure shear, are simulated
by applying forces of the same intensity at the unconstrained boundary nodes of the
domain.

The solution of the corresponding boundary value problems and the calculation of
the displacements and derived quantities along the beams provide the homogenized
sti�ness components, given by the ratio between the average volume strain,
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and the applied stress, ‡ij.
In particular, denoting with Sij the components of the homogenized compliance

tensor (cf. Section 3.6.1), in the case of horizontal and vertical compression it emerges,
on order,
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while, for pure shear,
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Tables A.1 and A.2 summarise the results of the analysis: Table A.1 in terms of
the Sij constants, Table A.2 in terms of the elastic moduli.

Initially, the convergence study performed reveals that the numerical solutions fast
converge by refining the mesh. As it can be seen, a 750x500 cells discretization is
su�cient to get converged results.
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Table A.1 Equilateral triangular microstructure: comparison between the analytical and
numerical approach, Sij constants (GPa≠1)

No. cells ¸ (mm) S11 S22 S33 S12 S21 S13, S23, S31, S32

15x10 5 0.094 0.094 0.238 -0.03 -0.03 0
75x50 1 0.095 0.094 0.239 -0.03 -0.03 0

100x100 0.5 0.095 0.095 0.240 -0.03 -0.03 0
300x200 0.25 0.095 0.095 0.241 -0.03 -0.03 0
375x250 0.2 0.095 0.095 0.243 -0.03 -0.03 0
600x400 0.125 0.095 0.095 0.251 -0.03 -0.03 0
750x500 0.1 0.095 0.095 0.251 -0.03 -0.03 0

Analytical results 0.096 0.096 0.254 -0.03 -0.03 0

Table A.2 Equilateral triangular microstructure: comparison between the analytical and
numerical approach, elastic moduli

No. cells ¸ (mm) E1 (GPa) E2 (GPa) G (GPa) ‹12 ‹21

15x10 5 10.59 10.61 4.19 0.38 0.37
75x50 1 10.57 10.59 4.17 0.36 0.35

100x100 0.5 10.56 10.58 4.16 0.35 0.35
300x200 0.25 10.54 10.56 4.15 0.33 0.34
375x250 0.2 10.53 10.55 4.11 0.33 0.33
600x400 0.125 10.53 10.54 3.99 0.33 0.33
750x500 0.1 10.53 10.54 3.99 0.33 0.33

Analytical results 10.46 10.46 3.94 0.33 0.33

In addition, Tables A.1 and A.2 suggest a good agreement between the theoretical
and numerical predictions, with an average di�erence of 1.5% between the two estimates.
Similarly to the case of the hexagonal honeycomb (cf. Section 3.6.1), the di�erence could
be related to the Saint-Venant border e�ect that, contrary to the numerical simulations,
it is not captured by the proposed theory. This aspect, however, considering the
outcome of the present study, slightly a�ect the prediction ability of the theoretical
model.
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Finally, for the sake of completeness, it should be said that the analytical values in
Tables A.1 and A.2 are calculated by substituting

C11 = C22 = 3
Ô

3 (C¸¸
2 + 4D¸)

4 ¸

3 + 767 Kw

2240
Ô

3
,

C12 = C21 =
Ô

3 (C¸¸
2 ≠ 12D¸)

4 ¸

3 + 143 Kw

2240
Ô

3
,

C33 =
Ô

3 (C¸¸
2 + 12D¸)

2 ¸

3 + 39 Kw

140
Ô

3
,

C13 = C23 = C31 = C32 = 0, (A.33)

obtained in Section A.2.2, into the Equations (3.98).



B | A continuum model for the compos-
ite honeycomb with square microstruc-
ture

A continuum model for the composite honeycomb with square microstructure can
be obtained by adopting the same procedure described in Chapter 3 for the regular
hexagonal texture. Thus, for the sake of conciseness and clarity, in the following
sections only the main results will be reported and explanations will be provided only
where substantial modifications are required.

