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ABSTRACT

Chat rooms are of enormous interest to social network researchers as they are one of the most

interactive internet areas. To understand the behaviour of users in a chat room, there have been

studies on the analysis of the Response Waiting Time (RWT) based on traditional approaches of

aggregating the network contacts. However, real social networks are dynamic and properties such

as RWT change over time. Unfortunately, the traditional approach focuses only on static network

and neglecting the temporal variation in RWT which may have lead to misrepresentation of the true

nature of RWT.

In order to determine the true nature of RWT, we analyse and compare the RWT of three

online chat room logs (Walford, IRC and T-REX) putting into consideration the dynamic nature of

RWT. Our research shows that the distribution of the RWT exhibits multi-scaling behaviour, which

significantly affects the current views on the nature of RWT. This is a shift from simple power-law

distribution to a more complex pattern. The previous study on users RWT between pairs of people

claims that the RWT has a power-law distribution with an exponent of 1. However, our research

shows that multi-scaling behaviour and the exponent has a wider range of values which depend on

the environment and time of day. The different exponents observed on different time scales suggest

that the time context or environment has a significant influence on users RWT. Furthermore, using

the chat characterise, we predicted the factors which could minimize response waiting time and

improving the friendship connection during online chat sessions.

We apply our findings to design an algorithm for chat thread detection. Here, we proposed two

variations of cluster algorithm. The first algorithm involves the traditional approach while in the

second one, the temporal variations in RWT was taken into consideration to capture the dynamic

nature of a text stream.

An advantage of our proposed method over the previous models is that previous models have

involved highly computationally intensive methods and often lead to deterioration in the accuracy

of the result whereas our proposed approach uses a simple and effective sequential thread detection

method, which is less computationally intensive.
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1. INTRODUCTION

This thesis studies users’ behaviours and their temporal dynamics in chat rooms and then proposes

a less computationally intensive algorithm for chat disentanglement. We verify the method proposed

by applying it to different real-world data sets and evaluating the results obtained. Chapter 1 gives

a brief history of some early chat rooms and discusses the motivation for investigating the dynamics

of user behaviour.

Chapter 2 shows related works that highlight the gap in previous research and the originality

of this work. In chapter 3 we discussed the basics of social networks and defined some network

terms. In chapter 4, we show that our chat room represents human interaction. We time-slice

the network and study its evolution across years and quarters of years. Furthermore, we explore

the temporal behaviours and the differences that occur in users behaviour as the network evolves.

Chapter 5 investigates the temporal variation and dynamics of Response Waiting Time (RWT) of

pairs of people in conversation. In chapter 6, we investigate which properties of a chat can be used

to predict if a user has a fast response time. Chapter 7 focuses on the dynamics of a group of people

in conversation. Unlike most models that involve highly computational intensive methods, such as

clustering techniques, our proposed approach uses a simple and effective sequential thread detection

method that is less computationally intensive. We presented two experiments to evaluate our system.

The thesis closes with a summary and conclusion in chapter 8.

1.1 What is a Chat Room?

Chat rooms are where people can meet each other to converse on the internet. There are both public

and private chat rooms. In public chat rooms, anyone can meet and chat with strangers while in

private chat rooms people can arrange a time to meet people they already know, allowing only the

speakers they want into the space. Today, chat rooms are used widely on many levels and by diverse

organisations. In addition to its initial use for gaming and engaging in simple conversations it is now

being used in education, for example, when receiving feedback on a project or assignment. Many

groups in business, medicine and customer service now hold regular meetings using private chat

rooms. Chat rooms are ideal for most group discussions because they are interactive and allow users

to engage in live-real time conversations with people either far away or near and this can happen

with multiple people at the same time. Chat rooms currently exist in a variety of formats. There
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are “open” chat rooms where participants can discuss any topic they wish. There are also topic-

focused chat rooms where users can discuss a specific topic like a TV show or a game. There are also

moderated chat rooms where there is a speaker who can lead the discussions at any time. Those who

provide internet services also create majority of the online chat rooms like AOL or through Internet

Relay Chat (IRC). The majority of the chat room is text-based and when a user post a message, it

will appear immediately on the screen. Online chats provide a way for people to have a conversation

with each other by typing on their keyboards and what they posted will immediately appear on the

other participants monitors [70].

1.1.1 The Early Years and Chat Today

Chat is one of the social networks that has grown over the years. In the 1960s, when the internet had

not been developed, there was a system where only users connected to the same computer could chat

with each other [22]. The system operation required that users connect to the same system, and only

two users were allowed by the chat program to converse at a time. At that time the “talk” function

on the Unix operating system was one of the popular early chat utilities and supported chatting

on a single multi- user computer [70]. Over time, “talk” grew such that chatting was then allowed

across multiple computers. Expansion of the talk system gave room for more than two users to chat

in a limited-broadcast way. It required the sender to add all of the recipients addresses. However,

since the advent of fast computers, chat has improved significantly. In addition, chat rooms have

undergone a series of developments as the internet evolves. An example of online chat rooms include

Multi-User Dungeon (MUD Servers), Internet Relay Chat (IRC), Web Chat, Instant Messaging (IM)

and Voice Chat.

MUD Servers

In 1978, Roy Trubshaw, who studied at the University of Essex, UK, developed MUD Servers [70].

He developed a computer algorithm that permitted individuals to be connected to a fantasy-based

game from their home computer[70]. The name of the game was MUD (Multi-User Dungeon) and

this was in tribute to the dice-based game Dungeons and Dragons that he enjoyed playing. As time

went on Trubshaw's first MUD was no longer confined to his network of friends and acquaintances.

Many external users were inspired to develop their version of the program. By 1994 MUDs on the

internet had increased to number about 400 and their topics had extended from gaming to general

conversations organised by groups and associations where people talked about any general interests.

In the past, MUDs were used mostly by those who were very comfortable with computers and served

as the first online chat rooms. As the MUDs developed, this gave rise to Internet Relay Chat (IRC).
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Internet Relay Chat (IRC)

IRC was developed in 1988 by Jarkko WiZ Oikarinen at the University of Oulu, Finland. The birth

of IRC initiated the widespread use of real-time chat with large groups of people all over the world

[70]. However, in its early years, the IRC only occasionally had more than 10 users but gradually

gained great popularity around the world in 1991, when a lot of users logged on to access the latest

news on Iraqs invasion of Kuwait. This was done by connecting to a particular country that remains

operational via IRC functions when radio and television broadcasts were cut off [70].

The documentation of the Internet Relay Chat Protocol was first carried out in May 1993, in RFC

1459 [IRC]. In a group discussion, it was considered as a set of rules for communication sometimes

called channels, but also allows one-to-one communication privately, such as chat and data transfer

and file sharing [70].

As the IRC network grew and evolved, users began to split off to form their own networks. New

networks aimed at adding new features such as proxy detection, additional commands, encryption

devices, etc. The first early major split occurred in 1992 and was known as the Undernet network.

Today, many other little networks have been developed mostly through modification of versions of

DALnet, EFnet, IRCnet and Undernets IRCd. The current largest networks include: Freenode,

IRCNet, Quakenet, Efnet, Undernet and Rizon.

Instant Messaging Chat Rooms

Instant Messaging (IM), as the name suggests, allows real-time conversations between two or more

people who send quick text-based messages using their clients software from their computers or

other devices [70]. Recent IM also allows the sending of video, audio and picture messages [70] but,

for this work, our focus was on text-based messaging. Unlike earlier communication technologies

such as MUDs, other public chat rooms in the 1990s were mainly used for communication between

unfamiliar people. IM and other social networking sites like Yahoo, Facebook, WhatsApp etc.

encouraged people to communicate more with existing friends [56].

1.1.2 Role of Chat

The internet provides a major means of human communication and as it grows, chats with friends,

family, colleagues and even complete strangers have increased rapidly. There was a time when a

family who lived a long distance apart could only communicate with their loved ones through letter

writing but with the arrival of the phone human communication improved; however, large phone bills

for both parties became the big challenge. Since the advent of chat rooms which only require that the

user has a network connection, staying in touch with long distance families, friends and loved ones is

much easier and more reliable than before. Advanced chat rooms are now supporting video or voice



1. Introduction 20

conferencing, thus permitting people or families to meet online at the same time with no or less cost

to either party, except for maybe a microphone or webcam. In addition to strengthening relationships

and friendships, the dynamic changes in social group membership and communication patterns have

attracted great attention due to its significant impacts on industry and society [70]. In the business

sector, chat is one of the best tools that can foster company-customer relationships. Many companies

have installed company-wide messaging service using computers. To stop using up too much time

on chatting, companies have developed security systems that deactivate chat outside of a company

network. As a result, employees will spend less time chatting with non-employees during work hours.

Operators are today in a key position as they can deliver services as well as maintain relationships

with customers. To reap rewards, operators must maintain their current privileged position and

provoke innovation in the kinds of products and services that will create value for customers and thus

lead to continued revenue growth [56]. All of this can be achieved by understanding the variations

and fluctuations in the behaviour of their customers conversation patterns over time. Similarly, this

can enhance strategic thinking and innovation. Some of the areas we have seen huge impacts in are

the marketing industry, banking and telecommunication companies. Marketing managers are often

keen to ascertain their customers views or opinions regarding their services. Through assessing timely

conversation patterns, they can detect when a customer is switching to their competitors. On the

other hand, bank managers want to identify when a customer is on the edge of leaving for another

bank while telecommunication companies are doing everything possible to locate customers who

are switching from one product community to another within their product categories. Capturing

the real fluctuation and variation using customers time varying communication patterns as well as

knowing the nature of their communication change will offer a better solution to varying industry

sectors [56].

Chat room communication was originally designed with good intentions such as information

exchanges and fast information spreading, which aimed to build positive and informed societies.

Unfortunately, sometimes chat rooms are misused for illegitimate information exchange. It has been

converted into a tool for committing crimes because of its anonymity and totally unrestrained chat-

ting environment [56]. Crimes such as sexual solicitation, online bullying, sensitive and confidential

information stealing or leaking, especially for children and youngsters, terrorist contacts and dis-

cussion (which pose a great danger to the safety of society) may be reduced by understanding and

monitoring how chat room users behave online. Discovering the characteristics of users during online

chats may help to improve the safety of chat rooms as well as create better policies to reduce the

number of chat room abusers [37]. Lastly, in turn this will build the confidence of users, chat room

providers and keep our societies safer at large [64].
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1.1.3 Motivation

Chat rooms are of enormous interest to social network researchers due to its many uses and applica-

tions such as in on-line education, customer services, academic collaborators, General Practitioners

and patient consultants. As one of the most interactive internet areas, users behaviour has an effect

on the whole structure of a social network. This is important because it provides information about

the dynamic process taking place in a real network. In the real world, a person plays a role each

time there is an interaction and this role strongly shapes their behaviour, which in turn affect the

network structure. The structure of a network is the result of user activities or behaviours.

To understand the behaviour of users in a chat room, there have been studies on the analysis

of the Response Waiting Time (RWT) based on traditional approaches of aggregating the network

contacts. However, real social networks are dynamic and properties such as RWT change over

time. Unfortunately, the traditional approach focuses only on static network while neglecting the

temporal variation in RWT which may lead to misrepresentation of the true nature of RWT. Hence

our motivation.

1.1.4 Research questions

The following questions have been raised as a result of notable gaps in the literature relating to

analysing of Chat room logs:

What is the structure of our chat rooms?

A Chat room consist of users who send messages to each other. We can model this with a network

in which the users are represented by nodes, while links or edges represent the messages. The degree

of a node in a network is the number of connections it has to other nodes.

The network represents the interaction between all the users in the whole period of our study. Be-

side the direct link between users activities and network structure, understanding the social structure

hidden behind chat rooms can facilitate the building of a robust model of the flow of information,

which could be applied in developing a computer learning tool to support and evaluate the transfer

of knowledge between users. It could also be useful for effective message filtering i.e. separating

users chatting into different groups. Moreover, understanding of the network structure may enhance

the techniques use for interfering of any abnormal or unexpected behaviour in a network.

How can we best describe the distribution of response waiting time in a chat room?

Previous studies on response waiting time by Barabasi and others claim that the distribution follows

power law [8]. We want to see if it is in fact a power law and if it is the same for everyone. We focus

our study on three different chat rooms: Walford chat logs, IRC chat logs and T-REX chat logs.

What are the dynamic main characteristics of RWT?

We give a detailed study of the RWT considering the following:
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• The impact of number of message exchange on RWT.

• Dynamism of a single user’s RWT with other users at different chat sessions.

Is there temporal variation in RWT?

Users behave differently at weekdays and weekends due to many factors, for example, working on

the weekdays and having more leisure time on the weekends. Is this reflected in the response waiting

time of a chat room?

Is the temporal variation due to the chat room technology?

Are the differences due to various technologies (different chat rooms) in existence?

How can we disentangle chat using a computationally less intensive method? Dis-

entanglement is a task that extracts the different interposed utterances in a chat log and separates

them into distinct conversations. Most disentanglement models involve highly computationally in-

tensive methods such as clustering techniques, fuzzy algorithm, etc. These methods often lead to

deterioration in the results accuracy.

How can we dynamically model real social network? Social interactions are dynamic which

often experience tile decay and formation. Also in social networks, nodes enter and exit, interactions

between pairs of people or groups are bursty as a result of long dormant periods separated by strong

bursts of activity. One of the challenges in chat disentanglement is the temporal variation and

dynamics of the network system.

Aim and Objectives

The aim of this project is to understand the on-line chat room characteristics and study the disen-

tanglement of conversations in real time. In order to achieve this aim we propose to:

• Analyse three chat logs: Walford, IRC and T-REX logs.

• Extract the message contents and other on-line chat room characteristics such RWT, Time

stamp etc.

• Use the power law technique to explore chat room characteristics.

• Utilise the on-line chat room characteristics to predict the RWT during on-line chat

• Use the on-line chat log properties to design an algorithm for chat disentanglement.

1.1.5 Methodology

This section outlines and summarises the approach I used to carried out my research. Starting with

the dataset extraction, the analysis and the findings. We utillsed three chat room logs, which had
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already been collected in our research: Walford, IRC and T-REX. The dataset were made available

for us from different sources.

Walford was a text-based online social community that had roughly 2446 regular users and the

number of communications or edges was 37,981 for four years [38]. It was a corpus that contained

24,040 hours (2001-2004) of chat. In the corpus of chat logs, the following data was recorded: unique

numeric IDs for the time, the originator, the originators location, the recipient(s) and their location.

The IRC chat transcript dataset was described in [26] and provided on web(http://www.ling.ohio-

state.edu/melsner/). The chat format include: speaker name, recipient name, comment or action

and the times which are given in seconds.

The T-REX chat log was generated as part of the T-REX field project and was managed by

the Earth Observing Laboratory (EOL) at the National Center for Atmospheric Research (NCAR).

These chat logs were reviewed by EOL and edited to maintain the most accurate records for the

project.

Material Analysed

The dataset were in the form of a transcript of the conversations. For each person to person commu-

nication or person to many communication, the following data is extracted: the basic command type;

unique numeric IDs for: the time, the originator, the originators location, the recipient(s) and their

location. This extracted record formed the dataset with the following column heads: chat partic-

ipants (Sender and Recipient), Timestamp (Day-Month-Year, hour:minute:seconds), chat messages

(The content of the chat messages)

One of the chat room characteristics that we calculated from the above dataset is message Re-

sponse Waiting Time (RWT). The waiting time in a chat room communication is the time difference

between successive messages between two people.

1

2 40:29 A→(B):grins I think it’s the proxy
3 Kevin and Perry that need kicking!
4 40:55 B→(A):what happened last night..the
5 lot of it got or needed a kicking!
6 41:13 C→(D): lsaysl cH kissing bandit...l
7 41:45 H→(I):Kissing bandits are predators
8 should not be tolerated
9 41:46 A→(B): it was a Janet router that went,

10 second tie in a week one has died
11 42:08 D→(C):lsaysl cYou’re just jealous he
12 took your job
13 42:16 B→(A):grins janet is the of the network
14 the universities and schools are on.
15 router is something that forwards on
16 42:21 I→(H): And I haven’t gotten any action since

Fig. 1.1: Sample of a conversation from our corpus.

For example, in Figure 6.1, three pairs of conversation are going on: A→ B and B → A, C → D
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and D → C, H → I and I → H. The response waiting time distribution between the pair of

people A and B is 29 seconds (40 : 55 − 40 : 29), 51 seconds (41 : 46 − 40 : 55) and 30 seconds

(42 : 16 − 41 : 46). The response waiting time between the pair of people C and D is 55 seconds

(42 : 08 − 41 : 13). The response waiting time between the pair of people H and I is 36 seconds

(42 : 21 − 41 : 45). Then, we applied the maximum likelihood method to estimate the power-law

scaling parameters for Walford chat room logs and T-REX chat room logs.

Analysis

My aim in this project is to understand the on-line chat room characteristics. We first explored

the dataset to show that chat room represents human interactions. We investigated the dynamics

of pairs of people in conversation with respect to their Response Waiting Time (RWT) and this

was done by fitting a power law distribution to determine the true nature of the RWT . We also

investigated which properties of a chat room can be used to predict the response waiting time.

Focusing on the dynamics of group conversation, we proposed a simple and effective technique

that utilised simple statistical information, such as utterance similarities, RWT, turn-taking and

the participant-based feature for thread detection in chat logs. This supplemented the traditional

qualitative method, which has been proven to be difficult due to the contextual nature of meaning.

Scope

One of our limitation was that the datasets from the three chat room were not the same size. Walford

was the largest while T-REX was the smallest. This may have had an effect when we compared the

results from the three datasets. Also since the structure of the three chat log varies from one chat

room to another, the model performance tend to favour one over the other.

Another limitation we encountered was the presence of schism. Schism occurs when a con-

versation splits into two conversations; the new conversation is formed due to certain participants

branching of from a specific message and refocusing their attention upon each other. Schisms impose

serious difficulty in identifying conversation threads. There are two ways in which new conversations

can start: one is through a schism and the other is through a conversation initiating statement.

Disentangling chat logs in the absent of a schism may improve model performance and yield better

results.



2. LITERATURE REVIEW

With the emergence of the internet, communication within and between communities has improved

tremendously [56]. In the last decade, there has also been a significant rise in the number of social

networks and an increasing number of users. In turn, the impact of these changes has affected the

effectiveness and efficiency of both theoretical and practical communication in communities [56].

These changes include: providing an adequate platform for connecting and reconnecting people,

an opportunity to produce and share content with others, and extracting and processing group

knowledge with feedback. Facebook, Twitter, MySpace, LinkedIn, Flickr and Foursquare are the

most common networks and have enhanced communication and the diffusion of information into

communities, while sites such as Yahoo and MSN Web Communities provide a directory of chat sites

called chat rooms [70].

Many authors have presented studies on patterns of communication and information spread in

social networks by examining data collected from them. Most of the studies on chat room networks

have focused on time-independent variables and thereby lose the natural properties that time induces

as the network evolves. However, the existence of natural and technological applications have made it

possible to capture a huge amount of data that is time-dependent from communication systems [35].

The time-ordered sequences of networks are characterised by time-stamped information so that

network parameters such as: when and who sent the message, when and who received the message,

the delay in response to the message, content structure and duration in group conversation arises

naturally in the evolving communication network. With the help of advanced communication systems

and cutting-edge technologies, we can analyse social networks to obtain full information on the

duration and time occurrence of each link [35].

2.1 Waiting Time

As a result of the rapid increase in the use of social networks, computer scientists and sociologists

are beginning to investigate their properties. The three major aspects that researchers explore on a

social network are structure, content and user behaviour [49]. Barabasi [8], in his research (The origin

of bursts and heavy tails in human dynamics), argues that the waiting time distribution for email

communication between many users exhibits a power-law. This contrasts with the first-come-first-

serve tasks, which are random and may result in uniform dynamics that are Poisson distribution in
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nature. In an effort to back up his argument, he conducted a series of studies on email communication

between many users. The dataset captured the sender, recipient, size and time details of each e-

mail. To determine the waiting time, he noted the time an e-mail arrived to a user and the time the

user responded; the time difference between these two occurrences gives the waiting time. His results

showed that the time taken by the participant to respond to an email received is best described using

a power-law model in a form of P (x) = x−α where α = 1, which signifies that the e-mail pattern

for an individual has a bursty non-Poisson distribution behaviour(see section 3.1.4). According

to the author, since most of the human activity patterns conform to non-Poisson statistics, this

indicates that the bursty properties show some significant and common features, which characterise

the continuous change of human activities. He suggests that the bursty character of human dynamics

occurs as a result of a queuing process, which has human activities as its driving force. Finally, the

author stated that the timing of most activities that humans undertake such as communication can

be described as bursts of events that occur in quick succession with long periods of inactivity existing

in between [61]. It appears that Barabasi jumped to conclusions as there are a lot of distributions

that are non-Poisson but are not exponential either. Our work is important because it contribute

significantly to the understanding of the true nature of the RWT. Even Ahn et al. [4] in their research

have also shown that these distributions are not Poisson but not power-law either.

Ahn et al. [4] examined the structural properties of social networks by analysing and comparing

the structure of MySpace, South Koreas Cyworld and Orkut (since closed), which are social network-

ing services. They conducted a snowball sampling of the network (this means to randomly select one

seed node and perform a breadth-first search; this is done until the total nodes selected equal the

required sampling ratio. Only the edges that exist between the selected nodes are taken into account

during the final stage of the network sampling). This sampling approach has been found to preserve

the power-law nature in the degree distribution (the degree of a node in a network is the number

of connections it has to other nodes). They started the analysis of the network characteristics by

examining their power-law degree distribution, which can be described using:

P (x) = x−α where x is the node degree and α < 3, authenticates the existence of a fairly

small number of nodes that have a large number of links.

They also examined the clustering coefficient, which represents the ratio of subsisting links over

the total possible or potential links between its neighbours. In addition, the authors examined the

degree of correlation Knn, which they defined as.

“a mapping between a node degree k and the average degree of the closest neighbours of

those nodes of degree k [4].”

Analysing the Cyworld network shows that their degree distribution has multi-scaling behaviour:
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a region which is heavy-tailed with α = 2 and a region which decayed exponentially. The observed

multi- scaling behaviour suggests that Cyworld has two distinct types of users. Different scaling

regions were also observed in the cluster coefficient and degree correlation, indicating a mixture of

different types of users. However, Orkut and MySpace exhibited simple scaling behaviours that had

different exponents. In another large-scale study, Ahn et al. examined data collected from four

widely used online social networks: YouTube, Flickr, Orkut and LiveJournal. The author confirmed

the existence of a power-law in Flickr, YouTube and LiveJournal datasets while the Orkut data

deviated significantly [56].

They reported a significant diameter and short path for the social networks mentioned above

(i.e. small-world). Analysing the joint degree distribution, which is an approximation of the degree

correlation function, they show that vertexes with a high degree are more likely to relate to other

high-degree vertexes in all networks except for YouTube. Knn(k) is the average neighbour degree for

the nodes with degree k, and is used to measure correlations in power-law networks. It is observed

that, if Knn increases, the vertexes with a higher-degree are more likely to relate to other high-degree

vertexes, while on the other hand if Knn decreases it features an opposite trend. Furthermore, they

observed significant scale-free behaviour in all the datasets except YouTube. Scale-free metrics are

computed from the joint degree distribution of the graph and are concerned with the degree to

which the network possesses a hub-like core. The metrics value ranges from 0 to 1, where the value

1 suggests that nodes with a high-degree are more likely to relate to other high-degree nodes, and 0

indicates that nodes with low-degree are more likely to be associated with other low-degree nodes.

Lastly, they observed a similarity between the in-degree of user nodes and that of out-degree.

Researchers have also investigated the content generated by users over time, which may aid in

discovering knowledge. For instance Althoff et al. [5] carried out a study on how topics evolved across

three online media streams. They started by crawling the top threads everyday, from the major online

media channels across multiple channels, with the purpose of capturing peoples communication needs

and searching for patterns. Retrieving threads from Twitter, Google and Wikipedia, they cluster

similar threads across time and channels. Their results suggested that, when getting information

about current events, Twitter is not the only social media to turn to, there are other sources one can

get information about the current events, though this depends on individual requirements. Lastly, the

author proposed a novel forecasting approach that put together a time series from many semantically

identical topics, exploiting the notion that semantically identical topics will show similar behaviours.

Another area of study that has attracted many researchers attention is the users’ behaviour in

online social network. This is of interest because users’ behaviour has impact on the structure of

a social network and can be utilised to describe the users themselves at best [49]. For instance,

users’ activities on Twitter have been studied by Lerman et. al. [44] and Comarela et. al. [17]. The
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authors carried out an empirical analysis to examine the effect of a users’ activities on spreading

patterns. They show that the variation that occurs in the exponent of a power-law indicates our

aptitude to maximise the transfer of information and the cost of communication enforced by the

handicap of the human brain [33]. In summary, they represented a communication system in the

form of mapping signals to stimuli, assuming that signals can be roughly compared to words and

stimuli are the fundamental tools for determining the meaning of a word. They assumed that the

signal connects to stimuli, as the words are associated with the activation of different brain areas.

For instance, nouns have the tendency to activate visual areas, while verbs which are “doing” words,

might activate motor areas. The region activated is associated with the diverse kinds of stimuli

experienced with the word.

A recent paper by Lim et al. [49] explored user behaviour on several social networks such as

Google+, Flickr, Instagram, Twitter, Tumblr and YouTube with the goal of uncovering behavioural

trends in multiple network use. They presented the analysis of each users profile, which explored

how descriptions differ across multiple Online Social Networks (OSNs). Furthermore, they explored

the message post-time using time of day and day of week analysis in order to understand how

users sharing-behaviours vary with time. Lastly, they conducted cross-network interaction analysis,

mapping how users post from one source network to a sink network. The authors show that users

exhibited diverse behaviour on the different OSNs.

The study by Giovanni et al. [17] shows a detailed characterisation of response waiting time on

Twitter. They investigated the time difference between when a user receives a tweet and when it

is replied to or retweeted. Results suggest that the time a tweet waits before it is replied to or

retweeted seems to have several types of scaling and shows a sharp drop off near 108 seconds.

This indicates that the RWT for Twitter replies or retweets do not possess pure power-law tails.

The authors show that nearly all messages will wait more than 100 seconds before they are replied

to or retweeted. In addition about 90% wait for up to 1000 seconds. Also, the authors claim that

the main factors that affect participants response rate or the probability of retweeting include the

tweeters sending rate, earlier replies to the same tweeter, the age and some basic wording of the

tweet [17]. Their method is a combination of two types of machine learning: a Support Vector

Machine classifier and a Naive Bayes predictor, which was used for tweets ranking, showing the

possibility of reordering tweets with the aim of increasing the fraction of replied to or retweeted

messages.

Moreover, Acar et al. [1] studied the modelling and multi-way analysis of chat rooms. The authors

believe that chat room communication data provide valuable information to study the evolution of

social groups in cyberspace as well as the changes of social group membership over time. They also

argued that chat room communication data, although gotten from streaming real-time communica-
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tion, still has information that is full of noise and multidimensional. They further reasoned that the

conventional methods such as Singular Value Decomposition (SVD), which depend on a linear rela-

tionship, may not be applied to multidimensional data. Hence, they proposed multiple dimensions

techniques that capture the different facets of chat room communication. However, it is obvious

that there is no clearly defined approach that universalises SVD to a higher dimension [1], therefore

using this method to model multidimensional data like chat room data may return unsatisfactory

results and may not be reliable. As a solution to the limitation of SVD, Evrim et al. [1] proposed a

multiple dimension technique to capture many aspects of chat room communication by constructing

a multi-way data array, which is called high order tensors.

