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Abstract

This paper investigates for the first time a goal-based angular adaptivity

method for thermal radiation transport, suitable for non grey media when

the radiation field is coupled with an unsteady flow field through an energy

balance. Anisotropic angular adaptivity is achieved by using a Haar wavelet

finite element expansion that forms a hierarchical angular basis with compact

support and does not require any angular interpolation in space. The novelty

of this work lies in (1) the definition of a target functional to compute the

goal-based error measure equal to the radiative source term of the energy

balance, which is the quantity of interest in the context of coupled flow-

radiation calculations; (2) the use of different optimal angular resolutions for

each absorption coefficient class, built from a global model of the radiative

properties of the medium. The accuracy and efficiency of the goal-based

angular adaptivity method is assessed in a coupled flow-radiation problem

relevant for air pollution modelling in street canyons. Compared to a uniform
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Haar wavelet expansion, the adapted resolution uses 5 times fewer angular

basis functions and is 6.5 times quicker, given the same accuracy in the

radiative source term.

Keywords: goal-based adaptivity, angular adaptivity, coupled

flow-radiation, non grey media

1. Introduction

Numerical approximations to the Radiative Transfer Equation (RTE) re-

main a computational challenge and an intense research area. The difficulty

comes from the dependence of the radiative intensity in space and angle,

in time when the radiation field is coupled with an unsteady flow, and in

wavenumber as the absorption spectrum of common radiating gases like wa-

ter vapour or carbon dioxide are made of millions of lines. The emergence of

parallel computing has made the use of detailed reference methods for solv-

ing the RTE, such as the Monte Carlo method or the ray-tracing method,

more and more practical. The coupling of these reference methods with a

Direct Numerical Simulation (DNS) of a turbulent flow has been for instance

recently achieved in Ref. [1]. However, a strong interest persists in reducing

the dimension of the discretised RTE for rapid modelling and engineering

purposes as well as for simulating large scale systems out of the scope of

reference methods.

A substantial effort has been devoted in the literature to reduce the

dimension of the wavenumber space and has lead to the development of

correlated-k models, Statistical Narrow Band models or global models. A re-

view of these different approaches is given by Taine and Soufiani [2]. Global
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models, which consist in reordering the absorption spectrum according to the

value of the absorption coefficient over the whole spectral domain, are the

most computationally efficient and are favoured for 3D applications, although

they suffer from inaccuracies in heterogeneous media.

In the thermal radiation community, the angular and spatial discretisa-

tion are most often achieved by combining the Discrete Ordinates Method

(DOM or SN expansion) in angle with the Finite Volume Method (FVM)

in space [3, 4], although the finite element method also provides a general

framework for both the angle and space dimensions [5]. A promising way

to reduce the dimension of these discretised space-angle systems is the use

of adaptive discretisation methods that only refine the regions of interest.

These adaptive algorithms are driven by error estimators and include reg-

ular adaptive methods where the solution error is reduced uniformly over

the whole phase-space domain and goal-based adaptive methods where the

solution error is reduced with respect to a target functional.

Several spatial adaptivity schemes for radiation transport havehas been

developed during the past decade. An Adaptive Mesh Refinement (AMR)

technique, based on a hierarchy of structured spatial meshes, was used by

Ogando and Velarde [6], combined with a SN expansion in angle. Ragusa [7]

proposed a regular error measure, using the Hessian of the discretised spa-

tial flux, while Lathouwers [8] and Goffin et al. [9] experimented with goal-

based error measures with various target functionals. More recently, Yang

and Yuan [10] developed a h-refinement technique for simple corner balance

scheme for application to radiation transport coupled with Lagrangian hy-

drodynamics. Although all these space adaptivity techniques are successful
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in reducing the number of spatial degrees of freedom, their efficient imple-

mentation in parallel remains challenging.

A first attempt at adapting the angular resolution was proposed by Ack-

royd and Wilson [11] who used a variable order spherical harmonic expansion

(PN) across space using an a priori knowledge of the spatial variation of the

physical properties of the medium. Using a PN expansion is advantageous

for angular adaptivity because it forms a hierarchical basis and it does not

need any angular interpolation in space. Goffin et al. took advantage of this

property to develop goal-based angular adaptivity algorithms using a PN ex-

pansion [12]. Alternative hierarchical basis for angular discretisation can be

formed using wavelet theory and multi-resolution analysis [13]. Compared to

spherical harmonics, wavelets have the advantage of adapting anisotropically

due to their compact support. Watson [14] and Goffin et al. [15] both made

use of wavelet-based angular adaptivity methods with Haar wavelets and oc-

tahedral linear wavelets respectively. Other adaptive schemes have also been

developed for non-hierarchical basis, such as the SN expansion [16]. Kópházy

and Lathouwers [17] proposed a generalised framework for local angular re-

finement with arbitrary angular basis functions and discontinuous Galerkin

discretisation in space and angle, but the method involves complex algebra

to compute the numerical fluxes. Moreover, alternative techniques exist in

order to reduce the angular dimension, such as reduced order models [18, 19].

