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Abstract

A person’s friends, neighbours and other social relationships can

have a large impact on their economic outcomes. We examine three

important ways that networks can affect people’s lives: when networks

describe who they communicate with, who they can trust, and who

benefits from their public good provision. We analyse information

transmission in networks in a new, intuitive way which removes the

problematic redundancy of double counting the signals that travel

through more than one walk between nodes. Two-connectedness and

cycles of length four play an important role in whether players are

‘visible’, which means that other players can communicate about

them.

Next, using this approach to network communication, we investigate

cooperation and punishment in a society where information flows

about cheating are determined by an arbitrary fixed network. We

identify which players can trust and cooperate with each other in a

repeated game where members of a community are randomly matched

in pairs. Our model shows how two aspects of trust depend on players’

network position: they are ‘trusting’ if they are more likely to receive

information about other players’ types; and they are ‘trusted’ if others
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can communicate about them, giving them strong incentives not to

deviate.

Lastly, in networks with private provision of public goods, we show

that a ‘neutral’ policy corresponds to a switch in the direction of

the impact of income redistribution. Where redistribution is non-

neutral, we can identify the welfare effects of transfers, including

whether or not Pareto-improving transfers are possible. If not, we

find the implicit welfare weights of the original equilibrium. In this

setting, we also identify a transfer paradox, where, counter-intuitively,

a transfer of wealth between economic agents can result in the giver

being better off at the new Nash equilibrium, while the recipient is

worse off.
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Introduction

In our first chapter, we identify a new approach to finding the probabilities of

information transmission between nodes in a fixed network, which removes the

problem of double counting of signals. Our approach, using De Morgan’s laws,

is a closed-form function that is simple to calculate and can use any value for

the primitive probability that a signal passes between neighbouring nodes in the

network. We introduce the concept of ‘obstruction’ by allowing nodes to decline

to pass on the signals that may travel through the network links. If a node cannot

prevent any other nodes from communicating by obstructing signals, we call that

node ‘visible’. A sufficient condition for a node to be visible is that it is a member

of a cycle of length four. We also find new centrality measures that depend on

the word-of-mouth probabilities and obstruction.

In our second chapter, we investigate cooperation in networks. Community

enforcement is an important device for sustaining efficiency in some repeated

games of cooperation. We investigate cooperation when information about

players’ reputations spreads to their future partners through links in the social

network. We find that information supports cooperation by increasing trust

between players, and obtain the ‘radius of trust’: an endogenous network listing

the potentially cooperative relationships between pairs of players in a community.

We identify two aspects of trust. Players are trusted if others can communicate

about them, which we link to 2-connectedness of the network and the length of

cycles within it. Players are trusting if they are more likely to receive information

from others through their network connections; this is linked to word-of-mouth

centrality.

In our final chapter, we move from a decentralised model to a centralised one,

investigating the welfare implications of income redistribution on an economy
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Introduction

with privately provided public goods in networks. First, we provide a new

perspective on the neutrality result by showing that it corresponds to a change

of policy direction. Next, we characterise the effects of income redistribution on

social welfare, identifying conditions for Pareto-improving transfers. If these are

not available, we find the implicit welfare weights of the initial equilibrium. We

illustrate our results using some example core-periphery networks.
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Chapter 1

Word-of-mouth communication

in networks
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1. Word-of-mouth communication in networks

1.1 Introduction

There are many different ways that information can flow in networks (Borgatti,

2005), depending on the nature of the information and the updating approach

used by individuals. While Bayesian updating is the standard approach in

complete networks, for arbitrary networks the inferences become rather complex,

and behavioural approaches are often used.1 We tackle this complexity by

focusing on the transmission of signals, rather than beliefs.2 This approach allows

us to find the probabilities of information transmission between the nodes of any

network, allowing Bayesian updating even in complex networks.

This chapter develops a new closed-form expression for the probabilities of

node-to-node information transmission by diffusion, where neighbours may or

may not pass signals to each other along walks of limited length (Banerjee,

Chandrasekhar, Duflo and Jackson, 2013). We use the term word-of-mouth for our

probabilities of information transmission between nodes, capturing the intuitive

concept whereby information travels within a community via conversations

between players and their connections (Ahn and Suominen, 2001; Lippert and

Spagnolo, 2011).

We also show how the word-of-mouth probabilities are affected if players

choose not to pass on messages, an action which we call obstruction. To do

so we assume that information is ‘hard’ or ‘evidentiary’ (Nava, 2016; Wolitzky,

2014), so that nodes can choose whether or not to pass on messages. We find

1Degroot (1974); Golub and Jackson (2012); Mueller-Frank and Neri (2015); Goyal (2016);
Levy and Razin (2014).

2In other settings, Hagenbach and Koessler (2010), Galeotti et al. (2013) and Acemoglu
et al. (2014) also focus on transmission of signals in networks, using the cheap talk framework
of Crawford and Sobel (1982).
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1. Word-of-mouth communication in networks

that a node who is part of a cycle of length four is ‘visible’ in the sense that he

cannot prevent any two other nodes in the network from communicating, if he

chooses to obstruct messages.

A closely related measure to word-of-mouth centrality is diffusion centrality,

developed by Banerjee et al. (2013) as an approximation of their epidemiological

simulation measure, communication centrality. As a simple approximation,

diffusion centrality implicitly assumes that the probabilities that a signal travels

along each walk in the network are independent. With diffusion, a player may

receive the same signal more than once along different walks in the network, and

diffusion centrality measures the expected total number of times information is

transmitted between nodes. As an aggregate measure, diffusion centrality suffers

from the problem of double counting: the same signal is counted again when

it is transmitted along different walks.3 While maintaining the independence

assumption, our word-of-mouth approach presents an improvement on diffusion

centrality, using De Morgan’s laws to remove the problem of double counting.

This means that we can describe whether or not a signal is received along these

different walks, allowing for Bayesian updating in networks.

Diffusion centrality has been found to have empirical relevance (Breza and

Chandrasekhar, 2015; Fafchamps and Labonne, 2016), and our word-of-mouth

probabilities may be easier to work with in an empirical context since they

lie between zero and one (so no transformation is required) and they can be

calculated for any value of the probability that two neighbours talk. For diffusion

centrality, this value is given by the inverse of the largest eigenvalue of the

3This problem is related to but distinct from correlation neglect, where players observe the
same signal more than once through different walks in the network and erroneously treat each
report as a distinct signal.
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1. Word-of-mouth communication in networks

network’s adjacency matrix.

We find that removing double counting reduces the inequality of centrality

between nodes in the network. Central nodes have high diffusion centrality

because they receive so many signals. But word-of-mouth centrality takes account

of the fact many of these signals may be redundant, because the information could

already have been received by another route. By reducing the relative centrality

of the most central nodes in a network, the word-of-mouth approach reduces the

overall inequality in centrality. Arguably, counting the total number of times

a signal is transmitted, may be more appropriate in investigating questions of

influence, rather than information.

The chapter is structured as follows. Section 1.2 defines the probabilities of

information transmission in networks, and Section 1.3 illustrates the approach on

networks with homophily and segregation. Section 1.4 introduces the concept of

obstruction and its consequences, and Section 1.5 provides some new centrality

measures based on the word-of-mouth probabilities. Section 1.6 describes the

literature on information transmission in networks and possible applications.

1.2 Word-of-mouth probabilities

In this section, we show how the fixed information network that connects

the players can provide us with the node-to-node probabilities of information

transmission.

15



1. Word-of-mouth communication in networks

1.2.1 The information network

The n players in N = {1, ..., n} occupy the nodes of a fixed undirected unweighted

information network g such that {i, j} ∈ g if i and j are neighbours. A walk

of length a between two nodes i and j in network g is a sequence of nodes

(i = x0, x1, ..., xa−1, xa = j) such that for every r ∈ {1, 2, ..., a}, we have that

{xr−1, xr} ∈ g. If the nodes are distinct, the sequence is a path, and if in addition

i = j, it is a cycle. Let G = [gij] be the adjacency matrix of the network g,

where gij = 1 indicates that players i and j are neighbours so {i, j} ∈ g, and

gij = 0 otherwise (and gii = 0 ∀i ∈ N by convention). The network G is common

knowledge; all players know each other’s network positions. Let Ni = {j : gij = 1}

be the set of player i’s neighbours and |Ni| be i’s degree.

Let dij(G) be the social distance — the length of the shortest path — between

two players i and j in the network G. Let DG = max{dij(G)} be the diameter of

the network G: the length of the longest shortest path between any two players.

Two players are connected if there exists a path of finite length between them,

and a network is connected if all players are connected to each other. If G is

not connected, its diameter is infinite. Let G−k be the adjacency matrix of the

network with player k removed — that is, the n × n adjacency matrix created

when all the entries in the kth row and column of G are set to zero. If G−k

is connected then the network is 2-connected with respect to k; the network is

2-connected if it is 2-connected with respect to all players.

16



1. Word-of-mouth communication in networks

1.2.2 Information transmission by diffusion

Diffusion is a structure of information transmission defined by Banerjee et al.

(2013), where a signal flows through each link in the information network with a

fixed probability, up to a maximum number of links.

Definition 1. Diffusion (Banerjee et al., 2013) is a process whereby information

flows through the network with probability p ∈ (0, 1] along each link, up to a

maximum T links. The probability of information flowing along each walk in the

network is independent.4

The parameter p denotes how likely players are to meet and/or exchange

information with their neighbours. For example, if p = 1 and T = 1, information

is passed with certainty only to a player’s direct neighbours. Let Ω denote the

information structure of the network such that Ω = {p, T,G}.

1.2.3 Word-of-mouth probabilities

We focus on the simple case of just one binary signal, which is either transmitted

or not — and either received or not. In this section we do not allow nodes to

conceal signals by not passing them on to their neighbours; this is considered in

the next section.

Let si ∈ {{1}, 6©} be the signal emitted by node i, and ρj ∈ {{1}, 6©} be the

signal received by node j. We define the word-of-mouth probability wij(Ω) as the

4This independence is implicitly assumed in Banerjee et al. (2013) and is achieved with
the following assumptions: a signal is emitted by the source in each round of information
transmission; players pass on each signal they receive independently of whether they receive
any other signals; and players do not store information after passing it on to their neighbours,
so that the only information players recall after the information transmission process has ended,
is that which arrived in the final round of information transmission.
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1. Word-of-mouth communication in networks

1

5

2

3

4

6

Figure 1.1: Example of diffusion

probability that a signal emitted by i will reach j.

Pr [ρj = 1 | si] =


wij(Ω) if si = 1

0 if si = 6©
∀i, j ∈ N (1.2.1)

To calculate these probabilities, we need a way to account for the fact that a

pair of players may be connected to each other by several walks in the network

and as such, may transmit a signal via more than one of these walks. To deal

with this issue, we use De Morgan’s laws of duality (Fuente, 2000). One of these

laws states that for a family of sets A = {Ai; i ∈ I} in the universal set X, where

I is some index set, we have that ∼ (∪i∈IAi) = ∩i∈I(∼ Ai).
5 In other words, the

complement of wij(Ω) is given by the probability that j does not hear a signal

from i along any of the walks that connect i and j in G.

Take for example the network in Figure 1.1, where we would like to find w14,

5With two events and using logic notation, this law can be written as ¬(A∪B) = ¬A∩¬B.
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1. Word-of-mouth communication in networks

the probability that a signal emitted by node 1 will be received by node 4. Let

us set T = 2. There are two walks of length ≤ T that a signal could pass from 1

to 4: those via 2 and 3. Each are of length 2, so a signal can pass along each of

them with probability p2. Adding these two probabilities together would give the

bilateral6 entry of diffusion centrality: d14 = p2 +p2. But this is not a probability

of node-to-node information transmission, because we need to take account of the

fact that the signal could travel along both walks. This happens with probability

p4 because the probability of information flowing along each of these walks is

independent. So we find that w14 = p2 +p2−p4. We can also get this result using

De Morgan’s laws where 1− w14 = (1− p2)(1− p2).

For a more general formula, we know that for each walk of length τ , the

probability that the signal does not travel along all the links in that walk by

diffusion is 1− pτ . For a signal not to travel from i to j, we need a signal not to

travel along every possible walk that connects i to j in G, of length ≤ T .7 Let

lij(τ,G) be the number of walks between i and j of length τ in the network G.

Definition 2. Word-of-mouth probability given by wij(Ω) is the probability

that a signal passes from i to j by diffusion, given in Definition 1. For any Ω,

that is, for any p ∈ (0, 1], any T and any G, we have that

wij(Ω) = Pr[ρj = 1 | si = 1]

= 1−
T∏
τ=1

[1− pτ ]lij(τ,G)

6Diffusion centrality Banerjee et al. (2013) is given by di =
[∑T

τ=1(pG)τ1
]
i
.

7In parallel work, Ambrus, Chandrasekhar and Elliott (2014) use the inclusion-exclusion
principle to tackle a similar problem in a different context.
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1. Word-of-mouth communication in networks

Where lij(τ,G) = [Gτ ]ij. This applies ∀i 6= j ∈ N , while wii(Ω) = 1.

Note that we have assumed that G is symmetric, which means that ingoing

and outgoing probabilities of word-of-mouth communication are identical. This

could be easily modified for a directed network. Let us say that players can

communicate if there is a positive probability that a signal sent by one of them

will be received by the other. Let us also say that a network is informative if

every pair of players in the network can communicate.

1.2.3.1 Independence

Note that Definition 2 only holds if information flows as set out in Definition 1

apply; in particular, if the assumption that the probability of a signal travelling

along each walk in the network is independent holds. Let us take this opportunity

to reflect on the independence assumption. Consider the network in Figure 1.1,

with node 6 removed, and w45, the probability that a signal emitted by node 4

is received by node 5. There are two walks of length 3 between them: {4, 2, 1, 5}

and {4, 3, 1, 5}. With the independence assumption, the two walks can be treated

independently, so we have that w15 = 1− (1− p3)(1− p3) = 2p3 − p6.

We can see that node 1 could receive the signal from 4 through two walks,

either via nodes 2 or 3. With independence, he would treat these two signals

separately. But a more accurate specification might be that there would only be

one opportunity for 1 to pass this signal to 5 or not. In this case, w45 = pw41 =

p(1− (1−p2)(1−p2)) = 2p3−p5. This result can also be found as the probability

that the 3 links in each walk are activated separately, minus the probability that

all 5 links in both walks are activated. This would be the kind of result generated

by Banerjee et al. (2013)’s algorithm of communication centrality. This example
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1. Word-of-mouth communication in networks

shows that there is a small loss in precision due to the independence assumption.

Arguably, this is offset by a much easier and quicker computation of the word-of-

mouth probabilities as an approximation of this communication mechanism.

1.2.4 The information structure

Next we examine how the three aspects of the information structure Ω affect the

probabilities of information transmission.

Proposition 1. There are complementarities between the three aspects of the

information structure Ω for the word-of-mouth probabilities given in Definition

2. In particular, it holds that

1. wij(Ω) is increasing in p if and only if ∃ τ ≤ T such that lij(τ,G) ≥ 1

2. wij(Ω) increases as T increases to T + 1 if and only if lij(T + 1,G) ≥ 1

3. wij(Ω) increases as a link is added to G if and only if the new link leads to

an increase in lij(τ,G) for any τ ≤ T

An increase in p or T or an additional link in G cannot lead to a decrease in any

obstructed word-of-mouth probabilities.

Proof. See Appendix.

Proposition 1 shows that, as would be expected, a network with more links,

greater probability of players transmitting messages to their neighbours, and more

rounds for information to travel, could have higher probabilities of information

transmission. The following Remark shows how the players’ communication

depends on social distance, the diameter of the network and the furthest distance

that information can travel.
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1. Word-of-mouth communication in networks

Remark 1.2.1. It holds that:

• for i, j such that dij(G) ≤ T , we have wij(Ω) ≥ pdij(G) > 0; and

• For i, j such that dij(G) > T , we have wij(Ω) = 0.

This implies that:

• If G is connected and DG ≤ T , then wij(Ω) ≥ pDG > 0 ∀i, j and the

network is informative;

• If, in addition p = 1, then wij(Ω) = 1 ∀ i, j, and there is perfect

information; and

• If G is not connected, then ∀i ∃ j such that wij(Ω) = 0.

• If dij > T ∀ i, j then wij(Ω) = 0 ∀i, j

Corollary 1. For any pair of nodes {i, j} in any network, if p < 1, there exists

an upper bound P∗ij < 1 on their word-of-mouth probability, with respect to T .

Proof. See Appendix.

The intuition behind this result is that as T increases, it becomes possible

for a signal to travel between two nodes using longer and longer walks. But the

probability of information travelling through all the links in a long walk is low,

because it depends on pT . In fact, the incremental effect of increasing T on the

word-of-mouth probabilities converges to zero at high T . So the most important

factor affecting the magnitude of the word-of-mouth probabilities is the number

of short walks between players.
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1. Word-of-mouth communication in networks

Following on from this, the existence of a lower bound pdij(G) begs the question

as to what might lead to a divergence between this lower bound and wij(Ω). If

dij(G) = T , then wij(Ω) = pdij(G) if there is only one walk of length T between

i and j, and increases above the lower bound as the number of walks of length

T between i and j increases. Next, if the social distance pdij(G) < T , there will

probably be other walks between i and j of length less than T . More walks of

length ≤ T will increase the divergence between wij(Ω) and pdij(G). The greater

the difference between T and the social distance between i and j, the more likely

there will be more shorter walks between them. In all cases, the more walks

there are of lengths less than T between nodes, the more ways there are for those

nodes to transmit information between them, and the greater divergence expected

between the lower bound pdij(G) and wij(Ω). As described above, shorter walks

have higher probability of communication and so have a bigger impact on this

divergence.

1.2.5 Example networks: line and star

Next, let us show the of word-of-mouth probabilities in two example networks, the

line and the star, shown in Figure 1.2. With parameters of p = 0.15 and T = 6,
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1. Word-of-mouth communication in networks

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

Figure 1.2: Line and star networks of eight nodes

the word-of-mouth probabilities between the eight nodes in the line network are:

wij(Ω) =



1 0.156 0.024 0.004 0.001 0+ 0+ 0

0.156 1 0.159 0.025 0.004 0.0010 0+ 0+

0.024 0.159 1 0.159 0.025 0.004 0.001 0+

0.004 0.025 0.159 1 0.159 0.025 0.004 0.001

0.001 0.004 0.025 0.159 1 0.159 0.025 0.004

0+ 0.001 0.004 0.025 0.159 1 0.159 0.024

0+ 0+ 0.001 0.004 0.025 0.159 1 0.156

0 0+ 0+ 0.001 0.004 0.024 0.156 1



(1.2.2)

As would be expected, these decrease for further-away nodes, becoming

negligible at a social distance of five links. Meanwhile the probabilities are higher

than the lower bound determined by the social distance between nodes, e.g. the

probability of communication between nodes 2 and 3 is 0.159, higher than p,
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1. Word-of-mouth communication in networks

which is 0.15. The reverberation of the message in the network increases the

probability that it will eventually arrive.

Due to symmetry, there are only two word-of-mouth probabilities in the star.

The probability that a signal emitted by the centre of the star will be received

by a node on the periphery is 0.173. The probability that a signal emitted by

one periphery node will be received by the other is 0.027. Note that the highest

probability that a signal will travel a walk of length 1 is 0.159 in the line and

0.173 in the star; and for a walk of length 2 it is 0.025 and 0.027 respectively.

With p = 0.15 and so p2 = 0.0225, we can see that there is greater divergence

between wij(Ω) and pdij(G) in the star network than the line. This is because, as

discussed above, the network structure of the star allows for a greater number of

short walks between nodes.

1.3 Word-of-mouth probabilities in networks

with homophily

Having found the word-of-mouth probabilities in the general case, next we can

illustrate the case when networks exhibit homophily (Currarini et al., 2009; Golub

and Jackson, 2012). Homophily, which is closely related to segregation, is when

nodes are more likely to be connected to others who are similar to them —

members of their own group — rather than to members of other groups. To

examine homophily in our case, we use the approach of equitable partition and

the quotient graph.
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1.3.1 Equitable partition and quotient graph

Definition 3. Equitable partition (Powers and Sulaiman, 1982). Each node in

one group must have the same number of links to nodes in the other group. Recall

that Ni = {j : gij = 1} be the set of player i’s neighbours and |Ni| be i’s degree.