Next we will review some previous work on power-law because of its valuable mathematical prop-

erties and its applications to a broad range of both natural events such as floods, volcanic eruptions,

earthquakes, tsunamis and man-made events such as cyber attacks. According to Newman [59],

“When the probability of measuring a particular value of some quantity varies inversely

as a power of that value, the quantity is said to follow a power-law, also known as Zipfs

law or the Pareto distribution.”

Researchers have developed several models to identify the occurrence of a power-law in commu-

nication traffic. Michalis et al. [32] did a study of power-law relationships of internet topology.

The authors suggested a formulas which links power-laws exponents with the number of edges, the

number of nodes and the average neighbourhood size. They also proposed the power-law exponents

as an efficient way to describe the highly skewed graph metrics instead of averages.

Clauset et al.[16] in their study of the power-law distribution in empirical data claim that the

standard practice of detecting and evaluating power-law distribution by fitting a straight line to a

log-log plot in order to estimate the exponent is not a reliable method. In the authors words “it is not

straightforward to say with certainty whether a particular data set has a power-law distribution”.

The authors have a procedure for estimating the parameters of a power-law description, which we

will follow, and we will describe it in detail in Chapter 3.

Also, Barabasi et al. [10] studied the competition and multi-scaling in evolving networks. They

claim that the rate of increase in node connectivity within a network is based on their ability of the

node to contest for links. The authors believed that the different fitness translates into multi-scaling

in the dynamic evolution and that the time dependence of the nodes connectivity depends on the

fitness of the node. It is clear, for the last decade that power law has been applied in modelling,

such as in the topology of the internet. However, little or no effort has been made in identifying and

characterising communication chat room data using power-law, and this remains a challenge that

this proposed research seeks to solve. Kwak et al. [43] presented an extensive study on characterising

Twitter and its properties as a new means of transferring information. The author claims that the
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followers distribution is a non-power-law. They also reported a low reciprocity and a short diameter.

These characteristics show many anomalies when compared with the already known characteristics of

human social networks. In their methodology, they used a “queuing model with a priority discipline”

which presumes that each person prioritizes different activities and select an event with the highest

priority for execution.

In their paper titled “Graphs over Time: Densification Laws, Shrinking Diameters and Possible

Explanations” [45], these authors studied how networks evolve over time by examining a small

portion of a network at regular time interval. Using seven data sources which contain a column that

describes the time each node was added, they were able to create at any point in time a snapshot of

the network. The authors found that in contrast to previous standard studies the mean out-degrees

in a network is not constant over time rather they grow in a natural pattern. They also found that

across a range of networks, the network diameter tends to decrease slowly as the network grows.

To further understand what might cause a network to densify and also possess a shrinking diameter

the authors propose two models which they call the Community Guided Attachment Model and

the Fire Forest model [45]. In the Community Guided Attachment model, they argue that graph

densification is based on nodes decomposing into nested sets of communities such that creating

connections becomes more challenging between communities as the network grows. The Fire Forest

model is more complex in the sense that it shows the densification as well as a decreasing effective

diameter as the network enlarges. The process involves adding new nodes through the existing edges

to the network in a widespread manner.

In addition to their findings in [45], the authors latest research in [46] found that the Forest

Fire Model shows a sharp change between scanty networks and dense graphs. Graphs that have

a shrinking diameter are observed within the sharp changing point. Finally, they noticed that the

time dependent evolution of the graphs power-law degree distribution and the densification power

law exponent have a basic relationship.

2.2 Techniques for Multi-participant Chat Analysis

There are various methods that can be used to analyse multiparty chat room logs. Figure 2.1 shows a

topology of these techniques and we can split these methods into two levels: Low-Level Analysis and

High-Level Analysis [71]. Low-Level includes Chat Pre-processing, Chat Room Feature Processing

and Disentanglement of Chat Threads. High-Level consists of User Profiling, Message Attribute

Identification and Automatic Summarisation, Topic Detection and Social Phenomenon Detection.
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Fig. 2.1: Techniques for Multi-participant Chat Analysis. Source:[71]

2.2.1 Chat room feature processing

As stated earlier, chat room feature processing is often used to discover associations that exist among

posted text. These features could be time stamps [3, 27, 28, 29, 58, 14], nickname augmentation [3,

27], name mentions [27, 28, 69], and speaker identity [28]. The applications of feature processing

can be seen in thread disentanglement, where word similarities aid in determining distinct chat

conversations and detecting the topic of discussion. In addition, the cohesion of messages can assist

in deciding on their general topic. For instance, in order to determine if two utterances belong to

the same conversation in thread detection, Elsner [28] suggested in their paper that time stamps and

identities of the speakers are better cues than the contents of the messages and stated the following

for utterance disentanglement:

• Penalising the time gap distance is vital in finding the relationship among utterances: The

farther apart in time two utterances are, the less likely it is that they belong to the same

temporal conversation and, the closer they are, the more likely it is that the two utterances

are related.

• Generally, name-mention are often seen at the beginning of chat messages and can serve as a

connection between utterances. Mentioning names is useful in finding threads of conversation

and some participants make use of them more than others.

• In some conversations, only a few users speak while the majority are recipients. In such

environments, the speakers identity can help in disentangling of the chat thread since only a

few core speakers who are speaking frequently dominate the conversation and these speakers

may be in the same conversation.

These features above are very important in providing extra knowledge for analysis beyond the mes-

sage composition.
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2.2.2 Thread disentanglement

Multi-party conversation is different from the groups spoken communication in the sense that it lacks

some characteristics we see in spoken dialogue such as turn-taking [71]. The absence of these features

results in threads becoming entangled such that interpreting individual threads may be misleading.

Moreover, initiating and responding to messages further entangles threads; for instance, many users

can respond to a speaker at the same time, and one user can respond to many users at the same

time. It has also been mentioned that users can start a new thread that is unplanned and this rarely

happens in spoken group conversation [71]. Disentangling conversation chat threads is important

because it makes future analysis techniques much easier. After the disentanglement process, the

focus will be on single conversations. It also makes it easy to apply popular Artificial Intelligence

methods such as topic detection and automatic summarisation to a single conversation. One of the

common methods used when studying thread disentanglement is the clustering method [71, 26]. In

a recent study, Elsner [28] employed coherence models to investigate chat disentanglement. They

validated their models using recorded telephone conversations for thread disentanglement. In their

method they utilised the tabu search method to arrive at a solution to this problem; this involves

conducting two stages of experiments with different chat corpus. The first experiment involved

disentangling single messages and the second involved disentangling the entire chat log.

Another interesting method of chat disentanglement is described in [29] and [27]. Their work

utilised correlation clustering for thread detection. The method involved searching for a group of

clusters that maximise the degree of similarities between pairs in a cluster and the level of dissimilarity

among pairs across clusters. The two models employ a maximum-entropy classifier to decide whether

an utterance belongs to a given conversation [71]. In another recent work, Mayfield et al. [53]

utilised a two-pass method for thread detection. In the first pass, the method labels sentences using

a negotiation framework. After the labelling process, a single-pass clustering algorithm is used to

detect sequences.

The approach used by Shen et al. [68], Wang and Oard [74] and Wang et al. [72] was a Single-Pass

Clustering Technique (SPCT). The SPCT procedure involves holding the first utterance as the first

cluster which allows each subsequent utterance to be allocated to an existing one if the utterance is

similar to the cluster and surpasses a certain threshold or else it allocates them to a new cluster. To

assign an utterance to a given conversation, the authors first used a vector space model with term

frequency-inverse document frequency (TF-IDF) to depict the utterances and employed the similarity

of the vectors for each utterance as well as the sentence types and personal pronouns. In another

research, Wang and Oard [74] appear to employ a similar approach using a clustering method but

utilising a slightly different approach. The authors approach is in two stages: in the first stage, their

method involves single-pass clustering, as described above. The second phase involves renovating
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the links between utterances based on the new utterance by going through all the conversations.

This permits utterances to be re-classified assuming that the cluster which holds the new utterance

is strongly linked with a given utterance.

Another approach used by Elsner and Schudy involved greedy techniques and local searches

for the NP-hard problem of discovering a better solution for cluster correlation. However unlike

the previous single-pass, their method makes multiple passes with random permutations and the

authors report suggests that using the greedy method followed by local searches resulted in the

highest performance. The voting schema technique was employed by Elsner and Charniak [27] as

well as correlation clustering. In their approach, messages are processed incrementally as they were

received. Wang et al. used parent- child associations that exist among utterances and represented

it with connectivity matrices. Their techniques are in two stages. In the first stage, they computed

the similarity matrix of the messages using standard TF-IDF term vector representation while, in

the second phase, the author builds a direct graph of the utterances and relations can only exist

if utterance similarity surpasses a threshold value. The author developed four approaches - one is

a baseline, and the other three are just an extension of the baseline, penalising the time-distance

between messages with different techniques. Camtepe et al. [11] presented an approach which claims

to have found every subgroup conversation that exists in that particular network. Their algorithm

depends mainly on the statistical information contained in the sequence of posts. In their model,

they assume that:

• The number of subtopics is predetermined at the beginning

• The overall number of users in the channel is unchanged

• Each user has a life span within the channel.

• Each user randomly picks a subtopic at arrival within the channel and stick to it throughout

the life span

• Only one user is permitted to send a message within a subtopic at a time

• A user who is picked to send a message will be allowed for message inter-arrival time before

submitting the message.

• The size of the content of the messages is not fixed and message inter-arrival times are not

fixed as well rather these are at random, at a given distribution and mean

• All the messages posted are collected from each subtopic, combined at any time and intermix

randomly
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Firstly, because it is the speakers that are clustered, not the utterances, the algorithm fails when

speakers shift from one conversation to another. Secondly, they used a chat feature such as a time

gap between utterances and turn-taking behaviour, however, speakers are not allowed long gaps

or to cause an interruption. However, in reality, speakers can interrupt or leave long gaps, group

conversations can be interrupted by other conversations, and two or more group conversations can

occur at the same time. These chat room behaviours were not taken into consideration by the

authors. Moreover, they did not use standard corpora.

Camtepe et al. [11] conducted research on data collection and analysis of a chat room using SVD

technique. Their primary aim was to test the challenges of the n-way data analysis method and see

if there is a relationship between the way data is collected (i.e. tensor construction) and how these

techniques work. Their model is based on five parameters:

“(i) distribution for the inter-arrival time, (ii) distribution for size of the message (number

of words), (iii) distribution for the number of messages per user, (iv) noise ratio (NR),

and (v) time period.”

As a part of an effort to provide solutions to these challenges, Acar et al. [1] clustered speakers

by using a fuzzy algorithm approach. However, the algorithm focuses on the speaker and does not

include the utterances made in decision-making. As a result, it may be hard to know or classify the

utterances to different conversations. In addition, several threads of research attempted to develop

programs to solve the disentanglement problem. PieSpy [58]is an IRC program that gathers chat

room messages and visualises social networks. It is based on simple heuristic rules that decide

the origin and destination of the messages. These rules involve direct addressing, i.e. writing the

nickname at the start of the message; however, it is not uncommon for the destination nickname

to be used in a post. There is another method called Temporal Proximity. After a long interval of

inactivity, if a participant posts a message which is at once followed up by a post from a different

participant, then we can assume that the second message was a reply to the first one. Furthermore, a

method called Temporal Density is often used in cases where Temporal Proximity cannot be applied.

In this case, if within a stipulated period of time many messages have been sent and these messages

have come from only two users then we can assume that there is a concrete conversation going

on between these two participants. However, this method cannot be used when there are multiple

conversations occurring simultaneously.

2.2.3 Topic detection

Topic detection may be difficult due to the dynamics of chat as multiple topics often occur at the

same time and change over time. Topic detection can be used to know if users are staying on topic. It

can also assist chat participants to discover the particular chat room they are interested in. Users can
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match their interests by randomly sampling the open chat rooms, word construction vectors of the

rooms, and then make a selection based on their preference. Lastly, it can support in creating user and

chat room profiles. Elnahrawy [25] applied techniques such as Nave Bayes, k- Nearest Neighbour and

Support Vector Machines (SVM) to newsgroup postings and chat logs, with an aim of discovering pre-

determined topics in a log. The authors claim that the Nave Bayes classifier outperformed SVM with

highest accuracies and shorter training times. Also, the classification time was longer in k-Nearest

Neighbour than Nave Bayes. Similarly, zyurt and Kse [63] focused on a Turkish language chat log,

applying the same techniques as Elnahrawy [25] for topic detection. However, their classification

was based on individual utterances, unlike that of Elnahrawy [25] approach. The authors claim that

SVMs yielded the highest accuracy compared to the other two classifiers. Anjewierden et al. [6]

focused on an educational chat room made up of students collaboratively learning and classified

their utterances into groups using the Nave Bayes classifier. Before they trained and evaluated their

classifier, the authors combined manual and automated methods to limit noise, such as misspellings,

in their chat data. Durham [23] looked at binary classification for chat messages using the Latent

Dirichlet Allocation model as a featured vector for SVM. The authors argued that their method

performs best if all messages sent by users are considered as a single document.



3. FUNDAMENTALS

We divided this section into two parts. Part one deals with the network structure while part two is

concerned with the chat disentanglement.

3.1 Social networks

Social networks denote relations among social entities [70], for instance, communications among

members of a group or economic relations between corporations. Social network analysis emphasises

the structural analysis of networks in order to explain social behaviours [37]. The methods are widely

used in the social and behavioural sciences but have also gained application in economics, marketing,

banking, telecommunication and other areas as well [13]. A social network is made up of nodes and

edges. Nodes stand for participants while edges denote the link between the participants. A link

between two nodes signifies the relation between them [57]. In a network, an interaction between

nodes represents their relations [13].

3.1.1 Models of Networks

Several models for investigating the topological properties of social networks have been proposed.

Among others models, the prominent ones include the Random graph model, Small-world model and

Model of a scale-free network.

The Random Graph of Erdős and Rényi

Erdős and Rényi constructed a random graph that could be seen as the basic model of a complex

network [31, 18]. This graph (see Figure 3.1) is made up of N vertices and E edges while multiple

edges and self-loops were excluded. In building the network, L edges were added at random to

already defined N disconnected vertices. In another related approach, the models were constructed

by first defining the N vertices and then, for each pair of vertices, calculate the probability (p) of

connecting them. The latter method is called Erdős - Rényi (ER) model [31, 30]

The Small-World Model of Watts and Strogatz

Networks show a small world property when most of its vertices are reachable from others via a few

edges [18]. A good example is a social network, where you can connect to everybody in the globe
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(a) The Random Graph of Erdős and Rényi

Fig. 3.1: (i)is an example of a random graph and (ii) the average degree distribution over 10 random networks
formed by 10,000 vertices using a probability p = 0.2. Source: [18].

via a few linked social acquaintances [75, 76]. Watts and Strogatz constructed a random network

(see Figure 3.2) which has a small-world feature with many short loops and is known as the Watts-

Strogatz (WS) Small-World model [77]. The Watts-Strogatz model was first introduced by Duncan

J. Watts and Steven Strogatz in their joint work published in Nature (1998). The author used the

following steps to create the Watts and Strogatz model:

• Step 1: Build a ring lattice with N vertices and each vertice has a link to 2R neighbours (R

on each side).

• Step 2: In each of vertice ni = n1, ..., nN take each edge (ni, nj) with i < j, and with probability

β wire it again.

• Step 3: To wire again, substitute (ni, nj) with (ni, nk) where k is selected with uniform prob-

ability from every plausible values that avoid self-loops (k 6= i) and edge that has duplicate

.

Scale-free Networks of Barabasi and Albert

another research from Barabasi and Albert reveals that many natural world systems have a degree

distribution that exhibits a power-law [9]. Unlike ER and WS models, which have random pattern

connected vertices, some vertices in BA have a high connection while others have a few connections [9,

18]. This model degree distribution exhibits power-law when the k value is large. The BA model is

called a scale-free network. A network is scale-free when its degree distribution exhibits a power-law,

at least asymptotically [9] which can be described by:

P (k) ∼ k−α
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(a) The Small-World model of Watts and Strogatz

Fig. 3.2: (i) an example of a network with N = 64 vertices, k = 2, p = 0.1, and (ii) average degree distribution
over 10 WS networks with 10 000 vertices, k = 25 and p = 0.3. Source: [18].

In this case, α is a parameter with values ranging from 2 < α < 3 and sometime it may occur

outside these ranges [9, 18].

Another feature in a scale-free network is the existence of hubs [9]. Nodes with the highest degree

in a network are sometimes known as hubs and are believed to have a definite purpose, even though

they are domain dependant. The two core principles on which the Barabasi-Albert network model

are based are growth and preferential attachment [9, 18]. According to the author [9] Barabsi-Albert

model can be generated using following procedure: First, beginning with m0 nodes, the network

develops by following the two steps below:

Growth: A new node with r(≤ r0) link is added at every timestep and this link connects the new

node to r which is in the already existing network

Preferential attachment: The probability Π(k) of each edge of the newly formed node links to node

i which depend on the degree ki of node i is Π(ki) = ki∑
j kj

Preferential attachment appear to be a probabilistic rule: a newly formed node is allowed to link to

any already existing node in the network.

Because of the importance and usefulness of online social networks, researchers have been inves-

tigating their properties. As mentioned in the introduction, discussing the principles and statistics

of a social network will be relevant when exploring the dataset in the next chapter. We will examine

some of the properties and statistics of the social network that are most useful in exploring our data

set. These include degree distribution, cluster coefficient, centrality measure, density, diameter and

power-law.



3. Fundamentals 39

(a) The scale-free network of Barabasi and Albert

Fig. 3.3: (i) an example of a scale-free network and (ii) average degree distribution over 10 Barabasi-Albert
networks formed by 10,000 vertices using m = 5. The degree distribution follows a power-law, in
contrast to that presented in Figure 3.3. Source: [18].

3.1.2 Local statistics

The local statistics focuses on a property within a graph (ie node as propety within the whole graph).

Assume Gg is a category of graphs, R is a group of parameters and Z a group of values. In addition,

let us consider KG to be a group of graph properties in G, which could include vertices, edges,

subgraphs, paths, etc. Then, a local statistic ρG is the one that allocates a single value ρG(k) ∈

Z to a certain graph property k of a given graph G ∈ Gg. [70] Examples are in − degree and

out− degree, edge weight, distance, clustering coefficient of a vertex and centrality measures.

Degree

The degree of a vertex k represents the number of edges that have k as its endpoints, for example,

in figure 3.4, node A has 5 degrees and node B has 3 degrees. The average node degree K can be

defined as K = 2E
N [70]. The node degree distribution p(k) is the probability that a randomly selected

node has a specified degree k. The node degree distribution can be represented as p(k) = n(k)
N . In

this case, n(k) is the number of nodes that have the degree of k. We look at the power-law degree

distributions, P (x) ∼ x−α, where x is the node degree [4].

In a directed graph G = (K;E), the out-degree of u ∈ K, denoted by deg+(u) is the number of

edges that have their origin in u. The in-degree of u ∈ K, denoted by deg−(u), is the number of

edges that have their destination in u [70].

Clustering coefficient

Another important property of the network is the clustering coefficient and centrality measure. The

clustering coefficient measures the degree to which friends of friends know each other [4]. The

clustering coefficient of a graph is an aggregation of the local clustering coefficient for each node.



3. Fundamentals 40

Fig. 3.4: The degree of a vertex

According to [70]: Given a graph G = (V,E) and a vertex vV , the clustering coefficient of v is CC(v)

= number of pairs of neighbours which are connected by edges and halved by the number of pairs

of neighbours. The clustering coefficient for the whole graph is the average of the local values CCi.

The average clustering coefficient of the whole nodes in a network is called the clustering coefficient

of the network [4]. According to Hamed et.al [36], given a node i with ki links, at maximum, these

links may be involved in triangles

ki(ki − 1)

2

. Increase in the number of triangles indicates a rise in the clustering of the node as well. The

clustering coefficient, y(G) can be defined as the average number of triangles(3-cycles) subdivided

by the total number of possible triangles.

CC = 1/N
∑
i

Ti
ki(ki − 1)/2

, ki ≥ 2

Where Ti is the number of triangles (3-cycles) for node i and ki is the degree of the node i. It

also measures the degree at which neighbours are connected in a network. The clustering coefficient

of a node in a perfectly-connected mesh network is 1 [47, 45].

Centrality measure

Furthermore, we considered the centrality properties (betweenness centrality and closeness central-

ity). The betweenness centrality measures the degree of a node that influences or controls informa-

tion flows between other nodes [34]. Betweenness can also be defined in terms of shortest path: the

number of shortest paths through a node within a network [70].

The betweenness centrality Cb(n) of a node n is calculated by [36]:
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Cb(n) =
∑

s6=υ 6=tεN

σst(υ)

σst

Where σst is the number of shortest paths from s to t and σst(υ) is the number of shortest

paths from s to t that passes through node υ. The average value of the node betweenness

over all nodes is called average node betweenness.

On the other hand, closeness centrality is concerned with how fast information flows within a

network, starting with a given node to other reachable nodes [4].

Closeness centrality is calculated as the mean geodesic distance between a vertex and all

other vertices reachable from it [34]. The closeness centrality, Cc(n) of a node n is defined

as the reciprocal of the sum of the shortest path from this node to other reachable nodes

in a graph.

3.1.3 Global statistics

Assume Gg is a category of graphs, R is a group of parameters and Z a group of values. In

addition, let consider KG to be a group of graph properties in G, which could include vertices,

edges, subgraphs, paths, etc. Then, a global statistic δ is the one that allocates a single value δG

∈ to each graph ∈ Γ [70]. Examples are number of vertices or edges, diameter, density, and mean

geodesic distance of the graph.

Diameter

This can be described as the maximal distance in-between two vertices. For instance, If the link from

node A to B is the shortest path in a network, the number of edges on that short path is described

as the diameter of a graph [34]. For example, in figure 3.5, central point here is one of the nodes

where three edges meet. The first graph has a diameter 4 and the second graph has a diameter of 3.

Mathematically, it can be described as:

diam(G) := max(d(u, ν)|u, ν ∈ V )

Where d(u, ν) represents the distance in-between two vertices and it can be defined as

d(u, ν) = min|P |

Where P represents the path starting from u and end in ν
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Fig. 3.5: The diameter of a graph

Density

We can define the density of a graph GE as a fraction of edges available in GE to the maximum

possible edges [34]. According to [70] the density of a graph GE is given by

(GE) =
m

n(n− 1)/2

Where n is the number of vertices available, m the number of edges available and n(n− 1)/2 is

the maximum number of edges that can be present in an undirected graph. Having talked about the

network properties, in the next section, we will introduce the power-law because of the relevance of

its mathematical properties to our study.

3.1.4 Power Law

Power-law has received intense attention for the last decade as a result of its valuable mathematical

properties and occurrence in a range of natural and man-made phenomena [16]. As defined in section

2.1: Mathematically, a quantity x obeys a power-law if it is drawn from a probability distribution:

P (x) ∼ x−α

Where x is the node degree and α < 3 attests to the existence of a relatively small number of

nodes with a very large number of links.

Quantities such as the sizes of cities, the strength of earthquakes etc., which are not clearly

described by their average values, have been found to follow power-law distributions.

While most studies in the past relied on least squares fit of a straight line to detect and characterise

power-law behaviours [32], a later study [59] criticised the approach and argued that it introduces

biases into the value of the exponent. They proposed a maximum likelihood and a goodness of fit test

in their approach as a statistical framework for detecting and measuring true power-law behaviour

empirically. Supporting this,
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3.1.5 Three-steps approach to test the power-laws hypothesis

Clauset et.al [16] suggested a maximum likelihood as a reliable approach for calculating power-law

parameters as we stated in section 2.1. The authors proposed a three-step process to test if a

distribution actually exhibits power-law. The first step is to estimate the power-law parameters

xmin and α, the second step is to calculate the goodness-of-fit and the third step is to conduct a

likelihood test ratio. We will briefly discuss each step.

Estimating the power-law parameters

Most of the empirical data in nature has a power law degree distribution, in the form P (x) ∼ x−α, for

(x> xmin) where x is the node degree and α is the exponent. The exponents of the power-laws can

be used to characterise graphs. According to [16], when a lower value of x or x below the lower limit

bound (x< xmin) is fitted, it will means mean fitting a power-law model to a non-power-law data

(data below the limit bound i.e xmin ). This will produce bias during the estimation of the scaling

parameter. On the other hand, too a very high value of x or x above the lower limit (x > xmin) will

produce an increase of both statistical errors on the scaling parameter and the bias from finite size

effects because it will be effectively excluding data points that are valid. Maximum likelihood is a

reliable technique for calculating the exponent of power-law [16]. In general, the following approach

was proposed by [16] for the analysis of power-laws:

In the rest of this work, we use the method proposed by

Goodness-of-fit

According to Clauset et al, the hypothesis can be tested using a goodness-of-fit test, through a

bootstrapping procedure. This approach calculates the goodness-of-fit between the data and the

power-law, if the resulting p-value is greater than 0.1, then power-law is a plausible hypothesis for

the data, otherwise it is rejected.

Direct comparison (likelihood test ratio)

Lastly, Clauset et al . for detecting and quantifying true proposes that a comparison of the power-

law behaviour in chat room data . We will now discuss part two, which deals with the contents in

conversations. with an alternative hypotheses via a likelihood ratio test be made. This involves a

direct comparison of two models (in our case with the log-normal distribution). A standard technique

is to use Vuongs test, which is a likelihood ratio test for model selection using the Kullback-Leibler

criteria. The test statistic, R, is the ratio of the log-likelihoods of the data between the two competing

models. The sign of R indicates which model is better. The p-value from these tests will be used to

quantify the plausibility of the hypothesis as follows:
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• If the p-value is large (close to 1), then any difference between the empirical data and the

model can be explained with statistical fluctuations.

• If p-value is small (close to 0), then the model does not provide a plausible fit to the data and

another distribution may be more appropriate in this scenario,

3.2 Conversation Analysis

Conversations involve two or more people and consist of a series of utterances [15]. Conversations are

governed by norms and traditionally have been analysed using qualitative protocols [66]. However,

this analysis is difficult and labour-intensive due to the contextual nature of the meaning of words [62].

According to Clark [15], conversations consist of different levels of parts: section, adjacency pairs

and turns. Conversations are usually purposive and unplanned [15]. More often than not two people

entering into conversation may have certain purposes, but no concrete plans of how it will be achieved.

According to [15], conversations may appear prearranged and objective-oriented only in retrospect,

but in practice they are generated cleverly bit by bit as the participants negotiate collaboratively

and what emerges are adjacency pairs, sections and, ultimately, the entire conversation itself [15].

3.2.1 Adjacency pairs

An adjacency pair is defined as a sequence of two utterances generated by two different speakers

that are, subsequent to one another [22]. According to [22], adjacency pairs consist of two sequences

of successive actions - first pair segment and second pair segment. The two segments are performed

by different agents X and Y.

• X: Hi (1st pair part)

• Y: Hi (2nd pair part)

• X related kind of greeting adjacency pair is the English closing greeting.