Most of these angular adaptivity methods have been applied for problems

in nuclear engineering and have not been applied in problems with thermal

radiation. In many engineering or environmental applications, the thermal

radiation field is coupled with a flow field through an energy balance. In
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that case the key quantity to predict is the radiative source term, namely

the balance between the radiation absorbed and emitted in the medium. In

this paper, we apply angular adaptivity for problems in thermal radiation

and derive a goal-based adaptivity method that optimises the angular reso-

lution to accurately compute the radiative source term. In order to perform

anisotropic angular adaptivity, we make use of a Haar wavelet angular ex-

pansion, which is a hierarchical version of a SN expansion and is compactly

supported. The angular dependence of the radiation field strongly depends

on the optical thickness of the medium, and hence we apply different angu-

lar resolutions for different absorption coefficient classes built from a global

model of the radiative properties of the medium.

The layout of the article is as follows. The numerical methods and models

we use to discretise the RTE are described in Sec. 2 and the goal-based

adaptivity algorithm is presented in Sec. 3. The accuracy and efficiency of

our goal-based angular adaptivity method is assessed in Sec. 4 in a coupled

flow-radiation problem relevant for air pollution modelling in street canyons.

2. Radiative tranfer equation and numerical methods

We consider in this work a non scattering medium of optical index equal

to 1 at local thermal equilibrium, hence we can write the RTE as

Ω · ∇I(ν, r,Ω) = κ(ν) (Ib(ν, T (r))− I(ν, r,Ω)) , (1)

where I(ν, r,Ω) is the radiative intensity at point r, direction Ω and wavenum-

ber ν and Ib(ν, T (r)) is the blackbody intensity at local temperature T (r).

The absorption coefficient κ(ν) is assumed to be homogeneous for the prac-
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tical case addressed in Section 4, although this is not a restriction of the nu-

merical methods and the adaptivity algorithm presented in this paper. The

associated boundary condition for a diffuse opaque wall of grey emissivity ε

is

I(ν, rw) = ε(rw)Ib(ν, T (rw))+−1− ε(rw)

π

∫
Ω′·n<0

Iν(rw,Ω
′)|Ω′ ·n |dΩ′, (2)

for points rw and directions Ω, such that Ω·n > 0, n being the wall normal

directed towards the inside of the domain.

The radiative source term is equal to the opposite of the divergence of

the radiative flux qrad

−∇ · qrad(r) =

∫
Ω

∫
ν

κ(ν)(I(ν, r,Ω)− Ib(ν, T (r)))dνdΩ. (3)

The radiative source term goes into the energy balance of the material system:

it represents the difference between the absorption and emission of radiative

energy by the medium. It is this key quantity that we will try to optimise

with the adaptive algorithm

2.1. Radiative property modelling

In order to model the spectral dependence of the absorption coefficient, we

make use of a global model based on an absorption distribution function [20]

defined by

F(k) =
π

σT 4
ref

∫
ν, κν(Tref)≤k

Ib(ν, Tref)dν. (4)

This function is discretised in intervals [k−i ; k+i ] of averaged value ki. The

weights of this distribution associated with each interval i are defined as

ai = F(k+i )−F(k−i ). Equations (1) and (2) then become

Ω · ∇Ii(r,Ω) = ki

(
aiσT

4(r)

π
− Ii(r,Ω)

)
, (5)
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Ii(rw) = ε(rw)
aiσT

4(rw)

π
+−1− ε(rw)

π

∫
Ω′·n<0

Ii(rw,Ω
′)|Ω′ ·n |dΩ′, (6)

where σ is the Stefan-Boltzmann constant. The total intensity integrated

over the wavenumber is simply retrieved by summing the contribution of

each k-class: I =
∫
I(ν)dν =

∑
i Ii.

This global model is advantageous because the integration over the wavenum-

ber is replaced by an integration over the absoption coefficient k, for which

a coarse discretisation is sufficient. Another benefit is that we will be able

to associate to each k-class a different angular resolution, as the angular

dependence of the radiative intensity is known to be affected by the opti-

cal thickness of the medium. As a homogeneous medium is considered, the

derivation of Eqs. (5)-(6) is exact and the model error is associated with the

numerical discretisation in k. However, additional assumptions are required

to extend the model to heterogeneous media (see for instance Refs. [21–23]).

The model parameters for the medium considered in Sec. 4 are given in Ap-

pendix A.

2.2. Space-angle finite element discretisation

A Sub-Grid Scale (SGS) model (or variational multiscale method, see

Ref. [24]) is used to discretised the RTE in space. The full solution Ii(r,Ω)

is decomposed into a coarse component I i(r,Ω) and a sub-grid component
∼
I i(r,Ω), both approximated by a finite element formulation. The coarse

component lies in a continuous finite element space, spanned by ηN basis

functions, and the sub-grid component lies in a discontinuous space, spanned
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by ηQ basis functions, as follow

Ii(r,Ω) '
ηN∑
j=1

Nj(r)I ij(Ω) +

ηQ∑
j=1

Qj(r)
∼
I ij(Ω). (7)

The continuous basis functions Nj(r) and the discontinuous basis functions

Qj(r) are associated with the same mesh and are both piecewise linear across

the elements in this work.

An arbitrary discretisation of the angular dimension is considered in

which the angular space is represented by the span ofM angular basis func-

tions Gq(Ω) such that

I ij(Ω) '
M∑
q=1

Gq(Ω)I ijq,
∼
I ij(Ω) '

M∑
q=1

Gq(Ω)
∼
I ijq. (8)

The same set of angular basis functions is used for both the coarse and sub-

grid spatial components and we will assume for now that this set is uniform

in space and for each k-class i.

