
Polytopal and structural aspects of

matroids and related objects

by

Amanda Cameron

A thesis submitted in partial fulfillment of the requirements of the

degree of Doctor of Philosophy

Department of Mathematics
Queen Mary University of London

United Kingdom

July 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159077811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Declaration

I, AMANDA CAMERON, confirm that the research included within this

thesis is my own work or that where it has been carried out in collaboration

with, or supported by others, that this is duly acknowledged below and my

contribution indicated. Previously published material is also acknowledged

below.

I attest that I have exercised reasonable care to ensure that the work is

original, and does not to the best of my knowledge break any UK law, infringe

any third partys copyright or other Intellectual Property Right, or contain

any confidential material.

I accept that the College has the right to use plagiarism detection software

to check the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of

a degree by this or any other university.

The copyright of this thesis rests with the author and no quotation from it

or information derived from it may be published without the prior written

consent of the author.

Signature: AMANDA CAMERON Date: July 3, 2017

Details of collaboration and publications: parts of this work have been com-

pleted in collaboration with ALEX FINK and DILLON MAYHEW and are

published in the following papers:

• A lattice point counting generalisation of the Tutte polynomial, joint

with Alex Fink, accepted to FPSAC 2016. This is an extended abstract

https://arxiv.org/abs/1604.00962


of the work in Chapters 4-7.

• A splitter theorem for connected clutters, joint with Dillon Mayhew, sub-

mitted. This appears as is in Chapter 9.

• An excluded minor characterisation of split matroids, joint with Dil-

lon Mayhew, submitted. This appears in Chapter 8, with a truncated

introduction and one additional proof, that of Theorem 8.9.

i

https://arxiv.org/abs/1703.00945


Abstract

This thesis consists of three self-contained but related parts. The first is focussed on

polymatroids, these being a natural generalisation of matroids. The Tutte polynomial is

one of the most important and well-known graph polynomials, and also features promi-

nently in matroid theory. It is however not directly applicable to polymatroids. For

instance, deletion-contraction properties do not hold. We construct a polynomial for

polymatroids which behaves similarly to the Tutte polynomial of a matroid, and in fact

contains the same information as the Tutte polynomial when we restrict to matroids.

The second section is concerned with split matroids, a class of matroids which arises by

putting conditions on the system of split hyperplanes of the matroid base polytope. We

describe these conditions in terms of structural properties of the matroid, and use this

to give an excluded minor characterisation of the class.

In the final section, we investigate the structure of clutters. A clutter consists of a finite

set and a collection of pairwise incomparable subsets. Clutters are natural generalisations

of matroids, and they have similar operations of deletion and contraction. We introduce

a notion of connectivity for clutters that generalises that of connectivity for matroids.

We prove a splitter theorem for connected clutters that has the splitter theorem for

connected matroids as a special case: if M and N are connected clutters, and N is a

proper minor of M , then there is an element in E(M) that can be deleted or contracted

to produce a connected clutter with N as a minor.
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Chapter 1

Introduction

Matroids were first described in 1935 by Whitney [47] as a generalisation of linear inde-

pendence in vector spaces. For a given matrix with columns representing vectors, take

the set of sets of columns which are linearly independent. Whitney noted certain prop-

erties which must hold for such columns, then discovered that the same properties admit

set-systems which cannot be represented as a matrix. A set-system is a collection of sub-

sets of a given set: in this case, the relevant vector space. Whitney also drew allusions to

graphs, these being a subset of matroids, thus explaining the migration of terminology

from both graph theory and linear algebra. Graph theory is similar to linear algebra in

that it is concerned with independence – here independence refers to cycle-free sets of

edges. One way in which all three objects are similar is that they all have a notion of

dual constructions. Every planar graph has a dual graph, and every matroid of a planar

graph has a dual matroid which is the matroid of the dual graph. We also have a notion

of duality for vector configurations: every full dimensional configuration has a Gale dual.

A compelling reason to consider matroids to be the natural generalisation of graphs is

that every matroid has a dual, not just those that arise from planar graphs.

The above suggests defining matroids as certain set systems, capturing which sets are

independent. While this is one standard definition, many equivalent definitions are also

2



Chapter 1. Introduction 3

used, and we choose one based on the rank function, with an eye to a generalisation in

Chapter 3. The rank of a set is the size of its largest independent subset (defined below).

Let P(E) be the power set of a set E.

Definition 1.1. A matroid M = (E, r) consists of a finite ground set E and a rank

function r : P(E)→ Z+∪{0} such that, for X,Y ∈ P(E), the following conditions hold:

R1. r(X) ≤ |X|,

R2. if Y ⊆ X, then r(Y ) ≤ r(X), and

R3. r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Note that r(M) = r(E). A set X is independent if and only if r(X) = |X|. If

r(X) = r(M) we call X a basis of M . If a set contains a basis, it is called spanning.

Matroids can also be defined in terms of the bases, or their minimal dependent sets

(known as circuits), or indeed in several other cryptomorphic ways. Some of these, and

further terminology, will be discussed in Chapter 2. In Part III, Chapter 9, we will

primarily be focussing on the circuit axioms.

A viewpoint of a matroid that we will take a lot is that of a polytope. For a set

U ⊆ E, let eU ∈ RE be the indicator vector of U , that is, eU is the sum of the unit

vectors ei for all i ∈ U . Let the set of bases of a matroid M be B, and let Conv denote

the convex hull of a set of vectors.

Definition 1.2. The base polytope of M is

P (M) = Conv{eB | B ∈ B}.

Matroid polytopes were extensively studied by Edmonds a few decades after the

discovery of matroids, and used by him to prove the famous matroid intersection theorem

in 1971 [14]. This is in fact a generalisation of König’s matching theorem [38, Theorem

16.2, and Section 41.1a]. The use of polytopes facilitates the application of matroids to

optimisation problems. We may want to find the maximum cost basis in a given matroid,
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the minimum spanning set contained in both of two given matroids, or the maximum

branching of a given digraph. The last two are solved by matroid intersection. Matroid

polytopes are also useful in algebraic and tropical geometry, with objects such as the

Grassmanian and the algebraic torus. For example, the polytope of any representable

matroid is the moment polytope of a particular toric variety of a point in the Grassmanian

[22]. Edmonds also considered a generalisation of matroids which arise by removing one

rank condition, which can likewise be represented with a polytope. These are called

polymatroids:

Definition 1.3. A polymatroid (E, r) consists of a ground set E and a rank function

r : P(E)→ Z+ ∪ {0} such that, for X,Y ∈ P(E), the following conditions hold:

P1. r(∅) = 0,

P2. if Y ⊆ X, then r(Y ) ≤ r(X), and

P3. r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Edmonds was one of the first to discuss this object, and actually defined it in terms of

the polymatroid polytope rather than with the rank axioms. This polytope is a similar

construction to that of a matroid polytope, and the details are given in Chapter 3. This

chapter also contains further background on polytopes.

In Part I of this thesis, we construct a polymatroidal generalisation of a famous

matroid polynomial, the Tutte polynomial. This was originally formulated for graphs,

in terms of the connectivity function.

Definition 1.4. Let M = (E, r) be a matroid with ground set E and rank function

r : P(E)→ Z+ ∪ {0}. The Tutte polynomial of M is

TM (x, y) =
∑
S⊆E

(x− 1)r(M)−r(S)(y − 1)|S|−r(S).

This polynomial has a diverse range of applications. The most direct of these is
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classifying Tutte invariants, these being properties of matroids or graphs which can be

enumerated by an evaluation of the Tutte polynomial. We can obtain the number of bases

and the number of independent sets in a given matroid, and the number of acyclic orien-

tations of a graph, amongst other information. These invariants, and other properties,

are discussed in Chapter 2. The Tutte invariants also include other classical invariants,

such as the chromatic polynomial, which gives the numbers of graph colourings, and

the flow and reliability polynomials used in network theory. Multivariate versions of the

Tutte polynomial also appear in other disciplines, containing as specialisations the Potts

model [45] from statistical physics and the Jones polynomial [43] from knot theory. The

Tutte polynomial also has practical applications in coding theory. The presentation of

the Tutte polynomial in Definition 1.4 is given in terms of the corank-nullity polynomial :

up to a change of variables, it is the generating function for subsets S of the ground

set by their corank r(M) − r(S) and nullity |S| − r(S). The corank-nullity polynomial

can be defined for polymatroids, but the resulting function gives far less easily accessible

information akin to that of matroids, and the terms do not always have non-negative

degrees. It is not even a Laurent polynomial in the variables x and y.

One difference between matroids and polymatroids is that matroids have a theory

of minors analogous to graph minors: for each ground set element one can define a

deletion and contraction, and knowing these two determines the matroid. The deletion-

contraction recurrence for the Tutte polynomial reflects this structure. Polymatroids,

however, lack satisfying properties of deletion and contraction such as this. Also, given

any element in a matroid, every basis (or the basis minus the element) is in either the

deletion or contraction of that element. This is not true in polymatroids, causing diffi-

culty in arguments using basis-counting. It is however possible to salvage some features of

the deletion-contraction recurrence in restricted cases: this is done by Oxley and Whittle

[34] for polymatroids where singletons have rank at most 2 (a 2 -polymatroid), where the

corank-nullity polynomial is still universal for a form of deletion-contraction recurrence.

In their paper they point out that a polymatroid can be considered as a multiset of
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flats of some matroid, and that every polymatroid can be obtained in this way. They

call this matroid a representation of the polymatroid. The definition of deletion in a

2-polymatroid given by Oxley and Whittle is a generalisation of matroid deletion, while

their definition of contraction corresponds to contraction in the representing matroid.

Therefore while these definitions do not give the properties of matroids we would like to

have, they are natural choices which would be hard to improve on.

We create a polynomial which will be an evaluation of the Tutte polynomial when

applied to a matroid and has analogous enumerative properties for polymatroids. This

is done from a polytopal approach, inspired by the notion of activity of bases. The

standard definition of activity provides for another description of the Tutte polynomial

(Equation 1.5.1, below), and has recently been generalised by Kálmán [29] so as to apply

to polymatroids. These generalisations are given in Section 3.5 of Chapter 3. In the case

of a matroid, the definitions are as follows. Note that a cocircuit is a circuit in the dual

matroid (a definition of this dual is given in Chapter 2).

Definition 1.5. Take a matroid M = (E, r), and give E some ordering. Let B be a

basis of M .

i. We say that e ∈ E − B is externally active with respect to B if e is the smallest

element in the unique circuit contained in B ∪ e, with respect to the ordering on E.

ii. We say that e ∈ B is internally active with respect to B if e is the smallest element

in the unique cocircuit in (E −B) ∪ e.

If an element is not active, in whichever sense, we say it is inactive. Let the number

of internally active elements with respect to B be denoted with ι(B) and let the number

of externally active elements be denoted by ε(x). When M is a matroid, these numbers

provide an alternative formulation of the Tutte polynomial,

TM (x, y) =
∑
B∈B

xι(B)yε(B). (1.5.1)
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These definitions are the analogies of those originally formulated using spanning trees

of graphs. The analogy between the internal and external polynomials of a polymatroid

and the same polynomials under the graph definitions were what suggested that a two-

variable polynomial similar to the Tutte polynomial could be found for polymatroids.

In the case of a polymatroid, the definitions are as follows. Note that neither of these

polynomials depend on the order on E that was used to define them. Here, ι(B) is

the number of internally inactive elements with respect to the basis B, and ε(B) is the

number of externally inactive elements with respect to B.

Definition 1.6 ([29]). Let M = (E, r) be a polymatroid. Define the internal polynomial

and external polynomial of M by

IM (ξ) =
∑

x∈BM∩ZE
ξι(x) and XM (η) =

∑
x∈BM∩ZE

ηε(x).

In fact, by Theorem 4.3, the invariant we are constructing is the bivariate analogue

of Kálmán’s activity polynomials, which is something his paper sought. Kálmán’s orig-

inal interest in these objects related to enumerating spanning trees of bipartite graphs

according to their vector of degrees at the vertices on one side. In this context Oh [32]

has investigated a polyhedral construction similar to ours, as a way of proving Stanley’s

pure O-sequence conjecture for cotransversal matroids.

We will construct a two-variable polynomial which is equivalent to the Tutte poly-

nomial for matroids and includes some activity information for polymatroids. We will

form a polynomial which counts the lattice points in a particular polytope which we

construct from P (M) in a way which introduces the stylistically necessary two variables.

This construction will be described in full detail in Chapter 4. In Chapters 5 through

7, we give properties and facts about this polynomial, including its relationship to the

Tutte polynomial and a geometric interpretation of its coefficients.

Part III is also related to matroid polytopes. A matroid M is an excluded minor for

a class of matroids if it is not in the class but all of its proper minors are. We give an
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excluded minor characterisation of a particular class of matroids, namely split matroids,

which arise by considering particular subdivisions of the base polytope of the matroid.

Definition 1.7. Let P be a polytope. A subdivision of P is a collection (complex) C of

polytopes such that

i. the empty polytope is in C,

ii. if Q is in C, so are all faces of Q,

iii. the intersection of any two polytopes Q1, Q2 ∈ C is a face of both Q1 and Q2, and

iv.
⋃
C∈C C = P .

The elements of C are called the cells.

We require that all vertices of Q ∈ C are also vertices of P .

Let a matroid M have some subdivision. The Tutte polynomial of M is equal to

the alternating sum of the Tutte polynomials of the cells in its subdivision not on the

boundary, through inclusion-exclusion based on dimensions of the cells [2], giving a

further reason why matroid polytopes are useful.

In [28] Joswig and Schröter introduce a class of matroids called split matroids, defined

in terms of split hyperplanes of the matroid base polytope. A split of a polytope is a

polytopal subdivision with exactly two maximal cells, whose intersection is called a split

hyperplane. Joswig and Schröter define a pair of splits of a polytope to be compatible

if their split hyperplanes do not meet in a relative interior point (Definition 3.7) of P .

Every flat of the matroid defines a face of the polytope. A flacet is a flat minimal under

inclusion with respect to its hyperplane intersecting P (M) in a facet. If the intersection

spans a split hyperplane, we say the flacet is a split flacet. We can now present the class

of split matroids:

Definition 1.8 ([28]). A matroid is a split matroid if its split flacets form a compatible

system of hypersimplex splits.

Joswig and Schröter prove that the class of split matroids contains the class of sparse
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paving matroids, which is conjectured to dominate the class of matroids. While this

class is new, the authors note that there have been occasions when split hyperplanes

have been used in structural results, such as in [9]. As well as being interesting from

a polytopal structural perspective, split matroids have strong ties to tropical geometry.

Joswig and Schröter use them to solve some open questions about tropical Grassmanians

and Dressians. Like representability in matroid theory, representability of tropical linear

spaces is an important question in tropical geometry. Tropical linear spaces and split

matroids are interrelated: a tropical linear space is a polytopal subdivision of a hyper-

simplex (or a regular subdivision of a matroid polytope) into matroid polytope cells, and

is cryptomorphic to a valuated matroid. Representability of a tropical linear space is

thus representability of valuated matroids [13], obtained in a natural way from standard

matroid representability. Joswig and Schröter use split matroids and the Dressian to

construct a number of nonrepresentable tropical linear spaces, and give a characterisa-

tion of matroid representability in terms of these spaces. Speyer [41] has also considered

a similar problem, where the matroids in question are restricted to being series-parallel.

Hyperplane splits also show up in a different context: Herrmann and Joswig note that

the complex of splits of the regular octahedron is a particular graph (the link of the

origin Ln−1, see [4]) in the space of phylogenetic trees, when n = 4. This space is in fact

a tropical Grassmanian, GR(2, n). When n > 4, the link of the origin is the complex of

splits of the hypersimplex ∆(2, n), which is the polytope of the uniform matroid U2,n.

Joswig and Schröter end on a few open questions, one being that of an excluded

minor characterisation of the class of split matroids. They conjecture this to be a set

of five particular matroids, four of which are connected. A matroid is connected when,

for every pair of elements in the matroid, there is a circuit which contains them both.

We give a second definition for a split matroid, entirely in terms of structural matroid

terminology. This is split into two cases, based on whether the matroid is connected or

not. For details on why this definition is equivalent to that given above, see Chapter 8.

Definition 1.9. Let M be a connected matroid, and let Z be a proper cyclic flat of M .
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If both M |Z and M/Z are connected matroids, but at least one of them is a non-uniform

matroid, then we say that Z is a certificate for non-splitting. If M is connected, and

has no such certificate, then M is a split matroid.

Now consider disconnected matroids.

Definition 1.10. Let M be a disconnected matroid, with connected components

C1, . . . , Ct. Then M is a split matroid if and only if each connected matroid, M |Ci, is

a split matroid, and at most one of these matroids is non-uniform.

Using these definitions, we settle the conjecture positively:

Theorem 1.11. The only disconnected excluded minor for the class of split matroids is

S0. The only connected excluded minors are S1, S2, S3, and S4.

Figure 1.1 shows geometric representations of the four connected rank-3 matroids,

each with six elements. It is easy to confirm that these matroids are indeed excluded

minors for the class of split matroids. Note that S∗1 ∼= S2, whereas S3 and S4 are both

self-dual matroids. The final excluded minor, S0, is that constructed from the direct

sum U2,3 ⊕ U2,3 by adding one parallel point to each of the two connected components.

S1 S2 S3 S4

Figure 1.1: Connected excluded minors for split matroids.

Part IV is concerned with a different generalisation of matroids. A clutter is a pair

(E,A), where E is a finite set, and A is a collection of subsets of E, with the property

that if A and A′ are distinct members of A, then A * A′. Clutters are also referred to as

antichains and Sperner families. We will call the members of A the rows of the clutter.

For an example of a clutter, we may take A to be the set of circuits of a matroid, or the

set of bases, or indeed the sets minimal with respect to any given property. If the subsets

A all have cardinality two, then they are the edges of a simple graph, and so clutters

are naturally tied to both matroids and graphs. Clutters are natural generalisations
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of matroids and graphs in another sense: they admit the notion of a minor-relation,

with contraction and deletion operations. The details of this are given in Chapter 9.