• X: (great) bye! (1st pair part)

• Y: (great) bye! (2nd pair part)

3.2.2 Sections in conversations

In the turn-taking rule allocation, Sacks et al. [66] identified two adjacent turns: current turn and the

next turn, and the transition between them. According to Sacks et al. [66], conversations are handled

locally and controlled by joint action which means that conversations are managed contribution by

contribution. The shape of each turn is dependent on all participants because they manage the

section of the current speaker as well as influence the course and the length of each turn [22]. When
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people are entering a conversation, they may have general goals but will not always make specific

plans on how to achieve these aims before the conversation [22]. This means that conversations are

managed contribution by contribution. Conversation periods can be divided into three [22]:

• Opening conversation session

• Conversation body

• Closing conversation session

According to [22], what takes place in the “opening conversation” period can be called an opening

section. Opening sections are joint projects for the participants and emerge from the usual entry-

body-exit structure: entry (orienting to the possibility of conversing), body (establishing a joint

commitment to converse) and exit (opening of first topic). The exit from the conversation is called

the closing section. Two participants in a conversation cannot exist merely by stopping. They first

exist from the last topic and jointly agree to close. The close section also has an entry-body-exit

structure: entry (terminating the last topic), body (taking leave) exit (terminating contact).

3.2.3 Turn taking in conversations

In a good group conversation, people take turns talking. Only one person is permitted to speak at

a time. In reality, it is not usually so, more than one person speaks to either an individual or group

at the same time. Sacks et al. proposed rules to govern the common observations about everyday

conversation, in turn-taking which is called the turn-taking allocation rule [66] and the rules are as

follows:

• There is often change in the speakers at least once.

• There is only one party that talks at a time.

• Often more than one person are allowed to speak at a time briefly.

• Non-overlap one gap is popular when moving from one turn to the next.

• There is a variation in the order of the turn.

• The size of the turn also varies.

• The duration of the conversation is not predetermined .

• There is no limitation in what parties say or specify in advance.

• Turn distribution is not predetermined.
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Using the system of Sacks et al., the current speaker may “select” the next speaker, for example,

by asking a question that obliges the addressee to take the next turn. This means that the next

speaker must be one of the audiences of the current speaker (i.e. the next sender must be one of the

receivers of the current sender). Sacks et al. proposed the following rules:

(A) If the turn is designed in such a way that the use of a current speaker selects the next technique,

then the selected party retains the right to have the next turn and at this point that transfers

occur.

(B) If the turn is designed in such a way that the use of a current speaker selects the next technique,

then self-selection may be initiated for the next speaker and the right to take a turn is given

to the first starter.

(C) If the turn is designed in such a way that the use of a current speaker selects the next technique,

then the current speaker may carry on if there is no another self-selection.

If at the starting of the transitional-relevance place of the first turn-built unit, neither number 1

nor number 2 has acted and with the prearrangement of number 3, the current speaker has carried

on, then the rule-set A-C will apply again in the next the transitional-relevance place and repeatedly

at every of the next transitional-relevance place till the transfer comes into effect.

3.2.4 Beginning and end in a multi-party conversation

In a chat conversation, detecting certain word patterns used in fixing the starting and ending of

a conversation is very important. Duranti [21], in his book Key Terms in Language and Culture,

states that turn-taking in everyday conversation may be identified by words or phrases; for example, a

conversation often begins with: hello, welcome, welcome on board etc. while the end of a conversation

often includes: bye, it was nice meeting you, it was nice chatting with you, see you next time, see

you tomorrow etc. Also, questions and normal sentences can be used to initiate a conversation as

well as select the next speaker, e.g. (Hello, how are you?), (Joe, did you watch the football?), etc. To

determine when a conversation begins and when it ends, we need to know the common conversation

starting and closing pattern techniques of that particular culture [15]. For instance, when opening a

conversation, people say something like hello, while in closing conversation you will hear something

like see you later, have a nice day, goodbye and okay.

In the real world, closing a conversation is done in a smooth and acceptable way so that the other

participant will not be offended. The participant who wants to initiate the closing of the conversation

must prepare the other participant before final closure [22]. The participants must jointly agree to

close the conversation. For instance, in preparation for closure, one of the participants involved may
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initiate the closure by saying goodbye while the other participant responds with either goodbye or

another form of closing salutation.

However, in some cases, after saying goodbye the participants may remember a very important

thing to discuss and they will continue talking. This often introduces a lot of closing salutation in

the middle of the conversation before it finally ends. Having a lot of starting and closing salutations

in the middle of a conversation makes it difficult to use conversation starting and finishing patterns

to determine the begin and end of a conversation. Wittgenstein [22] suggests that words should, at

all times, be considered as being enclosed in whole activities since the same word can mean different

things at any point where it occurs. The author stated that we should put into consideration the

large sequences in which the words occur before putting a meaning to it. They suggested that seeing

it as part of a bigger unit will provide insight into how the words work.

Fig. 3.6: Conversation activity. Source:[21]

For example, in conversation (20) of Figure 3.6, the first okay by the speaker named Baldwin

is different from the okay subsequently produced by the speaker named Johnson. The first okay is

part of an agreement (okay fine) to a proposal and hence closes a topic. The second okay (okay boy)

is the first pair part of an adjacency pair that sets the tone for the forthcoming closing salutations.

Supporting, Searle and Vanderveken [21] argued that hello could be used to indicate recognition in a

courteous fashion and does not capture the use of hello or other kinds of greetings in conversations.
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This can occur when we do not take into consideration the larger contexts in which greetings

and closing salutations appear in conversation. This is a significant challenge in determining when a

conversation started and closed. Traditionally, conversational analysis has used qualitative protocols

to establish the beginning and end of a conversation [24]. However, it has proved to be difficult, due

to the contextual nature of meaning that we have just discussed. We propose to supplement these

protocols with simple statistical data, such as response waiting time and turn-taking.

3.2.5 Distributions

Here, we introduce some of the statistical distributions that were used later in this research.

Generalised Pareto

The Pareto distribution is used for quantities that are distributed with very long right tails. It is a

power law probability distribution that is used in describing many types of observable phenomena.

It is named after the Italian economist Vilfredo Pareto.

Inverse Gaussian Distribution

The Inverse Gaussian Distribution, also called the Wald or normal-inverse Gaussian, is an exponential

distribution with a single mode and long tail. The distribution is used to model non-negative,

positively skewed data

Log-normal Distribution

The log normal as a probability distribution has logarithm that are normally distributed. This

distribution is appropriate if a positive quantity outcome is of a great interest because we can only

have log(x) if x is positive. Mathematically, the log-normal distribution is given by:

f(x;µ, σ) =
1

xσ
√

2Π
ε−

1
2 (
lnx−µ
σ )2

Burr Distribution

Burr distribution was first discussed by Burr (1942) as a two-parameter family. An additional scale

parameter was introduced by Tadikamalla (1980). It is a very flexible distribution family that can

express a wide range of distribution shapes. The cumulative distribution function (cdf) of the Burr

distribution is

f(x|α, c, k) = 1− 1

(1 + ( xα )c)k
, x > 0, α > 0, c > 0, k > 0.
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Gamma Distribution

In the read world, the gamma distribution is often used to define a range of processes where the data

are positively skew. It is a distribution with two parameters: shape and rate.

Generalized Extreme Value Distribution

The generalized extreme value distribution is often used to model the smallest or largest value

among a large set of independent, identically distributed random values representing measurements

or observations.

3.2.6 Algorithm

We would like to discuss two algorithm that will be applied later in this study.

Neural Network(NN)

The development of a Neural Network is inspired by human brain activities. As such, this type of

network is a computational model that mimics the pattern of the human mind. The neural network

is constructed with an interconnected group of nodes, which involves the input, connected weights,

processing element, and output. Neural networks can be applied to many areas, such as classification,

clustering, and prediction.

The neural network is a network made up of artificial neurons (or nodes). There are three types

of neurons within the network: input neurons, hidden neurons, and output neurons. In the network,

neurons are connected; the connection strength between neurons is called weights. If the weight

is greater than zero, it is in an excitation status. Otherwise, it is in an inhibition status. Input

neurons receive the input information; the higher the input value, the greater the activation. Then,

the activation value is passed through the network in regard to weights and transfer functions in the

graph. The hidden neurons (or output neurons) then sum up the activation values and modify the

summed values with the transfer function. The activation value then flows through hidden neurons

and stops when it reaches the output nodes. As a result, one can use the output value from the

output neurons to classify the data.

Neural Network Model: Organic neural networks are composed of billions of interconnected

neurons that send and receive signals to and from one another. Artificial Neural Networks are a

class of flexible nonlinear models used for supervised prediction problems. The most widely used

type of Neural Network in data analysis is the multilayer perceptron (MLP). MLP models were

originally inspired by neurophysiology and the interconnections between neurons, and they are often

represented by a network diagram instead of an equation. The basic building blocks of multilayer

perceptrons are called hidden units. Hidden units are modeled after the neuron. Each hidden unit
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receives a linear combination of input variables. The coefficients are called the (synaptic) weights.

An activation function transforms the linear combinations and then outputs them to another unit

that can then use them as inputs.

Support Vector Machine (SVM)

SVM is a binary classification model that constructs a hyperplane to separate observations into two

classes. In constructing a hyperplane, we define a margin around the hyperplane, the point that

lies on the two margins are called support vectors and we define an optimisation problem that will

maximise the margin of the defined hyperplane. The size of the margin governs the tradeoff between

correctly classifying the training dataset and generalising the future dataset:

Wide Margin means more training point misclassified but better generalised for future dataset

while Narrow Margin means fits the training point better but might be overfit to the training dataset

Because of challenges in getting a perfect separation of the two classes, SVM introduces a concept

of penalty C for observation that falls on the wrong side of the margin. The penalty is based on

distance from misclassified points to their right side of the margin. This C is called the tuning

parameter or regularising parameter. It helps to avoid over fitting as well.

Tuning parameters of 0.1 to 1.0 were optimised, this means that C ranged from 0.1, 0.2, 0.31 and

a model was trained for value of C, then the best model was selected as the champion model

In some cases, the two classes are inseparable e.g. A circle blue points in a square red points. It

is difficult to separate them linearly. Here a concept of kernel function is used to map to a higher-

dimension space which makes the separation much more possible. There are 3 kernel functions in

SVM for transforming complex data spaces into a form that can be more easily separated: Sigmoid

function, Radial basis function and polynomial (2 to 4 degrees).

3.2.7 Evaluation metric

Model evaluation metrics are used to assess goodness of fit between model and data.

Receiver operating characteristic

ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system

as its discrimination threshold is varied. The ROC curve plots the sensitivity against one minus

the specificity for a series of cutoffs for the fitted probability. The ROC plot is a unit square plot,

and the higher the curve rises above the 45-degree line, the more desirable it is. The 45-degree line

corresponds to an area under the curve (AUC) of 0.5 and represents where the fractions of true

positives and false negatives are equal.



3. Fundamentals 51

Sensitivity or Recall measures the ability of a model to correctly predict, or ”rule in” the event of

interest among those observations under analysis in which the event occurred. So, a model sensitivity

of 90% means that if 100 observations in your data set had the event of interest, the model correctly

predicted that 90 of them would have the event. Specificity, on the other hand, measures the ability

of a model to ”rule out” the event in those observations under analysis in which the event DID

NOT occur. If the model specificity is 90%, that means that out of 100 observations that did not

have the event of interest, the model correctly predicted that 90 of them would not have the even.

Also the Positive Predictive Value or Precision measures the proportion of positive cases that were

correctly identified and the Recall measures the proportion of actual positive cases which are correctly

identified. The F-measure or F-score combines precision and recall using the harmonic mean. The

harmonic mean is used rather than the more common arithmetic mean since both precision and

recall are expressed as proportions between zero and one.

• True Negative (TN) a negative class data point was identified as negative.

• False Negative (FN) a positive class data point was identified as negative;

• False Positive (FP) a negative class data point was identified as positive;

• True Positive (TP) a positive class data point was identified as positive;

Tab. 3.1: Confusion matrix

3* Predicted class

Yes No

Actual Yes True Positive False Negative

class No False Positive True Negative

Latent Semantic Analysis

Latent Semantic Analysis is a new automatic mathematical or statistical method for extracting

and inferring relations of expected contextual usage of words in passages of discourse [19]. it uses

knowledge bases, semantic networks, grammars, syntactic parsers or morphologies [19]. It takes as

an input only raw text parsed into words defined as unique character strings and separated into

meaningful passages or samples such as sentences or paragraphs [7]. The latent semantic structure

analysis starts with a matrix of terms by documents. Each row stands for a unique word and each

column stands for a text passage or other context. Each cell indicates the frequency with which each

term occurs in each document. The cell entries are subjected to a preliminary transformation, in

which each cell frequency is weighted by a function that expresses both the word’s importance in
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the particular passage and the degree to which the word type carries information in the domain of

discourse in general [19]. This matrix is then analyzed by singular value decomposition (SVD) to

derive our particular latent semantic structure model which was then used for indexing [7].

Cosine Similarity Measure

Cosine Similarity Measure is one of the popular approaches in finding similarities between two

document using the cosine function, which is the measure of similarity between two vectors derived

from the cosine of the angle between them. For example, here are two very short texts to compare:

• Julie loves me more than Linda loves me.

• Jane likes me more than Julie loves me.

We want to know how similar these texts are, purely in terms of word counts (and ignoring word

order). We begin by making a list of the words from both texts:

• me Julie loves Linda than more likes Jane

Now we count the number of times each of these words appears in each text:

Tab. 3.2: Convert the documents from text to vector.

Terms Document 1 Document 2

me 2 2

Jane 0 1

Julie 1 1

Linda 1 0

likes 0 1

loves 2 1

more 1 1

than 1 1

We are not interested in the words themselves though. We are interested only in those two

vertical vectors of counts. For instance, there are two instances of ’me’ in each text. We are going

to decide how close these two texts are to each other by calculating the cosine of the angle between

the two vectors.

The two vectors are, again:

• a: [2, 1, 0, 2, 0, 1, 1, 1]

• b: [2, 1, 1, 1, 1, 0, 1, 1]

The cosine of the angle between them is about 0.822.



4. CHARACTERISATION OF THE CHAT ROOM NETWORK

Several platforms such as email, Twitter, Facebook and other chat rooms used for online communi-

cations appear to have different characteristics. Even within the same platform, various type seem

to have varying characteristics due to different technology bases; for example, chat rooms such as

Multi-User Dungeon (MUD Servers), Internet Relay Chat (IRC), Web Chat, IM and Voice Chat,

and Walford may have different features. In this chapter, we uncover some hidden characteristics of

various types of chat rooms, but first, we will describe the datasets and I want note that we did not

collect the dataset ourself.

4.1 Datasets

We have three datasets from different chat rooms: Walford, IRC, and T-Rex. The summary of the

datasets is displayed in Table 4.1

Tab. 4.1: Summary of the three datasets.

Parameters IRC TEX Walford

No. nodes 473 97 2446

No. edges 1431 138 37982

No. hours 72 72 26297

No. days 3 3 1095

4.1.1 IRC chat logs

The IRC chat transcript is Elsners dataset from the Linux channel at http://freenode.net. The

dataset can be downloaded from http://www.ling.ohio-state.edu/melsner/. The chat format include:

speaker name, recipient name, comment or action and the times which are given in seconds.

4.1.2 T-REX chat log

This dataset came from the National Center for Atmospheric Research (NCAR). This chat log was

generated as part of the T-REX field project and was managed by the Earth Observing Laboratory

(EOL) at the National Center for Atmospheric Research (NCAR). These chat logs were reviewed by

EOL and edited to maintain the most accurate records for the project.



4. Characterisation of the chat room network 54

4.1.3 Walford chat log

Walford was a text-based online social community that had roughly 2446 regular users and the

number of communications or edges was 37,981 for four years [38]. It was a corpus that contained

24,040 hours (2001-2004) of chat. In the corpus of chat logs, the following data was recorded: unique

numeric IDs for the time, the originator, the originators location, the recipient(s) and their location.

4.1.4 Node degree for chat logs

A chat room is made up of users who send messages to each other. We can model this with a network

in which the users are represented by nodes while the messages are represented by links or edges.

The number of links a node has to other nodes in a network is called node degree. As explained in

chapter three, many natural and man-made occurrences follows power law distribution and to this

effect, we explored our datasets to confirm if power-law exists in their node degree distribution. This

was done by applying the maximum likelihood method [59] to compute the exponent and X-min.

After filtering with X >= x − min, we have the following remaining number of users in the

dataset: 1430 for Walford, 203 for IRC and 50 for T-REX and then, plotted the degree distributions

in Figure 4.1.

Tab. 4.2: Number of users before and after filtering.

Parameters IRC TEX Walford

No. users before filtering 473 97 2446

x-min 10 8 25

No.users after filtering(X >= x−min) 203 50 1430

(a) Walford (b) IRC (c) T-REX

Fig. 4.1: Chat logs degree distribution

The degree distributions across the chat logs appear to follow power- law, which attests to the

existence of a relatively small number of nodes with a very large number of links. Even more, the tail
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of the degree distribution is well estimated by a power-law in Walford and IRC. On the other hand,

T-REX tends to deviate at the tail; this may be because our dataset for T-REX is small compared

to Walford and IRC.

Testing the power law hypothesis

Following Clauset et al three-step principles in section 3.1.5, the first step involves using maximum

likelihood to compute the xmin) value, which is the minimum number of node degree in the distri-

bution used to fit the power law and α value which is the exponent of the power law. The xmin) and

α values are 25 and 3.18 for Walford, 10 and 2.03 for IRC and 8 and 1.78 for T-REX respectively.

In the second step, we tested the hypothesis using goodness-of-fit test which we implemented

through a bootstrapping procedure. The results of the p-values show 0.72 for Walford, 0.67 for IRC

and 0.62 for T-REX respectively. The result is displayed in Figure 4.2

(a) Chat logs

Fig. 4.2: The graph gives the cumulative estimate of the p-value; the final value of the black line corresponds
to P-value. Also the red-lines give approximate 95% confidence intervals

The third step is ratio test. This entails a direct comparison of two distribution using Vuongs

test and in our case the alternative distribution is log-normal. The ratio test p-value is as follows:

0.74 for Walford, 0.90 for IRC and 0.38 for T-REX.

Tab. 4.3: Goodness of fit of the tail of the degree distribution to the power-law exponent P (x) ∼ x−α.
Goodness of fit done using the maximum likelihood method [59]. The p-value is the goodness-of-fit
metric.

Parameters Walford IRC T-REX

Alpha 3.18 2.03 1.78

x-min 25 10 8

GoF (p-value) 0.72 0.64 0.62

Ratio (p-value) 0.74 0.90 0.38

The summary of the result of the three steps is displayed in Table 4.3. Based on the goodness-
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of-fit and the ration test values, there is a sufficient evidence to suggest that the model is a plausible

fit to the data (i.e. it follows power-law distribution).

To check the reciprocity of the chats between the users, we evaluated the directionality of the

messages. The out-degree of a node reflects the messages sent by a user and the in-degree the

incoming messages to the user.

(a) Walford (b) IRC (c) T-REX

Fig. 4.3: In and Out Degree distribution

The similarity on the in- and out-degree in Walford and IRC (see Figure 4.3) reflects that the users

are involved in conversations, instead of just a monologue or a hailing system where the out-degree

would be the dominant feature. Again the difference we see in the in- and out-degree of T-REX may

be as a result of dataset limitations (we have only a small dataset for T-REX). Having explored the

structure of each chat room and confirmed the existence of power-law, we further investigated the

temporal differences that exist in the chat rooms.

4.2 Temporal Differences

This network is a time-varying graph, which means it changes over time and the edges are not con-

tinuously active; as a result, both nodes and edges fluctuate [48, 55]. Temporal difference evaluation

focuses on the network structure on weekdays and weekends, across years and across the quarter of

years. Also we confirmed that the in-degree and out-degree have very similar distribution, hence,

for the temporal difference study, we consider the undirected degree.

4.2.1 Behaviour on Weekdays and Weekends

In this section, we investigate the behaviour of users on weekends and weekdays. Weekdays start

from 00:00 on Monday to 24:00 on Friday while weekends start from 00:00 on Saturday to 24:00

on Sunday. The summary is of the weekdays and weekends distribution and cluster coefficients

and, secondly, we explore the users behaviours through response waiting time (RWT). The dataset

summary is displayed in Table 4.4.
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Tab. 4.4: weekdays and weekends dataset summary

Logs Weeks no.node no.link

IRC Wkday 393 1212

Wkend 309 709

T-REX Wkday 68 80

Wkend 45 59

Walford Wkday 476 9373

Wkend 643 14113

Degree distribution

The weekdays and weekends degree distribution for IRC, the T-REX and Walford chat rooms are

displayed in Figure 4.4, Figure 4.6 and Figure 4.5 respectively.

(a) Weekdays (b) Weekends

Fig. 4.4: IRC:Degree distribution and fitted power law (red line)

Unlike the case of aggregating the whole data, putting the users environment into consideration,

the degree distribution appears to differ depend on the chat room (Walfor, IRC and T-REX). On

Weekdays, IRC degree distribution tends to decay as a power-law while that of Walford appears to

deviate at the tail, suggesting that it cannot be described by a simple power-law. Looking at the

degree distribution on Weekends, Walford is well approximated by a simple power-law while IRC

seems to have a deviation at the tail. The differences we see on the degree distribution on weekends

reflect the fact that IRC are platforms predominately used during working hours compared to the

Walford platform, which appears to be used in non-working hours. Another difference is that the

weekends have a relatively lower exponent compared to weekdays in the IRC and T-REX chat rooms

(see Table 4.5). However, the weekend exponent for Walford is very similar to the weekday exponent,
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(a) Weekdays (b) Weekends

Fig. 4.5: Walford:Degree distribution and fitted power law (red line)

Tab. 4.5: Results compared for degree distribution.

Logs Week α Gof Ratio

Walford day 2.35 0.94 0.51 0.74

end 2.12 0.87 0.41 0.96

IRC day 2.24 0.79 0.33 0.56

end 1.67 0.27 0.74 0.69

T-REX day 2.13 0.59 0.39 0.79

end 1.84 0.24 0.38 0.189

perhaps reflecting that Walford chat room is not operated around working topics so is used more

for leisure. Hence, environment factor has great influence on users behaviour. Regarding degree

distribution in T-REX, we observed a deviation on both weekdays and weekends and this could be

as a result of limitation in T-REX dataset

To study the cohesion between the users, we evaluated the local and global clustering coefficient.

This coefficient measures the triadic relationship between the users [4]. This study was done for IRC

and Walford chat logs only since we have large datasets for them, however due to dataset limitations

we excluded T-REX chat logs. The CDF of the local cluster coefficient is plotted in Figure 4.7 (for

each node, we calculated the clustering coefficient). The global cluster coefficient (average clustering

coefficient of all nodes, having their degree greater than 1) on weekdays and weekends are 0.6 and

0.5 for Walford logs and 0.2 and 0.3 for IRC logs, respectively. For both chat rooms, the clustering

coefficient for the weekdays and weekends is very similar. In comparison with IRC, Walford, the

clustering coefficient is relatively high, suggesting that Walford has larger clusters of users chatting

together.

Next, for each node degree, we calculated the average clustering coefficient of all nodes that had



4. Characterisation of the chat room network 59

(a) Weekdays (b) Weekends

Fig. 4.6: T-REX:Degree distribution and fitted power law (red line)

(a) Walford (b) IRC

Fig. 4.7: Cluster coeff. for weekdays and weekends.

this degree and plotted the distribution of the clustering coefficient as a function of the degrees in

Figure 4.8.

The average cluster coefficient decreases as the node degree increases. This suggests that the

mean cluster coefficient tends to depend on the degree; the node with a low degree tends to associate

with a high average cluster coefficient while the node with a high degree tends to correlate with a low

average cluster coefficient. One of the possible reasons for this may be that if one has a few friends;

it is highly likely to know friends of your friends, thereby forming a strong tie. On the other hand,

if one has too many friends, the probability of knowing the friends of your friends may be very low.

Lastly, we employed Latent Semantic Analysis (LSA) for the automatic indexing of terms in

weekdays and weekends of Walford log only since is the largest dataset we have. According to

Landauer et al. (1997)
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Fig. 4.8: Cluster coeff. as a function of Degrees distr.

“Latent Semantic Analysis (LSA) is a method for extracting and representing the contextual-

usage meaning of words by statistical computations applied to a large corpus of text. The

underlying idea is that the aggregation of all the word contexts in which a given word

does and does not appear provides a set of mutual constraints that largely determines

the similarity of meaning of words and sets of words to each other”.

This automatic indexing resulted in 150,074 terms and two documents. Some additional charac-

teristics of the dataset are given below.

Tab. 4.6: characteristics of the dataset for weekday and weekend

Parameters Value

No of documents 2

No of unique terms 150074

Avg. terms per doc 1.39723e+007

Avg. indexing terms per doc 7.07427e+006

Cosine measure 0.0005887655

Evaluating the similarity between the content of weekday and weekend chats, we apply a cosine

similarity measure. The results in Table 4.6 show that the cosine measure is 0.0005887655, indicating

a broad range of dissimilarity between the word content in weekday and weekend conversations.

Having looked at the weekdays and weekends, we will now explore the chat rooms considering

years, quarters and times of day.

4.2.2 Behaviour across the years

In order to study the historical growth of this chat room network in depth, we time-sliced the network

and for each year examined the degree distribution and cluster coefficient.
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Tab. 4.7: Power-law fits and the corresponding p-value across the year

Parameters 2001 2002 2003 2004

No.nodes 611 550 1575 1075

No.links 8055 7695 21968 16685

Avg.C.C. 0.489 0.490 0.622 0.641

Alpha 2.21 2.20 1.846 1.846898

x-min 0.011 0.0054 0.0038 0.1507

Gof p-value 0.75 0.01 0.22 0.22

Ratio p-value 0.77 0.32 0.73 0.73

As of 2001, the numbers of participants (nodes) in chat room communication were 611 with

8055 edges and this reduced to 550 with 7695 edges by 2002. In 2003, there was a sudden jump to

1575 participants with 21,968 edges. Finally, the number of participants decreased again to 1075

with 16,685 edges in 2004. These fundamental properties are shown in Table 4.7. In the last row

of Table 4.7 we present the p-values for the power-law model, which represents an estimate of how

possible it is for the power-law to fit the data [16]. The power-law exponent values, as well as the

p-values, show that the degree distributions for 2003 and 2004 are consistent with the power-law.

The power-law exponent is between 2 and 3, which indicates that there are relatively few people who

have large numbers of friends in the network [4].

(a) 2001 (b) 2002

Fig. 4.9: Power-law degree distribution across the year

However, the power-law exponents and p-values of the degree distribution for 2001 and 2002 are

large; the power-law exponent values are well above 3, which suggest that the power-law model may

be ruled out[16]. Moreover, a plot of the power-law degree distribution across the year in Figure 4.9

reveals that 2003 and 2004 are more consistent with the power-law model than 2001 and 2002.

Next, we examine the network clustering coefficient that measures the number of triadic rela-

tionships between the users. Table 4.7 shows a gradual increase in the average cluster coefficient

value from 2001 to 2004. The highest average clustering coefficient is 0.641 in 2004, indicating a high
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(a) 2003 (b) 2004

Fig. 4.10: Power-law degree distribution across the year

(a) Avg.clustering coef.
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(b) Node degree distrib

Fig. 4.11: Avg.cluster coefficient and centrality distribution across the year

number of triangles (3-cycle, see section 3.1.2), while the least average clustering network is 0.489

in 2001, suggesting a small number of triangles. To support our claim, we plot the distributions of

the clustering coefficient in Figure 4.11. The graphs from 2001 and 2002 are the shortest with a low

clustering coefficient, reaching only up to k = 300. The graphs of 2003 and 2004 extend longer than

that of 2001 and 2003 with a higher clustering coefficient value.

