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Macrophages are central in coordinating the host response to both sterile and infec-
tive insults. Clearance of apoptotic cells and cellular debris is a key biological action 
preformed by macrophages that paves the way to the resolution of local inflammation, 
repair and regeneration of damaged tissues, and re-establishment of function. The 
essential fatty acid-derived autacoids termed specialized pro-resolving mediators (SPM) 
play central roles in promoting these processes. In the present article, we will review the 
role of microvesicles in controlling macrophage efferocytosis and SPM production. We 
will also discuss the role of both apoptotic cells and microvesicles in providing substrate 
for transcellular biosynthesis of several SPM families during efferocyotsis. In addition, this 
article will discuss the biological actions of the recently uncovered macrophage-derived 
SPM termed maresins. These mediators are produced via 14-lipoxygenation of docosa-
hexaenoic acid that is either enzymatically converted to mediators carrying two hydroxyl 
groups or to autacoids that are peptide-lipid conjugates, coined maresin conjugates 
in tissue regeneration. The formation of these mediators is temporally regulated during 
acute self-limited infectious-inflammation where they promote the uptake and clearance 
of apoptotic cells, regulate several aspects of the tissue repair and regeneration, and 
display potent anti-nociceptive actions.

Keywords: lipid mediators, omega 3, microvesicles, immunoresolvent, tissue regeneration

iNTRODUCTiON

Inflammation is mounted in response to injury and/or infection in vascularized tissues that results 
in edema formation and leukocyte trafficking to the injured site and/or point of bacterial invasion 
(1). This is a fundamental host defense process that ensures adequate and timely disposal of invad-
ing pathogens and the repair of damaged tissues, paving the way for organ/tissue regain of function. 
At a histological level, the resolution of inflammation is characterized by the clearance of infiltrated 
leukocytes from the site and regain of tissue architecture (1). For many years, it was thought that 
the inflammatory response is terminated when local inflammatory chemical messengers and cells 
were passively diluted at the site (dilution of chemotactic gradient), hence halting further leukocyte 
recruitment, resolving the exudate or battlefield of inflammation (1–3). Detailed studies of cellular 
trafficking at the site demonstrated that in self-resolving inflammatory exudates cellular trafficking 
was tightly coordinated, where tissue resident cells elaborated the inflammatory reaction when 
exposed to an inflammatory stimulus. This was rapidly followed by an influx of granuloctyes, 
primarily neutrophils, and subsequently monocytes (4). In self-contained exudates, these recruited 
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monocytes change phenotype from an inflammatory to a tissue 
protective phenotype as they differentiate to macrophages. This 
specific macrophage subpopulation is referred to as a resolution 
phase macrophages (5) and is thought to play key roles in the 
clearance of cellular debris from the site of inflammation and 
may also be involved in promoting tissue repair and regeneration 
(6–8).

These trafficking studies also suggested that since resolution is 
a tightly coordinated process, it was unlikely that simple dissipa-
tion of inflammatory signals could be the underlying mechanism 
for such a fundamental process. Findings made using a systems 
approach, assessing cellular trafficking and function coupled with 
biochemical approaches for structure elucidation of previously 
unknown mediators, highlight that indeed resolution of inflam-
mation is a biochemically active process. These studies dem-
onstrate that within exudates the production of inflammatory 
mediators such as leukotriene (LT) B4 and prostaglandin E2 was 
temporally regulated and reached a maximum at peak leukocyte 
infiltration. These studies also demonstrate that the resolution 
phase is denoted by the formation of a novel genus of autacoids 
that actively counter-regulate the formation of pro-inflammatory 
mediators, cellular trafficking, and phenotype (2, 9, 10). Given 
their potent biological actions, this novel genus of mediators 
is termed specialized pro-resolving mediators (SPM). SPM 
encompass several families of structurally and chemically distinct 
mediators. These, include neuroprotectin D1/NPD1 (10R,17S-
dihydroxy-4Z,7Z,11E,13E,15Z,19Z-docosahexaenoic acid), 
resolvin D2 (7S,16R,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-
docosahexaenoic acid), and resolvin E1 (5S,12R,18R-trihydroxy-
6Z,8E,10E,14Z,16E-eicosapentaenoic acid) (11). In addition 
to confirming the original structural assignments and potent 
anti-inflammatory and pro-resolving actions in vivo of resolvins, 
lipoxins, and maresins (12), recent findings demonstrate their 
potent actions in experimental colitis (13), arthritis (14), arthritic 
pain (15), ocular diseases (16), resolving adipose tissue inflam-
mation (17), and diabetes (18). SPM share defining actions in 
resolving local inflammation; they each enhance macrophage 
uptake of cellular debris and apoptotic cells and limit further 
neutrophil recruitment to the site of injury and/or microbial 
invasion to bring about resolution (19, 20). The placement of 
these mediators within the resolution of inflammation as well as 
the state-of-the art definitions are reviewed earlier in Ref. (20, 21).