Like with matroids and polymatroids, polytopes and algebraic geometry concepts arise

with clutters quite naturally. Every clutter has an independence complex and thus a

simplicial complex associated to it. The blocker of a clutter is a special case, using

a Stanley-Reisner complex, of Alexander duality. When the clutter is from a chordal

graph, there are combinatorial geometrical statements which can be made about the

independence complex, such that it is shellable [44] and sequentially Cohen-Macauley

[19]. Woodroofe [49] develops the idea of a chordal clutter and shows these are also both

shellable and sequentially Cohen-Macauley. Clutters also have two polytopes associated

to them, the independence system and covering polytopes. These polytopes, like matroid

polytopes, are useful in combinatorial optimisation. One example of this is Fulkerson

[20], [21], who uses these polytopes in his study of blocking and antiblocking polyhedra,

which are related to the well-known problems of maximum-packing and minimum-cover

respectively.

An important notion which arises in conjunction with matroid and graph minors is

that of connectivity. We show that some connectivity behaviour in matroids is actually

just a special case of a clutter phenomenon. To do so, we must develop a notion of

connectivity for clutters.

Definition 1.12. Let M = (E,A) be a clutter. A separation of M is a partition of

E into non-empty parts, X and Y , such that every row is contained in X or Y . If M

admits no separation then it is connected.

This is a natural way to define connectivity for clutters, since it generalises connec-

tivity for graphs and for matroids. Brylawski [8] and Seymour [39] independently proved

that if M is a connected matroid with a connected proper minor, N , then we can delete

or contract an element from M in such a way to preserve connectivity, and the minor

N . We prove that this is a special case of a clutter property:

Theorem 1.13. Let M and N be connected clutters and assume that N is a proper
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minor of M . There exists an element, v ∈ E(M), such that either M\v or M/v is

connected and has N as a minor.

This type of theorem is known as a splitter theorem, after Seymour’s well-known

splitter theorem for 3-connected matroids [40]. We obtain, as a corollary, a weaker type

of statement, known as a chain theorem.

Corollary 1.14. Let M be a non-empty connected clutter. Then there is an element,

v ∈ E(M), such that either M\v or M/v is a connected clutter.

Seymour’s splitter theorem was itself a generalisation of Tutte’s Wheels and Whirls

Theorem, which states that it is possible to contract or delete an element from a given

3-connected matroid M and obtain a 3-connected minor, unless M is a wheel or whirl.

Oxley, Semple, and Whittle [35] give a version of this for 3-connected 2-polymatroids.

Splitter theorems in general are useful as they are often important components of decom-

position theorems. For instance, Seymour’s splitter theorem can be used to show that

every regular matroid can be constructed from a set of graphic and cographic matroids,

and the matroid R10, put together using 1-, 2-, and 3-sums. Given some conditions on

a matroid, splitter theorems can also be used to get information on minors contained in

that matroid, information highly useful for excluded minor characterisation of particular

classes of matroids. Generalisations of the splitter theorem, such as only allowing con-

tractions, lead to results in matroid representability. As examples, Whittle [48] uses this

method when considering the number of inequivalent representations of a matroid over

a given field, and Geelen, Gerards and Kapoor [23] use Seymour’s splitter theorem as an

ingredient in their proof of the set of excluded minors for GF(4)-representable matroids.



Part I

Preliminaries
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Chapter 2

Matroid Fundamentals

To begin with, we will cover the basic concepts in matroid theory which will be used

throughout this thesis. All of the following concepts and results can be found in [33].

Definition 2.1. A matroid M = (E, I) consists of a finite ground set E and a collection

of subsets I ⊆ E such that:

I1. ∅ ∈ I,

I2. if I ∈ I and J ⊆ I, then J ∈ I, and

I3. if I, J ∈ I and |I| < |J |, there exists x ∈ J − I such that I ∪ {x} ∈ I.

Any subset of E contained in I is referred to as an independent set, while any subset

of E which is not contained in I is called dependent. A dependent set of cardinality one

is called a loop. We may use E(M) in the place of E at times, in order to make it clear

which matroid is being referred to.

Definition 2.2. Take a matroid M with ground set E. The rank of a subset X of E,

denoted by r(X), is the cardinality of the largest independent subset of X.

Lemma 2.3. A matroid M can be described by the ground set E and a rank function

r : P(E)→ Z+ ∪ {0} such that, for X,Y ∈ P(E), the following conditions hold:

14
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R1. r(X) ≤ |X|,

R2. if Y ⊆ X, then r(Y ) ≤ r(X), and

R3. r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

We say that r(M) = r(E). A set X is independent if and only if r(X) = |X|. If

r(X) = r(M) we call X a basis of M . If a set contains a basis, it is called spanning. An

element with rank zero is called a loop. A parallel class is a set of rank 1 which contains

no loops.

A result that will prove important in a later proof is that of matroid partition. The

following result is due to Edmonds.

Theorem 2.4 ([14]). Let M1, . . . ,Mk be a set of matroids all with a ground set E. Let

Mi = (E, Ii). Then E can be partitioned into a family I1, . . . , Ik where Ii ∈ Ii, if and

only if there is no A ⊆ E such that |A| >∑
i
ri(A) where ri is the rank function of Mi.

[14] gives an algorithm for finding such a partition.

2.1 Dependencies

Definition 2.5. The closure of a set X is denoted by cl(X), where

cl(X) = X ∪ {e ∈ E −X | r(X ∪ e) = r(X)}.

Lemma 2.6. The closure function of a matroid satisfies the following conditions:

CL1. If X ⊆ E, then X ⊆ cl(X).

CL2. If X ⊆ Y , then cl(X) ⊆ cl(Y ).

CL3. If X ⊆ E, then cl(cl(X)) = cl(X).

CL4. If X ⊆ E and x ∈ E, and y ∈ cl(X ∪ x)− cl(X), then x ∈ cl(X ∪ y).
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The closure function corresponds to the notion of span of a vector space, and is

sometimes referred to as such. A flat is a set whose closure is equal to the set itself,

i.e. cl(X) = X. If a flat has rank r(M) − 1, it is called a hyperplane. We say that a

matroid is connected if and only if, for any two elements e, f of E(M), there is a flat

which contains them both.

A minimally dependent set – that is, a dependent set where every proper subset of

that set is independent – is called a circuit. A matroid can be described entirely by its

set of circuits C.

Lemma 2.7. (E, C) describes a matroid when the following conditions hold.

C1. ∅ /∈ C.

C2. If C,D ∈ C and C ⊆ D, then C = D.

C3. If C,D are distinct elements of C amd e ∈ C ∪ D, then (C ∪ D) − e contains a

circuit.

A circuit-hyperplane is a set which is both a circuit and a hyperplane.

Definition 2.8. Let M be a matroid and let H be a circuit-hyperplane of M . H has

rank equal to r(M)− 1. We say that we relax H when we make it independent, i.e. we

form a matroid M ′ whose set of bases is B(M)∪H. When we reverse this operation, we

say that we tighten H.

2.2 Representability

Definition 2.9. If V is a set of vectors in a vector space, and for every subset X of

V , we define r(X) to be the linear rank of X, then (V, r) is a matroid, which we say is

representable.

If these vectors come from a finite field K, we say that M is K-representable.
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2.3 Minors

Definition 2.10. We can remove an element e of a matroid M = (E, r) by deleting

it. This yields a matroid M\e = (E − {e}, rM\e), where rM\e(X) = rM (X) for all

X ⊆ E − {e}.

Definition 2.11. We can also remove an element e of a matroid M = (E, r) by contract-

ing it. This gives a matroid M/e = (E−{e}, rM/e) where rM/e(X) = rM (X∪{e})−r({e})

for all X ⊆ E − {e}.

The restriction of M to Z is denoted by M |Z, and is equal to M\(E − Z).

Any matroid produced by a sequence of deletions and contractions is called a minor

of M .

We say that a class of matroids M is minor-closed if, for every matroid M in M,

each of its minors is also in M.

A matroid M is an excluded minor for a minor-closed class of matroids M if it is a

minimal minor not in M. A matroid M is contained in M if and only if M does not

contain an excluded minor for M.

2.4 Duality

Definition 2.12. From M we can construct the dual matroid M∗. This has ground set

equal to the ground set E of M , and the rank of any subset X is found using the function

r∗(X) = |X|+ r(E −X)− r(M).

A basis of M∗ is called a cobasis of M . Note that if B is a basis of M , then E − B

is a cobasis of M . Similarly, the rank function, circuits, loops and independent sets of

M∗ are called the corank function, cocircuits, coloops and coindependent sets of M . A

parallel class in M∗ is called a series class in M .
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Lemma 2.13 ([33, Proposition 2.1.7]). Let M be a matroid. Relax a circuit-hyperplane

H of M to yield the matroid M ′. Then (M ′)∗ is identical to the matroid yielded from

M∗ by relaxing the circuit-hyperplane E −H of M∗.

Lemma 2.14 ([33, Proposition 3.3.5]). Let H be a circuit-hyperplane of a matroid M ,

and let M ′ be the matroid obtained from M by relaxing H.

i. When e ∈ E(M)−H, M/e = M ′/e, and, unless e is a coloop of M , M ′\e is obtained

from M\e by relaxing the circuit-hyperplane H of M\e.

ii. Dually, when f ∈ H, M\f = M ′\f and, unless f is a loop of M , M ′/f is obtained

from M/f by relaxing the circuit-hyperplane X − {f} of M/f .

2.5 Extensions

When we delete e from a matroid M = (E, r) to get another matroid N , we say that M

is an extension of N . As a subset of these, we can have free extensions:

Definition 2.15. Take a matroid M = (E, r). An element e is freely placed in a flat

F of M if, for any set Z ⊆ E, e ∈ cl(Z) implies F ∈ cl(Z).

Definition 2.16. Let M = (E, r) be a matroid. Add an element e /∈ E freely to E. This

gives a matroid (E ∪ {e}, r), which we call a free extension of M .

The other form of extension we will use is that of parallel extensions.

Definition 2.17. Let M and N be matroids, and let f ∈ E(M). If f is in a parallel

pair in M and M\f = N , then M is a parallel extension of N .

We will refer to this as adding a parallel point to N . There is a similar notion

involving the dual object, series pairs. A series pair in M is a parallel pair in M∗.

Definition 2.18. Let M and N be matroids, and let f ∈ E(M). If f is in a series pair

in M and M/f = N , then M is a series extension of N .
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2.6 Tutte polynomial

The Tutte polynomial originated with graphs, and so we will explain it in this context

before applying it to matroids.

Take a graph G = (V,E) and order the elements of E arbitrarily. Let T be the set

of spanning trees of G. In order to define the Tutte polynomial, we must first define the

notion of activity.

Definition 2.19. Let Γ ∈ T be a spanning tree.

i. An edge e ∈ Γ is internally active with respect to Γ if, after removing e from Γ,

connectedness of the subgraph cannot be restored by adding an edge to Γ\{e} that is

smaller than e under the given order.

ii. An edge e /∈ Γ is externally active if, after adding e to Γ, cycle-freeness cannot be

restored by removing an edge from Γ ∪ {e} that is smaller than e.

Definition 2.20. Let Γ be a spanning tree. Define ι(Γ) to be the number of internally

active edges with respect to Γ, under the given order. Define ε(Γ) to be the number of

externally active edges with respect to Γ.

Definition 2.21. Let G be any graph. The Tutte polynomial of G is

TG(x, y) =
∑
Γ∈T

xι(Γ)yε(Γ). (2.21.1)

The Tutte polynomial is independent of the chosen edge order. The definition above

is only one of multiple methods of finding the polynomial. An alternative method is the

iterated deletion and contraction of edges of G, using the following facts:

i. TG(x, y) = xTG/e(x, y) if e is an isthmus.

ii. TG(x, y) = yTG\e(x, y) if e is a loop.

iii. TG(x, y) = TG\e(x, y) + TG/e(x, y) if e is neither an isthmus nor a loop.
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Every matroid also has an associated Tutte polynomial.

Definition 2.22. Let M = (E, r) be a matroid. The Tutte polynomial of M is

TM (x, y) =
∑
S⊆E

(x− 1)r(M)−r(S)(y − 1)|S|−r(S).

When x−1 is replaced with u and y−1 is replaced with v, this is known as the corank–

nullity polynomial, due to the following definitions: the corank of M is cork(M) :=

r(M) − r(S) and the nullity of M is null(M) := |S| − r(S). Note that the corank is

different from the dual rank, an unfortunate lapse from the previous terminology.

This definition of the Tutte polynomial can also be used for graphs: let rG(S) =

V (G)− kG(S), where kG(S) is the number of connected components of G2 = (V (G), S).

By substituting in values for x and y, the Tutte polynomial reveals various facts

about the matroid or the graph being used. For instance, T (1, 1) gives the number of

bases in a matroid or the number of spanning trees in a graph, while T (2, 1) gives the

number of independent sets in a matroid or the number of forests in graphs. Invariants

that can be obtained in this way are called Tutte Invariants.



Chapter 3

Polytope fundamentals

3.1 Polytopes

An alternative way to view matroids is as polytopes. This viewpoint is more commonly

used for an extension of matroids, namely polymatroids. This chapter focuses on the

background theory behind polymatroids and polytopes, incorporating the Tutte polyno-

mial once again. As matroid polytopes are convex, we will mainly limit the discussion to

these. We will begin with some general terminology, then relate this to matroid theory.

Recall that a subset P of Rn is convex if any two points of P are connected by a

straight line which lies inside P . The convex hull of a set of points P is the intersection

of all convex sets containing P .

Definition 3.1. A convex polytope is the convex hull of a finite set of points in Rn.

Such a description of a convex polytope is often called a vertex representation (often

shortened to v-representation). A vertex corresponds, intuitively, to a point of the poly-

tope, either on the boundary or interior. For a technical definition, see directly below

Definition 3.3. Note that the intersection of two polytopes is another polytope.

We can alternatively describe the polytope by a set of linear inequalities the vertices

21
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must satisfy: it can be defined as a set of vectors

{x ∈ Rd | Ax ≤ b}

where d is the dimension of the polytope, x is an integer vector, and Ax ≤ b is a system

of rank inequalities describing the polytope with A ∈ Zm×d,b ∈ Zm. Thus finding

the number of lattice points inside the polytope is equivalent to finding the number of

integer solutions to Ax ≤ b. This is called the half-space- or hyperplane-representation

(h-representation). The complexity of going from one representation to the other is an

ongoing problem.

Definition 3.2. A half-space is either of the two parts into which a hyperplane divides

an affine space.

Any subspace connecting a point in one side of the partition to one point in the other

must intersect the hyperplane. If the space is two-dimensional, then a half-space is called

a half-plane. In one-dimensional space, a half-space is called a ray. A half-space is a

convex set, and any convex set can be described as the intersection of half-spaces.

As mentioned, a half-space can be specified by a linear inequality, derived from the

linear equality which specifies the hyperplane:

a1x1 + · · ·+ anxn ≤ b.

A strict inequality specifies an open half-space, while a non-strict specifies a closed half-

space. With this notation, we can regard a closed convex polytope as the set of solutions

to such a system, or more compactly, as Ax ≤ b. With this terminology, we can now

give the promised definition of a vertex, and more.

Definition 3.3. Let a polytope P be defined by the set of solutions to the equalities

Ax ≤ b. Let C be a submatrix of A found by removing some rows of A, and d be a

vector created from b by removing the rows in corresponding positions. A face F of a

polytope P consists of the set of solutions to this subset of the defining equalities of P ,
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F = {x ∈ P | Cx ≤ d}.

Note the above definition includes both the empty set and the entire polytope P as

faces. A vertex is a 0-dimensional face of the polytope, a 1-dimensional face is an edge,

and a (n− 1)-dimensional face is called a facet.

An important difference between the two representations is the notion of boundedness:

a polytope is bounded if there is a ball of finite radius that contains it. Also, a polytope

is finite if it is the convex hull of a finite set of points. When the convex polytope is

given by an h-representation, it need not be either bounded or finite. All the polytopes

we use will, however, be both bounded and finite.

Remark 3.4. A convex polytope is a lattice polytope if its vertices are lattice points.

Integral is commonly used in the place of “lattice”. All the polytopes we will be con-

sidering are lattice polytopes. Note that a convex lattice polytope is determined by its

set of lattice points. Throughout this thesis, we will thus restrict our attention to these

points, and statements made about the points of polytopes will be made at the lattice

point level. For instance, when proving that two lattice polytopes are equal, we will use

the technique that showing their sets of lattice points are the same.

A commonly used polytopal construction is that of the cone:

Definition 3.5. A convex cone is the convex hull of a (finite) set of half-lines which

originate from a single point.

In other words, a cone is a set of points which are solutions to λ(x) ≥ 0 where λ is

linear. A face of a polynomial cone is a subset of the cone given by replacing some of

the inequalities with λ(x) = 0. Every face F of a polytope has a unique tangent cone:

this is the intersection of all closed half-spaces containing P whose boundary contains

F . There is also a normal cone. Given a polytope (or any set) P and a vector x, the

maximiser set of x over P is {f ∈ P | x · f = supp∈S x · p}. Now, a normal cone of a face

F is the set of vectors for which F is the maximiser set over P . This set of vectors is in

the dual vector space to that P sits in, and hence determine a linear functional, x · f , on
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P .

A notion we will make use of is that of the relative interior of a polytope P . This

relies on the notions of affine subspaces and affine spans.

Definition 3.6. An affine subspace A ⊆ Rn of dimension d is a translate by some fixed

y ∈ Rn of a d-dimensional linear subspace of Rn. Given a subset V of Rn, the affine

span of V is the intersection of all affine subspaces of Rn containing V .

Definition 3.7. Let P be a polytope of dimension d. The relative interior of P is the

interior of P with respect to the embedding of P into its affine span.

When P is convex, the following definition is equivalent:

Definition 3.8. Let P be a convex polytope. Then

relint(P ) = {x ∈ P | ∀y ∈ P ∃λ > 1 such that λx+ (1− λ)y ∈ P}.

The interior of a polytope is the set of all points of the polytope except those on the

boundary. The relative interior is the interior relative to the subset of the affine space

it spans. For example, the interior of a point is empty, while the relative interior of the

point is the point itself.

3.2 Minkowski sum

Definition 3.9. The Minkowski sum of two polytopes P and Q in Rn is

P +Q = {p+ q | p ∈ P, q ∈ Q}.

It is easy to see that this will always be another polytope, and convex in the case

that both P and Q are. This construction is crucial for the work in the first part of this

thesis.
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Lemma 3.10. Let F be a face of P +Q. Then there are unique faces PX , QY of P and

Q respectively such that F = PX +QY .

