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Abstract 
 

This thesis aims to utilize graphene nanoplatelets (GNPs) in biobased and biodegradable 

thermoplastic polylactide (PLA) matrix for improved properties and multifunctionalities.  A 

comprehensive comparative study was carried out on the effect of the addition of GNPs with 

different sizes. The mechanical, electrical, thermal and barrier properties of resulting PLA/GNP 

nanocomposites and their inter-relationship with the microstructure of the composites is 

revealed. The effect of annealing on dynamic percolation and conductive network formation 

of PLA/GNP composites including the effect of hybrid GNP fillers of different size is reported, 

indicating the underlying mechanisms for different behaviours of GNP fillers of different size.  

 

Multifunctional engineering biopolymers with improved performances (mechanical and 

electrical) and added functionalities (barrier properties) were successfully developed through 

controlled filler distribution and orientation using multilayer co-extrusion technology. 

Changes in mechanical properties of the PLA/GNP multilayer nanocomposites were 

successfully correlated with GNP orientation in the filled layers. Multilayer PLA/GNP 

nanocomposites demonstrated excellent mechanical and barrier properties with low filler 

loadings compared to traditional mono-extruded films. 
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Chapter 1 - Introduction 
 

 

1.1 Research background 

 

Graphene exhibits extraordinary characteristics, ranging from high intrinsic mechanical 

properties to excellent electrical conductivity and optical transparency. These properties open 

new opportunities to revolutionise a variety of practical applications, e.g. multifunctional 

composites, detectors, smart wearables, paints and printing. However, practical advances will 

depend on our ability to use these two dimensional (2D) building blocks to construct complex 

three dimensional (3D) highly organised structures with practical dimensions while being able 

to manipulate chemistry and architecture at multiple length scales. 

 

Nature-made nanocomposites usually exhibit superior properties than those of man-made 

composites. For instance, nacre is composed of 95% of mineral platelets and the toughness is 

nearly 3000 times higher than the building block mineral particle. Such biocomposites usually 

containing several levels of hierarchy, ranging from macroscale to nanoscale [1]. In contrast, 

traditional nanocomposites, as produced by melt-mixing, solution casting or in-situ 

polymerization, have generally a relatively low reinforcing efficiency because of difficulties in 

creating nanocomposites which display homogeneous dispersions of these nanoparticles, 

good interfacial adhesion between particles and matrix, and high levels of structural 

organisation of these particles within the matrix [2]. 

 

1.2 Aims of research 

 

In this thesis, the aim is to utilize graphite nanoplatelets (GNPs) as nano-scale reinforcements 

in polymer composites and achieve optimized mechanical, electrical, thermal and barrier 

properties. To achieve this, GNPs of different size will be used as fillers in biobased polylactide 

(PLA) and different processing routes including traditional melt-mixing and compression 
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moulding, as well as a multilayer coextrusion methodologies will be applied. The relationship 

between the microstructure of the composites and their resulting properties will be studied. 

 

1.3 Outline of thesis 

 

This thesis presents an overview of producing PLA/GNP composites through traditional melt-

compounding and moulding, and mono-extrusion as well as multilayer coextusion technology 

and shows the relationship between microstructure of the nanocomposites and their various 

properties. 

 

Background knowledge of graphene and its polymer composites is presented in Chapter 2, 

with a focus on the various properties, together with a detailed review on polylactide (PLA) 

based composites. A review on composites made by multilayer coextrusion methods is also 

provided. 

 

Lab-scale micro-compounding was used to produce graphite nanoplatelet (GNP) based 

composites in Chapter 3, using a bio-based polymer, polylactide (PLA), with the aim to have a 

comprehensive understanding of the effect of GNP size on various properties of composite, 

including morphology, mechanical, electrical and rheological properties. In addition to this, 

we discuss the enhancement of electrical conductivity of PLA/GNP composites through 

thermal annealing and studied the differences in dynamic percolation behaviour of 

composites with different GNP filler sizes in Chapter 4. 

 

Although composites with good mechanical performances can be made using melt-

compounding technology such as twin-screw extrusion, these technologies have limitation 

with respect to producing highly organised composites. To improve the in-plane orientation 

of the GNPs in nanocomposite films, forced assembly multilayer co-extrusion technology was 

used in Chapter 5 to produce highly organised PLA/GNP films. Structure-properties 

relationships and micro-confinement effects of these multilayer films were revealed. 

 

The thesis concludes with conclusions as well as ideas for future work in Chapter 6. 
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Chapter 2 - A literature review of 

polymer/graphene composites 

 

 

2.1 Introduction to graphene  

 

Graphene is composed of sp2 carbon atoms organised in a 2D hexagonal lattice structure as 

shown in Figure 2.1 [3]. Ideally it can be regarded as the basic building element of all other 

carbon materials. For example, 0D fullerenes can be viewed as wrapped-up graphene, 1D 

nanotubes as rolled-up graphene and 3D graphite as stacked layers of graphene. Single-layer 

graphene was first isolated from graphite in 2004 [3] and since then numerous research have 

been conducted on its exceptional mechanical, thermal and electrical properties [3,4]. 

 

 

 

 

Figure 2.1.  Graphene visualized as the building elements for 0D buckyballs, 1D nanotube and 

3D graphite. Reproduced from [3]. 
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In the last decade, researchers have successfully produced graphite nanoplatelets (GNP), 

which was thinner than traditional expanded graphite (EG). GNP is a 2D filler made up of 

several layers of single graphene sheets. The weak van der Waals forces tie these layers 

together and a distance of ca. 0.34 nm was reported between individual layers [5]. In contrast 

to traditional 2D nanofillers including nanoclays, GNPs possess high thermal and electrical 

conductivity with lower mass density. Hence, GNPs becomes an ideal filler for enhancing the 

properties of polymers and introducing multifunctionalities in composites. Moreover, the 

production costs for GNPs are relatively low [5–7] compared to that of carbon nanotube 

(CNTs). Plus, GNPs can also be obtained from an abundant natural sources like graphite [9,10], 

which makes GNP a cost-effective replacement for carbon nanotubes. 

 

The past few years have witnessed polymer/GNP nanocomposites becoming a popular area 

of research [11–15]. Remarkable quantities of work were conducted on producing monolayer 

graphene sheets, corresponding oxides or GNPs which contain only very few sheets of 

graphene [16–22]. Nevertheless, it remains very challenging to produce monolayer graphene 

in large quantities while keeping their outstanding properties. The progress of 

polymer/graphene nanocomposites has been reviewed extensively [17,23–26] and shows 

that polymer/GNP nanocomposites have increasing practical applications because of their 

interesting properties and simplicity of fabrication.  

 

This chapter will focus on providing a comprehensive overview of recent research in the field 

of polymer/GNP nanocomposites, encompassing properties, fabrication and related theories. 

Properties of other nanocarbon based polymer composites will also be compared, although 

CNTs, graphene oxide (GO) and functionalized graphene sheets (FGS) and their derivatives will 

not be discussed in detail.  

 

 

2.2 Properties of graphene  

 

 

In this chapter, we will mainly discuss the mechanical and electrical properties of graphene 

based on single layer, few layer and multilayers. 
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2.2.1 Mechanical properties 

 

The C-C covalent bond is considered to be one of the strongest atomic bonds in nature. 

Pioneering measurements showed that single layer graphene exhibited a high Young's 

modulus of 1 TPa and an strength of 130 GPa by Lee et al. [27]. A representative stress–strain 

curve was obtained through nanoindenting graphene membranes in an atomic force 

microscope (AFM) and is shown in Figure 2.2, along with the theoretical prediction by Liu et 

al. [28] using the density functional theory.  

 

 

 

 

Figure 2.2. Experimental and theoretical stress–strain curves for graphene monolayer. 

Reproduced from [4]. 

 

 

Such experiments reported the Young’s modulus as 1000 ± 100 GPa, which is similar to the 

theoretical estimated value of 1050 GPa. This is also very close to that of 1020 GPa for bulk 

graphite [29]. This value is presented in Figure 2.3 and compared with traditional materials.  
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Figure 2.3. Comparison between traditional materials and graphene. Reproduced from [30]. 

 

Raman spectroscopy is a good tool to probe the mechanical performance of graphene by 

monitoring Raman band shifts under stress. In fact, such an approach has been successfully 

applied to carbon fibres [31], carbon nanotubes [32] as well as graphene. It was noted that, 

when graphene deformed [33–47], the 2D Raman bands will shift along with the strain as 

shown in Figure 2.4. Gong et al. [42] calculated the Young’s modulus as 1200 ± 100 GPa for a 

graphene monolayer, which is very close to the results measured through direct tensile or 

bend testing. 

 

 

 

Figure 2.4. Relationship between Raman 2D band wavenumber and strain for single layer 

graphene sheet. Reproduced from [42]. 
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The fracture toughness of a material is more important than strength in engineering 

applications. Zhang et al. [48] measured the fracture toughness of graphene in a scanning 

electron microscope (SEM) by in-situ tensile tests as shown in Figure 2.5 and a critical stress 

intensity factor of 4 MPa√𝑚 was reported. This a low value compared with that of metallic 

materials (15-50 MPa √𝑚 ), indicating that graphene under strain will exhibit a brittle 

behaviour when breaking. 

 

 

Figure 2.5. (a) Set-up for measuring the mechanical properties of graphene in a SEM. (b) 

graphene samples before test in the SEM. (c) graphene samples after test in the SEM. (d) 

Typical stress-strain curves for graphene taken to break. Reproduced from [48]. 

 

2.2.2 Electrical properties 

 

The electrical conductivity of graphene has been widely measured in the literature [49–54]. 

The conductivity of graphene is reported to be ~108 S/cm for single layer and decreases to 

~106 S/cm for few layers. The conductivity is reported to decrease when the number of 

graphene layers increases, and will eventually reach that of the bulk graphite ( ~105 S/cm) 

[49,50].   
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2.2.3 Characterization of graphene 

 

 

Atomic force microscopy (AFM) can determine the thickness of graphene. For example, 

Novoselov et al. [55] used to characterise graphene as shown in Figure 2.6 (left) and reported 

a thickness of 0.4 nm, while 0.335 nm is considered as the average interlayer spacing between 

graphene layers. Apart from thickness, AFM  can be used for the imaging of different 

morphologies including folds [56] and wrinkles [57,58] on the graphene surface.  

 

Scanning electron microscopy (SEM) can give qualitative information regarding the diameters 

as well as 3D morphology of graphene particles [20]. For example, McAllister et al [20] 

observed an agglomerated functionalized single graphene sheets (FGSs) powder with a “fluffy” 

appearance as shown in Figure 2.6 (right). 

 

 

Figure 2.6. Single-layer graphene visualized by AFM (left), Reproduced from [55] and SEM 

image of dry, as-produced agglomerated FGS powder (right), Reproduced from[20]. 

 

X-ray diffraction is another useful tool to identify single or few-layer graphene as shown in 

Figure 2.7. Typically, graphite exhibited a peak (002) Bragg reflection at 2θ=26° and the 

number of layers can be estimated using the Scherrer equation as reported in several studies 

[59,60]. 

        

Raman spectroscopy has played crucial role in the characterization of graphene structure. For 

single layer graphene, a typical G band usually appears at 1582 cm−1 and a 2D band usually 
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peaks at about 2700 cm−1 as shown in Figure 2.8. When there is a disordered graphene sample, 

a D band originates from disorders will also show at ~ 1350 cm−1. Monolayer graphene, bilayer 

graphene as well as few layer graphene showed difference characteristics under Raman as 

shown in Figure 2.9.  For single layer graphene, its 2D band intensity is nearly twice of that of 

its G band, yet for bilayers and multilayers, the 2D band is weaker than the G band. 

 

 

 

Figure 2.7. Comparison between graphene, graphite oxide and pristine graphite through XRD. 

Reproduced from [61]. 

 

 

 

Figure 2.8. Raman spectrum for monolayer graphene. Reproduced from [62]. 

 



Chapter 2 - A literature review on polymer/graphene composites 

24 
 

 

 

Figure 2.9. Comparison between Raman spectra for single layer, two layer, multilayer 

graphene and graphite samples. Reproduced from [63]. 

 

 

2.3 Properties of polymer/graphene nanocomposites 

 

 

2.3.1 Mechanical properties of polymer/GNP composites 

 

 

The mechanical properties of polymer/GNP composites are affected by many factors, 

including filler-matrix stress transfer as well as filler properties. 

 

Stress transfer 

Stress transfer is of critical importance in the realm of nanocomposites. The classic shear-lag 

theory developed by Cox [64] was widely used to describe the reinforcing effect for 

composites filled with platelets , including bone [65], shells [66], clays [67] and graphene [4]. 
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Sandwiching single layer graphene between polymer layers as shown in Figure 2.10, the strain 

across the single layer graphene, ef, can be expressed using shear-lag analysis as: 

 

 

𝑒f = 𝑒m [1 −
cosh(𝑛𝑠

𝑥
𝑙

)

cosh(𝑛𝑠/2)
] 

 

(2.1) 

 

 

Where 𝑒m is the strain and parameter 𝑛 is given by: 

 

 
𝑛 = √

2𝐺m

𝐸g
(

𝑡

𝑇
) 

 

(2.2) 

 

 

Where 𝐺m is the shear modulus of polymer matrix, 𝐸g is the Young’s modulus of single layer 

graphene, 𝑙  is the length of the single layer graphene along the 𝑥  axis, 𝑡  is the graphene 

thickness, 𝑠 is the aspect ratio of the graphene along the 𝑥 axis and  𝑇 is the thickness of the 

composite. n is a parameter reflecting the effectiveness of the interfacial stress transfer [68]. 

 

 

 

 

Figure 2.10. Shear-lag model for monolayer graphene confined in polymer matrix. τ is the shear 

stress at a distance z from the centre of the monolayer. 𝑇 is the thickness of the composite, t 

is  the thickness of single layer graphene. 
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In addition, the shear stress, 𝜏𝑖, at the polymer-filler interface is presented as [42] : 

  

𝜏𝑖 = 𝑛𝐸g𝑒m

sinh (𝑛𝑠
𝑥
𝑙

)

cosh(𝑛𝑠 2⁄ )
 

 

(2.3) 

 

In order to achieve the best platelet reinforcement, a high value of ns is desired according to 

Equation (2.2) and (2.3).   

 

Critical length 

In order to assess the reinforcing potential of fibres and platelets, the ‘critical length’ (Lc) 

concept was introduced for composites. This parameter is determined as double the minimum 

length over which the stress runs from zero at the filler end to reach the failure stress of the 

filler in the mid-session. Gong et al.[42] evaluated the degree of attachment between PMMA 

matrix and monolayer graphene through strain-dependent Raman band shifts and reported 

the critical length for graphene to be in the order of 3 μm as shown in Figure 2.11. It is 

commonly accepted that the filler length need to reach 10-times Lc for optimal reinforcement. 

Therefore, large graphene flakes with diameters greater than 30 μm are required for effective 

mechanical reinforcement. 

 

Figure 2.11. (a) Illustration of PMMA/graphene composite containing single layer graphene. 

(b) Strain distribution as a function of position x along the the tensile axis on the graphene with 

strain fixed at 0.4%. ns values of 10, 20, 50 are used. Reproduced from [42]. 
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Bilayer, trilayer and multilayer graphene 

Poor stress transfer of graphite is usually a result of layer sliding. This observation applies to 

multilayer graphene as well. In the coated state, when polymer is in contact with the top and 

bottom surfaces of the multilayer graphene flake, Gong et al. [69] argued that, for multilayer 

graphene, the effective Young’s modulus (E𝑒𝑓𝑓) can be expressed as: 

 

 
E𝑒𝑓𝑓 =

E𝑔

n
2

− k (
n
2

− 1)
 (n > 2) 

 

(2.4)  

 

where n  is the number of graphene layers, E𝑔 is the Young’s modulus of monolayer graphene, 

parameter k is the stress transfer efficiency factor, taken as 0.6 according to Gone et al. [69]. 

The relationship between E𝑒𝑓𝑓 and the number of layer that follows Equation (2.4) is shown 

in Figure 2.12. The effective graphene Young’s modulus remains the same for single layer and 

double layers and started decreasing with increasing number of layers. 

 

 

 

Figure 2.12. Relationship between effective Young’s modulus and the number of graphene 

layers. Reproduced from [69]. 

 

Bulk nanocomposites 

When graphene is incorporated in the polymer matrix, the rule of mixtures (ROM) is usually 

applied to anticipate the Young’s modulus (upper bound) Ec of composites: 
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 𝐸𝑐 = 𝐸𝑝𝑉𝑝 + 𝐸𝑚(1 − 𝑉𝑝) (2.5) 

 

 

Or when we consider the effective reinforcement: 

 𝐸c

𝐸m
= 𝑉p

𝐸p

𝐸m
+ 𝑉m 

 

(2.6) 

 

where 𝐸p is the Young’s modulus of the filler, 𝐸m is the Young’s modulus of the polymer matrix 

and Vp is the volume portion of fillers and 𝑉p + 𝑉m = 1.  

When there is uniform stress, the Young’s modulus (lower bound) is expressed as: 

 

 
1

𝐸c
=

𝑉p

𝐸p
+

𝑉m

𝐸m
 

 

(2.7) 

 

 

Or when we consider the effective reinforcement: 

 

 
𝐸c

𝐸m
=

𝐸p

𝑉m𝐸p + 𝑉p𝐸m
 

 

(2.8) 

 

 

For many years researchers have attempted to develop more accurate models for predicting 

the Young’s modulus of composites [70–73]. Halpin and Tsai [70] established a new model for 

the prediction using ribbon-shaped fillers. When graphene particles are aligned in the polymer 

matrix, the effective reinforcement is considered as: 

 

 
𝐸c

𝐸m
=

1 + 𝜉𝜂𝑉p

1 − 𝜂𝑉p
 

 

(2.9) 

 

 

 

Here η is expressed as: 
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𝜂 =

𝐸p

𝐸m
− 1

𝐸p

𝐸m
+ 𝜉

 

 

(2.10) 

 

 

In Equation (2.10), the parameter 𝜉 is linked to the filler aspect ratio and is stated as 2l/t [69]. 

This model has been successfully applied in numerous research studies of graphene/polymer 

nanocomposites.  

 

According to Equation (2.9), it is expected that the Young’s modulus increases with increased 

filler loading and higher aspect ratio, which is often also found in experiments [74].  

 

 

 

Figure 2.13. Stress–strain relationship for PLA/EG (A) and PLA/NG (B) composite films as a 

function of filler loading. Reproduced from [73]. 

 

While predicting Young’s modulus for polymer composites is relatively straight forward using 

models such as the Halpin-Tsai model, other mechanical properties like tensile strength, 
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toughness etc. are far more complicated to predict as they are controlled by many more 

factors, including the status of dispersion, interfacial bonding and failure modes. These 

aspects lead to mechanical properties with different concentration dependencies.  

Mechanical properties of typical polymer/graphene nanocomposites are presented in Table 

2.1. 