Pioneering studies conducted by Elie Metchnikoff paved the 
way to understanding the important role that macrophages play 
in orchestrating the host response. In his initial observations, 
Metchnikoff observed phagocytes surrounding and attempting 
to devour a splinter he had introduced into the transparent 
body of a starfish larva. Since then, the role of this process in 
mammalian systems, has been extensively studied where it is 
appreciated to be critical in both the maintenance of homeostasis 
and clearance of cellular debris, bacteria (6, 22), and apoptotic 
cells, a process termed efferocytosis (23). One of the defining 
actions displayed by pro-resolving mediators is the regulation 
of this fundamental process. Indeed, these mediators upregulate 
the ability of macrophages to phagocytose and kill bacteria, as 
well as to clear apoptotic cells and cellular debris (24). While 
pharmacologically these actions appear to be overlapping, recent 

studies demonstrate that at a biological level they are not. This is 
because the production of the different mediator families is regu-
lated both temporally and in a tissue-specific manner (25–27). 
Furthermore, expression of the specific receptors, which form 
part of the G-protein-coupled receptor family, for each of the 
pro-resolving mediators is regulated in a cell type specific man-
ner. For a detailed recent review of the biological actions and 
expression profiles of SPM receptors, the reader is directed to 
the following review (28). Recent evidence suggests that the 
clearance of apoptotic cells by macrophages leads to changes 
in the phenotype and functions of these cells (6, 7, 20, 29, 30). 
Thus, the aim of the present article is to discuss the role of pro-
resolving mediators in regulating efferocytosis and the impact 
that this process plays in regulating macrophage lipid mediator 
(LM) profiles in order to shed light on the change in biological 
function (see Table 1 for a summary of the biological actions of 
SPM on macrophages).

Microvesicles as Regulators of 
efferocytosis and Macrophage LM Profiles
First thought to be byproducts of platelet activation carrying 
no significant biological activity, microvesicles are now increas-
ingly appreciated to regulate critical aspects of the host immune 
response. Since their first description in platelets by Wolf in 
1967 (46), the production of these microstructures has been 
described in many cell types including leukocytes, muscle cells 
and endothelial cells (47). They also carry distinct functions 
in both the initiation and resolution of acute inflammation 
[reviewed in Ref. (48)]. Microvesicles carry a wide range of 
molecular cargos including miRNA that are implicated in the 
regulation of hematopoiesis (49) as well as in protection during 
ischemia-reperfusion-mediated kidney injury (50). The pro-
inflammatory cytokine IL1-β is also carried by microvesicles 
and its loading into these structures is thought to be one of the 
mechanisms by which this cytokine, which does not possess a 
secretion motif, is released from cells (51). Morphogens, such 
as Sonic Hedgehog, are also part of the cargo carried by subsets 
of these microvesicles, where microvesicles enriched in Sonic 
Hedgehog were found to promote angiogenesis and thus may 
play a role in tumor growth (52).

Recently, we found that neutrophil-derived microvesicles 
also display anti-inflammatory actions (53), carry precur-
sors for the biosynthesis of pro-resolving mediators (29, 54), 
and display potent pro-resolving and host protective actions  
(54, 55). Since evolving self-limited inflammatory exudates pro-
duce functional microvesicles that also signal to stimulate resolu-
tion of inflammation in mice (54), we investigated whether these 
microvesicles also regulated macrophage efferocytosis. Indeed 
these microvesicles dose dependently regulated macrophage 
efferocytosis. Assessment LM-SPM concentrations in these 
microstructures demonstrated that neutrophil microvesicles, in 
addition to carrying precursors for the production of the pro-
resolving mediators, also carried bioactive mediators including 
Protectin (PD) 1 (29).

Using a LM profiling approach, we found that microvesicles 
regulate macrophage LM-SPM profiles. Incubation of macrophages 
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TabLe 1 | The role of SPM receptors in mediating the biological actions of these autacoids on macrophages.