B.1 The composite square microstructure: geometric descrip-
tion and energetics of the discrete system

B.1.1 Geometry
Figure B.1 schematically illustrates the composite square microstructure, Figure B.1a,
and its unit cell, Figure B.1b. The latter is composed by the line elements 0-1, 0-2, 0-3,
0-4, treated as Euler-Bernoulli beams elastically supported by a Winkler foundation,
that link the central node 0 to the external joints 1, 2, 3, 4. In the global coordinate
system (e1, e2), the elastic beams are represented by the vectors (Figure B.1c)

b1 =
Ë

¸ 0
ÈT

, b2 =
Ë

0 ¸

ÈT
, b3 = ≠b1, b4 = ≠b2, (B.1)

respectively. Finally, A0 = ¸

2 gives the area of the unit cell (Figure B.1b).
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Figure B.1: The composite honeycomb with square microstructure: (a) geometric description,
(b) unit cell and (c) bi vectors
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B.1.2 Energetics
As it can be seen in Figure B.2, in the examined lattice the beams are connected to the
corresponding one by two sets of springs: the springs a, in the ≠÷2 direction (Figure
B.2a), and the springs b, in the ÷2 direction (Figure B.2b).

(a)

2

0 13

4

67

8 5

SQa

e2

e1

(b)

2

0 13

4

67

8 5

SQb

e2

e1

Figure B.2: The square microstructure: (a) springs a, (b) springs b

Also, being the springs shared between two opposite beams,

w

e = w

e
b + 1

2 w

e,a
wf + 1

2 w

e,b
wf (B.2)

gives the elastic energy of each structural component (cf. Equation (3.33)). With the
same notation of Section 3.4, in Equation (B.2) w

e
b stands for the elastic energy of the
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Table B.1 The elongation of the springs in the square microstructure: indices i, j, k, l, m

i j k l m

beam 0-1 1 4 5 2 6
beam 0-2 2 1 6 3 7
beam 0-3 3 2 7 4 8
beam 0-4 4 3 8 1 5

classical Euler-Bernoulli beam, while w

e,a
wf and w

e,b
wf are a function of the elongation of

the springs, expressed by (Figure B.3)

� d

i,a =
S

U � d

a
0

� d

a
i

T

V =

S

WWWWWU

u0 ≠ uj

Ï0 ≠ Ïj

ui ≠ uk

Ïi ≠ Ïk

T

XXXXXV
, � d

i,b =
S

U � d

b
0

� d

b
i

T

V =

S

WWWWWU

u0 ≠ ul

Ï0 ≠ Ïl

ui ≠ um

Ïi ≠ Ïm

T

XXXXXV
, (B.3)

where the indices i, j, k, l, m are provided in Table B.1.
In terms of the elastic energy of the unit cell, W , calculated from the contribution

of the constituent beams, it should be noted that only half of each member is within
the elementary cell. Thus, in evaluating W , only w

e
/2 will be considered. In addition,

similarly to the case of the hexagonal lattice, imposing the equilibrium of forces and
moments in 0 and performing a condensation of the corresponding degrees of freedom,
lead to

W = W

1
D̃, �D̃

a
, �D̃

b
2

(B.4)

with

D̃ :=

S

WWWU

D1
...

D4

T

XXXV =
Ë

U1 V1 Ï1 ... U4 V4 Ï4
ÈT

(B.5)

and

�D̃

a :=

S

WWWU

�D

a
1

...
�D

a
4

T

XXXV =
Ë

�U

a
1 �V

a
1 �Ï

a
1 ... �U

a
4 �V

a
4 �Ï

a
4

ÈT
, (B.6)

�D̃

b :=

S

WWWU

�D

b
1

...
�D

b
4

T

XXXV =
Ë

�U

b
1 �V

b
1 �Ï

b
1 ... �U

b
4 �V

b
4 �Ï

b
4

ÈT
, (B.7)
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in turn, the vectors of nodal displacements and elongation of the springs expressed in
the global reference (e1, e2).
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Figure B.3: The unit cell with focus on springs in the square microstructure: (a) beam 0-1,
(b) beam 0-2, (c) beam 0-3, (d) beam 0-4

B.2 The continuum model

B.2.1 Elastic energy
As in Section 3.5, the continuum model follows from the hypothesis that in the limit
¸ æ 0 there exist the two equivalent, continuous fields of displacements, ˆ

U(·), and
microrotation, Ï̂(·). In particular, writing the discrete variables in Equation (B.4)
in terms of the gradients of ˆ

U(·) and Ï̂(·) (cf. Equation (3.71)) and dividing the
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obtained expression by A0, give the strain energy density of the equivalent (not-polar)
continuum:

w =
C¸¸

2 (Á2
11 + Á

2
22) + 24D¸

1
Á

2
12 + (Ê ≠ Ï̂)22

+ Kw¸

3 (Á2
11 + Á

2
22)

2 ¸

3 . (B.8)

Again,
C¸ := Es h

1 ≠ ‹

2
s

and D¸ := Es h

3

12(1 ≠ ‹

2
s ) (B.9)

denote, respectively, the axial and bending sti�ness of the beams, having thickness h,
length l, Young’s modulus Es and Poisson’s ratio ‹s.