 

 

Table 2.1. Mechanical properties of graphene or graphene-based polymer nanocomposites. * 

S=Solution mixing, M=Melt mixing, P= In-situ polymerization, SSSP= solid-state shear 

pulverization. 

 

 

 

Polymer Filler 

 

Mixing 

method* 

Filler 

loading 

% increase 

Young’s 

modulus 

% increase 

tensile 

strength 

% increase 

flexural 

strength 

Ref 

PMMA EG S 21 wt% 21 - - [75] 
 

GNP S 5.0 wt% 133 - - [76] 

PP EG M 3.0 vol% - - 8 [5] 
 

xGNP-1 M 3.0 vol% - - 26 [77] 
 

xGNP-15 M 3.0 vol% - - 8 [77] 
 

Graphite SSSP 2.5  vol% - 60 - [78] 

LLDPE xGNP S 15 wt% - 200 - [79] 

HDPE EG M 3.0 wt% 100 4.0 - [80] 
 

UG M 3.0 wt% 33 - - [80] 

PPS EG M 4.0 wt% - - −20 [81] 
 

S-EG M 4.0 wt% - - −33 [81] 

PVA GO S 0.7 wt% - 76 - [82] 
 

Graphene S 1.8 vol% - 150 - [83] 

TPU Graphene S 5.1 vol% 200 - - [84] 

PET EG P 5.0 wt% 39 - - [85] 
  

P 10 wt% 42 - - [10] 

 

In terms of strength  (tensile, compression,  flexural ) and elastic modulus, three categories of 

strengthening results are reported: (1) strength decreases with increasing loading [13,86–
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92,92,93];  (2) strength increases with increasing loading [13,93];  (3) strength increases to a 

maximum value at a certain loading, and then decreases with additional graphene [74,95–97]. 

The last phenomenon is usually a result of agglomeration at higher GNP concentrations 

(greater than 5 wt% as in most literature), which results in stress concentration sites and weak 

interfaces.  

 

While some success has been reported for improving the elastic modulus as well as tensile 

strength with the addition of graphene, very little success have been reported in terms of 

improved toughness. So far, few studies have managed to improve the impact toughness of 

polymer/graphene nanocomposites [96,98–101]. In fact, more studies reported a reduction 

of impact toughness with addition of graphene [78,79,91,94,102]. More specifically, even in 

the case that toughness improved with increasing filler loading, the highest toughness values 

for composites were still below that of the pure polymer [79]. Similarly, the strain at break, 

which is indication of ductility, often decreases with further loading of graphene or GNPs to 

polymer matrices [74,79,86,101]. 

 

 

2.3.2 Electrical properties of polymer/GNP composites 

 

 

Many studies [75,103–109] have shown that polymers can be transformed from an insulator 

to a conductor with the addition of graphene (Figure 2.13). Such transitions are usually 

explained by the percolation theory using a power law equation [110]: 

 

 

 𝜎 = 𝜎0 (𝑉f − 𝑉c)𝑠 (2.11) 

 

   

where σ is the bulk composites conductivity, σ0 is the effective conductivity of the filler, 𝑉𝑓 is 

the volume fraction of the filler, Vc is the critical filler volume fraction at the percolation 

threshold and parameter s is the critical exponent. The value of s is a variable depending on 

the filler orientation, filler shape and particle dispersion. s and Vc are usually obtained by 

fitting experimental data (log 𝜎~log(𝑉f − 𝑉)c) as shown in the inserted graph in Figure 2.14. 

Alternatively, the electrical percolation can be taken as the concentration where its resistance 

decreases to 10% of that of neat polymer following work by Kim and Macosko [111]. It is 
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usually reported that s ≈ 1.2 for a 2D particle (in-plane) distribution [112,113] and s ≈ 1.8 for 

a 3D (random) distribution [110,114,115]. Nevertheless, higher values can be frequently 

found in the literature.  

 

 

 

Figure 2.14. Relationship between electrical conductivity and filler volume fraction for 

PET/graphene nanocomposites (red) and PET/graphite composites (blue). Reproduced from 

[61]. 

 

 

In the case of GNPs, Li and Kim established the percolation threshold as [116]: 

 

 

φf_2D =
2𝜋𝐷2𝑡

 (𝐷 + 𝐷IP)3
 

 

(2.12) 

 

 

φf_3D =
27𝜋𝐷2𝑡

4 (𝐷 + 𝐷IP)3
 

 

(2.13) 

 

 

 

where φf_2D  and φf_3D  are the percolation thresholds for composites with 2D and 3D 

randomly oriented fillers, D is the length of filler, t is the thickness of filler and DIP is the inter-

particle distance.  
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The classic quantum-mechanical tunnelling theory [117] reported that, when the DIP is close 

to 10 nm, electron hopping will happen and result in rapidly increased electrical conductivity 

of composite. Using DIP = 10 nm, Li et al. [116] revealed the relationship between percolation 

threshold and aspect ratio of GNP using Equation (2.12) and (2.13) and compared them with 

models by Celzard et al. [118] and Lu et al. [119].  A good fit of model prediction with 

experiment data was achieved as shown in Figure 2.15. 

 

 

 

 

 

 

Figure 2.15. Percolation threshold as a function of filler aspect ratio. Reproduced from [116]. 

 

 

Typical electrical properties of polymer/graphene composites are presented in Table 2.2. As 

expected, a higher percolation threshold is observed for polymer/GNP composites fabricated 

by melt compounding. Nevertheless, the plateau values of electrical conductivity show little 

difference regardless of the production method. Most electrical properties of polymer/GNP 

nanocomposites exhibit plateau values around 10−4 to 10−3 S/cm. However, polymer 

composites based on carbon nanotube (CNT) usually exhibit a considerably lower percolation 

thresholds (~0.1 vol %) [120] than those based on GNP.  
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Table 2.2. Electrical properties of polymer/GNP nanocomposites. * S=Solution mixing, M=Melt 

mixing, P= In-situ polymerization. 

 

Polymer 

 

Mixing 

method* 

Percolation 

threshold 

Electrical conductivity 

(S/cm) 

Ref 

 

PP M 0.1 vol% ~10−4 @ 3.0 vol% [5] 

HDPE M 2.5 vol% ~10−6 @ 8.0 wt% [96] 

HDPE M 16 wt% ~10−4 @ 25 wt% [94] 

HDPE M 5.7 wt% ~10−4 @ 8.0 wt% [121] 

PVDF S 2.4 wt% ~10−4 @ 4.0 wt% [122] 

PVA S 6.0 wt% ~10−7 @ 7.0 wt% [97] 

CMPVA S 0.8 wt% ~10−6 @ 4.0 wt% [123] 

PMMA S N/A ~10−4 @ 5.0 wt% [76] 

PMMA P 2.0 wt% ~10−4 @8.0 wt% [124] 

LLDPE S+M 12–15 wt% ~10−7 @ 20 wt% [79] 

PLA M 3–5 wt% ~10−7 @ 7.0 wt% [74] 

PAN S 3–4 wt% ~10−3 @ 6.0 wt% [125] 

PEN M 0.3 vol% – [126] 

Nylon-6 P 0.75 vol% ~10−3 @ 3.0 wt% [127] 

PODBS P 4.0 wt% ~10−3 @ 5.0 wt% [128] 

Silicone rubber S 0.9 vol% ~10−5 @ 2.0 vol% [86] 

PET/GNP M 5.7 wt% ~10-1   @10 wt% [109] 

     

 

 

 

2.3.3 Barrier properties of polymer/GNP composites 

 

Graphene is usually regarded as a potential material for barrier films. For example, the 

addition of an extremely low amount (0.02 vol%) of crumpled graphene greatly improved the 

barrier properties of the resulting composites as illustrated in Figure 2.16 [129]. 
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Figure 2.16. Relationship between Oxygen relative permeability and graphene volume fraction 

in polystyrene (PS)/graphene composites. [129]. 

 

In 1976, Nielsen developed the ‘tortuous path’ model to model the barrier properties of filled 

polymer system (Figure 2.17.), stating that the path that water or gas molecules must take to 

pass through the polymer is increased with the addition of a high aspect ratio filler.  

 

 

 

Figure 2.17. Illustration of the Nielsen model. Reproduced from [130]. 
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Nielsen [131] also developed the following equation: 

 
𝑃

𝑃0
=

1 − 𝜑

1 +  (
𝐷
2𝑡). 𝜑

 

 

(2.14) 

 

Where P and P0 are the permeability of the polymer composites and neat polymer matrix, D 

is the filler diameter, t is the filler thickness and φ is the filler volume fractions. 

 

The Nielsen model has been widely adopted for polymer/clay composite. For instance, Duan 

et al. [132] showed that a good fit was found for predicting the water vapour transmission 

rates (WVTR) of PLA/MNT films to the Nielsen model (Figure 2.18).  

 

 

 

Figure 2.18.  (a) Polylactide (PLA)/Clay nanocomposite under TEM with aligned platelets;  (b) 

Polylactide (PLA)/Clay nanocomposite under TEM with randomized platelets; (c) Relationship 

between WVTR of PLA nanocomposites and clay content, compared with the Nielsen model. 

Reproduced from [130]. 
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Typical results on barrier properties of polymer/graphene composites are summarised in 

Table 2.3.  

 

Table 2.3. Summary of results on water permeability of graphene based nanocomposites. 

S=Solution mixing, M=Melt mixing, P= In-situ polymerization. 

 

Polymer Filler Mixing 

method* 

Max. reduction in 

permeability 

Ref 

 

PA12 FGS M 37% @ 0.6 wt% [133] 

PI GO S 90% @ 0.001 wt% [134] 

PI Graphene S 93% @ 0.1 wt% [135] 

PI GO S 82% @ 0.1 wt% [135] 

PI GO S 89% @ 1.0 wt% [136] 

PANI Graphene S 88% @ 0.5 wt% [137] 

PU GO S 76% @ 3.0 wt% [138] 

EVOH Graphite S 59% @ 1.0 wt% [139] 

PVA GO S 68% @ 0.72 vol% [140] 

PVA GO S 20% @ 2.0 wt% [141] 

CA GO S 47% @ 0.8 wt% [142] 

PU GO S 76% @ 3.0 wt% [138] 

PVA GO S 68% @ 0.72 vol% [140] 

 

 

Based on Table 2.3, it seems that significantly improved barrier properties can be achieved 

with a low graphene loading, as compared to nanoclay based systems. For example, for 

traditional polyimide/MNT nanocomposites, 8 wt% nanoclay was required to reach a 

reduction in WVTR of 83% [143]. However, Tseng et al.[134] found that an extremely low GO 

content of 0.001 wt% achieved a similar reduction.  

 

2.3.4 Synergy with other carbon/non-carbon nanofillers 

  

Polymer composites containing more than one filler often display superior properties 

[115,144,145] compared to composites filled only with a single nanofiller type as summarized 

in Table 2.4. Among these hybrid systems, GNP/CNT seems to be the most common binary 

system and compositions with higher GNP loadings usually achieve optimum increased 
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properties. For example, epoxy resins with GNP and SWCNT in a 3:1 weight ratio exhibited a 

greater thermal conductivity compared to those based on an individual filler, yet decreased 

electrical conductivity as shown in Figure 2.19 [146]. It is believed that the bridging 

interactions (Figure 2.20) between GNPs and SWCNTs enhanced the interfacial connections 

for thermal conduction, while eliminating the effective electrical transport. 

 

Table 2.4. Summary of recent researches on polymer nanocomposites with hybrid fillers. 

Polymer Filler Enhanced property Ref 

PDMS GNP+CNT Electrical [147] 

Epoxy GNP+CNT Electrical [146] 

Epoxy GNP+CB+CNT Electrical [148] 

PVA ND+CNT+FG Mechanical [149] 

Epoxy CNT+GNP Electrical, Mechanical [150] 

PEI GNP+CNT Electrical [151] 

PP CNT+CB Electrical [152] 

Epoxy CNT+silicon gel Electrical, Rheological [103] 

TPU CNT+nanoclay Electrical [153] 

 

 

 

Figure 2.19. Thermal and electrical conductivities as a function of GNP filler percentage (x) for 

epoxy composites with GNPxSWNT10-x filler. Reproduced from [146]. 
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Figure 2.20. (a) SEM and (b) TEM images of epoxy composite with GNP and SWNT. (c) 

Illustration of typical GNP-SWNT connections. Reproduced from [149]. 

 

Apart from improved electrical conductivity, increased mechanical properties have also been 

reported in a few studies using hybrid fillers. It is reported that both the stiffness and hardness 

of PVA/CNT/graphene composites increased by four times compared to those with single 

nanocarbon reinforcement as shown in Figure 2.21 [149].  

 

 

 

Figure 2.21. Percentage synergy for composites with different filler ratio in terms of hardness 

and elastic modulus. Reproduced from [149]. 

 

 

Apart from carbon nanofillers, the addition of a secondary non-conductive filler to 

nanocarbon based conductive polymer composites (CPCs) was also reported to enhance the 

electrical conductivity of these hybridized nanocomposites through the volume exclusion 
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effect [115,153–156]. Wilkinson et al. [115] grew nanotubes onto silica gel particles and 

reported a percolation threshold of 0.62 wt% (equivalent to 0.20 wt% CNTs) for these hybrid 

particles. This result was second only to the 0.06 wt% reported by Kilbride et al. for CNT/PVOH 

[157] but much lower than values reported for other hybrid systems (0.675 and 10 wt%, 

respectively) [158,159]. A subsequent study [103] from the same group showed that such 

binary systems also have the added benefit of achieving significantly reduced mechanical 

shear moduli (up to five orders of magnitude)  while displaying a very low electrical 

percolation threshold  (~ 0.16 wt% CNT). Bilotti et al. [153] reported controlled dynamic 

percolation of CNT/TPU composites by adding an insulating nanoclay and found altered 

percolating networks of CNTs in thermoplastic polyurethane (TPU) explained by the volume 

exclusion theory [156]. 

 

 

2.4 PLA/graphene composites 

 

 

2.4.1 Introduction to PLA 

 

 

With the increasing demand for environmentally friendly materials, polylactide (PLA) has 

attracted a lot of interest from both industry and academia. PLA possesses several desirable 

features including biocompatibility, sustainability and biodegradability. In 1954, DuPont firstly 

patented a PLA with high-molecular weight and started the commercialization of PLA. Over 

the past 10 years, Nature Works LLC becomes the leading company in the field of PLA markets. 

Two key types of PLA products developed by them are a) Natureworks™, which are 

polydilactide-based resins designed for packaging or plastics and b) Ingeo™, which are 

polydilactide-based fibres that are designed for the application of specialty textiles and fibre. 

 

PLA is a member of aliphatic polyesters and is mainly produced using renewable resources 

from nature. Lactic acid (CH3–CHOHCOOH) is the monomer for the building of PLA chains. It 

has two stereoisomers which are both optically active: dextro- ( D -) and levo- ( L -) (Figure 

2.22). Notably, the two isomers share the same physical properties despite the structure 

difference.  
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The major production method to PLA from lactic acid is via the polycondensation reaction, yet 

organic solvents are required for the extraction of resulting water to get high molecular weight 

grades. A second route is through the ring-opening polymerization of the monomer as shown 

in Figure 2.23. Different forms of lactide can be produced as a result as shown in Figure 2.24, 

namely: L-lactide, D-lactide and meso-lactide. Production through the ring-opening 

polymerization route enables the tailoring of polymer chains by controlling the ratios between 

different lactides as shown in Figure 2.25, producing PLAs with different properties, including 

glass transition temperature, melting temperature, crystallinity and molecular weight. For 

example, PLA with high percentage of L-lactide usually possess high crystallinity. In fact, it was 

reported that, by maintaining the D-lactide content below 2%, highly crystalline polymers can 

was produced [160]. In contrast, amorphous PLAs was achieved when the D-lactide proportion 

reached higher than 15% [161]. Notably, neat poly-L-lactide (PLLA) is semi- crystalline (37%) 

[162], while PLA based on meso-lactides is amorphous. In terms of melting temperature, both 

PLLA and PDLA have a melting point of ~180 °C, yet varying melting point from 130 °C to 220 °C 

can be achieved depending on the structure of polymer chains [161]. 

 

 

 

 

 

 

 

Figure 2.22. L-lactic acid and D-lactic acid. Reproduced from [163]. 
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Figure 2.23. Two routes for the production of PLA from Lactic Acid. Reproduced from [163]. 

 

 

 

 

 

 

Figure 2.24. Possible forms of lactides. Reproduced from [163]. 
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Figure 2.25. Typical PLA chains combining the D-lactic acid and L-lactic acid with varying ratios. 

Reproduced from [163]. 

 

 

Crystallinity of the PLA have a huge impact on the mechanical and thermal properties and the 

crystallization process depends on many factors including the thermal processing  history 

[164], addition of additives [165], as well as chain composition [166]. In general, PLA crystals 

have three structures, named α [167–169], β [170–173], and γ [174] forms. The α-crystal 

develops upon melt or cold crystallization and is the most occurring and stable polymorph 

[168]. The β form grows by stretching the α-crystal while the γ form develops on 

hexamethylbenzene substrate [174]. In addition, the existence of a disorder PLLA form (α’), 

was confirmed [175–179].  Notably, during the crystallization process of PLLA in the industrial 

melt processing temperature region of 100-120 °C, both α’ and α form crystals is developed 

[175–178]. It was further noticed that the disordered α’ form can reform into the ordered α 

form upon annealing as shown in Figure 2.26 [180].   

 

The mechanical properties of PLAs can vary from soft materials to stiff plastics. Semi-

crystalline PLA usually possesses better mechanical properties compared to amorphous PLA 

as shown in Table 2.5 [181]. Stereochemistry, processing conditions also have impact on the 

properties of as shown in Table 2.6 [182]. Compared with other commodity polymers as in 

Table 2.5 [183], the mechanical properties of semi-crystalline PLLA are promising. 

Nevertheless, PLA has a low impact strength and slow crystallization rates, both of which limit 

its industrial applications [184].   
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Figure 2.26. PLLA α’-to-α transition upon annealing. Reproduced from [180]. 

Table 2.5.  Summary of the properties of PLA polymers, reproduced from [181]. 

 PLLA Annealed PLLA PDLLA 

Crystallinity 3% 45% amorphous 

Tensile strength (MPa) 59 66 44 

Elongation at break (%) 7 4 5.4 

Modulus of elasticity (MPa) 3750 4150 3900 

Yield strength (MPa) 70 70 53 

Flexural strength (MPa) 106 119 88 

Unnotched izod impact (J/m) 195 350 150 

Notched izod impact (J/m) 26 66 18 

Rockwell hardness 88 88 76 

Heat deflection temperature (°C) 55 61 50 

 

2.4.2 Properties of PLA/GNP composites 

Many methods have been proposed [185–190] to reinforce PLA. One solution that has been 

pursued over the past years is the incorporation of nanofillers into the PLA matrix 

[189,191,192]. This chapter will review the most recent advances in PLA/graphene 

nanocomposites. 