Also, Figure 4.12 reveals that 2003 has the highest value of betweenness centrality(the red point)

followed by 2004 (the green point), and that the least betweenness centrality value is found in 2001.

This observation may account for the fast information spread and low speed of information flow in

2003 and 2001, respectively, as displayed in the closeness centrality graph.

In summary, for this particular network, the results suggest that 2003 and 2004 are more consis-

tent with the power-law model than 2001 and 2002 and there was a gradual increase in the average

cluster coefficient value from 2001 to 2004. So 2004 has a higher number of triangles (3-cycle) than

the other years. Also, it is revealed in Figure 4.12 that 2003 has the highest value of betweenness

centrality and the least betweenness centrality value was found in 2001.
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(a) Betweenness centrality (b) Closeness centrality

Fig. 4.12: Avg.cluster coefficient and centrality distribution across the year

Behaviour across quarters of year

Similarly, we investigate how the network evolved across quarters of all years together. For each

quarter, we explored the degree distribution and the cluster coefficients. The basic parameters are

displayed in

Table 4.8.

Tab. 4.8: Power-law fits and the corresponding p-value across the quarters

Parameters Qrt1 Qrt2 Qrt3 Qrt4

No.nodes 1126 1165 914 1038

No.links 17060 17971 12831 15355

Avg.C.C. 0.578 0.630 0.575 0.586

Alpha 1.929 1.951 2.126 2.599

x-min 0.0044 0.006 0.010 0.022

Gof test(p-value) 0.3412 0.5014 0.83 0.641

Ratio test (p-value) 0.748 0.729 0.741 0.874

The second quarter has the highest number of chat room participants of about 1165 nodes with

17,971 edges while the third quarter has the lowest number of chat room participants with 914 nodes

and 12,831 edges. Examining the power-law exponent and the p-value across all of the quarters

revealed an appearance of the power-law in their degree distribution. Also, the power-law exponent

for the quarter lies between 2 and 3, which shows that there is a relatively limited number of nodes

with a big number of links.

These also attest to the existence of hubs or a few people with a very large number of friends in

the network. Furthermore, a plot of the cumulative distribution functions P (x) across the quarter

in Figure 4.13 clearly reveals that the degree distribution for all quarters is consistent with the

power-law.

Figure 4.15(b) compares the node degree distribution across the quarter on a log-log scale plot.
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(a) First quarter (b) Second quarter

Fig. 4.13: Network evolution: Power-law degree distribution across quarter

(a) Third quarter (b) Fourth quarter

Fig. 4.14: Network evolution: Power-law degree distribution across quarter

We notice that the graphs across all the quarters are almost the same. In Table 4.8 we presented the

average clustering coefficients across the quarters. The highest average clustering coefficient value

(0.630) is in quarter 2, which suggests that the participants in the second quarter have more triangles

than the rest of the quarters.

We plot the distributions of the clustering coefficients across quarters in Figure 4.15(a), which

suggests that the chat room participants in the second quarter have a high number of triangles.

Moreover, the third quarter has the shortest graph with a low clustering coefficient, reaching only

up to k = 255 and the graph of the fourth quarter extends longer than all other quarters reaching up

to k = 455 neighbours. It is apparent that the fourth quarter has the least betweenness centrality

value while the rest of the quarters seem to have the same betweenness centrality value. This may

be the reason we have an overlap in the closeness centrality graph of the first, second and third

quarters. This suggests that the three-quarters have the same speed of information spread.

In summary, though, there is an appearance of power-law degree distribution in all the quarters;

however, we observed slight difference across the quarters. Quarter 2 has the highest number of
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(a) Avg.clustering coeff.
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(b) Node degree distribution

Fig. 4.15: Avg.cluster, centrality and node degree distribution across quarter

(a) Betweenness centrality (b) Closeness centrality

Fig. 4.16: Avg.cluster, centrality and node degree distribution across quarter

triangles and the fourth quarter has the least betweenness centrality value while the rest of the

quarters appear to have the same betweenness centrality value.

4.2.3 User’s behaviour across the time of day

In a time-varying network, links exist for only short periods of time, then disappear and reappear

again. To track and capture this rapid change over time we slice the network according to the time

of day by dividing the hours of a day into 4 intervals of 6 hours each. Table 4.9 presents a summary

of the chat room network across the time of day.

Tab. 4.9: power-law fits and p-value across time of day

Parameters 00:00AM 6:00AM 12:00PM 6:00PM

- 6:00AM -12:00PM -6:00PM -11:59PM

No.nodes 1296 1049 1152 1456

No.links 16963 11570 16299 23285

Avg.C.C 0.591 0.514 0.588 0.635

Alpha 2.7728 2.8227 2.9432 2.8522

x-min 0.1590 0.1602 0.1962 0.1724

ρ− value 0.3822 0.4065 0.4022 0.4387
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As we can see 6pm to 11:59pm has the highest number of participants or nodes (1456) with 23,285

edges while the least number of participants or nodes (1049) with 11,570 edges occurred between

6am to 12pm which indicate an existence of diurnal pattern in users behaviour. This suggests that

more people tend to chat between 6pm and 11.59pm and less people chat between 6am and 12pm

in this particular chat room. This is expected as the platform is often used on weekends and during

non-working hours. In Table 4.9, all power-law exponents lie between 2 and 3, which implies the

existence of a relatively small number of nodes with a very large number of links or attests to an

appearance of hubs or people with a very large number of friends in the network.

(a) 12am - 6am (b) 6am - 12PM

(c) 12PM - 18PM (d) 18PM - 23.59PM

Fig. 4.17: Network evolution: Power-law degree distribution across period

The ρ − value indicates an existence of power-law across time of day. Moreover, a plot of

the cumulative distribution functions P(x) clearly reveals that and the existence of power-law (see

Figure 4.17). A closer look at Table 4.9 shows that 6pm to 11:59pm has the highest average clustering

coefficient value (0.635), suggesting a high number of triangles. In addition, Figure 4.18(b) compares

the node degree distribution across the time of day on a log-log scale plot. We notice that the graph of

6pm to 11:59pm is higher and extended longer than the rest. The least average clustering coefficient

value (0.514) falls between 6am to 12pm, suggesting a low number of triangles.

Also, a plot of the clustering coefficient distributions across time in Figure 4.18(a) clearly suggests

that the chat room participants from 6pm to 11:59pm have the highest cluster coefficient value as

well as the largest population while the chat room participants from 6am to 12pm have the least

cluster coefficient value and less population.
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(a) Avg.clustering coeff.
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(b) Node degree distribution

Fig. 4.18: Avg.cluster coefficient, centrality and node degree distribution

(a) Betweenness centrality (b) Closeness centrality

Fig. 4.19: Avg.cluster coefficient, centrality and node degree distribution

Moreover, a plot of the betweenness centrality against the number of neighbours in Figure 4.19(a)

indicated that people who chat from 6pm to 11:59pm have a large number of neighbours but less

betweenness centrality value while at other times of day with a small number of neighbours has a

high betweenness centrality value. We observed that there was an existence of power-law degree

distribution across the chatting period. Also, the results suggest that more people chat between

6pm and 11:59pm while fewer people chat between 6am and 12pm. Interestingly, people chatting

from 6pm to 11.59pm are well connected during the rest of the other periods.

4.3 Summary

In summary, we show that our chat logs represent a human interaction by examining the character-

istics of the chat rooms. Furthermore, we explored the temporal differences in Walfords chat log as

it is our largest dataset.

We investigated the degree distributions, cluster coefficient and information flow across the year,

the quarter of the year, time of day, weekdays and weekend. The degree distributions show that a

large proportion of the users only chat with one other. At the other extreme, there are few users

that chat with a very large group of users. Even more, the tail of the degree distribution is well

approximated by a power-law, reflecting that there is no average user in the chat rooms. In addition,
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most of the temporal difference has a high value of clustering coefficient, suggesting a presence of

a high number of triangles in the network, which is evidence of people chatting with one another.

Lastly, the high values of betweenness across the temporal differences confirm an existence of few

people with a very large number of friends in the network.



5. USER BEHAVIOUR DYNAMICS FOR PAIR CONVERSATION

Having explored the network structure of our chat room in chapter 4, our goal in this chapter is to

investigate users behaviour through Response Waiting Time (RWT). The statistics and dynamics

of online social networks generated by the way users behave online are of enormous importance to

social networking service providers, sociologists, linguists and those interested in online commerce.

Investigating distribution could provide information about the dynamic process that takes place in

a real network. For now, our study will focus on the dynamics of RWT for pairs of people in a chat

room. The waiting time in chat room communication can be defined as the time difference between

successive messages between two people. Mathematically, the waiting time is given by:

dt = ti+1 − ti,

where ti is the time at i and ti+1 is the time at i+1.

1

2 40:29 A→(B):grins I think it’s the proxy
3 Kevin and Perry that need kicking!
4 40:55 B→(A):what happened last night..the
5 lot of it got or needed a kicking!
6 41:13 C→(D): lsaysl cH kissing bandit...l
7 41:45 H→(I):Kissing bandits are predators
8 should not be tolerated
9 41:46 A→(B): it was a Janet router that went,

10 second tie in a week one has died
11 42:08 D→(C):lsaysl cYou’re just jealous he
12 took your job
13 42:16 B→(A):grins janet is the of the network
14 the universities and schools are on.
15 router is something that forwards on
16 42:21 I→(H): And I haven’t gotten any action since

Fig. 5.1: Sample of a conversation from our corpus.

For example, in Figure 5, let us assume that three pairs of conversation are going on: A → B

and B → A, C → D and D → C, H → I and I → H. The response waiting time distribution

between the pair of people A and B is 29 seconds (40 : 55 − 40 : 29), 51 seconds (41 : 46 − 40 : 55)

and 30 seconds (42 : 16 − 41 : 46). The response waiting time between the pair of people C and D

is 55 seconds (42 : 08 − 41 : 13). The response waiting time between the pair of people H and I is

36 seconds (42 : 21 − 41 : 45). Then, we applied the maximum likelihood method to estimate the

power-law scaling parameters for Walford chat room logs and T-REX chat room logs.
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5.1 What are the statistics of RWT in our network

There have been a significant number of studies which rely on the statistics of Response Waiting

Time (RWT) to understand users behaviour. Although, previous research have shown that the degree

distribution of users RWT in email, tweeter etc. exhibit power law, i.e., simple scaling, However, not

much work has been done on the temporal variation in RWT. So for each chat room, we unveil the

hidden statistics for RWT.

5.1.1 Modelling Walford chat log

As Walford logs is the largest data set we have, we will resume our analysis with it. We first

examined the distribution of the RWT by plotting the Complementary Cumulative Distribution

Function (CCDF) for the waiting time shown as in Figure 5.2. Unlike many empirical data in nature

the RWT distribution is not a pure power law rather the graph reveals several distinct regions.

Fig. 5.2: Waiting time

We note that after one hour, the behaviour of waiting times for message responses exhibits a

different pattern. Up until one hour, the distribution is in the form of a power-law with an exponent

of 1.53, and then beyond one hour, the graph suddenly deviates. This indicates that they are different

factors that influence the RWT at various time scales. Finally, the curve drops off sharply near 107
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seconds.

To test these hypothesis, we use the bootstrap procedure. Before applying this procedure, we

first selected where the dataset is greater than X-minimum and the remaining number of rows in our

dataset reduced from 78916 to 1822. The result of the bootstrap procedure is displayed in Figure 5.3

with 0.110 goodness-of-fit and 0.018 ratio test which suggest that the model does not provide a

plausible fit to the data and another distribution may be more appropriate.

Fig. 5.3: The alpha value and Xmin are 1.49 and 14 respectively. Goodness of fit done using the maximum
likelihood method [59]. The p-value which is the goodness-of-fit and ratio test metric is 0.110 and
0.018 respectively

.

For simplicity, we divided the RWT distribution into two major regions. As we noted above that

the behaviour of waiting times for message responses exhibits a different pattern after one hour.

Hence, region 1 represents where the waiting time(seconds) is less or equal to one hour while region

2 represent areas where the waiting time is between one hour and a month.

Fig. 5.4: Sample
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For example, considering the sample in Figure 5.4, the messages where time is less or equal to 60

seconds will be in region 1 while messages where the time is greater than 60 seconds and less than

a month will belong to region 2.

(a) Pair: D - A (b) Pair: A - C

Fig. 5.5: Response waiting time for a Pair of people

We extracted the waiting time distribution in the two regions and examined them separately as

shown in Figure 5.5 and 5.6. It shows that short waiting time can be described with power law

distribution while long waiting time does not follow power law distribution which suggests more

than one user pattern in the network. Furthermore, we explored MatLab function called allfitdist to

select the distribution that best described the two regions. Allfitdist function fits all valid parametric

distributions to the data and sorts them using a metric such as. BIC or AIC then, finds the best

distribution that describes the data. The model with the lowest BIC is preferred. The analysis in

Figure 5.6 shows that short waiting time is best described by generalized extreme value distribution

which is one of the power law family. On the other hand, long waiting time is described using

Birnbaum-Saunders distribution. These graphs suggest that response waiting time do not exhibit a

simple power law rather it is a multi-scaling network.

To further understand the underlying factors that may be responsible for the RWT behaviour in

figure 5.2, we compared the two regions based on their word content and the way the users interact

with each other to exchange information. We start by extracting the word content of the two regions

and then, used cosine measure to compare the word similarity between them. The result shows that

the word content in the two regions is less similar with a cosine measure of 0.130. From this result,

we see the correlation between the response waiting time and the type of words people use when
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(a) Pair: D - A (b) Pair: A - C

Fig. 5.6: CDF for the curve region

chatting. The dominant words in the two regions are displayed in Table 5.1. Term and Term2 are

the dominant words that appear within a region, Freq is the number of times a word occurred in the

region and NumUtt is the number of utterance in which a particular word occurs in the region.

Next, we compared the statistics of the network structure in the two regions since user activities

or behaviours give rise to network structure formation, suggesting a possible link between RWT and

network structure. A network is made up of users (nodes) and the links between them. The way

these links (edges) are organised has a big effect on who gets what information. The first network

property to be examined is the degree distribution; the degree distribution of a node (user) k is the

number of edges that have k as a vertex.

First we extracted every pair of communication which have a response waiting time less or equal

to an hour (see Figure 5.2). This represents a network of users who took less or equal to an hour

to respond to messages and it forms region 1. Secondly, region 2 is formed by extracting every pair

of communication which have a response waiting time greater than an hour but less or equal to a

month (see Figure 5.2). Region 2 represents a network of users who took greater than an hour but

less or equal to a month to response to messages. We then, examined the degree distribution of each

region.

The analysis of the Cumulative Distribution graph suggests that the degree distribution is higher
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Tab. 5.1: A sample of the Predominant words in each region

Terms in Regoin 1 Freq No. of Utt Terms2 in Region 2 Freq No. of Utt

heeheeing 290 290 jason1 858 858

seconds 90 90 vock 807 807

spin 37 37 Imeg 622 622

dhour 27 37 jupiter 571 571

largliquidlikeess 26 26 knight 514 514

ixalon 19 19 anne 478 478

triplewordscore 19 19 lorass 448 448

mike 14 14 dstaks 445 432

llilith 13 13 jazz 411 409

glerror 11 11 dave 358 345

ginge 9 9 wild 355 354

leerald 8 8 child 319 317

ljillian 8 8 toyboy 171 167

leeraldserpent 7 7 mistress 167 165

allnightertonight 7 7 mars 169 166

allnighter 7 7 sir 160 157

ginus 7 7 light 143 143

Iiris 6 5 connected 131 128
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Fig. 5.7: Degree distribution

and longer in region 1 (Region with shorter waiting time) compare to region 2 (Region with a longer

waiting time). This indicates that Region 1 is denser than region 2. Secondly, the degree distribution

in Region 2 clearly exhibits multi-scaling behaviour i.e. a simple power law can not describe it. The

second network property we examined is the clustering coefficient that is a measure of the extent

to which one’s friends are also the friends of each other. The clustering coefficient of region 1 and

region 2 are 0.54 and 0.30 respectively.

Tab. 5.2: Topological characteristics

Region 1 2

No. of Node 338 186

No.of Edges 1074 519

Clustering coef 0.54 0.30

Network density 0.030 0.019

This indicates that region 1 (with short waiting time) has more triangles compare to region 2

(with long waiting time). Table 5.2 displays the additional network properties such as node, edges,

clustering coefficient and network density for each region. So, we see a clear difference in their

network properties, Region 1 is a dense network with more triangles, hence short waiting time while

Region 2 is the less dense network with long waiting time.
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5.1.2 Modelling IRC chat log

The second dataset we analysed is IRC chat log. A plot of the response waiting time distribution for

all the pairs of people in Figure 5.8 shows that it is also not a pure power law distribution; rather it

possesses a more complex pattern, which is evident of a multi scaling behaviour.

Fig. 5.8: Waiting time

Up until two hours, the behaviour exhibits a power-law distribution, and then beyond two hours,

the behaviour of the response waiting times becomes different (the graph suddenly deviates with a

sharp curve).

Also, we tested the hypothesis using the bootstrap procedure and Figure 5.9 suggest that the

model does not provide a plausible fit to the data and another distribution may be more appropriate.
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Fig. 5.9: The alpha value and Xmin are 1.59 and 192 respectively. Goodness of fit done using the maximum
likelihood method [59]. The p-value which is the goodness-of-fit and ratio test metric is 0.85 and
0.48 respectively

.

We then divided the distribution into two major regions. Region one consist of users with waiting

time less or equal to two hours and can be described using power law while region two are users whose

waiting time is between two hours and a day. To evaluate the correlation between RWT and network

structure, we compute and compare the degree distributions of the two regions in Figure5.10. The

degree distribution of region 1 is higher and extends longer compare to region 2; indicating that

region 1 is a dense network with shorter waiting time while region 2 is less dense with longer waiting

time.

Fig. 5.10: Degree distribution

5.1.3 Modelling T-REX chat log

Lastly, we will consider T-REX dataset. The RWT is displayed in Figure 5.11. The graph clearly

suggests that the RWT for all the pairs of people exhibits more complex pattern, just as the response
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waiting time in Figure 5.8; indicating an existence of multi scaling. The behaviour of the response

waiting times becomes different after one and half hour. Up until one and half hour, the distribution

is in the form of a power-law with an exponent of 1.53, then, beyond one hour, the graph suddenly

deviates with a sharp curve and finally drops off sharply. This suggests that waiting time consists is

influence by different factors at different time scales.

Fig. 5.11: Waiting time

In testing for the hypothesis, we first created a subset of the data set for X greater than the

X-minimum and then use the bootstrap procedure to estimate the goodness-of-fit and the ratio test.

The result which is shown in Figure 5.12, suggest that the model does not provide a plausible fit to

the data and another distribution may be more appropriate.

Fig. 5.12: The alpha value and X-min are 1.39 and 76 respectively. Goodness of fit done using the maximum
likelihood method [59]. The p-value which is the goodness-of-fit and ratio test metric is 0.102 and
0.006 respectively.
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5.1.4 Comparing results from the fitted Power law with other distributions

Our results suggest that we cannot best describe RWT in a chat room using power law distribution.

So to determine the distribution that best describe the RWT, we will compare two or more distri-

butions. To do this, each distribution must have the same lower threshold. So we first subset the

distribution to have the same x-min as the distribution we used in fitting power law. We fitted the

power law above with the following X-min: 14 for Walford, 192 for IRC and 76 for T-REX chat log.

Figure 5.13 - 5.15 show that the distribution of response waiting time is quite closer to burr than

pareto(power law) which suggest that Burr as the best distribution to describe response waiting time

in an on-line chat room. In the next section, we will discuss temporal variation that occurs in RWT.

(a) Waldord CDF (b) Walford: EDF vers CDF for Burr (c) Walford: EDF vers CDF for Pareto

Fig. 5.13: Comparison

(a) IRC CDF (b) IRC: EDF vers CDF for Burr (c) IRC: EDF vers CDF for Pareto

Fig. 5.14: Comparison

5.2 Temporal variation in RWT

Some previous studies have relied on the analysis of the Response Waiting Time (RWT) to char-

acterise users behaviour. So, in this section, we tend to use the temporal variation in RWT to
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(a) T-REX CDF (b) T-REX: EDF vers CDF for Burr (c) T-REX: EDF vers CDF for Pareto

Fig. 5.15: Comparison

understand users behaviours dynamics in a chat room.

5.2.1 Effect of communication count on response waiting time

Using Walford chat logs, we investigated the impact of communication count (number of messages

exchanged between pairs of people) on response waiting time (see Figure 5.16).

Fig. 5.16: RWT vs Turn-taking

For each pair, we counted the number of times they have sent messages to each other and the

average of their response waiting times. A plot of the averaged RWT and the communication count



5. User behaviour dynamics for pair conversation 81

for pairs of people reveals that the RWT decreases as the communication count increases. Sec-

ondly, analysis of IRC chat room, which has a different technology (mode of operation), indicates

an apparent effect of communication count on RWT (see Figure 5.16). RWT tend to be shorter as

the communication count increases. Lastly, the result of T-REX chat logs analysis in Figure 5.16,

inversely associated communication count with RWT, suggesting a relationship between communi-

cation count and the RWT. This suggests that pairs of participants with a low number of turns are

associated with prolonged response waiting time while pairs of participants with a high number of

turns are related to short response waiting time. If two people communicate to each other more

often, they get to know each other and have a high tendency of responding to each other messages

quickly.

5.2.2 The RWT considering one user with other participants

In another strand of analysis, we investigated the RWT considering one user with other participants

in three different chat rooms: Walford, IRC and T-REX. Table 5.3 and Table 5.4 show two users and

their RWT pattern with others in Walford chat room. In Table 5.3, we show a real-time modelling

of waiting time for participant A with others.

Tab. 5.3: Waiting time between user A and others

Num Users dist χ df P-v alpha

1 A → B zm 0.40 3 0.93 0.59

2 A → C gp 2.86 6 0.82 0.91

3 A → D gev 3.61 7 0.72 1.57

Tab. 5.4: Waiting time between user B and others

Para B→ C B → D B → A

Distri InvGaus Exp gp

µ 147544 89568.2

(106822) (2982.3)

λ 9.672

(0.801)

α 2.14

(0.15)

Sig 52.30

(2.17)

First we computed the RWT for different pairs of conversation involving user A (A and B, A

and C, A and D) and applied maximum likelihood method to estimate their statistics. The RWT of
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number 1 (A→ B) has a Zipf-Mandelbrot(zm) distribution with an alpha value of 0.5995, indicating

long waiting period while number 2 (A → C) and number 3 (A → D) follow generalised Pareto

distribution and generalised extreme value distribution with an alpha value of 0.9176 and 1.5700

respectively. This indicates that a single person chatting with others can have several different

responses waiting time patterns.

Similarly, Table 5.4 shows a waiting time for participant B with others (B and C, B and D, B

and A with Inverse Gaussian (InvGaus), exponential (Exp) and generalised Pareto (gp) distributions

respectively). Hence, one participant, due to some interference factors can exhibit different waiting

time pattern. Furthermore, investigating a single user response waiting time in IRC chat logs and

T-REX chat logs show a similar pattern as in Walford chat room.

Tab. 5.5: Waiting time between user G and others

Num Users dist χ df P-v alpha

1 G → H zm 4.20 50 0.52 0.57

2 G → K gp 5.93 60 0.23 0.30

3 G → L gev 4.37 60 0.62 1.34

Table 5.5 shows the diverse distribution of one user G response waiting time with others in IRC

(G → H, G → K and G → L) while Table 5.6 displays the changes in the response waiting time

distribution of single user with respect to other users in T-REX chat room (W → X, W → Y and

W → Z). The distribution of this response waiting time covers Zipf-Mandelbrot, generalized extreme

value, generalized Pareto and Weibull distributions. The response waiting of A ↔ B in Table 5.3

and B ↔ A in Table 5.4 appear to have a different distribution. This indicates that pairs of people

involve in conversation A↔ B may not necessarily have the same response waiting time distribution

or behave alike. Our result shows that an individual can have several waiting time depending on

the interference factors which may be fatigue, lack of interest, lack of communication, boringness,

lack of interest or concentration etc. This suggests that communication dynamics depends on the

group or pairs rather than being simply about the individual. For more on the variations in RWT

distributions for pairs of people see Table C.1 - C.3 and Figure C.8 - C.16 in the appendix.

Tab. 5.6: Waiting time between user W and others

Num Users dist χ df P-v alpha

1 W → X zm 0.89 103 0.83 0.75

2 W → Y gp 1.75 86 0.94 2.93

3 W → Z gev 2.01 74 0.92 1.48
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5.2.3 Time of Day, Day of Week and RWT Interaction

We examined the response waiting time in relation to the time of day by slicing the hours of a

day into 8 intervals of 3 hours each. For each slice, we aggregate the response waiting time and

plot the aggregated distribution as seen in Figure 5.17(a). Response waiting time appears to have

the same pattern in IRC and T-REX chat room but slightly different in Walford, suggesting that

IRC and T-REX chat room may have been used for the same purpose while Walford is used for

different purpose. Also in the three logs, the users RWT behaviours shows a predominately diurnal

component of variation. Starting with short waiting time, very early morning, just after midnight

gradually increases during working hours and then, the responses waiting time begin to fluctuate.

This indicates that users responses to messages are unpredictable within this time.

(a) Time of day (b) Day of Week

Fig. 5.17: Time of day

Likewise, we see the similarity between IRC and T-REX chat rooms when we conduct the same

RWT analysis over the days of week in Figure 5.17(b). Starting with relatively long waiting time

on Sunday, short waiting time on Monday, long waiting time on Tuesday and Wednesday, short

waiting time on Thursday and then, short waiting time on Friday. One possible reason for this is

that users tend to respond to message quickly on Monday just after the weekend and probably get

involve in many task on Tuesday and Wednesday. Then, on Thursday, users start preparing toward

weekend by responding to messages which have been waiting since Tuesday. Unlike IRC and T-REX,

Walford chat logs appear to have short waiting time on weekends and long waiting time on weekdays.

Probably this Walford platform is often used on weekends and non-working hours. Lastly, we look

at the interaction among response waiting time, time of day and day of week. For each day in a

week, we divide the hours into 8 intervals of 3 hours each, aggregate the response waiting time in
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each interval and then, plot the response waiting time against the day of time for each day of week

(see Figure 5.18).

(a) Walford (b) IRC

Fig. 5.18: Day of week and Time of day interaction

Walford and IRC seem to exhibit different patterns. In Walford, each day tends to start with

a short waiting time and gradually increases together. Beyond this point, they started exhibiting

different response waiting time pattern. In comparison with other days, on Sunday and Saturday,

the response waiting time appears to be low throughout the time of day. The shortest RWT occurred

on Sunday between 15:00 PM to 18:00PM while the longest RWT occurred on Wednesday between

12:00 PM to 15:00 PM. Similarly, in IRC, we notice that RWT on Monday and Thursday appears

to be low throughout the time of day compare to other days of week.