Receptor SPM biological action biological system Reference

ALX/FPR2 RvD1 Suppression of AA-stimulated LTB4 Mouse bone marrow-derived Mϕ 
and zymosan-elicited peritoneal Mϕ

Fredman et al. (31)

RvD1 Enhanced zymosan phagocytosis Mouse bio-gel elicited Mϕ Norling et al. (32)
RvD1 Phagocytosis of zymosan and apoptotic PMNs Human monocyte-derived Mϕ Krishnamoorthy et al. (33)
RvD1 Increased M2 polarization during I/R Murine Kupffer cells Kang and Lee (34)
RvD1 Increases IL-10 levels ALX/FPR2-overexpressing 

transgenic mice
Krishnamoorthy et al. (35)

Human monocyte-derived Mϕ
RvD1 Reduces cigarette smoke extract promoted IL-6 and TNF-a Human monocyte-derived Mϕ Croasdell et al. (36)
LXA4 Increased transforming growth factor–β1 Murine Mϕ Mitchell et al. (37)
AT-LXA4 Increased efferocytosis
LXA4 Increase apoptotic PMN efferocytosis Human monocyte-derived Mϕ Godson et al. (38)

Did not increase IL-8 and MCP-1
Attenuated PGE2-stimulated protein kinase A activation

LXA4 Reduced TNF-a production Human monocyte-derived Mϕ Pierdomenico et al. (39)
Zymosan phagocytosis

GPR32/DRV1 RvD1 Phagocytosis of zymosan Human monocyte-derived Mϕ Krishnamoorthy et al. (33)
Efferocytosis of apoptotic PMNs

RvD1 Reduced IL-1β and IL-8 expression Human monocyte-derived Mϕ Schmid et al. (40)
Reduced chemotaxis to chemerin, fMLF, and MCP-1

RvD1 Increase phagocytosis of bacteria Human monocyte-derived Mϕ Chiang et al. (41)
RvD5
RvD1 Reduces IL-6 and TNF-a expression in elicited by cigarette smoke extract Monocyte-derived Mϕ Croasdell et al. (36)
RvD3 Upregulate macrophage efferocytosis Monocyte-derived Mϕ Dalli et al. (25)
AT-RvD3

ChemR23/
ERV1

RvE1 Increases IL-10 transcription and phagocytosis of microbial particles Monocyte-derived Mϕ Herova et al. (42)
RvE1 Phagocytosis of zymosan A via AKT and ribosomal protein S6 

phosphorylation
Monocyte-derived Mϕ Ohira et al. (43)

RvE1 Reduction of IL12p40 and TNF-a expression in cells incubated with LPS Mouse peritoneal Mϕ Ishida et al. (44)

GPR18/DRV2 RvD2 Enhanced phosphorylation of CREB, ERK1/2, and STAT3 Mouse exudate macrophages Chiang et al. (45)
RvD2 Enhanced phagocytosis of live Escherichia coli and apoptotic PMN Human monocyte-derived 

macrophages
Chiang et al. (45)
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with neutrophil-derived microvesicles increased the biosyn-
thesis of lipoxygenase- and cyclooxygenase-derived LM. These 
increased the biosynthesis of DHA-derived D-series resolvins, 
EPA-derived E-series resolvins, and the AA-derived lipoxins 
and prostanoids (29). Among the SPM that are upregulated, we 
observed significant increases in RvD5, MaR1, PD1, RvE2, and 
RvE1. Of interest, incubation of macrophages with G-protein 
inhibitors (pertussis toxin and cholera toxin) reduced SPM 
biosynthesis without altering prostanoid levels. Together, these 
results demonstrated that microparticles selectively stimulate 
macrophage SPM production in a G-protein-coupled receptor-
dependent manner (29).