B.2.2 Constitutive equations
The explicit formulas for the macroscopic constitutive equations are a consequence of
Equation (B.8).

It emerges that the resulting stress tensor is not-symmetric and its components,

‡“” := ˆw

ˆÛ“,”

= ˆw

ˆÁ“”
+ 1

2
ˆw

ˆÊ

e“” © ‡

sym
“” + ‡

skw
“” , “, ” = 1, 2, (B.10)

are
‡11 =

3
C¸

¸

+ Kw

4
Á11,

‡22 =
3

C¸

¸

+ Kw

4
Á22,

‡

sym
12 = ‡

sym
21 =

A
3 (C¸¸

2 + 12D¸)
2
Ô

3¸

3 + 39 Kw

140
Ô

3

B

Á12,

‡

skw
12 = ≠‡

skw
21 = 12D¸

¸

3 Á12,

‡12 = ‡

sym
12 + ‡

skw
12 , ‡21 = ‡

sym
21 + ‡

skw
21 .

(B.11)
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B.2.3 Elastic constants
If applied to the square microstructure, the approach presented in Section 3.5.3 provides

E1 = E2 © E = Es ⁄

(1 ≠ ‹

2
s ) + Kw,

‹12 = ‹21 © ‹ = 0,

G = Es ⁄

3

2 (1 ≠ ‹

2
s ) ,

(B.12)

where E1, ‹12 and E2, ‹21 are, respectively, the e�ective Young’s modulus and Poisson’s
ratio in the e1 and e2 direction, G the e�ective shear modulus and ⁄ := h/¸ the
thinness ratio. As expected, the analysis reveals that

G ”= E

2 (1 + ‹) , (B.13)

being the equivalent continuum not-isotropic.
In particular, the classic transformations equations for stress and strain, in conjunc-

tion with simple mathematical manipulations, lead to the macroscopic elastic constants
associated with di�erent directions:

E◊ = ⁄

3
Es (Kw (1 ≠ ‹

2
s ) + ⁄Es)

(1 ≠ ‹

2
s ) (⁄3

Es (c4 + s

4) + 2c

2
s

2 (Kw (1 ≠ ‹

2
s ) + ⁄Es))

,

‹◊ = 2c

2
s

2 (Kw (1 ≠ ‹

2
s ) + ⁄Es ≠ ⁄

3
Es)

⁄

3
Es (c4 + s

4) + 2c

2
s

2 (Kw (1 ≠ ‹

2
s ) + ⁄Es)

,

G◊ = ⁄

3
Es (Kw (1 ≠ ‹

2
s ) + ⁄Es)

4 (1 ≠ ‹

2
s )

1
(c2 ≠ s

2)2
Kw (1 ≠ ‹

2
s ) + ⁄ (c4 + 2c

2 (2⁄

2 ≠ 1) s

2 + s

4) Es

2
,

(B.14)

with E◊, ‹◊, G◊, in turn, the Young’s modulus, Poisson’s ratio and shear modulus
associated with the axis rotated counterclockwise through an angle of ◊ from (e1, e2).
In addition, to simplify the notation, c and s stand for cos ◊, the first, and sin ◊, the
second.

Finally, in the case of Kw = 0 (i.e., not-filled honeycomb), it emerges that Equations
(B.12) exactly match those available in the literature, proposed by Gibson and Ashby
(cf. Equation (2.6)) and by Gonnella and Ruzzene (Gonnella & Ruzzene, 2008), listed
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as
E1,GR = E2,GR © EGR = Es ⁄,

‹12,GR = ‹21,GR © ‹GR = 0,

GGR = Es ⁄

3

2 .

(B.15)

B.3 Validation of the theory: comparison between the theoret-
ical predictions and the numerical results

Tables B.2 and B.3 present the results of the numerical simulations, with reference
to the elastic moduli (Table B.3) and Sij constants, components of the homogenized
compliance tensor (Table B.2). As explained in Section 3.6.1, the simulations are
conducted on a 50x50 mm domain subjected to di�erent types of load conditions:
uniaxial compression in the e1 direction, uniaxial compression in the e2 direction, pure
shear. In terms of geometric and mechanical properties of the cell walls, modelled as
Euler-Bernoulli beams on Winkler foundation, it is assumed h = 0.1¸, Es = 79 GPa,
‹s = 0.35 and Kw = 10≠2

Es.
Again, the mesh density (i.e., the number of square cells discretizing the domain)

is increased until the results converge satisfactory. In particular, in the examined case,
convergence is achieved at 500x500 cells discretization.