Mechanical properties of PLA/GNP nanocomposites 

Typical effects on mechanical properties for graphene-based PLA composites are presented 

in Table 2.8. Most studies revealed that the modulus of composites increased with the 

addition of GNP similar to other polymers [193–197] or decreased after a critical filler loading 

[198]. The strength of PLA/graphene composites decreased [196] or increased to a maximum 

value at a specific concentration, and then decreased with additional filler loading 

[193,197,198], following the general trend of most polymer nanocomposites. With the 
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addition of graphene, the toughness or the elongation at break of PLA composites usually 

decreased [193,196], yet unchanged or even improved toughness was also reported  [193–

195,197,198].  

 

Table 2.6.  Summary of the properties of PLA copolymers with different processing 

condition, reproduced from [182]. 

Process condition Copolymer 

ratio of 

(L/D,L)-PLA 

Tensile 

strength 

(MPa) 

Young’s 

modulus 

(GPa) 

Elongation 

at break 

(%) 

Molecular 

weight 

(103) 

Injection molded, 

crystallized 

100/0 64.8 4 — 800 

Injection molded, 

amorphous 

90/10 53.4 1.03 4.6 — 

Injection molded, 

crystallized 

90/10 58.6 1.29 5.1 — 

Extruded, biaxially 

oriented, strain 

crystallized 

90/10 80.9 3.41 41.2 145 

Extruded, biaxially 

oriented, strain 

crystallized, heat set 

90/10 70.1 2.76 20.7 145 

Extruded, biaxially 

oriented, strain 

crystallized 

95/5 68.6 1.88 56.7 120 

Extruded, biaxially 

oriented, strain 

crystallized, heat set 

95/5 60.7 1.63 63.8 120 

Injection molded, 

amorphous 

80/20 51.7 2.1 5.7 268 

Extruded, biaxially 

oriented, strain 

crystallized 

80/20 84.1 2.94 18.2 268 

Extruded, biaxially 

oriented, strain 

crystallized, heat set 

80/20 80.1 2.54 32.3 268 
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Table 2.7.  Summary of the properties of polymers, reproduced from [183]. 

Polymer Tg 

(°C) 

Tm 

(°C) 

Tensile 

strength  

(MPa) 

Tensile 

modulus  

(MPa) 

Elongation 

at break 

(%) 

PLA 40–70 130–180 48–53 3,500 0.5-12 

LDPE -100 98–115 8–20 300–500 100–1,000 

PCL -60 59–64 4–28 390–470 700–1,000 

PS 70–115 ~100 34–50 2,300–3,300 1.2–2.5 

PVA 58–85 180–230 28–46 380–530 – 

PET 73–80 245–265 48–72 200–4,100 30–300 

 

Table 2.8. Mechanical properties of PLA/graphene composites by melt mixing.* S=Solution 

mixing, M=Melt mixing. 

 

Filler  

 

 

 

Mixing 

method* 

 

 

Filler 

loading 

 

 

% 

increase 

Young’s 

modulus 

% 

increase 

tensile 

strength 

Ref 

 

 

 

GNP S 0.4 wt% 156 129   [193] 

GO S 0.5 wt% – 106 [194] 

GNS S 0.2 wt% 18 26 [195] 

PFG M 5.0 wt% 80 10 [199] 

EG M 2.0 wt% 33 10 [74] 

EG M 4.0 wt% 56 18 [196] 

RGO M 0.3 wt% – 3.4 [197] 

GNP M 0.3 wt% – 1.7 [197] 

xGNP M 0.3 wt% 70 -32 [198] 

GNP M 0.1 wt% -4.0 – [200] 

MWNT M 0.15 wt% 3.5 – [200] 

TRG S 1.0 wt% – 8.5 [201] 

 

Electrical properties of PLA/GNP composites 

Typical results for the electrical conductivity of PLA/graphene composites are presented in 

Table 2.9. Most conductive polymer composites (CPCs) showed improved electrical 
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conductivity with increasing GNP content with the conductivity levelling off at around 10−4 to 

10−3 S/m, regardless of GNP concentration. Typical percolation thresholds ranged from 4 to 

13 wt% GNP in PLAs. 

 

Notably, apart from the general factors that influence the electrical conductivity of 

PLA/graphene composites, the degree of crystallization has an important influence on the 

conductivity. PLA is a semi-crystalline polymer thus the conductivity of its CPCs is affected by 

crystallinity. For example, Fang et al. [202] attributed the increase in conductivity to a change 

in crystallinity for PLA/CNT composites, since the nanotubes were inclined to be concentrated 

in the amorphous part during blending. Sullivan et al. [203] altered the crystallization 

characteristics of PLA significantly by varying the cooling rate during compression moulding of 

films and noticed that, for the same GNP content, the electrical conductivity increased by ~3 

orders of magnitude which correlated with an increase of ~40 % in crystallinity. 

 

Table 2.9. Electrical conductivity of PLA/graphene composites. * S=Solution mixing, M=Melt 

mixing. 

 

Filler type 

 

Mixing 

method* 

Percolation 

threshold 

Electrical conductivity   

(S/m) 

Ref 

 

GNP S 4.5 vol%   0.1 @ 8.4 vol% [204] 

GNP S 0.1 vol%   0.1 @ 0.1 vol% [204] 

rGO S -  10-5 @ 2.5 vol% [205] 

rGO M 0.1 wt% 10-9 @ 2.0 wt% [206] 

rGO S 0.1 wt% 10-4 @ 2.0 wt% [207] 

CNT S 0.8 wt% 10-4 @ 2.0 wt% [207] 

EG M 4.0 wt% 10−7 @ 14 wt% [74] 

NG M 13 wt% 10−8 @ 8.0 wt% [74] 

 

Water barrier properties of PLA/GNP nanocomposites 

 

Research on the permeability of PLA nanocomposites has mainly focused on PLA/nanoclay 

systems with only few PLA/graphene composites studied so far. An overview of barrier 

properties of PLA nanocomposites is listed in Table 2.10. The maximum reduction in 

permeability ranges from 1 to 90 %, depending on the loading as well as the type of the filler. 
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Apart from the filler aspect ratio as discussed in the previous session, the crystallinity of the 

polymer composites also has an impact on the barrier properties [208]. 

 

Table 2.10. Summary of literature on water barrier properties of PLA-based composites 

(MMT=Montmorillonite, S=Solution mixing, M=Melt mixing, P=In-situ polymerization). 

Reproduced from [130]. 

Filler  

 

 

Mixing 

method 

 

Maximum % 

reduction in 

permeability 

Ref 

 

 

MMT M 50% @ 5.0 wt% [209] 

MMT M 92% @10 wt% [210] 

Clay S 5%   @ 5.0 wt% [211] 

Clay S 36% @ 5.0 wt% [211] 

Clay M 60% @ 5.0 wt% [212] 

MMT M 58% @ 5.0 wt% [213] 

Clay M 95% @15 wt% [214] 

Clay M 43% @ 6.0 wt% [132] 

Cellulose S 10% @ 1.0 wt% [215] 

MMT M 37% @ 5.0 wt% [216] 

Halloysite 

 

M 

 

55% @ 12 wt% 

 

[217] 

 

 

2.5 Polymer composites by multilayer coextrusion 

2.5.1 Introduction to multilayer coextrusion 

The forced assembly multilayer coextrusion technology was originally developed nearly five 

decades ago by Tollar James [218] and involved the use of either two or more extruders to 

feed material into a feed block followed by one or more multiplier dies as shown in Figure 

2.27 [219]. This was a continuous melt-processing method that can have a throughput of 9 

kg/hour and is very easy to scale up. In each multiplier die the layered polymer melt is split 

vertically, compressed and expanded, and then recombined one on top of the other [220,221]. 

This process is repeated for each multiplier die. If the feed block produces two layers, the final 

number of layers after n multipliers is 2n+1 .This solvent-free process is not only cost-effective 

and environmentally friendly compared to layer by layer (LBL) deposition technology, but is 

also able to tune the structure of layered polymeric systems from nano- to micro- scale, which 

cannot be achieved by traditional polymer blends. With the current state-of-the-art, up to 
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4,096 layers of thicknesses as thin as 20 nm can be coextruded using 11 units of layer 

multiplying dies [222].  

 

Figure 2.27. Top: Illustration of the production of multi-layered polymer nanocomposite films 

using 7 dies. Adapted from [219]. Bottom: The standard multiplier die. Adapted from [221] 

The following section will provide a comprehensive review of recent advances in multilayer 

polymer composites with a focus on graphene fillers. 

 

2.5.2 Properties of multilayer coextruded polymer composites 

The multilayer coextrusion technique has been used to produce multilayer structures  with 

interesting properties such as increased crystallization [222], barrier properties [223,224], 



Chapter 2 - A literature review on polymer/graphene composites 

50 
 

optical properties [225], electrical conductivity [226–228] and  mechanical properties 

[226,229–239]. By tuning the hierarchical structure and layered configuration, these 

multilayer films can possess outstanding performances in gas barrier applications and in 

capacitors and data storage [240–246]. A summary of the most recent research is listed in 

Table 2.11. Most studies are focused on a PP matrix with a few studies on PE, PMMA with 

fillers including CB, CNT and GNP etc. Notably, these increased properties are usually linked 

to: a) increased number of crystals and b) increased filler orientation during the layer 

multiplying stage and details of the improved properties will be discussed in the next session. 

 

Table 2.11. Summary of studies on multilayer composites. 

 

Layer A Layer B Enhanced 

properties 

Comments Ref 

HDPE HDPE+SGF Mechanical  Increased filler orientation [237] 

LDPE Mica Mechanical Increased alignment & exfoliation [235] 

PEO EAA Mechanical  Increased aligned PEO crystals [229] 

PET PET+talc Barrier  Increased aligned crystals [224] 

PMMA PMMA+GNP Mechanical  Tensile modulus increased 2-fold [234] 

PP PP+CB Mechanical, 

Electrical  

Increased elongation at break [226] 

PP Talc+PP Mechanical  Increased Young’s modulus  at the 

cost of some loss in ductility  

[231] 

PP PP+CNT Mechanical  Increased Young's modulus 

without significant loss in ductility. 

[233] 

PP EVA Mechanical  Increased crystallinity [236] 

PP PP+IFR Flame 

retardant 

Improved flame retardant without 

loss in mechanical properties 

[247] 

PP PEO Barrier  Decreased permeability from 

increased crystallinity 

[248] 

PP+CB+CNT PP+CB+CNT Electrical Lower percolation threshold  [227] 

PS SEPS Mechanical, 

Electrical  

Improved toughness after 

annealing 

[230] 

PS PMMA Mechanical  Increased strength and ductility  [234] 
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Electrical properties  

 

Multilayer extrusion has been successfully applied to tailor the electrical properties of 

polymer composites. This is usually achieved by the optimization the filler 

distribution/orientation during the layer multiplying process. Xu et al. [228] used multilayered 

coextrusion to produce polypropylene (PP) and carbon black (CB) filled PP multilayer 

composites as shown in Figure 2.28 and proved that multilayer composites can display varied 

electrical behaviours depending on the number of layers and morphology of the CB particles 

in the PP+CB layers at identical total CB loading as shown in Figure 2.29. 

 

 

 

 

 

Figure 2.28. (a) PP/PP+CB composites with 4 layers under SEM. (b) Enlarged version of the 

rectangular area in (a). (c) Polarized light micrograph of composites with 64 layers. Reproduced 

from [228]. 
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Figure 2.29. Volume resistivity as a function of total carbon black content in composites (left) 

and  number of layers (right). Reproduced from [228]. 

 

Mechanical properties 

The mechanical properties of multilayer films can also be improved, usually as a result of 

improved filler distribution and orientation during multilayer coextusion. This technology was 

used to distribute CNTs in PP by Miquelard-Garnier et al. [233]. The resulting composites 

containing 0.2 wt% and 1 wt% CNT in PP exhibited an increase of 25–30% in Young’s modulus 

without loss in ductility. Subsequent studies from the same group reported the use of the 

forced assembly method to orient GNPs in PMMA multilayer films [234]. These films exhibited 

significant single layer reinforcement of 118% at a concentration of 2 wt% GNP as shown in 

Figure 2.30, which was higher than previously reported for randomly dispersed GNPs. This 

increased reinforcing efficiency was explained by the planar orientation of the GNPs in the 

filled layer.  

 

 

Figure 2.30. Single layer effective reinforcement as a function of graphene loading in graphene 

filled layers in PMMA/PMMA+GNP 2049 layers system based on quasi-static (left) and DMA 

(right) experiments. Reproduced from [234]. 
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Apart from improved Young’s modulus, increased toughness and strain at break have also 

been achieved through multilayer coextrusion [226,228,230,232,235]. Gao et al. [226] 

demonstrated the elongation at break increased from ~100% for monolayer PP/CB 

composites to 350% for multilayer PP/CB system (Figure 2.31). This was explained to be due 

to  cracks starting from the PP+CB layer were stopped on the multilayer interface, causing  

scattering crazes in the neighbouring PP phase as illustrated in the micrograph inserted in 

Figure 2.31. Therefore, more energy is required for complete cracking, resulting in an 

increased ductility.  Similarly, Lichao et al. [235] reported that elongation at break of 

multilayered LDPE/mica composites are 3 times larger than those of conventional samples.  

 

 

 

Figure 2.31. Black: Change in tensile strength for traditional PP/CB composites and 128 layer 

PP/PP+CB composites. Orange: Change in elongation at break for traditional PP/CB composites 

and 128 layer PP/PP+CB composites. Both composites have a total CB loading of 7 wt%. 

Reproduced from [226]. 

 

2.6 Conclusions 

 

Over the years, graphite nanoplatelets (GNPs) has been used successfully to fabricate polymer 

composites with multifunctionality. The unique 2D structures provide more interfaces 

between the matrix and fillers at the same loading compared to that of 1D CNT. In order to 

achieve optimal reinforcement, proper morphological control is required. For example, 

platelets with imperfections and folds usually decrease their reinforcing capabilities, therefore 



Chapter 2 - A literature review on polymer/graphene composites 

54 
 

processing methods that contribute to the exfoliation and dispersion of GNPs will produce 

composites with greater reinforcement. Moreover, controlled alignment of GNPs and better 

quality of distribution can also enhance other properties of the resulting composites. For 

instance, polymer/graphene composites subjected to thermal annealing demonstrated a 

randomized GNP orientation and improved electrical conductivity was achieved [111], 

whereas highly-oriented platelets usually improve the mechanical properties [249]. It can be 

concluded that, for achieving targeted properties, a processing method should be carefully 

selected. 

 

Multilayer coextrusion was used widely in the past years to achieve composites with desired 

properties simultaneously by engineering the spatial organization of fillers in the polymer 

matrix. In addition, variable properties could be achieved by altering key parameters such as 

the number of layers, fillers loadings in the filled layers and selections of paired polymers. 

Such advanced technology with specific morphological control can guide future research on 

polymer graphene composites, producing man-made nanocomposites with nano-engineered 

hierarchy [250]. 
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Chapter 3 - Influence of filler size on 

properties of PLA/GNP  

nanocomposites   

 

 

3.1 Introduction 

 

According to the review in Chapter 2, the properties of GNP itself will have a significant impact 

on the properties of the resulting composites. Therefore, it is important to have a comparative 

study to understand the influence of GNP size on the properties of PLA/GNP composites 

before multilayer coextrusion. 

 

Relatively few studies have investigated the relationship between graphene particle size and 

composite properties. Kim and Macosko [111] investigated the influence of particle size on 

composites by incorporating functionalized graphene sheets (FGS) and graphite nanoplatelets 

(GNP) into a polycarbonate (PC) matrix. They incorporated FGS (thickness (t) = 1-4 nm; 

diameter (d) ≈ 0.5 μm) and GNP (t ≈ 40 nm; d ≈ 1 μm) into PC and reported a modest increase 

in Young’s modulus of 3.8 % for 1 wt% GNP and 6.7 % for 1 wt% FGS. However, since surface 

structure was also altered through the introduction of functional groups at the surface of 

these FGS, reinforcement effects for this system could not be solely attributed to particle size 

but might also be partly the result of improved interfacial interactions through functional 

groups. Kim and Jeong [74] investigated the addition of expanded graphite (EG) (t ≈ 15 nm; d 

≈ 10 μm) and natural graphite (NG) (t ≈ 20 μm; d ≈ 500 μm) to a PLA matrix and reported an 

increase in Young’s modulus of 38 % for 5 wt% EG and 20 % for 5 wt% NG. Pinto et al.  [251] 

added two types of GNPs, xGNP-C750 and xGNP-M5 from XG Sciences, Inc. into PLA and found 

Young ś modulus increased by 14 % in the case of 5 wt% filler content. Also, tensile strength 
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was increased by 20 % for xGNP-C750 and by 6 % for 5 wt. % of xGNP-M5. However, in that 

study characterization was focused on the biodegradation behaviour rather than on the effect 

of particle size on composite physical properties, which were not discussed or analysed in any 

detail. 

 

In this chapter, we investigated the influence of particle size on mechanical, electrical and 

thermal properties of PLA nanocomposites through the use of two types of GNP. For this 

purpose, we selected two types of xGNPs from XG Sciences, Inc. of different particle sizes and 

aspect ratios (AR). Small xGNP-C750 (GNP-S) and large xGNP-M15 (GNP-L) particles were melt-

compounded with PLA and the resulting nanocomposite properties were evaluated.  

 

3.2 Experimental 

 

3.2.1 Materials 

 

Polylactide (PLA) (2002D - NatureWorks Co. Ltd., USA,) with a density of 1.24 g/cm3 and a 

molecular weight of 204453 g/mol was purchased from Resinex, UK. PLA 2002D has ~4% of D-

lactic monomer and a melting temperature of ~170 °C. GNPs were purchased from XG 

Sciences, Inc. (Lansing MI, USA). xGNP-C750 refers to GNPs with an average diameter (d) of 1 

μm and a surface area of 750 m2/g, according to the manufacturer’s datasheet. xGNP-M15 

has a larger diameter of 15 μm but a lower surface area of 150 m2/g. According to the 

manufacturer, xGNP-C750 particles have a slightly lower thickness (t ≈ 2 nm) compared to 

xGNP-M15 (t ≈ 7 nm), which results in aspect ratios (AR) of ~500 for xGNP-C750 and ~2000 for 

xGNP-M15. Both GNPs are used as received. For simplicity and clarity xGNP-C750 is referred 

to as GNP-S (small) and xGNP-M15 as GNP-L (large) in this study. 

 

3.2.2 Sample preparation 

 

Nanocomposites with 5, 7, 10, 13 and 15 wt% GNP in PLA were prepared by melt compounding 

using an X'plore 15cc mini-extruder (DSM, The Netherlands). Compounding was performed at 

180 °C under nitrogen atmosphere. The screw speed was kept constant at 245 rpm for 9 min. 