Introducing the decompositions (7)-(8) into the RTE and applying a

Galerkin projection in space and angle leads to a space-angle block linear

system of the form A B

C D

I∼
I

 =

S
∼
S

 , (9)

that has to be solved for each k-class i. The definition of the submatrices A,

B, C, D and the source terms S,
∼
S can be found in [25]. The sub-grid solution

can be formally written as

∼
I = −D−1CI + D−1

∼
S. (10)

Using Eq. (10), we can form a single linear system for the coarse component

(A− BD−1C)I = S− BD−1
∼
S, (11)
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involving the Shur complement of the block matrix D.

The role of the sub-grid component is to suppress any instability and

non-physical oscillations that may arise from a continuous finite element dis-

cretisation of the RTE. Therefore, we can approximate the computation of

matrix D associated with the discontinuous sub-grid component, which is

the largest matrix involved. To make D more sparse and make its inversion

efficient, the solution of the sub-grid scale is restricted to be strictly local to

each element and the coupling between angular moments in an element is ne-

glected. However, no assumptions are made for the computation of matrices

A, B and C. A thorough review of the implementation of the SGS model, its

accuracy and its efficiency, is provided in Refs. [25–27]. We should note that

this sparsification of D gives different amounts of stabilisation between dif-

ferent angular discretisations. This is particularly relevant in Sec. 2.4, as we

make comparisons between SN and Haar wavelets, and though these quadra-

tures are equivalent, our discretisation given the sparse form of D are not

(though the differences are very small; they are caused purely by the differ-

ences in neglected coupling between angular moments in the Haar hierarchy,

see Section 2.3).

Boundary conditions are implemented using a Riemann decomposition

method [28] to separate the angular dependence of the flux through a surface

into incoming and outgoing information. The advantage of such a method

is to work with any kind of angular discretisation (spherical harmonics,

wavelets, etc.). For Haar wavelet angular discretisation, the Riemann de-

composition is simple as we can rely on a mapping into an SN space (see

Sec. 2.3).
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2.3. Haar wavelet angular discretisation

The angular adaptivity algorithm relies on the use of a hierarchical func-

tional basis which means that the set of basis functions at an order n is a

sub-set of basis functions at an order n + 1. This allows us to use different

sets of angular basis functions of different orders across space without the

need to perform angular interpolation.

The Haar wavelet expansion is a hierarchical version of the discrete ordi-

nates (SN) expansion. The Haar wavelets are piecewise constant functions

built from a multiresolution analysis (MRA) and associated with a partition

scheme of the angular space [27, 29]. An exact linear mapping relates the

Haar wavelet and the discrete ordinates expansions built from the same an-

gular partition. Thus, a transformation matrix can be applied to angular

matrices in order to map from one discretisation to the other. This simplifies

the implementation of Haar wavelets, allowing them to be built on existing

SN -type frameworks, provided that those are derived from a hierarchical par-

tition of the angular domain. A 1D representation of the Haar wavelet basis

functions over an arbitrary interval is given in Fig. 1 with the corresponding

SN basis functions and the transformation matrix. The angular matrices are

less sparse with a Haar discretisation than with a SN discretisation, making

them more expensive to apply, but this is balanced by the hierarchical nature

of the Haar wavelets with which angular adaptivity is simple.

In this paper, the Haar wavelet space will be noted Wm,n and will be

associated to the following 2D partition of the angular space: in each octant,

the values of the cosine of the polar angle µ are divided into 2m−1 equally-

spaced intervals and the values of the azimuthal angle ϕ are divided into
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Figure 1: Left: representation of the Haar wavelet and SN basis functions over a 1D

arbitrary interval at the order 3 (partition of the interval in 4). Right: the transformation

matrix that relates the two spaces.

2n−1 equally-spaced intervals, leading to a total number of basis function of

8 × 2m−1 × 2n−1 in three dimensions of space. The discrete ordinates space

associated with the same angular partition will be noted Sm,n. The 2D Haar

wavelets are obtained from a tensor product of the 1D Haar wavelets in the

polar and azimuthal directions.

For a given maximum expansion Haar order, the adaptivity algorithm de-

tailed in Sec. 3 only retains the wavelets of significant importance in relation

to a target error. Therefore, the set of angular basis functions is allowed to

vary in space and for each k-class, Eq. (8) becomes

I ij(Ω) '
∑
q∈Mij

Gq(Ω)I ijq,
∼
I ij(Ω) '

∑
q∈

∼
Mij

Gq(Ω)
∼
I ijq (12)

where Mij and
∼
Mij are respectively the coarse and sub-grid set associated

to a spatial point j and a k-class i. At a given point of space, we constrain

the continuous and discontinuous components to be approximated with the

same wavelet set, what we can formally writeMij =
∼
MC(j)i, j ∈ {1, · · · , ηQ},

C being a surjective mapping from the continuous nodes to the discontinuous
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nodes. Although the Haar wavelet angular discretisation is combined in this

work with a spatial SGS model, it can be used with any type of spatial

discretisation, as well as the angular adaptivity algorithm.

2.4. Implementation and validation

The space-angle linear system is solved using the generalised minimal

residual method (GMRES) with a spatial multigrid preconditioner [30]. Both

GMRES and multigrid methods are implemented in a matrix-free fashion as

the whole space-angle system is often too large to store in memory.