Finally, it should be noted that the numerical solutions are obtained by applying
the computational homogenization scheme described in Section 3.6.1, where both the
elastic moduli and Sij constants are given by the ratio between the average volume
strain, Á

(·)
ij , and the applied stress, ‡ij (cf. Equations (3.111), (3.113) and (3.115)).

Generally, it can be said that the numerical results are in very good agreement
with the theoretical predictions, derived by substituting

C11 = C22 = C¸

¸

+ Kw,

C33 = 12D¸

¸

3 ,

C12 = C21 = C13 = C23 = C31 = C32 = 0,

(B.16)
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Table B.2 Square microstructure: comparison between the analytical and numerical approach,
Sij constants (GPa≠1)

No. cells ¸ (mm) S11 S22 S33 S12, S21, S13, S23, S31, S32

10x10 5 0.1094 0.1093 19.61 0
50x50 1 0.1095 0.1096 20.83 0

100x100 0.5 0.1097 0.1098 21.74 0
200x200 0.25 0.1098 0.110 22.22 0
250x250 0.2 0.110 0.110 22.22 0
400x400 0.125 0.110 0.110 22.22 0
500x500 0.1 0.110 0.110 22.22 0

Analytical results 0.111 0.111 22.22 0

Table B.3 Square microstructure: comparison between the analytical and numerical approach,
elastic moduli

No. cells ¸ (mm) E1 (GPa) E2 (GPa) G (GPa) ‹12, ‹21

10x10 5 9.14 9.15 4.19 0
50x50 1 9.13 9.12 4.17 0

100x100 0.5 9.11 9.10 4.16 0
200x200 0.25 9.10 9.09 4.15 0
250x250 0.2 9.08 9.08 4.11 0
400x400 0.125 9.08 9.07 3.99 0
500x500 0.1 9.08 9.07 3.99 0

Analytical results 9.00 9.00 3.94 0
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calculated in Section B.2.2, into Equations (3.98). Specifically, the two estimates di�er
of averagely 1%, revealing the validity of the proposed theory in investigating the
mechanics of composite materials with square microstructure.



C | From the local to the global reference
system

C.1 Degrees of freedom
Let us focus on the e-th Euler-Bernoulli beam on Winkler foundation element in Figure
C.1 and let us denote with

d

e :=
S

U di

dj

T

V =
Ë

ui vi Ïi uj vj Ïj

ÈT
(C.1)

and
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, (C.2)
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, (C.3)

respectively, the vectors of nodal displacements and elongation of the springs (cf.
Section 3.4.1) expressed in the local reference system (÷e

1, ÷

e
2).

Similarly, let
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S

U DI

DJ

T

V =
Ë

UI VI ÏI UJ VJ ÏJ
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(C.4)
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a
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, (C.5)
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be the corresponding vectors referred to the global coordinate system (e1, e2).
The relation between the local and the global quantities can be easily obtained by

introducing the transformation matrix

Q

e :=

S

WWWWWWWWWWWU

÷

e

1 · e1 ÷

e

1 · e2 0 0 0 0
÷

e

2 · e1 ÷

e

2 · e2 0 0 0 0
0 0 1 0 0 0
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e

1 · e1 ÷

e

1 · e2 0
0 0 0 ÷

e

2 · e1 ÷

e

2 · e2 0
0 0 0 0 0 1

T

XXXXXXXXXXXV

(C.7)

that rotates the axis (e1, e2) into (÷e
1, ÷

e
2):

D

e = (Qe)T
d

e
, � D

e,a = (Qe)T
� d

e,a
, � D

e,b = (Qe)T
� d

e,b
. (C.8)

C.2 Sti�ness matrices
Addressing the interested reader to Huebner et al. (2001) for a comprehensive treatment,
in terms of the sti�ness matrices, the above relations take the form

K

e
b = (Qe)T

k

e
b Q

e
, K

e
wf = (Qe)T

k

e
wf Q

e
, (C.9)

where k

e
b, k

e
wf and K

e
b, K

e
wf are, in turn, the local and global sti�ness matrices of the

classical Euler-Bernoulli beam and Winkler foundation.