Note that the converse does not always apply.

We also have a notion of Minkowski difference, which can explain what is means to

scale a polytope by a negative amount. First, when t ∈ Z+, if we scale every coordinate

of the points of P by t, we get the dilated polytope tP . When we have a Minkowski sum

of a polytope with itself, we get the same polytope as in the dilation. In the following

definition only, we will allow t to be negative.

Definition 3.11. The Minkowski difference of two polytopes P and Q in Rn is

P −Q = {t ∈ Rn | t+Q ⊆ P}.

Given this, we could now define P + (−Q) to be P − Q. Note that this causes us

to lose associativity in +, and so in any result which makes use of this, we must do all

additions first. Also, (P −Q) +Q may not be equal to P , but instead only a subset of

P . This subset would be the parts of P that can be covered with a translate of Q lying

entirely inside P .

3.3 Subdivisions

Definition 3.12. Let P be a polytope. A subdivision of P is a collection (complex) of

polytopes C such that

i.) the empty polytope is in C,

ii.) if Q is in C, so are all faces of Q,

iii.) the intersection of any two polytopes Q1, Q2 ∈ C is a (possibly empty) face of both

Q1 and Q2, and

iv.)
⋃
C∈C

C = P .
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We require that any vertex of Q ∈ C is also a vertex of P . The maximal elements of

C are called the cells of the subdivision. The set of faces of C consists of the cells and all

their faces. A subdivision is called a triangulation when every cell is a simplex.

A lower face of P is a face “visible from below”, that is, a maximiser set which is

negative on the last coordinate. The standard projection map π : Rd+1 → Rd is such

that, for p ∈ P , π(p1, . . . , pd+1) = (p1, . . . , pd).

A subdivision of P ∈ Rd is called regular if it is constructed from a polytope Q ∈ Rd+1

in a particular way:

i.) We have that π(Q) = P .

ii.) The cells of the subdivision are the lower faces of Q.

In other words, a subdivision of P in Rd is regular if there are heights αi for every

lattice point pi ∈ P such that the cells of the subdivision are given by projections of the

lower faces of the polytope Q := Conv{(pi, αi) ∈ Rd+1 | pi ∈ P}. We call Q the lifted

polytope of P , and the vector (α1, . . . , αn) P ’s height function.

We will give an example of this type of subdivision in Example 3.15, but as it is also

an example of other types of subdivisions we will define these first.

Taking the Minkowski sum of a pair of lifted polytopes induces mixed subdivisions of

the projections. Take a family of polytopes P1, . . . , Pn. The weighted Minkowski sum of

this family is λ1P1 + · · ·+ λnPn, where
∑
i
λi = 1 and 0 < λi < 1, for all i. A Minkowski

cell is a cell which is equal to λ1F1 + · · · + λnFn for faces Fi ⊂ Pi. Given a linear

functional φ, let mφ be the function sending any polytope to its φ-maximising face.

Definition 3.13. A subdivision of the weighted Minkowski sum Q = λ1P1 + · · ·+ λnPn

is mixed if each face F of Q has a given Minkowski cell structure F = λ1H1(F ) + · · ·+

λnHn(F ) for faces Hi ⊂ Pi such that, for each face mφ(F ) of F , we have Hi(mφ(F )) =

mφ(Hi(F )).

We will define one final type of subdivision, that of a fine mixed subdivision. Multiple
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definitions of this appear in the literature, not all of them consistent. Throughout this

thesis, we will be using only the following one:

Definition 3.14. Let F = λ1H1(F )+· · ·+λnHn(F ) and G = λ1H1(G)+· · ·+λnHn(G) be

two Minkowski cells of a weighted Minkowski sum. We say that F ≤ G if Hi(F ) ⊆ Hi(G)

for all i. If Q and R are are two mixed subdivisions of the weighted Minkowski sum, we

say that Q ≤ R if every cell of Q is less than or equal to some cell of R. The minimal

elements of the poset of mied subdivisions are called fine mixed subdivisions. The cells

of the subdivision are called fine mixed cells.

The subdivisions we use (see Example 3.15 and Section 7.1) are mixed, but not

typically fine. They are, however, finest of those which do not subdivide P (M).

Example 3.15. Let ∆ be the standard simplex in R|E| of dimension equal to |E| − 1,

that is

∆ = Conv{ei | i ∈ E},

and ∇ be its reflection through the origin, ∇ = {−x | x ∈ ∆}. The faces of ∆ are the

polyhedra

∆S = Conv{ei | i ∈ S}

for all nonempty subsets S of E; similarly, the faces of ∇ are the polyhedra ∇S given

as the reflections of the ∆S . There are thus |P(E)| − 1 = 2|E| − 1 faces in ∆ and also

in ∇, including the polytopes themselves. For a slightly more combinatorial argument,

note that there are |E| vertices, and so
(|E|

2

)
edges, and

( |E|
i+1

)
i-faces for any i. The total

number of faces is thus
|E|−1∑
i=0

( |E|
i+1

)
= 2|E| − 1.

We will lift ∆+∇, giving (Conv{(uei, αi)}+Conv{(−tej , βi)}, where α1 < · · · < αn,

β1 < · · · < βn are positive reals. The associated height function on the lattice points of

∆ + P (M) +∇ is

h(x) := min{αi + βj | ei − ej ∈ BM}.

By Lemma 3.10, the faces of the subdivision are of the form ∆S+∇T , where these are



Chapter 3. Polytope fundamentals 28

faces of the respective summands, which obey certain conditions. This is a fine mixed

subdivision, so by [37, Proposition 2.3] we have that the affine span of the faces must be

independent and thus transverse, and so must have opposite dimension and meet in no

more than one point. This ensures that the dimension of the Minkowski sum is the sum

of the dimensions of summands. It requires that, for highest-order faces, S∪T = E, and

|S|+ |T | = |E|+ 1. For other faces, we need |S|+ |T | = d+ 2, where d is the dimension

of the face.

Given the above height function, ei − ei isn’t the label on any vertex of the mixed

subdivision for any i 6= 1, as e1 − e1 is always lower. That is, in (ei, αi) + (−ei, βi),

the last coordinate is greater than the last coordinate of (e1, α1) + (−e1, β1). Therefore

neither can we have a face ∆S+∇T where the single common element of S and T is some

i 6= 1. If it did, by the definition of mixed subdivision we could choose a functional φ so

that ei−ei appears as a label of a vertex in the face, a contradiction. The functional φ is

created by making the coefficient of xi greatest amongst all the coefficients for elements

of S, but least among all the coefficients for elements of T .

We will now count the number of faces. All elements other than 1 can be in S or T ,

or neither, but not both. The element 1 is additionally allowed to be in both. This gives

an initial count of 4 · 3n−1. We cannot have either S or T empty, which occurs 2 · 2n

times. Finally, we’ve double-counted the case where both S and T are empty. So, the

number of faces of the subdivision is thus
4

3
3n − 2 · 2n + 1.

3.4 Matroid polytopes

Now we can return to matroids and their extensions, polymatroids. First we will present

matroids in a different manner to the previous chapter. Let the set of bases of a matroid

M be B, and let E be its finite ground set. We work in the vector space RE = {(ri | i ∈

E)}, where ri ∈ R. For a set U ⊆ E, eU ∈ RE is the indicator vector of U , that is, eU is

the sum of the unit vectors ei for all i ∈ U . When we write (eU )i, we will be referring
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to the i-th coordinate of eU . We will abbreviate e{i} to ei.

Definition 3.16. The base polytope of M is

P (M) = Conv{eB | B ∈ B}.

The base polytope is contained inside the independent set polytope of M , which is

the convex hull of indicator vectors of the independent sets of M . These definitions in

terms of convex hulls are the v-representations, as described in Section 3.1. Both of these

polytopes can also be given by the h-representation. For the independent set polytope,

we have

I(M) = {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for i ∈ [n], x · eA ≤ r(A) ∀A ⊆ E}.

For the base polytope, the h-representation is

P (M) = {(x1, . . . , xn) ∈ Rn | xi ≥ 0 for i ∈ [n], x · eA = r(A) ∀A ⊆ E}.

The edges of the polytope reflect the basis exchange property: two vertices, eB1 and

eB2 , are joined by an edge in P (M) if and only if eB1 − eB2 = ei− ej for some i, j. This

is equivalent to saying that a zero-one polytope is a matroid base polytope if and only

every edge is parallel to an edge of the simplex ∆, as first shown by Gelfand, Goresky,

MacPherson and Serganova [24].

Example 3.17. Let ∆(r, n) be the (n−1)-dimensional hypersimplex, that is, the convex

hull of the set of 0, 1-vectors with exactly r ones. Then ∆(r, n) is the polytope of the

uniform matroid Ur,n.

Note that the polytope of any matroid on n elements is a subpolytope of the hyper-

simplex.

A third definition of the matroid base polytope can be given in a way which links the
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polytope back to the Tutte polynomial.

Definition 3.18. Let M = (E, r) be a matroid. The beta invariant of M is

β(M) = (−1)r(M)
∑
X⊆E

(−1)|X|r(X).

If we write the Tutte polynomial of M as

TM (x, y) =
∑
i,j

bijx
iyj , (3.18.1)

then β(M) = b10 = b01 for |E| ≥ 2. The following facts are well known:

Lemma 3.19 ([11]). Let M = (E, r) be a matroid and TM (x, y) =
∑
i,j
bijx

iyj its Tutte

polynomial. Then M is connected if and only if β(M) > 0.

Lemma 3.20 ([7, Theorem 1.6(vi)]). Let M = (E, r) be a matroid and TM (x, y) =∑
i,j
bijx

iyj its Tutte polynomial. Then M is series-parallel if and only if β(M) = 1.

We can give an alternative definition of the matroid polytope P (M) using the signed

beta invariant.

Definition 3.21. The signed beta invariant of M is β̃(M) = (−1)r(M)+1β(M).

Lemma 3.22 ([1, Theorem 4.5]). Let ∆I be the convex hull of points ei for i ∈ I. Then

P (M) =
∑

A⊆E, β̃>0

β̃(M/A)∆E−A +
∑

A⊆E, β̃<0

β̃(M/A)∆E−A.

Note that, in the above lemma, we separated the terms based on sign due to the

definition and non-associativity of Minkowski difference (recall Section 3.2).

3.5 Polymatroids

A natural extension of matroids are polymatroids, which are a class of objects formed

by relaxing one matroid rank axiom.
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Definition 3.23. A polymatroid (E, r) consists of a finite ground set E and a rank

function r : P(E)→ Z+∪{0} such that, for X,Y ∈ P(E), the following conditions hold:

P1. r(∅) = 0,

P2. If Y ⊆ X, then r(Y ) ≤ r(X), and

P3. r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

If the rank of every singleton is bounded by some integer k, we can call the polyma-

troid a k-polymatroid.

Example 3.24. We can construct a polymatroid from any graph in a different way to

that of the graphic matroid. The ground set E will still be the edge set of the graph. Let

X ⊆ E. Then we define r(X) to be the number of vertices incident with X. We will refer

to this as a graphic polymatroid. When the graph is simple, this gives a 2-polymatroid.

Example 3.25. Given two matroids with rank functions r1 and r2, r1 + r2 is always the

rank function of a 2-polymatroid.

As with matroids, we can represent polymatroids as polytopes. Let r : P(E) → N

be a rank function, and M = (E, r) the associated polymatroid. We again have the

independent set polytope, which is also referred to as the extended polymatroid of M :

EP (M) = {x ∈ RE | x · eU ≤ r(U) for all U ⊆ E}.

Note that, unlike in the matroid case, this definition allows for points with negative

coordinates. If we also require that x ≥ 0, we have the polymatroid base polytope of M ,

P (M) = EP (M) ∩ {x ∈ RE , x ≥ 0 | x · eE = r(E)}.

As before, the base polytope is a face of the extended polymatroid. Note the abuse in

notation: we use P (M) to refer to the polytope of both a matroid and a polymatroid.

When we mean M to be strictly a matroid, we will make this clear. Note that every
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matroid is a polymatroid, but not the converse. When a polymatroid happens to be

a matroid, then the extended polymatroid is equal to the independent set polytope,

and the base polytope of the polymatroid is the same as the base polytope defined for

matroids.

Both the base polytope and extended polymatroid contain all the information in the

rank function. In [36], polymatroid base polytopes are dubbed “generalised permutohe-

dra.” A base polytope is always a lattice polytope, as is an extended polymatroid. The

dimension of the polytope is equal to |E| minus the number of connected components of

the matroid.

Edmonds [15], amongst others (often those with backgrounds in optimisation rather

than combinatorics), use EP (M) as the definition of a polymatroid. We prefer to adopt

the stance that, as with the various sets of axioms which can be used to define a matroid,

EP (M) and to Definition 3.23 are simply alternative ways to define the same object.

One could give further combinatorial definitions for polymatroids, such as defining bases

(Definition 3.27) as particular multisets rather than as vectors satisfying a certain inner

product.

What the P (M) definition means in effect is that we form the vertices of a polytope

by using the Greedy Algorithm: Choose some ordering of the ground set E, and let

Si be the set of the i least elements according to the chosen ordering. Form a vector

x = (x1, . . . , x|E|) by:

x1 = r(S1), and

xi = r(Si)− r(Si−1), for all i ∈ {2, . . . , |E|}.

The vertices of a polymatroid are these vectors x formed for all possible orderings of the

ground set.

We have a notion of polymatroid basis exchange:

Lemma 3.26 ([27, Theorem 4.1]). Let P be a polymatroid polytope. Take any two lattice
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points p, q ∈ P . If pi > qi, then there exists a j such that pj < qj and p− ei + ej ∈ P .

3.6 Activity

Polymatroids have a notion of internal and external activity associated with them, akin

to the commonly used notion for graphs. An important distinction between matroids

and polymatroids is that in polymatroids, bases need not be equicardinal, a well-known

and easily proven fact of matroids. Note that when the basis of a polymatroid is given

by a vector of the polytope, we use cardinality to refer to the number of non-zero coor-

dinates in the vector. We thus first have to define exactly what we mean by a basis of

a polymatroid. The following three definitions for the polymatroid generalisation are

from [29], and in fact apply to all polytopes, given a submodular function r. Let E be a

finite set, which will serve as the ground set of our (poly)matroid. Take a polymatroid

M = (E, r).

Definition 3.27. A vector x ∈ ZE is called a basis if x · eE = r(E) and x · eS ≤ r(S)

for all subsets S ⊆ E.

Let BM be the set of all bases of M .

Definition 3.28. A transfer is possible from u1 ∈ E to u2 ∈ E in the basis x ∈ BM ∩ZE

if by decreasing the u1-component of x by 1 and increasing its u2-component by 1 we get

another basis.

Definition 3.29 (Polymatroid activity). Order the elements of E arbitrarily.

i. We say that u ∈ E is internally active with respect to the basis x if no transfer is

possible in x from u to a smaller element of E.

ii. We say that u ∈ E is externally active with respect to the basis x if no transfer is

possible in x to u from a smaller element of E.

For x ∈ BM ∩ZE, let the set of internally active elements with respect to x be denoted

with Int(x), and let ι(x) = |Int(x)|; likewise, let the set of externally active elements be
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denoted with Ext(x) and ε(x) = |Ext(x)|. Let ι(x), ε(x) denote the respective num-

bers of inactive elements. When M is a matroid, these numbers provide an alternative

formulation of the Tutte polynomial,

TM (x, y) =
∑
B∈B

xι(B)yε(B).

In this formula, we are actually using the following simplified versions of the definition

of activity, which are more common for matroids:

Definition 3.30 (Matroid activity). Take a matroid M = (E, r), and give E some

ordering. Let B be a basis of M .

i. We say that e ∈ E − B is externally active with respect to B if e is the smallest

element in the unique circuit contained in B ∪ e, with respect to the ordering on E.

ii. We say that e ∈ B is internally active with respect to B if e is the smallest element

in the unique cocircuit in (E \B) ∪ e.

These definitions are the analogies of those originally formulated using spanning trees

of graphs.

In graphs and matroids, if u is internally active in B then u ∈ B. Applying the poly-

matroid definition of internally activity to a matroid, however, says that every element

not in B is internally active, and only elements in B can be externally active. This is the

only difference between the two notions of external activity. Compared to the matroid

activity definitions, this definition gives |E|− r(M) extra internally active elements, and

r(M) extra externally active elements. This means we have a second formula for the

Tutte polynomial using activity, when we use the polymatroid definitions, as follows:

Definition 3.31. Let M = (E, r) be a matroid, and give E some ordering. Using the

polymatroid definitions of activity, Definition 3.29, we have that

TM (x, y) =
1

x|E|−r(M)yr(M)
·

∑
B∈BM∩ZE

xι(B)yε(B).
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This analogy between the internal and external polynomials of a polymatroid and the

same polynomials under the graph definitions suggested that a two-variable polynomial

similar to the Tutte polynomial could be found for polymatroids. In the case of a

polymatroid, the definitions are as follows. Note that these polynomials do not depend

on the order on E that was used to define them, by [29, Theorem 5.4].

Definition 3.32 ([29]). Let M be a polymatroid. Define the internal polynomial and

external polynomial of M by

IM (ξ) =
∑

x∈BM∩ZE
ξι(x) and XM (η) =

∑
x∈BM∩ZE

ηε(x).

Our work generalises formula (3.6), creating a two-variable polynomial which is equiv-

alent to the Tutte polynomial for matroids (Definition 4.0.1) and specialises to the two

activity polynomials above for polymatroids (Theorem 4.3). That is, the invariant we

construct is the bivariate analogue of Kálmán’s activity polynomials, which is something

his paper [29] sought.

3.7 Classical and mixed Ehrhart theory

Before we describe our construction, we will give one more section of background theory,

which will be implicitly used in our work.

We denote the number of lattice points in a polytope P by #(P ∩Zn). This is called

the discrete volume of P . Recall that if we scale every coordinate of the points of P by

t ∈ Z+, we get the dilated polytope tP . Let P have dimension n, and recall that P is

a lattice polytope. The number of lattice points in the dilation has long been known to

be a polynomial of degree n in t:

Definition 3.33. Let t ∈ Z+ ∪ {0}. The Ehrhart polynomial of P is

L(P, t) := #(tP ∩ Zn) = a0 + a1t · · ·+ ant
n.
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We have that a0 = 1, and an is the volume of P . There is also a geometric interpre-

tation of an−1. Given a facet F of P , the relative volume of F is

relvol(F ) := lim
t→∞

1

tn−1
#(tF ∩ Zn).