In order to validate the implementation of the space-angle discretisation

methods with a uniform Haar wavelet expansion we have reproduced the

3D benchmark test case proposed by Soucasse et al. [31]. A cubic cavity

of size L is considered, enclosed by opaque walls of emissivity ε = 0.5 and

filled with a grey participating medium of absorption coefficient κ such that

κL = 1. A Gaussian temperature field T (x, y, z) = exp(−(x − xc)2 − (y −

yc)
2 − (z − zc)

2)∆T + T0 is prescribed in the medium with (xc, yc, zc) =

(0.25L, 0.25L, 0.25L), ∆T = 10 K andet T0 = 300 K. The walls are isothermal

at the temperature T0. This problem possesses a reflection symmetry along

the line x = y = z.

The reference results of Ref. [31] were obtained with the Monte Carlo

method and calculations were performed on a uniform grid of 423 cells using

6 × 109 stochastically generated optical paths. Our calculations have been

performed on an unstructured mesh made of 46,000 nodes and both with

a uniform Haar wavelet angular discretisation of order 4 (W4,4, namely 512

angular basis functions) and a discrete ordinates discretisation using the same

angular partition (S4,4).
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Figure 2: Benchmark test case of Ref. [31]. Left: radiative source term (Eq. (3)) made

dimensionless by 4κσ((T0 + ∆T )4 − T 4
0 ) along the lines y/L = 0.25, z/L = 0.25 (A),

and y/L = 0.25, z/L = 0.75 (B). Right: Monte Carlo standard deviation and absolute

difference obtained with W4,4 and S4,4 compared to the Monte Carlo calculations along

the same lines.

Figure 2 plots the radiative source term along two lines and the associ-

ated differences obtained with the W4,4 and S4,4 expansions compared to the

Monte Carlo calculations. Both the W4,4 and S4,4 calculations agree with the

Monte Carlo results: the differences do not exceed 0.25 % while the stan-

dard deviation of the Monte Carlo calculations are of the order of 0.1 %.

It can also be noticed that the two difference curves (using either W4,4 or

S4,4) overlap. This is an expected results as the two expansions are related

by a linear mapping. The minor differences that can be seen between our

two angular discretisations are related to the stabilization scheme for which

different approximations are applied, as mentioned in Sec. 2.2.

We have now validated the implementation of uniform Haar wavelet an-

gular discretisation. In Sec. 4, the accuracy and efficiency of the angular
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adaptivity algorithm will be assessed by comparing adapted and uniform

Haar wavelet expansions.

3. Goal-based angular adaptivity

The angular adaptivity algorithm used in this paper is driven by a goal-

based error measure. The goal has the form of an arbitrary functional F

which is a target of physical interest that one wants to compute accurately.

In the framework of coupled flow/radiation calculations, we are interested in

controlling the error in the radiative source term defined in Eq. (3) which

goes into the energy balance of the material system. We propose here to use

the radiative source term integrated in space as a goal and thus the following

functional will be considered

F (I(ν, r,Ω)) =

∫
r

∫
Ω

∫
ν

κ(ν)(I(ν, r,Ω)− Ib(ν, T (r)))dνdΩdr. (13)

3.1. Functional error measure

The goal-based error measure requires the solution of the RTE defined

by Eq. (1) (further referred to as the forward problem) as well as the solve

of an adjoint radiative transfer problem defined by

−Ω · ∇I∗(ν, r,Ω) = S∗ − κ(ν)I∗(ν, r,Ω), (14)

where I∗(ν, r,Ω) is the solution of the adjoint problem and S∗ is the adjoint

source term involving the targeted goal and given by

S∗ =
∂f(I(ν, r,Ω))

∂I(ν, r,Ω)
= κ(ν), (15)

with f being the integrand of the functional F as defined in Eq. (13).
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Following Goffin et al. [12, 15], the functional error measure is expressed

as the inner product in the phase space between the residual of the forward

computation R(I) and the error in the adjoint computation

F (Iexact)− F (I) ' −
∫
r

∫
Ω

∫
ν

R(I)(I∗exact − I∗)dνdΩdr, (16)

where I∗exact denote the exact solution to the adjoint problem (Eq. (14)).

The estimate provided by Eq. (16) is called the adjoint error measure. An

alternative functional error measure is expressed as the inner product in the

phase space between the residual of the adjoint computation R∗(I∗) and the

error in the forward computation

F (Iexact)− F (I) ' −
∫
r

∫
Ω

∫
ν

R∗(I∗)(Iexact − I)dνdΩdr, (17)

where Iexact denote the exact solution to the forward problem (Eq. (1)). The

estimate provided by Eq. (17) is called the forward error measure.