A partition π = {C1, ..., CH} of agents in a network is an equitable partition if,

when agents i and j belong to the same type h,

| Ni ∩ Ch |=| Nj ∩ Ch | ∀ h = 1, ..., H

Definition 4. Quotient graph (Powers and Sulaiman, 1982). An equitable

partition can be represented by a quotient graph gπ and its H × H adjacency

matrix Gπ, whose ij th entry is | Ni ∩Cj |. The indicator matrix C is an n×H

matrix, which denotes the membership of each of the n agents in each of the H

groups with a 1 if they are a member and a zero if not. G and Gπ are related by

GC = CGπ.

The quotient graph plays an important role in the study of the main part of

the spectrum M since it holds that

M ⊂ spec(Gπ) ⊂ spec(G) (1.3.1)

Godsil (1993) (Lemma 2.2, Chapter 5) shows that if Y is an equitable partition

of Z, then if (λ,x) is an eigenpair of Y , then (λ,Cx) is an eigenpair of Z. This

is known as ‘lifting’ the eigenvectors. We note that this approach could be used

to transform any n× 1 vector of characteristics of each agent to a H × 1 vector
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of characteristics of each partitioned group.

If there are just two groups labelled A and B, of sizes a and b respectively,

then the adjacency matrix G can be partitioned as follows, where GAA is the

submatrix reflecting only the links between nodes in group A etc.

G =

 GAA GAB

GBA GBB

 (1.3.2)

Meanwhile the entries in the quotient graph Gπ denote how many links their

are between nodes in the two different groups. That is,

Gπ =

 α γ

δ β

 (1.3.3)

Where α and β are the number of links within each group A and B respectively,

γ is the number of links that any node in A has to nodes in group B, and δ is

the number of links that any node in B has to nodes in group A (γ and δ are

not necessarily the same, even in an undirected matrix, as long as a and b are

different).

From Definition 1.3.3 we can also observe that the exponent of the adjacency

matrix, which we have used to identify the number of walks of different lengths,

can also be found from the exponent of quotient graph and the indicator matrix.

That is, from GC = CGπ we have that GτC = CGτ
π. Hence, we can see that
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the entries in Gτ
π are

Gτ
π =

 ∑j∈A lAj(τ,G)
∑

j∈B lAj(τ,G)∑
j∈A lBj(τ,G)

∑
j∈B lBj(τ,G)

 (1.3.4)

where
∑

j∈A lAj(τ,G) =
∑

j∈A lij(τ,G) for each i ∈ A, that is, the total number

of walks of length τ from any node in A to all other nodes in A. Due to equitable

partition this total is the same for every member of A. Note this is a total number

of walks: when comparing different pairs of nodes in the same or different groups,

they may have more or fewer walks between them, but the total number of walks

of each length that a node has to all nodes in a particular group is the same,

when aggregating over all the nodes in the relevant group. This is due to the

assumption of equitable partition: different nodes may or may not be connected

to each other in G but the total number of connections that a node has to a

particular group is the same.

1.3.2 Homophily

Now we can use the quotient graph approach to examine the word-of-mouth

probabilities in an example case of homophily with two groups. Let us consider

a network with symmetry in relation to the number of links between and within

groups. That is, from (1.3.3) we have that α = β is the number of links within

groups and γ = δ is the number of links between groups. If there is homophily

and segregation, nodes are more likely to have links with their own group than

with outsiders, and we have that α > γ. We can now observe that the exponent

28
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of the quotient graph can be written as

Gτ
π =

 α γ

γ α


τ

=
1

2

(α + γ)τ

 1 1

1 1

+ (α− γ)τ

 1 −1

−1 1


 (1.3.5)

Hence in this symmetric case, the total number of walks within and between

groups are given respectively as

∑
j∈A

lAj(τ,G) =
∑

j∈B lBj(τ,G) =
1

2
[(α + γ)τ + (α− γ)τ ] (1.3.6)

∑
j∈B

lAj(τ,G) =
∑

j∈A lBj(τ,G) =
1

2
[(α + γ)τ − (α− γ)τ ] (1.3.7)

According to the equations above, the number of walks between each pair of

nodes depends on both α and γ, both within and between groups. We noted

above that homophily implies that α > γ. As the difference between α and γ

increases, we find that the number of links between groups becomes less important

in determining the number of walks in the network. In particular, let γ = xα,

with x < 1. In this case we can rewrite the above equations, and observe that as

x gets very small and the network becomes more segregated, we can approximate

the number of walks of length τ as follows.

1

2
[ατ (1 + x)τ + ατ (1− x)τ ] ≈ ατ (1.3.8)

1

2
[ατ (1 + x)τ − ατ (1− x)τ ] ≈ 0 (1.3.9)

So for a segregated society, the number of walks of each length, and hence the

word-of-mouth probabilities, can be approximated by looking only at the number
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of walks within each group. This recalls a result by Allouch (2017) that nodes’

Bonacich centrality (Bonacich, 1987) in segregated networks can be approximated

by their Bonacich centrality within their own group, because adding an extra step

to a walk inside a group will most likely reach a member of the same group.

1.3.3 Complete bipartite networks

In the complete bipartite network, the two groups, A and B, are not connected

within the group and are completely connected to all nodes in the other group.

For example, the star network results when one of the groups contains only one

node. As described in the previous section, the divergence between the word-of-

mouth probabilities and their lower bound is due to the number of short walks.

For complete bipartite networks, the number of walks of different lengths depends

on the group sizes.

As above the two groups have sizes a and b respectively, so that n = a + b.

Now in (1.3.3) we have that α = β = 0, γ = b and δ = a. As before, we can

find the total number of walks between and within groups as follows. As may

be expected, there is a repeating pattern for walks of even and odd lengths. Let
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R = T/2 if T is even, and R = (T − 1)/2 if T is odd. We now have that

Gτ
π =

 0 b

a 0


τ

=



G2r
π =

 (ab)r 0

0 (ab)r

 if τ is even

G2r+1
π =

 0 arbr+1

ar+1br 0

 if τ is odd

, r ∈ [0, R]

(1.3.10)

These are the total number of walks that a node in one group has with all nodes

in a particular group, as shown in (1.3.4). Our formula for the word-of-mouth

probabilities requires the number of walks of length τ between any two nodes i

and j. To find this from the matrices using the quotient graph in (1.3.10) in a

complete bipartite network, we need to divide by a if j is in group A (the first

column) and divide by b if j is in group B (the second column). From (1.3.10)

we can obtain the following results for walks of odd length, where τ = 2r + 1.

• If i, j are in the same group, lij(τ,G) = 0

• If i, j are in different groups, lij(τ,G) = (ab)r = (ab)
τ−1
2

Whereas for walks of even length where τ = 2r, (1.3.10) shows that

• If i, j are in different groups, lij(τ,G) = 0

• If i, j are in group A, lij(τ,G) = ar−1br = a
τ−2
2 b

τ
2

• If i, j are in group B, lij(τ,G) = arbr−1 = a
τ
2 b

τ−2
2
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We can now calculate the word-of-mouth probabilities. Let wab(Ω) be the

probability of information transmission by word-of-mouth between distinct nodes

in groups A and B, and waa(Ω) and wbb(Ω) be the probabilities of information

transmission between distinct nodes within groups A and B respectively. The

word-of-mouth probabilities are:

wab(Ω) = 1− [1− p]
R∏
r=1

[
1− p2r+1

](ab)r
(1.3.11)

waa(Ω) = 1−
R∏
r=1

[
1− p2r

]ar−1br
(1.3.12)

wbb(Ω) = 1−
R∏
r=1

[
1− p2r

]arbr−1

(1.3.13)

1.3.3.1 Comparative statics

The multiplicative formulation for the number of walks suggests that for a given

overall population, there are more walks of each length if group sizes are more

similar to each other, than if the group sizes are very unequal, e.g. in the star

network. We can check this using the above formulation. This gives us the

following result.

Remark 1.3.1. The total number of walks in a complete bipartite network of

two equal-sized groups is strictly greater than that in a star network, for any walk

length and n > 2.

Proof. See Appendix.

Given these results and Remark 1.3.1, we would expect that the probabilities

of information transmission by word-of-mouth would be higher in the case of two
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equal-sized groups than in the star. We can easily find the expressions for these

probabilities of word-of-mouth information transmission in these two example

networks as follows. For two equal groups of size n
2
, we have two probabilities of

information transmission: between distinct nodes in the same group, ws(Ω) and

between nodes in different groups wd(Ω). For the star, the two probabilities of

information transmission are that between the core and periphery nodes wcp(Ω),

and that between distinct periphery nodes, wpp(Ω).

ws(Ω) = 1−
R∏
r=1

[
1− p2r

](n2 )
(2r−1)

(1.3.14)

wd(Ω) = 1− [1− p]
R∏
r=1

[
1− p2r+1

](n2 )
2r

(1.3.15)

wpp(Ω) = 1−
R∏
r=1

[
1− p2r

](n−1)(r−1)

(1.3.16)

wcp(Ω) = 1− [1− p]
R∏
r=1

[
1− p2r+1

](n−1)r
(1.3.17)

We can now illustrate the effects on these probabilities as T or n increases.

Figure 1.3 shows these probabilities in the two networks, with the chart on the

left showing the word-of-mouth probabilities of information transmission between

nodes with social distance one: that is, between the two groups, or between the

core and periphery of the star, and the lower bound of p. The chart on the

right shows the probabilities between nodes with social distance two: that is,

within the same group and between periphery nodes in the star, as well as the

lower bound of p2. It is clear that word-of-mouth probabilities in the complete

bipartite network are indeed higher for the two equal groups than for the star.

33
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Figure 1.3: Word-of-mouth probabilities for two types of complete bipartite
network with n = 8, as total number of rounds of information transmission (T)
increases.
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Figure 1.4: Word-of-mouth probabilities for two types of complete bipartite
network with T = 6, as total number of nodes n increases.

The divergence between wij(Ω) and pdij(G) is lower in the star. Figure 1.3 also

shows the probabilities converge to some upper bound for large T , as described

in Corollary 1.

The proof of Remark 1.3.1 shows that the divergence in the number of walks

between the star and the network of two equal groups follows a quadratic function

in n, the total number of nodes. Figure 1.4 shows the divergence between the

word-of-mouth probabilities in the two difference types of network increasing

with a quadratic shape as n increases. As would be expected, the probabilities

converge to 1 as n increases: the limits of the probabilities as n→∞ are 1. This

does not imply that larger group sizes are better for word-of-mouth information

transmission though: we are adding many more links than nodes as n increases

due to the complete bipartite structure. In particular, if two new nodes are added,
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this requires n new links in the network. If the numbers of links change at a very

different rate to the size of the population, arguably it is not possible to draw a

comparison between group sizes.

1.4 Obstruction and visibility

In this section we build on the word-of-mouth probabilities by allowing nodes to

choose whether to pass on information or not. To model this we assume that

information is ‘hard’ or ‘evidentiary’ (Nava, 2016; Wolitzky, 2014), in the sense

that nodes can choose to conceal information, but not modify it. If they do not

pass it on, we call this obstruction.

Definition 5. Obstructed diffusion is a process whereby information flows

through the network with adjacency matrix G with probability p ∈ (0, 1]

along each link, up to a maximum T links. Information is evidentiary and the

probability of information flowing along each walk in the network is independent.

The network links, through which a signal can flow by obstructed diffusion,

include only those nodes who choose not to obstruct it in that round of

information transmission.

The wider structure of a network game, where nodes can either obstruct

information or not, would provide the incentives for choosing obstruction. Nodes

may have incentives to obstruct signals in different rounds of the information

transmission process – so a different subset of nodes could choose to obstruct

certain signals in each of the T rounds. We show here the simplest example, of

obstruction by a single player in all rounds of the game — but the same approach
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could be used for more complex obstruction patterns (shown in the Appendix).

In this chapter we do not focus on the incentives in a game that would lead a

player to obstruct the signal — simply on the probabilities that would result if

he did so. Chapter 2 provides an interesting application of such a case.

1.4.1 Obstructed word-of-mouth probabilities

Let pij(k,Ω) be the obstructed word-of-mouth probability that a signal emitted

by player i will be received by player j, when it is obstructed by player k. We

calculate these probabilities in the same way as the word-of-mouth probabilities,

except we use the network G−k to calculate the number of walks, since player k

will not pass on the signal. Let lij(τ,G−k) be the number of walks between i and

j of length τ in the network G−k.

Let si(k) ∈ {{1}, 6©} be the signal that player i sends that is obstructed

by player k, and let ρj(k) ∈ {{1}, 6©} be the signal that j receives that is

obstructed by k. We define the probability of information transmission pij(k)

as the probability that a signal emitted by i obstructed by k will reach j.

Pr [ρj(k) = 1 | si(k)] =


pij(k) if si(k) = 1

0 if si(k) = 6©
∀i, j, k ∈ N (1.4.1)

Definition 6. Obstructed word-of-mouth probability given by pij(k,Ω) is

the probability that a signal passes from i to j by obstructed diffusion given in

Definition 5, when the signal is obstructed by k. For any Ω, that is, for any
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p ∈ [0, 1], any T and any G, we have that

pij(k,Ω) = Pr[ρj(k) = 1 | si(k) = 1]

= 1−
T∏
τ=1

[1− pτ ]lij(τ,G−k)

Where lij(τ,G−k) = [Gτ
−k]ij. This applies ∀i 6= j, k ∈ N , while pii(k,Ω) = 1.

Note that pij(k,Ω) = 0 if i = k or j = k. Proposition 1 and Remark 1.2.1,

which describe the effects of the information structure Ω and social distance on

information transmission probabilities, both apply to the case with obstruction,

if we replace G with G−k. Since G has weakly more links than G−k, from

Proposition 1, we have that wij(Ω) ≥ pij(k,Ω) ∀i, j, k.

1.4.2 Visibility

We have shown that if player i emits a signal that is obstructed by player k, the

probabilities that the signal is received by other nodes are determined by player

i’s position in G−k, the network omitting k. Recall that nodes can communicate

if there is a positive probability that a signal sent by one of them will be received

by the other. We now define the concept of visibility in networks.

Definition 7. A node is visible if and only if everyone can still communicate,

even when he is obstructing the signal. That is, player k is visible iff pij(k,Ω) >

0 ∀ i, j ∈ N \ k.

We can rewrite Remark 1.2.1 for the case when player k obstructs the signal.

Remark 1.4.1. It holds that:
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• For i, j such that dij(G−k) ≤ T , we have that pij(k,Ω) ≥ pdij(G−k) > 0

• For i, j such that dij(G−k) > T , we have that pij(k,Ω) = 0

This implies that:

• If G−k is connected and DG−k ≤ T , then pij(k,Ω) ≥ pDG−k > 0 ∀i, j and

player k is visible.

• If the network is 2-connected and maxk∈N{DG−k} ≤ T , all nodes are visible.

• If, in addition, p = 1, then pij(k,Ω) = 1 ∀ i, j, k, and there is perfect

information.

• If G−k is not connected, then ∀i ∃ j such that pij(k,Ω) = 0

Visibility depends on what the network looks like when a node is absent i.e.

the structure of G−k. It requires two things for k to be visible. First, G−k

must be connected, because a visible player does not disconnect the network by

his absence, i.e. if G−k is connected then G is 2-connected with respect to k.

Secondly, the diameter of G−k must be not be greater than T , the maximum

distance a signal can travel.8

1.4.3 Obstructiveness

A comparison between word-of-mouth probabilities and obstructed word-of-

mouth probabilities gives us a measure of the effect of each player’s obstruction.

8This implies 2-connectedness because a network with a finite diameter is connected.
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Definition 8. A node is obstructive if and only if his obstruction means that

two or more nodes who could previously communicate no longer can. That is,

player k is obstructive iff ∃ i, j ∈ N such that wij(Ω) > 0 and pij(k,Ω) = 0.

Obstruction is linked to social distance, because player k is not obstructive

if for all {i, j} with dij(G) ≤ T we also have that dij(G−k) ≤ T . That is to

say, player k is not obstructive if he does not increase the social distances too

much by his absence from the information network. We collect the conditions

for obstructiveness in the following Remark, highlighting the link between

obstructiveness and the length of the cycles that include a player.

Remark 1.4.2. If k has only one neighbour, k is not obstructive. If k has more

than one neighbour, then k is not obstructive if and only if the following. For

each pair of nodes l,m with dlm(G) ≤ T and for whom the sequence (i, k, j) is

part of the shortest path(s) between them (implying that i, j ∈ Nk), we require

that dlm(G) − 2 + dij(G−k) ≤ T , or equivalently that there exists a cycle in G

including the sequence (i, k, j) with length ≤ T + 4− dlm(G).

More generally, if a player k has more than one neighbour, a sufficient

condition for him not to be obstructive is if, for each pair of k’s neighbours

i, j ∈ Nk, there is a cycle of length ≤ 4 including the sequence (i, k, j). This

implies that for all l,m ∈ N who have the sequence (i, k, j) as part of the shortest

path(s) between them, we have that dlm(G−k) = dlm(G).

Figure 1.5 shows an example of this result. In both networks in the Figure,

G is made up of all the solid and dashed links, while G−k includes only the

solid links. In the network on the left, k is in a cycle of four in network G,

and dlm(G) = 4. If node k is removed, and we examine G−k, then the social
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Figure 1.5: Examples of obstructiveness

distance between l and m is unchanged — it remains 4. This is because there

is an alternative route between l and m via node o. Node o is connected to

k’s neighbours i and j, so any other walks in a wider network which include

the sequence {i, k, j} could instead include the sequence {i, o, j}, which is the

same length. So if k is in a cycle of length 4, his removal from the network does

not increase the social distances of any other pairs of nodes. So k cannot be

obstructive, no matter what the value of T is. On the other hand, the network

on the right shows a case where k could be obstructive, depending on the value

of T. Now in G−k, the social distance between l and m has increased to 5 links,

whereas before when k was present it was only 4. So if T = 4, with k passing on

signals in the network it would be possible for l and m to communicate. Without

him, they cannot: k is obstructive.

The length of the cycle determines whether or not k’s neighbours can still

communicate, even when k is obstructing those signals. The importance of cycles

of length four, our sufficient condition for a player not to be obstructive, recalls

well-known results on the importance of network cycles of length three: Coleman’s

(1988) closure; and Jackson et al.’s (2012) support.
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In Remark 1.2.1 we said that a network is informative if everyone

can communicate without obstruction. Now we can make a link between

obstructiveness and visibility.

Proposition 2. Player k is visible if and only if the network is informative and

player k is not obstructive.

Proof. See Appendix.

Proposition 2 shows that there are two possible reasons why a player may

not be visible: firstly, if the network is not informative, so that even without

obstruction some nodes cannot communicate; and secondly, if the network is

informative but a player is obstructive, in that he can prevent some nodes from

communicating if he does not pass signals. Obstructiveness sheds further light

on the star network.

Remark 1.4.3. For a given number of nodes in a connected information network

that is informative and a tree, the star network has the most visible nodes of any

tree configuration.

Proof. See Appendix.

1.5 Word-of-mouth centrality

It is useful to rank nodes by their capacity to send or receive signals in the

network. We do so by constructing a centrality measure from the probabilities of

information transmission, which we call word-of-mouth centrality.
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Definition 9. Word-of-mouth centrality is the average probability of

information transmission by diffusion for each player in a network and is given

by

wi(Ω) =
1

n− 1

∑
j 6=i

wij(Ω)

We have assumed an unweighted, undirected network so that ingoing and

outgoing measures are symmetric, but alternatives are easily computed. Let

W (Ω) = 1
n

∑
i∈N wi(Ω) be the average word-of-mouth centrality in a network.

There are several related measures of centrality, in particular diffusion

centrality and communication centrality (Banerjee et al., 2013, 2014), Bonacich

centrality (Bonacich, 1987), information centrality (Stephenson and Zelen, 1989),

random walk closeness centrality (Noh and Rieger, 2004), cascade centrality

(Teytelboym et al., 2015), and percolation centrality (Moore and Newman, 2000;

Piraveenan et al., 2013) in the epidemiological literature. As far as we are aware,

no measure uses probabilities of information travelling by diffusion between two

nodes.