Then an−1 = 1
2

∑
F

relvol(F ).

It is not known if the remaining coefficients have such interpretations.

Example. Let P be the three-dimensional cube. Then L(P, t) = 1 + 3t + 3t2 + t3,

and is in fact the cube of the Ehrhart polynomial of the line segment of length one, t+1.

Note that tP ∩Zn is not always equal to t(P ∩Zn). When this does occur for all t, P

is said to be normal. Any lattice polytope, such as the matroid base polytope, is normal

for t ≥ n− 1. Moreover, all matroid polytopes are normal [46, Theorem 1].

We can also count the number of lattice points in the interior of a convex polytope,

using the Ehrhart–Macdonald reciprocity theorem:

L(Int(P ), t) = (−1)nL(P,−t).

The Ehrhart series is found by forming a generating function with L(P, t):

EhrP (z) :=
∑
t≥0

L(P, t)zt.

This can be written as a rational function, using the well-known h∗-vectors:

EhrP (z) =
h∗(t)

(1− t)n ,

where h∗(t) is a polynomial in t with degree ≤ n. This is called the h∗-polynomial, and

the vector of coefficients in the polynomial the h∗-vector. Like in the Ehrhart polynomial,
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all the coefficients are non-negative ([42]).

Now take a set of n-dimensional polytopes P1, . . . Pk. The Minkowski sum of dilated

polytopes t1P1 + · · · + tkPk is a multivariate polynomial in t1, . . . , tk. This is known

as the multivariate Ehrhart polynomial, and we will denote it by EhrP(t1, . . . , tk). The

degree of ti is dim Pi, and the total degree is dim(P1 + · · · + Pk). Bihan [3] developed

the idea of a mixed Ehrhart theory, by defining a discrete mixed volume of a collection

of polytopes P1, . . . , Pk:

DMV (P1, . . . , Pk) =
∑
J⊆[k]

(−1)k−|J |#(PJ ∩ Zd)

where

PJ :=
∑
j∈J

Pj for ∅ 6= J ⊆ [k] and P∅ = {0}.

The mixed Ehrhart polynomial is then

MEP1,...,Pk(n) := DMV (nP1, . . . , nPk)

=
∑
J⊆[k]

(−1)k−|J | EhrPJ (n)

where EhrPJ (n) is the multivariate Ehrhart polynomial with all ti = n. Bihan showed

that the discrete mixed volume, and therefore the coefficients of the mixed Ehrhart

polynomial, are non-negative for lattice polytopes.

Let P = (P1, . . . , Pk). In the case that P1, . . . Pk are all the same d-dimensional

polytope P , we get expressions in terms of the h∗-vector:

DMV (P) =
d∑
j=0

(
d− j
d− k

)
h∗j (P ), and

MEP(n) =
d∑
j=0

(
k∑
i=0

(−1)k−i
(
k

i

)(
in+ d− j

a

))
h∗j (P ).
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We also have the notion of a mixed h∗-vector ([25]). If we write

MEP(n) = h∗0(P)

(
n+ d

d

)
+ · · ·+ h∗d(P )

(
n

d

)

where d = dim(P1 + · · · + PK), then the mixed h∗-vector is (h∗0, . . . , h
∗
d). Moreover, for

all i ∈ [d],

h∗i (P) =
∑
∅6=J⊆[k]

(−1)j−|J |h∗i (PJ) + (−1)k+i

(
d

i

)
.

Note that h∗o(P) = 0 and if k = 2, then h∗1(P1, P2) = DMV (P1, P2). Unlike in the

case of the non-mixed h∗-vectors, the mixed ones are not always non-negative. Haase

et al [25, Corollary 4.6] show that if each polytope Pi is dilated by a large enough t,

non-negativity can be recovered.

Finally, we could ask if there are interpretations of the coefficients of the mixed

Ehrhart polynomial akin to those of the standard polynomial. This turns out to be a

similarly hard problem, with only certain coefficients having geometric meanings. Let

mei be the coefficient of ni in MEP(n), and let P [α] mean we take α copies of P . Given

a linear functional, a, let P ai be the face of Pi where a is maximised. Then we have

med =
∑
α∈Zk≥1

|α|=d

(
d

α1, . . . , αk

)
MVd(P1[α1], . . . , Pk[αk]), and

med−1 =
1

2

∑
a

∑
α∈Zk≥1

|α|=d−1

(
d− 1

α1, . . . , αk

)
MVa(P

a
1 [α1], . . . , P ak [αk])

where a ranges over primitive facet normals of P1 + · · ·+Pk. Here, primitive means that

there is a unique way to scale the normal vector to the relevant facet in such a way that

the entries are relatively prime integers.
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Chapter 4

Construction

As the base polytope of a matroid is the convex hull of a set of zero-one vectors, the

number of lattice points in it is equal to the number of its vertices, that is, the number

of bases in its underlying matroid. Recall that one important property of the Tutte

polynomial is that TM (1, 1) counts the number of bases in the matroid. With these

facts in mind, we will form a polynomial which counts the lattice points of a particular

Minkowski sum of polyhedra, with the aim of it having such an enumerative property.

Note that, by [38, Corollary 46.2c], the set of lattice points in a sum of polymatroid

polytopes is the set of sums of lattice points from the summands.

Let ∆ be the standard simplex in RE of dimension equal to |E| − 1, that is

∆ = conv{ei | i ∈ E},

and ∇ be its reflection through the origin, ∇ = {−x | x ∈ ∆}. The faces of ∆ are the

polyhedra

∆S = conv{ei | i ∈ S}

for all nonempty subsets S of E; similarly, the faces of ∇ are the polyhedra ∇S given as

the reflections of the ∆S .

40
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We consider the polytope given by the Minkowski sum P (M) + u∆ + t∇ where

M = (E, r) is any polymatroid and u, t ∈ N = Z+ ∪ {0}. By Theorem 7 of [30],

the number of lattice points inside the polytope is a polynomial in t and u, of degree

dim(P (M) + u∆ + t∇) = |E| − 1. This polynomial we write in the form

QM (t, u) := #(P (M) + u∆ + t∇) =
∑
i,j

cij

(
u

j

)(
t

i

)
. (4.0.1)

Changing the basis of the vector space of rational polynomials gives the polynomial

Q′M (x, y) =
∑
ij

cij(x− 1)i(y − 1)j (4.0.2)

where the cij are equal to those in the previous equation. Remark 4.4 explains the

reasoning behind this choice of basis change.

One motivation for this particular Minkowski sum is that it provides a polyhedral

translation of Kálmán’s construction of activities in a polymatroid.

Lemma 4.1. Let P be a polymatroid polytope, and choose t ∈ Z+ ∪ {0}. Give the

natural ordering to the elements of the polymatroid. At every point f ∈ P , attach the

scaled simplex

f + tConv({−ei | i is internally active in f or i /∈ f}) =: t∆f .

This operation partitions the set of lattice points of P + t∇ into a collection of translates

of faces of t∇, with the simplex attached at f having codimension ι(f) within P .
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Figure 4.1: A polytope (grey) with ∆f attached at lattice points f (blue)
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Figure 4.1 shows a case of this operation, to illustrate what is meant by “attaching”

a simplex. Our polymatroid P (M) is coloured grey, and the polytope drawn is P (M) +

2∆+∇. Coordinate labels are written without parentheses and commas. The blue areas

are faces of the scaled simplices 2∆f , and can be seen to be a partition of the lattice

points.

Proof. We will first show that this operation covers all of P + t∇. Let g ∈ P + t∇ be a

lattice point. We will find f such that g ∈ t∆f .

Let gt = g. For i ∈ {0, . . . , t− 1}, define

gi =



gi+1 + e1 if gi+1 + e1 ∈ P + (t− i)∇

gi+1 + e2 if gi+1 + e1 /∈ P + (t− i)∇, gi+1 + e2 ∈ P + (t− i)∇
...

gi+1 + en if gi+1 + eh /∈ P + (t− i)∇, ∀j ∈ [n], gi+1 + en ∈ P + (t− i)∇

In other words, at each iteration i, we are adding an element ej which is internally

active with respect to gi+1. We cannot replace ej with ei where i < j and remain inside

P + t∇. Let eji be the element added in iteration t. We get that

g = gt = g0 − ej1 − . . .− ejt ∈ P + t∇.

Note that if we added ei at some stage gs of the iteration, and ej at stage gs−1, then

j ≥ i. Thus if we take a tuple ek such that (k1, . . . , kt) < (j1, . . . , jt) with respect to

the lexicographic ordering, then g0 −
∑
t

ejt +
∑
t

ekt /∈ P , so each ej is internally active.

Thus g0 = f and the ej found define a simplex ∆f such that g ∈ t∆f .

Now we will show that this operation gives disjoint sets. We have that {t∆f} covers

P + t∇, and that {(t−1)∆f} partitions P + (t−1)∇. Thus in order to show that {t∆f}

is in fact a partition of the lattice points of P , it suffices to prove that if gt ∈ t∆f , then

gt−1 ∈ (t− 1)∆f . Say that f = gt + ei1 + · · ·+ eit . This means that each element eik is
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internally active at f for all k ∈ {0, . . . , t}. Now, for a contradiction, let g0 = f ′ 6= f , so

that gt−1 = gt + ei ∈ (t− 1)∆f ′ . Apply the same iterative process as before to get

f ′ = g0 = gt−1 + ei1 + · · ·+ eit−1

= gt + ei + ei1 + · · ·+ eit−1

= f − eit + ei.

Thus eit was internally inactive at f , contradicting our construction of t∆f .

The exterior analogue can be proven in an identical manner:

Lemma 4.2. Let P be a lattice polytope, and choose t ∈ Z+∪{0}. At every lattice point

p ∈ P , attach the scaled simplex

p+ tConv({−ei | i is externally active in p or i ∈ f}).

This operation partitions the set of lattice points of P + t∆ into a collection of translates

of faces of t∆, with the simplex attached at p having dimension ε(p) within P .

The following is a direct consequence of applying Lemma 5.9 to Definitions 3.31 and

3.32. We state it here for the motivation it gives.

Theorem 4.3. Let M be a polymatroid with rank function r. Then IM (ξ) = ξ ·Q′M (ξ, 1)

and XM (η) = η ·Q′M (1, η).

Remark 4.4. It is this result which first motivated the particular change of basis made

from QM to Q′M , since an i-dimensional face of t∆ has

(
t+ i

i

)
=

i∑
k=0

(
i

k

)(
t

i

)
lattice

points. The coefficients
(
i
k

)
are exactly absorbed by the binomial theorem when passing

from powers of x− 1 to powers of x, so the overall outcome is that the dimensions of the

simplices in a decomposition are, notionally, just the coefficients of Q′M .

The bivariate enumerator of internal and external activities for polymatroids is not

order-independent, and so we do not have that Q′M =
∑

x∈BM∩Z|E|
ξι(x)ηε(x). For example,

take the polymatroid with bases {(2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 0, 2)}. Using the natural



Chapter 4. Construction 44

ordering on [3], the only externally active element in (2, 1, 1) is 1. If we instead use the

ordering 2 < 3 < 1, the same bases has two externally active elements: 1 and 3.

In the following chapters, we will provide further information about this polynomial

and its invariants, and provide links to the Tutte polynomial.



Chapter 5

Relationship to the Tutte

polynomial

When we restrict M to be a matroid, Q′M (x, y) is an evaluation of the Tutte polynomial,

and in fact one that contains precisely the same information:

Theorem 5.1. Let M = (E, r) be a matroid. Then we have that

Q′M (x, y) =
x|E|−r(M)yr(M)

x+ y − 1
· TM

(
x+ y − 1

y
,
x+ y − 1

x

)
(5.1.1)

as an identification of rational functions.

The proof of this is given in the second section of this chapter. We can also invert

Equation 5.1.1, giving the Tutte polynomial as an evaluation of Q′M :

Theorem 5.2. Let M = (E, r) be a matroid. Then

TM (x, y) =
(xy − x− y)|E|−1

(−y)r(M)−1(−x)|E|−r(M)−1
·Q′M

( −x
xy − x− y ,

−y
xy − x− y

)

as an identification of rational functions.

As such, the Tutte polynomial can be directly evaluated by lattice point counting
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methods, which is a novel approach:

Theorem 5.3. Let M = (E, r) be a matroid and let u, t ∈ Z. Then

TM (x, y) = (xy − x− y)|E|(−x)r(M)(−y)|E|−r(M)·

×
∑
u,t≥0

QM (t, u)

(
y − xy

xy − x− y

)t( x− xy
xy − x− y

)u
.

This can likewise be inverted, a direct proof of which will be given below. We will

first work through an example showing these results in practice.

Example 5.4. Let M be the matroid on ground set [3] = {1, 2, 3} with BM = {{1}, {2}}.

When u = 2 and t = 1, the sum P (M) + u∆ + t∇ is the polytope of Figure 5.1, with 16

lattice points.

1̄30

1̄21

1̄12

031̄

020

011

002

121̄

110

101

11̄2

211̄

200

21̄1

301̄

31̄0

Figure 5.1: The polytope P (M) + u∆ + t∇ of Example 5.4. The coordinates
are written without parentheses or commas, and 1̄ means −1.

To compute QM (x, y), it is enough to count the lattice points in P (M) + u∆ + t∇

for a range of non-negative integers u and t. Since QM is a polynomial of degree 2, in

order to form it from a set of its values, it is sufficient to take t and u as non-negative

integers with sum at most 2. These are the bold entries in the table below:

t \ u 0 1 2

0 2 5 9

1 5 10 16

2 9 16 24
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We can then fit a polynomial to this data, and find

QM (t, u) =

(
t

2

)
+ 2tu+

(
u

2

)
+ 3t+ 3u+ 2,

so

Q′M (x, y) = (x− 1)2 + 2(x− 1)(y − 1) + (y − 1)2 + 3(x− 1) + 3(y − 1) + 2

= x2 + 2xy + y2 − x− y.

Finally, by Theorem 5.2,

TM (x, y) = − (xy − x− y)2

(−y)0(−x)1
·
(
y2 + 2xy + x2

(xy − x− y)2
+

y + x

xy − x− y

)
= xy + y2,

which is indeed the Tutte polynomial of M .

As a second example of how Q′M looks compared to TM , we can consider uniform

matroids. A uniform matroid M = Um,n is the matroid of ground set |E| = n whose set

of bases consist of all subsets of E of size m. The Tutte polynomial can be written as

the sum of a polynomial in y and a polynomial in x, but we conjecture the same is not

true for the Q′ polynomial.

Lemma 5.5 ([31, Equation 18]).

TUm,n(x, y) =

n∑
i=1

(
n− i− 1

n−m− 1

)
xi +

n−m∑
j=1

(
n− j − 1

m− 1

)
yj

Conjecture 5.6.

Q′Um,n(x, y) =
∑
i,j

(−1)n−1−i−jxiyj
[(n− 1

i

)(
n−m− 1− i

j −m

)

+

(
n− 1

j

)(
m− 1− j
i− n+m

)]
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We also have two conjectures on the form Q′M takes for graphic polymatroids, namely

those from paths and cycles:

Conjecture 5.7. Let M be the graphic polymatroid of the path with k edges. Then

Q′M (x, y) = (x+ y)k−1.

Conjecture 5.8. Let M be the graphic polymatroid of the k-cycle. Then

Q′M (x, y) =
(x+ y)k − 1

x+ y − 1
.

Some calculations ofQ′ for both matroids and polymatroids are given in the Appendix.

5.1 Proofs of results

We first present the proof of Theorem 5.1: Q′ is an evaluation of the Tutte polynomial,

when we restrict to matroids.

Theorem 5.1. Let M = (E, r) be a matroid. Then we have that

Q′M (x, y) =
x|E|−r(M)yr(M)

x+ y − 1
· TM

(
x+ y − 1

y
,
x+ y − 1

x

)
(5.0.1)

as an identification of rational functions.

Proof. Let q = eB + ex1 + · · · + exi − ey1 − · · · − eyj be a point in P (M) + i∆ + j∇,

where eB ∈ P (M). We say that the expression for q has a cancellation if xk = yl

for some k, l. Let k be the number of cancellations in the expression for q, allowing

a summand to appear in only one cancellation. For instance, if xk = yl = ym is the

complete set of equalities, there is one cancellation, while xk = xn = yl = ym would give

two. We will partition the set of lattice points of P (M) + i∆ + j∇ according to how

many coordinates are non-negative, and then construct Q by counting the lattice points
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in each part of the partition. Given a lattice point q, let S = {1 ≤ i ≤ n | qi > 0}. In

order to construct eB from eS we need to use |S| − r(S) of the ∆ summands: as B is

spanning, we must have used a ∆-summand every time |S| rises above r(S). Similarly,

we must use r(M) − r(S) ∇-summands to account for any fall in rank. Now, we will

set the remaining ∆-summands equal to those coordinates already positive, that is, set

them equal to indicator vectors of elements of S. The remaining ∇-summands we will

set equal to indicator vectors of elements not in S.

We will ensure, through choice of B and k, that this is the largest q (in terms of sum

of coordinates) we can find given i and j. There are two ways the expression can fail to

be maximal in this sense:

• when we decrease k, we could construct q using less ∆ and ∇ summands, and

• if we write q using B′ where we have summands ea − eb such that (B′ ∪ a)− b is a

valid basis exchange, we would again be able to construct q using less summands.

We will choose B in the expression for q and the maximal k so that describing all

lattice points q can be done uniquely in the way described.

Now we have that |S| is the number of non-negative coordinates in at least one point

of P (M) + i∆ + j∇, and all our positive summands of such a point are assigned to such

coordinates. The sum of these summands must be r(M) + i− k − |S| = i− k − null(S).

If we ensure that |E − S| is the number of negative integers in the respective points

of P (M) + i∆ + j∇, summing over these sets S will give a count of all lattice points.