3.2. Discrete error estimates

For a practical use of the integral error measures given by Eqs. (16)-(17),

a discrete form of the solution error and the residual has to be derived in

relationship with the angular discretisation we want to adapt. We make use

here of the heuristic expressions given by Goffin et al. [15] that take advantage

of the hierarchical nature of the angular basis functions. The discrete solution

error ε and residual R are first computed for the full solution (union of the

sub-grid and coarse components) in the discontinuous spatial space for both

the adjoint and forward problems. These quantities are then mapped to the

continuous spatial space by taking the maximum value at each spatial node.
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The adjoint and forward goal-based error measures are formally written

as

ê∗ijq =
|ε̂∗ijqR̂ijq|

∆F̂
, (18)

êijq =
|ε̂ijqR̂∗ijq|

∆F̂
, (19)

where ε̂ and ε̂∗ are the forward and adjoint continuous solution errors, R̂ and

R̂∗ are the forward and adjoint continuous residuals and ∆F̂ is a normalising

factor related to a user-defined tolerance for the functional goal. The indices

i, j and q refer to the wavenumber, space and angular degrees of freedom and

vary for i = {1, · · · , Nk}, j = {1, · · · , ηN} and q ∈ Mij. Adjoint ê∗ijq and

forward êijq error estimators are then combined to get a unique goal-based

error measure eGB
i,j,q such that

eGB
i,j,q = max{êijq, ê∗ijq}. (20)

Several combinations of error estimates (18) and (19) were tested in Ref. [15]

without noticing substantial effects on the adapted resolution.

3.3. Adaptivity algorithm

The angular adaptivity algorithm is an iterative process described in Al-

gorithm 1, that uses either the goal-based error measure of Eq. (20) or a reg-

ular error measure which will be defined further on in Sec. 4.1. Starting from

a uniform first order discretisation (W1,1), the forward and adjoint problems

are solved and the goal-based error measure ei,j,q is computed for each degree

of freedom in the phase space. Theis error measure ei,j,q is computed for each

degree of freedom in the phase space and has been scaled such that it should

be less than 1.0 if the targeted tolerance on the functional has been met. If
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it is greater than 1.0, the angular resolution is locally increased by adding

the basis functions of the next level of resolution that neighbour the ba-

sis function q under consideration. However, if the error measure is much

smaller than 1.0, here smaller than an arbitrary threshold 0.01, the angular

resolution is coarsened by removing the basis function q.

Starting from a uniform first order angular discretisation (W1,1), tThe

process is repeated until the adaptive angular discretisation has converged.

In practice, we restrict the algorithm up to a maximum order M for the Haar

wavelet expansion so that the adapted resolution does not significantly evolve

after M iteration steps. In order to speed up the intermediate steps a reduced

tolerance is applied for the convergence of the linear solver. Numerical tests

have shown that this does not affect the final adapted resolution.

The angular adaptivity algorithm is applied on the coarse angular dis-

cretisation set M. The surjective mapping C from continuous nodes to dis-

continuous nodes (see Sec. 2.3) is used to obtain the the sub-grid angular

discretisation set
∼
M. The same set of angular basis function is used to

discretise both adjoint and forward problems.

4. Results

In order to assess the accuracy and efficiency of the goal-based algorithm,

we consider a coupled flow/radiation problem relevant for air pollution mod-

elling in street canyons. The geometrical configuration and the boundary

conditions of the problem are displayed in the left part of Fig. 3. The canyon

has a reference length L and contains a humid air with a homogeneous wa-

ter vapour composition. Its walls are rigid, black and isothermal at Tref for
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Algorithm 1 AGoal-based angular adaptivity algorithm using M adaptive

steps. The error measure ei,j,q can be either a goal-based error measure (see

Sec. 3.2) or a regular error measure (see Sec. 4.1).

Set initial angular discretisation

for m = 1, · · · ,M do

Solve forward (Eq. (1)) and adjoint (Eq. (14)) problems

Calculate goal-based error measure (Eq. (20))

Solve forward problem (Eq. (1))

if goal-based adaptivity then

Solve adjoint problem (Eq. (14))

Calculate goal-based error measure (Eq. (20))

else if regular adaptivity then

Calculate regular error measure (Eq. (21))

end if

for i = 1, · · · , Nk do

for j = 1, · · · , ηN do

for q ∈Mij do

if ei,j,q
GB < 0.01 then

Remove angular basis function q from node j

else if ei,j,q
GB > 1.0 then

Add next level angular basis function to node j

end if

end for

end for

end for

end for
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Figure 3: Schematic diagram of the street canyon configuration (left) and snapshot of the

temperature field (right).

the upper and lateral walls and Tref + ∆T for the ground. An isothermal

inlet flow at Tref and uref is imposed on the left open boundary while a zero

conductive flux and and an outlet flow at uref is imposed at the right open

boundary. These two lateral open boundaries are assumed to be specular

reflectors. On the top boundary, a zero normal flow and a zero conductive

flux are imposed, as well as an incoming radiation flux corresponding to the

flux emitted and transmitted by the atmosphere in the infrared.

This coupled flow-radiation problem is solved for Rayleigh and Reynolds

numbers of Ra = gβ∆TL3/(νa) = 108 and Re = urefL/ν = 5× 103, a street

canyon length L = 1 m, a reference temperature Tref = 294.2 K, a tempera-

ture difference ∆T = 1 K and a water vapour content in the air of 2 %. The

finite element fluid dynamics code Fluidity [32] is used to solve the mass,

momentum and energy balance under Boussinesq approximation. A first-

order continuousPCG
1 discretisation is applied for pressure, temperature and

velocity fields and a Crank-Nicolson time integration scheme is implemented.
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The radiation field is solved with a W4,4 uniform expansion and with 12 k-

classes to model the non-grey absorption of the humid air (see Appendix

A). For both flow and radiation, the spatial domain is discretised with the

samean unstructured mesh made of 22,000 continuous nodes and 130,500

discontinuous nodes, and a spatial domain decomposition was performed (48

partitions) in order to solve in parallel. An explicit coupling is carried out

between flow and radiation solvers. In practice, the radiative source term is

updated every 10 convection time steps. Starting from an isothermal flow

at Tref and at rest, the coupled simulation is run for a period of ∆t = 200 s

in order to remove the transient features and and to reach an asymptotic

unsteady regime. Tthe resulting instantaneous temperature field (snapshot)

is shown in the right part of Fig. 3.