C.3 Forces and couples
Finally, the global vector of forces and couples is given by (cf. Section 3.4.1)

F

e = K

e
b D

e + 1
2 K

e
wf � D

e,a + 1
2 K

e
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e,b
, (C.10)

with

F
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Ë
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. (C.11)
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Figure C.1: From the local to the global reference system: (a) degrees of freedom, (b) forces
and couples



D | Application of the theory to the bi-
ological pressurised tissues: relation
between the Winkler foundation con-
stant and the cells’ inner pressure

As mentioned in Section 3.8, the application of our theory to the pressurised tissues in
biology, i.e., the parenchyma tissue and the hygroscopic keel tissue of the ice plant,
requires a suitable relation between the Winkler foundation constant of our model, Kw,
and the biological cells’ inner pressure, p.

Such relation can be obtained by considering the energetic equivalence in Equation
(3.124), provided here for ease of reading:

Wc, W inkler © Wc, fluid, (D.1)

with
Wc, W inkler = Ww, beams + Wf, W inkler (D.2)

and
Wc, fluid = Ww, walls + Wf, fluid, (D.3)

respectively, the elastic energy of the unit cell in the case of Winkler foundation model
(Figure D.1a) and fluid-filled configuration (Figure D.1b).

By assuming that the elastic energy of the cell walls is the same in the two considered
configurations,

Ww, beams © Ww, walls, (D.4)

Equation (D.1) reduces to
Wf, W inkler © Wf, fluid. (D.5)
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The first term,
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is a function of the elongation of the springs in the ni direction, given by

�Ui © � di = (nT
i Efni)di, i = 1, 2, 3, (D.7)

with
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the infinitesimal strain vector,
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V
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U 1
0

T

V
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and (Figure D.1c)

d1 = d3 = ¸

Ô
2 + 2 sin ◊, d2 = 2¸ cos ◊. (D.10)

In addition,
Wf, fluid = 1

2 p

A ≠ A0
A0

A0 = 1
2 p (A ≠ A0) (D.11)

is related to the variation in the area of the cell, expressed by

A ≠ A0 = Îl

ú
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ú
2Î ≠ Îl1 ◊ l2Î, (D.12)

being

l1 =
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V (D.13)

and

l

ú
1 := l1 + (U5 ≠ U3) = l1 + Ef l1, l

ú
2 := l2 + (U1 ≠ U3) = l2 + Ef l2, (D.14)

in turn, the lattice vectors in the undeformed and deformed configuration, Ui the
displacements of the i-th node (Figure D.1c). In particular, simple mathematical
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manipulations provide

Îl

ú
1 ◊ l

ú
2Î = Î (l1 + (U5 ≠ U3)) ◊ (l2 + (U1 ≠ U3)) Î
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By taking into account that
l1 ◊ l2

Îl1 ◊ l2Î
= e3 (D.16)

and considering the relations in Equation (D.14), it emerges
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Îl1 ◊ l2Î

· Ef l2

B

.

(D.17)
Substituting Equation (D.17) into Equation (D.12) leads to

A ≠ A0 = l2 ◊ e3 · Ef l1 + e3 ◊ l1 · Ef l2 (D.18)

and
Wf, fluid = 1

2p (A ≠ A0) = 1
2p (l2 ◊ e3 · Ef l1 + e3 ◊ l1 · Ef l2) . (D.19)

The equivalence in (D.5), together with standard calculations, gives

Kw(p) = p

cos ◊ (1 + sin ◊) (Á11 + Á22)
2 (Á11 (1 + sin3

◊) + Á22 (1 + sin ◊) cos2
◊) (D.20)

that, when the deformation state is described by

Ef :=
S

U 1 0
0 1

T

V
, (D.21)
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provides
Kw(p) = p

cos ◊ (1 + sin ◊)
(1 + sin3

◊) + (1 + sin ◊) cos2
◊

. (D.22)

Regarding the angle ◊, inclination of the cell walls (Figure D.1), two cases are
considered. In the first, dealing with the parenchyma tissue, ◊ = 30¶ (cf. Section 3.8)
while in the second, related to the hygroscopic keel tissue, the values of ◊ = ◊(p) are
derived from Guiducci et al. (2014) (cf. Section 5.4).
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E | A continuum model for mutable cellu-
lar materials: elastic energy and poly-
nomial expressions f

i

E.1 Elastic energy
By adopting the same notation of Section 5.3, the analysis reveals that the limit
continuum has the following elastic energy density:

w = Á

2
11 C¸c

2 (24c

4
D¸ + 12D¸s

2
f14 + c

2 (C¸¸
2 + 48D¸s

2)) + Á

2
22 C¸f
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0 (12c
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2
s
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2¸f0 (24c
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2
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+ 3D¸Á
2
12 (4C¸c