By the reasoning above, we must have that the |E − S| non-negative integers sum to

j − k − r(M) + r(S) = j − k − cork(S). Thus,

#(P (M) + i∆ + j∇) =
∑
S

∑
k

[#(|S| non-negative integers summing to i− k− null(S))

×#(|E − S| non-negative integers summing to j − k − cork(S))]
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which is

#(P (M) + i∆ + j∇) =
∑
S

∑
k

(
i− k + |S| − null(S)− 1

|S| − 1

)
×
(
j − k + |E − S| − cork(S)− 1

|E − S| − 1

)
. (5.8.1)

Now form the generating function

∑
i,j

#(P (M) + i∆ + j∇)viwj =
∑
i

∑
j

#(P (M) + i∆ + j∇)viwj .

Substituting Equation 5.8.1 into the generating function gives

∑
i

∑
j

∑
S

∑
k≥0

(
i− k + |S| − null(S)− 1

|S| − 1

)
vi−k

×
(
j − k + |E − S| − cork(S)− 1

|E − S| − 1

)
wj−k(vw)k.

Using the identity
∑
i

(
i+a
b

)
xi =

xb+a

(1− x)b+1
simplifies this to

∑
S

∑
k

vnull(S)

(1− v)|S|
· wcork(S)

(1− w)|E−S|
· (vw)k

which we can write as

∑
S

vnull(S)

(1− v)null(S)−cork(S)+r(M)
· wcork(S)

(1− w)cork(S)−null(S)+|E|−r(M)
·
∑
k

(vw)k.
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Collecting like exponents, we end up with

∑
i,j

#(P (M) + i∆ + j∇)viwj =
1

1− vw ·
1

(1− v)r(M)(1− w)|E|−r(M)

×
∑
S

(
v(1− w)

1− v

)null(S)(w(1− v)

1− w

)cork(S)

=
1

1− vw ·
1

(1− v)r(M)(1− w)|E|−r(M)

× T
(
w(1− v)

1− w + 1,
v(1− w)

1− v + 1

)
=

1

1− vw ·
1

(1− v)r(M)(1− w)|E|−r(M)

× TM
(

1− vw
1− w ,

1− vw)

1− v

)
(5.8.2)

where TM is the Tutte polynomial of M . Now it remains to be shown that the left-hand

side contains an evaluation of our polynomial Q′M . Using our original definition of QM ,

Equation 4.0.1, we have that

∑
i,j

#(P (M) + i∆ + j∇)viwj =
∑
i,j,k,l

ckl

(
i

l

)(
j

k

)
viwj

=
∑
k,l

ckl ·
vl

(1− v)l+1
· wk

(1− w)k+1
.

If we let
w

1− w = x− 1 and
v

1− v = y − 1, then

∑
i,j

#(P (M) + i∆ + j∇)viwj =
∑
k,l

ckl ·
vl

(1− v)l+1
· wk

(1− w)k+1

= (1− v)(1− w)
∑
k,l

ckl(x− 1)k(y − 1)l

= (1− v)(1− w)Q′M (x, y).

So, from Equation (5.8.2), we have that

(1− v)(1− w)Q′M (x, y) =
1

1− vw ·
1

(1− v)r(M)(1− w)|E|−r(M)
· TM

(
1− vw
1− w ,

1− vw
1− v

)
.



Chapter 5. Relationship to the Tutte polynomial 52

Solving for w and v in terms of x and y gives that w =
x− 1

x
, v =

y − 1

y
. Substitute

these into the above equation to get

Q′M (x, y) =
x|E|−r(M)yr(M)

x+ y − 1
· TM

(
x+ y − 1

y
,
x+ y − 1

x

)
. (5.8.3)

As mentioned at the start of this chapter, we can invert this formula. This is simply

done by setting x′ =
x+ y − 1

x
, y′ =

x+ y − 1

y
, rearranging, and then relabelling.

Theorem 5.2. Let M = (E, r) be a matroid. Then

TM (x, y) =
(xy − x− y)|E|−1

(−y)r(M)−1(−x)|E|−r(M)−1
·Q′M

( −x
xy − x− y ,

−y
xy − x− y

)

as an identification of rational functions.

If we restrict the construction to the cases where u = 0 or t = 0, we get the following

formulae. These can easily be found by simplifying the above formula.

Lemma 5.9. Let M = (E, r) be a matroid. Then

Q′M (x, 1)

x|E|−r(M)−1
= TM (x, 1), and

Q′M (1, y)

yr(M)−1
= TM (1, y).

We can also give a combinatorial-geometric intepretation of these results, using

Lemma 4.2:

Remark 5.10. Note that Q′M (x, 1) = #(P (M) + t∇) and Q′M (1, y) = #(P (M) +u∆).

By Lemma 4.2, these polyhedra are partitioned by the the Minkowski sum of each point

with faces of simplices formed by elements internally and externally active to that point.

If we divide through by the number of lattice points in such a face, we gain the original

matroid. Using the calculations used above, we get the necessary scale factors.
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We can now prove the formula for the Tutte polynomial directly in terms of lattice

point counting, restated here:

Theorem 5.11. Let M = (E, r) be a matroid and let u, t ∈ Z. Then

∑
u,t≥0

QM (t, u)vtwu =
1

(1− w)r(M)(1− v)|E|−r(M)(1− vw)
· TM

(
1− vw
1− v ,

1− vw
1− w

)
.

Proof. Consider the power series
∑
u,t≥0

QM (t, u)atbu. Note that

∑
u,t≥0

(
t

i

)(
u

j

)
atbu =

1

ab
·
(

a

1− a

)i+1

·
(

b

1− b

)j+1

.

We can thus write our power series as

1

ab

∑
i,j

cij

(
a

1− a

)i+1( b

1− b

)j+1

.

Substituting a = x−1
x and b = y−1

y turns this into

xy

(x− 1)(y − 1)

∑
i,j

cij(x− 1)i+1(y − 1)j+1

which is a scaled version of Q′M (x, y). We can now apply Theorem 5.2:

∑
u,t≥0

QM (t, u)

(
x− 1

x

)t(y − 1

y

)u
= Q′M (x, y)

=
x|E|−r(M)+1yr(M)+1

x+ y − 1
· TM

(
x+ y − 1

y
,
x+ y − 1

x

)
.

Substitute v = x−1
x and w = y−1

y to get the stated result.

A further substitution gives the following corollary (stated as a theorem at the begin-

ning of this chapter):
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Corollary 5.12. Let M = (E, r) be a matroid and let u, t ∈ Z. Then

TM (x, y) = (xy − x− y)|E|(−x)r(M)(−y)|E|−r(M)

×
∑
u,t≥0

QM (t, u) ·
(

y − xy
xy − x− y

)t( x− xy
xy − x− y

)u
.

Our formula for the Tutte polynomial can be viewed as a close relative of the algebro-

geometric formula for the Tutte polynomial in [18]. This is due to the computations on

the Grassmannian in that work being done in terms of P (M), the moment polytope of

a certain torus orbit closure. We have that ∆ and ∇ are the moment polytopes of the

two dual copies of Pn−1, the K-theory ring of whose product Z[x, y]/(xn, yn) is identified

with the ambient ring of the Tutte polynomial.
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Properties

From the definition of Q′M , it is not difficult to describe its behaviour under the poly-

matroid generalisation of many standard matroid operations; we see that it retains ver-

sions of formulae true of the Tutte polynomial in many cases. For instance, there is

a polymatroid analogue of the direct sum of matroids: given two polymatroids M1 =

(E1, r1),M2 = (E2, r2) with disjoint ground sets, their direct sum M = (E, r) has ground

set E = E1 t E2 and rank function r(S) = r1(S ∩ E1) + r2(S ∩ E2).

Recall the following property of the Tutte polynomial:

Proposition 6.1. Let M1 ⊕M2 be the direct sum of two matroids M1 = (E1, r1),M2 =

(E2, r2) with disjoint ground sets. Then TM1⊕M2(x, y) = TM1(x, y)TM2(x, y).

Using this, we gain the following property of Q′M :

Proposition 6.2. Let M1 ⊕M2 be the direct sum of two matroids M1 = (E1, r1),M2 =

(E2, r2) with disjoint ground sets. Then Q′M1⊕M2
(x, y) =

Q′M1
(x, y)Q′M2

(x, y)

x+ y − 1
.

55
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Proof.

Q′M1⊕M2
(x, y) =

xr1(M1)+r2(M2)y|E1|+|E2|−r1(M1)−r2(M2)

x+ y − 1
· TM1⊕M2

(
x+ y − 1

x
,
x+ y − 1

y

)
=

(
xr1(M1)y|E1|−r1(M1)

x+ y − 1

)
xr2(M2)y|E2|−r2(M2) · TM1

(
x+ y − 1

x
,
x+ y − 1

y

)
× TM2

(
x+ y − 1

x
,
x+ y − 1

y

)
= Q′M1

(x, y)xr2y|E2|−r2(M2) · TM2

(
x+ y − 1

x
,
x+ y − 1

y

)
=
Q′M1

(x, y)Q′M2
(x, y)

x+ y − 1

In particular, in the matroid setting where one of the summands is a loop or a coloop,

we obtain:

Corollary 6.3. Take a matroid M = (E, r). Let M ′ = M ∪ {e} where e is either a loop

or a coloop. Then Q′M ′(x, y) = (x+ y − 1)Q′M (x, y).

Proof. This can also be proven using the Tutte polynomial deletion-contraction equations

given in Section 2.6, as follows.

First let e be a loop of M . We have r(M) = r(M ′). So,

Q′M ′(x, y) =
xr(M)y|E(M′)|−r(M)

x+ y − 1
· TM ′

(
x+ y − 1

x
,
x+ y − 1

y

)
=
xr(M)y|E(M)|+1−r(M)

x+ y − 1
· x+ y − 1

y
· TM ′/e

(
x+ y − 1

x
,
x+ y − 1

y

)
= (x+ y − 1)Q′M (x, y).



Chapter 6. Properties 57

Now let e be a coloop of M . We have that r(M ′) = r(M) + 1. We have that:

Q′M ′(x, y) =
xr(M

′)y|E(M′)|−r(M′)

x+ y − 1
· TM ′

(
x+ y − 1

x
,
x+ y − 1

y

)
=
xr(M)+1y|E(M)|+1−r(M)−1

x+ y − 1
· x+ y − 1

x
· TM ′/e

(
x+ y − 1

x
,
x+ y − 1

y

)
= (x+ y − 1)Q′M (x, y).

Next we see Q′ exchanges its two variables under duality, as does the Tutte polyno-

mial. The best analogue of duality for polymatroids requires a parameter s greater than

or equal to the rank of any singleton; then if M = (E, r) is a polymatroid, its s-dual is

the polymatroid M∗ = (E, r∗) with

r∗(S) = r(E) + s|E − S| − r(E − S).

Proposition 6.4. For any matroid M = (E, r), Q′M∗(x, y) = Q′M (y, x).

This can easily be seen from the equation

Q′M (x, y) =
xr(M)y|E|−r(M)

x+ y − 1
· TM

(
x+ y − 1

x
,
x+ y − 1

y

)
,

but we also provide a geometric proof.

Proof. In order to get an inequality description for P (M∗) + u∆ + t(−∆), we use

φ(P ) = {φ(p) | Ap ≤ b}

where φ is a bijection which takes elements of P (M) to elements of P (M∗). Such a

bijection clearly exists as both matroids have the same ground set and thus the same
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number of bases. This gives that

#(P (M) + u∆ + t(−∆)) = #(φ(P (M)) + uφ(∆) + tφ(−∆))

= #(P (M∗) + u(∇+ 1E) + t(∆ + 1E)

= #(P (M∗) + (t− u)1E + u∇+ t∆)

= #(P (M∗) + u∇+ t∆)

where the last line is true due to the polytope being a translation of the one in the line

above. The statement follows.

Given a subdivision P1, . . . , Pn of a polytope P , a valuation is a function f such that

f(P ) =
∑
Pi

f(Pi)−
∑
Pi,Pj

f(Pi∩Pj) + . . .+ (−1)n−1f(P1∩ · · · ∩Pn). The number of lattice

points in a polytope, and thus the invariant Q′M , is a polytope valuation of polymatroids.

That is:

Proposition 6.5. Let F be a polyhedral complex whose total space is a polymatroid base

polytope P (M), and each of whose faces F is a polymatroid base polytope P (M(F )).

Then

Q′M (x, y) =
∑

F a face of F
(−1)dim(P (M))−dimFQ′M(F )(x, y).

For example, if M is a matroid and we relax a circuit-hyperplane, we get the following

result:

Corollary 6.6. Take a matroid M = (E, r) and let C ⊆ E be a circuit-hyperplane

of M . Let M ′ be the matroid formed by relaxing C. Then Q′M (x, y) = Q′M ′(x, y) −

xn−r(M)−1yr(M)−1.

Proof. Note that r(M ′) = r(M) and that |E(M)| = |E(M ′)| = |E|. Using Lemma 6.7,
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we have that

Q′M (x, y) =
xr(M)y|E(M)|−r(M)

x+ y − 1
· TM

(
x+ y − 1

x
,
x+ y − 1

y

)
=
xr(M)y|E(M)|−r(M)

x+ y − 1
·
[
TM ′

(
x+ y − 1

x
,
x+ y − 1

y

)
− x+ y − 1

x

− x+ y − 1

y
+

(x+ y − 1)2

xy

]
= Q′M ′(x, y)− xr(M)y|E|−r(M)

x+ y − 1
·
[

(x+ y − 1)2

xy
− x+ y − 1

x
− x+ y − 1

y

]
= Q′M ′(x, y)− xr(M)−1y|E|−r(M)−1.

Lemma 6.7 ([31]). Take a matroid M = (E, r) and let C ⊆ E be a circuit-hyperplane of

M . Let M ′ be the matroid formed by relaxing C. Then TM (x, y) = TM ′(x, y)−x−y+xy.

Most importantly, when M is a matroid, we have a deletion-contraction recurrence

for Q′, akin to that of the Tutte polynomial:

Proposition 6.8. Let M = (E, r) be a matroid with |E| = n. Then, for e ∈ E,

i. Q′M (x, y) = xQM\e(x, y) + yQ′M/e(x, y) when e is not a loop or coloop, and

ii. Q′M (x, y) = (x+ y − 1)Q′M/e(x, y) = (x+ y − 1)Q′M\e(x, y) otherwise.

Proof. Part ii is Corollary 6.3, as when e is a (co)loop, M\e = M/e. For part i, recall

that if e is neither a loop nor a coloop, then E(M\e) = E−e = E(M/e), r(M\e) = r(M),

and r(M/e) = r(M) − 1. Take the equation TM (x, y) = TM\e(x, y) + TM/e(x, y) and

rewrite it in terms of Q′, as per Corollary 5.2:

− (xy − x− y)n−1

(−y)r(M)−1(−x)n−r(M)−1
·Q′M (x, y) = − (xy − x− y)n−2

(−y)r(M)−1(−x)n−r(M)−2
·Q′M\e(x, y)

− (xy − x− y)n−2

(−y)r(M)−2(−x)n−r(M)−1
·Q′M/e(x, y)
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Multiplying through by −(−y)r(M)−1(−x)n−r(M)−1

(xy − x− y)n−1
gives the result.

We have that P (M\a) = {p ∈ P (M) | pa = k}, where k is the minimum value pa takes

(this will be 0 unless a is a coloop), and that P (M/a) = {p ∈ P (M) | pa = k}, where k

is the maximum value pa takes. When M is a matroid, these two sets partition P (M).

However, when M is a polymatroid, we can have points in P (M) where k < pa < k. Let

Nk := {p ∈ P (M) | pa = k}, and let P (Nk) be the polytope consisting of the convex

hull of such points. Now we have that P (M\a), P (M/a), and the collection of P (Nk)

for k ∈ {k + 1, . . . , k − 1} partition P (M). We will refer to each of these parts, when

they exist, as an a-slice of P (M). When we do not include the deletion and contraction

slices, we can talk about (strictly) interior slices.

Theorem 6.9. Let M = (E, r) be a polymatroid and take a ∈ E(M). Let N be an

a-slice of P (M). Then

Q′M (x, y) = (x− 1)Q′M\a(x, y) + (y − 1)Q′M/a(x, y) +
∑
N

Q′N (x, y).

Note that when M is a matroid, the statement simplifies to the formulae given in

Lemma 6.8: if a is neither a loop nor coloop, then the a-slices are P (M\a) and P (M/a),

so

Q′M (x, y) = (x− 1)Q′M\a(x, y) + (y − 1)Q′M/a(x, y) +
∑
Nk

Q′Nk(x, y)

= (x− 1)Q′M\a(x, y) + (y − 1)Q′M/a(x, y) +Q′M\a(x, y) +Q′M/a(x, y)

= xQ′M\a(x, y) + yQ′M/a(x, y).

When a is a loop or coloop, M\a = M/a, and we have only one a-slice: P (M\a) =
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P (M/a). So we get that

Q′M (x, y) = (x− 1)Q′M\a(x, y) + (y − 1)Q′M/a(x, y) +
∑
Nk

Q′Nk(x, y)

= (x+ y − 1)Q′M/a(x, y)

as in Lemma 6.8.

Also note that this result gives another proof of Theorem 5.1 as a corollary.

Proof. In this proof, all statements made about points of polytopes will be made on the

lattice point level.

Let M be a polymatroid. If the rank function of M is a matroid rank function

summed with a function of the form S 7→ ∑
i∈S

ci, then P (M) will be a translate of a

matroid polytope, and the same argument as above will hold. Assume now that this is

not the case. This means that for any a ∈ E(M), there will be at least one a-slice of

P (M), P (Nk), which is not equal to P (M/a) or P (M\a).

Claim 6.10. Define R to be the polytope {q ∈ P (M) +u∆E + t∇E | qa = k}, and define

S to be P (Nk) + u∆E−a + t∇E−a. If R intersects the set of lattice points of P (M), then

R = S.

Proof of Claim 6.10. It is clear that the lattice points of S are contained in R. Take a

point in R, q1 = p1 + ei1 + · · · + eiu − ej1 − · · · − ejt . We will show that we can write

this as a point contained in S, q2 = p2 + em1 + · · ·+ emu − en1 − · · · − ent , where no mi

or nj can be equal to a.