The goal-based angular adaptive algorithm is first applied in Sec. 4.1 to a

single radiative transfer calculation using the coupled temperature snapshot

of Fig. 3. The accuracy and the computational efficiency of the method is

assessed compared to uniform angular discretisations. The distribution in

space and optical thickness classes of the adapted angles is then analysed in

Sec. 4.2 in order to understand which angular basis functions are removed by

the method. Finally, the adapted resolution is used in the coupled simulation

in Sec. 4.3 and the accuracy of the results isare again compared with uniform

angular resolution.

4.1. Accuracy and efficiency of the goal-based adaptivity method

In order to assess the accuracy and efficiency of the goal-based adaptivity

algorithm, a radiative transfer calculation from the temperature snapshot

of Fig. 3 is performed with a uniform angular resolution for different Haar
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expansion order and with a goal-based adaptivity algorithm for different

Haar expansion maximum order and a tolerance ∆F̂ = 0.01. Additionally,

the same calculation is done with a regular adaptivity algorithm for which

the error measure does not rely on a specific target but on the value of the

radiative intensity itself. Comparing goal-based and regular adapt will allow

us to evaluate the relevance of the assigned goal. To perform a regular adapt

calculation, we use the same algorithm 1 as for a goal-based adapt calculation

but without solving the adjoint problem and replacing the goal-based error

measure of Eq. (20) by the following

eREG
ijq = |ε̂ijq|/(∆Imax

i ), (21)

where ε̂ijq is the continuous angular error estimator (see Sec. 3.2) and ∆ is a

user-defined tolerance relative to the maximum intensity Imax
i of the k-class i

and is set to ∆ = 10−5. This tolerance value has been selected such that the

regular adaptive algorithm retains around the same number of angular basis

functions as the goal-based, allowing for simple comparisons.

Angular adaptivity algorithms were run in parallel but no load balancing

was applied for simplicity. The spatial domain partition was performed on

the first step of the adapt process, which has uniform angular resolution.

However, as the number of angular basis functions varies in space when

adapting, the size of the space/angle linear system assigned to each processor

will differ. In order to correct this imbalance, the domain partition should

be performed such that the total number of degrees of freedom (space and

angle) is (roughly) the same in each domain. As the spatial distribution of the

adapted angle also varies with the absorption coefficient, the domain partition

would need to be updated for each k-class. Given we do not perform load
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balancing, the solve for each k-class will suffer from large load imbalances,

but examining different load balancing strategies is beyond the scope of this

paper and will be examined in future work.

Figure 4 shows the angular convergence of both uniform and adapted

angular resolutions. The functional error is computed with respect to a

reference uniform calculation W4,5. For the uniform case, each point of the

figure corresponds to a different Haar expansion order: W1,1, W2,2, W3,3 and

W4,4. For the adapted cases, each point of the figure corresponds to a given

maximum Haar order and number of adaptive steps: for instance, the nth

point is obtained by running the adaptive algorithm for n iterative steps up

to a maximum order of n in both polar and azimuthal directions and this

point will be further referred to as WGB
n,n or WREG

n,n , depending on whether

goal-based or regular adaptivity is used. Comparing uniform and goal-based

adapt calculations, we can observe that the goal-based adaptive algorithm

keeps almost all the angular basis functions up to the second order and then

discriminates the higher order angular basis functions without compromising

the accuracy: the WGB
4,4 resolution uses five times less angular basis functions

than the W4,4 resolution to reach the same accuracy in the functional (around

0.2 %). If we now consider the regular adaptive calculation, Fig. 4 shows that

the regular adaptive algorithm retains around the same number of angular

basis functions than the goal-based one but with higher functional errors:

the WREG
4,4 resolution is two times less accurate than the WGB

4,4 resolution for

around the same number of angular basis functions (v 50). It confirms that

the goal-based error measure derived in this paper is more appropriate than

the regular one to optimise the angular resolution according to the radiative
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Figure 4: Functional error plot against averaged number of angular basis functions.

W4,5 reference value F = 8.8951× 10−2 W/m3.

source term.

The functional errors for the same calculations are plotted in Fig. 5

against the total CPU time (wall-clock time multiplied by the number of

processors). For adapted calculations, the CPU time is a cumulative time, in-

cluding the computational cost of the intermediate adaptive steps. Compar-

ing uniform and goal-based adapt calculations, we can see that the goal-based

adaptive algorithm is quicker at the order 4: the WGB
4,4 resolution requires 5

times less CPU time than the W4,4 resolution to reach the same accuracy in

the functional, and even 6.5 times less CPU time if intermediate adaptive

steps are not taken into account (in an adaptive calculation around 25 % of

the CPU time is spent in the intermediate steps). Not including the time of

the intermediate adaptive steps allows us to assess the actual computational

cost of one radiation calculation with the adapted resolution which will be

used in Sec. 4.3. Comparing regular and goal-based adapt calculations, we

can observe that the regular adaptive algorithm is faster and this is beause
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Figure 5: Functional error plot against CPU time. W4,5 reference value

F = 8.8951× 10−2 W/m3.

regular adapt does not require the solve of the adjoint problem. However,

the regular adapt calculation provides less accurate results: the curve follows

the uniform one suggesting that there is no gain in accuracy for around the

same computational cost.