6
¸

2 + 12D¸f
2
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2
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3
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+ Á11Á22 C¸c (C¸¸
2 ≠ 12D¸) s

24c

2
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2
f14
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c¸

3 (3 + 4f15)

+ Kw (c (Á2
11f1 ≠ Á11Á22f2) + Á

2
22f4/c + Á

2
12f5)

208f0f3
.

(E.1)

Again, to simplify the notation, c := cos ◊, s := sin ◊ and fi = fi(cos ◊, sin ◊) are the
polynomials given in the following section.
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E.2 The polynomials f

i

f0 = 1 + s,

f1 = 11518 + s (13520 + s (23761 + 24 (540 + 617s) s)) ,

f2 = s ((8s (1851s + 8) ≠ 1901) s ≠ 9412) + 1352,

f3 = 347 + 484s + 452s

2
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f4 = ((s (8s (1851s ≠ 1604) + 9721) + 9464) s + 20280) c

2
,
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2
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3
0 f4,
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f14 = 1 + 2s

2
,

f15 = sf0,

f16 = 1 + 2sf0.

(E.2)
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In the particular case of regular hexagonal microstructure, i.e., ◊ = 30¶, the above
expressions are:

f0 = 3/2, f1 = 107055/4, f2 = ≠11583/4,

f3 = 702, f4 = 321165/16, f5 = 35802,

f6 = 77571/2, f7 = 53703/2, f8 = 249561/2,

f9 = 963495/32, f10 = 9477/4, f11 = 1053/2,

f12 = 117/16, f13 = 57/4, f14 = 3/2,

f15 = 3/4, f16 = 5/2.

(E.3)

Accordingly, the elastic energy density in Equation (E.1) and the constitutive equations
presented in Section 5.3.2 take the form:

w = (Á2
11 + Á
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(E.4)

and
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F | The kirigami honeycomb: elastic en-
ergy and constitutive equations of the
limit continuum

As stated in Section 6.3, a sequence of kirigami honeycombs can be obtained by cutting
and stretching a sheet of starting material. In particular, let us consider the –-kirigami
honeycomb, corresponding to the application of the generic stretch –.

As anticipated, its continuum description follows from the analysis of the unit cell
of the periodic array, illustrated in Figure F.1 for ease of reading, together with the
energetic approach presented in Section 3.4. Specifically, the equivalent continuum is
characterised by the following elastic energy and constitutive equations.
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kir_th2
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1

0

t�
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��

h�

��

Figure F.1: Continuum modelling of the –-kirigami honeycomb: the unit cell
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F.1 Elastic energy
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(F.1)

where ⁄t– := t–/h– and ⁄s– := s–/¸– are, in turn, the thinness ratio of the vertical
and inclined cell walls, —– := ⁄t–/⁄s– and ”– := h–/¸–. Also, to simplify the notation,
c– := cos ◊–, s– := sin ◊– and fi,– = fi,–(c–, s–, ⁄t–,⁄s–) are the polynomials listed in
Section F.3. Finally, ◊– states for the shape angle (Figure F.1).

F.2 Constitutive equations
The stress-strain relations, derived from (cf. Section 3.5.2)

‡“” := ˆw
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F.3 The polynomials f
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F.4 The particular case ◊

–

= 30¶, —

–

= ”

–

= 1
In the particular case of regular hexagonal microstructure, with —– = ”– = 1 and
◊– = 30¶, the expressions in Equation (F.5) are given by

f1– = 3, f2– = 3/2, f3– = 18,

f4– = 23/8, f5– = 18, f6– = 27/8,

f7– = 27/8, f8– = 18 ≠ 3⁄

2
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2
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(F.6)

with ⁄s– = ⁄t– © ⁄–.

Consequently, the elastic energy density in Equation (F.1) and the constitutive relations
in Equations (F.3) and (F.4) are now expressed by:
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Finally, the elastic moduli listed in Equations (6.4) take the form

E1,– = E2,– © E– = 4⁄
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relations that coincide with the published results (cf. Section 3.6.2, Table 3.6).
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