Microvesicles are a Nidus for Macrophage 
SPM Production during efferocytosis
Having observed increases in SPM levels and efferocyotosis 
when macrophages were incubated with neutrophil-derived 
microvesicles and that these microstructures carried elevated 
concentrations of several SPM precursors, the question arose 
whether microvesicles contributed to macrophage SPM 
biosynthesis by donating specific precursors. The potential 
contribution of microvesicles to transcellular biosynthesis was 
assessed during macrophage efferocytosis (29). For this purpose, 
we employed precursurs labeled with deuterium, which can be 

distinguished from endogenous precursors, to investigate the 
contribution of essential fatty acids derived from neutrophil-
derived microvesicles. During efferocytosis, microvesicles were 
found to contribute to the production of d5-RvD2 and d5-RvD5 
from the D-series resolvins and d5-PD1 from the protectin 
family (Figure 1). These results demonstrated that during mac-
rophage efferocytosis transcellular biosynthesis contributes to 
LM production where both microvesicles contribute substrate 
utilized in the SPM production.

apoptotic PMN and Microvesicles 
Stimulate Macrophage SPM Production
Recent studies suggest that the process of efferocytosis repro-
grams macrophage responses altering cytokine production 
(7). Our studies demonstrate that the regulation of functional 
responses also extends to the production of both pro-resolving 
and pro-inflammatory LM profiles. Efferocytosis of apoptotic 
PMN by macrophages increases SPM biosynthesis, primarily, 
RvD1, RvD2, and LXB4. SPM biosynthesis during efferocytosis 
was further upregulated by microvesicles, increases that correlate 
with an enhancement in the uptake of apoptotic neutrophils by 
macrophages (29). Of note, addition of microvesicles to mac-
rophages further upregulated macrophage biosynthesis of RvD2, 
LXB4, and RvE2, while reducing PGF2α and TXB2 (29).
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FigURe 1 | Microvesicles and apoptotic neutrophils are a nidus for specialized pro-resolving mediator (SPM) biosynthesis during efferocytosis. Microvesicles or 
neutrophils were enriched in deuterium-labeled essential fatty acids and the conversion of these essential fatty acids to lipid mediators and their pathway markers/
precursors was assessed during efferocytosis using lipid mediator profiling. (a) Relative contribution to lipid mediator biosynthesis by microvesicles and apoptotic 
neutrophils. (b) Cartoon depicting the process of trancellular biosynthesis during efferocytosis.

4

Dalli and Serhan The Resolution Metabolome in Macrophage Biology

Frontiers in Immunology | www.frontiersin.org November 2017 | Volume 8 | Article 1400

apoptotic PMN, a Nidus for Macrophage 
SPM biosynthesis
Apoptotic cells were also found to supply precursors to mac-
rophages for the biosynthesis of both eicosanoids and SPM. 
This contribution was determined using a similar approach to 
that used for microvesicles where apoptotic neutrophils were 
enriched in deuterium-labeled (d) precursors. These studies 
demonstrate that substrates obtained from apoptotic neutrophils 
were also utilized for the production of pro-resolving mediators, 
whereas d5-PD1 and d5-RvE2 were produced when the substrate 
was obtained from either microvesicles or apoptotic cells d5-
MaR1 and d8-LXB4 were only identified in incubations with 
labeled apoptotic cells (29) (Figure  1). These results suggest 
that the origin of the substrate, and potentially its subcellular 
localization, may influence its contribution to specific mediator 
families.

apoptotic Cells Differentially Regulate 
LMs in M1 and M2 Macrophages
Because apoptotic neutrophils stimulate LM biosynthesis in 
macrophages, we investigated whether this finding held for 
different macrophage subtypes. Assessment of LM biosynthesis 
after apoptotic cell efferocytosis demonstrated that the uptake 
of apoptotic neutrophils by classically activated macrophages 
upregulated the SPM production and reduced prostanoid bio-
synthesis. Of note, incubation of apoptotic neutrophils with M2 

macrophages reduced overall LM production, including SPMs 
(29). These results indicated that the regulation of SPM profiles 
by apoptotic cells is also cell type dependent and may reflect 
the distinct biological actions of diverse cell types within the 
initiation-resolution spectrum.

Role the Role of g-Protein-Coupled 
Receptors in Mediating SPM actions with 
Human Macrophages
SPM exert their biological actions via activating receptors of 
the G-protein-coupled receptor superfamily. RvD1, AT-RvD1, 
RvD3, AT-RvD3, LXA4, and AT-LXA4 activate the lipoxin recep-
tor ALX/FPR2; in humans, these mediators also activate the 
orphan receptor DRV1/GPR32. RvD5 was also recently shown to 
activate DRV1/GPR32, while RvE1 binds to and activates ERV1/
ChemR23; and DRV2/GPR18 mediates the biological actions of 
RvD2 (9, 23, 31, 39). Interested readers are referred to Ref. (9) for 
a detailed review on the biology of SPM receptors. In addition to 
displaying agonist actions to specific GPCR, RvE1, MaR1, and the 
MaR1 further metabolite 22-OH-MAR1 are also partial agonists/
antagonists to LTB4 receptor BLT1.