So far we have assessed the accuracy in terms of the functional which is

the radiative source term integrated over space. Nevertheless, we expect the

computation of the radiative source term to be accurate locally in space for

coupling purposes. The spatial distribution of the radiative source term is

displayed in Fig. 6 together with local differences between W4,4 and WGB
4,4

calculations. The radiative source term patterns are correlated to the tem-

perature structures of Fig. 3 because of the radiation emission of the thermal

hot plumes (visible in blue in the figure). A strong absorption zone (in red in

the figure) is also noticeable near the bottom hot wall. The normalised differ-

ences between uniform and adapted resolutions are less than 2 %, confirming

that the goal-based algorithm produces locally accurate results.
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radiative source term (W/m³)
uniform W4,4
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Figure 6: Radiative source term obtained with uniform angular resolution W4,4 (left) and

difference with goal-based adapted resolution WGB
4,4 normalised by the maximum value

(right).

4.2. Spectral and spatial distribution of the adapted angles

The purpose of this section is to analyse which angular basis functions

are retained by the goal-based adaptivity algorithm WGB
4,4 depending on the

spatial position and the k-class. Figure 7 shows the number of angular basis

functions, averaged in space, for each k-class. The distribution has a bell

shape: the number of angular basis functions increases with the absorption

coefficient up to a maximum reached for k ' 1 m−1 and then decreases. The

shape of this distribution is caused by two factors. First, in the radiative

source term, the radiative intensity is weighted by the absorption coefficient

which means that the higher the absorption coefficient is, the higher the

contribution of the class to the source term is. This feature is captured by

the source of the adjoint problem of Eq. (15) which is equal to the absorption

coefficient. Secondly, the angular dependence of the radiative intensity vary
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Figure 7: Averaged number of angular basis functions for each k-class of the global model

for goal-based adapt WGB
4,4 .

with optical thickness, and we know that in thick media, the radiative transfer

becomes local and the radiative intensity is close to isotropic. We can thus

infer that a low number of angular basis functions is sufficient to accurately

represent the radiative intensity for the thick classes.

This explanation is confirmed by the spatial distribution of the number

of angular basis functions, shown in Fig. 8 for three different classes. For the

thickest class (k10 = 21 m−1), a small number of angular basis functions is

used throughout the domain except near the non-reflecting boundaries, where

the radiative intensity is more likely to deviate from isotropic. Although the

number of angular basis functions is also quite low in average for the thinnest

class (k3 = 2.2 × 10−3 m−1), its spatial distribution strongly differs. Marks

of ray effect can be observed that suggests that the radiative intensity is

highly directional within the domain and probably under-resolved. Finally,

the number of angular basis functions is the highest for the intermediate class

(k6 = 0.11 m−1), and its spatial distribution is rather homogeneous except
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Figure 8: Spatial distribution of the number of angular basis functions for three different

k-class for goal-based adapt WGB
4,4 .

near the boundaries.

In order to further the analysis, the angular distribution of the radiative

intensity at spatial points A and E (see locations in Fig. 3) and for two classes

(k4 = 8.2×10−3 m−1 and k8 = 1.55 m−1) is depicted in Fig. 9. Both uniform

W4,4 and adapted WGB
4,4 are shown, allowing us to assess how well the adapted

angular resolution captures the angular flux. Adapted results satisfactorily

reproduce the uniform ones but larger differences are noticed for the thinner

class (k4), which do not need to be resolved accurately to compute the source

term. The angular distribution of the intensity is dominated by the boundary

conditions. The angular shape depends on how the lateral walls, the bottom

wall and the atmosphere are seen from the given points A (within the canyon)

or E (outside the canyon). The angular shape also differs between the two

k-classes in two ways. First, the flux coming from the atmosphere is lower

than the flux coming from the lateral walls for the thinner class (k4) while the

two are equal for the thicker class (k8). Secondly, there is no polar variation

for the thinner class while the flux decreases with the polar angle because of
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k8=1.55 m-1 – point A
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Figure 9: Angular distribution of the radiative intensity at different spatial points and k-

class. Comparison between uniform W4,4 and goal-based adapt WGB
4,4 results. The location

of points A and E are given in Fig. 3. The number in parenthesis indicates the number of

angular basis functions.

radiation extinction for the thicker class.

4.3. Coupled calculations

In the previous section we demonstrated that the goal-based algorithm is

useful in efficiently computing the radiative source term from a temperature

snapshot. The analysis is now focused on the practical use of the adapted

angular resolution in flow-radiation coupled calculations. For this purpose,

the coupled calculations are carried on with two different angular discreti-

sation for radiation: one with uniform Haar wavelet W4,4 and one with the

adapted resolution WGB
4,4 . This comparison is shown in Fig. 10, which plots

the normalised differences on the radiative source term over time between
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the two calculations at different spatial points inside the canyon (see loca-

tions in Fig. 3). The agreement between the two is good over the whole

integration period, although the differences seem to increase with time. This

is an expected result as the differences in the radiative source term impact

the temperature calculation and thus the differences accumulate.