1.5.1 Comparison with diffusion centrality

Of particular interest is the relationship between our measure and diffusion

centrality. Banerjee et al. (2013) empirically investigate the effects of information

in social networks on the decisions of individuals to take up a microfinance

opportunity in villages in India. They develop diffusion centrality as an

approximation of communication centrality, a simulated measure linked to the

Susceptible, Infected, Recovered model (Kermack and McKendrick, 1927; Bailey,
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1. Word-of-mouth communication in networks

1957), which runs for a finite period of time and allows for non-participants to pass

on the message. Diffusion centrality has a 0.86 correlation with communication

centrality, and is given by di =
[∑T

τ=1(pG)τ1
]
i
, and p is equal to the inverse

of the largest eigenvalue of the adjacency matrix, λmax(G). This is because as

T tends to infinity, diffusion centrality becomes proportional to either Bonacich

centrality or eigenvector centrality, depending on whether p is smaller or larger

than 1/λmax(G), respectively. Thus they choose this critical value of 1/λmax(G)

for their p, since “the entries of pGT tend to 0 as T grows if p < 1/λmax(G),

and some entries diverge if p > 1/λmax(G)”. But diffusion centrality does

not take account of double counting, measuring instead the total amount of

information travelling between nodes in a network — rather than the probability

that information flows. This means that it overemphasises the benefit of hearing

a lot of information, because at some point extra information is redundant if these

signals are likely to have already been received via other walks in the network.

Figure 1.6 compares diffusion centrality and word-of-mouth centrality, using

data from one of the Indian villages studied by Banerjee et al. (2013). Centralities

are calculated at the household level.9 The value of p = 1/λmax(G) is used

to compare the two centralities in the left chart, and there is clearly a strong

relationship between the two measures. In fact, at this value of p, a linear

transformation of diffusion centrality would be a good approximation of the node-

to-node probabilities, and this approach is used by Breza and Chandrasekhar

(2015). The chart suggests a transformation factor of 0.06.

The chart on the right shows the comparison between the two measures when

9Village number 1; n = 182. For this comparison we use wi = 1
n

∑
j∈N wij (i.e. not excluding

wii compared to the formula in Definition 9). This makes it more comparable with diffusion
centrality, which includes the diagonal entries of the matrix in its sum.
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Figure 1.6: Comparing centrality measures in a village

we use a larger p, and while ranking seems to be generally preserved, there

is some divergence in the relative magnitude of the measures, as the word-of-

mouth centralities converge towards 1. So if there is any reason to suspect that

p differs from 1/λmax(G), word-of-mouth centrality may be useful for calculating

probabilities of information transmission by diffusion in a network. In particular,

we can observe that the level of inequality in diffusion centrality between the

nodes in a network is higher than when word-of-mouth centrality is used. This is

because central nodes who receive a lot of information have extremely high values

of diffusion centrality. But with word-of-mouth centrality, the effect of this extra

information is discounted due to the fact that it is probably redundant. Central

nodes have most likely received the signal via other walks already. This analysis
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suggests that diffusion centrality overemphasises the benefit of a central network

position in relation to information transmission.

1.5.2 Obstruction and centrality

We can also calculate centrality measures that take account of obstruction.

Definition 10. Obstructed centrality Pi(Ω) is the average probability a

signal emitted by a player will be received by others, averaged over the possible

obstruction of that signal by any of the other nodes in the network.

Pi(Ω) =
1

(n− 1)2

∑
k 6=i

∑
j 6=i

pij(k,Ω)

A player’s obstructed centrality could be significantly lower than their word-of-

mouth centrality if the network architecture means it is easy for other nodes to

obstruct their signals.10 Next we examine the effect that a node’s obstruction

can have on the communication of other nodes, in a similar vein to betweenness

centrality (Freeman, 1977).

Definition 11. A node’s obstructing centrality Ok(Ω) is the average

probability other players can communicate if that node obstructs the signals.

10Note that, like diffusion and word-of-mouth centrality, this measure varies with the
primitives of information transmission p and T , because these parameters weight the importance
of walks of different lengths for information transmission in the network. To abstract from this,
we could examine a measure which focuses only on the structure of the network links in G by
using p = 1 and T = DG, the diameter of the network. But this would be less interesting
because it would not weigh the paths by their length nor whether there is double counting of
paths — it would just be a measure of the size of the connected components in the network
when each node is removed.
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Node Bi di wi Pi Ok bi
1,8 1.6663 0.6485 0.0735 0.0573 0.1217 0
2,7 2.2211 1.1871 0.1281 0.1024 0.0991 12
3,6 2.4040 1.3589 0.1486 0.1168 0.0896 20
4,5 2.4588 1.4073 0.1550 0.1206 0.0866 24
Average 2.1876 1.1505 0.1443 0.0993 0.0993 14.0

(a) Line network

Node Bi di wi Pi Ok bi
1 8.3784 5.5334 0.4870 0.3907 0 42
2-8 3.5135 1.8850 0.2157 0.1512 0.2070 0
Average 4.1216 2.3411 0.2853 0.1811 0.1811 5.25

(b) Star network

Table 1.1: Comparison of centrality measures for two networks of eight nodes
(p = 0.3, T = 6)

Ok(Ω) =
1

(n− 1)2

∑
i 6=k

∑
j 6=i

pij(k,Ω)

Table 1.1 shows the different centrality measures for the line and the star

example networks in Figure 1.2. For each node we compare Bonacich centrality

Bi, diffusion centrality di, betweenness centrality bi, word-of-mouth centrality wi,

obstructed centrality Pi and obstructing centrality Ok. On almost all measures,

centrality increases towards the centre of the line, and the periphery nodes in the

star are always less central than the centre. Meanwhile obstructing centrality is

higher at the end of the line and the periphery of the star, showing that if those

players obstruct signals, the probability of information transmission between the

other players is closer to wi. Obstructing centrality for the centre of the star is

zero, because if he obstructs signals, no-one else in the network can communicate.
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1.6 Applications

These probabilities of information transmission could be used in many types of

games on networks. They are particularly relevant for games of imperfect private

monitoring, where nodes do not necessarily receive the same signals about past

play (Kandori, 2002; Sekiguchi, 1997; Bhaskar and Obara, 2002; Chen, 2010). In

Chapter 2 we study the case of cooperation in networks where the information

on past transgressions flows through the network by word-of-mouth. We find two

different aspects of trust that each relate to obstructed and obstructing centrality

measures.

As described above, diffusion centrality was developed by Banerjee et al.

(2013) as an approximation of communication centrality, which shows how overall

participation in a microfinance scheme depends on the centrality of the injection

points of information about it. As we have shown, the problem of double counting

with diffusion centrality is exacerbated if the parameter p varies significantly

from the inverse of the largest eigenvalue of the adjacency matrix. It would

be interesting to see how well word-of-mouth centrality, which takes account of

double counting, would fare as an approximation of communication centrality.

As well as Banerjee et al. (2013), two other recent empirical papers have

used diffusion centrality as an approximation of the probability of information

transmission. Breza and Chandrasekhar (2015) use it to investigate how

monitoring by different members of a community in villages in India incentivises

individuals to save for the future. They find that a savings monitor with

higher diffusion centrality in the village network significantly increases savings.

Fafchamps and Labonne (2016) use family network data from the Philippines
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to test whether households’ centrality affects whether they receive services

from the municipal government. They find that betweenness centrality is

more important than their measure of information diffusion, highlighting the

importance of coalition-building in politics. In both these cases, double counting

the transmission of signals may be an issue, and so it would be interesting

to compare these results to those using the word-of-mouth probabilities. In

addition, the role of obstruction could be important. For example, obstructing

centrality might be relevant for the analysis in Fafchamps and Labonne (2016),

since it depends on the number of walks between other nodes that a node

occupies (similar to betweenness centrality), but also measures the importance

of those walks for communication between other nodes. Meanwhile in Breza and

Chandrasekhar (2015)’s context, obstruction might be important because people

who had not fulfilled their commitments to increased saving may not wish to pass

on information about this failure.

1.7 Conclusion

We have shown a new way to calculate the probabilities of node-to-node

information transmission in networks. This simple measure can be used to allow

Bayesian updating in network games where signals, rather than posterior beliefs or

actions, are transmitted through the network. We also allowed for the case where

nodes may conceal information travelling through the network. This approach

gives us several new centrality measures, which tell us the average probabilities

of information flowing through the network in different cases and may be useful

in applications.
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Appendix

1.A Proofs

1.A.1 Proof of Proposition 1

Obstructed word-of-mouth probabilities and the information structure Ω.

1. Increasing p: We have that
∂wij(p,T,G)

∂p
≥ 0 with a strict inequality if and

only if lij(τ,G) > 0 for any τ ≤ T , that is, if and only if i and j are

connected by one or more walks of length ≤ T in the network G.

2. Increasing T to T + 1: Let

Fij(p, T,G) = 1− wij(Ω) =
T∏
τ=1

[1− pτ ]lij(τ,G) (1.A.1)

If T increases to T + 1, we have that

Fij(p, T + 1,G) = Fij(p, T,G)(1− p(T+1))lij(T+1,G) (1.A.2)

So Fij(p, T + 1,G) < Fij(p, T,G) if and only if lij(T + 1,G) ≥ 1; otherwise

they are equal. The same argument holds for any further increases in T .
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Hence Fij(Ω) is weakly monotonically decreasing in T and so wij(Ω) is

weakly monotonically increasing in T .

3. Adding a link to the information network: Suppose that we add a

link to the network G, creating the network G′, which has an additional

walk of length τ between i and j so that lij(τ,G
′) = lij(τ,G) + 1. Now we

want to compare Fij(p, T,G
′) and Fij(p, T,G). Since

Fij(p, T,G
′) = Fij(p, T,G)(1− pτ ) (1.A.3)

We have that Fij(p, T,G
′) < Fij(p, T,G) as required. Meanwhile any

change to the network that leaves lij(τ) unchanged ∀τ ≤ T leaves the

probabilities unchanged.

1.A.2 Proof of Corollary 1

From (1.A.2) we have that Fij(Ω) is decreasing in T since (1−p(T+1))lij(T+1,G−k) <

1. Observe also that Fij(Ω) is bounded from below by 0. This means that

Fij(Ω) converges to a lower bound. This lower bound is strictly positive,

limT→∞ Fij(Ω) = F ∗ij (Ω) > 0, because p > 0 and at the limit, the factor

by which Fij(Ω) decreases is limT→∞(1 − p(T+1))lij(T+1,G−k) = 1. As wij(Ω) is

the complement of Fij(Ω), this implies that wij(Ω) converges to an upper bound

P∗ij < 1.
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1.A.3 Proof of Remark 1.3.1

For any r, the total number of walks of even length is (ab)r (since each walk is

counted twice — incoming and outgoing — in (1.3.10)). The total number of

walks of even length is 1
2
(ab)r(a + b), and so the total number of walks of any

length for each r is 1
2
(ab)r(2 + a + b). If group sizes are equal then a = b = n

2

(assuming n is even), while with the star we have that a = 1 and b = n − 1.

Comparing the number of walks in these two cases, we find that the number of

walks is strictly higher with two equal groups if n2 − 4n + 4 > 0, which is the

case for n > 2.

1.A.4 Proof of Proposition 2

By Remark 1.4.1, the network is informative if and only if G is connected and

DG ≤ T , and player k is visible if and only if G−k is connected and DG−k ≤ T .

Since removing a node from the network cannot connect a disconnected network,

and can only increase social distances so that dij(G−k) ≥ dij(G) ∀ i, j, k ∈ N , if

G−k is connected and DG−k ≤ T , this implies that G is connected and DG ≤ T :

i.e. a player’s visibility implies the original network G is informative. When the

network is informative, wij(G) > 0 ∀ i, j ∈ N , and so k is visible if and only if

he is not obstructive.

1.A.5 Proof of Remark 1.4.3

There are n!
2(n−2)! pairs in a network of n nodes, and if L is the number of visible

nodes, there are L!
2(L−2)! pairs where both partners are visible. In an informative

tree network, all nodes except the leaf nodes are obstructive, because leaf nodes
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are the only ones who would not disconnect the network by their absence. Nodes

are defined as visible if they are not obstructive in an informative network, so

only the leaf nodes in a tree network are visible. All nodes except the centre of

the star are leaf nodes, and so the star has the maximum number of visible nodes

for any tree: L = n− 1.

1.B Obstruction by subsets of nodes in different

rounds of information transmission

Let Xτ be the subset of nodes who obstruct a signal in round τ of information

transmission. Let X = {Xτ ⊂ N , 1 ≤ τ ≤ T} be the set of those subsets. Let

lij(τ,G,X) be the number of walks between i and j of length τ when the set of

obstructing nodes is X.

To calculate this, recall that nodes only remember the information they receive

in the last round. So longer walks will not connect to other nodes, if the links it

would traverse are those which connect a node who is obstructing in the relevant

round of information transmission. So we have that, for example, lij(1,G,X) =

[G−X1 ]ij where G−X1 is the network G with those nodes in X1 removed. Then

we have that lij(2,G,X) = [G−X2G−X1 ]ij and lij(3,G,X) = [G−X3G−X2G−X1 ]ij,

and so on. In general, lij(τ,G,X) = [
∏τ

τ=1 G−Xτ ]ij, ensuring that the ordering

of matrices G is preserved.
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Cooperation in networks
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2.1 Introduction

The extent to which individuals can trust and cooperate with each other in the

absence of formal enforcement has important effects on economic outcomes and

has long been a topic of scholarly interest.11 Trust consists of “placing valued

outcomes at risk of others’ malfeasance”(Tilly, 2004) and empirical research on

the topic often begins with the survey question: “generally speaking, would you

say that most people can be trusted, or that you can’t be too careful in dealing

with people?” But where does this trust come from? In economic models, there

are two main reasons why one person might trust another, even in the face of

temptation. Firstly, because their partner could face punishment for behaving

badly, shifting their incentives away from shirking. In this case, if a player knows

the expected punishment facing their partner, they can decide whether to trust

them on not depending on whether they think the punishment is strong enough

to incentivise good behaviour. Secondly, their partner’s type could determine

their action: they may be a good type who is immune to temptation — or a bad

type who will always cheat no matter what. In this case, if a player knows his

partner’s type, then he knows whether to trust him or not.

In this chapter we build a model which examines both drivers of trust -

incentives and types - and show how each aspect depends on the structure of

a communication network which connects players. These links could depend on

many factors: family and kin relationships; friendships or trading relationships;

or proximity given by physical geography such as roads, rivers or the streets of

11Coleman (1988); Ostrom (1990); Fukuyama (1996); Putnam et al. (1994); Knack and Keefer
(1997); Leeson (2005).
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a town. We use a two-sided trust model that allows players to cooperate in a

prisoner’s dilemma game if and only if they both trust each other. Cooperation

is supported by community enforcement: the threat of punishment by other

members of the group for any deviation that is detected.12

This gives us our main result: a ‘cooperation network’ showing who within a

community can cooperate with whom, which is endogenous to the communication

network and the other parameters of the model. This network of cooperation

may be quite different from the original communication network, and shows how

certain network structures can be more or less supportive of overall levels of

cooperation, and hence lead to higher (or lower) payoffs.

We find that a pair of players can cooperate if and only if they can both trust

each other not to deviate. In particular, a player is trusted to cooperate if his

position in the network means that other players are able to communicate about

him. When trust depends on incentives, what matters is players’ expectations

of the likelihood of detection and hence punishment. This in turn is linked to

obstructing centrality given in Chapter 1: the average probability that other

players can communicate about someone, if he tries to obstruct the message.

We also identify a second aspect of trust: a player is trusting if his network

position means he is likely to detect deviations by others. When trust depends

on knowledge of players’ types, payoffs are linked to obstructed centrality, which

gives the average probability that a player will receive messages that have been

obstructed by others. Players who have better knowledge of past play because of

12Community enforcement can support cooperation in many settings (Greif, 1993), and its
reliance on information transmission between players has been highlighted by Kandori (1992):

“In small communities where members can observe each other’s behaviour [...] the
crux of the matter is information transmission among the community members.”
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their central network position can be more trusting.

We find that both aspects of trust increase with greater probabilities of

information transmission, expanding the number of players who can cooperate,

and leading to (weakly) higher welfare as information flow increases. These two

centrality measures, and hence the two aspects of trust, do not necessarily move

together, leading to some surprising results in certain networks. For example, we

might expect the centre of a star to be very trusted, because everyone can observe

him. Not so. In fact we find that for most parameters in a star network, players

on the periphery can cooperate with each other, but the centre is excluded from

cooperation. This is because if the centre deviates, the periphery players cannot

inform each other, because they are completely dependent upon him for their

communication (his obstructing centrality is zero, as shown in Chapter 1). Hence

they cannot trust him not to deviate. We also find cases where the two aspects

of trust are diametrically opposed to each other. In a line network, players in

the centre of the line cannot be trusted because those at the two ends of the line

cannot communicate with each other about the centre’s bad behaviour. On the

other hand, these central players are very trusting because their network position

means they are highly likely to receive signals about others’ deviations. In fact, in

the line network, those players who are neither in the centre nor the end have the

highest capacity to cooperate, echoing the concept of middle-status conformity

(Phillips and Zuckerman, 2001).13

13I am grateful to Birger Wernerfelt for providing this reference.
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2.1.1 Related literature

The important effect of networks in shaping and influencing economic outcomes

has long been emphasised, most recently by Jackson (2008) and Goyal (2007).

In particular, there is now a growing literature examining repeated games where

interactions and/or monitoring are influenced by a network connecting players,

surveyed comprehensively by Nava (2016).14

Dixit (2003b) looks at community enforcement when community members are

distant from each other. He allows distance to affect three things: the probability

players meet, the payoffs if they do, and also the probability they can exchange

information. In his model, a continuum of players are arranged around a circle,

and cooperation between pairs of players, who are matched in the first period of a

two-period game, can be supported by punishment in the final period. A player’s

incentive to deviate depends on the probability that a true signal emitted by

the victim of his deviation will be received by other players: his potential future

partners. Dixit finds the ‘size of the trading world’, an arc of his circle which

shows the greatest distance possible between cooperating players, and beyond

which they shirk – a similar concept to Fukuyama’s (2001) ‘radius of trust’. Dixit

finds that honesty prevails in a small enough world, and self-enforcing honesty

decreases as size increases. He also compares community enforcement to global

enforcement with different-sized worlds.

In this chapter, we modify Dixit’s continuous model of community

14Nava and Piccione (2014) examine the case of local public goods, where a player takes
the same action with respect to each of his neighbours, while Wolitzky (2013) finds a new
centrality measure that can influence a player’s robust maximum contribution to global public
goods. Karlan et al. (2009), Breza and Chandrasekhar (2015) and Annen (2003) investigate
the role of network links in supporting commitment in different settings.
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enforcement to apply in a network setting with discrete players. To do so to

specify the process by which information is transmitted within the network,

using the probabilities of node-to-node information transmission we developed

in Chapter 1. These word-of-mouth probabilities are based on diffusion (Banerjee

et al., 2013, 2014), where information flows through a limited number of links,

each link with a decay factor that represents the probability that two neighbouring

players in the information network pass a signal between them. The signal that

flows through our network is a player’s ‘bad reputation’, which Kandori (1992)

shows is adequate to ensure that a deviator will be punished by other members

of the community. To make our diffusion model more tractable, and following

Dixit (2003b), we make arguably rather strong assumptions about truth-telling,

abstracting from interesting issues around the possibilities of cheap talk and

fabricating rumours, which are studied in detail elsewhere (Ahn and Suominen,

2001; Bloch et al., 2014; Annen, 2011).

There are many possible ways information can flow in networks (Borgatti,

2005) and many sophisticated information structures have been proposed in this

field, and we believe ours is the first model to use probabilistic information flow.

Balmaceda and Escobar (2013) and Raub and Weesie (1990) model information as

flowing along one link in the network. Renault and Tomala (1998) and Wolitzky

(2014) let information flow through all links in a connected component, finding

that the potential for cooperation depends on whether the network is 2-connected.