If (p1)a = k, then we simply choose p2 to be p1 and choose mk = ik, nk = jk for

all k ∈ {1, . . . , t}, with one possible change: if we have ik = jl = a in q1, in q2 replace

mk and nl with b, where b is any other element in E(M). Note ea must always appear

paired in this way, such that (q1)a = k, and so this change does not affect the coordinate

values of q2.
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If (p1)a 6= k, we first must rewrite the expression for q1. Recall that by Lemma 3.26,

for p1 and any point p3 ∈ P (M), if (p1)i > (p3)i there exists l such that (p1)l < (p3)l

and p1− ei + el ∈ P (M). Let (p1)a = k+λ, where λ > 0. Then, by repeatedly applying

the exchange property, we get that p1− λea + el1 + · · ·+ elλ ∈ P (M). Then we can find

q2 by setting p2 = p1 − λea + el1 + · · ·+ elλ , so

q2 = p2 + λea − el1 − · · · − elλ + ei1 + . . .+ eiu − ej1 − · · · − ejt = q1.

Note that as (q1)a = k and (p2)a = k, there must be λ −ejk terms equal to −ea, so

q2 = p2 − el1 − · · · − elλ + ei1 + . . .+ eiu − ej1 − · · · − ejt−λ

which is of the correct form, completing the proof of Claim 6.10. �

Claim 6.11. Let Ni be a strictly interior slice of P (M). Then P (M) + t∆E + t∇E =

(P (M/a)+u∆E + t∇E−a) t
⊔
i
(P (Ni)+ t∆E−a+ t∇E−a) t (P (M\a)+ t∆E−a+ t∇E).

Proof of Claim 6.11. Take P (M)+u∆E + t∇E and split it into a collection of polytopes

according to the value of qa for all points q ∈ P (M) + u∆E + t∇E . The disjoint union

of the lattice points of these parts clearly will give back those of the original polytope.

By the previous result, if one of these parts intersects P (M) we can write it as P (Nk) +

u∆E−a + t∇E−a. Otherwise, we must be able to write the part as P (M/a) + (u −

λ)∆E−a+λea+ t∇E−a, where λ > k, or as P (M\a)+ t∆E−a−µea+(t−µ)∇E−a, where

µ > k.

We will show that

⊔
λ

P (M/a) + (u− λ)∆E−a + λea + t∇E−a = P (M/a) + u∆E + t∇E−a. (6.11.1)

It is clear that the sets of lattice points of the summands are pairwise disjoint as the a-

coordinates in each set must be different. It is also clear that the lattice points contained

in the polytope on the left hand side are contained in that of the right hand side. Take
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a point q1 = p1 + ei1 + · · ·+ eiu − ej1 − · · · − ejt contained in P (M/a) + u∆E + t∇E−a.

Let (q1)a = k + µ, where µ > 0. We need to write q1 as p2 + em1 + · · ·+ emu−λ + λea −

en1 − · · · − ent , a lattice point contained in one of the summands on the left hand side.

Choose µ = λ, p2 = p1, {jα} = {nα}, and {iβ | iβ 6= a} = {mβ} and the equality follows.

The same arguments show that

⊔
µ

P (M\a) + t∆E−a − µea + (t− µ)∇E−a = P (M\a) + u∆E−a + t∇E (6.11.2)

and the claim follows. �

Claim 6.12. We have that

#(P (M/a) + u∆E + t∇E−a) =
u∑
j=0

#(P (M/a) + j∆E−a + t∇E−a)

and

#(P (M\a) + u∆E−a + t∇E) =

u∑
j=0

#(P (M\a) + u∆E−a + i∇E−a).

Proof of Claim 6.12. Take the cardinalities of both sides of Equations 6.11.1 and 6.11.2.

�

Continuing the proof of the theorem, we now that have

QM (t, u) =
∑
Nk

QNk(t, u) +
u∑
j=0

QM/a(t, j) +
t∑
i=0

QM\a(i, u) (6.12.1)

where k ∈ {k + 1, . . . , k − 1}, that is, Nk is always a strictly interior slice of P (M).

We now work out how the change of basis from Q to Q′ transforms the sums in
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Equation 6.12.1. Take a term in QM/a, cik
(
j
k

)(
t
i

)
. We have that

u∑
j=0

cik

(
j

k

)(
t

i

)
= cik

(
u+ 1

k + 1

)(
t

i

)

= cik

(
t

i

)((
u

k

)
+

(
u

k + 1

))
.

Now apply the change of basis to get

cik(x− 1)i((y − 1)k + (y − 1)k+1) = cik(x− 1)i
(

(y − 1)k(1 + y − 1)
)

= cik(x1)i(y − 1)ky.

Thus
u∑
j=0

QM/a(t, j) = yQ′M/a(t, u)

and similarly,
t∑
i=0

QM\a(i, u) = xQ′M\a(t, u).

Finally, putting this together with Claim 6.11 and Equations 6.11.1 6.11.2 gives:

Q′M (t, u) = xQ′M/a(t, u) + yQ′M/a(t, u) +
∑

interior Nk

Q′Nk(t, u)

= (x− 1)Q′M/a(t, u) + (y − 1)Q′M/a(t, u) +
∑
Nk

Q′Nk(t, u).

This completes the proof of Theorem 6.9.
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Coefficients and Terms

We will restate the two polynomials here for convenience:

QM (x, y) := #(P (M) + u∆ + t(−∆)) =
∑
i,j

cij

(
u

j

)(
t

i

)
Q′M (x, y) =

∑
ij

cij(x− 1)i(y − 1)j

In this chaper, we will only allow M to be a matroid.

7.1 Coefficients of Q′(x, y)

Some coefficients of the Tutte polynomial provide structural information about the

matroid in question. Let bi,j be the coefficient of xiyj in TM (x, y). It is well known

that M is connected only if b1,0, known as the beta invariant, is non-zero; moreover,

b1,0 = b0,1 when |E| ≥ 2. Not every coefficient yields such an appealing result, though

of course they do count the bases with internal and external activity of fixed sizes. We

are able to provide a geometric interpretation of the coefficients of Q′M (x, y) when M is

a matroid, which is the focus of this section.

65



Chapter 7. Coefficients and Terms 66

In order to do this, we will make use of a particular regular mixed subdivision of

u∆ +P (M) + t∇. This will be the regular subdivision determined by the lifted polytope

(P (M)×{0})+Conv{(uei, αi)}+Conv{(−tei, βi)} lying in RE×R, where α1 < · · · < αn,

β1 < · · · < βn are positive reals. When t = u = 1, the associated height function on the

lattice points of ∆ + P (M) +∇ is

h(x) := min{αi + βj | x− ei + ej ∈ BM};

in general, one subtracts t standard basis vectors and adds u of them.

Let F be the set of lower faces of the lifted polytope. For each face F ∈ F, let π(F )

be its projection back to Rn. Now F := {π(F ) | F ∈ F} is a regular subdivision of

u∆ + P (M) + t∇.

The structure of the face poset of this polyhedral subdivision does not depend on t

and u as long as these are positive. By Lemma 3.10, the faces of our Minkowski sum

consist of sums of faces of the summands. The face lattice of u∆ does not depend on

the value of u: the face lattice of a (n− 1)-dimensional simplex is a (n− 1)-dimensional

cube, and the addition of u just scales the coordinates of the cube. Likewise, the face

lattice of t∇ is independent of the value of t. When we name a face of F as a sum of

three polytopes, we mean this to be the given Minkowski cell structure from Definition

3.13.

Definition 7.1. A cell F +G+H of F is a top degree face when G is a vertex of P (M)

and there exists no cell F +G′ +H of F where G′ ( G.

The result we will be working towards in this chapter is the following:

Theorem 7.2. Let M be a matroid. Take the regular mixed subdivision F of u∆ +

P (M) + t∇. We have that |[xiyj ]Q′M (x, y)| counts the cells F + G + H of the mixed

subdivision where G is a vertex of P (M) and there exists no cell F + G′ + H where

G′ ( G and i = dim(F ), j = dim(H).
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The key fact in the proof is the following.

Proposition 7.3. In the subdivision F , each of the lattice points of u∆ + P (M) + t∇

lies in a top degree face.

To expose the combinatorial content of this proposition, we need to describe the top

degree faces more carefully. All top degree faces are of dimension |E| − 1, and therefore

have the form u∆X +eB + t∇Y . Recall that a mixed subdivision of ∆+∇ was described

in Example 3.15. The addition of eB does not change the combinatorics of the choice of

X and Y as it is a zero-dimensional polytope and thus has only one face. Thus, by prior

work, we know that X and Y are subsets of E so that the affine spans of ∆X and ∇Y
are transverse (and thus only meet at the origin) and of dimensions summing to |E| − 1,

which implies that X ∪ Y = E and |X ∩ Y | = 1. In fact the conditions on the α and β

imply that X ∩Y = {1}. We thus have 2|E|−1 top degree faces, one for each valid choice

of X and Y – each element (except 1) is either in X, or it is in Y .

Lemma 7.4. Take subsets X and Y of E with X ∪ Y = E and X ∩ Y = {1}. There is

a unique basis B such that u∆1∪X + eB + t∇1∪Y is a top-degree face. It is the unique

basis B such that no elements of X are externally inactive and no elements of Y are

internally inactive with respect to B, where activity is defined with respect to reversed

natural order on E.

Note in the service of readability we write 1 instead of {1}.

The basis B can be found using the simplex algorithm for linear programming on

P (M), which relies on the fact that if an objective function of a linear program has a

maximum, it occurs at an extremal point of the feasible set. The algorithm describes how

to move from extremal point to extremal point so that, in each direction moved, there is

an increase in the objective function. In terms of a polytope, this corresponds to moving

from vertex to vertex via the edges. We apply this algorithm to a linear functional

constructed from the α and β encoding the activity conditions. This procedure can be

completely combinatorialised, giving a way to start from a randomly chosen initial basis

and make a sequence of exchanges which yields a unique output B regardless of the input
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choice. The proof is as follows.

Proof. Choose any basis, B0, and order the elements b1, . . . , br lexicographically. Perform

the following algorithm to find the basis B:

• Take b1.

(a) Test whether b1 can be replaced with a larger element of X to give another

basis. If so, replace b1 with the largest such element. Call this a check of type

(a).

(a) If b1 was not replaced, and b1 ∈ Y , see if b1 can be replaced by a smaller

element of E to give another basis. If so, replace b1 with the smallest such

element. Call this a check of type (b).

• Repeat the above steps with the successive elements bi+1, with br+1 = b1.

• Terminate when, after a full run of the algorithm on the elements of the basis, the

basis has remained unchanged at each iteration.

Now let γ1, . . . , γn ∈ R be such that 0 = |γ1| � · · · � |γn|, and γa > 0 if a ∈ X,

γa < 0 is a ∈ Y .

Claim 7.5. Let Bi and Bi+1 be two bases of M found consecutively by the algorithm.

Then
∑
a∈Bi

γa <
∑

a∈Bi+1

γa for all i. That is, the sum
∑
a∈B

γa is increasing with the algo-

rithm.

Proof of Claim 7.5. Moves of type (a) replace an element b of a basis with a larger

element c in X, so regardless of whether b was in X or Y , this must increase the sum as

γb > 0. Moves of type (b) replace an element y ∈ Y in the basis with a smaller element

d. If d ∈ Y , we are replacing γy with a smaller negative, as |γd| � |γy|. If d ∈ X, we are

replacing a negative γy with a positive γd. So
∑
a∈B

γa is increasing in every case. �

We will write the symmetric difference of two sets A and B as A4B. The next
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result follows as a corollary of the previous claim.

Claim 7.6. B4Y written with the largest elements first is lexicographically increasing

with the algorithm.

Proof of Claim 7.6. A move of type (a) replaces an element of B with a larger element

in X. This puts a larger element into B4Y than was in B originally, and so must

cause a lexicographic increase. A move of type (b) removes a Y element in B (and

so, an element not in B4Y ), and puts a smaller element z into B. Removing the Y

element from B adds it to B4Y , and adding an element to a set cannot decrease the

lexicographic order. If the smaller element z is in Y , then this move removes z from

B4Y . As we have replaced it with a larger element, the lexicographic order of B4Y

is increased. If z is in X, the move adds z to B4Y , increasing the lexicographic order

of B4Y . �

Claim 7.7. The algorithm described above terminates and gives an output independent

of B0.

Proof of Claim 7.7. Order all bases of the matroid based on the increasing lexicographic

order of B4Y . As we chose the elements δa to be much greater than the previous

element, only the largest element of B4Y determines the total ordering. We have

shown in the previous corollary that this sequence is increasing with the algorithm. As

there is a finite number of bases, there must be a greatest element, and thus the algorithm

terminates.

We now need to show that there is a unique basis for which the algorithm can ter-

minate.

The structure (E, {Bi4Y | Bi ∈ BM}) is what is known as a delta-matroid, a gener-

alisation of a matroid allowing bases to have different sizes. This delta-matroid is a twist

of M by the set Y [5]. The subsets Bi4Y are called the feasible sets. It is a result of

Bouchet ([5]) that feasible sets of largest size form the bases of a matroid.
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In order to show uniqueness of termination bases, we will first show that if B is a

termination basis and B4Y is not of largest size, then any basis B′ with |B′4Y | >

|B4Y | is terminal. Suppose this is not the case. As |B4Y | = |B| + |Y | − 2|B ∩ Y |,

this requires that |B′ ∩ Y | < |B ∩ Y |.

As B′ is not a termination basis, there is either an element b ∈ B′ such that (B′ −

b) ∪ c ∈ B for some element c ∈ X, where c > b, or there is an element b ∈ Y ∩ B such

that (B′− b)∪ a ∈ B for some a < b. If we have b, c ∈ X, |((B′− b)∪ c)∩ Y | = |B′ ∩ Y |.

If b ∈ Y , |((B′ − b)∪ c)∩ Y | < |B′ ∩ Y |. If a, b ∈ Y , then |((B′ − b)∪ a)∩ Y | = |B′ ∩ Y |.

Finally, if b ∈ Y and a ∈ X, then |((B′ − b) ∪ a) ∩ Y | < |B′ ∩ Y |. In every case we have

a contradiction.

As the algorithm terminates, we know that after a finite number of such exchanges,

we produce B from B′. Let the bases constructed in each step form a chain

B′, B1, B2, . . . , Bn, B.

From above, we have that |B′ ∩ Y | ≥ |B1 ∩ Y | ≥ · · · ≥ |Bn ∩ Y | ≥ |B ∩ Y |. This

contradicts the initial assumption that |B′ ∩ Y | < |B ∩ Y |.

Now assume the algorithm can terminate with two bases B1, B2. Take B14Y and

B2∆Y , and choose the earliest element b ∈ B14Y − B24Y (assuming this comes

lexicographically first in B14Y ). If b ∈ X, then b ∈ B1−B2. If b ∈ Y , then b ∈ B2−B1.

Similarly, if c ∈ B24Y −B14Y , if c ∈ X then c ∈ B2−B1, or if c ∈ Y then c ∈ B1−B2.

Apply the delta-matroid exchange algorithm to B14Y and B24Y to get that

(B14Y )4{b, c} is a feasible set, for some element c ∈ (B14Y )4(B24Y ). Given

we have a twist of a matroid, we must have that (B14Y )4{b, c} = B34Y for some

basis B3, and so |(B14{b, c}| = |B3| = |B1| as 4 is associative. This means we must

have that exactly one of {b, c} is in B1. If b ∈ X, (B14Y −b)∪c = ((B1−b)∪c)4Y , so

(B1 − b)∪ c ∈ B and we must have c ∈ X by the above paragraph. As b was the earliest
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element different in either basis, we must have c > b, and so B1 was not a termination

basis of the original algorithm. If b ∈ Y , (B14Y − b) ∪ c = B14((Y − b) ∪ c). But we

cannot change Y , so must have [(B1 − c) ∪ b]4Y and c ∈ Y . This means that again

B1 was not a termination basis, as we are replacing an element of Y with a smaller one.

This completes the proof of Claim 7.7. �

This claim completes the proof of Lemma 7.4.

Before we can get to the proof of Theorem 7.2, we first need two results on how these

top degree cells interact.

Lemma 7.8. Take two distinct partitions (X1, Y1),(X2, Y2) of [n]\{1}. The algorithm

finds two bases B1, B2 such that we have two top degree cells Ti = eBi + ∆1∪Xi +∇1∪Yi,

i ∈ {1, 2}. If T1 ∩ T2 6= ∅, then B1 = B2.

Proof. We will show that a top degree cell cannot contain more than one basis. Suppose

that T = eB + ∆1∪X +∇1∪Y contains a basis B2 6= B. Any elements of B2 − B must

be in X, and as X,Y partition [n]\{1}, there can be no elements of B2 −B in Y , other

than 1. If we take a ∈ X−B, where a ∈ B2, there is some element b ∈ B−B2 such that

(B − b) ∪ a ∈ B. Then a must be smaller than b – otherwise this would contradict B

being the termination basis of the algorithm. Note this implies b cannot be 1. Moreover,

as B is the termination basis, move (a) of the algorithm tells us that b ∈ X. Now, we

have that eB−eb+ea ∈ eB+∆1∪X +∇1∪Y . This implies that b is in Y – a contradiction

to X,Y being a partition.

Define A := E−A. Let X1 6= X2. We must have that there is a set D ∈ (B2∩X1)−B1

and E ∈ (B1∩X2)−B2 such that (B1−E)∪D = B2 – not by basis exchange, by equality.

So both T1 and T2 contain B1 and B2. By the above paragraph, we must have B1 = B2.

If X1 = X2, we must have (B1 −A) ∪B = B2, where B ∈ Y2, A ∈ Y1.

Lemma 7.9. Take two distinct partitions P1 = (X1, Y1),P2 = (X2, Y2) of [n]\{1} such

that their corresponding top degree cells contain a common point p. Now let P3 = (X3, Y3)
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be a partition of [n]\{1} such that if x ∈ X1 ∩X2 then x ∈ X3, and if y ∈ Y1 ∩ Y2 then

y ∈ Y3. Then p ∈ T3, and B3 = B1 = B2 := B∗.

Proof. By Lemma 7.8, T1 = eB∗ + ∆1∪X1 +∇1∪Y1 and T2 = eB∗ + ∆1∪X2 +∇1∪Y2 where

B∗ is the basis found by the algorithm. The lexicographically earliest B4Y1 is that with

B = B∗, likewise for B4Y2. Clearly if Y3 = Y1 or Y3 = Y2 then B∗ will again give the

lexicographically earliest B4Y3, so let Y1, Y2 6= Y3. Take e ∈ Y3 such that e ∈ Y1 − Y2.