Activation of the pro-resolving receptors by their cognate 
mediators occurs in a stereospecific manner with even minor 
changes to their structure resulting in a significant loss in their 
ability to bind and activate these receptors. Recent studies suggest 
that the expression of SPM receptors differs between macrophage 
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subsets thus suggesting that pro-resolving mediators differentially 
regulate the biological actions of distinct macrophage subsets. 
Murine peritoneal macrophages express the murine homologs 
of the ALX/FPR2, DRV2/GPR18, and ERV1/ChemR23 that 
mediate the biologic actions of their cognate SPM in regulating 
pro-inflammatory cytokine production, upregulating bacterial 
clearance and efferocytosis of apoptotic cells (9). In humans, 
expression of ERV1/Cherm23 was recently suggested to be 
restricted to macrophages obtained under conditions leading to 
a classically activated phenotype (42).

The Maresin bioactive Metabolome in 
Human Macrophages
Studies using LM metabolomics and self-resolving exudates 
uncovered a new family pro-resolving mediators produced by 
macrophages, these mediators were coined macrophage media-
tors in resolving inflammation (maresins) (56). In the biosyn-
thesis of maresins, DHA is lipoxygenated at carbon 14 yielding 
14S-hydro(peroxy)-docosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic 
acid (14-HpDHA) that is further converted to an allylic epoxide, 
reactions carried out by macrophage 12-lipoxgenase (30, 57). 
Using stereocontrolled total organic synthesis, enantiomerically 
pure 13S,14S-epoxy-docosa-4Z,7Z,9E,11E,16Z,19Z-hexaenoic 
acid (13S,14S-eMaR) was prepared and its stereochemistry 
confirmed by nuclear magnetic resonance spectroscopy. In 
macrophages, this intermediate is enzymatically converted to the 
pro-resolving mediator MaR1 (Figure  2). The stereochemistry 
of MaR1 was recently established as 7R,14S-dihydroxydocosa-
4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid, using a matching 
approach with material obtained from biological systems and 
total organic synthesis (11). The biological actions of MaR1 were 
also confirmed using synthetic material that included regulating 
leukocyte responses including limiting neutrophil infiltration in 
murine peritonitis (ng/mouse range) as well as enhancing human 
macrophage uptake of apoptotic neutrophils (11).

The biological actions of MaR1 extend beyond the regulation 
of cellular trafficking, where studies using planaria demonstrate 
that this mediator accelerates tissue regeneration following 
surgical injury (11). Upon injury, planaria also produce MaR1 
from deuterium-labeled (d5)-DHA in a lipoxygenase-dependent 
manner, since an inhibitor to this class of enzymes reduced 
MaR1 formation and also the ability of planaria to regenerate 
damaged tissues (11). Planaria are simple organisms capable 
of rapid regeneration, the process where in mammalian tissue 
macrophages play a central role. Factors involved in planaria tis-
sue regeneration remained to be identified (58). Hence, we inves-
tigated whether MaR1 displays properties in controlling tissue 
regeneration. To this end, the anterior portions of planaria were 
surgically removed and the animals given MaR1. This accelerated 
tissue regeneration with the appearance of head regeneration 
was evident as early as 3  days post surgery. MaR1 addition at 
concentrations as low as 1 nM enhanced head regeneration as 
early as day 3 post injury (11).

MaR1 also possess potent anti-nociceptive actions, dose 
dependently inhibiting transient receptor potential cation 
channel subfamily V member 1 (TRPV1) currents in neurons, 

blocking capsaicin (CAP, 100  nM)-induced inward currents 
(IC50  =  0.49  ±  0.02) and reducing both inflammatory and 
chemotherapy-induced neuropathic pain in mice (11, 59, 60).