Lippert and Spagnolo (2011) allow information to travel through network links

with a delay and highlight the importance of gatekeeping for cooperation, while

in an alternative model with delay Kinateder (2008) finds the diameter of the

network plays an important role. Bloch, Genicot and Ray (2008), Laclau (2014)
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and Larson (2014, 2017) allow messages to be passed to a subset of players, while

in a different setting, Gallo (2014) models information flow in a network as a

random walk process.

The communication network in our model means that different players may

have different beliefs about past play, depending on the signals they receive from

each other through the network, and so our repeated game falls within the class of

games of imperfect private monitoring (Kandori, 2002; Sekiguchi, 1997; Bhaskar

and Obara, 2002; Chen, 2010). Like Dixit (2003b), our solution concept is perfect

Bayesian equilibrium because our players use Bayesian updating when they

receive signals through the network. As described in Chapter 1, our probabilistic

information flow of signals (not beliefs) allows for Bayesian updating in networks,

in contrast to behavioural approaches often used in networks (Degroot, 1974;

Golub and Jackson, 2012).

In common with much of the literature on cooperation, we model pairwise

interactions between players where the stage game is the prisoners’ dilemma, as

do Lippert and Spagnolo (2011), Ali and Miller (2013), Bloch, Genicot and Ray

(2008) and Laclau (2012). In those papers, a network of relationships determines

both the interaction possibilities and the information flows between players. In

contrast, we allow interactions and monitoring relationships to be unrelated to

each other - players can play the stage game with partners with whom they do

not exchange information and vice versa, as is the case for Fainmesser (2012) and

Fainmesser and Goldberg (2012), although, different to them, our networks are

common knowledge. This allows us to highlight the importance of two distinct

aspects of enforcement: monitoring via the information network; and sanctioning

via the matching probabilities (Ostrom, 1990; Sobel, 2002). Like Kandori (1992)
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and Ellison (1994), each pair of players in our model has a given probability of

matching, and this is independent across periods.

There are two key cooperation-supporting punishment strategies seen most

frequently in the literature: contagion, used by Kandori (1992), Ali and Miller

(2013) and Jackson, Rodriguez-Barraquer and Tan (2012); and grim trigger or

ostracism (sometimes with forgiveness) used by Ahn and Suominen (2001), Raub

and Weesie (1990) and Ali and Miller (2016). In common with Dixit (2003b),

we apply a different approach: an incomplete information game where players

behave cooperatively in order to avoid being mistaken for a bad type whom future

partners would ostracise. This means that the punishment is renegotiation-proof

(Farrell and Maskin, 1989; Benoit and Krishna, 1993; Jackson et al., 2012), and

in our setting entails a finitely repeated game (Benoit and Krishna, 1985), in

contrast to much of the literature where infinite repetition is used. The bad type

also means that this is a game of reputation (Samuelson and Mailath, 2006) and

also allows us to pin down expectations off the equilibrium path.

The outline of the chapter is as follows. Section 2.2 describes the network

connecting players and the repeated game, and Section 2.3 describes the

equilibrium of interest. Sections 2.4 and 2.5 show how levels of trust, cooperation

and payoffs depend on the structure of the network. Section 2.6 concludes the

chapter.
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2.2 The network and the cooperation game

In this section, we begin the outline of our model by showing how information

flows in the network, and how matching probabilities and payoffs can also

depend on the network. The N players occupy the nodes of a fixed undirected

unweighted network g such that {i, j} ∈ g if i and j are neighbours. A walk

of length a between two nodes i and j in network g is a sequence of nodes

(i = x0, x1, ..., xa−1, xa = j) such that for every r ∈ {1, 2, ..., a}, we have that

{xr−1, xr} ∈ g. If the nodes are distinct, the sequence is a path, and if in addition

i = j, it is a cycle. Let G = [gij] be the adjacency matrix of the network g,

where gij = 1 indicates that players i and j are neighbours so {i, j} ∈ g, and

gij = 0 otherwise (and gii = 0 ∀i ∈ N by convention). The network G is common

knowledge; all players know each other’s network positions. Let Ni = {j : gij = 1}

be the set of player i’s neighbours and |Ni| be i’s degree.

As usual, dij(G) is the length of the shortest path between two players i and j

in the network G, which is known as the social distance. Let DG = max{dij(G)}

be the diameter of the network G: the length of the longest shortest path. Two

players are connected if there exists a path of finite length between them, and

a network is connected if all players are connected to each other. If G is not

connected, its diameter is infinite. Let G−k be the adjacency matrix of the

network with player k removed - that is, the n × n adjacency matrix created

when all the entries in the kth row and column of G are set to zero. If G−k

is connected then the network is 2-connected with respect to k; the network is

2-connected if it is 2-connected with respect to all players.
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2.2.1 Information transmission

In this chapter we make use of the obstructed probabilities of information diffusion

that were developed in Chapter 1, based on the process of obstructed diffusion

given in Definition 5. With obstructed diffusion, a signal flows through each link

in the network with a fixed probability p, up to a maximum number of links

T . The parameter p denotes how likely players are to meet and/or exchange

information with their neighbours. For example, if p = 1 and T = 1, information

is passed with certainty only to a player’s direct neighbours. When information

is transmitted by obstructed diffusion, players can choose whether or not to pass

on signals they receive, but cannot fabricate them. Passing information on or

concealing it are both costless.

2.2.2 Matching probabilities

The repeated game of cooperation has three periods: t ∈ {1, 2, 3}. In periods 1

and 3, players are matched in pairs and the stage game is played. In period 2,

information is transmitted in the network. There are n players in N = {1, ..., n}

where n > 2 and even. Let µti denote player i’s partner in periods t ∈ {1, 3}, and

µt list the partnerships in each period, with µ = (µ1, µ3). Matching probabilities,

mij ∀i, j ∈ N , determine the likelihood that any two players are matched as

partners, and these are independent across periods: 15

Pr{µti = j} = mij = mji = Pr{µtj = i} ∀t ∈ {1, 3} (2.2.1)

15This is for simplicity; matching probabilities do not need to be constant across both periods
for our results to go through.
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Let mij > 0 ∀ j 6= i, so that there is a positive possibility of meeting any

player. Also let mii ≥ 0, which, if positive, signifies that a player is ‘sitting out’

of the stage game without a partner; that is, we do not require perfect matching

where everyone has a partner. Players know the identity of their own partner,

but not who anyone else has matched with, as in Kandori (1992). The matching

probabilities are collected in the symmetric doubly stochastic matrix M = [mij].

Our baseline model allows for any matching probabilities, but it may often be

the case that local matching would apply, where matching probabilities depend on

the network. In particular, local matching could mean that probabilities decrease

with social distance, and that there is a parameter, Tm, which gives the maximum

social distance over which players have a non-negligible probability of matching.

We consider this case in an example network in Section 2.4 and Appendix 2.D.

2.2.3 The stage game

The stage game is the prisoners’ dilemma with exit (Benoit and Krishna, 1985),

augmented by an additional ‘dangerous’ action Bi, which is very damaging for a

player’s partner: e.g. ‘steal everything’. The action space for each player i ∈ N

is Ai = {Ci, Di, Oi, Bi} where Ci is cooperation and Di is defection, Oi is exit

and Bi is the dangerous action. Table 2.1 shows how payoffs depend on actions.

2.2.3.1 Player types

There are two types of player in the set Ξ = {S-type, B-type}. Most of the

players are strategic or ‘S-type’; but there are a few bad apples — ‘B-types’

— who lurk in the population. This is a game of incomplete information as
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Cµti Dµti
Oµti

Bµti

Ci 1 −β 0 −β
Di α σ 0 −β
Oi 0 0 0 0
Bi xi xi xi/2 xi

Table 2.1: The stage game between player i and his partner µti. Payoffs are
symmetric, and the entries denote the payoffs of the row player.

players do not observe each other’s types — as well as imperfect monitoring

as described earlier. The bad type is included in the game in order to make

punishment renegotiation-proof (Samuelson and Mailath, 2006), and to pin down

expectations off the equilibrium path. These bad or ‘inept’ types are sometimes

called commitment types because they are committed to a certain action. In our

case, we use a simple specification for the payoffs of the bad type.

We assume that xi = −x for S-types and xi = x for B-types, and that

x > β > α > 1 > σ > 0 and 2 > α − β. This implies that the dangerous action

Bi is strictly dominant for a B-type and strictly dominated for the S-type. In turn,

these assumptions mean that the stage game between two S-types is the usual

prisoners’ dilemma with exit, which has two Nash equilibria in pure strategies:

mutual defection (Di, Dµti
) or mutual exit (Oi, Oµti

). For a game between an

S-type player i and a B-type, the only Nash equilibrium is (Oi, Bµti
).

We make the following assumption about φ, an S-type player’s prior belief

that another player is a B-type.

Assumption 1 σ(1− φ)− βφ > 0

This assumption ensures that an S-type player will not exit against an unknown

player he expects to defect, in either period when the stage game is played.
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2.2.3.2 Payoffs and the network

We also assume that the payoffs in Table 2.1 are multiplied by the factor

γiµti > 0 to give the overall payoffs for player i facing µti 6= i, his match in

period t.16 These factors signify the possibility of higher or lower payoffs when

facing different partners, and are collected in the matrix Γ = [γij]. As Dixit

(2003b) describes, different levels of payoffs with different partners could reflect,

for example, complementarities in production with players who have different

skills or resources. These complementarities could be greater with players who

are at greater social distance, and we examine this case in Section 2.4.

A player’s payoff in each period depends only on his own action, that of

his partner, and on the identity of his match. Let ati ∈ Ai and Ui(a
t
i, a

t
µti
, γiµti)

respectively be i’s action and payoff in the stage game in period t ∈ {1, 3}, and

let at list the actions in period t.

2.2.4 Reputation and community enforcement

A player k gets a bad reputation (Kandori, 1992), rk = 1, if and only if their

partner in period 1 received a negative payoff.

rk = 1 ⇐⇒ U1
µ1k
< 0 (2.2.2)

Otherwise, they have rk = 0. So a B-type player will always get a bad reputation

(as long as he did not ‘sit out’ with no partner), as will an S-type player who

16If µti = i, a player ‘sits out’ of the stage game with no partner, payoffs are zero and γii = 0.
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defected against a cooperating partner.

Pr[rk = 1 | {k is B-type}, µ1
k 6= k] = 1 (2.2.3)

Pr[rk = 1 | {k is S-type}, µ1
k 6= k, Dk, Cµ1k ∈ a

1] = 1 (2.2.4)

In contrast to some reputation models, in our case a player’s reputation is not

publicly available — only some players hear about it. Let si(k) ∈ {{1}, 6©} be

the signal that player i sends about player k, where si(k) = 1 signifies k’s bad

reputation.17 We assume that a player emits a signal about another player if and

only if that player has a bad reputation and was his period 1 partner. That is,

only the true victim of a deviation will emit a signal. This assumption requires

a certain degree of truth-telling because we assume that players do not initiate

false bad reputations about other players.

Assumption 2 si(k) = 1 ⇐⇒ rk = 1 and µ1
k = i ∀i, k ∈ N

After the signal is emitted, it may be received by other players: let ρj(k) ∈

{{1}, 6©} be the signal that j receives about k. The probability pij(k) that a

signal emitted by i about k will reach j is as follows.

Pr [ρj(k) = 1 | si(k)] =


pij(k) if si(k) = 1

0 if si(k) = 6©
∀i, j, k ∈ N (2.2.5)

Due to Assumption 2, note that pij(k) = 0 if k ∈ {i, j}, because a player cannot

17Samuelson and Mailath (2006) show how this separating equilibrium with a bad type is one
alternative for reputational games; the other is a pooling equilibrium with a ‘good type’. See
Appendix 2.A for this alternative in our model. Spence (1973) and Breza and Chandrasekhar
(2015) use a specification of the reputation model where both good and bad signals are emitted.
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emit a signal about himself — only his victim can.

2.2.5 The repeated game

Players are risk-neutral von Neumann-Morgenstern expected utility maximisers,

with expected utility function vi(·). Given players’ common discount factor

δ ∈]0, 1], payoffs in the repeated game with strategy profile b and realised matches

µ are given by

ui(b, µ) = Ui(a
1
i , a

1
µ1i
, γiµ1i ) + δUi(a

3
i , a

3
µ3i
, γiµ3i ) (2.2.6)

Let bi = (a1i , a
3
i ) be player i’s pure strategy in the repeated game where

bi ∈ Bi = {{a1i , a3i } | a1i : µ1
i → Ai, a3i : {µ3

i , h
3
i } → Ai}. Let the pure strategy

space be B =
∏

i∈N Bi and b = (bi)i∈N be a pure strategy profile of the repeated

game.

Let ρj = (ρj(k))k∈N be player j’s ‘network signal’. Player i’s history

(information set) is empty in period 1, and is given by h3i = (µ1
i , r

i, rµ
1
i , ρi) at

the beginning of period 3. That is, he knows his own and his period 1 partner’s

reputations, and could also receive a network signal about any other player. But

he has not observed his period 1 match’s type, only their reputation. The repeated

game is defined as the tuple:

F ≡ (N, (Bi)i∈N , (ui)i∈N ,Ξ, φ,M,Γ, [pij(k)]i,j,k∈N)

2.2.6 Timing of the game

In summary, the order of the game is as follows:
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Period 1

• Players are randomly matched for period 1: µ1 is chosen

• Players choose actions a1 and receive payoffs

• Players’ reputations are updated, given their partner’s payoffs. Each player

i observes his own and his partner’s reputations ri, rµ
1
i with certainty

• For any player i with ri = 1, a signal is emitted by his partner, sµ1i (i) = 1

Period 2

• Information travels between players according to the probabilities

[pij(k)]i,j,k∈N

period 3

• Players observe a network signal ρi

• Players are randomly matched for period 3: µ3 is chosen

• Players choose actions a3 and receive payoffs

2.3 Equilibrium

We would like to construct an equilibrium with cooperation; in particular, where

cooperation in period 1 can be supported by community enforcement in period 3.
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We construct this equilibrium as follows.18 In period 1, players either cooperate

against a cooperating partner or defect against a defecting partner. In period 3,

almost all players defect. Those who do not defect choose exit, which happens if

and only if they know that their period 3 partner deviated from the equilibrium

strategy in period 1. So if a player deviates by defecting against a cooperating

partner in period 1, he knows that any player he is matched with in period 3 —

if they find out about his deviation — will choose exit against him, not defection.

According to Table 2.1, mutual defection gives a strictly positive payoff and exit

gives a zero payoff to both players, so a player could lose out on positive period 3

payoffs if he deviates in period 1. This expected loss — this punishment — can

sustain cooperation.

At this equilibrium, actions may not be symmetric — in period 1 some players

may be cooperating while others may not — but all players use the same decision

rule for their action choice, a rule that is based on the expected probability of

punishment. We are particularly interested in how many players cooperate at

this equilibrium, and which ones they are with respect to their network position.

Proposition 3. A perfect Bayesian equilibrium in the repeated game F for all

S-type players i ∈ N is given by the following equilibrium strategy:

Period 1 Player i cooperates with his partner j if and only if his expected losses

from deviation are above a threshold value, that is Lji ≥ L∗ij, and also that an

equivalent threshold value is met for his partner so that Lij ≥ L∗ji. Otherwise,

18We expect there to be many equilibria of this game; we do not attempt to characterise
them here. Like Dixit (2003b), we focus only on our equilibrium of interest. For example, there
is also an equilibrium where no information is passed, since players are indifferent to passing
information in the final round of information transmission, and so an equilibrium strategy
including information transmission is only weakly preferred.
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he defects.

Period 2 Player i passes on signals about other players k 6= i, but does not pass

on signals about himself.

Period 3 Player i exits against his partner k if and only if he believes that he

is a B-type: either having heard a signal about him or having matched with

him in the previous period. Otherwise, he defects.

Proof. See Propositions 4,5 and 6, and Remark 2.3.1.

If there were no B-types, this equilibrium would be subgame perfect Nash

equilibrium (Benoit and Krishna, 1985). The existence of the B-types implies that

the punishment is renegotiation-proof (Benoit and Krishna, 1993) and allows us

to pin down expectations off of the equilibrium path.19 The equilibrium concept

is perfect Bayesian equilibrium, because players update their beliefs about their

partner’s type according to the signal(s) they receive and Bayes’ rule.

To construct this equilibrium, we proceed by backward induction and examine

only the payoffs and decisions of the S-type players. To simplify the notation in

this section, let player i’s partner in period 1 be player j = µ1
i , and his partner

in period 3 be player k = µ3
i .

19This is because in equilibrium, B-types will deviate and any players who hear about it will
update their beliefs on those players’ types. Without the B-types, players would not expect
anyone to deviate. In this case, if they do hear about a deviation, their beliefs are not clearly
specified. The B-types also mean that punishment is renegotiation-proof because the preferred
action against a B-type player is always exit. If players face instead a known S-type who they
are supposed to punish with an exit action, it would be in both players’ interests to forgo
punishment and mutually defect.
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2.3.1 Period 3

In period 3 each player knows his own reputation and that of his period 1

partner, ri and rj; and his network signal ρi, but he does not know who anyone

else matched with or what transpired in those matches. There are two general

possibilities for player i’s history in period 3. If he met another S-type in period

1, he has history (ri = 0, rj = 0) since neither of them deviated. Alternatively

i met a B-type in period 1 and has history (ri = 0, rj = 1), since he received a

negative payoff at the hands of his partner.

In the conjectured equilibrium, if a player he hears a signal about another

player, he believes him to be a B-type with probability 1. This means that we

can combine (2.2.4) and Assumption 2 to give

Pr[{k is B-type} | ρi(k) = 1] = 1 (2.3.1)

Remark 2.3.1. The S-type player’s equilibrium strategy for period 3 is that he

exits if and only if he believes for sure that his partner is a B-type: either having

heard a signal about him or having matched with him in the previous period.

Otherwise, he defects.

Proof. Clearly, from Table 2.1, if i believes k is a B-type, his only rational action

is to choose exit. If i has not heard a signal, the probability20 that his partner

is a B-type is φ. By Assumption 1, this possibility of meeting a B-type is low

enough that expected payoffs from choosing defection are positive.

20In fact, player i’s updated subjective expected probability of each partner k being a B-type
could be lower than φ, and depends on the network probabilities of information transmission.
See Appendix 2.C.
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Given this equilibrium strategy, we can now identify the payoffs in period 3.

Proposition 4. Let V j
i (k) be the period 3 expected payoffs in the repeated game

F for an S-type player i who met player j, in period 1, did not deviate, and then

meets player k 6= j, i in period 3. Period 3 payoffs are

V j
i (k) = γik

[
σ(1− φ)− βφ(1−Qj

i (k))
]

(2.3.2)

Where Qj
i (k) is the conditional probability that an S-type i, having met another

S-type j in period 1, hears a signal about player k, if k is a B-type. If i meets

the same player j 6= i in both periods 1 and 3, payoffs are V j
i (j) = σ if j was an

S-type and zero if j was a B-type (since i knows this type of his period 2 partner).

Finally, V j
i (i) = 0 when i sits out.

Proof. for V j
i (k) with k /∈ {i, j}, there are two possibilities: either k is a B-type,

or he is an S-type. With probability 1−φ, k is an S-type, and payoffs are γikσ as

the equilibrium strategy requires both players to defect. With probability φ, k is

a B-type, and player i’s strategy depends on whether or not he has heard a signal

about him. Let this probability of a signal being received be given by Qj
i (k). If i

has heard, he will choose exit with payoff 0. If he has not heard, he will choose

defection with payoff −β.

Remark 2.3.2. The conditional probability Qj
i (k) is given by

∑
h 6=i,j phi(k)mhk∑

h 6=i,j mhk
.

Proposition 4 shows how players benefit from being trusting : if there is

a higher probability that they receive a signal about a bad reputation, their

expected payoffs are increased, because they are more likely to have heard if their

partner is a B-type and hence choose exit against him and protect themselves.
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This is the period of the game where payoffs depend on a player’s ability to detect

types. Here payoffs are increased when a player is more likely to receive signals.