The extruded strands were successively pelletized and compression moulded at 180 °C and 50 

bar for 3 min in 130 μm thick films using a Collin hot press P300E (Germany) .  
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3.2.3 Characterization 

 

Raman spectroscopy was performed at room temperature using a 532 nm laser and a power 

density of 100 mW/mm2 (LabRam Aramis).  

 

Scanning electron microscope (SEM) (FEI Inspector-F, The Netherlands) were used to 

characterize the GNP powders as well as PLA/GNP composites. GNP powders were dispersed 

in acetone and subsequently deposited onto conductive glass slides. All composite specimens 

for PLA/GNP-S and PLA/GNP-L were prepared by cold-fracturing the composite films in liquid 

nitrogen. Fracture surfaces were gold sputtered before analysis.  

 

X-ray diffraction (XRD) analysis was performed on a Siemens D5000 Diffractometer using Cu 

(Kα) radiation (wavelength: 1.54 Å) at room temperature in the range of 2θ = 5° to 40° at a 

scanning rate of 20 min-1. 

 

The electrical conductivity of all samples was measured by a two-point probe station using a 

picoammeter (Keithley 6485) and a DC voltage source (Agilet 6614C). Samples were cut in 

rectangle shapes (20.5 mm x 5 mm x 2 mm) and silver paste coating was used to ensure good 

contact with the electrodes of the electrometer. Specimens with a resistivity exceeding 1010 

Ohm are considered as ‘non-conductive’ as the electrical resistivity is no longer measurable. 

The electrical percolation was taken as the concentration where its resistance decreases to 

10% of that of neat PLA following work by Kim and Macosko [111]. 

 

Tensile tests were performed using an Instron 5586 at room temperature, equipped with a 1 

kN load cell. Samples were cut in dumbbell shapes (geometry type 5, ASTM 668) and were 

tested with a rate of 10 mm/min. Reported values were calculated as averages over five 

specimens.  

 

Dynamic mechanical analysis (DMA) spectra were obtained with a DMA Q800 (TA Instruments). 

Samples were tested under film tension mode. A frequency of 1 Hz with a temperature ramp 

of 3 °C/min scanned from room temperature to 150 °C was employed. At least three tests were 

carried out for each material.  

 



Chapter 3 - Influence of filler size on properties of PLA/GNP nanocomposites   

58 
 

Differential scanning calorimetry (DSC) (Mettler-Toledo 822e) was used to investigate the 

thermal properties of the nanocomposites. All samples were heated to 200 °C at 10 °C/min. 

Crystallinity was determined using a heat of fusion for 100 % crystalline PLA of 93.6 J/g  [185].  

 

Thermogravimetric analysis (TGA) was performed on a TA Instruments Q500 (TA Instruments). 

Samples weighing 5-7 mg were heated from room temperature to 700 °C at a rate of 10 °C/min 

under nitrogen atmosphere. 

 

Heat distortion temperature (HDT) was determined using a DMA Q800 (TA Instruments). A 

constant load of 1.83 MPa was applied at the mid-point of a 3-point bending sample according 

to ATSM Standard D648 at a heating rate of 2 °C/min from room temperature to 150 °C.  

 

3.3 Results and discussion 

 

3.3.1 Characterization of GNP filler 

 

The structural defects of graphene play a crucial role in the final properties of this filler and 

their composites. Raman spectra for both GNP particles are shown in Figure 3.1. Three 

prominent bands can be seen: D band, G band, and 2D band appearing around 1335, 1580 

and 2680 cm−1, respectively. The band frequencies and intensity ratios of D and G bands are 

listed in Figure 3.1. It is well known that the intensity ratio of D (ID) to G (IG) band can be used 

as an indicator of defect quantity [252,253]. The fewer the defects, the lower the ID/IG value. 

GNP-L exhibits an ID/IG value of 0.49, which is lower than that of GNP-S (0.56), indicating less 

defects. It should be noted that lower ID/IG value usually indicates more disordered structures. 

Such disordered structures include defects, edges, crystal boundaries, symmetry breaking, etc 

and will be examined using SEM in the next session. It is believed that Raman spectroscopy is 

also a particularly useful technique to characterise graphene monolayers, bilayers and 

multilayers [4] as discussed in Chapter 2. For both GNP-S and GNP-L, the 2D band is weaker 

than the G band, indicating a multilayer structure for both fillers.  

 

Normalized X-ray diffraction (XRD) spectra of both GNP fillers are presented in Figure 3.1. A 

typical carbon peak at 2θ = 26° is present for both GNP fillers while GNP-L has a much sharper 

peak, possibly indicating larger thickness for GNP-L [254]. Detailed analysis will be done in the 

XRD session. 
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Figure 3.1. Raman spectra for the two GNPs (left) and X-ray diffraction (XRD) patterns of two 

GNPs (right) before mixing.  

  

 

Table 3.1. Frequency of D, G and 2D bands and intensity ratio of D and G bands for the two 

pristine GNPs. 

 

 

Filler ωD (cm−1) ωG (cm−1) h2D (cm -1 ) ID/IG 

GNP-S 1335.2 1580.7 2682 0.56 

GNP-L 1333.6 1575.8 2680 0.49 

 

 

 

Representative SEM images are shown in Figure 3.2. SEM also indicated that in powder form 

GNP-S tends to form agglomerates while GNP-L reveals more individual flakes. Platelet 

dimensions are later summarized in Table 3.2. Similar results were observed by Kumar et al. 

[255]. Average diameters of GNP-S and GNP-L were calculated to be ~1.2 μm and ~14 μm, 

respectively using image J software and by measuring at least 50 flakes. 
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Figure 3.2. SEM images showing pristine (a) GNP-S agglomerates and (b) GNP-L with arrows 

indicating individual flakes. 

 

 

3.3.2 Dispersion of GNP in PLA matrix 

 

 

A uniform and homogeneous dispersion of nanofillers in polymer matrices is vital for achieving 

an optimal mechanical property profile in nanocomposites. Micrographs of PLA/GNP-L and 

PLA/GNP-S composites are shown in Figure 3.3 and Figure 3.4. Fracture surfaces were 

generally rougher for GNP-L, indicating more crack deflection due to the larger GNP-L particles. 

For GNP-S nanofillers, having a much smaller lateral size than GNP-L, good dispersion can be 

observed for loadings as high as 10 wt%. The GNP-L particles tend to show some 

agglomeration for loadings ≥ 7 wt% while a layered graphitic structure is visible at 10 wt%. 

This agrees with earlier studies by Wang et al. [256], which showed that smaller GNP particles 

are easier to disperse in epoxy matrices than larger particles. 

 

Figure 3.5 gives a detailed view of some GNP flakes in PLA matrix, with the GNP-L 

nanoplatelets clearly exhibiting a multi-layered structure with some surface irregularities, 

cavities and cracks.  
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SEM images were also analysed using image J software to measure the average size of both 

GNP-L and GNP-S after compounding. Average particle diameters measured for both small 

GNP-S and large GNP-L were ~0.7 μm and ~8 μm, respectively. Compared to particle sizes of 

as-received GNP-S and GNP-L (~1.2 μm and ~14 μm, respectively) as measured by SEM in the 

previous section, the diameter of GNP-S was reduced by roughly a third while the diameter of 

GNP-L was nearly reduced by half during melt-compounding. Clearly, larger GNPs are more 

susceptible to shortening and break-up of nanoplatelets during high-shear melt mixing [233]. 

In addition, GNPs of larger diameter are more susceptible to breakage after compounding, 

effectively lowering their aspect ratio even further. 

 

 

 

 

 

 

 

Figure 3.3. SEM images showing dispersion of GNP-S in PLA matrix at filler loadings of (a) 5 

wt%, (b) 7 wt%, (c) 10 wt%, and (d) 15 wt%. Scale bar = 20 µm. 
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Figure 3.4. SEM images showing dispersion of GNP-L in PLA matrix at filler loadings of: (a) 5 

wt%, (b) 7 wt%, (c) 10 wt%, and (d) 15 wt%. Scale bar = 20 µm. 

 

 

 

Figure 3.5. Typical GNP particles (15 wt%) in PLA matrix (GNPs indicated by arrows); (a) GNP-

S; and (b) GNP-L. Scale bar = 1 μm. 
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To investigate further the structural features of PLA/GNP-S and PLA/GNP-L composites, X-ray 

diffraction (XRD) patterns of hot pressed films were obtained and are presented in Figure 3.6.  

 

 

Figure 3.6. X-ray diffraction (XRD) patterns of PLA/GNP-S and PLA/GNP-L nanocomposites with 

different filler loading, showing structural changes in composites with increasing amount of 

GNP filler. 

 

A broad amorphous peak from PLA was observed in neat PLA at around 16.8°. This confirms 

that neat PLA has predominantly an amorphous microstructure. As the graphene loading is 

increased in both systems, the intensity of this diffraction peak becomes stronger, indicating 

an increase in crystallinity with increasing GNP loading. Such results were also reported for 

Poly(lactic acid)/Poly(ethylene glycol)/GNP [198] system as well as Poly(lactic acid)/Epoxidized 

Palm Oil Blend system [254]. Notably, composites with GNP-L demonstrated a much stronger 

peak than those with GNP-S at the same loading, indicating that large GNP-L fillers induce a 

higher polymer crystallinity than small GNP-S in the composites. The XRD results also 

demonstrated that the crystallinity of PLA is slightly increased with the incorporation of both 

types of GNP regardless of their size. More quantitative measurements of crystallinity are 

discussed later in this chapter. 
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Our data also showed a very strong diffraction peak for all PLA/GNP-L systems at 2θ = 26° 

(Figure 3.6), which is typical for graphene. Similarly, PLA/GNP-S nanocomposites exhibited a 

peak at the same position but much weaker. This is understandable since pristine GNP-S is 

less crystalline than pristine GNP-L as was already shown in Figure 3.1, and as reported in the 

literature [251]. 

 

XRD can also provide information with regards to the stacking thickness of the GNP crystallites. 

The average out-of-plane crystallite thickness of the GNPs (t) was estimated using the (002) 

full width at half maximum (FWHM) 2θ values and the Scherrer equation: 

 

t =
0.89λ

βcosθ
 

 

(3.1) 

 

Where β is the line breadth (FWHM) in radians with the instrumental broadening subtracted, 

λ is the X-ray wavelength and 𝜃 is the diffraction angle of the peak of interest (002). Based on 

Equation (3.1), it can be calculated that pristine GNP-S has a thickness of ~10 nm while pristine 

GNP-L exhibits a higher thickness of ~40 nm. These dimensions remain roughly the same in 

the composites regardless of the GNP loading (~13 nm and ~42 nm, respectively). These 

thickness values are however far higher than the manufacturer’s data (t ≈ 2 nm for GNP-S, and 

t ≈ 7 nm for GNP-L).   

 

Using the experimental diameter data from SEM and thickness data from XRD, we can now 

calculate the aspect ratios (AR) of the fillers in the composites to be in the range of 5-200 for 

GNP-S and 12-420 for GNP-L. Size information is summarized in Table 3.2. 

 

Table 3.2. Average thickness (t) information from XRD and diameter (d) from SEM together 

with effective aspect ratios (AR) measured as well as back-calculated by micromechanical 

modelling for the two GNPs in the composites.  

 

Filler ta (nm) tb (nm) da (μm) db (μm) ARb ARc 

GNP-S 10 (±1) 13 (±6) 1.2 (±0.4) 0.7 (±0.6) 5-200 5 

GNP-L 40 (±4) 42 (±4) 14 (±6) 8 (±4) 12-420 12 

a data for pristine GNPs 
b data for GNPs in composites 
c data from mechanical modelling. 
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The state of GNP dispersion, aspect ratio and orientation was also correlated with 

nanocomposite properties. In the next section electrical conductivity and the effect of 

annealing on conductive network formation will be investigated, while corresponding aspect 

ratios will be estimated from theory and compared with measured data. 

 

3.3.3 Electrical properties 

 

The state of dispersion of nanofillers affects a whole host of physical properties including 

electrical properties in the case of conductive nanofillers. Figure 3.7 shows the changes in bulk 

electrical resistivity of PLA/GNP-S and PLA/GNP-L composites before and after annealing for 

0.5 h and 1 h respectively as a function of the GNP loading. Considering the melting 

temperature of ~169 °C for PLA matrix, a higher temperature of 180 °C was selected for 

annealing. 

 

 

 

 

Figure 3.7. Bulk electrical resistivity of PLA/GNP nanocomposites before and after annealing 

for 0.5 h and 1 h at 180 °C as a function of GNP loading; Black: PLA/GNP-S, Red: PLA/GNP-L. 

Not measurable data is plotted as 1E+10 Ωm. 
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Both the addition of GNP-S and GNP-L nanofillers resulted in significantly improved electrical 

conductivity of PLA at higher filler loadings. In the case of PLA/GNP-L nanocomposites, the 

electrical resistivity decreased significantly at a filler loading of only 7 wt%, indicating a lower 

percolation threshold for this higher aspect ratio nanofiller, presumably because of its high 

aspect ratio as discussed in Chapter 2. On the other hand, the low aspect ratio GNP-S systems 

showed no conductivity until a fairly high loading of 13 wt%. These results are in agreement 

with other studies. Kim et al. [74] reported that the percolation threshold for PLA/NG (AR = 

25 based on supplier’s data) composites lay somewhere between 7 and 10 wt%, while PLA/EG 

composites based on higher aspect ratio expanded graphite (AR = 667 based on supplier’s 

data) exhibited a percolation threshold between 3 and 5 wt%. 

 

However, interestingly upon annealing, GNP-S revealed a significant decrease in resistivity 

together with a reduced percolation threshold below 7 wt% (see Figure 3.7). On the contrary, 

the PLA/GNP-L system showed nearly no change in resistivity and percolation threshold upon 

annealing.  A number of studies have shown that the electrical properties of nanocomposites 

are not only dependent on filler type and treatment but also on initial dispersion and and 

processing history [257–261]. Furthermore, it is well documented that the formation of a 

conductive nanofiller network within a polymer matrix is a dynamic process that depends 

strongly on time and temperature [153,262–264]. Dynamic percolation phenomena were 

mainly observed for one-dimensional (1D) carbon nanotubes (CNT) [262,265–268] and zero-

dimensional (0D) carbon blacks [269,270].  Zhang et al. [262], for example, observed that the 

electrical conductivity of annealed TPU/CNT films was up to eight orders of magnitude higher 

than that of as-extruded pellets. Cipriano et al. [269] studied multiwalled carbon nanotube 

(MWCNT) and carbon nanofibre (CNF) filled polystyrene composites and also observed an 

increase in conductivity with different annealing times and temperatures. Deng et al. [271] 

reported a five fold reduction in percolation threshold in oriented PP/MWCNT tapes after 

annealing. The MWCNTs involved in most of these studies had typical diameters of around 9.5 

nm and lengths of 1.5 μm, which is of the same order as the small GNP-S used in our 

experiments. Bilotti et al. [153] showed that dynamic percolation is a thermally activated 

Arrhenius process that links percolation formation to polymer viscosity. All of this supports 

the observation that smaller fillers are more effective than large fillers in reducing the 

percolation threshold by annealing, which is the case in our experiment. Further experiments 

will be designed to investigate this phenomenon in more detail. 
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3.3.4 Mechanical properties 

 

Tensile behaviour 

Figure 3.8 shows representative stress-strain curves of the various nanocomposites, while 

Figure 3.9 plots the energy to break (or tensile toughness) as calculated from the area under 

the stress-strain curves. Table 3.3 gives a summary of desired mechanical properties of the 

composites. Incorporation of both GNP-L and GNP-S increases the Young's modulus of the 

nanocomposites at all loadings. Tensile strength increased for the composites up to 5-7 wt% 

depending on filler type but decreased at higher loadings due to agglomeration. Strain at 

break was reduced with the addition of GNP for all composites, with the exception of the 

system with 5 wt% GNP-S. Interestingly, despite the fact that fracture surfaces showed some 

pull-out for larger platelets (see Figure 3.4) the smaller GNP-S platelets preserved better the 

polymer ductility. Polymer yield was observed for all systems based on GNP-S, while 

embrittlement was observed for GNP-L based systems.  Interestingly, ductility of the PLA was 

fully preserved for nanocomposites incorporating 5 wt% GNP-S.   

 

Figure 3.8. Typical stress–strain curves of nanocomposite films for PLA/GNP-S and PLA/GNP-L, 

showing the highest mechanical reinforcement for 5 wt% GNP-L based nanocomposites and 

fully preserved ductility for 5 wt% GNP-S based nanocomposites. 

 

Overall a GNP content of 5 wt% gave the best mechanical reinforcement for both the GNP-S 

and GNP-L systems, with the larger GNP-L nanoplatelets giving the highest increase in Young's 

modulus and tensile strength, and the smaller GNP-S particles showing the highest ductility. 
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This is supported by the earlier reported SEM observations. Here pull-out of large GNP-L 

platelets were indicative of some energy dissipation mechanisms (see Figure 3.4). However, 

this did not result in a significant overall increase in toughness as larger particles increasingly 

inhibit yield and plastic deformation of the polymer matrix. In contrast to GNP-L, the GNP-S 

filler shows little pull-out (see Figure 3.3) because its aspect ratio is too low for effective stress 

transfer. Higher loadings (≥ 7 wt%) lead to agglomerations of GNPs and resulted in reduced 

reinforcing efficiency. To conclude, larger platelets exhibit a larger interfacial surface area 

which makes them more effective in transferring stresses and as a reinforcing filler but at the 

expense of composite ductility.  

 

It worth noting that interfacial interactions with the PLA matrix are expected to be similar for 

both GNP-S and GNP-L as both fillers differ only by their size rather than surface chemistry 

and were also processed under the same conditions. This point is further supported by the 

fact that little difference in Tg was observed for PLA incorporating either small or large GNPs 

as will be discussed in more detail in the following section. Regarding toughness, larger 

interfacial surface area (per plate) will result in higher local stress concentrations in the PLA 

matrix and embrittlement of the PLA/GNP-L composites. Apart from this, composite ductility 

may be even more affected by the state of dispersion of the GNPs. More specifically, larger 

GNPs are more difficult to disperse, causing agglomeration as shown in Figure 3.4 and low 

toughness. Similar results were reported by Kalaitzidou et al. [77], where larger GNPs in fact 

showed less reinforcement than smaller GNPs due to agglomerations.  

 

Figure 3.9. Energy to break (or tensile toughness) as a function of GNP loading, showing 

greater toughness for systems based on GNP-S. 
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Table 3.3. Summary of mechanical properties for PLA/GNP-S, PLA/GNP-L. 