Results compared with previous models

In Table 5.7, we compare our results with the previous results reported by others on the same task

[8]. Our analysis which focuses on three different chat rooms yield results that is slightly different

from previous RWT models. In all the dataset (Walford chat logs IRC chat logs and T-REX chat

logs) our model indicates an existence of multi scaling behaviour between the RWT for pairs of

people in a chat room. The Time at which the graph Deviates from Power Law (TDPL) is within 2

hours for chat rooms, one day for twitter and none for email.

5.2.4 Temporal Variation on Weekdays and Weekends

Having explored the impact of communication count on RWT and the diversity of one user RWT, we

further examined the temporal variation in RWT considering the users environment. Users behave



5. User behaviour dynamics for pair conversation 85

Tab. 5.7: Comparison with other models. Source for E-mail and Twitter: [17] and [8]

Dataset Scaling TDPL α

E-mail(A.L. Barabasi model) Simple Non ±1

Twitter(G.Comarela model) Multi after 1 day

Our models

IRC Multi after 2 hour 1.6 - 2.8

Walford Multi after 1 hour 0.3 - 3

T-REX Multi after 1 1
2hour 1.5 - 2.3

differently on weekdays and weekends due to factors like working on weekdays and reserve leisure

time for weekends. We investigate if this is reflected in the response waiting time of a chat room.

Time of Day Analysis for weekdays and weekends

We analyse the user behaviour based on the response waiting time and time of day. After dividing

the RWT into weekdays and weekends, we slice the hours of a day into 8 intervals of 3 hours each

and study the changes in the RWT across the time of day. Figure 5.19 shows the trend of users RWT

across the time of day on weekdays and weekends are slightly dissimilar in both Walford and IRC

chat logs. In Walford chat logs, we observed shorter waiting time at the very early morning, just

after midnight, longer waiting time during work hours of the day, shorter waiting after work hours

in the evening and longer waiting time late in the night. A closer look shows that on weekdays and

weekends the RWT have a similar increasing trend at the very early morning, just after midnight,

when most people are asleep and activity is at a low level. After 0700-0900 hours which is the peak,

the RWT gradually reduces on weekends (because most of the users are at home) and the shortest

RWT on weekends occurs between 1300 and 1500 hours. However on weekdays, the RWT started to

decline at 1200 hour (probably lunch break) and the shortest RWT occurs just after working hours.

Considering IRC chat logs, we notice a short RWT at the very early morning, just after midnight

which slightly increased during working hours of the days on weekdays. RWT started declining after

working hours and the shortest RWT occurs between 1600 and 1800 on weekdays.

Shorter RWT is observed on a weekend while longer RWT is noticed on weekdays in both IRC

and Walford logs within these hours. In comparing the two chat room, we observed weekend users

have the shortest RWT during working hours (0900 - 1500 hrs) in Walford. This suggests that

Walford chat room is a platform more frequently used during weekends and non-working hours. On

the other hand, IRC appears to have the shortest RWT which covers a relatively long period of time

(0900 - 1600 hrs) during working hours on weekdays. This indicates that IRC is a platform more

frequently used during weekdays and working hours.
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(a) Walford (b) IRC

Fig. 5.19: Response waiting time verse Time of day

Analysis of RWT distribution for weekdays and weekends

We investigate the distribution of the RWT by plotting the Complementary Cumulative Distribution

Function (CCDF) for the waiting time. We start our analysis with IRC chat log. A plot of the

response waiting time distribution for all the pairs of people in Figure 5.20 show that it is not a pure

power law distribution (simple-scaling), rather it possesses a more complex pattern, which is evident

of a multi scaling behaviour. Up until two and half hours on weekdays and one and half hour on

weekends, the behaviour exhibits a power-law distribution, then beyond these hours, the behaviour

of response waiting times becomes different (the graph suddenly deviates with a sharp curve).

(a) (b)

Fig. 5.20: IRC:Degree Distribution of users RWT

Next we consider T-REX dataset. The RWT is displayed in Figure 5.21 and Figure 5 23. The

graph clearly suggests that the response waiting time for all the pairs of people exhibits a more

complex pattern, just as the response waiting time in Figure 5.20; indicating an existence of multi-

scaling.

In Figure 5.21(a) and Figure 5.21(b), the behaviour of the response waiting times becomes differ-
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(a) (b)

Fig. 5.21: T-REX: Degree Distribution of uses RWT

ent after two and half hour on weekdays and two hours on weekends. Up until two and half hour, the

distribution is in the form of a power-law with an exponent of 1.48 on weekdays and until two hours,

the distribution is in the form of a power-law with an exponent of 1.53 on weekends, then beyond

this hours, the graph suddenly deviates and appear flat till one day before dropping off sharply near

107 seconds. The flat shape suggest that if a response is not received after two and half hours on

weekdays and two hours on weekends, it is highly likely that the response will still come within a

day. This indicates that they are different factors that influence the RWT at different time scales.

Lastly, we consider the Walford dataset. The RWT is presented in Figure 5.22(a) andFigure 5.22(a).

Also, the graph indicating an existence of multi- scaling and the behaviour of response waiting times

becomes different after one and half hour for both weekdays and weekends.

(a) (b)

Fig. 5.22: Walford:Degree Distribution of users RWT

Up until one and half hours for both weekdays and weekends, the behaviour exhibits a power-law

distribution, then beyond these hours; the behaviour of the response waiting times becomes different

and appears flat till one day before dropping off sharply. The flat shape suggest that if a response is
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not received after one and half hours on weekdays and weekends, it is highly likely that the response

will be received within a day. Table 5.8 compares the RWT on weekdays and weekends across the

three chat rooms. For both weekdays and weekends, our model indicates an existence of multi-

scaling behaviour in the RWT for pairs of people. Although the exponents vary across the three

chat rooms, however, the exponents on weekends tend to be higher than on weekdays. The Time at

which the graph deviates from Power Law (TDPL) also varies (one and half to two and half hours).

In summary, one behaviour the three chat rooms have in common on weekdays and weekends is that

the RWT distributions are multi-scaled, that is they cannot be described using a single power law.

Also, the distributions have in common a change of behaviour near the one and a half to two and a

half hour response time, and again changes around the one day mark (see Table 5.8). The time at

which the graph deviates from Power Law (TDPL)). This suggests that if a message has not been

answered in one and a half hour there still a good chance that would be answered within a day.

Tab. 5.8: Results compared for RWT.

Logs Week α x P TDPL

IRC day 1.61 184 0.266 2 1
2hr

end 1.65 30 0.16 1 1
2hr

T-REX day 1.50 172 0.20 2 1
2hrs

end 1.54 155 0.16 2hrs

Walford day 1.48 18 0.239 1 1
2hr

end 1.53 12 0.139 1 1
2hr

5.3 Discussion

As described in section 2, Barabasi claimed that the distribution of the time taken by the user to

reply to a received message is best approximated by power-law with an exponent equal to 1”. This

suggests that an individuals email pattern has a bursty non-Poisson character with an exponent of

1. Our results on the RWT shows multiscaling behaviour and reveals that the value of the exponents

has a wide range of variation depending on the user’s environment (weekdays or weekends). This is

significantly different from Barabasi results and indicates that the distribution of the RWT could be

more bursty than Barabasi found.

Further investigation of the behaviour of users RWT reveals that the distribution of the RWT

can not be best described using power law as reported in previous literature rather the distribution

exhibits multi-scaling behaviour with different exponents for the three chat logs. Even more, con-

sidering different context (weekdays and weekends) there is an evidence of multi-scaling behaviour

in users RWT for the different time context(weekdays and weekends).
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Our results are important because they show that the time context or environment (for example

weekdays and weekends) has an impact on the pattern of the users RWT. This could be as a result

of the difference in users routine on weekdays and weekends. Secondly, the response waiting time is

different on different time scales, which may be because participants generally only spend a maximum

of few hours in every chat session before any interruption. In contrast, Barabasi in his RWT analysis

did not put into consideration the interfering factors such as environment which may hinder the

users from having a smooth chat flow or responding to messages.

So to determine the distribution that best describe the RWT, we will compare two or more

distributions for each of the three chat log. Our result show that the distribution of response waiting

time is quite closer to Burr than power law such as Pareto. This suggests Burr as the best distribution

to describe response waiting time in an on-line chat room.

Again, considering different context of the users’ RWT (weekdays and weekends), we compared

the network structure of users’ RWT on weekdays against users’ RWT weekend by examining the

degree distribution and cluster coefficients. There is an evidence of multi-scaling behaviour in the

degree distributions. The degree distribution reveal a difference in exponents for IRC and T-REX

chat rooms. The weekends have a lower exponent than the weekdays. However, the weekend exponent

for Walford is very similar to the weekday exponent, perhaps reflecting that Walford chat room is

not operated around working topics so is used more for leisure.

To study the cohesion between the users, we evaluate the global clustering coefficient. For both

chat rooms, the clustering coefficient for the weekdays and weekends is very similar. For the IRC

logs, the clustering coefficient is relative low. In comparison, Walford clustering coefficient is high

suggesting that Walford has larger clusters of users chatting together.

We also show that users RWT appear to have different behaviour depending on the time of day.

After dividing the RWT into weekdays and weekends, we slice the hours of a day into 8 intervals of

3 hours each and study the changes in chat room communication across the time of day. Our results

reveal a shorter waiting time at the very early morning, just after midnight, longer waiting time

during work hours of the day, shorter waiting after work hours in the evening and longer waiting

time late in the night. This pattern suggests that users also commit their time to other things which

may affect their response to messages.

Although, all the users RWT exhibited multi-scaling behaviour, however, there were significant

differences between the statistics on weekdays and at weekends, for example, RWT on weekends

appears to have higher exponents than weekdays. The different exponents on different time scales

suggest that time context or the environment have a significant influence on the users RWT.

Moreover, the distributions have in common a change of behaviour near the one and a half to

two and a half hour response time and again changes around the one day mark. This suggests that
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if a message has not been answered in one and a half hour there still a good chance that would be

answered within a day.



6. PREDICTING THE RESPONSE WAITING TIME IN A CHAT ROOM

6.1 Introduction

In the previous chapter, we explored the dynamics of Response Waiting Time (RWT) for pairs of

people in conversation. In this chapter, we investigate which properties of a chat can be used to

predict if a user has a fast response time. In a chat–session, the response waiting time is crucial in

the establishment and maintenance of an online–conversation [54]. This online–conversation can be

in the academic field where collaborators often meet online to chat for a few minutes [40, 52]. Also,

it could occur during on–line education. Educators are looking for a better way of incorporating a

web–based chat–room into the academic curriculum [40, 52]. A well–implemented chat–room should

make the students feel that they have a direct connection with their instructors as well as their

classmates [20].

Furthermore, customer services which is paramount in business growth [41] are using live chats as

a means of resolving customers’ problems as well as running general customer support services [67].

The chat between a company agent and the customer, which is in text format, has the advantage

over traditional phone support as the text logs may be used to identify customers’ opinion about

products and the overall customer experience.

A major factor that drives customer satisfaction is the time taken for the agent and client to

respond to each other during the online chat [65]. The above examples suggest that a short response

waiting time is vital to ensure a good rapport between on-line communicators.

The approach we follow to predict if a user is fast responder is to first define what a fast response

is (short waiting time), see section 6.2.1. Thereafter we evaluate different properties of the chat.

We estimate which is the best statistical model to describe the RWT of a user. The assumption is

that the statistical model can be used as a way to discriminate between users response. Also we

consider that the “mood” of a chat can be a predictor of a fast response. So we conducted sentiment

analysis on the posted messages and categorised the mood of each utterance(post) as either positive,

negative or neutral. We also assumed that the different topics under discussion can also influence

user’s response time, so we carried out topic detection analysis and the top 5 topics were chosen.

Lastly we consider the number of messages exchanged between pairs of people in conversation. The

assumption here is that the more two people talk to each other the better they understand themselves

and the quicker they will respond to each other’s messages.
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We believe that these quantities influence a user’s response time and we used them as the inputs

in the NN and SVM to predict which users are fast responders.

6.2 Walford chat–room and its properties

We only focused on Walford as it is the largest data set in our possession.

6.2.1 Response Waiting Time (RWT)

A typical example of a Walford Direct–chat log is in Figure 6.1, where three pairs of conversation

are going on: A→B and B→A, C→D and D→C, H→I and I→H. The second column in the figure

is the time when the chat was sent, so from the figure, the response waiting time between A and

B is 26 seconds (40 : 55 − 40 : 29). To characterise the corpus we evaluated the Complementary

Cumulative Distribution Function (CCDF) of the RWT, shown in Figure 6.2. The graph suggest

that RWT distribution is not a power law rather reveals distinctive patterns which describe users’

behaviours. After 15 seconds, the RWT pattern appears to change slightly indicating a change in

user’s RWT behaviours. Beyond 15 seconds, we notice another sharp change in the RWT pattern

graph suggesting another rapid change in user’s RWT behaviours.

Given that 15 seconds is a short response time in which an average user would type around 10

english words and we noticed that a third of the response time is less than 15 seconds (Figure 6.3).

Based on this observation and for simplicity we partition the behaviour only into two classes: the first

15 seconds were chosen as Short Response Waiting Time Class (SRWTC)) and any RWT duration

beyond 15 seconds were classified as Long Response Waiting Time Class (LRWTC).

1 40:29 A→(B):grins I think it’s the proxy
2 Kevin and Perry that need kicking!
3 40:55 B→(A):what happened last night..the
4 lot of it got or needed a kicking!
5 41:13 C→(D): lsaysl cH kissing bandit...l
6 41:45 H→(I):Kissing bandits are predators
7 should not be tolerated
8 41:46 A→(B): it was a Janet router that went,
9 second tie in a week one has died

10 42:08 D→(C):lsaysl cYou’re just jealous he
11 took your job
12 42:16 B→(A):grins janet is the of the network
13 the universities and schools are on.
14 router is something that forwards on
15 42:21 I→(H): And I haven’t gotten any action since

Fig. 6.1: Sample chats in Walford.
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Fig. 6.2: Complementary Cumulative Distribution of the RWT

Fig. 6.3: Frequency of RWT divided into less than 15 seconds (blue) and larger than 15 seconds (red).

6.2.2 Statistical model describing Individual RWT

To characterise the individual differences in the response waiting time for each pair of people in a

conversation, we extracted their RWT and, using the allfitdist in Matlab, fitted a statistical model

that best describes it. For example, the RWT between user A and user B may be best described

by a Pareto distribution while the RWT between user A and user C may be best described with a

Weibull distribution. This captures the fact that communication dynamics depends on the pair of

individuals rather than being simply about one of the individuals [54] involved in the conversation.

Figure 6.4 shows the number of times that a particular distribution describes the RWT of a

conversation. More than 50% of the conversations can be modelled with a generalised extreme value

model, the next most predominant model is a generalised Pareto model.

Recoding the statistical model of the RWT to a vector

The statistical model of Individual’s RWT variable is a categorical variable (also called nominal vari-

able) which contain character values. The values of this variable were recoded with numerical values.
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Fig. 6.4: Frequency of which statistical model best describes the RWT between a pair of individuals.

The reason is that Neural Network which is one of algorithm we used to develop the model only

works with numerical values and not character values. The recoded variable is shown in Table 6.1.

Tab. 6.1: Recoding the models with numerical value

Model code

Burr 1

Exponential 2

Birnbaumsaunders 3

Gamma 4

Generalized extreme value 5

Generalized Pareto 6

Inverse Gaussian 7

Logistic 8

Loglogistic 9

Lognormal 10

Nakagami 11

Rayleigh 12

Tlocationscale 13

Weibull 14

6.2.3 User utterance sentiment

The purpose of using sentiment analysis, is to investigate if the duration of a conversation is related

to the “mood” of the utterances. The utterances are categorised into positive, negative or neutral

using VADER (Valence Aware Dictionary and sEntiment Reasoner) [54]. VADER is a lexicon and

rule-based sentiment tool which incorporates a wide range of human validated sentiment lexicons
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such as Linguistic Inquiry and Word Counts (LIWC), Affective Norms for English Words (ANEW)

and Generative Lexicon (GL) and performs well even in the case of short utterance.

Two examples of our chat utterances and the sentiment analysis results are shown below. The

value in bracket shows the valence (scaled from -1 to 1), a positive score indicates a positive sen-

timent and a negative score indicates a negative sentiment. Zero scores are considered to be a neutral.

Positive utterance: that is sooo great! soooooo what does your ring look like? (0.784))

and a negative utterance: she goes crazy. I hate not working (-0.7269).

Fig. 6.5: Frequency distribution of the utterances sentiment.

The graph in Figure 6.5 shows the distribution of sentiment scores. The algorithms classified the

majority of the utterances as neutral, there are also some positive and negative sentiments across

the utterances.

6.2.4 Number of messages exchanged vs. average RWT

The number of message exchanged (NME) is the total number of messages exchanged by a pair of

individuals.

Fig. 6.6: Frequency of total number of massages exchange by pair of individuals.
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Figure 6.6 shows that there is a power law dependence between the number of messages exchanged

between two individuals and their average RWT. This suggests that individuals that exchanged fewer

messages take a longer time to respond, while individuals with a high number of message exchange

have shorter response waiting time.

6.2.5 Topic detection

Another possibility is that the response time is related to the topic discussed in the chat. To do

topic analysis, we pre-processed the unstructured data using Statistical Analysis System Text (SAS)

mining tool. This tool has three nodes that are relevant in our text analysis: text parsing node,

text filtering node and topic node. Starting with text parsing node, we parsed the text to quantify

the words or terms that are present in the conversations. Next, the text filtering node was used to

eliminate the unwanted terms so that we only focus on the most important and relevant information.

One of the benefits of filtering is that it reduces the list of parsed terms. To determine the number

of relevant topics, the prepared dataset was passed through text topic node [37].

6.3 Model used for prediction

Our main aim is to predict if a user is going to be a fast responder and we are going to do the

prediction using a Neural network and a Support Vector Machine. First,we will train the Neural

Network and Support Vector Machine with some of the data set, then predict the rest of the data

and finally validate the prediction

The input parameters are; the statistical model of individual’s RWT for the past 6 months, the

number of message exchanged, the sentiment status and the different topics of discussions. The

target variable used is a binary number where 0 represent short response waiting time and 1 stands

for long response waiting time.

Our data sets consisted of over 35,000 thousand chat records which we then partitioned into

two parts called train/test split approach. One part to be trained, the other for fine tuning and

evaluating how well the model has been trained. The train/test split approach is ideal when we have

a large enough data set as in our case. Another common method of splitting the dataset is called

cross validation. It is very similar to train/test split, but involves creating more subsets of the data

set. It involves splitting the dataset into k subsets, and training is done on k-1 of these subsets. The

last subset is held for testing and this is repeated for each of the subset. Cross validation approach

is often used when there is no sufficient data to create a sizeable training set and a validation set

that represent the predictive population as well but in our case we had a sizeable data set to use the

train/test split method.
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6.3.1 Experiment

In our experiment we considered two cases and in both cases we trained with Neural Network (NN)

and Support Vector Machine (SVM).

• Case 1: All the topic parameters were considered as one of the inputs. The total number of

predictors were 8

• Case 2: The topic parameters were not considered as one of the inputs. The total number of

predictors were 3

Case 1

In this case, we had 8 inputs: the number of message exchanged, the sentiment status, the best fit

model which describes the the individual’s RWT for the past 6 Months and 5 topics of discussion.

We trained the data with two Machine learning algorithms a Neural Network with Topics (NNT)

and a Support Vector Machine with Topics (SVMT). The two algorithms, which have been described

in chapter 3, will enable us to compare performance.

SVMT Training: The reason we are considering SVM is scalability. SVMs are relatively

insensitive to the number of data points and the classification complexity does not depend on the

dimensionality of the feature space. The SVMs are trained with our dataset which consists of 35,000

data points: 60% for training and 40% for testing. Each point is located in the n-dimensional space,

with each dimension corresponding to a feature of the data point. We used a training set of 11862

data points with 8 features and tried different kernel functions such as linear, sigmoid, radial basis

and polynomial. The sigmoid kernel gave the best output.

SVMT Testing: We apply SVMs model to the test dataset to predict if a user is going to be

a fast responder. The testing set, consisting of 40% data points with 8 features which resulted in

AUC of 0.915.

NNT Training Multi-layer networks are used. The scaled conjugate gradient descent algorithm

is used for training. Our data consists of the same set of 35,000 data points: 60% for training and

40% for testing. The metrics we used for model evaluation are Area Under Curve, recall, precision

and F-score as defined in section 3.1. In the study we use five different Neural Networks with the

following architectures:

NNT Testing: We apply NNs model to the test dataset to predict if a user is going to be a fast

responder. The testing set, consisting of 40% data points with 8 features, show Area Under Curve

(AUC): 0.930 for Network 1, 0.921 for Network 2, 0.923 for Network 3, 0.933 for Network 4, 0.919

for Network 5.
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Tab. 6.2: Parameters of Neural Network models

Model Neuron Learning rate Momentum Acc AUC Recall Precision F-score

Network 1 3 0.1 0 0.925 0.930 0.673 0.930 0.781

Network 2 3 0.2 0.1 0.924 0.921 0.660 0.933 0.774

Network 3 3 0.63 0.73 0.928 0.923 0.677 0.928 0.783

Network 4 7 0.57 0.76 0.927 0.933 0.712 0.880 0.787

Network 5 16 0.61 0.77 0.926 0.919 0.673 0.933 0.782

Case 2

In this case, we used only three inputs: the number of message exchanged, the sentiment status, the

best fit model which describes the the individual’s RWT for the past 6 Months. Also we trained the

data with two Machine learning algorithms a Neural Network (NN) and a Support Vector Machine

(SVM).

SVM Training: Similarly, the SVMs are trained with our dataset which consists of 35,000 data

points: 60% for training and 40% for testing.

SVM Testing: The SVMs model was tested using the test dataset. The model was used to

predict if a user is going to be a fast responder. The testing set, consisting of 40% data points with

8 features which resulted in AUC of 0.892

NN Training: Multi-layer, feed-forward networks are used. The scaled conjugate gradient

descent algorithm is used for training. Our data consists of the same set of 35,000 data points: 60%

for training and 40% for testing. In the study we also used five different Neural Networks with the

following architectures:

Tab. 6.3: Parameters of Neural Network models

Model Neuron Learning rate Momentum Acc AUC Recall Precision Fscore

Network 1 3 0.1 0 0.925 0.924 0.661 0.946 0.778

Network 2 3 0.2 0.1 0.926 0.925 0.663 0.946 0.780

Network 3 3 0.63 0.73 0.926 0.894 0.662 0.946 0.779

Network 4 7 0.57 0.76 0.923 0.926 0.705 0.884 0.784

Network 5 16 0.61 0.77 0.923 0.926 0.705 B 0.884 0.784

NN Testing: In this stage we apply NNs model to the test dataset to predict if a user is going

to be a fast responder. The testing set, consisting of 40% data points with 3 features, show an area

under curve(AUC) as follows: 0.924 for Network 1, 0.925 for Network 2, 0.894 for Network 3, 0.926

for Network 4, 0.926 for Network 5.
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6.3.2 Results compared

In the case 1 where all the topics parameters were considered as one of the input, NNT(AUC of 0.933)

outperformed SVMT (AUC of 0.905) while in Case 2 where the topic parameters were not considered

as one of the inputs, NN(AUC of 0.926) performed better than SVM(AUC of 0.892). However, the

best classifier is the Neural Network with topics (NNT) with an Area Under the Curve(AUC) of 0.933.

The model’s performances improved by incorporating the topics. This suggests that the subjects

under discussion during online chat may be a driving factor in responding to a post message.

6.3.3 How robust is the best model?

Having determined that the champion model is NNT, we carried out sensitivity analysis on the

NNT. To ensure consistency with the accuracy, different models of different partitions were trained.

These models are presented in table 7.1. The standard deviation for Recall, Precision, F-Score and

Accuracy are 0.01315, 0.01135, 0.00878 and 0.00273 respectively which reflects the consistency of

model performance.

Tab. 6.4: Parameters of Neural Network models

Partition Recall Precision F-Score Accuracy

60:40 0.663 0.948 0.78 0.9253

70:30 0.667 0.945 0.782 0.9254

75:25 0.659 0.942 0.778 0.9235

50:50 0.663 0.947 0.779 0.9249

65:35 0.687 0.948 0.7966 0.9297

55:45 0.701 0.948 0.806 0.9322

85:15 0.672 0.9487 0.7867 0.9269

80:20 0.675 0.9503 0.7893 0.9279

90:10 0.686 0.9117 0.7827 0.9236

Mean 0.6747 0.9431 0.7867 0.9266

S Dev 0.01315 0.01135 0.00878 0.00273

To decide which of the different features/parameters are more relevant for the prediction of the

RWT we used a decision tree algorithm. The algorithm is used in machine learning and it is provided

by the SAS mining tool.

The algorithm uses a series of simple rules to build a decision tree from training data. Splitting

rules are applied one after another based on the attribute which most effectively distinguishes be-

tween the available classes, resulting in a hierarchy of branches within branches that produces the

characteristic inverted decision tree form.

The most relevant feature is the number of message exchange during chat session (Message
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Exchange Number). This is quite evident in Figure 6.6, an increase in the number of message

exchange between pairs of people may rapidly lead to a shorter response waiting time.

Second in importance is the values for the best fit model which describes the individual’s RWT for

the past 6 Months. This parameter captures the dynamic nature of RWT which occurs during chat

sessions for pairs of people. Thereafter, four of the topics are relevant and sentiment analysis appears

next to last. The low importance of the utterance sentiments may be attributed to the difficulties

when trying to identify sentiment status of an utterance. Only about 1.5% of the utterances were

classified as a positive or negative sentiment; the remaining utterances were classified as neutral

sentiment. The possible reasons may be that utterances are unstructured and sentiments have the

tendency of changing over time.

6.4 Conclusion

We used a Neural Network and a Support Vector Machine to predict if a user is going to be a fast

responder. The parameters used for the prediction were the total number of messages exchanged

between two people, Statistical model describing Individual RWT, the sentiment of the utterances

exchanged and the topics of conversation. The most relevant parameter for a fast response is the

total number of messages exchanged between individuals. This is not surprising as more messages ex-

changed requires faster responses if the chat occurs in a finite time, say in an afternoon. Interestingly,

individuals that exchanged very few messages also tend to take a longer time to respond.



7. USER’S BEHAVIOUR DYNAMICS FOR GROUP CONVERSATION: THREAD

DETECTION

In chapter 6, we characterized the dynamics of RWT by considering pairs of people in conversation.

However, this chapter studies the dynamics of a group of people in conversation. We focus on

the disentanglement of a chat room network. Disentanglement is a task that extracts the different

interposed utterances in a chat log and separates them into distinct conversations. One of the

challenges in chat disentanglement is the temporal variation and dynamics of the network system.

Hence, we first explore the temporal changes that occur as the network evolves.

7.1 Temporal Behaviour

Network systems are dynamic; links exist for only short periods, disappear and reappear again [12].

The arrow of time-ordering is vital to understand the variations and fluctuations in the linking

patterns of a social network [35]. Researchers often build graphs from the time-varying system by

simply aggregating all the interactions as if they occur simultaneously in time. As a result, the links

of these graphs do not change over time [60].

Often, the solution has been to slice the dataset into windows and then, investigate how the

network structure evolves over time. However, this method does not capture all of the characteristics

of the temporal structure of the interaction patterns [12]. The concept and algorithm that has been

proposed in network theory are specifically built for the statics graph [35], i.e. a graph whose edges

remain constant over time.