Then if e ∈ B∗, we have that e ∈ B∗4Y2 − B∗4Y1. Recall that the lexicographically

earliest B4Y is determined by the largest element of this set. This means that e must

not be the largest element of B∗4Y2, or B∗ would not be best for Y1. Morever, this

means that the largest element of B∗4Y2 must be in Y1 ∩ Y2, and thus in Y3. Let

this element be e∗. Suppose that the greatest element in the lexicographically earliest

B4Y3, B′4Y3, is f , and let f > e∗. First suppose f ∈ Y3 − B′. As every element of

Y3 must be in Y1 or Y2, we can assume without loss of generalisation that f ∈ Y2. As

the largest element of B∗4Y2 was e∗, we must have that f ∈ B∗. Changing from B∗ to

B′ will give a better B4Y2, contradiction. So there is no such f . Now let f ∈ B′ − Y3.

In order for B′ to not have given the lexicographically earliest B′4Y1 and B′4Y2, we

must have that f ∈ Y1 ∩ Y2. But then f ∈ Y3, contradiction. If e /∈ B∗, a symmetric

argument holds. Thus the greatest element in B′4Y3 is e∗.

Let e′2 be the second greatest element in B′4Y3 and e2 be the second greatest element

in B∗4Yi for i ∈ {1, 2}. Suppose e′2 > e2 and e′2 /∈ B∗∆Yi. If e′2 ∈ Y3−B′, then e′2 ∈ Yi
for at least one i. This means that, as e′2 /∈ B∗4Yi, we have e′2 ∈ B∗. So we must have

e′2 ∈ Y1 ∩ Y2 and e′2 ∈ B∗ − B′. Without loss of generality, suppose that Y1 * Y2. Now,

by basis exchange, there exists an element e ∈ B′ −B∗ such that (B∗ − e′2) ∪ e ∈ B. As

the two bases agree on largest elements, we must have that e < e2. Recall e2 ∈ Y1 ∩ Y2.

This is a contradiction to the algorithm terminating with B∗ for both Y1 and Y2. So

we must have that e′2 ∈ B′ − Y3. This requires that e′2 ∈ Xi for at least one i, forcing

e′2 /∈ B∗. We must also have e′2 ∈ X2. Now, by dual basis exchange, there exists an

element e ∈ B∗ − B′ such that (B∗ − e) ∪ e2 ∈ B. We must again have that e < e2,
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and since we have e2 ∈ X, we again have a contradiction to the termination basis of the

algorithm. Thus B′, B∗ must agree on the second greatest element.

Repeating this argument for each successive element (in reverse order) of B′ will give

that B′ = B∗.

The following result is an immediate corollary of Lemma 7.9:

Corollary 7.10. Define TY = u∆X + eB + t∇Y . For every face F of the mixed subdivi-

sion, if F is contained in any top degree face, then the set of Y such that F is contained

in TY is an interval in the boolean lattice.

We now have all the ingredients we need to prove the main result of this section,

restated here:

Theorem 7.2. Let M be a matroid. Take the regular mixed subdivision F of u∆ +

P (M) + t∇. We have that |[xiyj ]Q′M (x, y)| counts the cells F + G + H of the mixed

subdivision where G is a vertex of P (M) and there exists no cell F + G′ + H where

G′ ( G and i = dim(F ), j = dim(H).

Proof. First, we must show that all the lattice points of P (M) + u∆ + t∇ lie in a top

degree face:

Claim 7.11. Any x ∈ (t∇ + P (M) + u∆) ∩ Zn is of the form −ei1 − · · · − eit + eB +

ej1 + · · ·+ eju.

Proof of Claim 7.11. We will make use of the matroid partition theorem stated earlier

as Theorem 2.4. Moreover, we will employ the algorithm of Edmonds [14] to find such a

partition. In order to do so, we need to adjust the expression for x above so that it no

longer allows for repetition of elements and so that our vector sum can be treated as a

set union. First write t∇ + P (M) + u∆ as P (M) + ∆ + · · · + ∆ +∇ + · · · +∇. Note

that ∆ is the matroid polytope of U1,n, and ∇ is the matroid polytope of Un−1,n. We

will relabel each of these so their ground sets are disjoint.
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To each of these summands, except P (M), in turn, create bijective functions from

[n] to {n+ 1, . . . , 2n}, {2n+ 1, . . . , 3n},. . .,{(u+ t)n, . . . , (u+ t+ 1)n}. Write out the set

of bases of each matroid – recall this is the set of vertices – using each applicable ground

set. Now let E = [(u+ t+ 1)n] and run the matroid partition algorithm. This will give a

basis for t∇+P (M)+u∆ – which corresponds to a lattice point in (t∇+P (M)+u∆)∩Zn

– as a union of bases from each summand. For each such union, apply the inverse of the

bijection to the elements within. Finally, the vector sum of the elements of the resulting

(multi)set gives an expression for x as in the statement of the claim, when the ground

sets of the ∆ and ∇ are reidentified. �

Recall that π is the projection map from Rn+1 → Rn.

Claim 7.12. Any π(x) ∈ (t∇+P (M) + u∆)∩Zn on F is of the form (−ei1 , β1) + · · ·+

(−eit , βt) + (eB, 0) + (ej1 , α1) + · · ·+ (eju , αu).

Proof of Claim 7.12. Claim 7.11 provides an expression for x of the requisite form except

that the sum may be incorrect in the last coordinate. Take some x in the form described

in Claim 7.11 and add an extra coordinate as stated above. To obtain an expression

where the last coordinate is correct, we will now rewrite this to show that x in fact lies

on F: this is equivalent to showing that there exists a partition X t Y = [n]\1 such that

every i is in 1 ∪ Y , every j is in 1 ∪X, and the algorithm of Theorem 7.4, given X and

Y , yields B. This is because, as we know the height function used to lift the top-degree

faces, finding this X and Y will give a top-degree face containing π(x), and we would

then have the correct last coordinate.

By the algorithm of Theorem 7.4, we require that

1. if there exists an element d /∈ B such that d < e ∈ B and (B − e) ∪ d ∈ B then

e ∈ X, and

2. if there exists an element e ∈ B such that e < f /∈ B and (B − e) ∪ f ∈ B then

f ∈ Y .
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Choose any X and any Y . Given these, we will construct X ′ and Y ′ such that X ′tY ′ =

[n]\1.

• Suppose e ∈ B and e = ik, and there exists d < e with d ∈ B such that (B−e)∪d ∈

B. In the expression for x, replace −ee + eB with −ed + e(B−e)∪d. Add d to Y ′.

• Suppose f ∈ B and f = jl, and there exists e < f with e ∈ B such that (B−e)∪f ∈

B. In the expression for x, replace eB + ef with e(B−e)∪f + ee. Add e to X ′.

• If we have an element i ∈ X ∩ Y , in the expression for x replace −ei + ei with

−e1 + e1. Remove i from both X ′ and Y ′.

The above three operations always replace a term ±ea with a smaller term. As we have

a finite ground set, there is a finite amount of such operations, and so this construction

must terminate with a X ′, Y ′ which fits the criteria. At this point, the expression we

have for x will be that required by the claim. �

Continuing the proof of the theorem, we now form a poset P where the elements

are the top degree faces and all nonempty intersections of sets of these, ordered by

containment. This poset is a subposet of the face lattice of the (|E| − 1)-dimensional

cube whose vertices correspond to the top degree faces. Proposition 7.3 shows that every

lattice point of u∆+P (M)+t∇ lies in at least one face in P . The total number of lattice

points is given by inclusion-exclusion on the function on P assigning to each element of P

the number of lattice points in that face. Let [·] denote the number of lattice points of

the corresponding face. So we have that

QM (t, u) =
∑
i,j

cij

(
u

j

)(
t

i

)
=
∑
k≥1

(−1)k
∑

S⊆atoms(P )
|S|=k

[∧
S
]

(7.12.1)

=
∑
x∈P

µ(0, x)[x]

where µ is the Möbius function. Now, as the face poset of the cubical complex C is
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Eulerian, we have that µ(x, y) = (−1)r(y)−r(x). This means that

∑
k≥1

(−1)k
∑

S⊆atoms(P )
|S|=k

[∧
S
]

=
∑

E face of C
(−1)codimE

(
t+ i

i

)(
u+ j

j

)
(7.12.2)

where E is the product of an i-dimensional face of ∆ with a j-dimensional face of ∇,

that is, E corresponds to a face of type tF +G+ uH, where G is a basis of P (M).

Now take Q′M and expand it:

Q′M (x, y) =
∑
i,j

cij(x− 1)i(y − 1)j =
∑
i,j,k,l

cij

(
i

k

)
xk(−1)i−k

(
j

l

)
yl(−1)j−l.

The coefficient of xkyl is
∑

i,j cij
(
i
k

)
(−1)i−k

(
j
l

)
(−1)j−l. To compare this to the count in

the lattice, we need to expand
(
t
i

)
(and

(
u
j

)
) in the basis of

(
t+i
i

)
(and

(
u+j
j

)
). This gives

that (
t

i

)
=

i∑
k=0

(−1)i−k
(
i

k

)(
t+ k

k

)
,

as proven below:

Claim 7.13. For any positive integers i, t,

(
t

i

)
=

i∑
k=0

(−1)i−k
(
i

k

)(
t+ k

k

)
.

Proof of Claim 7.13. The Vandermonde identity gives that

(
t+ i

i

)
=

i∑
k=0

(
t

k

)(
i

i− k

)
=

i∑
k=0

(
t

k

)(
i

k

)
.

We will use the binomial inversion theorem to get
(
t
i

)
. Rewriting the above identity in

this language, we have that

fi =
i∑

k=0

gk

(
i

k

)
,
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where fi =
(
t+i
i

)
and gk =

(
t
k

)
. Then,

gi =

i∑
k=0

(−1)i+kfk

(
i

k

)
.

Substituting in values again gives that

(
t

i

)
=

i∑
k=0

(−1)i+k
(
t+ k

k

)(
i

k

)
,

as in the statement of the claim. �

Substitute this into Equation 7.12.1 to get

∑
k≥1

(−1)k
∑

S⊆atoms(P )
|S|=k

[∧
S
]

=
∑
i,j,k,l

cij(−1)i−k
(
i

k

)(
t+ k

k

)
(−1)j−l

(
j

l

)(
u+ l

l

)

=
∑
k,l

[xkyl]Q′M (x, y)

(
t+ k

k

)(
u+ l

l

)
.

Comparing this to Equation 7.12.2 proves Theorem 7.2.

Furthermore, the above proof immediately yields the following result:

Corollary 7.14. The signs of the coefficients of Q′M (x, y) are alternating.

This is parallel (if opposite) to the Tutte polynomial, where the coefficients are all

positive. The coefficients of Q′M , up to sign, have the combinatorial interpretation of

counting elements of P of form u∆X+eB+t∇Y by the cardinalities of X\{1} and Y \{1}.

In particular the top degree faces are counted by the collection of coefficients of Q′M of

top degree (hence the name), and the degree |E|−1 terms of Q′M are always (x+y)|E|−1.

This proof is given in the final section of this chapter.

The appearance of basis activities in Lemma 7.4 reveals that P is intimately related

to a familiar object in matroid theory, the Dawson partition [12]. Give the lexicographic

order to the power set P(E). A partition of P(E) into intervals [S1, T1], . . . , [Sp, Tp] with
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Figure 7.1: At left, the regular subdivision F associated to the Minkowski
sum of Example 5.4, with P (M) bolded and the top degree faces
shaded in grey. At right, the regular subdivision for a related
polymatroid, still with (t, u) = (2, 1).

indices such that S1 < . . . < Sp is a Dawson partition if and only if T1 < . . . < Tp. In

particular, every matroid gives rise to a Dawson partition in which these intervals are

[B \ Int(B), B ∪ Ext(B)] for all B ∈ BM [6, Example 1.1].

Proposition 7.15. Let [S1, T1], . . . , [Sp, Tp] be the Dawson partition of M . The poset

P is a disjoint union of face posets of cubes C1, . . . , Cp where the vertices of Ci are the

top-degree faces u∆X + eB + t∇Y such that X ∈ [Si, Ti].

The description of the cubes comes from Lemma 7.9. Note that the element 1 is both

internally and externally active with respect to every basis, due to it being the smallest

element in the ordering. So, even though 1 is in both X and Y , it is in Ti − Si for all i.

Here is an example to illustrate this construction of Q′M and show that Theorem 7.2

fails for polymatroids.

Example 7.16. The left of Figure 7.1 displays the subdivision F for the sum of Exam-

ple 5.4. We see that the four grey top degree faces contain all the lattice points between

them, and the poset P contains two other faces which are pairwise intersections thereof,

the horizontal segment on the left with (X,Y ) = (1, 12) and the one on the right with

(X,Y ) = (12, 1). These are indeed enumerated, up to the alternation of sign, by the

polynomial Q′M (x, y) = x2 + 2xy + y2 − x− y found earlier.

By contrast, the right of the figure displays F for the polymatroid M2 obtained

by doubling the rank function of M . The corresponding polynomial is Q′M2
(x, y) =
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x2 + 2xy + y2 − 1, in which the signs are not alternating, dashing hopes of a similar

enumerative interpretation. In the figure we see that there are lattice points not on any

grey face.

7.2 Terms of Q′(x, y)

Lemma 7.17. Let M = (E, r) be any matroid, and let n = |E|. The leading terms of

Q′M (x, y) are xn−1 and yn−1.

Proof. By Theorem 7.2, we have that |[xiyj ]|Q′M (x, y) counts cells of the form F+G+H,

where F is an i-dimensional face of ∆, H is a j-dimensional face of ∇, and G is a vertex

of P (M). As dim(P (M) + u∆ + t∇ = n − 1, we must have that i + j ≤ n − 1. This

means we can have no terms in Q′ of the form xn−1yk where k ≥ 0, or terms of the form

xky−1 where k ≥ 0. It is clear that there is precisely one cell of the type described in

Theorem 7.2 when i = n − 1 and j = 0 – namely u∆ + G + H, where H is a vertex of

∇. There is also one such cell when i = 0 and j = n− 1, and so the result follows.

Lemma 7.18. Let M = (E, r) be any matroid. The constant term of Q′M (x, y) is zero.

Proof. We have that

Q′M (x, y) =
x|E|−r(M)yr(M)

x+ y − 1
· TM

(
x+ y − 1

y
,
x+ y − 1

x

)
=
x|E|−r(M)yr(M)

x+ y − 1
·
∑
S

(
x+ y − 1

y
− 1

)r(M)−r(S)(x+ y − 1

x
− 1

)|S|−r(S)

=
x|E|−r(M)yr(M)

x+ y − 1
·
∑
S

(
x− 1

y

)r(M)−r(S)(y − 1

x

)|S|−r(S)

.
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Take a single term from this sum:

(x− 1)r(M)−r(S)(y − 1)|S|−r(S)

x+ y − 1
· x|E|−r(M)yr(M)

x|S|−r(S)yr(M)−r(S)

=
(x− 1)r(M)−r(S)(y − 1)|S|−r(S)

x+ y − 1
· x
|E|−r(M)

x|S|−r(S)
· yr(S). (7.18.1)

Note that |E| − r(M) ≥ |S| − r(S) since removing an element from the set E can

reduce the rank by at most 1. Thus, as x, y → 0, each term is 0 and so

lim
x,y→0

Q′M (x, y) = 0.

Lemma 7.19. Let M = (E, r) be any matroid. The lowest order terms of Q′M (x, y)

have coefficients ±1. Moreover, if M has c loops and k coloops, they are ±x|E|−r(M)−c

and ±yr(M)−k.

Proof. From Equation 7.18.1, it can be seen that, when y = 0, the terms of Q′M are

non-zero exactly when S = ∅ or when S is a set of loops. First suppose M has no loops.

In this case, the terms of Q′M are

(x− 1)r(M)x|E|−r(M)

x− 1
= (x− 1)r(M)−1x|E|−r(M)

and so the lowest order term in x is x|E|−r and has coefficient (−1)r−1. Now suppose M

has loops. The terms of Q′M are now

(x− 1)r(M)−1x|E|−r(M) +
(x− 1)r(M)(−1)|S|

x− 1
· x
|E|−r(M)

x|S|

= (x− 1)r(M)−1(x|E|−r(M) + (−1)|S|x|E|−|S|−r(M)).

The lowest order term is when S is as large as possible, so when S contains all loops

of M . The term is (−1)|S|+r(M)−1x|E|−|S|−r(M). Thus if M has c ≥ 0 loops, the lowest



Chapter 7. Coefficients and Terms 81

order term of Q′M is ±x|E|−r(M)−c.

Now let x = 0. The non-zero terms of Q′M are when |E| − r(M) = |S| − r(S). This

occurs when S = E, or S is E minus any of the coloops of M . Our terms are then

(−1)r(M)−r(S)(y − 1)|E|−r(M)−1yr(S).

When S = E, this becomes (−1)r(M)−r(S)(y − 1)|E|−r(M)−1yr, and so, if there are no

coloops, the lowest order term is ±yr(M). Suppose now there are k coloops in M . S

could be formed by removing any number of these from E, but the lowest order term

will arise when we remove all k elements. This set S has r(S) = r(M) − k, and so the

terms it contributes to Q′M are (−1)k(y − 1)|E|−r(M)−1yr(M)−k, with lowest order term

±yr(M)−k.
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An excluded minor

characterisation of split matroids
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Chapter 8

Split Matroids

This chapter is submitted for publication under the same name, and was joint work

with Dillon Mayhew. The introduction below is truncated, due to introductory material

already appearing in Chapter 3. The proof of Theorem 8.9 does not appear in the paper,

due to a different proof of the result already appearing in the literature. Note that in

the introduction we give an alternative definition of faces and facets to those in Chapter

3. This is purely to exclude the case that the entire polytope is a face of itself.

8.1 Introduction

Our aim is to give an excluded-minor characterisation of the class of split matroids,

defined by Joswig and Schröter, and motivated by natural considerations from the poly-

hedral view of matroids. Roughly speaking, a split of a polytope is a division into two

polytopes by a hyperplane, called a split hyperplane. If all pairs of split hyperplanes in

a matroid polytope satisfy a certain compatibility condition, then the matroid is split.

We provide more details below.