2.3.2 Period 2

The possibility of obstruction provides an action space for the players in period 2

of our cooperation game. In our model, all signals are true and are distinguished

only by their subject — the identity of the player whose bad reputation is being

transmitted. There are T rounds (or sub-periods) of information transmission

within period 2. Players need to decide whether to pass on signals about each of

the players, in each of the rounds of information transmission. This means that

the action space for each player in period 2 consists of
∏

k∈N,τ≤T{pass on signals

about player k in round τ , do not pass on signals about player k in round τ}.

Recall from the previous Section that the S-type players’ equilibrium strategy

in period 3 is {exit if a signal has been received about your partner, otherwise

defect}. We can now observe the following.

Proposition 5. When players’ equilibrium strategies in period 3 are those given

in Remark 2.3.1, and signals flow in period 2 through the network by obstructed

diffusion given in Definition 5 of Chapter 1, a player who is the subject of a signal

strictly prefers to conceal it, and players who are not the subject of a signal weakly

prefer to pass it on.

Proof. See Appendix.

This means that we can identify the network links through which a signal

about a player can travel in period 2 — it is all the network links except those

which include the player himself. We can now identify the probabilities that true
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signals emitted about deviations in the first round will travel through the network

by obstructed diffusion to the other players, given the information structure Ω.

These are the obstructed word-of-mouth probabilities given in Definition 6 in

Chapter 1.

While we have observed that the B-type will not pass on information about

himself, a player cannot infer anything about his neighbour’s type just because

he does not receive any signal from him. This is due to the stochastic nature of

information transmission. 21

2.3.3 Period 1

Next we examine conditions under which we can expect cooperation in period 1.

Consider the case where player i expects his period 1 partner j to cooperate.22 If

i defects, j will get a negative payoff and send a signal about it, and any S-type

player who receives that signal will exit if they are matched with i in period 3.

Let V j
i =

∑
k 6=i V

j
i (k)mik =

∑
k 6=i,j V

j
i (k)mik + σmij (recall that V j

i (j) = σ

because j is an S-type). Let Vi =
∑

j 6=i V
j
i mij be i’s ex ante expected payoffs

over all possible period 1 partners j. Now we can write player i’s overall

expected payoffs from either cooperating or defecting when his S-type partner

21However, a player can use the structure of the network to update his beliefs about the
likelihood of his period-3 partner being a B-type, given that he did not hear a signal about him.
This depends on the network links between his partner’s possible period 1 matches and himself
and is given in Appendix 2.C. These beliefs would not change his behaviour due to Assumption
1: he would only choose exit against a certain B-type.

22Note that meeting a B-type does not impact a player’s incentive for cooperation, because
he cannot impose a negative payoff on a B-type and hence cannot get a bad reputation from
defecting against him when he should have cooperated. Hence we can exclude the possibility of
meeting a B-type in period 1 from our study of the equilibrium incentives for cooperation. In
this case his payoffs are βγij +

∑
k 6=i,j V

j
i (k)mik, which enter the expression for overall payoffs

given later in Proposition 9.
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j cooperates.23

vi(C
1
i , C

1
j ) = γij + δV j

i (2.3.3)

vi(D
1
i , C

1
j ) = αγij + δV j

i − δσ(1− φ)
∑
k 6=i

γikpjk(i)mik (2.3.4)

As shown in (2.3.4), expected losses that i incurs if he defects against j who

cooperates are σ(1− φ)
∑

k 6=i γikpjk(i)mik, which is broken down as follows.

• The payoff from mutual defection in period 3 is σ (the ‘reward’ for

cooperation);

• He will only be punished if his future partner is an S-type, which happens

with probability (1− φ);

• Punishment occurs if a signal emitted by j about i reaches his potential

future partners k ∈ N \ i, the probability of which is given by pjk(i). This

is weighted by γikmik, the probability i matches with k, and the payoffs if

he does;

• This is summed over all k 6= i because if i matches with himself, payoffs

are zero. Meanwhile if he matches with j again, payoffs are also zero as j

knows for sure about his deviation because pjj(i) = 1.

Cooperation requires vi(C
1
i , C

1
j ) ≥ vi(D

1
i , C

1
j ) and we can rearrange (2.3.3)

and (2.3.4) to find that cooperation for i, when matched with a partner j who

he expects to cooperate, requires expected losses Lji from deviation to be above

23By Assumption 1, players will not exit against an unknown player in period 1: they either
cooperate or defect.
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a threshold L∗ij, where

Lji ≡ σ(1− φ)
∑
k 6=i

γikpjk(i)mik ≥
γij(α− 1)

δ
≡ L∗ij (2.3.5)

We can say that if Lji ≥ L∗ij, then player i is trusted by player j. This is

because player i has an incentive such that if he expects player j to cooperate,

player i will also cooperate.

We can observe that a player’s propensity to cooperate is weakly increasing in

his own losses. Higher expected losses from a deviation are to a player’s advantage

because they give him an incentive to be honest. If losses are high enough, he is

more likely to be trusted, and therefore more likely to take part in cooperation,

with higher payoffs.

In particular, i’s expected losses from defecting against j are strictly increasing

in the probabilities that j can inform other players — i’s potential future matches

— about a deviation by i. Player i is more willing to cooperate with j, if j is

better able to inform other players about i’s bad behaviour. So it is better for

incentive-based trust if players can talk about each other.24 The extent of which

they can depends on the network structure and in fact, because of obstruction, on

the network structure that remains when each node is removed. This is because

each player is unable to commit to passing a message about their deviation, and

has to rely on others to do so, incentivising him with their threat of gossip.

Secondly, the probabilities of information transmission are weighted by the

matching probabilities. This is because a player not only cares whether his

deviation would be detected — he cares if it is detected by the players he is likely

24Larson (2017) finds a similar result in a different setting.

77



2. Cooperation in networks

to match with, because only a matched partner can carry out the punishment.

Expected losses would be quite low if a potential victim who was only able to

inform players who were unlikely to match with a deviator in period 3.

This period of the model is where incentives play the key role. When incentives

matter, a player wants others to be able to communicate about him, encouraging

him to cooperate. This is in contrast to period 3, which focuses on types, where

a player wants to be able to communicate about others.

2.3.3.1 Cooperation

We have noted that if a player’s expected losses are less than L∗ij, he would defect.

But if one player in a pair is tempted to defect, knowing this, their partner

will defect too, even if their losses would otherwise be high enough to deter a

deviation. So we need both partners in a pair to have high enough expected losses

for cooperation to occur: they must both be trusted by each other. Otherwise,

they both defect, coordinating on a Nash equilibrium of the one-shot game and

both avoiding the bad reputation.25

Proposition 6. A pair of players will cooperate in period 1 if and only if the

expected losses of both players in the pair are above a threshold level, L∗ij for

player i matched with player j, ∀i, j ∈ N . Otherwise, they will both defect.

Proof. If Lji ≥ L∗ij and i expects j to cooperate, then i will also cooperate due to

(2.3.5). Similarly if Lij ≥ L∗ji, and j expects i to cooperate, j will also cooperate.

In contrast, if Lji ≥ L∗ij but i expects j to defect (which he would if Lij < L∗ji),

25As described earlier, we could apply this model to a one-sided trust game rather than a
two-sided cooperation (prisoners’ dilemma) game, and from that build a directed trust network
that shows which players would trust each other in the one-sided game.
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then i will also defect because σ > −β. Equally if Lji ≥ L∗ij but Lji < L∗ij, both

players defect. They also both defect if Lji < L∗ij and Lij < L∗ji. Hence both

players in a pair will cooperate if and only if both players have losses above the

relevant threshold.

2.3.4 Payoffs and centrality

We can now show how equilibrium payoffs depend on centrality measures, which

we can find from the network of information transmission.

Proposition 7. For uniform random matching and γij = 1 ∀j 6= i ∀i ∈ N ,

period 3 expected payoffs are increasing in obstructed centrality Pi(Ω), given in

Definition 10 of Chapter 1. That is, ∂Vi
∂Pi

> 0 ∀i, j ∈ N . For general matching,

period 3 expected payoffs are increasing in a weighted version of obstructed

centrality.

Proof. See Appendix

Players’ obstructed centrality shows how network position affects the average

probability that players receive signals via the network. This shows, on average,

how trusting they are — that is, how easily they can receive signals from the

network about other players.

Proposition 8. In period 1, whether players are trusted or not is linked to their

obstructing centrality defined in Chapter 1 as Ok = 1
(n−1)2

∑
i 6=i
∑

j 6=i pij(k,Ω).

Proof. We can rearrange (2.3.5) to give the following threshold requirement

∑
k 6=i

γik
γij
pjk(i)mik ≥

(α− 1)

δσ(1− φ)
(2.3.6)
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Taking the average expected loss over all potential period 1 partners j, we have

1

1−mii

∑
j 6=i

∑
k 6=i

γik
γij
pjk(i)mikmij ≥

(α− 1)

δσ(1− φ)
(2.3.7)

Which we can observe is a weighted version of obstructing centrality.

This shows us that the extent to which a player is trusted depends on their

obstructing centrality — that is, how easily other players can communicate about

them, when they cannot commit to pass information on about themselves. These

two results also highlight the symmetric case — when payoffs and matching

probabilities are the same for all players, and so γij = 1 ∀i, j with uniform

random matching. With symmetry, the two aspects of trust and the payoffs in

each period are directly linked to the centrality measures given in Chapter 1.

2.4 Welfare and the cooperation network

These equilibrium conditions mean that for any parameters of the model, we can

find out which players can cooperate with each other, and which ones cannot. We

list these cooperative pairs as the cooperation network, Gc, which is endogenous to

the information network G, the interaction network M and the other parameters.

Individual payoffs in period 1 depend on the number of cooperative relationships

each player has: that is, their degree (number of neighbours) in the cooperation

network. Hence welfare depends on the size of the trading world: that is, the

number of edges in Gc.
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Proposition 9. The cooperation network Gc = [gcij]ij is given by

gcij = gcji =


1, if Lji ≥ L∗ij and Lij ≥ L∗ji

0, otherwise

and overall expected payoffs in the repeated game F are given by

vi =
∑
j 6=i

[
γij
[
(1− φ)(gcij + (1− gcij)σ)− φβ

]
+ δV j

i − φδσmij

]
mij

Proof. This follows from (2.3.2) and (2.3.3).

Figure 2.1 shows some example cooperation networks for a group of eight

players, and the information networks they depend on.26 We can now use the

previous results to show the effect of the probabilities of information transmission

on cooperation.

Proposition 10. Trust, cooperation and welfare are weakly increasing in the

probabilities of information transmission.

Proof. See Appendix.

The observation that more information supports cooperation and welfare

is intuitive, and supports Kandori’s (1992) assertion that information about

a player’s reputation can sustain cooperation within a community. It also

26Parameters for all examples are: α = 1.15, δ = 0.95, β = 1.3, σ = 0.7. We set T = 6, for the
example of a weekly market day, which would have 6 intervening days during which information
flows through the information network before the next market day. Banerjee et al. (2013) set
T using the number of visits to a village made by data collectors, an average of 6.6.
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Figure 2.1: Random networks of eight nodes: G and Gc

echoes results from imperfect private monitoring in infinitely repeated games by

Sekiguchi (1997) and Bhaskar and Obara (2002) where, providing that monitoring

is sufficiently accurate, the symmetric efficient payoff can be approximated.

Experimental evidence such as that by Gallo and Yan (2015) also finds that

information plays an important role in supporting cooperation.

We showed in Chapter 1 how the probabilities of information transmission are

weakly increasing in the three aspects of the information structure Ω. Combining

this with Proposition 10, we can observe that cooperation and welfare are weakly

increasing in the three aspects of Ω. We can also note that the cooperation

network defined in Proposition 9, which lists the cooperative pairs in the game
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F , is endogenous to the information network G, the matching probabilities M

and the other parameters of the model. We say that a community of N players

has full cooperation if and only if Lji ≥ L∗ij∀i, j ∈ N .

2.4.1 Example: the size of the trading world

Dixit (2003b) arranged a continuum of players on a circle such that, as the

distance between players around the circle increases, there is a decreasing

probability of information transmission and matching, and increasing payoffs.

Using this model, Dixit identified the ‘size of the trading world’, the arc of the

circle within which players can cooperate with each other. Let us illustrate

our approach and the result that increasing information can support higher

cooperation and welfare in networks by using this example.

We arrange players in groups, and then place the groups in a circular shape

within the information network. The four groups labelled A, B, C and D, each of

four players, and the connections between the groups, are shown in the top left of

Figure 2.2. These groups form an equitable partition (Allouch, 2017; Powers and

Sulaiman, 1982) in that each member of a group has the same number of links to

other groups. This structure leads to a greater probability that group members

receive signals from each other than from players in other groups, who are located

further away in the information network. We also assign increasing payoffs to

matches with players in more distant groups, so that γAA = 0.9, γAB = 1, and

γAD = 1.1, and this is symmetric for each group.

To use Dixit’s model, we need decreasing matching probabilities with further-

away groups — players should be most likely to meet their own group, then the
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Figure 2.2: ‘The size of the trading world’ for groups in a network

neighbouring group, and least likely to meet the furthest group. To find matching

probabilities that fit this bill, we use a simple approach where the probability of

two players meeting is inversely proportional to their social distance, up to a

maximum distance Tm, beyond which it is negligible but positive.27 Let m1 be

the matching probabilities where Tm = 1 and players only have a non-negligible

probability of meeting their direct neighbours, m2 is the case when Tm = 2, etc.

mU gives uniform random matching where mij = 1
n−1 ∀ j 6= i and mii = 0.

In this example we use matching probabilities m3 which, since the diameter

of the information network is 3, means that all players have a non-negligible

27See the Appendix on local matching for details. There exist alternative approaches that
provide perfect matching and other desirable attributes, and we focus on this version only
because it is easily applicable to the examples we have chosen.
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probability of meeting. This structure gives us matching probabilities of: 0.105

for direct neighbours; 0.053 for players at social distance 2; and 0.035 for players

at social distance 3.

Having translated Dixit’s model into a network setting, we can see that our

‘cooperation network’ is analogous to Dixit’s ‘trading world’. The top right of

Figure 2.2 shows the cooperation network at p = 0.22. Cooperative links are

only present within groups: at this low level of p, players can only cooperate

with members of their own group. The lower two graphics in Figure 2.2 show

that as p increases and information is more likely to flow along the links of the

information network, players can cooperate with members of their neighbouring

groups, and then with groups further away. Welfare increases as there are more

links in the cooperation network: that is, the size of the trading world increases.

This illustrates the effect of increasing information transmission on the level of

cooperation in this example.

2.4.2 Example: the dilution of social capital

A key observation from the expression for expected losses in (2.3.5) was that

cooperation is more likely if a potential victim can tell the deviator’s future

partners about his behaviour. And while the information network determines who

the victim can communicate with, it is the matching probabilities that determine

whether or not those recipients of the signal are likely to be matched with the

deviator in future. Therefore the joint configuration of the matching probabilities

and information network are very important for the pattern of cooperation in our

repeated game.
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Figure 2.3: ‘The dilution of social capital’ for groups in a network

Figure 2.3 shows an example where, for a given information network, changes

in matching probabilities affect the overall level of cooperation. The information

network is shown in the top left, with two groups A and B of eight players each,

who are completely connected within the group, and where each player has one

connection in the other group. As before there are higher payoffs for playing the

other group: γAA = 1, γAB = 1.1; now p = 0.12.

The cooperation network under m1 is shown in the top right of Figure 2.3,

while the cases with m2 and mU are shown in the lower left. This shows how the

cooperation network with m1 just connects players within each group: so when

players are only likely to meet their direct neighbours in the information network,

they can cooperate within their own group but not with the other group. With

m2 and mU , there is an increased likelihood that players can meet those in the

other group, and we get the somewhat surprising result that compared to m1,

this leads to the breakdown of cooperation within each group. This is because

there is a much lower probability of a signal being received between groups, than

within groups. If a player meets someone from his own group in period 1, it is

not likely that they will be able to inform someone from the other group about

any deviation. So if there is a good chance that a player is matched outside his

group in period 3, the probability that he will be punished for a deviation against
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someone in his own group is lower, and he will be tempted to deviate against

them. This tallies with the case of ‘dilution of social capital’ described by Meagher

(2006), where the entry of additional groups into the informal sector of garment

and shoe production in Aba in South-Eastern Nigeria reduced cooperation within

the groups that were already occupying the sector.

2.4.2.1 Cooperation and social distance

In these examples we have shown two cases where players only cooperate within

their groups and are not able to trust or cooperate with players in other

groups. This echoes experimental work finding decreasing cooperation with

increased social distance by Chandrasekhar et al. (2014) and Riyanto and Yeo

(2014), among others. Our model identifies two mechanisms which could lead

to this outcome: if, as social distance increases, either or both of the matching

probabilities or the probabilities of information transmission decrease.

2.5 Trust and obstruction

Having shown that a network which supports greater information transmission

can support more cooperation, next we analyse the effect of different network

positions on individual levels of trust, cooperation and payoffs. We identified two

aspects of trust — players are trusted if other players can send and receive signals

about them, whereas they are trusting if they are likely to receive signals about

other players. Now we examine how network positions are linked with these two

aspects of trust.
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2.5.1 Trust and visibility

Following from our observations in the previous Section, it is clear that if player

i emits a signal about player k, the probabilities that the signal is received by

other players are determined by player i’s position in G−k, the network omitting

k. From Definition 6, we can see that obstructed word-of-mouth probabilities

are zero if the social distance between players is greater than T , the maximum

number of links that a signal can travel. This means that i’s signal about k

could only be received by players at a social distance of T or less from i in G−k.

Players can communicate if there is a positive probability that a signal sent by

one of them will be received by the other. As defined in Chapter 1, a player k

is visible if pij(k,Ω) > 0 ∀ i, j ∈ N \ k: that is, k is visible if everyone can

communicate about him. By Remark 1.4.1 in Chapter 1, if the network is 2-

connected and maxk∈N{DG−k} ≤ T , all players are visible. If, in addition p = 1,

then pij(k,Ω) = 1 ∀ i, j, k, which is equivalent to perfect information.

Remark 2.5.1. Given previous observations that V j
i =

∑
k V

j
i (k)mik and Lji =∑

k pjk(i)V
j
i (k)mik, a player’s potential losses from a deviation can reach his total

period 3 payoff if and only if he is visible. In particular,

• Player i is visible ⇐⇒ Lji ≤ V j
i ∀j.

• If player i is not visible such that DG−i > T but G−i is connected, then for

j, k such that djk(G−i) > T we have that Lji < V j
i and Lki < V k

i .

• If G−i is not connected then Lji < V j
i ∀j.

Only a visible player has a positive probability that everyone could find out

if he deviates against any of his matches, so only a visible player can risk the
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maximum losses from a deviation in every match. If a player is not visible, then

he cannot lose his total period 3 payoffs from a deviation in some (or all) of

his matches. This lack of visibility reduces his losses and hence his likelihood of

cooperation.

The link between player i’s visibility and the connectedness of G−i echoes

the importance of 2-connectedness for cooperation that is highlighted by Renault

and Tomala (1998) and Wolitzky (2014), because 2-connectedness is clearly a

necessary condition for visibility. Like Kinateder (2008), we also find that the

diameter of the network is important for cooperation, although in our case —

because of obstruction — it is the diameter of the network that remains when

a player is removed that matters. In fact, a sufficient condition for player i’s

visibility is that DG−i ≤ T .

2.5.2 Example: star network

We can illustrate the importance of 2-connectedness with an example information

network: the star network, shown in the top left of Figure 2.1 with eight players.

The star network is not 2-connected with respect to the centre because without

him, all other players — the periphery — are singletons. On the other hand,

the network is 2-connected with respect to the periphery players because they

would not disconnect the network by their absence. Since the star network is not

2-connected with respect to all nodes, it is not 2-connected.

The cooperation network in the case of uniform random matching is shown

in the lower left of Figure 2.1 (p = 0.5). Perhaps surprisingly, we observe that

the player in the centre of the star cannot cooperate with any other player, while
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Figure 2.1: Star network with eight players
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the players on the periphery can all cooperate with each other. To find out why,

we can look at the losses in each partnership, shown in the chart on the right

of Figure 2.1. The solid red line denotes the threshold losses L∗ that must be

attained by both players in a match to ensure cooperation 28. The crosses show

player 2’s losses from defecting in each of his partnerships, and the triangles show

his partners’ losses.