 

GNP-S  

(wt%) 

Young's Modulus  

(MPa) 

Strain at Break 

(%) 

 Tensile Strength 

(MPa) 

0 1043 (±89) 11.2 (±1.2)  50.4 (±7.5) 

5 1148 (±71) 10.9 (±0.3)  58.5 (±0.7) 

7 1223 (±71) 7.5 (±0.8)  57.5 (±7.3) 

10 1354 (±71) 3.4 (±1.3)  30.4 (±5.0) 

GNP-L  

(wt%) 

Young's Modulus  

(MPa) 

Strain at Break 

(%) 

 Tensile Strength 

(MPa) 

0 1043 (±90) 11.2 (±1.2)  50.4 (±7.5) 

5 1290 (±16) 4.5 (±0.2)  71.2 (±4.8) 

7 1572 (±79)  2.7 (±0.1)  54.5 (±3.6) 

10 1626 (±103) 1.5 (±0.2)  33.5 (±1.2) 

 

 

 

Figure 3.10. Reinforcement efficiency in terms of composite modulus over neat PLA matrix 

modulus as a function of GNP loading for PLA/GNP-S, PLA/GNP-L together with literature data. 

 

Figure 3.10 shows that the elastic modulus of the current PLA/GNP systems increases linearly 

with filler content with the maximum increase in Young’s modulus of 56 % at around 6 vol% 
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(10 wt%) GNP-L, being among the highest reported for 3D randomized PLA/GNP 

nanocomposites. Murariu et al. [196], for example, reported a highest increase of 25 % at 6 

vol% graphene loading for PLA/EG composites. Kim et al. [74] reported high reinforcement at 

relatively low loadings with a 40 % improvement in modulus at 1.8 vol% EG.  However, in their 

system mechanical reinforcement did not increase beyond this filler loading, indicating severe 

agglomeration and reduced reinforcing efficiency at higher filler loadings. In contrast, the 

current PLA nanocomposites showed a linear increase in Young’s modulus with filler loading 

in agreement with mechanical models.  

 

 

Micromechanical analysis 

 

As reviewed in Chapter 2, the Halpin-Tsai model [70] has been used widely in the analysis of 

graphene and other nanocomposites to predict the aligned reinforcement [263,272,273]. Yet 

in the case of hot pressed samples after extrusion, 2D platelet-like fillers like graphene often 

exhibit a 3D random orientation in the polymer matrix made by.  

 

Laminate theory demonstrates that the in plane Young’s modulus of a sheet with particles that 

are randomly oriented in the plane can be approximated by[274]: 

 

Erandom 2D platelets = 0.375E∥ + 0.625E⊥ 

 

(3.2) 

 

  

Where E∥ is the (upper bound) parallel modulus and E⊥ is the (lower bound) perpendicular 

modulus for unidirectionally aligned platelets as shown in Figure 3.11. 

 

 

Van es estimated the 3D randomly oriented composites by repeatedly using the 2D 

randomising method, thus the in-plane Young’s modulus of composites with platelets that are 

3D randomly oriented can be approximated by [273,274]: 

 
Erandom 3D platelets = 0.49E∥ + 0.51E⊥ 

 

(3.3) 
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Figure 3.11. Stacking unidirectional plates into 2D random plates.  

 

 

The Halpin-Tsai equations estimate rather accurately the elastic properties of fibre reinforced 

composites but generally overestimate the Young’s modulus of platelet based composites 

[274]. This is the consequence of taking ξ = 2l/t, which fits better for fibre geometries than 

platelet geometries. Van Es [274] introduced a correction of the shape factor for composites 

incorporating platelets with diameter “d” and thickness “t” assuming that the composite 

material possesses transverse symmetry around 3-axis. According to his calculations, 

corrected parameters were proposed for the prediction of Young’s modulus E∥ and E⊥ as: 

 

 

 
E∥                                 ξ = 2d/3t 

                                                   E⊥                                ξ = 2 

 

(3.3) 
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Figure 3.11. Theoretical fit using modified Halpin-Tsai model of GNP reinforcement in PLA 

matrix. Black squares: experimental data for PLA/GNP-S composites; Red squares: 

experimental data for PLA/GNP-L composites; Black line: 3D random theoretical fit using AR=5. 

Red line: 3D random theoretical fit using AR=12. 

 

Experimental data and theoretical fits are plotted in Figure 3.11 and effective aspect ratios 

were back-calculated assuming 3D random orientations. Using d/t = 5 and 12 and corrected ξ 

for GNP-S and GNP-L respectively, a good correlation was achieved for composites containing 

up to 10 wt% GNPs. The low effective GNP aspect ratios (5 and 12) back-calculated from the 

experimental nanocomposite properties are close to the lower range data from SEM and XRD 

analysis, suggesting less than optimal reinforcing efficiencies, presumably due to imperfect 

interfacial interactions. It should be noted that the efficiency of the GNPs could potentially be 

also improved by orientation of these fillers. Sellam et al. [275], for example, prepared PVA–

GO nanocomposites by a layer-by-layer assembly method and found that the effective GO 

stiffness contribution was twice that of a solution cast system, highlighting the importance of 

platelet alignment for improved reinforcing efficiency. Further work is foreseen in the near 

future to explore such possibilities. 
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Dynamic mechanical behaviour 

The glass transition temperature (Tg) was determined from the peak of the tan delta curve 

from DMA results in Figure 3.12 and average values from at least three tests are summarized 

in Table 3.4. A small increase in Tg (1~3 °C) is observed with increasing nanofiller content. 

These results revealed that the additional GNP did not significantly change the mobility of the 

polymer matrix. It was also noted that addition of both GNP-S and GNP-L lead to a reduction 

in the sharpness and height of tan δ peak compared to the neat PLA, indicating decreased 

damping ability and increased crystallinity [276]. Similar reduction was also reported for other 

PLA-based composites [185,277–279]. Notably, PLA/GNP-L showed more prominent 

reduction in peak height and sharpness compared to PLA/GNP-S at the same loading, 

indicating higher crystallinity. DSC will be performed in the next session to give more 

quantitative information regarding crystallinity. 

 

 

 

 

Figure 3.12. Tan δ as a function of temperature for neat PLA, (a) PLA/GNP-S and (b) PLA/GNP-

L. Composites with 10 and 15 wt% GNP-L were not measured due to sample brittleness.  
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Table 3.4. Tg values for all PLA/GNP nanocomposites as obtained from DMA. 

 

Sample  GNP content (wt%) Tg (DMA) (°C) 

PLA 0 75±2 

PLA/GNP-S 5 77±1 

 7 74±1 

 10 76±2 

 15 78±3 

PLA/GNP-L 5 77±3 

 7 74±4 

 

 

3.3.5 Thermal properties 

 

Differential scanning calorimetry 

Nanofillers are known to act as nucleating agents in polymer matrices, altering the polymer 

crystallinity in nanocomposite systems. Since PLA is a semi-crystalline polymer, its mechanical 

properties will strongly depend on crystallinity and observed increases in mechanical 

properties may not be solely the result of mechanical reinforcement by the filler. In order to 

evaluate the influence of polymer crystallinity on the mechanical enhancement of the 

nanocomposites, DSC was employed to measure the crystallinity of the various PLA/GNP 

nanocomposites as well as that of the neat PLA polymer. Melting points of the neat PLA matrix 

and PLA/GNP nanocomposites are nearly the same. The crystallinity (Xc) in all samples was 

calculated as follows: 

 

Xc(%) =

ΔΗm − ΔHcc
ϕPLA

∆Hm
o × 100% 

 

(3.4) 

 

 

where ΔΗm is the measured heat of fusion, ΔHcc is the heat of cold crystallization, ϕPLA is 

the PLA content in the composites and ∆Hm
o  is melting enthalpy of the 100 % crystalline PLA 

(93.6 J/g) [185]. DSC results of the different PLA/GNP nanocomposites, together with heat 

distortion temperatures (HDT) as obtained by DMA, are listed in Table 3.5 and compared with 

values for other PLA based nanocomposites from literature. 
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Table 3.5. The glass transition temperature (Tg), melting temperature (Tm), and crystallinity (Xc) 

of neat PLA, PLA/GNP-S and PLA/GNP-L composites obtained from DSC together with heat 

distortion temperatures (HDT) from DMA and literature data. 

 

Sample GNP  

(wt%) 

Tg  

(°C) 

Tm  

(°C) 

Xc 

(%) 

HDT (°C) 

PLA 0 64±2 169±2 1.8±0.7 63±1 

PLA/GNP-S 5 64±1 167±2 2.5±1.0 66±1 

 7 64±1 167±1 2.0±0.3 71±2 

 10 64±2 167±1 14.0±1.3 67±1 

 15 65±1 168±2 9.3±2.5 72±2 

PLA/GNP-L 5 65±1 167±1 6.3±0.5 69±1 

 7 65±1 167±2 15.3±0.2 72±1 

 10 -- 168±1 21.6±2.7 77±1 

 15 -- 166±2 23.5±2.5 74±2 

PLA/MWCNT [280] 0 62 -- 42.5 77 

 1 62 -- 41.0 76 

 3 62 -- 39.9 76 

 6 63 -- 39.1 78 

 13 62 -- 40.2 88 

PLA/GNP [281] 0 -- 149 32.1 50 

 5 -- 153 33.4 51 

 

 

Similar to the glass transition temperatures, the addition of GNP did not significantly change 

the melting temperatures of the PLA nanocomposites for both GNP-S and GNP-L fillers. 

However, it was noted that there is an increase in degree of crystallinity for both types of 

nanocomposites with the addition of GNP, which is in agreement with the XRD results shown 

earlier. More specifically, for PLA/GNP-S composites, Xc was increased by 0.2-12 % for 

different filler loadings, while this increase was more pronounced for PLA/GNP-L composites 

with an increase from 4-22 %. This might be explained by the difference in filler size. Compared 

to GNP-S, GNP-L may have a stronger effect on hindering the motion of polymer chains and 

reduce the amorphous portion of composites, leading to higher crystallinity [282]. 
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Figure 3.13. Young's modulus as a function of PLA crystallinity for PLA/GNP-S and PLA/GNP-L, 

showing a strong correlation between modulus and crystallinity for system based on GNP-L. 

 

Figure 3.13 explores the relationship between mechanical properties and polymer crystallinity 

for systems based on GNP-L and reveals a correlation between Young’s modulus and polymer 

crystallinity. Hence, it may be concluded that property improvements in terms of strength and 

stiffness for the PLA/GNP-L nanocomposites are not solely the result of filler reinforcement 

but also affected by changes in polymer crystallinity. On the contrary, such a clear relationship 

was not observed for the PLA/GNP-S system, indicating that small GNP fillers have little impact 

on the crystallinity of the PLA matrix. Chieng et al. [198] observed similar effects for their 

system based on PLA/PEG/GNP. They also observed a small increase in Xc with the addition of 

graphene at low loadings (≤ 1 wt%). For systems based on 1 wt% GNP-L they reported an 

increase in Xc by 5 %, which is in reasonable agreement with our data (an increase in Xc by 6 % 

for 5 wt% GNP-L).   

 

Heat distortion temperature 

The low heat distortion temperature (HDT) of PLA limits its application as an engineering 

plastic. Improved HDTs are often observed in PLA composites, often due to an increase in 

crystallinity [283,284].  
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Figure 3.14. HDT as function of PLA crystallinity for PLA/GNP-S and PLA/GNP-L. 

 

Also in the current graphene nanocomposites an increase in HDT with increasing GNP content 

in the PLA matrix was found for both types of GNP, with GNP-L exhibiting slightly superior HDT 

behaviour at the same filler loadings (see Table 3.5). More specifically, a linear relationship 

between HDT and crystallinity for PLA/GNP-L composites is shown in Figure 3.14, ending with 

a drop for PLA with 15% GNP-L due to filler agglomeration, while data for PLA/GNP-S are 

rather scattered. The maximum increase in HDT of nearly 14 °C for GNP-L at 10 wt% is among 

the highest reported for a PLA nanocomposite system. Sobkowicz et al. [198], for example, 

reported that the HDT of PLA increased by 11 °C with the addition of 14 wt% MWCNT, while 

Han et al. [281] reported only an increase of around 1 °C in HDT with 5 wt% GNP. 

Nanocomposites with a relatively high graphene loading (7-10 wt%) exhibited a HDT of 76 °C 

which is higher than that of Nylon 6 (∼60 °C), PET (∼65 °C) and PP (∼70 °C) [285]. Even so the 

brittleness of these PLA/GNP nanocomposites (see Figure 3.8) may still inhibit their 

application in engineering applications and methods to further enhance toughness are 

important for future success of these materials.  
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3.4. Conclusions 

 

This study investigated the influence of GNP particle size, aspect ratio and dispersion on the 

mechanical, thermal and electrical properties of PLA composites. Both high aspect ratio xGNP-

M15 and low aspect ratio xGNP-C750 nanofillers were effective in achieving improved 

mechanical properties of PLA/GNP nanocomposites, with the larger nanoplatelets (GNP-L) 

displaying the highest mechanical reinforcement. An optimum loading for reinforcement was 

identified at about 5 wt% GNP for both grades. The reported maximum reinforcement of 24 % 

in Young’s modulus for PLA composites incorporating 5 wt% GNP-L is among the highest 

reported for isotropic PLA/GNP nanocomposites. Composites based on GNP-L showed 

embrittlement, while polymer yield was not inhibited for composites based on GNP-S, with 

ductility of the PLA being fully preserved for systems incorporating 5 wt% small GNP-S.  

 

Percolation thresholds for electrical conduction were lowest for the high aspect ratio GNP-L 

nanofiller (~7 wt% for GNP-L and ~13 wt% for GNP-S, respectively). However, upon annealing 

PLA/GNP-S systems showed improved electrical conductivity and a greatly reduced 

percolation threshold from 13 to around 6 wt%. PLA/GNP-L systems on the other hand did not 

show such a change in electrical properties after annealing.  

 

The heat distortion temperature (HDT) of both GNP-S and GNP-L based systems 

increased with filler content, with composites based on larger GNP-L particles exhibiting a 

slightly superior thermal stability. HDT increased from 63 °C for neat PLA to 76 °C for 10 wt% 

GNP-L nanocomposites, which is among the highest HDT values reported for a PLA/GNP 

system. 
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Chapter 4 - Synergistic effects of 

filler size on thermal annealing 

induced percolation in PLA/GNP 

nanocomposites 
 

 

4.1 Introduction 

 

In Chapter 3, it was noted that polymer composites with different filler size exhibited varied 

electrical behaviour after annealing, therefor this chapter will provide further study of this 

phenomenon. 

 

Annealing of polymer nanocomposites at temperatures above their glass transition 

temperature  (Tg) is known to affect a variety of physical properties [286], most notably the 

electrical conductivities of composites based on conductive nanocarbons [263,266,287–291]. 

Annealing has been shown to increase the electrical conductivity at room temperature (RT) of 

conductive polymer composites by several orders of magnitude [291]. Systematic effects on 

electrical conductivity have been observed as a function of annealing temperature and 

annealing time and these relationships can be described using an Arrhenius equation related 

to polymer mobility [264,269]. When a nanoparticle filled polymeric material is annealed at a 

temperature sufficiently above its Tg for a sufficient amount of time, the nanoparticles can 

reorganise themselves in the melt and their connectivity thereby increases. This increase in 
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connectivity due to network formation of nanoparticles under annealing manifests itself also 

in the rheological characteristics of a polymer melt, resulting in a more elastic behaviour [264]. 

 

This phenomenon, as opposed to traditional statistical percolation, is known as dynamic 

percolation (DP). It means that, for the same concentration of nanofiller, a polymer composite 

can show very different conductivity levels as a result of different processing/thermal histories. 

Dynamic percolation has been observed for one-dimensional  (1D) carbon nanofillers like 

carbon nanotubes  (CNT) [262,265–268] and zero-dimensional  (0D) carbon black [269,270] 

filled polymer composites. Deng et al. [270] reported a near five-times reduction in 

percolation threshold for oriented CNT/polypropylene  (PP) tapes after annealing, while Zhang 

et al. [270] found that the electrical conductivity of annealed films based on 

CNT/thermoplastic polyurethane  (TPU) was up to eight orders of magnitude higher than that 

of the as-extruded compound. Cipriano et al. [270] studied multiwalled carbon nanotube 

(MWNT)/polystyrene (PS) and carbon nanofibre (CNF)/PS systems and observed an increase 

in conductivity with annealing times and temperatures.  

 

The effect of thermal annealing on the electrical properties of GNP/polymer composites and 

the influence of GNP size on network formation during annealing is however relatively 

unexplored. Li et al. [234] examined the difference between diffusion displacement of small 

and large graphene fillers over a short time scale  (2 min) in poly (methyl methacrylate)  

(PMMA) during multilayer coextrusion but no further study on long-term annealing was 

reported. Kim et al. dispersed small functionalised graphene sheets and larger sized graphite 

in polycarbonate  (PC) [111] and poly (ethylene-2, 6-naphthalate)  (PEN) [111] matrices and 

reported improved conductivity for annealed samples. However, different sample geometries 

were used in this study thus an unequivocal conclusion on particle size effects in dynamic 

percolation could not be given.  

 

Apart from annealing, the addition of a secondary conductive or even non-conductive filler to 

nanocarbon-based conductive polymer composites was also reported to enhance the 

conductivity of these hybridized nanocomposites. Zhang et al. [152] investigated the dynamic 

percolation in highly oriented conductive networks formed with different carbon nanofillers 

upon annealing and concluded that the addition of carbon black was able to accelerate the 

dynamic percolation process. Bilotti et al. [153] reported controlled dynamic percolation of 

CNT/TPU composites by adding an insulating needle-like nanoclay (sepiolite) and found 
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altered percolating networks of CNTs in TPU and a reduced percolation threshold. Despite 

significant interest in hybrid nanofiller systems, to the best of our knowledge, again no 

annealing studies have been reported for hybrid GNP based systems. 

 

This chapter studied the influence of graphite nanoplatelet (GNP) size on electrical and 

rheological properties of PLA nanocomposites upon thermal annealing through the use of two 

types of xGNPs from XG Sciences, Inc. of different sizes. Small xGNP-C750 particles, large 

xGNP-M15 particles and hybrids of both fillers were melt-compounded with polylactide (PLA) 

and resulting nanocomposite properties and behaviour were evaluated before and after 

thermal annealing in the melt. Such multi-functional materials may be of interest for a variety 

of applications, most notably sensors [153]. 

 

 

4.2 Experimental 

 

 

4.2.1 Materials 

 

Polylactide (PLA) (2002D - NatureWorks Co. Ltd., USA), xGNP-C750 and xGNP-M15 were used 

as-received as described in Chapter 3. For simplicity and clarity xGNP-C750 is referred to as 

GNP-S (small) and xGNP-M15 as GNP-L (large) in this study.  

 

4.2.2 Sample preparation 

 

Nanocomposites with a total filler loading of 5 wt% but with varying GNP-S/GNP-L ratios 

(0.5/4.5, 1.5/3.5/, 2.5/2.5, 3.5/1.5, 4.5/0.5) were processed using the same methodology as 

described in Chapter 3. Here, samples are denoted as PLA/GNP-Sx/GNP-L5-x, where x is the 

GNP-S loading in these hybrid filler based nanocomposites. 