In static networks, if X is connected to Y directly, and Y is connected to Z directly, then, X is

connected to C directly via a path over Y. However, in regard to temporal networks, if at a point

in time X is connected to Y directly later than when Y is connected to Z directly, then X and Z

will not be connected, hence no information can flow from X through Y to Z. This happens in both

direct and undirected networks [35].

In another example, suppose in the morning, Q and R had a conversation, then later in the

afternoon R and C had a conversation; the message may be propagated from Q to C but not from

C to Q. This important feature is lost if we simply aggregate all the daily network contacts in our

network analysis. Building group conversation graphs from a time-varying system by simply slicing

and aggregating all of the interactions as if they are occurring simultaneously in time does not reveal
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these time varying networks behaviours [51]. So, we need a better way of capturing these interesting

real-world network behaviours in a time-varying graph.

7.1.1 Time-respecting paths

In a static network, the temporal dimensions of human activities are not considered. Rather, it

assumes that the nodes and edges do not change over time and the distributions of human activities

are random in time, hence can be estimated by Poisson processes. In contrast to static assumptions,

social interactions are dynamic in nature; while some ties are decaying others are forming, while

some participants are joining the conversation others are leaving the network. Since interactions

often occur over a period of time, turning time on and off in a social network shows that human

activities and patterns of individual communication change continuously.

So, a path in a static graph, can be defined as a series of edges that links a chain of nodes in

such a way that the ending of one edge at a node is the beginning of another edge of the same

path. However, in the case of temporal graphs, the definition of a path is often with non-decreasing

time that connects sets of nodes [39]. The restriction of following time-ordered sequences of contacts

differentiates temporal paths and paths in static networks. Likewise, the difference between static

directed networks and temporal networks is that the paths of temporal networks are not transitive:

“The presence of time-respecting paths from i to j and j to k does not mean that there

is a path from i to k. Just like the basic property of time-respecting paths (beginning

and ending at certain points in time), the presence of a time-respecting path that begins

at i at time t0 and leads to j does not assure that such a path between i and j exists

for t > t0; moreover, in future temporal path connecting i and j might take a different

route [39].”

7.1.2 Example of temporal variation

In Fig 7.1.2, we show the major fluctuation and variation that is going on as the network evolves.

This is an example of a real-world time-varying network from our chat room communication. The

network nodes are represented by their ID, starting from participant A and ending with participant

W. The time of interaction is denoted by t1 to t51. The conversation was started by node D, who is

the current speaker at t1 and the audience includes A B C E F J H I. At t2, participant A assumes

the next current speaker because A was one of the audiences of D. It is very important to note that

only participant D received the message sent by the current speaker A at t2, while the rest were

blocked from viewing the messages. At t3 and t4, D as the current speaker still spoke to A, B, C, E,

F, J, H, I. But between t5 and t10 participant A, B, C, E, F, J, H, I disappeared and it looks like a
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Fig. 7.1: Temporal variation in Time-varying graph
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new conversation emerged. Here participant K seems to be an audience of two speakers J and L. J

and L do not see each others messages.

At t11, participant K assumes the current speaker role with I, J, L, M, and N as the audience.

Also, notice that participant I reappeared as well. Between t12 and t20, participant K again became

an audience of many speakers who do not see themselves. It is probable that these participants

were responding to Ks messages, which were spoken at t11. Notice that, at t21, participants C and

H reappear. The current speaker at this time is O with C, H, I, J, L, N, P, Q, R, S, T, and U

as the audience. Also, between t22 and t50, participant O was an audience of many speakers who

blocked themselves from seeing each others messages. One important thing is that participant O

can sometimes be an audience of two or more speakers simultaneously. At t51 where participant O

is the speaker, the audience includes C, H, I, J, L, N, W, Q, R, S, T and U.

Another interesting feature in this interaction is that some participants responded after receiving

two or more messages from the sender, thereby increasing the RWT while others reduced the waiting

time by responding immediately. Another behaviour we observed as the network evolved was that

some people joined the group conversation at a different time and often appeared in the conversation

path.

We have shown that relationships among the participants in the time-varying network is dynamic

and fluctuates over time. Hence, models and algorithms that aim to describe or extract information

from dynamic networks must respect the time dependency of the links [51]. Automatic separation

of interposed sequence of utterances into distinct conversation can be considered as a precondition

for having effective high-level dialogue analysis. In this chapter, we pose and answer the following

question:

How can we disentangle chat using a computationally less intensive method? Most

disentanglement models involve highly computationally intensive methods such as clustering tech-

niques, fuzzy algorithm, etc. These methods often led to deterioration in the results accuracy.

How can we dynamically model real social network? Social interactions are dynamic,

experience time decay and form in social networks; also, nodes enter and exit via social networks.

Interactions between pairs of people or groups are bursty as a result of long dormant periods separated

by strong bursts of activity.

7.2 Methodology

The proposed approach uses a simple and effective method for chat disentanglement. The algorithm

involves a two-pass process. In the first pass, the algorithm divides the text stream, after the
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messages were sorted based on time of posting, into a coherent short segment of conversation using

the waiting time (time gap) and turn-taking allocation rule. In the second pass, the algorithm

recovers a complete distinct conversation thread from the short segments of conversations by looking

at the participant-based features and the content similarity features.

7.2.1 Detecting a Coherent Short Segment (CSS)

Given a text stream in which the messages are ordered based on the time of posting, the basic idea

of a CSS algorithm is as follows: Let P1 and P2 be participants in the text stream. Take the first

utterance from the text stream say U1 made by P1 as a segment. The next utterance immediately

after U1, say U2, could come from the same speaker (in this case P1 ) or a different participant, say

P2 .

If U2 comes from the same speaker, we will only work out the likelihood of the utterance belonging

to the same segment as U1. On the other hand, if U2 comes from another participant, say P2, it will

involve two steps: first, check if P2 was an audience of the immediate past speaker (in this case P1).

Secondly, work out the likelihood of the utterance (in this case U2 ) belonging to the same segment

as U1. However, if it is unlikely, a new segment of conversation will start. For more clarity on the

algorithm see Figure 7.2. To work out the likelihood we use the following approach:

• Extract the distribution of the RWT in the current short segment.

• Then from that distribution work out the likelihood of the current RWT (which you have just

observed) belonging to the extracted distribution.

• If it is very likely, then we classify the current utterance to the current short segment; if it is

unlikely, a new segment of conversation will start.

7.2.2 Reconstructing multi-party conversation

This second stage involves building a coherent complete conversation from the short segment. Here

we developed two algorithms: first model and second model. The first model is based on content and

participant features while the second model is based on content feature and participant adjustment

features.

Content features (CF)

Word recurrence is an important feature for segmentation or coherence. For example, the number

of words shared between segments X and Y suggest that the two utterances may belong to the same

conversation. The content-based features involve comparing the amount of word similarity between

segments of conversations and the approach is as follows:
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Fig. 7.2: Flow chart for Coherent Short Segment.

First, take the first segment and use it to form a thread, T. Next, for each of the remaining

segments, M, we compute its similarity with the nearest neighbour segment in the existing thread
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T using cosine measure. If the cosine measure is greater than a threshold and there is a likelihood

of the current RWT (time difference between the average time of the nearest neighbour segment in

the existing thread T and the average time of the current segment) belonging to the current thread

(T) RWT distribution, then add M to T. This pass is efficient as it considers each segment once.

Participant features (PF)

Similarly, take the first segment and use it to form a thread, T. Next, for each of the remaining

segments, M, we compute its similarity with the nearest neighbour segment in the existing thread T

using the following principles:

• A pair of segments X and Y may be closely connected in the discourse and are likely to be

directly related if those participating in segment X are the same people participating in segment

Y, and there is a likelihood of the current RWT belonging to the current Thread (T) response

waiting time distribution.

• A pair of segment X and Y may be widely separated in the discourse and are unlikely to

be directly related if those participating in segment X are totally different from those people

participating in segment Y.

Tab. 7.1: Process of selecting the best Parameters for our models

Cosine measure Max reduction of users % of Words similarities Precision Recall F-Score

0.1 1 2 0.67742 0.65625 0.66667

0.2 3 10 0.50667 0.63333 0.56296

0.3 2 5 0.8248 0.9135 0.8667

0.4 5 20 0.49351 0.51351 0.50331

0.5 4 50 0.32692 0.22973 0.26984

Before choosing the threshold for different parameters, we conducted a test with range parameter

settings as shown in Table 7.1 and we found that setting the cosine measure value to 0.3 along with

other parameters produced the best result. Visualising the relationship of cosine measure values and

their performance in terms precision, recall and F-Score is presented in Figure 7.3 and it is clearly

shows that cosine measure value 0.3 is the best.

Participant Features Adjustment(PFA)

As mentioned in section 6.1.1, in traditional networks models the assumption is that edges and nodes

are alive forever within a network; however, in a real-world system participants continue to leave

while others continue to join the network [42]. This decreases or increases, in time, with the total

number of nodes, therefore, continuously altering the properties of network structure [24]
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Fig. 7.3: Test for the best cosine measure value

In a group conversation, sometimes participants can be part of a conversation for a short period,

disappear and reappear again. In order to capture the fluctuation and variations that occur in

the number of participants as the conversation grows over time, there is a need to adjust for the

temporal properties of human interaction. We studied a random sample of our dataset and observed

the following principles:

Suppose X is the first current segment that is to be added to the thread and Y is the nearest

neighbour segment in the existing thread T. Then in a situation where either of the following occurs:

1. The users who are involved in segment X (for example users A, B, C and D) are the same users

participating in segment Y with a maximum addition of 2 new users in Y (for example users

increase to A, B, C, D, E and F in Y)

OR

2. The users who are involved in segment X (for example users A, B, C and D) are the same

users participating in segment Y with a maximum reduction of 2 users in Y (for example, users

reduced to only A and B in Y)

Segments X and Y tend to be related if:
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• There is a likelihood of the current RWT belonging to the current Thread (T) RWT distribu-

tion.

• The relative percentage of the words that are similar between the two segments is greater than

5%

Fig. 7.4: Test for the best % of word similarity

Similarly Table 7.1 shows that a maximum addition or reduction of 2 new users produced the best

result along with 5% as the relative percent for the number of similar words between two utterances.

This is why 2 for the maximum addition or reduction of new users and 5% for the number of similar

words between two utterances were selected. Also visualising the relationship between the maximum

addition or reduction of new users, percentage of word similarities and their performance in terms

precision, recall and F-Score is presented in Figure 7.4. Our annotation system was developed using

SAS Code Node of SAS Enterprise Miner 12.1. software.

7.3 Experiments

We have described the three passes, which were based on RWT, content and participants features.

In this section, we empirically evaluate the performance of this algorithm using IRC and Walford
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chat logs. We will introduce our evaluation metrics and display the results from our experiment. We

compared the results with the baseline algorithms and between the two chat rooms.

7.3.1 Evaluation methods

The accuracy of a classifier can be visualised in a matrix form called a confusion matrix. It demon-

strates the association between the actual outcomes and the predicted classes [73]. This measures

the effectiveness of the classification model by computing the number of correct and incorrect clas-

sifications for each possible value of the targeted variable [50]. Table 7.2 shows the confusion matrix

used to calculate the performance of the classifier.

• True Negative (TN) a negative class data point was identified as negative.

• False Negative (FN) a positive class data point was identified as negative;

• False Positive (FP) a negative class data point was identified as positive;

• True Positive (TP) a positive class data point was identified as positive;

Tab. 7.2: Confusion matrix

Predicted class

Yes No

Actual Yes True Positive False Negative

class No False Positive True Negative

We can deduce from the above confusion table various matrices for evaluating classification

performance. The matrices are Precision (P), Recall (R) and F-score (F). In Precision we calculate

the fraction of objects that are really relevant in the result set while Recall is concerned with the

fraction of all the relevant objects in the collection that are in the result set [50]. Metrics can be

computed as follows:

Precision(P ) =
TP

TP + FP

Recall(R) =
TP

TP + FN

F-score (F) =
2

1

P
+

1

R
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Metric: One-to-Ome, Many-to-One and Local Agreement

In addition, we explored Elsner and Charniaks entropy evaluation metric tools [50] to calculate

the accuracy, precision, recall, F-score, many-to-one (m-1) and the local error (loc-N). One-to-one

overlap (1-1-g) is computed by a greedy algorithm, while one-to-one overlap (1-1-o) is computed

optimally (with the Hungarian algorithm). This process is displayed in Figure 7.5-7.7

(a) (b) (c)

Fig. 7.5: One-to-One Metric

(a) (b) (c)

Fig. 7.6: Local Agreement Metric

Fig. 7.7: Many-to-One Metric
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7.3.2 Experiment 1: Human annotation of Walford chat logs

For the human annotation, four PhD researchers in the field of semantic and pragmatic modelling

volunteered to annotate the test section of the corpus manually. The datasets were 500-line transcript

(500 utterances; 1:45hr) and in total, we had four annotated test datasets of the same transcript (one

from each volunteer), which serves as a validation corpus for our system. With the help of these PhD

students who are working on conversation analysis, aesthetics and interaction, we adapted Elsners

coding annotation scheme [50]:

• Mark each utterance as part of a single conversation.

• Distinct conversations that are not related in any way.

• Create as many or as few conversations as they need to describe the data.

• A conversation can be between any number of people,

• It should be clear that the comments inside a conversation fit together.

• If a schism occurs, we have two options:

1. if it seems short, they may view it as a mere digression and label it as part of

the parent conversation.

2. If it seems to deserve a place of its own, they will have to separate it from the

parent.

• Participants between the current and next conversation can either be the same

people or increase or reduce by a maximum of half. This gives room for people who

are leaving or joining the on-going conversation.

• If two utterances occur at the same time between two different pairs of people, we

will use the content-based approach to determine which conversation the utterances

belong to.

Examining the inter-annotator agreement is a crucial factor in knowing the classification perfor-

mance of a model [50]. The inter-annotator agreement value often becomes an upper bound on what

we can expect from an automatic classification models performance [2]. Each annotated dataset

were analysed and we applied a pairs wise comparison to choose the best with the highest score. A

summary of the inter-annotator agreement results for the Walford chat logs is displayed in Table 7.3.

Table 7.3 shows that the average number of active conversations at a time are 1.18 and the

average inter-annotator agreement for local and 1-to-1 metrics are high, which is an indication that

the annotators agree more. The high value of the local metric indicates good local correlations, which

implies that, in the three-sentence window ahead of each sentence, the annotators are generally in
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Tab. 7.3: Inter-annotator agreement

Parameters Mean min max

Avg.Length 16.41 13.70 20.20

Avg.Density 1.18 1.05 1.28

Avg.Entropy 2.52 2.20 2.70

1-to-1 80.98 75.63 84.50

loc3 92.19 88.75 96.53

M-to-1 93.20 89.10 97.53

agreement. Local metric has a mean overlap of 92.19%, minimum of 88.75% and a maximum of

96.53%, while 1-to-1 metric has a mean overlap of 80.98%, minimum of 75.63% and a maximum of

84.50%.

Tab. 7.4: Classification performance

Parameters Avg.Value

Accuracy 0.88202

Precision 0.8922

Recall 0.9652

F-score 0.9273

The entropy, which indicates where the conversation utterances belong to, ranges from 2.20 to

2.70. This is a small variation. However, the quantity increases as the number of conversations

grows [26]. Many-to-one accuracy measures how much the annotators agree on the general struc-

ture [26]. Besides the above techniques, we apply another simple method to compare the agreement

between different annotated corpuses. The method is unsupervised one-to-one accuracy. The ap-

proach involves clustering each distinct group conversation extracted from the corpus and applies

one-to-one accuracy to measure the global similarity between annotations. The classification perfor-

mance is also shown in Figure 7.4.

To compute one-to-one accuracy, we compared the cluster results from the annotations and

counted the total number of overlaps, then presented the percentage of overlaps found.

The sample results of our evaluation process are shown below. Fig 7.8 and 7.9 display a sample

of the cluster results from the two annotators. A close look at the two clusters shows some degree

of overlap; for instance, clusters 1, 2 and 4 in Fig 7.8 and clusters 5, 2 and 1 in Fig 7.8 appear to be

similar, respectively. This shows 60% agreement between the two annotations, making it a better

and encouraging result. The metrics results are displayed below.

In Table 7.5, on average the annotators have a high degree of similarity with each other, which

is encouraging. With respect to our model, the result shows a big range between the maximum and
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(a) (b)

Fig. 7.8: First human annotation

(a) (b)

Fig. 7.9: Second human annotation

minimum scores; however, it is interesting to know that our model average score is very close to the

human annotation average score, which is encouraging. We believe that the reason for this high level

of inter-annotators agreement can be traced to how the Walford chat room operates.

In Walford, the participants can construct a friend list. Walford has a tool that permits users to

send a direct message to all the members in their friends list who are online at the same time[38].

So the ability to reach everyone in your friends list simultaneously helps Walford users to engage in

a kind of group chat.

Annotators also observed that when users with many friend lists send a message to everyone in

the group, the participants who are online receive it at the same time. At least, no less than three

users reply to the message, thereby reducing the length of RWT. As a result, we can find many

continuous blocks of conversation segment in the logs, which improve our thread detection approach.

The same methods will be employed to compare the automatic results from our system with the

manually annotated corpus. Please note that the second dataset (Elsners IRC chat logs) used for

evaluation has been manually annotated by the provider. The author provided the raw dataset as

well as the annotated one. Unlike Walford, we used the annotated IRC chat logs to evaluate our

system.

7.3.3 Experiment 2: Walford chat logs

We tested our system using the same 500-line transcript (500 utterances; 1:45hr) test corpus from

Walford chat logs. The result of the annotation yields 55 conversations with an average length of
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Tab. 7.5: Metric values between proposed annotations and human annotations

Parameters Annotators. Model

Max one-to-one. 75.10 65.30

Min one-to-one. 36.60 34.40

Mean one-to-one. 56.20 49.10

10.20. Firstly, we investigate some of the features of multi-party conversations. Our examination

focuses on the pattern of turn-taking with group conversation and the behaviours of RWT as the

number of participants and the communication count increases.

Fig. 7.10: Distribution of pause length between utterances in the same conversation

Figure 7.10 shows the distribution of the pauses between utterances in the same conversation.

The highest point of the curve occurs at 1 to 3 seconds and there are few shorter pauses, less than

seconds. This shows that, in a given group conversation, users like to receive each others responses

before they will speak again. Also, the curve reveals a heavy-tailed to the right.

Figure 7.11(a) shows the average amount of turn-taking. It appears that the number of turns in

each group conversation grows as the number of participants increase. This is expected in a growing

community. Moreover, the points circled with red in Figure 7.11(a) were investigated further. We

found that none of the users within this group had a friend list of less than 7. This means that when

a user in this group conversation sends a message, no less than 7 of other users receive it at the same

time. As such, one or more users may reply to the message, thereby reducing the length of RWT.

Figure 7.11(b) suggests that the average RWT depends on the number of participants in a group

conversation. Groups with less participants have a longer waiting time while groups with a higher

number of participants have a short RWT. This reflects the pauses in turn-taking behaviour among

participants; in a given group conversation, users would rather wait to receive each others response

before they will speak again. In Figure 7.11(c), we plotted the number of communication counts in

each group conversation and the graph shows that the RWT decreases with an increasing number

of communication counts in a group conversation. This suggests that the amount of turn-taking

increases with a reduction in RWT as the number of participants and communication count grows in
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(a) Number of turn-taking (b) Number of Participant (c) No. of communication

Fig. 7.11: Some of the feature of Walford chat room

a multi-party conversation. This kind of behaviour is expected in a group conversation and highlights

the level of accuracy in our disentanglement model.

Baselines

As a standard of comparison for our system, we provide results for several baselines trivial systems

which any useful annotation should out-perform.

• All different: Each utterance is a separate conversation.

• All same: The whole transcript is a single conversation

For each particular metric, we calculate the best baseline

Tab. 7.6: Classification performance

Parameters First model Second model

Precision 0.6947 0.8248

Recall 0.4035 0.9135

F-score 0.5105 0.8667

To evaluate how well our system performed we used Elsner and Charniaks entropy evaluation

metric tools. As a standard of comparison for our system, we provide results for baselines trivial

systems which any useful annotation should outperform. We considered the two approaches in

calculating the baselines and for each particular metric, we calculate the best baseline

• All different: Each utterance is a separate conversation.

• All same: The whole transcript is a single conversation



7. User’s behaviour dynamics for group conversation: Thread detection 117

Tab. 7.7: Experimental results

Annotators Mean min max

1-to-1 80.98 75.63 84.50

loc3 92.19 88.75 96.53

Our Model

1-to-1 76.10 72.52 82.60

loc3 85.60 79.20 90.12

Elsner Model

1-to-1 40.62 33.63 51.12

loc3 72.75 70.47 75.16

Baseline

1-to-1 47.13 29.07 57.78

loc3 70.40 66.12 75.69

A summary of our model results for the Walford chat logs is displayed in Tables 7.6 and 7.7. In

Table 7.6, we can see that the F-score of our model is 51% for the first algorithm and 87% for the

second.

Comparing the F-value for the two algorithm performance

Table 7.6 shows that the second algorithm with extra tuning of the participants parameters (based

on CF, PF and PFA) achieved obvious improvement over the first algorithm, which was based on CF

and PF only. The second algorithm increases the performance relatively by 36% in terms of F-value

compared with the first algorithm. This observation validates the effect of introducing the temporal

fluctuation and variation in the number of participants over time. The reason for the improvement

is explained as follows: when taking temporal fluctuation into consideration, the algorithm was able

to capture a situation where one or two participants left or joined the group conversation, which

resulted in decreasing or increasing of the number of participants respectively at a particular time.

These kinds of features may not be captured by standard graph metrics, which are mainly suitable

for static graphs.

Having shown that a model with extra participant tuning performed better due to the dynamic

nature of a text stream, our analysis will focus on this model. In Table 7.7 we show other metrics

of the second model. The local metric has a mean overlap of 85.60%, a minimum of 79.20% and a

maximum of 90.12% while the 1-to-1 metric has a mean overlap of 76.10%, a minimum of 72.52%

and a maximum of 82.60%. On average the annotators have a high degree of agreement with each

other.

With respect to our model, it is interesting to know that our models average score is closer to
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the human annotation average score than the baseline score. As explained earlier, in Walford, the

participants have the ability to reach everyone in their friend list simultaneously and engage in a

group chat.

7.3.4 Experiment 3: IRC chat logs

In this second experiment, we tested our system using the IRC chat dataset published online by

Elsner [26]. This dataset is divided into three parts: development, test and pilot with 359, 706 and

800 utterances, respectively. Each part contains the raw dataset as well as the human annotated

dataset of the same part. However, we tested our model using the raw test dataset and since the

manually annotated of the same test dataset was also provided by the author, it serves as a validation

corpus for our system. Figure 7.12 shows the number of conversations and the corresponding number

of posts participated in per speaker, suggesting that those who post more are more likely to be

involved in multiple conversations [2].

Fig. 7.12: Thread and Uttrance

A summary of our model results for IRC chat logs is displayed in Tables 7.9 and 7.8. Classi-

fication performance of our system for IRC chat logs is shown in Table 7.9. We can see that the

F-score is 39.05% for the first algorithm (which is based on CF and PF) and 51.42% for the second

algorithm (which is based on CF, PF and PFA). Similarly, the F-scores result is relatively lower in

the first model compared to the second model. Again, we see the effect of adjusting for the temporal

fluctuation of participants in multi-participant chat analysis. PFA in the second algorithm increased

the performance relatively by 12.36% in terms of F-value compared with the first algorithm.

Table 7.8 shows that the local metric has a mean overlap of 75.23%, a minimum of 71.67% and

a maximum of 78.77% while the 1-to-1 metric has a mean overlap of 53.60%, a minimum of 44.09%

and a maximum of 68.90%.

The reason we have low performance in IRC chat logs can be traced to two points: primarily,
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Tab. 7.8: Experimental results

Parameters Mean min max

Avg.Length 13.41 3.0 17.0

Avg.Density 4.18 3.4 4.80

Avg.Entropy 3.22 2.80 3.90

Annotators

1-to-1 52.98 35.63 63.50

loc3 81.09 74.75 86.53

Our Model

1-to-1 35.10 34.30 50.12

loc3 69.60 65.40 73.13

Elsner Model

1-to-1 40.62 33.63 51.12

loc3 72.75 70.47 75.16

Baseline

1-to-1 27.13 24.07 48.78

loc3 53.40 49.12 60.69

Tab. 7.9: Classification Performance

Parameters First model Second model

Precision 0.8055 0.7206

Recall 0.2577 0.3971

F-score 0.3905 0.5142

at the model development stage, we only used the Walford dataset to develop our model. The data

structure of Walford chat logs is slightly different from the data structure of IRC chat logs.

Secondly, the presences of schisms in the chat logs pose interesting and challenging problems. As

a result, the overall classification performance is affected.

7.3.5 IRC and Walford results compared

In comparing the results from our model for Walford and IRC chat logs, it is clear that our model

performed much better with the former than the latter. This is because, unlike IRC, Walford has a

tool that permits users to send a direct message to all of the members in their friend list who are

online at the same time. So the ability to reach everyone in your friend list simultaneously helps

Walford users to engage in group chat. However, the occurrence of schisms in both Walford and

IRC chat logs has an effect on the performance of our model. According to [71], Schism occurs

when a conversation splits into two conversations; the new conversation is formed due to certain
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participants branching off from a specific message and refocusing their attention upon each other.

Schisms impose serious difficulty in identifying conversation threads.

Lastly, our annotation system was developed using SAS Code Node of SAS Enterprise Miner 12.1.

software. The flow diagram for recovering multi-party conversation is displayed in the appendix.

7.3.6 Developing the second model using IRC Dataset Experiment 4: IRC chat logs

As we mentioned earlier, the data structure of Walford chat logs is slightly different from the data

structure of IRC chat logs The model we developed using Walford logs had a low performance in

IRC chat logs, which indicates that the model may be data-dependent. At the model development

stage, we only used the IRC dataset to re-develop the second model then test it with both IRC and

Walford logs. The second model is the model with an extra tuning of the participants parameters (

Model that is based on CF, PF and PFA)

The model was tested with both walford and IRC logs. The output of the model result is shown in

Table 5. Testing this new model shows that the results from IRC indicate an obvious improvement

and is better than the results from Walford logs. This is an evidence that the models are data

dependant. Compare to the previous mode on IRC logs, this new model increases the performance

relatively by 36% in terms of F-value. This observation further validates that the model is data

dependant.

Tab. 7.10: Classification Performance

Parameters Walford IRC

Precision 0.8055 0.7206

Recall 0.2577 0.3971

F-score 0.3905 0.5142

7.3.7 Time Complexity of Algorithms

Time complexity of an algorithm signifies the total time required by the program to run to com-

pletion. The time complexity of algorithms is most commonly expressed using the big O notation.

This removes all constant factors so that the running time can be estimated in relation to N, as N

approaches infinity. Time complexity can be considered to be Constant, Linear, Logarithmic and

Quadratic.

• Constant Time: a constant-time method is order 1: O(1) An algorithm is said to run in

constant time if it requires the same amount of time regardless of the input size.

• Linear Time: a linear-time method is order N: O(N. An algorithm is said to run in linear time

if its time execution is directly proportional to the input size, i.e. time grows linearly as input
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size increases.

• Logarithmic Time(O(log n)): An algorithm is said to run in logarithmic time if its time exe-

cution is proportional to the logarithm of the input size.