Numerical tests were performed to check if it might be beneficial to change

the adapted resolution over time by running the goal-based algorithm after

a few radiation calculations. The question was if the angular resolution was

affected by the local temperature field and thus needed to follow its time

evolution. Compared to keeping the initial adapted resolution, no signifi-

cant gain in accuracy was obtained. Indeed, the spatial distribution of the

adapted angles (Fig. 8) does not seem to be correlated with the temperature

field (Fig. 3) and was thus not substantially varying over time. Moreover,

the angular distributions displayed in Fig. 9 tend to show that the angular

dependence of the radiation field is dominated by the boundary conditions,

rather than determined by the local physical properties. This would prob-

ably not be true if the temperature of the boundaries were changing over

time.

5. Conclusion

In this paper, we have presented a goal-based angular adaptivity method

suitable for radiation modelling in non grey media when the radiation field is

coupled with an unsteady flow. The method optimises the angular resolution

according to the radiative source term (the goal) which is the key physical

quantity for the coupling between flow and thermal radiation. The angular
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Figure 10: Difference in the radiative source term between uniform W4,4 and adapted WGB
4,4

resolution during a coupled unsteady simulation at different spatial points. Differences are

normalised according to the maximum value of the source term across space and time. The

location of points A, B, C and D is given in Fig. 3.
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resolution is allowed to vary anisotropically in space and for each absorption

coefficient class built from a global model of the radiative properties of the

medium. The angular discretisation is based on a Haar wavelet expansion,

which is a hierarchical version of the discrete ordinates expansion and does

not require any angular interpolation in space when adapting.

The method has been tested on a coupled flow-radiation problem rele-

vant for air pollution modelling in street canyons. Compared to a uniform

Haar wavelet resolution, a goal-based adapted resolution requires 5 times

less angular basis functions and 6.5 less CPU time to reach the same level

of accuracy in the radiative source term. In addition, the adapted resolution

proved to be accurate when used in unsteady coupled calculations. The gain

in computational time will help us to investigate larger computational do-

mains and more realistic flow regimes that involves a larger range of temporal

and spatial scales. In future work, we plan to further enhance the computa-

tional efficiency of the adapted calculations by performing load balancing in

parallel after adapting, to ensure an even distribution of work.

Another perspective to this work would be to extend the application of

the method to heterogeneous media that are encountered for instance in

combustion processes. It would be then necessary to take into account the

spatial variations of the absorption coefficient with the temperature and the

composition of the radiating gases (water vapour and carbon dioxide). How-

ever, the goal-based algorithm would not be affected because it will still be

possible to develop a global model of the radiative properties of such media

and to assign to each k-class a different angular resolution.
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Appendix A. Global model for radiative properties

The Line-By-Line (LBL) spectrum of the absorption coefficient of the

mixture considered in Sec. 4 (humid air with 2 % water vapour) has been com-

puted with the HITRAN 2008 database [33] with a resolution of 0.025 cm−1

and is shown in the left part of Fig. A.11. Following Eq. (4), the correspond-

ing absorption distribution function has been calculated at Tref = 294.2 K

and the values of the absorption coefficient were logarithmically discretised

between kmin = 1.36× 10−6 m−1 and kmax = 5.83× 102 m−1 into 12 consec-

utive ranges. The accuracy of the model compared to the LBL approach is

examined from emissivity εtot calculation of homogeneous columns of differ-

ent lengths l at Tref given by

εtot =
π

σT 4
ref

∫ ∞
0

Ib(ν, Tref)(1− exp(κνl))dν '
Nk∑
i=1

ai(1− exp(kil)). (A.1)

Results are shown in the right part of Fig. A.11 where it can be seen a very

good agreement.

The incoming flux boundary condition of the street canyon problem in

Sec. 4 has been computed at high spectral resolution using the atmospheric

radiation code LBLRTM-LW [34] for a mid-latitude summer atmosphere,
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Figure A.11: Left: LBL absorption coefficient of the humid air mixture at atmospheric

pressure (XH2O
ref = 0.02 and Tref = 294.2 K) and LBL incoming flux for a mid-latitude

summer atmosphere. Right: Spectrally integrated emissivities for different homogeneous

column lengths calculated with LBL and global models at XH2O
ref and Tref .

with a resolution of 1 cm−1 and is plotted in the left part of Fig. A.11.

The spectral distribution of the flux follows a blackbody distribution at

Tref = 294.2 K with holes corresponding to the transparency zones of the

atmosphere. In order to correlate this spectral distribution with the global

radiative property model, the LBL incoming flux I inc(ν) needs to be reordered

as a function of the values of the absorption coefficient I inc(k) following

I inc(k) =
∂

∂k

∫
ν, κν(Tref)≤k

I inc(ν)dν. (A.2)

The incoming flux I inci for each k-class i of our discretisation is then given by

I inci =

∫
ν, κν(Tref)≤k+i

I inc(ν)dν −
∫
ν, κν(Tref)≤k−i

I inc(ν)dν, (A.3)

where k+i and k−i are the upper and lower bounds of the absorption coefficient

values of the k-class i.
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