 

4.2.3 Characterization 

 

The electrical conductivity of all hot pressed samples was measured at room temperature (RT) 

by a two-point probe station using a Keithley 6485 picoammeter (Textronics, USA) and an 

Agilet 6614C DC voltage source (Hewlett Packard, USA). Compression moulded disks were 
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made as described in Chapter 3. From these disks, samples with dimensions 20 mm x 5 mm x 

2 mm were cut and silver paste coating was used to ensure good contact with the electrodes 

of the electrometer. Annealed samples were taken from the oven and left to cool to RT before 

testing. Specimens with a resistivity exceeding 109 Ohm were considered as ‘non-conductive’ 

as the electrical resistivity is here no longer measurable using the current experimental set-

up.  

 

Real-time dynamic percolation tests were conducted on the same rectangular samples as 

described above. Samples were heated on a hot plate from RT to a target temperature of 

200 °C, with heating being discontinued after 2 hrs. Samples typically reached a temperature 

of around 180 °C, with conductivity, time, and sample temperature being monitored 

simultaneously. 

 

Rheology was conducted on an AR 2000 Advanced Rheometer  (TA Instruments, UK) 

connected to an environmental chamber with a 25 mm parallel plate setup. Hot pressed disk 

shaped samples were measured at 180 °C using a frequency sweep ranging from 0.01 to 100 

Hz and a strain of 0.1 %, which is within the linear elastic region of the material. 

 

 

4.3 Results and discussion 

 

4.3.1 Electrical conductivity of nanocomposites 

 

Figure 4.1 presents the electrical conductivity at RT for all nanocomposites before and after 

thermal annealing at 200 °C in an oven. Before annealing, both the addition of GNP-S and 

GNP-L nanofillers resulted in a significantly improved electrical conductivity of PLA at higher 

filler loadings. In the case of PLA/GNP-L nanocomposites, electrical conductivity increased 

already significantly for filler loadings of 7 wt%, while the low aspect ratio GNP-S based 

systems showed no electrical conductivity up to the relatively high filler loading of 10 wt%, 

indicating a much lower percolation threshold for GNP-L. As reviewed in Chapter 2, Li et al. 

[116] proposed Equation (2.13) to predict the percolation threshold of polymer 

nanocomposites containing 3D randomly distributed disc-shaped nanoparticles. Considering 

that the diameters of both small and large GNPs (1.2 and 14 µm) are two to three orders of 
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magnitude higher than the required DIP of 10 nm, meaning that the influence of DIP can be 

neglected and the equation can be further simplified as: 

 

 

 

𝑉𝑓_3𝐷 =
27𝜋𝑡

4𝐷
=

27𝜋

4𝐴𝑓
 

 

(4.1) 

 

   

 

where Af is the aspect ratio of GNP (Af=D/t). 

 

From Equation (4.1) it can be concluded that larger aspect ratio conductive fillers give lower 

percolation thresholds, which is in agreement with our experimental data with the larger GNP-

L based systems exhibiting a lower percolation threshold than systems based on GNP-S after 

compounding.  

 

Interestingly, the effects of particle size on electrical conductivity after annealing are very 

different. Upon annealing, GNP-S based nanocomposites showed a significant increase in 

conductivity for systems with medium GNP-S loadings (7 to 10 wt%) while the percolation 

threshold shifts from around 13 wt% GNP-S to values of around 7 wt%. Both 5 and 15 wt% 

based systems remain unchanged as non-conductive and highly conductive, respectively. In 

contrast, the PLA/GNP-L system showed hardly any change in conductivity for all 

concentrations upon annealing, resulting in an unchanged percolation threshold. This 

suggests that smaller GNP-S flakes have greater mobility in the PLA melt, leading to increased 

migration and network formation by reagglomeration during annealing than the larger GNP-L 

flakes. It should be noted that it is not actually the nanoparticle that moves but the polymer 

molecules that diffuse/relax around the nanoparticle, only indirectly causing “motion” or 

rather reorganisation of the nanoparticle’s  (relative) position, a reduction of inter-particle 

distance and an increase in electrical conductivity. Although electrical properties remain 

unaffected for both the 5 wt% and 15 wt% based composites, the reasons behind these 

unaltered electrical properties with annealing are very different for both systems.  
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Figure 4.1. Electrical conductivity of PLA/GNP nanocomposites as a function of GNP loading 

after different thermal annealing times at 200 °C in an oven; Red: PLA/GNP-S, Blue: PLA/GNP-

L. No changes in conductivity are observed for all PLA/GNP-L composites with annealing, while 

an increase in conductivity is observed for 7, 10, and 13 wt% PLA/GNP-S composites. Non-

measurable data below 10-9 S/m are plotted as 10 -10 S/m in the shaded grey area for 

simplicity of drawing.  

 

Composites with too low filler loadings are not able to form conductive networks even after 

prolonged annealing times as a minimum amount of filler is required to create such a network. 

On the contrary, high filler loadings result in an initial rigid network that hinders motion of 

individual nanofillers, leading to a network which is unaffected by annealing. This explains why 

15 wt% PLA/GNP-S systems showed little change in conductivity upon annealing. Similarly, 

only a small increase in electrical conductivity was observed for 13 wt% PLA/GNP-S after 0.5 

h annealing. In short, whenever an initial network is present, the system becomes rigid and 

demonstrates less nanoparticle migration, meaning a limited effect of annealing on electrical 

properties.  

 

To further investigate the importance of filler size on dynamic percolation, hybrid filler 

systems based on a fixed total amount of GNP  (5 wt%) but with a variable GNP-S/GNP-L ratio 
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were melt compounded and their conductivity after annealing was measured and is plotted 

in Figure 4.2. 

 

 

Figure 4.2. The electrical conductivity of PLA nanocomposites with GNP-Sx/GNP-L5-x hybrid 

fillers as a function of GNP-S content. Total filler content was maintained at 5 wt%. Composites 

with a 50/50 GNP-S2.5/GNP-L2.5 hybrid filler ratio showed synergistic effects with the greatest 

improvement in conductivity after thermal annealing, while composites with a low GNP-S filler 

content showed no change in conductivity. Black: after 0 h annealing; Blue: after 0.5 h 

annealing; Red: after 1 h annealing; Shaded grey area represents the non-measurable 

conductivity range. 

 

Hybrid nanocomposites with 0, 0.5 and 1.5 wt% of GNP-S were non-conductive even after 1 h 

of annealing. However, when the content of GNP-S reached 2.5 wt% (50/50 hybrid filler ratio), 

conductivity increased dramatically by five orders of magnitude after 0.5 h of annealing and 

increased further by nearly two orders of magnitude after another 0.5 h annealing. Smaller 

increments were observed for nanocomposites containing 3.5 and 4.5 wt% GNP-S, while 

composites became non-conductive again when the entire filler content (5 wt%) was made 

up of GNP-S. Such changes from insulator to conductor to again insulator with increasing GNP-

S content is indicative of significant synergistic effects between small and large nanofillers and 

suggests that GNP-S is mainly responsible for creating the conductive network through 
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dynamic percolation while a minimum GNP-L content is required for the initial filler 

framework through which a conductive network can form after annealing. Meaning that, 

while a critical amount of GNP-S is needed for dynamic percolation, a small amount of GNP-L 

is still required to reduce the inter-particle distances further to form a conductive network. 

This also explains why the system based solely on 5 wt% GNP-S remains non-conductive even 

after 1 h annealing. 

 

4.3.2 Real-time monitoring of conductivity 

 

To further investigate the dynamic percolation behaviour of PLA/GNP composites based on 

either 5 wt% GNP-S, 5 wt% GNP-L and 5 wt% 50/50 hybrids, real-time measurements of 

conductivity were conducted on selected samples and results are presented in Figure 4.3. All 

three PLA nanocomposite samples start to show an increase in conductivity at around the 

glass transition temperature of PLA (Tg = 76 °C), and follow the same linear temperature 

dependent electrical conductivity trend until a temperature of around 140 °C (close to Tm = 

167 °C). However, above this temperature, the GNP-S2.5/GNP-L2.5 hybrid nanofiller system 

showed a strong additional increase in conductivity, reaching a high constant conductivity 

value in the melt at a temperature of around 180 °C.  

 

The two distinct stages in the temperature dependence of the electrical conductivity of the 

hybrid nanofiller based composite suggests that in this system a secondary conduction 

mechanism is active, which results in a strong increase in conductivity of this nanocomposite 

system. During heating from RT to just below Tm, the measured electrical conductivity is solely 

dependent on the temperature dependence of the electrical conductivity [63,292] for all three 

nanocomposite systems. However, close to or above the PLA melting temperature, the GNP-

S in the hybrid system gains mobility and reorganises itself into a reagglomerated network, 

leading to an increase in electrical conductivity for the PLA/GNP-S2.5/GNP-L2.5 hybrid system as 

a result of dynamic percolation. On the other hand, nanoparticle migration is less obvious for 

GNP-L as these nanoparticles exhibit less mobility and as a result conductivity changes little 

for PLA/GNP-L5 for the same annealing time. Similarly, composites based solely on GNP-S also 

did not show a secondary increase in conductivity above Tm but here the absence of dynamic 

percolation is due to the low aspect ratio of GNP-S, preventing this system from forming a 

conductive network.  
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After heating is removed, conductivity of all three nanocomposites decreases instantaneously. 

Interestingly, both the PLA/GNP-S5 and PLA/GNP-L5 systems lose nearly all their conductivity 

after cooling to RT, while the hybrid PLA/GNP-S2.5/GNP-L2.5 system maintains a high level of 

conductivity even after cooling. These differences are a strong indication that the increase in 

conductivity for the hybrid nanofiller system during heating is the result of a reorganization of 

the nanofiller network, which remains present after cooling to RT and results in sustained high 

electrical properties. Nanocomposites solely based on either small- or large GNP nanofillers 

did not show this dynamic network formation and temperature dependent conductivity is lost 

upon cooling to RT. Please note that heating conditions for PLA/GNP-S5 in Figure 4.2 are 

different from those in Figure 4.3 so the data are not directly comparable. 

 

Figure 4.3. Real-time electrical conductivity measurements, showing the time dependence of 

the electrical properties of PLA/GNP composites when subjected to a temperature scan. 

Nanocomposites based on hybrid small- and large GNPs showed a secondary increase in 

electrical conductivity around the polymer melting temperature, indicating a dynamic network 

formation and electrical properties which are mostly maintained after cooling to RT. Red: 

PLA/GNP-S5, Blue: PLA/GNP-L5, Green: PLA/GNP-S2.5/GNP-L2.5, Black: Temperature scan. 

Shaded grey area represents the non-measureable conductivity range. 
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4.3.3 Mechanisms of conductivity change during annealing 

 

Here we introduce a simple model to explain the conductivity change at different heating 

stages for the PLA/GNP composites. The overall conductivity of the PLA/GNP 

composites, 𝜎(𝑓), can be expressed as: 

 

𝜎 (𝑓) = 𝜎(𝑇) + 𝜎 (𝑟𝑒𝑎𝑔𝑔𝑟) 

 

(4.2) 

 

Where 𝜎(𝑇) is the temperature-dependent conductivity of the composites and 𝜎 (𝑟𝑒𝑎𝑔𝑔𝑟) 

is the agglomeration-induced network controlled conductivity of the composites. The 

electrical conductivity of most materials changes with temperature. If the temperature T does 

not vary too much, a linear approximation is typically expected: 

 

𝜎(𝑇) ∝   (T − T0) 

 

(4.3) 

 

In the first heating stage from RT to around 140 °C  (below Tm = 167 °C), the temperature 

induced conductivity is dominant for all three composites as the polymer is still in the solid 

state and no major reorganization of GNPs in the polymer matrix can occur. This explains the 

initial linear increase in conductivity with time during heating as seen in Figure 4.3. However, 

after reaching the PLA melting temperature, the small nanoparticles in particular start to 

migrate and rearrange themselves, creating new conductive pathways. The driving force for 

such reconnection is the thermodynamic processes that minimize free energy. For a given 

volume of GNPs in the matrix, well dispersed GNPs will have a much higher surface/volume 

ratio compared to that of GNP agglomerations. During annealing, small GNPs gain mobility 

through heating and reconnects to each other to minimize the overall surface area. This 

phenomenon results in an additional contribution of this reagglomerated network to the 

overall electrical conductivity and is observed through a change in slope of the conductivity 

versus time curve for the PLA/GNP-S2.5/GNP-L2.5 hybrid composites as shown in Figure 4.3. On 

the other hand, temperature-induced conductivity remains dominant for both PLA/GNP-S5 

and PLA/GNP-L5 composites as here the nanofillers display little connectivity due to either 

their limited aspect ratio or their inability to migrate with no additional contribution of the 

reagglomerated network to the total conductivity. When heating is removed, both PLA/GNP-

S5 and PLA/GNP-L5 composites become non-conductive again after cooling down to RT. This 

observation supports our hypothesis that the measured increase in conductivity during 
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heating of this system is entirely the result of temperature dependent conductivity. 

Alternatively, the hybrid system maintains a high level of conductivity after cooling to RT. This 

is a clear indication that the overall conductivity level measured during heating of this system 

can be attributed to a combined temperature dependent electrical conductivity component 

together with a network component. 

 

4.3.4 Morphology of composites before and after annealing 

 

To further investigate the potential mechanism for increased conductivity after annealing, 

SEM images were taken for composites before and after annealing as in Figure 4.4. For 

PLA/GNP-S, little information was revealed regarding the change of the distance between 

GNPs, possibly due to the size of GNP-S is relatively small thus the movement of GNP-S could 

not be observed under SEM. For PLA/GNP-S/GNP-L, the distance between GNP-L hardly 

changed after annealing under SEM as well. Thus the increased connectivity in the hybrid 

system could be only attributed to subtle movement of GNP-S, which could not be observed 

under SEM as well as in the case of PLA/GNP-S. 

  

 

Figure 4.4. SEM images of PLA/GNP-S/GNP-L composites along the measured electrical 

conductivity direction before and after annealing. 

PLA/GNP-S Before PLA/GNP-S After 
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4.3.5 Rheology of nanofiller networks 

 

It is believed that the recovery of conductivity in GNP based nanocomposites after annealing 

is due to the re-establishment of connections between nanoparticles that were initially lost 

during shear mixing. Dynamic rheology of samples before and after annealing is a powerful 

tool to establish a link between electrical conductivity and composite morphology. 

Measurements of the in-phase shear modulus G’ as a function of frequency is a sensitive tool 

to characterize the formation of a network by nanoparticles in a polymer melt. The presence 

of such a network manifests itself as a plateau in the G’ at low frequencies, of which the 

magnitude of this G’ plateau is known to correlate with the number of connections in the 

network (the network density) [293]. 

 

Figure 4.5. G’ as a function of frequency for PLA/GNP-S (Red), PLA/GNP-L (Blue) and hybrid 

nanofiller systems (Green) after 0 h (Square), 0.5 h (Circle) and 1 h (Triangle) of thermal 

annealing. A clear plateau for G’ was only observed for the hybrid filler system after 1 h of 

annealing, indicating the presence of a filler network.   

 

Figure 4.5 shows frequency sweeps at 180 °C for selected PLA/GNP samples before and after 

annealing for different periods of time. The results are particularly notable for the PLA/GNP-

S2.5/GNP-L2.5 hybrid samples. For these systems, G’ levels off significantly at low frequency 

finally reaching a plateau value at low frequencies after 1 h annealing, suggesting typical solid-
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like behaviour of the nanocomposite melt as a result of the established network of filler–filler 

contacts. This indicates that a particulate network was formed for this nanocomposite system 

after 1 h of annealing. This further supports our hypothesis that GNP-L acts as the backbone 

of the network, while GNP-S acts as mobile branches filling the voids, leading to a higher 

network density. PLA/GNP-S5 and PLA/GNP-L5, on the other hand, did not show a low-

frequency plateau in its G'. In fact, G’ hardly changed after 0.5 h and 1 h annealing for both 

systems.  This is in agreement with our previous discussion and indicates that the network 

connectivity in these formulations remains unchanged and explains why annealing did not 

alter the conductivity for this system. Notably, Figure 4.5 suggest a stronger rheological 

network when GNP of different size are used particularly after annealing. But this is not 

necessarily the consequence of a better distribution. A better particle distribution would be 

evidenced by a decrease in electrical properties, which is the opposite of what shown in Figure 

4.1, for instance. 

 

4.3.6 Nanofiller mobility and influence of filler size 

 

It is worth considering how or why annealing can re-organise nanoparticles into an 

interconnected state. Randomization of nano-scale hard disks can be governed by either 

Brownian motions of particles [294], or non-Brownian interactions [295–298]. First, we will 

consider Brownian motion of particles. Rotational diffusivity Dr of a circular Brownian disk with 

a diameter d in a medium with a viscosity 𝜂 at temperature T can be expressed as [299,300]:  

 

𝐷𝑟 =
3𝑘𝑇

4𝜂𝑑3
 

 

(4.4) 

 

Given the same temperature, at dilute or semi-dilute concentrations, the ratio of 

displacement between small and large GNPs can be derived as  

 
𝐷𝐿

𝐷𝑆
 ~

𝑑𝑆
3

𝑑𝐿
3 

 

(4.5) 

 

Based on this consideration, small GNP-S (ds = 1.2 μm) are expected to display nearly 1600 

times larger displacements than large GNP-L (dL = 14 μm) under the same conditions. Such a 

huge difference in GNP mobility explains why annealing is much more effective for small GNPs 

than for large GNPs. Next, we may also consider non-Brownian interactions. Apart from 

limited translational and rotational diffusion dominated by Brownian motions, particles may 
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still be able to reorient, even under non-Brownian conditions due to the viscoelastic nature of 

the polymer matrix following Arrhenius like-behaviour [301]: 

 

𝜂0 = 𝑐 𝑒𝑥𝑝  (
𝛥𝐸

𝑅𝑇
) 

 

(4.6) 

 

Where T is temperature, R is the ideal gas constant, ΔE is an activation energy, and c is a 

constant. ΔE implies a fillers resistance to reorientation and can be obtained by fitting the data 

at different temperatures using Equation (4.6). It has been reported that longer carbon 

nanotubes tend to have a higher ΔE thus requiring more energy to reorient [301]. In other 

words, they need higher annealing temperatures and/or longer annealing times. This also 

explains why PLA composites incorporating small GNP-S fillers are more affected by annealing 

as a lower activation energy is required for dynamic percolation in this system. Further 

experiments to quantify this effect will be designed in the future to validate such a hypothesis. 

 

Figure 4.6. Reorientation mechanisms during annealing for GNP-S in a:  (a) dilute  (5 wt%),  (b) 

semi-dilute  (7-10 wt%) and  (c) concentrated regime  (15 wt%). Increased connectivity through 

annealing can only be achieved within the semi-dilute regime. 
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It should be noted that our data (Figure 4.1 and Figure 4.2) indicates that only systems with 

semi-dilute GNP-S filler concentrations show dynamic percolation and filler network 

formation after annealing. Similar differences caused by filler concentration were also 

observed by Kim et al. [111] and are schematically depicted in Figure 4.6. At very dilute 

concentrations, even complete randomization of GNP-S will not result in particle-particle 

contacts since their spheres of rotation do not intersect as indicated in Figure 4.6 (a). This 

explains the unchanged conductivity for composites incorporating 5 wt% GNP-S as shown in 

Figure 4.1, as the number of particles is not high enough to create a percolating network. 