• Quadratic Time: a quadratic-time method is order N squared: O(N2). An algorithm is said

to run in quadratic time if its time execution is proportional to the square of the input size.

After carrying out a time complex analysis of all the codes in our algorithm, the result shows a time

complex of O(logn) which is good. A sample of how it was done is show below.

Here is a sample from our algorithm

%Do i = 1 %to n

%do j = 1 %to (n/i)

data Abc.datamer2;

merge Abc.datamer2 Abc.hev&i;

RUN;

%end

%end

Time Complexity Analysis:

For i = 1, the inner loop is executed n times.

For i = 2, the inner loop is executed approximately n/2 times.

For i = 3, the inner loop is executed approximately n/3 times.

For i = 4, the inner loop is executed approximately n/4 times.

.

For i = n, the inner loop is executed approximately n/n times.

So the total time complexity of the above algorithm is (n + n/2 + n/3 + + n/n), Which becomes n * (1/1 + 1/2 + 1/3 + + 1/n)
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The important thing about series (1/1 + 1/2 + 1/3 + + 1/n) is equal to O(Logn).

So the time complexity of the above code is O(nLogn).



8. EVALUATION AND DISCUSSION

In chapter 3, we talked about the basics of social networks and defined some network terms. Chapter

4 showed that our chat room represents human interactions. We time-sliced the network and studied

its evolution across the years. We found that most of them have power-law distributions with varying

exponents. This is important because it shows that temporal distribution of human communication

is generally very bursty. Furthermore, we explored the temporal difference that occurs in users’

behaviour as the network evolves. In temporal difference, we study the communication behaviour

patterns of weekday and weekend chat room users in terms of information flow, degree distribution

and the clustering coefficient distribution. Both weekday and weekend users’ behaviours exhibit

power-law distribution, however, weekday participants have higher number of triangles (3-cycle)

than weekend participants, who have a higher betweenness value, i.e. participants who are exercising

influence over the interaction of others.

Evaluating the similarity between the content of weekday and weekend chats, we apply cosine

similarity measure. The result shows that the cosine measure is 0.00058, indicating a wide range of

dissimilarity between the content in weekday and weekend chat. We tested the power law hypothesis

through a bootstrapping procedure. The p-value is the goodness-of-fit and ratio test metric are 0.72

and 0.74 for Walford; 0.64 and 0.90 for IRC; 0.62 and 0.38 for T-REX respectively. This suggest

that an existence of Power-law.

Chapter 5 investigated the dynamics of pairs of people in conversation with respect to their

response waiting time (RWT). We considered the Response Waiting Time in a chat room com-

munication in regard to the time difference between successive messages sent between two people.

Examining the distribution of the RWT reveals a graph with several distinct regions and this is a

significant shift from the current views on the nature of RWT as a simple power-law distribution to

a more complex pattern.

To evaluate our result we use the bootstrap procedure which shows a goodness-of-fit of 0.110

and ration test of 0.018 for Walford, goodness-of-fit of 0.110 and ratio test of 0.018 for IRC and

goodness-of-fit of 0.102 and ratio test of 0.006 for T-REX. This suggest that the model does not

provide a plausible fit to the data and another distribution may be more appropriate. Further test

shows that the distribution of response waiting time is quite closer to burr than pareto (power law)

which suggest that Burr as the best distribution to describe response waiting time in an on-line chat
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room.

For simplicity we divided the distribution into two major regions. Region one consisted of users

with waiting time less or equal to one hour and can be described using power-law. In region two, the

waiting time was between one hour and a month. We compared the two regions based on their word

content and the way the users interacted with each other to exchange information. We started by

extracting the word content of the two regions and then, used cosine measure to compare the word

similarity between them. The result shows that the word content in the two regions was less similar

with a cosine measure of 0.130. From this result we infer that the type of words people use when

chatting appears to influence the RWT. Next, we compared the network structure in the two regions.

A network is made up of users (nodes) and the links between them. The way that these links (edges)

are organised has a big effect on who gets what information. In relation to the RWT we investigated

the network properties in the two regions. The first network property to be examined is the degree

distribution; the degree distribution of a node or user k is the number of edges that have k as a

vertex. From analysis of the Cumulative Distribution graph, we find that the degree distribution

is higher in region one with shorter waiting time than in region two with a longer waiting time.

This indicates that the degree distribution of a network influences the RWT. The second network

property we examined is the cluster coefficient. This measures the degree to which friends of friends

are also befriending each other. The clustering coefficient of regions one and two are 0.54 and 0.30,

respectively. This indicates that the participants in region two who have longer waiting time are less

connected than participants in region one who have shorter waiting time.

In another strand of analysis we conducted on the RWT involved investigating the waiting time

in relation to communication count. For each pair, we counted the number of times they sent

messages between each other and the average of their RWTs. A plot of the averaged RWT and the

communication count for pairs of people revealed that the RWT decreased as the communication

count increased. Thus, we can infer that the communication frequency influences the RWT. Finally,

this section ended with an investigation of the behaviour of the RWT by considering one user with

other participants. Our result shows that an individual can have several waiting times depending on

the interference factors, which may be fatigue, lack of interest, lack of communication, dullness, lack

of interest or concentration etc. This suggests that communication dynamics depends on the group

or pairs rather than being simply about the individual.

However, it is important to note that the different technologies such as e-mail, Twitter, Walford,

IRC and T-REX chat logs appear to have wild variation in their results, indicating that the results

may be technology-dependent. E-mail shows simple scaling behaviour with an alpha value of 1 while

in Twitter, Walford, IRC and T-REX chat logs revealed multi-scaling behaviour. With twitter, a

user’s waiting time behaviour changed after one day while in Walford, IRC, and T-REX chat logs a
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user’s waiting time behaviour changed after one or a few hours. It suggests that technology has some

influence on the user’s RWT. This shows that there are different factors that influence the RWT at

different time scales.

In chapter 6, we used chat room characteristics to predict response waiting time. Utilising

over 35,000 records of online chat sessions, we trained Neural Network(NN) and Support Virtual

Machine (SVM) with a 60% train, 20% validation and 20% test split. Our best classifier is Neural

network(NNT) which achieved 97.17% accuracy, however, Support Virtual Machine(SVMT) which

attained 96.68% is few percent behind. The result shows that the number of message exchange and

previous RWT distributions for pairs plays a significant role in reducing RWT during chat sessions.

Suggesting that increasing the number of message exchange between pairs minimise the RWT and

may lead to more friendly connection. Knowing in advance the response rate of a chat user will

assist in making appropriate decision on which medium of communication will be convenient for the

pairs of people and hence, reducing unfriendly connections.

To evaluate the model performance, we use the concepts of Receiver Operating Characteristic

(ROC) to analyse the accuracy of the models and provide diagnostic on the best model. Nine data

partition were done and in each partition we recorded the Recall, Precision, F-Score and Accuracy.

The standard deviation for Recall, Precision, F-Score and Accuracy are 0.01315, 0.01135, 0.00878

and 0.00273 respectively which reflects the consistence of model performance

Chapter 7 focused on the dynamics of group conversation and temporal behaviours. We pre-

sented the challenges as well as the gap in analysing time-varying graph with an algorithms for

static networks. We noted that relationship among the participants in a time-varying network is

dynamic and fluctuates over time. Therefore, models and algorithms that aim to describe or extract

information from dynamic networks must respect the time dependency of the links.

In this chapter, we developed an algorithm for chat thread detection that is time dependant.

We proposed a simple and effective technique that utilised simple statistics information, such as

utterance similarities, RWT, turn-taking and the participant-based feature for thread detection in

chat logs. This supplemented the traditional qualitative method, which has been proven to be

difficult due predict to the contextual nature of meaning. Unlike most existing thread detection

models, our approach is less computational intensive.

To verify their applicability, the proposed algorithm was applied to two different real-world data

sets (Walford and IRC chat logs) and the obtained results were evaluated using the following matrices:

Precision (P), Recall (R) and F-score (F). we also explored Elsner and Charniaks entropy evaluation

metric tools [49] such as many-to-one (m-1) and the local error (loc-N). One-to-one overlap (1-1-g)

is computed by a greedy algorithm, while one-to-one overlap (1-1-o) is computed optimally (with

the Hungarian algorithm. Our proposed novel algorithms outperformed the basic algorithm.
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8.1 Conclusion

We investigated users’ behaviours in chat rooms with respect to RWT. This study focused only on

pairs of people chatting. Interestingly our result clearly shows an existence of multi-scaling behaviour

(more than one behaviour in a user’s pattern) in the RWT for pairs of people in a chat network.

Unlike most empirical data in nature, and in contradiction to previous reports, the RWT distribution

is not a pure power-law; rather it is a graph with several distinct regions. We also show that the

pairs of people involved in conversation A B may not necessarily have the same RWT distribution

or behave alike. An individual can have several waiting times. This suggests that communication

dynamics depends on the groups or pairs rather than being simply about the individual.

Lastly, we presented two different approaches of cluster algorithm to detect a thread in a dynamic

text message stream. Our novel approach depends on content features, participants’ features and

the amount of participant adjustment and it takes temporal information such as fluctuations or

variations in the number of participants into consideration. As a result the performance improved

by at most 34.6% in terms of F-values when compared with the basic algorithm. While the basic

algorithm is based on content and participant features, the novel algorithm captured the temporal

fluctuation in the numbers of participants during multi-participant conversation. Our proposed novel

algorithm outperformed the basic algorithm and achieved results that are nearer human performance

on Walford’s annotated corpus.

Our contribution to knowledge

• We demonstrated the real distribution of the RWT during on-line chat, which significantly af-

fects the current views on the nature of RWT. This is a shift from simple power-law distribution

to a more complex pattern.

• We also show that an individual can have several waiting times which suggests that communi-

cation dynamics depends on the groups or pairs rather than being simply about the individual.

• We proposed a simple and less computational intensive approach for thread detection in chat

logs.

Future work

There are two ways in which new conversations can start: one is through a schism and the other is

through a conversation initiating statement. Disentangling chat logs in the absent of a schism may

improve model performance and yield better results. So, given the structure of Walford chat logs -

the participants can construct a friend list and send direct messages to those on it who are online

at the same time while also being able to do a group chat - it may be possible to detect a schism
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and remove them before disentangling the remain Walford chat logs. Since a schism occurs when a

conversation splits into two, this implies that the users who are involved in a schism were once an

audience of the current speaker in the main conversation before the schism occurred and, secondly,

the two conversations seem to occur at the same time. With these features we can detect when and

where schisms occur and remove them in the chat logs. It is important to note that this will work

for Walford chat logs because of their structure but not for IRC chat logs.
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A. CODES FOR CHAPTER 5

Code for slicing the dataset by week of day

1

2

3 options mprint symbolgen mlogic;

4

5 data dataset2;

6 set dataset;

7 CST = catx(’=’,Dsender,DTarget);

8 CTS = catx(’=’,DTarget,Dsender);

9 CST2 = CATS("’",CST,"’");

10 run;

11

12 proc sql noprint;

13 select distinct CST2 into: GIB separated by ’ ’

14 from dataset2;

15 quit;

16

17 data merged;

18 run;

19

20 %let mylist = &GIB;

21 %macro Track

22 (

23 inputds =

24 , variabl =

25 )

26 ;

27

28 data rev;

29 F = put(scan(&variabl,1,’=’),6.);

30 S = put(scan(&variabl,2,’=’),6.);

31 C = catx(’=’,S,F);

32 run;

33

34 data rev;

35 set rev;

36 call symput(’F’,F);

37 call symput(’S’,S);

38 call symput(’C’,C);

39 run;

40

41

42 data data3;

43 set &inputds;
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44 if CST = "&C" then

45 do;

46 if find(CST,"&S") > 0 | find(CTS,"&S") > 0 then output;

47 end;

48 else

49 do;

50 if find(CST,"&S") > 0 | find(CTS,"&S") > 0 then output;

51 end;

52 run;

53

54 data merged;

55 set merged data3;

56 run;

57

58 proc sort data = merged;

59 by date;

60 run;

61

62 %mend Track;

63

64 %iterlist( list = &mylist.,

65 code = %nrstr(

66 %Track(inputds = dataset2, variabl = ?);

67 )

68 );

69

70 data merged;

71 set merged;

72 where date > .z;

73 run;

74 proc sort data = merged;

75 by date;

76 run;

77

78

79 %macro cal_sec;

80 *Perfoming calculation for sec;

81

82 proc sql;

83 create table ComDate as

84 select Date as Date2

85 from merged;

86 quit;

87

88 data comdate2;

89 set ComDate(firstobs = 2);

90 data MergDC;

91 merge merged comdate2;

92 run;

93

94 proc sort data = MergDC;

95 BY Date;
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96

97 data MergDC;

98 set MergDC;

99 hr=intck(’hour’,Date,Date2);

100 min=intck(’minute’,Date,Date2);

101 sec=intck(’second’,Date,Date2);

102 run;

103 %mend cal_sec;

104

105 %cal_sec

106

107

108

109 %Macro InsertValue;

110 proc sort data = Mergdc;

111 by descending Date;

112 proc sql;

113 create table dsec as

114 select sec

115 from Mergdc;

116 proc sql;

117 insert into dsec

118 set sec= 0;

119 quit;

120

121 data MergDC2;

122 merge Mergdc dsec;

123 run;

124

125 proc sort data = Mergdc2;

126 by Date;

127 run;

128

129 proc sql;

130 create table ddsec as

131 select sec

132 from Mergdc2;

133 data Mergdc3(drop = sec);

134 set Mergdc2;

135 where date > .z;

136 run;

137

138 data MergDC4;

139 merge Mergdc3 ddsec;

140 run;

141

142 proc sql;

143 create table datasec as

144 select Dsender, DTarget, sec

145 from MergDC4;

146 quit;

147
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148 data Datasec2(drop = Dsender DTarget sec);

149 set Datasec;

150 Sender = input(Dsender,BEST12.);

151 Target = input(DTarget,BEST12.);

152 Sec2 = sec;

153 Seq = _n_;

154 run;

155

156 %Mend InsertValue;

157 %InsertValue

158

159 data secnozero;

160 set ddsec;

161 where sec > 1;

162 run;

163

164 proc univariate data = secnozero;

165 var sec;

166 histogram sec;

167 output out=modesec2 mode = mode;

168

169 run;

170

Code for slicing the dataset by week of day

1

2 data datasetw2;

3 set Datasetw;

4 datepart = datepart(Date);

5 wk1 = weekday(datepart);

6 where sec > 0;

7 run;

8

9 proc sql;

10 create table temp1day as

11 select wk1,Sec

12 from datasetw2;

13 quit;

14

15 proc sort data= temp1day;

16 by wk1;

17 run;

18

19 proc means data=temp1day mean noprint;

20 by wk1;

21 output out = Avg;

22 run;

23

24 data walfavgsec(drop = _TYPE_ _STAT_ _FREQ_);;

25 set Avg;

26 if _STAT_ = ’MEAN’;

27 RUN;

28
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29

Code for slicing the dataset by time of day

1

2 data datasetsec2;

3 set Datasetw2;

4 datepart = datepart(Date);

5 wk1 = weekday(datepart);

6 hhr = hour(date);

7 where sec > 0;

8 run;

9

10 Data datam;

11 run;

12

13 %macro wksec;

14 %DO k = 1 %TO 7;

15

16 data walfdatasec1(rename = (sec = sec&k));

17 set datasetsec2;

18 where wk1 = &k;

19 run;

20

21 Data walfdatasec2;

22 set walfdatasec1;

23 if hhr = 0 or hhr le 3 then perd = 1;

24 else if hhr = 3 or hhr le 6 then perd = 2;

25 else if hhr = 6 or hhr le 9 then perd = 3;

26 else if hhr = 9 or hhr le 12 then perd = 4;

27 else if hhr = 12 or hhr le 15 then perd = 5;

28 else if hhr = 15 or hhr le 18 then perd = 6;

29 else if hhr = 18 or hhr le 21 then perd = 7;

30 else perd = 8;

31 run;

32

33 proc sql;

34 create table temp1day as

35 select perd,Sec&k

36 from walfdatasec2

37 where sec&k > 0;

38

39 quit;

40

41 proc sort data= temp1day;

42 by perd;

43 run;

44

45

46 proc means data=temp1day mean noprint;

47 by perd;

48 output out = Avg;

49 run;

50



A. Codes for chapter 5 134

51 data data&k(drop = _TYPE_ _STAT_ _FREQ_);

52 set Avg;

53 if _STAT_ = ’MEAN’;

54 RUN;

55

56 Data datam;

57 merge datam data&k;

58 run;

59 %end;

60 %mend wksec;

61 %wksec

62

Code for RWT,time of day and week of day interaction

1 data datasetR;

2 set Datasetw2;

3 datepart = datepart(Date);

4 wk1 = weekday(datepart);

5 hhr = hour(date);

6 where sec > 0;

7 run;

8

9 Data datam;

10 run;

11

12

13 proc sql noprint;

14 select distinct CST2 into: GIB separated by ’ ’

15 from datasetR;

16 quit;

17

18 data merged;

19 run;

20

21 %let mylist = &GIB;

22 %macro Track

23

24 (

25 inputds =

26 , variabl =

27 )

28 ;

29

30 data walfdatasec;

31 set &inputds;

32 where CST = &variabl;

33 RUN;

34

35

36 %DO k = 1 %TO 7;

37

38 data walfdatasec1;

39 set walfdatasec;



A. Codes for chapter 5 135

40 where wk1 = &k;

41 run;

42

43 Data walfdatasec2;

44 set walfdatasec1;

45 if hhr = 0 or hhr le 3 then perd = 1;

46 else if hhr = 3 or hhr le 6 then perd = 2;

47 else if hhr = 6 or hhr le 9 then perd = 3;

48 else if hhr = 9 or hhr le 12 then perd = 4;

49 else if hhr = 12 or hhr le 15 then perd = 5;

50 else if hhr = 15 or hhr le 18 then perd = 6;

51 else if hhr = 18 or hhr le 21 then perd = 7;

52 else perd = 8;

53 run;

54

55 proc sql;

56 create table temp1day as

57 select perd,Sec

58 from walfdatasec2

59 where sec> 0;

60

61 quit;

62

63 proc sort data= temp1day;

64 by perd;

65 run;

66

67

68 proc means data=temp1day mean noprint;

69 by perd;

70 output out = Avg;

71 run;

72

73 data data(drop = _TYPE_ _STAT_ _FREQ_);

74 set Avg;

75 weeks = &k;

76 if _STAT_ = ’MEAN’;

77 RUN;

78

79 Data datam;

80 set datam data;

81 run;

82 %end;

83 data datam;

84 set datam;

85 ID = &variabl;

86 run;

87 %mend Track;

88

89 %iterlist( list = &mylist.,

90 code = %nrstr(

91 %Track(inputds = datasetR, variabl = ?);
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92 )

93 );

94
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Code 1

1

2 data mergedk(rename = (Spk = Sender Recipient = Target Text = Message));

3 set &EM_IMPORT_DATA(obs = 1000);

4 datek = input(strip(date1),datetime34.);

5 format datek datetime25.;

6 run;

7 proc sql;

8 create table merged as

9 select Sender, Target, Message, datek as Date

10 from mergedk;

11 quit;

12

13 %macro cal_sec;

14 *Perfoming calculation for sec;

15

16 proc sql;

17 create table ComDate as

18 select Date as Date2

19 from merged;

20 quit;

21

22 data comdate2;

23 set ComDate(firstobs = 2);

24 data MergDC;

25 merge merged comdate2;

26 run;

27

28 data MergDC;

29 set MergDC;

30 hr=intck(’hour’,Date,Date2);

31 min=intck(’minute’,Date,Date2);

32 sec=intck(’second’,Date,Date2);

33 Hrd = Hour(Date);

34 Mind = Minute(Date);

35 Secd = Second(Date);

36 SHMS = catx(’=’,sender,Hrd,Mind,Secd);

37 THMS = catx(’=’,Target,Hrd,Mind,Secd);

38 HMSS = catx(’=’,Hrd,Mind,Secd);

39 HMST = catx(’=’,Hrd,Mind,Secd);

40 run;

41 %mend cal_sec;

42 %cal_sec

43
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44 %Macro InsertValue;

45 proc sql;

46 create table datasec as

47 select Sender, Target as Reciever,sec, SHMS, THMS, HMSS, HMST, Message, Date

48 from MergDC;

49 quit;

50

51 data Datasec;

52 set Datasec;

53 Seq = _n_;

54 run;

55

56 data Datasec2(drop = Seq Sec);

57 set Datasec;

58 Sec2 = put(Sec,8.);

59 Seq2 = put(Seq,8.);

60 run;

61

62 proc sql;

63 create table Abc.Datasec as

64 select Seq2 as ID, Sender, Reciever, Message,Sec2, SHMS, THMS, HMSS, HMST, Date

65 from Datasec2;

66 quit;

67

68 data Abc.Datasec(rename = (Sender = Senders Reciever = Receivers));;

69 set Abc.Datasec;

70 run;

71

72 proc sql;

73 create table Abc.showData as

74 select Sender, Reciever, Message, SHMS, THMS, HMSS, HMST, Date

75 from Datasec2;

76 quit;

77

78 proc print data = Abc.Datasec(obs = 20);

79 run;

80 %Mend InsertValue;

81 %InsertValue

82

83

84

Code 2

1

2 data Abc.Data1;

3 set Abc.datasec;

4 run;

5

6 proc sql noprint;

7 select count(*)

8 into :OBSCOUNT

9 from Abc.Data1;

10 quit;
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11 data Abc.lastob2;

12 Slice_point1 = &OBSCOUNT;

13 RUN;

14

15 %Macro procIML1;

16

17 %DO i = 1 %TO &OBSCOUNT;

18

19 proc iml;

20 use Abc.Data1;

21 read all varSHMS THMS HMSS HMST ID Senders Receivers Sec2 INTO ST;

22 n=NROW(ST);

23 m = &i;

24

25

26 F1 = ST[m,1];

27 T1 = ST[m,2];

28 k = m+1;

29 if k > n then k = n;

30 F444 = ST[k,2];

31 F4 = ST[k,1];

32 T4 = ST[k,2];

33 F8 = ST[m,5];

34 Fg = ST[k,8];

35 TR = num(Fg);

36 call symput(’F8’,F8);

37 %let Y = T;

38 %let U = &i;

39

40

41 F11 = scan(F1,1,’=’);

42 T11 = scan(T1,1,’=’);

43 F44 = scan(F4,1,’=’);

44 T44 = scan(T4,1,’=’);

45 if F1 ˆ= F4 then

46 do;

47

48

49 F&U = j(1,1,0);

50 FT&U = &f8;

51 store FT&U;

52 create Abc.hev&U varFT&U;

53 append;

54 show contents;

55 close ratio&U;

56 end;

57

58

59

60 /*

61 find all where(SHMS=F1) into p;

62
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63 h1 = max(p);

64 h2 = min(p);

65 h3 = ST[h1:h2,2];

66

67 h4 = scan(h3,1,’=’);

68

69 F5 = scan(F4,1,’=’);

70

71 G = find(h4,F5);

72 GG = ANY(G);

73

74 if GG = 0 then

75 do;

76 F&U = j(1,1,0);

77 FT&U = &f8;

78 store FT&U;

79 create Abc.hev&U varFT&U;

80 append;

81 show contents;

82 close ratio&U;

83 end;

84 end;*/

85

86 %end;

87

88 quit;

89

90 %Mend procIML1;

91 %procIML1

92

93 data Abc.datamer2;

94 FT1 = 1;

95 RUN;

96

97

98 %macro checkds;

99 %Do i = 1 %TO &OBSCOUNT;

100 %if %sysfunc(exist(Abc.hev&i)) %then %do;

101 data Abc.datamer2;

102 merge Abc.datamer2 Abc.hev&i;

103 RUN;

104 %end;

105 %end;

106 %mend checkds;

107 %checkds

108

109 proc transpose data= Abc.Datamer2

110 out=Abc.Transp

111 name=VAR

112 prefix=Slice_point;

113 run;

114 data Abc.Transp2;
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115 set Abc.Transp Abc.Lastob2;

116 RUN;

117 data Abc.rangee1(drop = VAR);

118 set Abc.Transp2;

119 run;

120

121 data &EM_EXPORT_TRAIN;

122 set Abc.rangee1;

123 run;

124

125 %em_register(key=Class3, type=data);

126 data &em_user_Class3;

127 set &EM_EXPORT_TRAIN;

128 run;

129

130

131 %EM_REPORT(key=Class3,

132 viewtype=Data,

133 description= Conversation slice points);

134

135

136 proc print data = Abc.rangee1;

137 run;

138

139

140

Code 3

1

2

3

4 options minoperator mindelimiter=’,’;

5 %Macro Constr;

6 data outputtracking;

7 set mysas.outputtracking(firstobs = 2);

8 run;

9

10 data Innerdata;

11 set outputtracking(Firstobs = 2);

12 run;

13 proc sql noprint;

14 select distinct chatnum into: nxtpt separated by ’,’

15 from outputtracking;

16 quit;

17 proc sql noprint;

18 select distinct chatnum into: nxtpt2 separated by ’,’

19 from Innerdata;

20 quit;

21

22

23 proc sql noprint;

24 select count(*)

25 into :OBSOUTPUTCOUNT
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26 from outputtracking;

27 quit;

28

29 data mysas.classified;

30 run;

31

32 %DO j = 1 %TO &OBSOUTPUTCOUNT;

33 %if &j in(&nxtpt) %then

34 %do;

35

36 data mysas.Fout&j;

37 run;

38 data mysas.Fout&j;

39 set mysas.Fout&j mysas.out&j;

40 run;

41

42 proc tgparse data=mysas.out&j

43 out=parseOut key=key

44 stemming=yes tagging=no

45 entities=no ng=std

46 stop =sasuser.Gibstoplist

47 IGNORE = sasuser.Gibstoplist;

48 var message;

49 run;

50

51 PROC SQL;

52 create table BaseTerms as

53 select Term as Term1

54 from work.Key;

55 quit;

56

57 proc sql;

58 create table senderData as

59 select sender

60 from mysas.out&j;

61

62 proc sql;

63 create table ReceiverData as

64 select Receiver as sender

65 from mysas.out&j;

66

67 data SR;

68 set Senderdata Receiverdata;

69 run;

70

71 proc sort data = SR nodupkey;

72 by sender;

73 quit;

74

75 %DO i = 1 %TO &OBSOUTPUTCOUNT;

76 %if &i in(&nxtpt2) %then

77 %do;
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78 proc tgparse data=mysas.out&i

79 out=parseOut key=key

80 stemming=yes tagging=no

81 entities=no ng=std

82 stop=sasuser.Gibstoplist

83 IGNORE = sasuser.Gibstoplist ;

84 var message;

85 run;

86

87 proc tgparse data= mysas.out&i

88 out=parseOut2 key=key1

89 stemming=yes tagging=no

90 entities=no ng=std ;

91 *stop=sasuser.Gibstoplist

92 *IGNORE = sasuser.Gibstoplist ;

93 var message;

94 run;

95

96 proc sql noprint;

97 select count(*)

98 into :KeyCOUNT

99 from Key;

100 quit;

101

102 %put KeyCOUNT = &KeyCOUNT;

103

104 %if &KeyCOUNT = 0 %then

105 %do;

106 data Key;

107 set key1;

108 run;

109 %end;

110

111 PROC SQL;

112 create table CompareTerms as

113 select Term as Term2

114 from work.Key;

115 quit;