We can see that player 1, in the centre of the star, can trust player 2 on the

periphery. This is because 2’s losses from a deviation against 1 are high, since a

signal emitted by 1 about 2’s deviation only has to travel one link to be received

by the other periphery players — 2’s potential future partners. But 2 cannot

trust 1 in return, because 1’s losses when matched with 2 are below the threshold

line L∗. This is because if 1 were to deviate against 2, player 1 would obstruct

any signal 2 would send about it — and without 1, player 2 is a singleton and so

could not tell anyone. So 2 expects 1 to defect and therefore will also defect, and

cooperation breaks down between them. This structure recalls the gatekeeping

and end network effects highlighted by Lippert and Spagnolo (2011), because

player 1 acts like a ‘gatekeeper’ of the information network with respect to the

periphery players. In fact, the periphery nodes could cooperate with the centre

if they had additional links to each other. This recalls Myerson’s (2008) model

of an autocrat whose support depends on the ability of his ‘courtiers’ to observe

his behaviour towards each of them, ensuring fairness.

On the other hand, as shown in the chart, periphery players have relatively

high losses when matched with each other, and these are symmetric, so they can

all cooperate with each other. This is because player 1 in the centre of the star

28This threshold is the same for all players since γij = 1 ∀j 6= i in this example.
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Figure 2.2: Line network with eight players

provides a walk of length two between all the periphery players, so a signal is very

likely to pass between them if any of them deviate, leading to high losses and

therefore more trust. The centre of the star misses out on cooperation himself,

but supports cooperation by the other players, by ensuring they can communicate

with each other.

For a given number of players in a connected information network that is

informative and a tree, Remark 1.4.3 in Chapter 1 showed that the star network

has the most visible players of any tree configuration. This means that the star

network has the most partnerships with maximum losses, of any tree network.

2.5.3 Example: line network

We can illustrate the links between payoffs and the different centrality measures

using the line network of eight players, shown in the top left of Figure 2.2. The

cooperation network with uniform random matching is shown in the bottom

left, and payoffs and obstructed centrality are shown on the right. Obstructed
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centrality increases for those players located nearer to the centre of the line. As

expected from Proposition 7, period 3 payoffs rise monotonically with obstructed

centrality, because players who are more likely to receive information from the

network are more trusting.

On the other hand, there is a non-monotonic relationship between period 1

payoffs and obstructed centrality. The chart shows that players 2, 3, 6 and 7

have the highest cooperation levels in equilibrium, but only moderate levels of

obstructed centrality. Looking at the cooperation network, we can see the same

pattern: players 1 and 8 are not able to cooperate with anyone, and players 4

and 5 have fewer links in the cooperation network than players 2, 3, 6 and 7.

This non-monotonic relationship between centrality ranking and cooperation is

similar to a concept known as middle-status conformity, identified by sociologists

Phillips and Zuckerman (2001), where those with a ‘middle’ level of status or

ranking are most likely to conform to society’s norms. In another setting, Butler

et al. (2009) also find a non-monotonic relationship between payoffs and trust.

2.5.3.1 A counterfactual without obstruction

We can use word-of-mouth probabilities — without obstruction — as a useful

counterfactual to investigate the effect of obstruction on cooperation in this

network. These are given in Definition 2 in Chapter 1 and allow us to

construct counterfactual expected losses without obstruction, that is LW j
i =∑

k wjk(Ω)V j
i (k)mik compared to Lji =

∑
k pjk(i,Ω)V j

i (k)mik. These gives us a

counterfactual cooperation network, showing which players would cooperate, were

it not for obstruction. This hypothetical network (not shown) includes additional

cooperative links between players: 4 with 2, 3 and 5; and 5 with 4, 6 and 7.
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This means that the losses without obstruction — LW j
i — for the partners of

players 1 and 8 are still too low to deter defection; we say that 1 and 8 have poor

network positions in an absolute sense because they are too ‘tempting’ for anyone

to cooperate with, even if they did not obstruct their signals: they can trust no-

one. On the other hand, we find that 4 and 5 have three more cooperative links

in the counterfactual network; in fact the non-monotonic relationship between

cooperation and obstructed centrality disappears when we remove the effect of

obstruction. We say that 4 and 5 have poor relative network positions because

they would have cooperated, were it not for their obstruction of signals. Players

with poor network positions in either sense reduce cooperation levels and hence

welfare.

2.6 Conclusion

This chapter investigates the extent of cooperation in a finitely repeated game in

a network setting. We apply Dixit (2003b)’s continuous model to a network:

a discrete community of players who occupy its nodes. The players are

randomly matched in pairs in the first and last periods, and play the stage

game of a modified prisoners’ dilemma. From the fixed information network, the

model allows us to generate an endogenous network of potentially cooperative

relationships. From this we can characterise how levels of cooperation depend on

the structure of the information network. Individual players’ payoffs are linked to

whether their network positions mean they are trusting and/or trusted. Players

are trusting if they are likely to receive information from the network, while
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they are trusted if others can pass signals about them. A pair of players can

only cooperate if they are both trusted by each other. Using the word-of-mouth

probabilities for information transmission developed in Chapter 1, and find that

cooperation and welfare both increase with these probabilities.

We find that players with higher obstructed centrality (constructed from

the probabilities of information transmission) receive more information from

the network and hence are more trusting. But there can be a non-monotonic

relationship between centrality and the extent to which players are trusted,

leading to cooperation patterns with middle-status conformity. This is interesting

because one might expect the most central player to have the highest payoffs,

while we find that a player’s central position may actually reduce his capacity to

be trusted by others. This is because players cannot commit to pass on a signal

about their own bad reputation. Knowing this, players who rely on a central

player for information transmission may not trust him, because they know he

will obstruct any signal that they send to warn others about his bad reputation.

This highlights the importance of 2-connectedness and cycles for cooperation and

welfare, because these structures can prevent players from completely obstructing

signals about their reputations travelling between other players, ensuring that

they are visible. Since the non-monotonic relationship between cooperation and

centrality disappears in our counterfactual example of a line network without

obstruction, we conjecture (though we have no formal proof) that general results

may exist linking middle-status conformity to line networks, or other acyclic

networks.

The possible link between middle-status conformity and acyclic networks

may also be of empirical interest. There is some experimental evidence that
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players with high centrality may be less ‘reciprocal’ in trust games (Riyanto

and Yeo, 2014; Barr et al., 2009). Obstruction may also imply that acyclic

networks are less likely to be observed in communities that use this kind of

community enforcement mechanism. Where acyclic networks are present, we

may find that central individuals seek other ways to dampen the negative effect

of obstruction on their capacity to cooperate. For example, they may enlist their

own neighbours (not just the neighbours of their potential victim) as witnesses

to observe their actions, increasing their potential losses and making them more

trustworthy. Secondly, obstructive, bridging players may specialise in information

transmission: even though they cannot pass signals about themselves and are

hence not trusted, they could share in the benefits of cooperation if transfers from

other cooperating parties can be arranged. Finally, local matching may have a

mitigating effect because if someone is more likely to meet the same player again,

he will have higher losses from deviating against them, even if that player cannot

communicate with others due to obstruction.

Some interesting extensions suggest themselves. The model looks only at the

case of a bad reputation, and there may be interesting effects when a ‘good label’

rather than a bad one is emitted, or both, as in Spence (1973) and Breza and

Chandrasekhar (2015). It could also be interesting to introduce some stochasticity

in order to investigate the effect of risk on cooperative relationships, as observed

by Baker (1984). Lastly, it may be possible to use the model to investigate the

interaction of formal and informal enforcement regimes, as examined by Kranton

(1996), Dhillon and Rigolini (2011) and Dixit (2003a).
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2.A A good reputation

In our framework, an alternative specification with a good signal would work as

follows.

Period 3 For punishment to work, there would be a parametric assumption that

a player would only be rewarded for cooperation in the first round if a good

signal about them was received by their final-round partner. This means

that if a player received a good signal about their partner in the final round

they would they defect, and otherwise they would punish (exit). Hence

Assumption 1 could no longer hold. And it would imply that some S-type

players would be punished in equilibrium, because a signal was not received

by their partner - in contrast to our model with a bad signal, where only

the B-types are punished.

Period 2 With a good signal, this would mean everyone had an incentive to pass

on a signal about themselves and about other players. This is because the

reward for cooperation (mutual defection) would only be possible if both

partners received a good signal about each other. This means there would
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be no obstruction.

Period 1 In the first round, incentives to be honest would depend on the

probability that a good signal emitted by a player’s partner would reach

his future partners, in the same way as the current model - but without

obstruction. However, because Assumption 1 would not hold, players who

could not cooperate would coordinate on the Nash equilibrium of mutual

exit, rather than mutual defection.

This is an interesting thought experiment because it suggests that there may

be different welfare impacts of either good or bad signals in different networks and

with different parameters. On one hand, cooperation might be higher with a good

signal because there is no obstruction and so greater probabilities of information

transmission. But on the other hand, welfare might be lower because some S-types

would be wrongly punished in period 3, and because non-cooperating partners in

period 1 could not defect, only exit.

2.B Proofs

2.B.1 Proof of Remark 2.3.2

Qj
i (k) is the conditional probability that, if player k is a B-type, an S-type player

i who matched with another S-type player j in period 1 will hear a signal about

player k:

Qj
i (k) ≡ Pr

[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]
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By the law of total expectations, Qj
i (k) is given by:

Pr
[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]

=
∑
h∈N

[
Pr
[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}, µ1
k = h

]
Pr
[
µ1
k = h | k, µ1

k /∈ {i, j}
]]

The second term is

Pr
[
µ1
k = h | k, µ1

k /∈ {i, j}
]

=
Pr [(µ1

k = h) ∩ (k, µ1
k /∈ {i, j})]

Pr [k, µ1
k /∈ {i, j}]

=


mhk∑

h 6=i,j mhk
∀ h /∈ {i, j}

0 ∀ h ∈ {i, j}

The first term is

Pr
[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1k /∈ {i, j}, µ1k = h

]
=



0 ∀ k ∈ {i, j}

0 ∀ h ∈ {i, j}

phi(k) otherwise

Therefore Qj
i (i) = Qj

i (j) = 0, and otherwise we have that:

Qj
i (k) =

∑
h6=i,j phi(k)mhk∑

h6=i,jmhk

∀ k /∈ {i, j} (2.B.1)
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2.B.2 Proof of Proposition 5

Assume γij = 1 ∀i, j WLG. In Definition 5 we assumed that the probability

of information travelling along each walk is independent, implying that players

only recall signals they receive in the last round of information transmission, and

forget signals received and passed on in earlier rounds. There are four cases.

An S-type player and a signal about himself: This S-type player has deviated

in period 1. He will have strictly lower payoffs if his future partner is an S-type

and has heard about his deviation, because they will exit against him instead of

defecting. His period 3 payoffs are unchanged if he meets a B-type (because a

B-type would not ‘punish him’. He could match with anyone in period 3 (because

mij > 0 ∀ j 6= i) and because he does not know which of these players are S-

types and which are B-types, he does not want any of them to find out about his

deviation. Therefore he will strictly prefer to conceal a signal about himself from

all other players. This holds for all rounds of information transmission.

An S-type player and a signal about someone else: S-type players are not

expecting another S-type to deviate, so a signal about another player would tell

them that he is a B-type. An S-type player who has heard a signal about a

B-type player, and meets him in period 3, has payoff 0. If he has not heard the

signal, his payoff on meeting a B-type is −β. If he meets an S-type, his payoffs

are unchanged by hearing a signal about a B-type. As he could meet any of the

players in period 3, an S-type player strictly prefers to receive a signal about a

B-type.

However it is not the case that passing on a signal always increases the

probability that it is received. Sometimes it may have no effect. For example, a
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player passing on a signal in round T cannot increase his probability of receiving a

signal, since it will not have time to return to him, as there are no more rounds of

information transmission. So he is indifferent between the actions of either passing

on a signal or not in round T . However, if players do not pass on the signal in

round T , they cannot increase their probability of receiving it by passing it on in

round T − 1, and so information transmission could quickly unravel. Specifically,

a player can strictly increase his probability of receiving a signal by passing it on,

if and only if other players pass it on in the following rounds, and he is part of a

walk that returns to his network position in a number of links which is a factor of

the number of information transmission rounds remaining. We can observe that

the strategy for all S-type players to pass on signals about other players in all

rounds is weakly preferred.

A B-type player and a signal about himself: A B-type’s payoffs are x/2 if

his future partner has heard the signal and x otherwise, so he strictly prefers to

conceal a signal about himself.

A B-type player and a signal about someone else: In this case, a B-type’s

payoffs in period 3 are not affected by whether he has heard a signal about

another B-type or not. So he is indifferent between passing signals about other

players and not passing them. Therefore the strategy to pass on signals about all

other players in all rounds is weakly preferred. This means that in our model a

B-type player has the same strategy for passing on signals as does an S-type. This

seems reasonable: a B-type player may not wish to draw attention to himself by

not passing on signals about other players, when it would not decrease his payoffs

to do so.
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2.B.3 Proof of Proposition 7

For uniform random matching and when γij = 1 ∀j 6= i ∈ N (γii = 0), we

want to show that period 3 payoffs are increasing in obstructed centrality, which

is given in Definition 10 as

Pi(Ω) =
1

(n− 1)2

∑
k 6=i

∑
j 6=i

pij(k,Ω)

Ex ante, i could meet any player k in period 3, and any player j in period 1. So

we want to find Vi, the average expected period 3 payoffs over any k and any j,

and check that it is (weakly) increasing in Pi.

Vi =
1

(n− 1)2

∑
k 6=i

∑
j 6=i

V j
i (k)

=
1

(n− 1)2

∑
k 6=i

∑
j 6=i

[
σ(1− φ)− βφ(1−Qj

i (k))
]

= σ(1− φ)− βφ+ βφ
1

(n− 1)2

∑
k 6=i

∑
j 6=i

Qj
i (k) (2.B.2)

Next, rewriting (2.B.1) with uniform random matching gives the following

expression

Qj
i (l) =

1

n− 2

∑
h6=i,j

phi(l) (2.B.3)

Let Pi(k) = 1
n−1

∑
h6=i phi(k), noting that 1

n−1
∑

k 6=i Pi(k) = Pi. We can substitute

this into the expression for Qj
i (k) (2.B.1) to give

Qj
i (k) =

1

n− 2

[∑
h

phi(l)− pji(k)

]
=

1

n− 2
[(n− 1)Pi(k)− pji(k)]
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Next we take the averages required

1

(n− 1)2

∑
k 6=i

∑
j 6=i

Qj
i (k) =

1

(n− 1)2

∑
k 6=i

∑
j 6=i

1

n− 2
[(n− 1)Pi(k)− pji(k)]

=
1

(n− 1)(n− 2)

∑
k 6=i

[
(n− 1)Pi(k)− 1

(n− 1)

∑
j 6=i

pji(k)

]

=
1

(n− 2)

[
(n− 1)Pi −

1

(n− 1)2

∑
k 6=i

∑
j 6=i

pji(k)

]

=
1

(n− 2)
[(n− 1)Pi − Pi] = Pi

And therefore from (2.B.2) we have that ∂Vi
∂Pi

= βφ > 0, as required.

In the case of general matching, (2.3.2) shows that the only way that

network probabilities affect payoffs is via Qj
i (k). Clearly

∂V ji (k)

∂Qji (k)
= φβ > 0 as

required. Let
∑

k 6=i γikmik = γ, which would imply that 1
n−1

∑
k 6=i γik = γ in the

uniform matching case.

Vi =
∑
k 6=i

∑
j 6=i

V j
i (k)mijmik

=
∑
k 6=i

∑
j 6=i

γik
[
σ(1− φ)− βφ(1−Qj

i (k))
]
mijmik

=
∑
k 6=i

γik
∑
j 6=i

[σ(1− φ)− βφ]mijmik + βφ
∑
k 6=i

∑
j 6=i

Qj
i (k)mijγikmik

= γ(1−mii)[σ(1− φ)− βφ] + βφ
∑
k 6=i

∑
j 6=i

Qj
i (k)mijγikmik

Let
∑

h6=i phi(k)mhk = Pm
i (k). Now we have that

Qj
i (k) =

∑
h6=i,j phi(k)mhk∑

h6=i,jmhk

=
Pm
i (k)− pji(k)mjk

1−mik −mjk

(2.B.4)
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Now we need to find
∑

k 6=i
∑

j 6=iQ
j
i (k)mijγikmik =

=
∑
k 6=i

∑
j 6=i

Pm
i (k)− pji(k)mjk

1−mik −mjk

mijγikmik

=
∑
k 6=i

∑
j 6=i

[
Pm
i (k)

1−mik −mjk

− pji(k)mjk

1−mik −mjk

]
mijγikmik

=
∑
k 6=i

[∑
j 6=i

Pm
i (k)

1−mik −mjk

mij −
∑
j 6=i

pji(k)mjk

1−mik −mjk

mij

]
γikmik

=
∑
k 6=i

[
Pm
i (k)

∑
j 6=i

mij

1−mik −mjk

−
∑
j 6=i

pji(k)mjkmij

1−mik −mjk

]
γikmik

Clearly, the second term is another weighted version of Pi(k), but using different

weights to Pm
i (k). Averaging both these terms over k means that we have a

weighted version of Pi, which we call PX
i . We have that ∂Vi

∂PXi
= βφ > 0 as

required.

2.B.4 Proof of Proposition 10

The expression for each player’s utility given in Proposition 9 is strictly

increasing in both the number of cooperative partnerships, and in period 3

payoffs. From Proposition 6 the number of cooperative partnerships is weakly

increasing in the losses in each partnership, and from (2.3.5) losses are strictly

increasing in information transmission probabilities. From Proposition 7, period

3 payoffs are increasing in information transmission probabilities. Putting these

together, overall utility is weakly increasing in the probabilities of information

transmission. So more information, in the sense of greater probabilities of

information transmission, weakly increases the levels of cooperation and welfare
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in this repeated game.

2.C Updated subjective probabilities

If i meets k in period 3 and has not heard any signal, there are two possibilities:

either k is an S-type; or k is a B-type but i has not heard about it. Player i will

still defect against the unknown player k due to Assumption 1. Now φji (k) is his

updated belief that k is a B-type player, given that he has heard no signal about

him, that is:

φji (k) ≡ Pr[{k is B-type} | ρi(k) = 6©, ri = rj = 0, k, µ1
k /∈ {i, j}]

Let Qj
i (k) be the conditional probability that, if k is a B-type, an S-type player

i who matched with another S-type player j in period 1 will hear a signal about

player k (see next subsection).

Qj
i (k) ≡ Pr

[
ρi(k) = 1 | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]

To find φji (k), we need the following expressions:

Pr
[
ρi(k) = 6© | {k is S-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]

= 1

Pr
[
ρi(k) = 6©∩ {k is S-type} | ri = rj = 0, k, µ1

k /∈ {i, j}
]

= 1− φ

Pr
[
ρi(k) = 6© | {k is B-type}, ri = rj = 0, k, µ1

k /∈ {i, j}
]

= 1−Qj
i (k)

Pr
[
ρi(k) = 6©∩ {k is B-type} | ri = rj = 0, k, µ1

k /∈ {i, j}
]

= φ(1−Qj
i (k))
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Using the final equation from this list and Bayes’ rule we have that

φji (k) = Pr[{k is B-type} | ρi(k) = 6©, ri = rj = 0, k, µ1
k /∈ {i, j}]

=
φ(1−Qj

i (k))

φ(1−Qj
i (k)) + 1− φ

=
φ(1−Qj

i (k))

1− φQj
i (k)

(2.C.1)

2.D Local matching based on social distance

As discussed in Section 2.2, we might expect that matching probabilities would

decrease as social distance increases, which we call local matching. Here we

propose a simple form for this function. For this purpose, we assume there is

a parameter, Tm, which gives the maximum social distance over which players

have a non-negligible probability of matching. Since our model requires a positive

probability for any pair to match, beyond Tm we assume the matching probability

is negligible but positive.

Our function takes the form mij = mTm(dij(G)) = 1
λdij(G)

for some parameter

λ, so that matching probabilities are inversely proportional to their social

distance.