When the particle loading increases (Figure 4.6  (b)), platelets will be sufficiently close to each 

other and can more easily form a conductive network after rotational relaxation via direct 

particle-particle contacts or electron hopping conduction. Here annealing leads to the 

creation of a nanofiller network, which gives rise to the increased in-phase shear modulus G’ 

and electrical conductivity for PLA/GNP-S composites with intermediate filler loadings (7 wt% 

and 10 wt% GNP-S). However, in the concentrated regime  (Figure 4.6  (c)), isotropic  

(re)orientation cannot take place due to excluded volume interactions between particles, 

hence leading to limited changes in conductivity upon annealing. This is illustrated by the fact 

that electrical conductivity of composited based on 15 wt% GNP-S remains unchanged even 

after 1 h of annealing.  

 

4.4 Conclusions 

 

In this study, we have shown that smaller GNP nanoparticles exhibit a much greater ability to 

form a conductive filler network by dynamic percolation during thermal annealing than larger 

nanoparticles.  

 

This network forming ability of small GNPs in a polymer melt could be particularly exploited 

when hybridized with large GNPs, leading to significant synergistic effects in electrical 

properties of the resulting PLA nanocomposites. Electrical conductivity of hybrid 

nanocomposites incorporating both GNP-S and GNP-L nanofillers was greatly improved by 

thermal annealing at elevated temperatures, while those of composites solely based on 

similar amounts of GNP-S and particular GNP-L remained largely unchanged under the same 

annealing conditions.  
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Similarly, rheological properties, specifically the in-plane shear modulus G’ at low frequencies, 

increased with annealing for nanocomposites incorporating hybrid nanofillers suggesting 

network formation. The microstructural basis for these observations is that initially filler-filler 

contacts are lost due to the high shear forces during compounding and that these can be re-

established, albeit through a different network morphology, during thermal annealing in the 

melt, leading to greatly improved electrical properties as a result of dynamic percolation.  

 

The results presented in this study have significant practical relevance for the large-scale 

manufacture of conductive polymer nanocomposites as it provides guidelines of how to 

achieve good electrical properties at low filler loadings.
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Chapter 5 - Multilayer coextrusion 

of PLA/GNP nanocomposites with 

enhanced structural organization 

and properties 
 

 

 

 

5.1 Introduction 

 

 

Traditional man-made nanocomposites, as produced by melt-mixing, solution casting or in-

situ polymerization, have generally a relatively low reinforcing efficiency because of the 

difficulty to create nanocomposites which display homogeneous dispersions of nanoparticles, 

good interfacial interactions between particles and matrix, and finally high levels of structural 

organisation of 1D or 2D nanoparticles within the matrix [2]. On the contrary, bio-composites 

such as bones, teeth, or nacre are also composed of mineral 1D or 2D particles together with 

a protein matrix but show superior strength and toughness. Common features in such bio-

composites are their complex architectures and hierarchical organisation at different length 

scales, involving the arrangement and orientation of high aspect ratio particles with the 

smallest building blocks often being at the nanoscale [1,302,303]. 
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Recently, highly organized nanocomposites mimicking the structure of nacre have been 

reported [304], using a large number of technologies including layer-by-layer (LBL) assembly 

[305,306] , LBL spraying [275,307], vacuum or solution casting [308–310], and freeze-casting 

[311,312]. Although many of these techniques have been extremely successful in terms of 

introducing structural control in composites based on 2D nanoplatelets, all these techniques 

are based on solution- or colloidal type processes rather than melt-processing as used 

preferably by the polymer industry. 

 

Santagiuliana et al. [313] recently showed that a melt-process inspired by the art of croissant 

making using the Baker’s transformation [314] results in layered polymer nanocomposites 

with controllable and quantifiable dispersions of GNPs and efficient mechanical reinforcement 

effects. In their work the Baker’s transformation was performed manually using a repetitive 

pressing and folding process, which limits its applicability in an industrial environment. Static 

mixers or multipliers on the other hand have been used for industrial-scale multilayer co-

extrusion of different polymers using the Baker’s transformation principle 

[219,220,222,315,316] as reviewed in Chapter 2.  

 

In this chapter we will use forced assembled multilayer co-extrusion as a processing 

methodology to disperse and orient GNPs in multi-layered PLA nanocomposite films. In order 

to avoid layer break-up, symmetric as well as asymmetric alternating layers were used. The 

study provides as further understanding of nanoplatelet reinforcing mechanisms through 

quantification of the GNP alignment directly through imaging, while indirect methods are 

used to further quantify the effect of filler orientation in the films including mechanical 

property characterization and water vapour permeability. 

 

5.2 Experimental 

 

5.2.1 Materials 

 

Poly(lactide acid) (PLA) 2002D and 4032D from NatureWorks Co. Ltd. (USA) were purchased 

from Resinex, UK. Both semi-crystalline PLAs are extrusion grades with different D-lactic 

monomer contents, ~4% for 2002D and ~2% for 4032D respectively [317–320], and weight 

average molecular weights, 212 and 207 kDa respectively [321]. They have similar properties 

including  glass transition temperature of ~60 and 61 °C, crystallinity of ~1% and 2% and tensile 



Chapter 5 - Multilayer coextrusion of PLA/GNP nanocomposites 

97 
 

modulus of ~3.5 GPa respectively [317,318,322]. Graphite nanoplatelets (xGNP-M15) were 

used as described in previous chapters. All materials were dried overnight in an oven at 80 °C 

before processing. 

 

5.2.2 Sample preparation 

 

PLA/GNP masterbatch 

Both polymer and GNPs were dried in the oven at 90 °C overnight before compounding. A 

twin-screw extruder (Dr. Collin Laboratory Twin-Screw Kneader ZK 25 x 40, Germany) was 

used to create a 20 wt% xGNP-M15/PLA-2003D masterbatch using the following temperature 

profile (from Zone 1 to Zone 6: 185, 210, 200, 190, 185, 180 ℃). A screw speed of 140 rpm 

was used to disperse the GNPs in the polymer matrix. This masterbatch was further diluted to 

5 wt% with neat PLA -4032D using the same processing conditions. 

 

Multilayer PLA/GNP films 

Multilayer co-extrusion involves a primary polymer melt A (PLA) and a secondary polymer 

melt B (PLA + 5 wt% GNP), which were extruded from two single-screw extruders (Dr. Collin 

TEACH-LINE® E 20T, Germany) respectively, combined in a bi-layer (AB) co-extrusion feed 

block. In this study, the throughput was controlled by varying the speed of the individual 

extruders A and B to produced layered structures with different B:A (filled:unfilled) layer 

distributions (50%:50%; 20%:80%; 10%:90%). Thus the final total concentration of graphene 

in the films was diluted to 2.5, 1 and 0.5 wt% for samples marked as 50:50, 20:80 and 10:90. 

Neat PLA and monolayer composites of PLA + 5 wt% GNPs were also produced using the same 

single-screw extruders for comparison, marked as PLA and Mono respectively. The double 

layer co-extrusion feed block is connected to a series of static mixing elements or multipliers 

that use a process of vertical slicing, biaxial stretching and recombining as schematically 

depicted in Figure 5.1 to produce 2n+1 layers (n being the number of static mixing elements). 

In this study, 6 mixing elements were used, giving a total of 128 layers. This melt is then 

extruded through a flat film die onto chill rolls with a temperature of 60 °C. The two single-

screw extruders, static mixing elements and die were all set at a temperature of 190 °C. This 

resulted in multilayer films made up of alternating layers of neat PLA and PLA + 5 wt% GNP. 
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Figure 5.1. Schematic of the forced assembly multilayer co-extrusion process for the production 

of multi-layered polymer films with alternating layers of PLA and PLA + GNP. Adapted from 

[219]. 

 

 

5.2.3 Characterization 

 

 

Transmission optical microscopy (OM) was performed using an Olympus BH2 microscope, 

equipped with a digital camera allowing the capturing of images that were processed using 

Image J analysis software (National Institutes of Health, USA). Samples were prepared using a 

Leica RM 2225 microtome and were cut perpendicular to the extrusion direction. 
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The dispersion and morphological features of the nanocomposites were characterized using 

a FEI Inspect-F scanning electron microscope (SEM) at an accelerating voltage of 10 kV. All 

specimens were prepared by cryogenic fracturing the composite films using liquid nitrogen. 

Fracture surfaces were gold sputtered before analysis. 

 

X-ray diffraction (XRD) analysis was performed on a Siemens D5000 Diffractometer using Cu 

(Kα) radiation (wavelength: 1.54 Å) at room temperature (RT) in the range of 2θ = 5° to 40° at 

a scanning rate of 20 min-1. 

 

Tensile tests were performed using an Instron 5586 at RT, equipped with a 1 kN load cell. 

Samples were cut in dumbbell shapes according to ASTM 638, Type V and tested and tested 

at a rate of 10 mm/min according to ASTM 638 procedures. Reported values were calculated 

as averages over five specimens. 

 

Dynamic mechanical analysis (DMA) spectra were obtained with a TA Instruments DMA Q800. 

Samples were tested in film tension mode. A frequency of 1 Hz with a temperature ramp of 

3 °C/min from RT to 150 °C was employed. Results were averaged over three test samples. 

 

Differential scanning calorimetry (DSC) was performed using a Mettler-Toledo 822e to 

investigate the thermal properties of the nanocomposites. All samples were heated to 200 °C 

at a rate of 10 °C/min. Crystallinity was determined using the heat of fusion of 100% crystalline 

PLA taken as 93.6 J/g [185]. 

 

The water vapour permeability of the multilayer films was investigated, in accordance with 

the ASTM E96 and DIN 53122 gravimetric method, using Elcometer 5100 Payne Permeability 

Cups (Part Number K0005100M201, Elcometer Ltd.). Distilled water was placed inside the 

round cup to expose the film, with an exposed area of 10 cm2, to the environment. Once the 

films were secured, each cup was placed in an oven at 40 °C. The cups were weighed 

periodically using a precision scale (± 0.0001 g).  
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5.3 Results and Discussion 

 

 

5.3.1 Nanofiller dispersion 

 

 

Optical microscopy 

 

Multilayer co-extrusion was used to produce polymer composite films with 128 alternating 

layers. A reduction in thickness of the nanocomposite layers should provide the geometric 

constraints to align 2D fillers like GNPs. Micro-scale characterization of the morphology of the 

multilayer films was carried out using optical microscopy and the dispersion of the GNPs in 

films with different filled:unfilled ratios are compared in Figure 5.2. A random distribution of 

GNPs in a PLA matrix is visible in the mono-extruded composite film with 5 wt% GNP and a 

layered structure is not present. On the contrary, boundaries between the pure PLA layers 

and the PLA/GNP layers were evident for the 50:50, 20:80, and 10:90 systems. This 

demonstrated that multilayer films with alternating filled and unfilled PLA layers were 

produced. Notably, some agglomerations of GNPs is visible for all compositions. This may be 

cause by the fact that the 5 wt% GNP loading used in this study is rather high compared to 

most studies although this phenomenon was also reported by Li et al. for PMMA/GNP films of 

1024 layers and 0.5wt% GNP [234]. 

 

To quantify the dispersion of the GNPs, the fraction R of the total agglomerates with diameter > 

5 µm (area > 19.6 µm2) over the total area of the sample was calculated following the work of 

Alig et al. [323] and results are summarized in Table 5.1. It is observed that the fraction R of 

large agglomerates decreases significantly with a decrease of the filled PLA/GNP layer 

thickness. However, R values were generally greater than those obtained by Li et al. [234], 

possibly due to the use of fewer multiplier dies and the significantly higher filler content used. 

 

 



Chapter 5 - Multilayer coextrusion of PLA/GNP nanocomposites 

101 
 

 

 

Figure 5.2. Cross-sections of mono- and multilayer PLA/GNP composite films with different 

filled:unfilled ratios along the extrusion direction under optical microscopy and different 

magnification. The total GNP content in the films is 5, 2.5, 1 and 0.5 wt%, respectively. 

 

Table 5.1. Fraction (R) of large agglomerates calculated for the different nanocomposite 

films. 

 

 
Mono Multi 50:50 Multi 20:80 Multi 10:90 

GNP (wt%) 5 2.5 1 0.5 

Filled layer (%) 100 50 20 10 

Unfilled layer (%) 0 50 80 90 

R (%) 48 24 15 7 

 

 

Scanning electron microscopy 

SEM was used to further investigate the dispersion and orientation of the GNP fillers in the 

multilayer films as shown in Figure 5.3. For the monolayer PLA film incorporating 5 wt% GNP, 

many platelets displayed a random distribution in the polymer matrix, with distortion 
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and agglomeration seen for most flakes. Although a significant fraction of GNP flakes were 

oriented as a result of flow during the extrusion process, some randomized orientation of 

large GNP flakes could still be observed. On the contrary, for all multilayer systems, the GNP 

filled layers were well confined by the neighbouring neat PLA layers with most of the graphene 

flakes showing planar orientation in these GNP filled layers. In addition, most GNPs appeared 

to be much thinner, potentially indicating improved dispersion or even exfoliation during 

multiplying. The degree of alignment and thickness reduction of the GNPs will be further 

evaluated more quantitatively through image processing and XRD analysis in the next section. 

 

 

 

 

Figure 5.3. SEM images of cross sections of mono- and multilayer PLA/GNP composite films 

with different filled:unfilled ratios. The total GNP content in the films was 5, 2.5, 1 and 0.5 wt%, 

respectively. 
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Nanofiller alignment and dimensions 

To quantify the degree of alignment or orientation, the SEM images from Figure 5.3 were 

analysed using Image J software and histograms of GNP orientation and average platelet 

lengths were obtained from at least 100 flakes (Figure 5.4). Orientation of GNPs in the 

monolayer extruded film revealed a wider distribution while multilayer films showed a more 

narrow distribution of GNP orientations, implying preferential alignment of the platelets. 

Moreover, multilayer films with thinner PLA/GNP layers showed better nanofiller alignment, 

suggesting that these thinner layers induce more constraints on the orientation of the GNPs 

than thicker layers.  

 

 

Figure 5.4. Histograms of nanoplatelet orientation in mono- and multilayer PLA/GNP 

composite films with different filled:unfilled ratios. 

 

Average diameters (d) of GNPs were analysed using Image J software and summarized in Table 

5.2. The average platelet diameter (or length) was reduced from 4.1 µm for monolayer films 

and 50:50 multilayer films to 3.0 and 2.5 μm for 20:80 and 10:90 multilayer films. At the same 

time the platelets became more uniform in size as indicated by the reduced spread of data. 
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This agrees with our previous findings in Chapter 3 that GNPs become thinner as well as 

smaller after extrusion compounding processes [324]. 

 

 

X-ray diffraction 

 

To obtain more quantitative information concerning the size and orientation of the 

nanoplatelets X-ray diffraction (XRD) was performed. XRD can provide information with 

regards to the stacking thickness of the GNP crystallites and here the average out-of-plane 

crystallite thickness of the GNPs (t) was estimated using the Scherrer equation in Chapter 3 

and results were summarized in Table 5.2. 

 

 

 

 

Figure 5.5. X-ray diffraction (XRD) patterns of mono- and multilayer PLA/GNP composite films 

with different filled:unfilled ratios, showing structural changes in the composites with different 

filler ratios.  
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Table 5.2. Average platelet diameter (d) from SEM and thickness (t) from XRD together with 

calculated aspect ratios (AR), Young’s modulus of composites film (Ec) and filled layer (Efilled) 

from tensile tests together with back-calculated platelet orientation factor (η0).  

 PLA Mono  Multi 50:50 Multi 20:80 Multi 10:90 

GNP (wt%) 0 5 2.5 1 0.5 

d (μm) N/A 4.1 ± 2.1 4.1 ± 2.3 3.0 ± 1.8 2.5 ± 1.4 

t (nm) N/A 40.3 34.5 34.5 20.1 

AR (-) N/A 50-155 50-185 35-140 50-195 

Ec (MPa) 2551 ± 80 3215 ± 98 2860 ± 32 3100 ± 72 2890 ± 15 

Efilled (MPa) N/A 3215 3229 5160  5680  

η0 N/A 0.16 0.18 0.72 0.86 

 

In the monolayer extruded PLA/GNP films, the average thickness of the GNPs was 

approximately 40 nm, which is in accordance with our previous reported data for PLA 

nanocomposites incorporating 5 wt% GNP through micro-compounding [324], but 

significantly larger than the values provided by the manufacturer (t ≈ 7 nm). However, GNP 

layer thickness decreased to around 35 nm in the 50:50 and 20:80 multilayer nanocomposite 

films, which could be attributed to delamination of the GNP during the slicing and stretching 

process by the static mixers. This value was further reduced to 20 nm in the 10:90 multilayer 

films. This indicated that multilayer co-extrusion has an additional benefit of reducing the filler 

thickness during processing. Based on the SEM and XRD data, the aspect ratios (AR = 

diameter/thickness) of the GNPs were estimated and listed in Table 5.2. In the next section 

these values of aspect ratio will be used to estimate the filler orientation factor. The aspect 

ratio of the fillers remained in the 50 to 200 region for all composite systems, which is an 

indication that besides delamination also fracture of the platelets takes place.  

 

5.3.2 Mechanical properties 

 

From the SEM images we can see that the forced assembly co-extrusion method to some 

extent succeeds in aligning the GNPs in the plane of the layers. Therefore, we may expect to 

see an increase in effective mechanical reinforcement for these nanocomposites. Table 5.2 

gives a summary of basic mechanical properties of the composite films (Ec). In case of equal 

effective reinforcement by the GNPs one would expect to see a gradual decrease in Young’s 

modulus of the composite films with decreasing filler content. Interestingly, the 20:80 
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multilayer composite films exhibited a similar modulus to the monolayer composites but at a 

five times lower overall GNP loading, demonstrating improved reinforcing efficiency for GNPs 

embedded in thinner and more confined nanocomposite layers. This is in agreement with SEM 

observations that showed better alignment for the 20:80 system compared to monolayers. 

Multilayer nanocomposite films with a 10:90 composition have a slightly lower modulus than 

monolayer PLA/GNP films as they contain only 1/10 of filler loading. However, also here the 

relatively high mechanical properties of these films are indicative of a high GNP reinforcing 

efficiency in these films.  

 

The effective reinforcement (Ec/Em) of the various composite films is presented in Figure 5.6 

along with data from literature. For the monolayer PLA/GNP film, a reinforcement of 126% is 

presented, similar to previous results (123%) for micro-compounded PLA/GNP composites as 

reported in Chapter 3. For the multilayer systems, the results reveal a modest reinforcement 

of 107% for the 50:50 films, 120% for the 20:80 films and again 107% for the 10:90 films (see 

Figure 5.6). A mechanical reinforcement of 120% at 1 wt% GNP is among the highest reported 

for PLA/GNP composites through melt extrusion, and close to that of PLA/exfoliated graphite 

composites reported by Kim et al. [74].  