116

117 %let maxscore=2000;

118 proc sql;

119 create table Scoredata as

120 select Term2, Term1 ,

121 compged(Term2 ,Term1,&maxscore,’iLN’ ) as gedscore,

122 (length(Term2) + length(Term1)) / 2 as ablen

123 from CompareTerms,BaseTerms

124 order by calculated gedscore;

125 quit;

126

127 /*Finding out the different in number of users between chats */

128 proc sql;

129 create table senderData2 as
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130 select sender as Receiver

131 from mysas.out&i;

132 proc sql;

133 create table ReceiverData2 as

134 select Receiver

135 from mysas.out&i;

136 data SR2;

137 set Senderdata2 Receiverdata2;

138 run;

139 proc sort data = SR2 nodupkey;

140 by Receiver;

141 quit;

142

143 data SR22;

144 set SR2;

145 Receiver2 = CATS("’",Receiver,"’");

146 RUN;

147

148 data SR11;

149 set SR;

150 Sender2 = CATS("’",Sender,"’");

151 RUN;

152

153 proc sql noprint;

154 select distinct Receiver into: Rcv separated by ’,’

155 from SR22;

156 quit;

157

158 %put &Rcv;

159

160 data BASEDATA(drop=k);

161 set SR;

162 array test*_ALL_;

163 do k =1 to dim(test);

164 if testk not in (&Rcv) then output;

165 end;

166 run;

167

168

169

170 proc sql noprint;

171 select distinct Sender into: Rcv separated by ’,’

172 from SR11;

173 quit;

174

175 %put &Rcv;

176

177 data COMPAREDATA(drop=k);

178 set SR2;

179 array test*_ALL_;

180 do k=1 to dim(test);

181 if testk not in (&Rcv) then output;
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182 end;

183 run;

184

185 proc sql noprint;

186 select count(*)

187 into :BASECOUNT

188 from BASEDATA;

189 quit;

190 %put Count=&BASECOUNT.;

191

192 proc sql noprint;

193 select count(*)

194 into :COMPARECOUNT

195 from COMPAREDATA;

196 quit;

197 %put Count=&COMPARECOUNT.;

198

199 %let DiffCount = %eval(&BASECOUNT + &COMPARECOUNT);

200

201 %put TDiffCount= &DiffCount,;

202

203

204 /*conversations are far apath from each other if DiffCount is eaull to DiffCount_SORT*/

205

206 proc sql noprint;

207 select count(*)

208 into :BASECOUNT_SR

209 from SR;

210 quit;

211 %put Count=&BASECOUNT_SR.;

212

213 proc sql noprint;

214 select count(*)

215 into :COMPARECOUNT_SR2

216 from SR2;

217 quit;

218 %put Count=&COMPARECOUNT_SR2.;

219

220 %let DiffCount_SORT = %eval(&BASECOUNT_SR + &COMPARECOUNT_SR2);

221

222 %put TDiffCount_SORT = &DiffCount_SORT,;

223

224

225 proc sql;

226 create table MWID as

227 select gedscore

228 from Scoredata

229 where gedscore = 0;

230 quit;

231 proc sql noprint;

232 select count(*)

233 into :WMPERCCOUNT
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234 from MWID;

235 quit;

236

237 %put WordPercent = &WMPERCCOUNT;

238

239

240 proc iml;

241 use Scoredata;

242 read all vargedscore INTO STG;

243 list all;

244 GS = ALL(STG);

245 print(GS);

246

247

248 if &BASECOUNT = 0 & &COMPARECOUNT = 0 then

249 do;

250 %include ’C:2012 SAS Files_working.sas’;

251 end;

252

253 else if GS = 0 & &DiffCount ˆ= &DiffCount_SORT then

254 do;

255 %include ’C:2012 SAS Files_working.sas’;

256 end;

257

258

259

260 else if GS = 0 & &BASECOUNT = 0 & &COMPARECOUNT <= 3 then

261 do;

262 %include ’C:2012 SAS Files_working.sas’;

263 end;

264

265

266 else if GS = 0 & &BASECOUNT <= 3 & &COMPARECOUNT = 0 then

267 do;

268 %include ’C:2012 SAS Files_working.sas’;

269 end;

270

271 quit;

272 %end;

273 %END;

274

275 proc iml;

276 %include ’C:2012 SAS Files_working2.sas’;

277 quit;

278

279

280 proc sql noprint;

281 select distinct cl into: cl2 separated by ’ ’

282 from mysas.Classified;

283 quit;

284

285 DATA Tgp TGP2;
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286 do p = 1 to &OBSOUTPUTCOUNT;

287 if p not in(&cl2 ) then OUTPUT Tgp;

288 else OUTPUT Tgp2;

289 end;

290 run;

291 data TgpInner;

292 set Tgp(Firstobs = 2);

293 run;

294 proc sql noprint;

295 select distinct p into: nxtpt separated by ’,’

296 from Tgp;

297 quit;

298

299 proc sql noprint;

300 select distinct p into: nxtpt2 separated by ’,’

301 from TgpInner;

302 quit;

303 %put &nxtpt;

304 %put &nxtpt2;

305 %end;

306 %END;

307 %Mend Constr;

308 %Constr

309
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Vocabulary in long group conversation
00:09 Sunday, September 22, 2013 1

Vocabulary in long group conversation
00:09 Sunday, September 22, 2013 1

Obs T1 T2 T3 T4 T5 T6

1 abotu energi jp lsee rlyou wsaysw

2 ac equal kettl lsexi rmattl wsmooch

3 accuraci error kind lshe rod wsnuggl

4 addictl eval ko lsnarf rong wstand

5 admin even laaaaaaa lso rover wto

6 afk excel lactual lsome rpg wyou

7 agent except laff lstill rule xenosaga

8 ahh excus lah lsweet saturdai xfnat

9 ahhh extremli lairship lswordfi sausag ye

10 alarm ey lan ltell saw yell

11 alt face land lthat saysl york

12 andl farmer landi lthe schedul yuou

13 ann fbil lariel lthough score dog

14 appi feel lask lto second dolc

15 asksl fei lat ltraxl serpent drool

16 ass ferrari laught luh sesh druid

17 assist fifti law lunch set dsai

18 assistan file lbalrog lwe sheep dump

19 astonish find lbellow lwell shower emerelda

20 atl finger lbilbo lwhat shrug jasond

21 atm flag lbtw lwhee size jasonl

22 attemp flail lbut lwhen skill jaw

23 bad flatland lcaesard lwill slap jazz

24 bank fof lcheer lwto slaw jcb

25 bastard foreach lchelder lye slimi jeez

26 bb friend lchera lyep slobber joei

27 bbl fuck lcherawl lyou smirk lpoint

28 beer fuel lchivon lyour smooch lpoor

29 beeyotch fuse lcool lyup snicker lquiet

30 bestl gai ldai lzero sniper lrlto

31 bet gasp ldamn magic snofox lsai

32 bigiu giggl ldamnit map snort lsailor

33 black glask ldo math somethig lsaysl

Fig. C.1: Long conversation
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Vocabulary in long group conversation
00:09 Sunday, September 22, 2013 1

Vocabulary in long group conversation
00:09 Sunday, September 22, 2013 1

Obs T1 T2 T3 T4 T5 T6

1 blink glat ldon mean sooooooo red

2 blood glbeam ldyason messag sound rlchildr

3 blue glbut learn meyer space rlokai

4 bodi glha leg mike spank rlponder

5 boi gli lemerald mind starac rlsai

6 boot gllha ler mine stat rlsure

7 botspot gllike let minut stretch rlyai

8 bout gllol letter miss stroke whors

9 bug glmentio level mistak suck wil

10 bye glnjoi leven mmmmm supris wldinner

11 caesar glno lfei mmmmmmmm sweet wnod

12 cage glnot lfloydd monsti system woman

13 call glput lfrozenf moon talk wonder

14 calporni glreturn lgame muahahah tcz word

15 car glrun lgrin muahahah teh

16 card glsai lhe music tell

17 care glseeya lheh myconid temp

18 carri glstupid lhehe nake term

19 case glthink lhug neer test

20 cawwwwww glwabe li neig thean

21 cell glwave lif new thing

22 cenciusl glwhoa lightn night think

23 chairman go line nod topic

24 charact god list nostolgi total

25 charg gold lixalon number totp

26 charger gotta ljust object transpor

27 chick green lkinklad onder traxwll

28 chili grin llaff onion trevor

29 cial gropu lland oper tripl

30 citan gropus llater outta triumpha

31 civilisl group llayawai owner try

32 ckinki groupsiz llhold page unicorn

33 clmonsty gun llmost pain unknown

Fig. C.2: Long conversation
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Vocabulary in long group conversation
00:09 Sunday, September 22, 2013 1

Vocabulary in long group conversation
00:09 Sunday, September 22, 2013 1

Obs T1 T2 T3 T4 T5 T6

1 clnaaaaa gurn llog part upright

2 code gutter llorax parti upwhen

3 columel habit llthei pattern usag

4 command haha llwe peep user

5 connect head llyour person video

6 cool headfuck lmake pickup villag

7 copi heh lmike pilot violent

8 coug help lmonster pint vita

9 crap high lnah place vock

10 creat hiiiiiii lno plai vockl

11 ctrl hit lnot player voic

12 cyai hjavet lof plug vote

13 cycl hmmmmmmm log poet vowel

14 daftiu hour logfil point wait

15 damnit hsi loh pointels walt

16 dask hun lok poke want

17 dave hunter lokai pontoon war

18 del icq lol poo wave

19 demand idl lomg popular wbore

20 dfire infin look post wcan

21 director intersec loooo pot wchuckl

22 displai isa lor power weather

23 dissi italian lorax press websit

24 dkathryn ixalon loui preview week

25 dli ixq low problem wgrin

26 dlwhell janitor lpage put whinei

27 doe jason lpah rdsai whitman

Fig. C.3: Long conversation
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Vocabulary in short group conversation
00:09 Sunday, September 22, 2013 1

Vocabulary in short group conversation
00:09 Sunday, September 22, 2013 1

Obs T1 T2 T3 T4 T5 T6 T7 T8 T9

1 aabus channel dlu geek gonna kinda ltcz black die

2 absolut char dlyeah gexclaims goodi know lthink blahblah differ

3 accent charact dlyep ggrin gotta known lto blink dildo

4 access check dlyou ghover govern ko ltoss bloodi din

5 account cheer doctor ghug gprime lab lturn blue director

6 addi cherub doen giggl grail ladi lwave blush dlahh

7 addict chicken doesnt ging grandkid laff lwild board dland

8 address childbirt doghous ginger grimei lalright lwto boggl dlbrazil

9 admin choic dollar girl grin lamp mail boi dlbut

10 advert chpid domesto gladn grinz lampost mailbox boltz dlcan

11 aer christian dont gland ground land main bond dlcigaret

12 affect christin door glannoi grt languag majik book dlderrick

13 ag cig dough glare gsaysl lap manufactu born dleveryon

14 agian cigarett dragon glask gshake laptop master boss dlewwwww

15 ahahahaha class dream glawwwww gsnort lardbal mate bottom dlgood

16 ahh classic drink glbass gthink lask math break dlgreet

17 ahold cliff drug glbite gto lasksi matter brick dlhrm

18 aint clokai druid glblink guess lasksl mayb brother dlhrrmrmr

19 aircraft cmake dsai glbow gui lat meep brow dli

20 alcohol cnice duck glbrb guilt laugh meet bruiss dlif

21 alot code dumb glbzzz gun law memori btw dlit

22 andl comdom dunno glcan gwait lbeeyotc messag buck dllee

23 anim comfort dwink glchortl gwave lbilbo mhtz bump dlneither

24 answer command ear glchuckl gwto lbounc militari bunch dlnice

25 aol comp ebai glcri hair lcontemp million butt dlnight

26 apoor complex eck gldont half ldisconn min button dlnor

27 appoint compound edit gldroll hand ldrool mind bye dlor

28 apprentic comput eek gldrool hang leav minut case dlprick

29 approv contracto effect gleat hard left missil cask dlprod

30 aprov control elder gler hassl leftov mission cat dlscottis

31 arm convers element glerr hate leg missl cattl dlsmoke

32 arrai convo emp glexclaim head leicest mistook ced dlsometim

33 ars cooki employ glexcus heart lemm mlsai cent dlsound

Fig. C.4: Short conversation
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Vocabulary in short group conversation
00:09 Sunday, September 22, 2013 1

Vocabulary in short group conversation
00:09 Sunday, September 22, 2013 1

Obs T1 T2 T3 T4 T5 T6 T7 T8 T9

1 ask cool end glfrog heat lestah mmmmmmmm chanc dlthe

2 asksl cooli english glg hee let mom chang dlthei

3 ass cooollll episod glgasp heh letter monei piscin saint

4 astonish corner equip glgiggl hehe lexclaim monitor piss sale

5 atl cost error glgrin height lexclaim monster pizza salin

6 attent couch escap glha hell lfor month place saliva

7 attept countri estim glhate hello lfrown moon plan sax

8 averag coupl ether glheheheh help lgandalf morn plasma saysl

9 avid coupon ev glhell high lgot moss plastic scan

10 aw crafti eval glhug highligh lgrin moth pleaseee scar

11 aww crap exam gli highwai lheheh mountain plug scari

12 babe dad excess glick hihi lhug mouth poet school

13 babi dammit excit glii histori lhuggl movi point score

14 bad damn exclaim glit hiya liber mpeg pong scream

15 ban damnit excreme glk hmm lie musta poor screen

16 bass dask excus gllaff hobo light mycl privatli sexual

17 batch date experi gllaugh holi likkl nak priveled shame

18 beat dc explor gllike home lil nbnet prob sharessol

19 bed deal extra gllisten homework limit neat problem sharestot

20 beddi dear ey gllix hook lin need profil shelf

21 beer death fact gllol hope line net program shift

22 begin dec fail gllponder horizon link nevermind prohibit shirt

23 behavior defens failur glmy hour lion newcastl prolli shit

24 bestl degre fantasi glno hous list newt promot shitfit

25 bet depart fat glnod howr llamaz nibbl pron shitl

26 betta desc fault glnoddl hrm llaugh nicotin provok shitload

27 big descript favorit glnot hug llbass night psysic shouldnt

28 bin detector favour gloh huggl llbeani nik public shoutsl

29 birthdai deton feel glokai hun lldo nod pudgi side

30 bitchslap dexclaim fellow glor iaido lldpromi nois puppet sigh

31 bite didnt fer glow icecream lllaugh nose qmu simpson

32 blablabla didtn file glprod idea llokai novemb quarter sing

33 gblink gof filet glput idiot llook nuke quest singl

Fig. C.5: Short conversation
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Vocabulary in short group conversation
00:09 Sunday, September 22, 2013 1

Vocabulary in short group conversation
00:09 Sunday, September 22, 2013 1

Obs T1 T2 T3 T4 T5 T6 T7 T8 T9

1 gear goin film glrealli ill llsai number question sister

2 talk pope final glreconne illeg llshiver okai quiet site

3 talker poplist find glsai illinoi llthat okthank quota siterepor

4 tax popsit fine glshut import llwhat omg wink wnoddl

5 tcz popular fire glsinc inapprop llwhoops ooher wish woe

6 tdo porn flag glsmirk inbox llyawn opinion wit won

7 teas port flick glspank incest llynxd ounch witch wonder

8 technolog pot folder glthank index lmayb outcom wizard word

9 tell ppl folk glthat indi lmillymo outta wizzi worship

10 temp practic foot glthe individu lnod owner wlaugh worth

11 term prefix forc glthink info locat pack wlick wouldnt

12 terribl premier forest gltitl ingor lof page stereo steve

13 test press formatt gltrue instruct loge pain tonight rlso

14 thanx price formula glttttthh intellem look pair tooth rlthei

15 trace printer freak glue internet loon pant total rlwhy

16 trash rad freakin glwalk invis looni park towel rlyo

17 tree rage free glwave iri loop part vacat rlyou

18 trenchcoa rai fresh glwell iron lord parti vampir robberi

19 trick rais freshma glwhat isnt losingli particl vell room

20 troublesh read fri glwhee ixalond lot pastl version royal

21 TRUE real fridg glwill jan love pathet veryon rule

22 try reason friend glwish jazz low payer video run

23 tryin red fuck glwonder jill lpoint pee voic sabbath

24 tsk ref fucker glworship jimmi lpout peni wahat stir

25 ttyl refin fun glye job lrais percent wait stjh

26 turd regular fustrat glyep joei lrlto perfect wall stop

27 turn remot futur glyou joel lsai perfectio walmart straight

28 twix request fuzzi gmischan john lsaysi perform wand strang

29 type resid game go joke lsaysl person wanna stranger

30 typo resolut gank god karat lshout pic want strip

31 uit respect gasksl goddess kate lshudder picci warfar stuff

32 ultra rest gate goesl kiddi lsit pick wasksw stupid

33 uninforc restuar sound sex kiddin lsmile pictur wasnt subsitut

Fig. C.6: Short conversation
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Vocabulary in short group conversation
00:09 Sunday, September 22, 2013 1

Vocabulary in short group conversation
00:09 Sunday, September 22, 2013 1

Obs T1 T2 T3 T4 T5 T6 T7 T8 T9

1 univers return sp slap kill ltalk piec watch substanc

2 user revers spain sleep screensh that rlme watcher substitut

3 wread review spank slut scum thing rlmike watt success

4 write ring speaker smell sea think rlmmm wave suck

5 wrong rlandyyyy special smile seeya thought rlmmmm waver summer

6 wsaysw rlasleep spectru smirk sell tickl rlnope wboot sumptin

7 wsend rlboltzie spell smoke send tingli rloh webadmin sundai

8 rlhi rlglori spunker smoker sens titl rlokai webpag sunglass

9 rljason rlheh squad snicker sentenc todai rloohr week super

10 rljust rlhei standar snort seper tom rlsai wgrin suprising

11 wimp window star sock sequenc tomorrow rlshe whuggl sweet

12 setup statement start song serpent sort soooooo wil good

13 sooooonis server

Fig. C.7: Short conversation
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Tab. C.1: Dynamics of RWT for pairs of people: user K and others with varying alpha values

People dist χ df P-value alpha b C

1 Zm 4.20 5 0.52 0.570 0.015 2.48

2 Zm 5.99 6 0.11 0.720 0.065 0.59

3 Zm 7.48 7 0.38 0.506 0.020 3.39

4 Zm 5.84 5 0.32 0.567 0.022 2.22

5 Zm 4.25 4 0.37 0.583 0.026 1.87

6 Zm 0.89 4 0.83 0.749 0.025 0.62

7 Zm 6.66 6 0.35 0.517 0.024 2.94

8 Zm 1.57 6 0.95 0.522 0.017 3.27

9 Zm 1.47 3 0.68 0.465 0.018 4.52

10 Zm 0.40 4 0.94 0.599 0.018 1.98

11 Zm 0.18 4 0.97 0.594 0.041 1.46

12 Zm 1.46 6 0.16 0.697 0.055 1.72

13 Zm 1.57 3 0.66 0.676 0.028 1.02

14 Zm 1.54 6 0.95 0.320 0.017 3.31

15 Zm 4.58 4 0.33 0.621 0.031 1.40

16 Zm 17.80 12 0.12 0.612 0.014 2.01

17 Zm 79.65 5 0.32 0.567 0.022 2.22

18 Zm 4.25 4 0.37 0.583 0.026 1.87

19 Zm 0.89 4 0.83 0.749 0.025 0.62

20 Zm 6.66 6 0.35 0.517 0.024 2.94

21 Zm 1.57 6 0.95 0.522 0.017 3.27

22 Zm 1.47 3 0.68 0.365 0.018 4.52

23 Zm 5.26 10 0.87 0.33 0.023 3.77

24 Zm 0.40 4 0.93 0.59 0.018 1.98

25 Zm 13.05 10 0.22 0.60 0.024 1.88

26 Zm 1.58 4 0.66 0.31 0.010 15.38

27 Zm 5.05 4 0.168 0.549 0.018 2.70

28 Zm 13.87 10 0.178 0.54 0.026 2.37

29 Zm 4.934 3 0.17 0.56 0.014 2.72

30 Zm 1.58 4 0.66 0.31 0.011 15.38

31 Zm 2.50 4 0.64 0.65 0.020 1.32

32 Zm 7.37 7 0.40 0.504 0.020 3.422

33 Zm 13.87 10 0.20 0.545 0.026 2.37

34 Zm 8.55 7 0.28 0.561 0.032 1.97
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Tab. C.2: Dynamics of RWT for pairs of people with varying alpha values

People dist χ df P-value alpha sigma theta

1 gp 7.9329 6 0.2271 0.3010 22.3480 11.0

2 gp 6.9329 6 0.3271 0.4069 26.3480 12.0

3 gp 4.5867 6 0.60 3.03 44.2427 1

4 gp 1.7105 6 0.9443 2.9294 42.8570 1

5 gp 7.7329 6 0.2583 2.8811 50.7146 1.2

6 gp 8.0966 6 0.2311 2.5027 57.4092 1

7 gp 2.8610 6 0.8261 1.7176 49.5403 2

8 gp 1.3823 6 0.9669 3.3042 36.0939 3.0

9 gp 3.2671 6 0.7747 1.6854 27.9655 1

10 gp 4.3057 6 0.6354 1.8043 36.8140 0.4

11 gp 4.3432 6 0.6303 2.1364 45.7855 1

12 gp 4.2249 6 0.6463 2.4654 45.4721 0

13 gp 3.7483 6 0.7107 2.0894 30.5042 0.1

14 gp 12.1704 6 0.583 2.4147 53.8124 0.3

15 gp 9.5767 6 0.1436 2.7590 48.6667 1

16 gp 5.5611 6 0.4741 2.1265 66.4528 1

17 gp 7.4745 6 0.2792 2.7489 66.4528 1

18 gp 2.1980 6 0.9006 1.6909 19.6605 0.2

19 gp 8.0400 6 0.2352 2.1765 38.9536 0.37

20 gp 6.2226 6 0.3987 1.7250 23.2741 0

21 gp 8.1251 6 0.2291 1.8221 22.7837 0.3

22 gp 1.7105 6 0.9443 3.0294 42.8570 1

23 gp 7.7329 6 0.2583 3.001 50.7146 1

24 gp 4.5867 6 0.5978 3.5329 44.2427 1

25 gp 1.3823 6 0.9669 3.801 36.0939 3

26 gp 8.9168 6 0.2831 0.6801 37.4286 1

27 gp 10.1356 6 0.3801 0.5160 34.8286 1

28 gp 2.5527 6 0.863 2.4378 31.5471 2

29 gp 3.0706 6 0.799 1.50 40.4651 1
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Tab. C.3: Dynamics of RWT for pairs of people with varying alpha values

People dist χ df P-value alpha sigma mu

1 gev 4.3699 6 0.6267 1.3400 18.4542 12.1772

2 gev 12.3441 6 0.1692 1.6162 28.8902 17.5242

3 gev 4.5867 6 0.5641 0.5654 17.5517 15.0589

4 gev 3.6112 6 0.7291 2.9294 42.8570 32.2177

5 gev 11.3003 6 0.0795 1.6993 45.9668 26.4452

6 gev 2.0437 6 0.9156 1.4683 43.2448 28.4869

7 gev 6.1276 6 0.4091 1.2398 24.5933 17.9531

8 gev 1.7593 6 0.9405 1.7865 63.4121 34.9004

9 gev 2.4480 6 0.8742 1.4170 24.9496 16.6428

10 gev 10.1785 6 0.1173 1.7065 36.3287 20.6993

11 gev 10.4499 6 0.1069 1.5963 25.6037 15.5355

12 gev 3.5105 6 0.7426 1.7775 96.9960 53.1522

13 gev 4.754 6 0.6303 0.5606 12.0574 10.4799

14 gev 9.9030 6 0.1288 1.2783 35.4031 25.8301

15 gev 11.8574 6 0.0652 1.1648 29.6449 22.9811

16 gev 3.6112 6 0.7291 1.5700 52.1786 32.2177

17 gev 10.7550 6 0.0962 1.4767 37.5802 24.0673

18 gev 2.1308 6 0.9073 1.5137 46.4222 28.3464

19 gev 10.1891 6 0.1169 1.4141 33.4409 22.0873

20 gev 2.0437 6 0.9156 1.4683 43.2448 28.4869

21 gev 3.5105 6 0.7426 1.7775 96.9960 53.1522

22 gev 1.7593 6 0.9405 1.7865 63.4121 34.9004

23 gev 2.4480 6 0.8742 1.4170 24.9496 16.6428

24 gev 11.8574 6 0.0652 0.5648 29.6449 22.9811

25 gev 6.1276 6 0.4091 0.8398 24.5933 17.9531

26 gev 10.1785 6 0.1173 2.0065 36.3287 20.6993

27 gev 10.4499 6 0.1069 1.5963 25.6037 15.5355
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. C.8: Pareto distribution: Dynamics of RWT for pairs of people
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. C.9: Pareto distribution: Dynamics of RWT for pairs of people
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. C.10: Pareto distribution: Dynamics of RWT for pairs of people
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(a) (b)

(c)

Fig. C.11: Pareto distribution: Dynamics of RWT for pairs of people
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. C.12: Generalized extreme value distribution: Dynamics of RWT for pairs of people
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. C.13: Generalized extreme value distribution: Dynamics of RWT for pairs of people
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. C.14: Generalized extreme value distribution: Dynamics of RWT for pairs of people
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(a) (b)

(c) (d)

Fig. C.15: Generalized extreme value distribution: Dynamics of RWT for pairs of people

(a) (b) (c)

(d) (e)

Fig. C.16: Dynamics of RWT for pairs of people: user K and others
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[1] Evrim Acar, Seyit A. Çamtepe, Mukkai S. Krishnamoorthy, and Bülent Yener. Modeling and

multiway analysis of chatroom tensors. In Proceedings of the 2005 IEEE international confer-

ence on Intelligence and Security Informatics, ISI’05, pages 256–268, Berlin, Heidelberg, 2005.

Springer-Verlag.

[2] Paige Adams and Craig Martel. Conversational thread extraction and topic detection in text-

based chat. Semantic Computing, pages 87–113, 2010.

[3] P.H. Adams and C.H. Martell. Topic detection and extraction in chat. In Semantic Computing,

2008 IEEE International Conference on, pages 581–588, Aug 2008.

[4] Yong-Yeol Ahn, Seungyeop Han, Haewoon Kwak, Sue Moon, and Hawoong Jeong. Analysis of

topological characteristics of huge online social networking services. In Proceedings of the 16th

international conference on World Wide Web, WWW ’07, pages 835–844, New York, NY, USA,

2007. ACM.

[5] Tim Althoff, Damian Borth, Jörn Hees, and Andreas Dengel. Analysis and forecasting of

trending topics in online media streams. In Proceedings of the 21st ACM international conference

on Multimedia, pages 907–916. ACM, 2013.

[6] Anjo Anjewierden, Bas Kolloffel, and Casper Hulshof. Towards educational data mining: Using

data mining methods for automated chat analysis to understand and support inquiry learning

processes. In International Workshop on Applying Data Mining in e-Learning (ADML 2007),

Crete, Greece, 2007.

[7] Ioannis Antonellis and Efstratios Gallopoulos. Exploring term-document matrices from matrix

models in text mining. arXiv preprint cs/0602076, 2006.

[8] Albert-Laszlo Barabasi. The origin of bursts and heavy tails in human dynamics. Nature,

435:207, 2005.
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