Of interest, 13S,14S-eMaR, the biosynthetic intermediate in 
the MaR1 metabolome, is also bioactive. Indeed this intermedi-
ate inhibits LTB4 formation by human leukotriene A4 hydrolase 
(LTA4H) ~40% (p <  0.05) to a similar extent as LTA4 (~50%, 
p < 0.05). Furthermore, LTA4H was not involved in converting 
13S,14S-eMaR to MaR1 pointing to the involvement of a yet 
unidentified epoxide hydrolase in catalyzing this biosynthetic 
step. 13S,14S-eMaR also reduced (~60%; p < 0.05) arachidonic 
acid conversion by human 12-LOX and promotes macrophage 
phenotype switch toward an M2 profile with similar potency 
as MaR1 (30). Incubation of M1 macrophages with either 
13S,14S-eMaR (10  nM) or MaR1 (10  nM) led to significant 
reductions in the M1 lineage markers CD54 and CD80 expres-
sion and a concomitant upregulation of the M2 lineage markers 
CD163 and CD206 (30). We also investigated the conversion 
of 13S,14S-eMaR to MaR1 by different human macrophage 
subtypes. 13S,14S-eMaR (2  µM) with M2 macrophages gave 
higher MaR1 levels then when the 13S,14S-eMaR was incubated 
with M1 macrophages. These results suggest that the MaR1 
metabolome is central in regulating macrophage function and 
mediating the biological actions of these phagocytes (30).

identification of as Maresin Conjugates in 
Tissue Regeneration (MCTR) as Novel 
Regulators of Tissue Regeneration
Given the roles that macrophages play in the orchestrating wound 
healing, we questioned whether during the later stages of resolution 
these cells produce a distinct group of chemical signals that initi-
ate tissue repair and regeneration. Using a systematic approach, 
we uncovered a group of peptide-lipid conjugated molecules that 
in addition to carrying the defining SPM pro-resolving actions, 
including the ability to regulate leukocyte trafficking and counter-
regulate pro-inflammatory mediator production, also promote 
tissue repair and regeneration (8). The human macrophage 
12-lipoxygenase is the initiating enzyme in the formation of 
these new signaling molecules, converting docosahexaenoic acid 
to 14S-HpDHA and then to 13S,14S-eMaR. Given that the initial 
biosynthetic steps are shared with MaR1, and carried a carbon 14 
position alcohol, these bioactive molecules were coined as MCTR. 
The intermediate epoxide is converted to 13R-glutathionyl,14S-
hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid 
(MCTR1), a step that in human macrophages is catalyzed by 
Glutathione S-transferase MU 4 (GSTM4) and leukotriene C4 
synthase (LTC4S) (61) (Figure 2). Of note, the two enzymes are 
shared with the cysteinyl LT pathway where they also catalyze the 
conversion of LTA4 to leukotriene C4 (LTC4). Each of these enzymes 
displayed different affinities to the two substrates, where LTC4S 
displayed a higher affinity to LTA4, whereas GSTM4 displayed 
a higher affinity toward 13S,14S-eMAR. These findings suggest 
that in addition to substrate availability, the relative expression 
of the two enzymes in one cell type may determine the balance 
between the inflammation-, contraction-, and stress-initiating 
LTC4 (7) in contrast with the tissue-regenerative pathway of 
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FigURe 2 | Biosynthesis and actions of the macrophage-derived Maresins. The pathway is initiated by 14-lipoxygenation of DHA to yield 14S-hydro(peroxy)-
4Z,7Z,10Z,12E,14S,16Z,19Z-docosahexaenoic acid and then to 13S,14S-epoxy-4Z,7Z,9E,11E,13S,14S,16Z,19Z-docosahexaenoic acid (13S,14S-eMaR) 
reactions that are catalyzed by 12-LOX. This intermediate is then enzymatically hydrolyzed to 7R,14S-dihydroxy-4Z,7R,8E,10E,12Z,14S,16Z,19Z-docosahexaenoic 
acid (MaR1) or via an epoxide hydrolase (EH) to 13,14S-epoxy-4Z,7Z,9,11,13,14S,16Z,19Z-docosahexaenoic acid (MaR2). 13S,14S-eMAR is also substrate for 
Glutathione S-transferase MU 4 (GSTM4) and leukotriene C4 Synthase (LTC4S) yielding MCTR1 (13R-glutathionyl,14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-
docosahexaenoic acid), which is then converted to MCTR2 (13R-cysteinylglycinyl,14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid) by 
gamma-glutamyl transferase (GGT) and to MCTR3 (13R-cysteinyl,14S-hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid) by dipeptidase (DPEP).
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MCTRs. MCTR1 is precursor to 13R-cysteinylglycinyl,14S-
hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic acid 
(MCTR2), a conversion catalyzed by gamma-glutamyl transferase 
(Figure 2). This mediator in addition to carrying pro-resolving 
and tissue regenerative actions is also precursor to the third 
member of the MCTR family of mediators, 13R-cysteinyl,14S-
hydroxy-4Z,7Z,9E,11E,13R,14S,16Z,19Z-docosahexaenoic 
acid (MCTR3), a reaction that is catalyzed by dipeptidases (61) 
(Figure  2). Of note, these enzymes are also shared with the 
cysteinyl LT biosynthetic pathway suggesting that processes 
regulating substrate availability may be critical in determining 
the macrophage LM phenotype and therefore function.