As set out in Subsection 2.2.2, any matching probabilities in our model must

meet the following conditions: mij = mji ∀i, j ∈ N ; mij > 0 ∀ j 6= i ∈ N ;∑
jmij = 1 and mii ≥ 0 ∀i ∈ N . It now remains to identify λ in order to specify

our function m(·).

Since we have that
∑

jmij = 1, assume for a moment that there is no sitting

out and mii = 0 ∀i ∈ N , since 1
dii(G)

is not defined. Then we can define λi as
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follows

1 =
∑

j 6=i s.t. dij(G)≤Tm

mij =
∑

j 6=i s.t. dij(G)≤Tm

1

λidij(G)

Which rearranges to

λi =
∑

j 6=i s.t.dij(G)≤Tm

1

dij(G)

.

Then let λ = maxi∈N{λi} and use this to calculate the pairwise matching

probabilities mij. For any i such that
∑

j 6=imij < 1, we set mii = 1 −
∑

j 6=imij

so that
∑

jmij = 1 ∀i, as required.

This means that m1 gives the matching probabilities where Tm = 1 and

players only have a non-negligible probability of meeting their direct neighbours.

Now λi = |Ni| and λ is the maximum degree of the network. We have that

mij = 1/λ ∀i 6= j, which means that mii = 1 − |Ni|
λ

∀i. Players with the

maximum degree have mii = 0 and they never sit out. Let m2 be the case when

Tm = 2, m3 be when Tm = 3, etc. Meanwhile mU gives uniform random matching

where mij = 1
n−1 ∀ j 6= i and mii = 0.
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Redistribution in networks
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3.1 Introduction

Research on the private provision of public goods has been, from the first, focused

on welfare implications. Important results by Malinvaud (1972), Warr (1983) and

Bergstrom, Blume and Varian (1986) (henceforth BBV) show firstly, that the

public good is under-provided relative to the efficient level; and secondly, that

income redistribution that leaves the set of contributors unchanged is ‘neutral’.

Neutrality means that contributors adjust their contributions to exactly offset

the transfer, meaning that there is no change in provision levels or welfare from

such a policy.

Public goods are often ‘local’ in the sense that consumers only benefit from

the provision of their direct neighbours. Hence the network context, where local

influences are heterogeneous among consumers, is a natural setting to examine

private provision of public goods. In a key contribution, Bramoullé and Kranton

(2007) show that when neighbours’ actions are perfect strategic substitutes,

specialised Nash equilibria correspond to the maximal independent sets of the

network. Bramoullé, Kranton and d’Amours (2014) investigated the whole range

of strategic substitution and identified a threshold of impact related to the lowest

eigenvalue of the network. Below the threshold, the uniqueness and stability of a

Nash equilibrium hold. Beyond it, multiple Nash equilibria will in general exist,

and stability holds only for corner equilibria. Allouch (2015) extends this model

to the non-linear case, with a condition on the normality of the public good which

follows BBV’s approach.29

29Ballester, Calvó-Armengol and Zenou (2006) first showed that consumers’ equilibrium were
proportional to their ‘Bonacich’ centrality (Bonacich, 1987), a measure which gives the number
of walks throughout the network that begin from each consumer. Other recent and relevant
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Allouch (2015) also shows that neutrality no longer holds for incomplete

networks, opening the door to policy interventions that could improve welfare.

Redistribution of endowments is the benchmark policy choice, as shown in the

Second Welfare Theorem. Unlike the competitive equilibrium, where efficiency

is always assured and welfare is only affected in a normative sense through

improvements to equity, with private provision, neither equilibrium (before or

after redistribution) is efficient. Allouch (2017) first investigated the benchmark

policy of income redistribution between contributors, focusing on preferences that

yield affine Engel curves30 and using a standard utilitarian approach. These

were based on income redistribution involving ‘relatively small’ budget-balanced

transfers between players which leave the set of contributors unchanged. The

findings show that transfers to consumers with the lowest Bonacich centrality

increased welfare, by simultaneously reducing aggregate public good provision and

increasing aggregate consumption. Low Bonacich centrality consumers who are,

in the case of strategic substitutes, the most central consumers in the network, are

actually those who could free-ride the most by virtue of their network position.

When they provide relatively more public goods, spillovers increase. So those

consumers whose network position means they have the lowest propensity to

contribute, are exactly those who should be induced to increase their provision.

contributions to the network literature include those by Galeotti et al. (2010); Ghiglino and
Goyal (2010); Elliott and Golub (2015); Acemoglu et al. (2016); Kinateder and Merlino (2017);
Bourlès et al. (2017) and López-Pintado (2017).

30Known also as Gorman (1961) of which Cobb-Douglas is a special case.
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3.1.1 Policy reform

This chapter explores the pattern of welfare impacts due to income redistribution

with general preferences and a weighted welfare social function. For complete

networks, neutrality leads to an invariance of private consumption — as well as

welfare — from income redistribution. Beyond complete networks, neutrality does

not hold generally, so this type of redistribution does have welfare implications.

This insight can be used to illuminate the optimal direction of policy reform in

the tradition of Dixit (1975), Guesnerie (1977), Weymark (1981) and Ahmad

and Stern (1984). In our case policy reform consists of infinitesimally and

relatively small budget-balanced transfers between players which leave the set

of contributors unchanged.

This chapter offers two main contributions. Firstly, we provide a new

perspective on the neutrality result by showing that it corresponds to a change

of direction in the policy impact. To do so, we show that a transfer affects

each consumer only insofar as it affects the consumer’s neighbourhood. That is,

it is the aggregate transfer to the consumer’s neighbourhood, rather than the

individual transfer to the consumer, that affects consumption. As a consequence,

we identify the −1 eigenvalue, as not only the condition for neutral transfers,

but also the switch point of the impact of a transfer on each consumer’s

neighbourhood, and therefore as key to the outcome of income redistribution.

Secondly, we characterise two mutually exclusive cases — either there is a

Pareto-improving income redistribution, or if not, we can identify the implicit

welfare weights of the initial private provision equilibrium. As a consequence,

our policy reform analysis leads to a full characterisation of the welfare impact
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of infinitesimally and relatively small income redistribution between contributors

to local public goods.

Finally we illustrate these scenarios with two core-periphery networks and

establish rather surprising results: although consumers’ provision levels may

respond positively when they receive transfers, the direction of consumption

changes may not be in the same direction as the transfer. Whether transfers

and consumption/utility move in the same direction or not depends on the

architecture of the network. This is because a consumer’s utility indirectly

depends on their ‘social wealth’, which includes not only an individual’s own

income but also the total public good provision of his neighbours. We identify

cases where the recipient of the welfare-improving transfer is made individually

worse off: a type of ‘transfer paradox’ (Leontief, 1936; Samuelson, 1952; Yano,

1983; Balasko, 2014; Rasmusen and Kang, 2016). We identify examples of both

strong and weak transfer paradoxes, and find a particular case of networks where

there is a Pareto improvement that does not depend on preferences but only on

the structure of the network.

The chapter is structured as follows. Section 3.2 sets out the general model,

and Section 3.3 describes results linked to neutrality. Section 3.4 describes the

social welfare implications of income redistribution, Section 3.5 provides some

examples of the results, and Section 3.6 concludes.
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3.2 The general model

We consider a society comprising n consumers who occupy the nodes of a fixed

network g of social interactions. Let G = [gij] denote the adjacency matrix of

the network g, where gij = 1 indicates that consumer i 6= j are neighbours and

gij = 0 otherwise. The adjacency matrix of the network, G, is symmetric with

non-negative entries and therefore has a complete set of real eigenvalues (not

necessarily distinct), denoted by λmax(G) = λ1 ≥ λ2 ≥ . . . ≥ λn = λmin(G),

where λmax(G) is the largest eigenvalue and λmin(G) is the lowest eigenvalue of

G. By the Perron–Frobenius Theorem, it holds that λmax(G) ≥ −λmin(G) > 0.

Consumer i’s neighbours in the network g are given by Ni. The preferences

of each consumer i are represented by a twice continuously differentiable, strictly

increasing, and strictly quasi-concave utility function ui(xi, qi + Q−i), where

xi is consumer i’s private good consumption, qi is consumer i’s public good

provision, and Q−i =
∑

j∈Ni qj is the sum of public good provisions of consumer

i’s neighbours in the society. Furthermore, the public good can be produced

from the private good via a unit-linear production technology. That is, any non-

negative quantity of the private good can be converted into the same quantity

of the public good. For simplicity, the prices of the private good and the public

good can be normalised to p = (px, pQ) = (1, 1). Each consumer i faces the utility

maximisation problem

max
xi,qi

ui(xi, qi +Q−i) (3.2.1)

s.t. xi + qi = wi and qi ≥ 0,

where wi is his income (exogenously fixed). The utility maximisation problem
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can be represented equivalently as

max
xi,Qi

ui(xi, Qi) (3.2.2)

s.t. xi +Qi = wi +Q−i and Qi ≥ Q−i,

where consumer i chooses his (local) public good consumption, Qi = qi + Q−i.

Let γi be the Engel curve of consumer i.31 Then consumer i’s local public good

demand depends on wi +Q−i, each player’s ‘social wealth’ (Becker, 1974):

Qi = max{γi(wi +Q−i), Q−i},

or, equivalently,

qi = Qi −Q−i = max{γi(wi +Q−i)−Q−i, 0}. (3.2.3)

Definition 12. Network normality. (Allouch, 2015) For each consumer

i = 1, . . . , n, the Engel curve γi is differentiable and it holds that 1 + 1
λmin(G)

<

γ′i(·) < 1.

Theorem 3.2.1. (Allouch, 2015) Assume network normality. Then there exists

a unique Nash equilibrium in the private provision of public goods on networks.

31We could also find the demand curve, which would include prices in the function, but here
prices are unchanged at 1.
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3.2.1 Income redistribution in general networks

This section investigates the impact of a social planner’s intervention on

the private provision of public goods. The social planner aims to achieve

socially optimal outcomes by drawing on income redistribution as a policy

instrument. Income redistribution takes the form of lump-sum transfers, which

are traditionally viewed as a benchmark for other policy instruments. Like Warr

(1983) and BBV we focus our analysis on income redistributions that leave the

set of contributors unchanged, referring to them as ‘relatively small’.

In general, there are compelling reasons for presuming that not all consumers

will be contributing to public goods. In the following, for simplicity of notations,

we will focus our analysis on just one component of contributors by passing to

the subnetwork induced by the component.32

Let q∗ = (q∗1, . . . , q
∗
n) be the Nash equilibrium associated with w =

(w1, . . . , wn) and let t = (t1, . . . , tn) denote a (budget-neutral) income transfer,

that is,
n∑
i=1

ti = 0.

Where transfers could be a tax (ti < 0) or a subsidy (ti ≥ 0). Let qt = (qt1, . . . , q
t
n)

be the Nash equilibrium after an income transfer t, that is, the Nash equilibrium

corresponding to the income distribution w + t = (w1 + t1, . . . , wn + tn)T . We say

that a transfer t is ‘neutral’ if for each i

(xti , Q
t
i ) = (x∗i , Q

∗
i ).

32Note that if we pass our analysis to several components of contributors, while we can fully
characterise the provision of public goods, we can no longer consider the consumption or welfare
of non-contributors.
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The question of neutrality has been to a large extent settled for pure public goods

by the neutrality result of Warr (1983) and BBV. Their neutrality result shows

that contributors exactly offset their public good provision by the value of the

transfer so that for each consumer i it holds that qti − q∗i = ti, leading to an

unchanged private good consumption:

xti = wi + ti − qti = wi − q∗i = x∗i

and an unchanged public good consumption:

Qt =
n∑
i=1

qti =
n∑
i=1

q∗i +
n∑
i=1

ti = Q∗.

We examine the case of general networks where, rather than pure public goods,

players only benefit from their neighbours’ public good provision. Pure public

goods are equivalent to the special case of a complete network where everyone is

connected to everyone else.

Proposition 11. Assume network normality and that all consumers are

contributors. Then, for any relatively small transfer t, the change in consumers’

private and public good consumption after the transfer are given by:

Qt −Q∗ = (A−1 − I)[xt − x∗] = (A−1 − I)(I + AG)−1A(I + G) t

Proof. See Appendix.

Proposition 11 shows that a transfer impacts each consumer’s consumption

of either the public or private good only insofar as it impacts his neighbourhood,
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i ∪Ni. Let us denote (I + G)t as the ‘neighbourhood transfer’ : the aggregate

tax/transfer in the neighbourhood of each consumer i. The neighbourhood

transfer determines how transfers impact consumers in terms of their consumption

of either the public or private good. In particular, it follows that

Corollary 2. A transfer t is neutral if and only if

(I + G) t = 0.

Corollary 2 shows that a transfer t is neutral if and only if t is an eigenvector33

with a corresponding eigenvalue of −1. This is because in this case (I + G)t =

(1 + λi)t = 0 and hence the neighbourhood transfer is null for each consumer.

More generally, it follows from Proposition 11 that if the transfer is an

eigenvector corresponding to the eigenvalue of λi, then the neighbourhood transfer

follows the same direction as the individual transfer if λi > −1, and is in the

opposite direction if λi < −1. Therefore, the neighbourhood transfer changes

from one direction to another depending on the eigenvalue λi, and the point at

which the direction switches is the −1 eigenvalue. The point of policy neutrality

is also a change of direction of policy impact.

Observe that we cannot say whether the eventual impact on consumption

of public and private goods will be positive or negative, since the direction of

the impact will also depend on the matrix (I + AG)−1A. In the simple case

of Cobb-Douglas preferences where ui(xi, Qi) = xaiQ
1−a
i , we have the following

result.

33As G is a symmetric square matrix, then its eigenvectors are orthogonal and provide a
basis for the space Rn. This means that the vectors of possible transfers t can be associated
with any of the eigenvectors of G.
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c6

c1 c2

c5

c3 c4

Figure 3.1: A network g with six nodes

Corollary 3. Assume Cobb-Douglas preferences. If the transfer t is an

eigenvector of the adjacency matrix G associated with eigenvalue λi, then it holds

that

Qt −Q∗ =
1− a
a

(xt − x∗) = (1− a) (I + aG)−1(I + G) t = (1− a)
1 + λi
1 + aλi

t.

Having assumed network normality throughout the chapter, we note that

this is equivalent to a ∈]0,− 1
λmin(G)

[ in the C-D case, which ensures that the

denominator is positive. This means that if the transfer t is an eigenvector of

the adjacency matrix with a corresponding eigenvalue λi, then the impact of the

transfer on each consumer is in the same direction of the transfer if λi > −1 and

is in the opposite direction if λi < −1.
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3.2.2 Example

We can illustrate this result with an example network, shown in Figure 3.1. Some

of the eigenvalues and eigenvectors of the network are below.

λ6 = −2, λ4 = −1, λ3 = 0

1

−1

0

0

1

−1


,



0

0

1

−1

0

0


,



1

1

0

0

−1

−1


If the budget-balanced transfers t have directions t = (1, 1, 0, 0,−1,−1)

corresponding to the eigenvalue λ3 = 0, we can find the neighbourhood transfer

by applying (I + G)t = (1 + λ3)t = t: it is the same. On the other hand if t =

(0, 0, 1,−1, 0, 0), corresponding to the eigenvalue λ6 = −2, then when we apply

(I + G)t = (1 + λ6)t = −t, we find that the neighbourhood transfer is exactly

opposite to the individual transfers. Finally the effect of t = (0, 0, 1,−1, 0, 0)

corresponding to the eigenvalue λ4 = −1 is given by (I + G)t = (1 + λ4)t = 0:

neutrality.

3.3 Neutrality space

Next we investigate how the network structure affects policy reform in networks.
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3.3.1 A spectral characterisation

Consider first the linear subspace of budget-balanced transfers, the transfer

space T, which has dimension n− 1:

T = {t ∈ Rn | 1 · t = 0} = 1⊥. (3.3.1)

As we noted in Corollary 2, a vector of neutral transfers are the eigenvectors

associated with the −1 eigenvalue. Since transfers are budget-balanced, that is,

orthogonal to the vector of all ones, 1, this means we can characterise the space

of neutral transfers as follows:

Definition 13. The neutrality space K denotes the space of neutral transfers.

K = Eig(−1) ∩ 1⊥.

Roughly speaking, the neutrality space represents the policy constraints faced

by the social planner due to the network structure. In particular, the dimension

of the neutrality space tells us how many dimensions of potential transfers are

neutral. The link between the budget balance requirement and the vector 1

highlights the role of main eigenvalues in our analysis. A main eigenvalue is an

eigenvalue which has an associated eigenvector not orthogonal to the vector 1

(Cvetkovic, 1970), which are useful in our setting because the balanced budget

means that the transfer space is orthogonal to 1. The distinct main eigenvalues

of G form the main part of the spectrum, denoted by M (Harary and Schwenk,

1979).34

34By the Perron–Frobenius Theorem, the maximum eigenvalue of G has an associated
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Proposition 12. Let ψ(G) be the multiplicity of the −1 eigenvalue in the

spectrum of G. Then we have that

• −1 ∈M: dim(K) = ψ(G)− 1

• −1 /∈M: dim(K) = ψ(G)

Proof. Following from the discussion above, if −1 is a (distinct) main eigenvalue,

its eigenvector will not appear in the neutrality space. Therefore dim(K) has the

dimension of the eigenspace of the −1 eigenvalue(s) that is orthogonal to 1.

3.3.2 A structural characterisation

In the following we examine neutrality from a network architecture standpoint.

Definition 14 (Neighbourhood-homogenous35 subset). A subset of consumers S

is ‘neighbourhood homogenous’ if for any i, j in S it holds that

i ∪Ni = j ∪Nj.

For a network with S connected consumers who have the same neighbourhood,

the neighbourhood-homogenous subset has size |S|. Clearly, transfers between

such consumers will be neutral since members of S are not only fully connected,

but also indistinguishable in terms of their network position from the consumers

in N \ S. In the matrix I + G, the |S| rows and columns referring to

the neighbourhood-homogenous nodes are identical. This means that any

binary transfer that redistributes between two members of S is an eigenvector

eigenvector with all its entries positive and, therefore, is a main eigenvalue.
35For examples of neighbourhood-homogenous subsets, see Allouch (2015).
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corresponding to the eigenvalue −1 and hence neutral. If |S| = 2, there is

one neutral transfer available: between the pair; if |S| = 3 there are two

pairwise transfers from which any transfer vector involving members of S can be

constructed; and so on. So the dimension of neutral transfers that corresponds

to the neighbourhood-homogenous subset S is |S| − 1.

This means we have that |S| − 1 ≤ dim(K), showing us another way to find

that all transfers in a complete network are neutral. In this case, |S| = n and

so n − 1 ≤ dim(K). Since the maximum dimension of the neutrality space (K)

is n − 1 (the dimension of the transfer space), all transfers must be neutral in

complete networks.

3.3.3 Other neutral transfers

Of course, there could be other neutral transfers in the network as well as those

between members of a neighbourhood-homogenous subset. We have already

shown it suffices for a transfer to be an eigenvector corresponding to the −1

eigenvalue to be neutral, or equivalently, that the sum of transfers within each

neighbourhood is zero. An example of a neutral transfer without neighbourhood-

homogeneity is given in Figure 3.1. As described previously, neutral transfers

correspond to the eigenvector of the −1 eigenvalue; the eigensystem of this

network is

−1 1 0 −1 1

Figure 3.1: Neutral transfer but no subset is neighbourhood-homogenous
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Here we can observe that the transfer shown in Figure 3.1 is neutral, since

it is associated with the −1 eigenvalue. However, this transfer is not within a

subset of nodes that is neighbourhood-homogenous.36

Observe that a key policy implication of investigating neutrality in general

networks is that two seemingly unrelated transfers are policy equivalent (that is,

they lead to the same change in terms of private and public goods consumption) if

and only if their difference is a neutral transfer.37 For instance, the two transfers

in Figure 3.2 are policy equivalent, that is, they lead to the same change in

consumption, since their difference is the neutral transfer given in Figure 3.1.