 

Figure 5.6. Effective composite reinforcement (Ec/Em) as a function of GNP loading measured 

by tensile tests along the extrusion flow direction as a function of overall GNP content, together 

with literature data. Red: data from this research, Black: Gao et al. [324], Blue: Kim et al. [74], 

Green: Murariu et al. [196]. 
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Reinforcing efficiency in a single layer 

For a more detailed analysis of the reinforcing efficiency of the GNPs we analysed the 

mechanical data on the basis of properties of the graphene-filled layers only. Examination of 

the reinforcement by GNP in a single PLA/GNP layer, and a comparison with micromechanical 

predictions assuming full alignment of the nanoplatelets, provides us with insight into the 

ability of the forced assembly co-extrusion method to orient GNPs. This is particularly relevant 

if one could eventually make multilayer nanocomposite systems in which all layers are of 

nanometer thickness and reinforced by graphene. The tensile modulus (Efilled) of a single layer 

of graphene filled PLA can be estimated using Equation (5.1) which corresponds to the Voigt 

upper bound rule of mixture [325], 

 

 

Efilled =
E − V𝑢𝑛𝑓𝑖𝑙𝑙𝑒𝑑E𝑚

V𝑢𝑛𝑓𝑖𝑙𝑙𝑒𝑑
 

 

(5.1) 

 

 

where Vunfilled and Vfilled are the volume fractions of the unfilled PLA layers and GNP filled PLA 

layers, respectively. 

 

Mechanical properties of GNP filled layers based on Equation (5.1) are presented in Table 5.2. 

For the case of 5 wt% GNP in an individual layer, the degree of apparent reinforcement is 120% 

for 10:90 systems, 91% for 20:80 systems and 13% for 50:50 systems. The 120% increase is 

similar to the reinforcement reported by Li et al., who reported a 118% increase in modulus 

in 2049 layers (filled layer thickness of 35 nm) of PMMA/PS/GNP systems with 2 wt% GNP in 

the filled layers [234]. As this reinforcement was achieved at a filler content of 2 wt% instead 

of 5 wt% in the current study, the multilayer films produced by Li et al. exhibited an even 

greater reinforcing efficiency. Less agglomerations and further improved alignment can be 

expected in their films because of the use of 2049 layers, compared to 128 layers in our study, 

resulting in much thinner filled layers and even greater confinement of the nanoplatelets. 
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Figure 5.7. Experimental Young’s modulus of PLA/GNP composite films as a function of platelet 

orientation parameter, η0. Black line: Model prediction using Equation (5.2). Coloured squares: 

Experimental data. 

In order to relate the degree of reinforcement to the degree of orientation, we followed the 

method developed by Jan et al. [326] using the following equation: 

 

 
E𝑓𝑖𝑙𝑙𝑒𝑑 =

η𝑜E𝑓𝑉𝑓

𝐸𝑓

𝐸𝑚
2𝐿
𝑡

+ 1

+ 𝐸𝑚  

(5.2) 

 

 

Where Em, Ef and Efilled are the modulus of the polymer matrix, filler and composites, Vf is the 

volume fraction of the filler and L/t is the platelet aspect ratio (AR). η𝑜  is the orientation 

parameter, which lies between 0 and 1, with η𝑜  = 0 representing the case where the platelets 

are aligned perpendicular to the applied load and η𝑜  = 1 representing the case where the 

platelets are aligned parallel to the applied load [327,328].  

 

Using Ef= 750 GPa and Em=2.5 GPa a good fit was found when L/t=30, which is around the 

lower boundary of the observed aspect ratios as listed in Table 5.2 from SEM and XRD. This 

results in an orientation parameter of 0.16, 0.18, 0.72 and 0.86 for mono, 50:50, 20:80 and 

10:90 multilayer films, respectively and is in agreement with the orientation histograms in 

Figure 5.4. These results support our hypothesis that the increased effective reinforcement in 



Chapter 5 - Multilayer coextrusion of PLA/GNP nanocomposites 

109 
 

20:80 and 10:90 multilayer films is attributed to improved orientation of the GNP fillers. 

However, it should be noted that the value of 0.16 for monolayer PLA/GNP composites and 

0.18 for 50:50 multilayer composites are in fact lower than the 3D random orientation factor 

of 0.36 as reported by Jan et al. [326]. This might be caused due to GNP agglomerations 

present in these films as indicated by SEM images (Figure 5.2), effectively lowering the 

reinforcing efficiency of the GNPs in these composites. 

 

5.3.3 Thermal properties 

 

Incorporation of nanofillers in semi-crystalline polymers like PLA can induce both changes in 

glass transition (Tg) temperature of the amorphous phase as well as an increase in crystallinity 

due to nucleation effects. Differences in Tg are however rather small for the current PLA/GNP 

multilayer systems. These results confirm previous findings [324] which also indicated that the 

addition of GNPs did not significantly alter the Tg of the PLA matrix. 

 

 

Table 5.3. Glass transition temperatures (Tg) for all PLA/GNP composites as obtained from DMA 

together with melting temperatures (Tm) and crystallinity (Xc) from DSC and water vapour 

transmission rate (WVTR) from permeability tests. 

 

Sample Tg (°C) Tm  (°C) Xc (%) Permeability 

(mg*mm/(m2*d)) 

PLA - 166±1 2.0±0.4 8.9±0.4 

Mono 78.4 166±1 49.6±1.4 4.8±0.2 

Multi 50:50 79.5 167±1 45.8±2.5 4.9±0.3 

Multi 20:80 77.8 168±2 46.6±1.7 4.3±0.2 

Multi 10:90 - 170±1 46.4±0.3 4.2±0.4 

 

 

Nanofillers are known to act as nucleating agents in polymer matrices, altering polymer 

crystallinity in the nanocomposite system and resulting in altered properties [329,330]. Since 

PLA is a semi-crystalline polymer, its mechanical properties will strongly depend on 

crystallinity and any observed increase in mechanical properties may therefore not be solely 

the result of mechanical reinforcement by the nanofillers. In order to evaluate the influence 
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of polymer crystallinity on mechanical property enhancement of the nanocomposites, DSC 

was employed to measure the crystallinity of the various PLA/GNP composites as well as that 

of the neat PLA polymer. DSC results for the different PLA/GNP composites are listed in Table 

5.3. The incorporation of 5 wt% GNPs in the monolayer composite films did lead to a 

significant increase in crystallinity (Xc) from 2% to 47%, which is a common results of the 

incorporation of GNPs into a PLA matrix [198,331–333]. Interestingly, all multilayer composite 

films showed similar levels of crystallinity (45% for 50:50, 47% for 20:80 and 46.4% for 10:90) 

as monolayers films incorporating 5 wt% GNP. Hence, it can be concluded that differences in 

mechanical performance of the multilayer films originate from improved alignment and hence 

efficiency of the GNPs rather than an increase in polymer crystallinity as observed in many 

other studies [276,334,335].  

 

5.3.4 Barrier properties 

 

Average water vapour permeability was calculated using the following equation: 

 

 

P=(∆m/T)*t 

 

(5.3) 

 

Where ∆m/T is the steady-state slope obtained from the regression analysis of weight loss 

(∆m) data vs. time (T), t is the average film thickness. Results from literature on the water 

vapour permeability of PLA nanocomposites together with data for the current mono- and 

multilayer composite films are summarised in Table 5.4.  

 

For each study, the maximum % reduction in water vapour permeability (or water vapour 

transmission rate) compared to the unfilled reference system is recorded, together with the 

nanofiller concentration. Multi-layered 10:90 films showed among the highest reductions in 

permeability for any of the investigated nanocomposite systems with a reduction in 

permeability of 53%, but at only 1/10 of the filler loading necessary for PLA nanocomposites 

based on nanoclays (see Table 5.4). These results again highlight the potential of the 

multilayer co-extrusion technology to improve the efficiency of 2D nanofillers in polymer 

composites. 
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Table 5.4. Summary of studies on water permeability of PLA nanocomposites from literature, 

together with the current mono- and multilayer PLA/GNP composite films. 

 

Filler Max. % reduction in permeability Ref 

Montmorillonite 50% @ 5 wt% [209] 

Cloisite 30B 5% @ 5 wt% [211] 

Cloisite 20A 36% @ 5 wt% [211] 

[212] Cloisite 30B 60% @ 5 wt% 

Montmorillonite 58% @ 5 wt% [210] 

Cloisite 30B 43% @ 6 wt% [132] 

Cellulose 10% @ 1 wt%  [215] 

Mono 46% @ 5 wt% This Research 

Multi 50:50 46% @ 2.5 wt% This Research 

Multi 20:80 38% @ 1 wt% This Research 

Multi 10:90 53% @ 0.5 wt% This Research 

 

Average permeability obtained by monitoring the weight loss as a function of crystallinity and 

graphene orientation factor are displayed in Figure 5.8 and corresponding data are shown in 

Table 5.3. The “tortuous path” equation developed by Nielsen [131] is widely used to explain 

permeability in filled polymer systems. It is believed that a more tortuous diffusion path for 

gas or water molecules is created when fillers are incorporated in a polymer matrix and the 

filler concentration, orientation, and aspect ratio have an impact on the efficiency of the filler 

on permeation. Assuming that the filler platelets are aligned perpendicular to the diffusion 

direction, the Nielsen model is given by Equation (5.4) below: 

 

 
𝑃𝑐

𝑃𝑚
=

1 − 𝑉𝑓

1 +
𝐿
2𝑡 . 𝑉𝑓

 

 

(5.4) 

 

 

where Pc is the permeability of the polymer composite, Pm is the permeability of the unfilled 

polymer matrix, Vf is the volume fraction of filler, and L/t is the length over thickness or aspect 

ratio (AR) of the filler. 
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This model has been used to account for the observed improvements in barrier properties (to 

both water vapour and gases) of polymer nanocomposites. For example, Choudalakis and 

Gotsis [336] reviewed a large number of studies on the gas permeability of polymer 

nanocomposites and discussed a number of models proposed to predict permeability. It was 

concluded that assuming that the aspect ratio and orientation of the nanofiller particles are 

known, then the tortuous path model, which is the simplest, is reasonably successful in 

predicting permeability. More specifically, the Nielsen equation has been recently used to 

successfully model the water vapour permeability through PLA nanocomposite films in which 

the aspect ratio of the nanoclay filler was measured at 50 [132]. 

 

With the assumption that the PLA crystallites are impermeable filler particles with an aspect 

ratio of 1 and crystallinity is the filler concentration, the Nielsen equation can be rewritten as 

in Equation (5.5) in which P is the permeability of the semi-crystalline polymer, P0 is the 

permeability of the amorphous polymer, and Xc is the fractional degree of crystallinity. 

 

 

 

 
𝑃

𝑃0
=

1 − 𝑋𝑐

1 +
𝑋𝑐
2

 

 

(5.5) 

 

 

Equation (5.5) has been fitted to the experimental data as shown in Figure 5.8 (a). There is a 

good fit when P0=10. It should be noted that the influence of the GNP is not taken into 

consideration in this equation. 

 

The relationship between barrier properties and orientation factor of the nanoplatelets is 

plotted in Figure 5.8 (b). Interestingly, a linear but rather weak correlation between 

permeability and filler orientation was found for all composites featuring similar levels of 

crystallinity. The 10:90 multilayer films containing the lowest amount of GNPs (0.5 wt%) but 

the highest (planar) filler orientation exhibited the lowest permeability, which can only be 

explained by improved alignment of the GNPs. However, when compared to the high 

permeability of the neat PLA films, all nanocomposites showed rather similar levels of 

permeability irrespective of filler orientation. This suggests that the large increase in polymer 

crystallinity as observed for all nanocomposite films is the primary reason for the improved 
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water vapour barrier properties of the films while the filler orientation factor plays only a 

secondary role. 

 

 

 

Figure 5.8. Water vapour permeability as a function of (a) polymer crystallinity and (b) filler 

orientation factor. 
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5.4 Conclusions 

 

Multilayer co-extrusion was used to organise and align graphite nanoplatelets (GNP) in a PLA 

matrix. Multilayer structures made of alternating layers of neat PLA and PLA containing GNPs 

was evidenced by optical microscopy and SEM. Multilayer composite films were produced 

using the forced assembly co-extrusion technology with different ratios of filled and unfilled 

layer thicknesses. SEM images revealed further information regarding nanofiller size and 

alignment in the multilayer films. XRD studies confirmed a reduction in thickness of the GNPs 

with reduced filled layer thickness, indicating improved dispersion and possible exfoliation for 

these systems as a result of the multi-layering. Mechanical testing revealed similar Young’s 

moduli for multilayer films as for mono-extruded films but at only 1/10 of the GNP loading, 

demonstrating increased GNP reinforcing efficiency in multilayer composites as a result of 

improved filler dispersion, aspect ratio and alignment. A significant mechanical reinforcement 

(Ec/Em) of 120% in individual filled layers of these multilayer films was achieved, confirming 

the potential of multilayer extrusion to align nanoplatelets through confinement. DMA 

confirmed that the glass transition temperature was not affected by the multi-layering or by 

the addition of GNP, while DSC confirmed that crystallinity (Xc) greatly increased for all 

nanocomposite films. Because crystallinity was similar for all composite films, these findings 

supported the hypothesis that improvements in reinforcing efficiency originated from 

improved GNP alignment in multilayer films, rather than from changes in crystallinity. The 

effect of improved filler efficiency in multi-layered PLA/GNP composites was further 

investigated by water vapour permeability tests. Results showed that multilayer films with the 

lowest filled layer thickness exhibited the best barrier properties as a result of a high polymer 

crystallinity together with a high filler orientation factor due to confinement. These PLA/GNP 

multilayer films offered similar barrier properties as PLA/nanoclay monolayer films but at only 

1/10 of the filler loading. Force assembled multilayer films can be made using industrially-

scalable extrusion technology, opening up the possibilities for lightweight and strong 

packaging materials for food and industrial applications 
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Chapter 6 - Summary and future 

work 

 

 

6.1 Summary 

 

In this thesis, we first reviewed recent advances in polymer/graphene composites, with a 

specific focus on its mechanical and electrical properties and related theory. The 

manufacturing and properties of multilayer composites were also reviewed; 

 

A comparison between large (GNP-L) and small (GNP-S) graphene nanoplatelets was 

investigated in Chapter 3. An optimum loading for effective reinforcement was identified at 

about 5 wt% GNP for both grades. The reported maximum reinforcement (Ec/Em) of 24% for 

PLA composites incorporating 5 wt% GNP-L is among the highest reported for isotropic 

PLA/GNP nanocomposites.  

 

Percolation thresholds for electrical conduction were studied in Chapter 4 and were the 

lowest for the high aspect ratio GNP-L nanofillers (~7 wt% for GNP-L and ~13 wt% for GNP-S, 

respectively). However, upon annealing the PLA/GNP-S systems showed improved electrical 

conductivity and a greatly reduced percolation threshold from 13 to around 6 wt%. PLA/GNP-

L systems on the other hand did not show such a change in electrical properties after 

annealing. The mechanisms that accounted for the differences in electrical performance were 

further investigated using real-time dynamic percolation studies. It was shown that smaller 

GNP nanoparticles exhibited a much greater ability to form a conductive filler network by 

dynamic percolation during thermal annealing than larger nanoparticles. Hybrid 

nanocomposites incorporating both GNP-S and GNP-L nanofillers showed overall the best 

electrical properties, due to dynamic network formation of the small GNP-s in a static 

framework of large GNP-L during thermal annealing. 
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Highly structured PLA/GNP composites with controlled orientation and organisation of GNPs 

were evaluated in Chapter 5. Multilayer structures made of alternating layers of neat PLA and 

PLA containing GNPs was evidenced by optical microscopy and SEM. A significant mechanical 

reinforcement (Ec/Em) of 120% in individual filled layers of these multilayer films was 

achieved, confirming the potential of multilayer extrusion to align nanoplatelets through layer 

confinement. Because crystallinity was similar for all composite films, these findings 

supported the hypothesis that improvements in reinforcing efficiency originated from 

improved GNP alignment in these multilayer films, rather than from changes in crystallinity. 

These PLA/GNP multilayer films offered similar barrier properties as PLA/nanoclay monolayer 

films but at only 1/10 of the filler loading. These hierarchically engineered nanocomposite 

systems were produced using industrially-scalable forced assembly multilayer coextrusion 

technology, opening up the possibilities for lightweight and strong packaging materials for 

food and industrial applications. 

 

6.2 Future work 

 

In Chapter 6, only GNP-L was used for the production of multilayer films. However, it was 

already shown in Chapter 3 that smaller GNP-S can improve the toughness of PLA 

nanocomposites. Hence, it would be interesting to see the effect of GNP-S on the mechanical 

properties of multilayer films and check if similar improvements in toughness can be obtained. 

In fact, potentially even greater improvements could be envisaged due to improved nanofiller 

alignment. Moreover, hybrid filler systems could also be used, either with mixtures of GNP-S 

and GNP-L within a single layer or with PLA/GNP-S in layer A and PLA/GNP-L in layer B and 

improved electrical properties are to be expected, especially after thermal annealing. In fact, 

it would also be interesting to combine GNPs with other fillers such as CNTs, nanoclays, BN, 

MoS2 though multilayer extrusion. Apart from adding secondary fillers, multilayer coextrusion 

could also be conducted with novel structures such as foams [337] or novel processing such 

as fibre extrusion [338]. Post processing such as biaxial stretching and annealing of multilayer 

films may also help with regards to further alignment of the fillers and improved mechanical, 

electrical and barrier properties. 
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In terms of conductivity, considering that PLA/GNP-S becomes highly conductive after thermal 

annealing, it would be interesting to see the effect of annealing on the electrical behaviour of 

multilayer PLA/GNP-S or PLA/GNP-L/GNP-S composites. 

 

Although a certain degree of exfoliation is achieved as evidenced through a decrease in GNP 

thickness (Chapter 5), exfoliating multilayer graphene fully into mono- or few-layer graphene 

sheets with desired lateral dimensions seems still challenging. This might be realised by 

increasing the number of multiplier dies during the coextrusion process. Apart from that, 

further work still need to be done to improve the interfacial interactions between the carbon 

nanofillers and the PLA matrix to obtain the optimized mechanical reinforcement, possibly 

through coating and/or chemical modification of GNPs. 

 

Despite these challenges, the multi-functionality of graphene based polymeric materials has 

attracted already industry and commercial graphene products such as tennis racquets are 

already available [339]. Taking this into account, the commercial impact of graphene 

nanocomposites is quite likely to increase in the future and graphene is likely to transform 

from a material ideal for fundamental studies by scientists leading to new physics, to an 

engineering material offering important solutions for industrial and consumer needs. 
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