The production and biological actions of members of the 
maresin family are evolutionary conserved with identification in 
planaria mouse infectious exudates, human breast milk, spleen, 
and plasma from sepsis patients (Figure  2). Using deuterium-
labeled docosahexaenoic acid, we found that MaR1 was produced 

by planaria following surgical injury (11). MCTR1 and MCTR2 
were also identified in regenerating planaria and incubation of 
these mediators with planaria accelerated tissue regeneration (8). 
This increase in the rate of regeneration was associated with an 
early upregulation of a number of genes that in these animals are 
associated with head-to-tail differentiation suggesting that these 
molecules form part of the tissue regeneration process engaged 
following injury in planaria. This is further supported by the find-
ing that planaria express genes that are homologous to MCTR 
biosynthetic enzymes including GSTM4, which are upregulated 
in regenerating tissues (8). Inhibition of these enzymes using both 
genetic approaches and small molecule inhibitors reduced MCTR 
levels as well as the ability of planaria to regenerate. In mice, 
MCTRs were also found to regulate tissue repair and regeneration 
in lung tissue where administration of these mediators during 
ischemia-reperfusion-mediated injury protected the lung from 
leukocyte-mediated damage and upregulated the expression of 
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molecules that are associated with cell proliferation and tissue 
repair in the lung (8).

Therefore, SPM emerge both as potent regulators of mac-
rophage responses of interest during the resolution phase of 
acute inflammatory responses and effectors in macrophage-
mediated responses. Since the means and methodologies to 
identify these mediators have only recently become widely 
available, a number of aspects of their biology in humans have 
only just started to be explored such as the production of these 
pro-resolving mediators in human tissues (62–64). In addition, 
a number of questions still remain to be addressed such as the 
when and where these mediators are produced in human tissues 
in health and disease and the relevance of resolution processes 
that may fail giving rise to human disease. In this context, 
we recently found that following either a systemic insult or 
local inflammatory stimulus LM biosynthesis is differentially 
regulated between males and females. In these studies, vaccina-
tion with typhoid vaccine lead to peripheral blood leukocyte 
activation and endothelia dysfunction in males but not in 
females. This was associated with an increase peripheral blood 
E-series resolvin and a downregulation in the levels of LTB4 in 
females (65). Local challenge using chantaridin led to a rapid 
resolution of the inflammatory response in females that was 
associated with an increased exudate RvD and decreased LTB4 
concentrations. Differences in tissue SPM concentrations were 
also recently reported in patients with inflammatory arthritis 
where a correlation between synovial RvE2 concentrations and 
pain was observed, with higher concentrations of RvE2 in these 
inflammatory exudates correlating with lower pain in arthritic 
patients (66). Thus, these results underscore the role of SPM 
in controlling tissue inflammation in humans and the utility 
of measuring these mediators as a potential diagnostic tool in 
patient stratification.

Since resolution of inflammation is a fundamental process in all 
human tissues and that phagocytes and specifically macrophages 
play a central role in orchestrating this response as well as tissue 
repair and regeneration, immunoresolvents (such as resolvins, 
protectins, and maresins) may provide a novel therapeutic 
approach for diseases characterized by uncontrolled inflamma-
tion and failed resolution. In this context, recent findings dem-
onstrate that enriching microvesicles with SPM may represent a 
novel therapeutic approach to control chronic inflammation and 
promote tissue regeneration. In minipigs, administration of a 
single dose of a novel pro-resolving nanomedicine, produced by 
enriching microvesicles in a lipoxin analog, markedly reduced 
periodontal disease, and promoted bone regeneration (67). These 
results, together with many other recent studies, emphasize that 
using agonists to reprogram the immune cells rather then inhibit-
ing the inflammatory response may represent a novel paradigm 
to controlling inflammation without compromising the host 
immune response.
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