3.4 Welfare impact of income redistribution

Having found that income redistribution can affect consumption, let us further

examine the potential welfare impact. Let v∗i denote the indirect utility

36Actually, there is no neighbourhood-homogenous subset in this network.
37Previous analysis in the case of pure public goods has mostly exploited the neighbourhood-

homogenous property of complete networks. That is, a redistribution between a subset of
contributors that leaves the set of contributors unchanged is neutral.
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−1 1 0 0 0

0 0 0 1 −1

Figure 3.2: Policy equivalent transfers

function of the consumer i corresponding to the unique Nash equilibrium at

the initial equilibrium, when the income distribution is w = (w1, . . . , wn)T .

To be able to approximate welfare changes, we will focus our analysis on

transfers that are infinitesimal. The vector of indirect utilities of all consumers

at the initial equilibrium is v∗ = (u1(x
∗
1, Q

∗
1)). . . . , un(x∗n, Q

∗
n)) and vt =

(u1(x
t
1, Q

t
1)). . . . , un(xtn, Q

t
n)) after transfer.

Proposition 13. The change in consumers’ utilities following an infinitesimal

transfer t is

∆v(t) = vt − v∗ ≈ Bv (I + G) t, (3.4.1)

where Bv is an invertible matrix.

Proof. See Appendix.

Let the impact space V be the space of utility changes that can be achieved

with budget-neutral transfers

V = {∆v(t) ∈ Rn | ∆v(t) = Bv(I + G)t for a t ∈ T}. (3.4.2)

Proposition 14. The dimension of the impact space is the dimension of the
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transfer space reduced by the dimension of the neutrality space: dim(V) =

n− 1− dim(K).

Proof. We know that dim(V) ≤ n− 1 since V is a transformation of T, which has

dimension n− 1 (due to budget balance). Next, we see that the extent to which

the dimension of V is further reduced with respect to T is equal to the dimension

of the neutrality space K, since transfers in this space are neutral and, hence, can

have no effect on utility.

Proposition 14 shows that even when neutrality does not hold, the network

architecture still determines, and actually reduces, the dimension of the impact

space.

Corollary 4. If a subset S is neighbourhood-homogenous then dim(V) ≤ n−|S|.

Proof. As discussed above we have that |S| − 1 ≤ dim(K). Combining this with

Proposition 14 gives the result.

We can also observe that if the public good is pure then dim(V) = 0. This is

because |S| = n in a complete network, the case for pure public goods. As we

mentioned before, we get the same result via the spectral characterisation.

In order to investigate the welfare impact of income distribution, we define a

weighted utilitarian social welfare function, with general welfare weights given by

r ∈ Rn
++.

SW ∗
r

def
=
∑
i

riv
∗
i = r · v∗ (3.4.3)
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And the overall welfare effect of a set of transfers t is given by

∆SW rM (t) = SW t
r − SW ∗

r = r ·∆v(t) (3.4.4)

3.4.1 Pareto-improving reform

Next we investigate whether a Pareto-improving income redistribution exists.

Proposition 15. There are two mutually exclusive possibilities, (a) and (b).

(a) There exists a weakly Pareto-improving infinitesimal transfer t0, that is,

∆v(t0) ∈ Rn
+ for t ∈ T

(b) There exist positive social welfare weights which render any policy change

welfare-neutral, that is, weights rM ∈ Rn
++ such that

∆SW rM (t) = rM ·∆v(t) = 0, for all t ∈ T

Proof. Corollary 3′ of Ben-Israel (1964) states that, if L and L⊥ are

complementary orthogonal subspaces in Rn, then the following two statements

are equivalent:

L ∩ Rn
+ = {0} and L⊥ ∩ Rn

++ 6= ∅

Therefore, given V is a linear subspace, there are two mutually exclusive

possibilities, (a) and (b):

(a) V ∩ Rn
+ 6= {0} ⇐⇒ V⊥ ∩ Rn

++ = ∅

(b) V ∩ Rn
+ = {0} ⇐⇒ V⊥ ∩ Rn

++ 6= ∅
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If (a) then there exist weakly Pareto-improving transfers in the subspace V.

If (b) then weakly Pareto-improving transfers do not exist, and V⊥ is the

linear space of strictly positive welfare weights r that are orthogonal to ∆v(t),

giving ∆SW r(t) = r ·∆v(t) = 0 and thereby rendering any policy change neutral

in social welfare terms.

Proposition 15 shows that either a strict Pareto-improving income

redistribution can be found, or else the initial private provision equilibrium is

an optimum (amongst the private provision equilibria achieved by infinitesimal

income distributions). In the case of no possible Pareto improvement, the social

welfare weights, also known as Motzkin weights,38 represent the implicit welfare

weights at the initial equilibrium.

The intuition behind the proof of Proposition 15 is as follows: observe that the

impact space V determines whether or not a Pareto improvement is possible with

infinitesimal transfers in any network. If V intersects the non-negative orthant

then a Pareto improvement is possible, giving the list of non-negative utility

changes that result from the transfer. If V does not intersect the non-negative

orthant, then a Pareto improvement is not possible. At the same time V⊥ will

intersect the positive orthant, giving the positive implicit welfare weights of the

initial equilibrium.

Note that this terminology is not the same as in the previous discussion. Here

we use the term ‘welfare-neutral’ to distinguish it from the concept of ‘neutrality’

that we have been discussing so far. Welfare-neutrality is an aggregate concept,

38 The name of Motzkin weights originates from the application of Motzkin’s Theorem of the
Alternative to find Pareto-improving income redistributions for which income redistribution
is welfare-neutral. These weights also provide the inverse optimum (Ahmad and Stern, 1984;
Dixit, 1975).
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where there could be changes to individual consumption but these are offset by

other consumers’ consumption in the opposite direction, leaving aggregate welfare

unchanged. On the other hand neutrality means that consumption is unchanged.

Neutrality is sufficient but not necessary for welfare-neutrality to hold.

3.5 Welfare in example networks

We now examine some example networks, using the simple case of Cobb-Douglas

preferences where ui(xi, Qi) = xaiQ
1−a
i . As we will see, in view of the homogeneity

of preferences, the feasibility of welfare-improving reform will depend greatly on

the network structure.

Proposition 16. In the Cobb-Douglas case, the change in consumers’ utility

from an income redistribution t is as follows, where α = aa(1− a)(1−a)

vt − v∗ = α(I + aG)−1(I + G)t. (3.5.1)

The overall welfare effect of transfers t in the C-D case is given by

∆SW r(t) = r ·∆v(t) (3.5.2)

= αrT (I + aG)−1(I + G)t. (3.5.3)

Proof. See Appendix.

Given this expression, we can now easily find either the vector of non-negative

utility changes in V that characterise a Pareto improvement due to transfers, or
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the Motzkin weights (defined earlier) in V⊥, the normal to the impact space. In

particular,

Corollary 5. With Cobb-Douglas preferences, if −1 is a main eigenvalue then

there exists a Pareto improvement.

Proof. See Appendix.

Next we look at some example networks; of particular interest are core-

periphery networks, defined by Borgatti and Everett (2000). In core-periphery

networks there are two groups of consumers, the centre C and the periphery P .

Nodes in C are completely connected to each other, and may be connected to

nodes in P , while nodes in P are only connected to nodes in C and not connected

to each other. Networks of this type have many applications such as information-

sharing, where consumers in the core share the cost of information collection,

which is then accessed by the periphery (Galeotti and Goyal, 2010). Other

examples could be spatial or geographical, for example central and suburban

residences in a town or city, or financial, such as liquidity networks (Elliott et al.,

2014).

3.5.1 Star network

The simplest core-periphery network has only one central consumer: the star

network. The star network with two periphery consumers is shown in Figure 3.1
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c2

c1

c3

Figure 3.1: The star network of three nodes

and the eigensystem is

λ3 = −
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2, λ2 = 0, λ1 =
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We can observe immediately that there are no neutral transfers in this

network, since −1 is not an eigenvalue. Let us designate the two periphery

players as 2 and 3 and the central player as 1, with transfers of t = (t1, t2, t3).

Since these must be budget-balanced, let t1 = −t2 − t3. Then we can write the

utility changes of a budget-balanced transfer regime as


∆v1(t)

∆v2(t)

∆v3(t)

 =
1

1− 2a2


a(t2 + t3)

−a2t2 − (1− a2)t3

−a2t3 − (1− a2)t2

 (3.5.4)

We can make two observations from (3.5.4). Firstly, if transfers to the

periphery players are positive, this increases the utility of the central player and

decreases the utility of the periphery. For each consumer, transfers to themselves
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have a negative effect on their utility (for player 1, this effect can be written as

−at1). This is called a transfer paradox because the effect on utility is opposite

to the direction of transfer. In fact, this is a strong transfer paradox because the

opposite direction of change occurs for both players — those who give and receive

transfers.

The intuition for the transfer paradox is as follows. As shown previously, the

change in utility of each agent is an increasing function of their social wealth,

wi + Q−i. So there are two ways that utility is affected by transfers. First,

at the new equilibrium after transfers to the centre, wealth wi changes by ti

and so the centre has more private wealth and the periphery has less. Second,

neighbourhood public good provision Q−i is also different at the new equilibrium.

The periphery agents contribute less public good at the new equilibrium, while

the centre increases his provision. This means that the neighbourhood provision

of the periphery Q−2 = Q−3 = q1 increases, and that of the centre Q−1 = q2 + q3

decreases. So for both periphery and centre, the two effects of the transfers on

social wealth wi + Q−i move in different directions. In the case of the star, the

net effect on the central agent’s social wealth is negative, and on the periphery

agents is positive: hence there is a strong transfer paradox.

Secondly, (3.5.4) shows us that there is no Pareto improvement available in

the star network, since we can observe that it is not possible that all three entries

in the vector of utilities could be positive, for any budget-balanced transfers. This

means that we can find the Motzkin weights as the normal to the impact space:

these are (rM1 , r
M
2 , r

M
3 ) = (1, a, a).
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c3

c1 c2

c4 c5

c6

Figure 3.2: The balanced network of six nodes

3.5.2 Balanced network

Our second example is the larger core-periphery network shown in Figure 3.2.

The eigensystem is
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We observe from the eigensystem that although there is a −1 eigenvalue,

this does not allow the possibility of neutral transfers because the associated
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eigenvector is not budget neutral.39 So there are no neutral transfers in this

network. The neutrality space has dimension zero, and that of the impact space

is its maximum at n− 1 = 5.

As there are no neutral transfers, this means that any budget-balanced

transfers will have an impact on individual utilities. There are two possibilities.

If all the utility changes are non-negative this would be a Pareto improvement.

Necessarily, the aggregate effect on welfare would be non-negative. On the other

hand, if some of the utility changes are negative and some positive, then the

overall impact could be welfare-neutral if the utility changes are weighted by

the Motzkin weights, in which case the positive and negative impacts offset each

other.

We are interested in whether a Pareto improvement exists or not, and we

can find an example of a Pareto improvement in the simple case that follows.

First we designate players 1 and 2 as the central nodes and 3, 4, 5 and 6 as the

periphery nodes. Let transfers to the centre be tc = t1 = t2 and transfers to the

periphery be tp = t3 = t4 = t5 = t6. Budget balance requires that tc = −2tp.

Then the utility changes of the central nodes and periphery nodes, ∆vc(t) and

∆vp(t) respectively, are as follows.

∆vc(t)

∆vp(t)

 =
tc

1 + 2a

 1

1/2

 (3.5.5)

We can observe from (3.5.5) that in this network, there is always a Pareto

improvement when transfers to the centre are positive. In particular, we cannot

39Observe that −1 is a main eigenvalue as the associated eigenvector is not orthogonal to 1.
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increase the welfare of the periphery without increasing that of the centre at

double the rate. We term the central players in this network ‘welfare winners’

because they will always gain from any attempt to increase aggregate welfare. In

fact, this is an example of a weak transfer paradox because some consumers —

here the periphery — gains in utility terms even though they are losing in income

terms by paying a transfer to the centre.

It is interesting to note that the ‘balanced’ network in Figure 3.2 can be

formed by joining together the centre nodes of two of the star networks shown in

Figure 3.1. In this case, the centre is no longer worse off at the new equilibrium -

we have a Pareto improvement and a weak rather than strong transfer paradox.

This is because of the impact of the transfers on social wealth. With the balanced

network, the centre’s neighbourhood provision is Q−c = qc + 2qp, whereas in the

star network it is Q−c = 2qp. The fact that the centre nodes in the balanced

network can benefit from each others’ increased public good provision means

that their utility increases in the new equilibrium after transfers, leading to a

Pareto improvement.

It is interesting to note that the direction of utility changes are not affected by

preferences via the parameter a. And since there are Pareto-improving transfers

for this network, the Motzkin weights do not exist.

3.6 Conclusion

We investigate the welfare impact of lump-sum income redistribution on

individuals who privately provide public goods in networks. We fully characterise

the possible directions of optimal policy reform by using general welfare
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weights. As usual, understanding the architecture of the network has important

implications for policy reform in networks. We find that neutrality is associated

with the eigenvalue −1 and leads to a change of sign of policy. Unlike Allouch

(2015) and Allouch (2017) which focus on network architectures that are not

amenable to a neutrality (-like) results in the tradition of BBV, our analysis shows

that even when neutrality fails to hold, the impact of income redistribution is still

hampered by the architecture. We find that income redistributions in networks

with local public goods can be Pareto-improving, and if not, it identifies implicit

social welfare weights of the initial equilibrium, invoking Motzkin’s Theorem of

the Alternative. Examples of core-periphery networks illustrate some features of

the proposed transfer regime, including the possibility of a transfer paradox and

welfare winners.
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Appendix

3.A Proofs

3.A.1 Proof of Proposition 11

From Allouch (2015) we have that 40

qt − q∗ = (I + AG)−1(I−A)t (3.A.5)

40The proof in Allouch (2015) is as follows. From (3.2.3), it follows that for each consumer
i ∈ C

qti − q∗i = (γi(wi + ti +Qt
−i)−Qt

−i)− (γi(wi +Q∗−i)−Q∗−i) (3.A.1)

= γi(wi + ti +Qt
−i)− γi(wi +Q∗−i)− (Qt

−i −Q∗−i) (3.A.2)

From the mean value theorem, we have that (b − a)f ′(c) = f(b) − f(a) for a < b and
c ∈]a, b[, when f is continuous and differentiable. So it follows that for each i ∈ C such
that ti +Qt

−i 6= Q∗−i, there exists a real number βi ∈](wi +Q∗−i), (wi + ti +Qt
−i)[ such that

γ′i(βi)(ti +Qt
−i −Q∗−i) = γi(wi + ti +Qt

−i)− γi(wi +Q∗−i)

On the other hand if for i ∈ C we have ti +Qt
−i = Q∗−i, this means that γi(wi + ti +Qt

−i)−
γi(wi +Q∗−i) = 0. Let βi = wi +Q∗−i; then for each consumer i ∈ C it holds that

qti − q∗i = γ′i(βi)(ti +Qt
−i −Q∗−i)− (Qt

−i −Q∗−i) (3.A.3)

qti − q∗i + (1− γ′i(βi))(Qt
−i −Q∗−i) = γ′i(βi)ti (3.A.4)

Consequently, it holds that

(I + AG)(qt − q∗) = (I−A)t,

where A = diag(1 − γ′i(βi))i∈C . Applying Lemma 1 (Allouch, 2015) for B = A and U = I,
it follows that I + AG is invertible since it has positive eigenvalues. Hence, qt − q∗ =
(I + AG)−1(I−A)t.
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where A = diag(1−γ′i(βi))i∈N for some βi and t = (ti)i∈N . We can now calculate

the changes in private and public good consumption from (3.A.5). We know that

xt − x∗ + qt − q∗ = t, so

xt − x∗ = t− (qt − q∗)

= t− (I + AG)−1(I−A)t

= [I− (I + AG)−1(I−A)]t

= [(I + AG)−1(I + AG)− (I + AG)−1(I−A)]t

= (I + AG)−1[(I + AG)− (I−A)]t

= (I + AG)−1A(I + G)t (3.A.6)

Meanwhile we also know that Qt −Q∗ = (I + G)(qt − q∗) so we have that

Qt −Q∗ = (I + G)(qt − q∗) = (I + G)[t− (xt − x∗)]

= (I + G)[t− (I + AG)−1A(I + G)t]

= (I + G)t− (I + G)(I + AG)−1A(I + G)t

= [I− (I + G)(I + AG)−1A](I + G)t

= [A−1(I + AG)− (I + G)](I + AG)−1A(I + G)t

= [A−1 − I](I + AG)−1A(I + G)t as required.

3.A.2 Proof of Proposition 13

First, from the proof of Proposition 11, we have that

Qt
i −Q∗i = [A−1 − I](xt

i − x∗i )
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which implies that, ∀i

Qt
i −Q∗i =

[
1

1− γ′i(·)
− 1

]
(xti − x∗i ) (3.A.7)

Next, we can use (3.A.7) and a Taylor approximation such that:

ui(x
t
i , Q

t
i )− ui(x∗i , Q∗i ) ≈

∂ui
∂xi

(xti − x∗i ) +
∂ui
∂Qi

(Qt
i −Q∗i ) (3.A.8)

=

[
∂ui
∂xi

+

[
1

1− γ′i(·)
− 1

]
∂ui
∂Qi

]
(xti − x∗i )(3.A.9)

Since we normalised prices to (1, 1), and assumed an interior solution where

all players are contributors, it follows that ∂ui
∂xi

= ∂ui
∂Qi
∀i and so we have that

ui(x
t
i , Q

t
i )− ui(x∗i , Q∗i ) ≈

∂ui
∂xi

1

1− γ′i(·)
(xti − x∗i ) (3.A.10)

Let ∇u = diag(∂ui
∂xi

). Then

vt − v∗ ≈ ∇u A−1(I + AG)−1A(I + G)t.

So that Bv = ∇u A−1(I + AG)−1A, which is invertible as required.

3.A.3 Proof of Proposition 16

Following from (3.A.5) in the case of C-D preferences, the change in consumers’

public good provision due to an infinitesimal transfer t is given by

qt − q∗ = (1− a)(I + aG)−1t
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Let Q− be the vector of Q−i; now we can observe that

Qt
− −Q∗− = (1− a)G(I + aG)−1t

In the Cobb-Douglas case, where α = aa(1− a)(1−a) the indirect utility function

is

v∗i = α(wi +Q∗−i) (3.A.11)

So the list of changes in utility from lump-sum transfers t is

vt − v∗ = [ui(x
t
i , q

t
i +Qt

−i)− ui(x∗i , q∗i +Q∗−i)]i∈N

= [α(wi + ti +Qt
−i)− α(wi +Q∗−i)]i∈N

= α[ti +Qt
−i −Q∗−i]i∈N

= α[G(qt − q∗) + It]

= α[(1− a)G(I + aG)−1t + It]

= α

[
(1− a)

a
[aG + I− I](I + aG)−1t + It

]
= α

[
(1− a)

a
[I− (I + aG)−1]t + It

]
= α

[
1

a
It− (1− a)

a
(I + aG)−1]t

]
=

α

a

[
I− (1− a)(I + aG)−1

]
t

=
α

a
(I + aG)−1[(I + aG)− (1− a)I]t

= α(I + aG)−1(I + G)t.
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3.A.4 Proof of Corollary 5

Observe that since −1 is a main eigenvalue there exists a transfer t0 = κu1 +βul,

where u1 is the eigenvector corresponding to λmax and ul is the eigenvector

corresponding to −1, and κ, β 6= 0. This is not the case if −1 is a non-main

eigenvalue, because then ul would be orthogonal to 1, and so adding the all-

positive u1 to it would not lead to budget-balanced transfers. On the other

hand, if ul is not orthogonal to 1, since u1 and ul are orthogonal, they span a

hyperplane which must intersect the n− 1 space of 1⊥ at some point, giving the

budget-balanced transfer for some κ, β. From 3.5.1 it follows that

vt − v∗ = α(I + aG)−1(I + G)t0 (3.A.12)

= α(I + aG)−1(I + G)(κu1 + βul) (3.A.13)

= α(I + aG)−1(I + G)κu1 + α(I + aG)−1(I + G)βul(3.A.14)

= α(1 + λ1)/(1 + aλ1)κu1 (3.A.15)

So in this case the impact of the transfer is results in a Pareto improvement.
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