Let X be a finite set of points in Rn. Let P be the convex hull of the finite set X. Let

A be the affine subspace (Definition 3.6) of Rn spanned by P , and let H be a hyperplane

83
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of A. Thus A−H is partitioned into two open half-spaces (Definition 3.2) of A. If one

of these has an empty intersection with P , and yet H ∩ P is non-empty, then H ∩ P is

a face of P . A facet is a maximal face, and a vertex is a minimal face. A point in P

that is in no face is an interior point of P . Every vertex of P is a point in X, but the

converse is false unless P consists of a single point.

The following definition comes from [26]. We let P be a polytope. A split of P is a

subdivision (Definition 3.12) of P with exactly two maximal cells. The affine subspace

spanned by the intersection of the two maximal cells is called a split hyperplane.

The base polytope of a matroid can be written in terms of flats, as well as in terms

of bases as described earlier (Definition 3.16). Let M be a rank-r matroid with E(M) =

{1, . . . , n}. If x is in Rn, then xi stands for the entry of x indexed by i ∈ E(M). Recall

from Example 3.17 that ∆(r, n) is the rank-r hypersimplex, the matroid polytope of

Ur,n. Edmonds [15] proved that

P (M) =

{
x ∈ ∆(r, n) |

∑
i∈F

xi ≤ r(F ) for all flats F of M

}
.

Let F be a flat of M . Then the F -hyperplane, H(F ), is the set

{
x ∈ Rn |

∑
i∈F

xi = r(F )

}
.

Let A be the affine subspace spanned by P (M). Then H(F ) ∩ A is a hyperplane of A.

If F is minimal under inclusion with respect to H(F ) intersecting P (M) in a given facet

of P (M), then we say that F is a flacet of M . If, in addition, H(F ) ∩∆(r, n) spans a

split hyperplane of the hypersimplex ∆(r, n), then we say that F is a split flacet of M .

Say that two elements in the matroid M are equivalent if they are equal, or if they are

contained in a common circuit. Then this is an equivalence relation on E(M), and the

equivalence classes are called connected components. A matroid is connected if it has only

one connected component. A matroid is connected if and only if its dual (Definition 2.12)
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is. The next result is [17, Proposition 2.6].

Proposition 8.1. Let F be a flat of the connected matroid M . Then F is a flacet of M

if and only if both M |F and M/F are connected.

Definition 8.2 ([28]). Assume that M is a rank-r matroid with E(M) = {1, . . . , n}.

Let A be the affine subspace spanned by P (M). We use [0, 1]n to denote the closed unit

cube. Assume that the following holds for any distinct split flacets, F1 and F2, of M : no

point in F1 ∩F2 is in the interior of A∩ [0, 1]n. Then we say that M is a split matroid.

Joswig and Schröter prove that every sparse paving matroid is a split matroid, so it

is possible that asymptotically every matroid is split. The following property is proved

in [28, Proposition 44]. For the sake of completeness of this thesis, we give an alternative

proof of this later (Proposition 8.9).

Proposition 8.3. The class of split matroids is closed under duality and under taking

minors.

Therefore we can reasonably ask what the excluded minors are for the class of split

matroids. Joswig and Schröter identify five excluded minors. The main result of this

paper shows that that their list of excluded minors is complete. Figure 8.1 shows geomet-

ric representations of four connected rank-3 matroids, each with six elements. Note that

S∗1 ∼= S2, whereas S3 and S4 are both self-dual matroids. In addition, S0 is constructed

from the direct sum U2,3⊕U2,3 by adding one parallel point to each of the two connected

components.

S1 S2 S3 S4

Figure 8.1: Connected excluded minors for split matroids.

Theorem 8.4. The excluded minors for the class of split matroids are S0, S1, S2, S3,

and S4.

In order to prove this theorem, we rely on Joswig and Schröter’s equivalent formula-
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tion of Definition 8.2 that relies entirely on matroidal structural concepts.

We say that a flat, F , of the matroid, M , is proper if 0 < r(F ) < r(M). A set is

cyclic if it is a union of circuits or it is the empty set. We first note that the following

result (which combines Lemma 10 and Proposition 15 of [28]) means that we need only

concern ourselves with characterising connected split matroids.

Proposition 8.5. Let M be a disconnected matroid, with connected components

C1, . . . , Ct. Then M is a split matroid if and only if each connected matroid, M |Ci, is a

split matroid, and at most one of these matroids is non-uniform.

Definition 8.6. Let M be a matroid, and let Z be a proper cyclic flat of M . If both M |Z

and M/Z are connected matroids, but at least one of them is a non-uniform matroid,

then we say that Z is a certificate for non-splitting.

Lemma 8.7. A connected matroid is a split matroid if and only if it has no certificate

for non-splitting.

Proof. This will follow immediately from Theorem 11 in [28] provided that we can demon-

strate that the flat Z is a split flacet if and only if it is a proper cyclic flat such that

M |Z and M/Z are connected.

Assume that Z is a proper cyclic flat of M such that M |Z and M/Z are connected.

Then Z is a flacet by Proposition 8.1. Furthermore 0 < r(Z) < |Z|, since Z is a proper

flat and is not independent. As Z and E(M)−Z are non-empty, we can find an element

in E(M)− Z that is not a coloop, since M is connected. Now Lemma 6 of [28] implies

that Z is a split flacet.

For the converse, we let Z be a split flacet. Then M |Z and M/Z are connected by

Proposition 8.1. Assume |Z| ≤ 1. Now Proposition 4 of [28] asserts that there must be a

positive integer, µ, which satisfies both µ < r(M) and µ > r(M)−|Z| ≥ r(M)−1. Since

this is impossible, |Z| ≥ 2, so Z is a cyclic flat by Proposition 13 in [28]. It remains only

to show that Z is a proper flat. If not, then Z = E(M), as |Z| ≥ 2. But every point, x,

in P (M) satisfies
∑
xi ≤ r(M), which means that P (M) is contained in the hyperplane
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H(E(M)), so this hyperplane does not intersect P (M) in a facet. This completes the

proof.

8.2 Proof of the main theorem

We discuss some preliminaries: Let M be a matroid on the ground set E, and let U be a

subset of E. Recall that λ(U) is defined to be r(U) + r(E−U)− r(M). This is equal to

r(U)+r∗(U)−|U |. A k-separation is a partition, (U, V ), of E, such that |U |, |V | ≥ k, and

λ(U) < k. A matroid is n-connected if it has no k-separation with k < n. A matroid is

connected if it is 2-connected (equivalently, if every pair of distinct elements is contained

in a circuit). We refer to a 1-separation as a separation. We make use of the fact that

if M is a connected matroid, and e ∈ E(M), then either M\e or M/e is connected [33,

Theorem 4.3.1]. In addition, if a single-element extension of a connected matroid by the

element e is not connected, then e is a loop or a coloop in the extension [33, Proposition

8.2.7].

Lemma 8.8. Let Z be a proper cyclic flat of the connected matroid M . Then E(M)−Z

is a proper cyclic flat of M∗.

Proof. Let E be the ground set of M . The fact that E − Z is a cyclic flat of M∗ is

well-known and easy to verify. Suppose it is not proper, that is r∗(E − Z) = r(M∗) or

r∗(E − Z) = 0. First, consider the case where r∗(E − Z) = r(M∗) = |E| − r(M). Then

the corank function gives

|E| − r(M) = r(Z) + |E − Z| − r(M),

meaning r(Z) = |Z|, so Z is an independent set. The only set that is cyclic and inde-

pendent is the empty set, and this is impossible, as Z is a proper flat. Now suppose

r∗(E −Z) = 0. As Z is a proper flat it cannot be equal to E. Therefore E −Z contains

an element, and this element is a coloop. The only connected matroid with a coloop has
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a ground set of size one, but this is impossible since Z and E−Z are both non-empty.

In order for an excluded-minor characterisation to make sense, we require the class

to be closed under taking minors. This is proved in an alternative way by Joswig and

Schröter in [28].

Proposition 8.9. The class of split matroids is closed under minors and duality.

Proof. First we will consider duality. Note F is a cyclic flat of M if and only if E−F is a

cyclic flat of M∗, and that M is connected if and only if M∗ is connected. First suppose

M is connected. Let Z be a proper cyclic flat of M . Then M |Z and M/Z are both

connected and uniform. We have that (M |Z)∗ = (M\(E − Z))∗ = M∗/(E − Z), which

must be connected, as must be (M/Z)∗ = M∗\Z = M∗|(E − Z). Furthermore, both

M∗/(E−Z) and M∗|(E−Z) are uniform as being uniform is a dual-closed property. As

proper cyclic flats of M∗ are in one-to-one correspondence with those of M , this proves

that M∗ has no certificate for non-splitting if and only if M does not. Now let M be

disconnected. If M = N1 ⊕ · · · ⊕Nt, then M∗ = N∗1 ⊕ · · · ⊕N∗t . As M is split, each Ni

is split, and we have just shown that duals of connected split matroids are themselves

split. We also have that uniform matroids are closed under duality, and so M∗ is split.

We will now show that the class of split matroids is minor-closed. Let M be a split

matroid. Since we have proved that the class is closed under duality, we need only prove

that M\e is a split matroid, for every element e ∈ E(M). In the first case, we will

assume that M is connected.

Assume that M\e is connected. Assume also that M\e has a certificate Z, so

(M\e)|Z = (M |Z)\e and (M\e)/Z = (M/Z)\e are connected, and at least one of

these two matroids is non-uniform. Then either M |Z or M/Z is non-uniform as being

uniform is a minor-closed property. As M is connected and Z is a cyclic flat, M |Z must

be connected and loop-free, and so (M |Z)\e is also connected. Suppose M/Z contains a

loop, x. Then the rank function of M/Z implies that rM (x∪Z) = rM (Z), so x ∈ cl(Z),

contradicting Z being a flat. Therefore (M/Z)\e is also connected. Thus Z is a certifi-
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cate for M , contradicting M being a split matroid, so long as Z is a flat of M . That is,

we need that e /∈ clM (Z). If not, then Z ∪ e is a flat of M , and a certificate for M : we

have that (M\e)|(Z ∪ e) = (M\e)|Z is connected, and so M |(Z ∪ e) is connected as this

has no loops. We also have that (M\e)/(Z ∪ e) = M/Z. which must be connected as

(M/Z)\e was, and (M/Z) has no loops. Again, one of (M\e)|Z, and (M\e)/Z and thus

M |(Z ∪ e) must be non-uniform, and so M is not split, a contradiction.

Now we will assume that M\e is not connected. Assume also that M\e is not split.

Then there is a connected component, Z, of M\e, such that M |Z is not uniform, for

otherwise M\e is split. By definition, M |Z is connected. Thus it is a union of circuits in

M . Assume that Z is not a flat, so that there is an element, x /∈ Z, in the closure of Z.

Let C be a circuit contained in Z ∪x that contains x. Since Z is a component of M\e, it

follows that x = e. However, this implies that (Z ∪ e, E(M)− (Z ∪ e)) is a separation in

M , a contradiction as M is connected. Therefore we can conclude that Z is a cyclic flat

in M . Since M |Z is non-uniform, all we need now do is prove that M/Z is connected.

This will establish that Z is a certificate for non-splitting in M , a contradiction.

Assume that (U, V ) is a separation of M/Z. We can assume that e is in U . Let

v be an element of V , and let Y be the connected component of M\e that contains

v. Any pair of elements in Y are contained in a common circuit of M\e. As Z is a

component of M\e, it follows that any pair of elements in Y also share a common circuit

in (M\e)/Z, and hence in M/Z. This implies that no separation of M/Z can partition

Y . Hence Y ⊆ V . Note that (E(M) − (Y ∪ e), Y ) is a separation of M\e. If e were in

the closure of E(M)− (Y ∪ e), then (E(M)− Y, Y ) would be a separation of M , which

is impossible. Therefore e is not in the closure of E(M)− (Y ∪ e), which means that it

is in the coclosure of Y . Let C∗ be a cocircuit of M contained in Y ∪ e such that e is in

C∗. Then C∗ is also a cocircuit in M/Z, and now C∗ is a cocircuit of M/Z that contains

elements of both U and V . This contradicts the fact that (U, V ) is a separation of M/Z,

so we must conclude that M/Z is connected, and hence M is not a split matroid. Since

this is contradictory, we have shown that M\e is a split matroid.
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Now we can assume that M is not connected. Let M = M |X1 ⊕ · · · ⊕M |Xt, where

t ≥ 2 and each component is a split matroid. Take e ∈ X1. Then M\e = (M |X1)\e ⊕

M |X2 ⊕ · · · ⊕M |Xt. Suppose this is indeed disconnected. As M |X1 is connected and

split, our previous arguments give us that (M |X1)\e is also split. Now the only way

M\e can fail to be split is if it has two non-uniform components. Suppose M |X2 is

non-uniform. Then M |X1 must be uniform, as M is split, implying (M |X1)\e is uniform

as well. Now suppose M |X1 is the non-uniform component in M . Then all the other

components are uniform. If deleting e from X1 divides X1 into new components, then

at most one of these is non-uniform, or else (M |X1)\e is not split, and this contradicts

the previous paragraph. Thus M\e has at most one non-uniform component, and so is

split.

First we note that it is easy to confirm that S0 is not split, by Proposition 8.5, and

in fact is an excluded minor for the class of split matroids. Moreover, the connected

matroids S1, S2, S3, and S4 all contain certificates for non-splitting, and are indeed

excluded minors.

We now show that there is only one disconnected excluded minor for split matroids.

Recall that S0 is the matroid constructed from the direct sum, U2,3 ⊕ U2,3, by adding a

parallel point to each of the two connected components.

Proposition 8.10. The only disconnected excluded minor for the class of split matroids

is S0.

Proof. Suppose M is a disconnected excluded minor. This means M is not a split

matroid, but every proper minor of M is. Let the connected components of M be

X1, . . . , Xt, where t > 1. Suppose that M |Xi is not split for some i. Choose an element

e /∈ Xi. Then, as deletion distributes over direct sums, M |Xi is a component of M\e.

Thus M\e has a non-split component, and is therefore itself not split. This contradiction

shows that every component of M is split. If at most one component of M is non-uniform,

then M will be split, which is a contradiction. So let M |Xi and M |Xj be non-uniform,
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where 1 ≤ i < j ≤ t. If there is an element e /∈ Xi ∪Xj , then M |Xi and M |Xj are both

non-uniform components of M\e, which is a contradiction as M\e is split. So we must

have i = 1 and j = t = 2.

Let e be an arbitrary element in X1. Adding a loop to a split matroid produces

another split matroid. It follows that e is not a loop in M , so |X1| > 1. Since M\e

is split and M |X2 is not uniform, (M |X1)\e must be either connected and uniform,

or disconnected with all components uniform. Either deleting or contracting e from

M |X1 produces a connected matroid, and by duality, we can assume that (M |X1)\e is

connected, and therefore uniform. Note r(X1) > 1, for otherwise r(X1) = 1, and M |X1

is a rank-one uniform matroid. Let C be a smallest circuit of M |X1 that contains e,

and note that C is not spanning, since M |X1 is not uniform but (M |X1)\e is. Take

c ∈ C − e. If |C| > 2, then e is not a loop in (M |X1)/c, and hence this matroid is

a connected extension of the uniform matroid ((M |X1)\e)/c. It is also non-uniform,

since C − c is a non-spanning circuit. Thus M/c contains two non-uniform components:

(M/c)|(X1 − c) and (M/c)|X2. Therefore M/c is not split and we have a contradiction.

Hence |C| = 2. Let x be an element in X1 − C. Then (M |X1)/x is a parallel extension

of a uniform matroid with rank r(X1)− 1 ≥ 1. Since this matroid must be uniform, we

conclude it actually has rank one. Thus r(X1) = 2, so M |X1 is a parallel extension of a

rank-2 uniform matroid. If |X1| > 4, then we can let x be an element not in the parallel

pair, and (M |X1)\x is connected and non-uniform. Thus M |X1 is a parallel extension

of U2,3. Note that M |X1 is self-dual. Now symmetric arguments show that M |X2 is also

U2,3 plus a parallel point, and so M is isomorphic to S0.

Lemma 8.11. Let (U, V ) be a 2-separation in the connected matroid, M , and assume

that there is no parallel pair contained in U . Then there is an element, u ∈ U , such that

M/u is connected.

Proof. Assume that the lemma fails, and that we have chosen a counterexample with

|U | as small as possible. We first note that if U contains a series pair, {u, v}, then M\u
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is not connected, as v is a coloop in this matroid. This implies that M/u is connected,

contrary to hypothesis. Thus U does not contain a series pair. As |U | ≥ 2, and U

contains no parallel pairs, we see that r(U) > 1. Therefore r(V ) < r(M).

Assume that |U | ≤ 3, which implies that |U | = 2 or |U | = 3, as (U, V ) is a 2-

separation. Note that λ(U) = 1 implies r(U) + r∗(U) ≤ 4, which is possible only if

r(U) = r∗(U) = 2, as U contains no parallel pair and no series pair. If |U | = 2 = r∗(U),

then U is coindependent, so V contains a basis, contradicting the earlier conclusion that

V is not spanning. Hence |U | = 3, and U is both a circuit and a cocircuit. Let u be an

element of U . Then M/u has a separation, (X,Y ), by hypothesis. Since U−u is a circuit

in M/u, we can assume that U −u ⊆ X. But since U is a cocircuit of M , it follows that

r∗(U) = r∗(U ∪ u), and now it is easy to verify that (X ∪ u, Y ) is a separation of M , a

contradiction. Therefore |U | ≥ 4.

As V does not span M , we can chose an arbitrary element, u, in U − cl(V ). If u is

in a parallel pair with the element z, then by hypothesis, z is in V , implying u is in the

span of V , contrary to our choice. Hence M/u contains no loops. By assumption, M/u

is not connected. Let (X,Y ) be a separation of M/u. Since M/u has no loops, it follows

that |X| ≥ 2 and |Y | ≥ 2. Now standard rank calculations show that both (X ∪ u, Y )

and (X,Y ∪ u) are 2-separations of M . Since |U − u| ≥ 3, we can assume without loss

of generality that |U ∩X| ≥ 2.

The submodularity of the connectivity function [33, Lemma 8.2.9] implies that λ(U ∩

X) + λ(U ∪X) ≤ λ(U) + λ(X) = 2. Assume that λ(U ∩X) ≤ 1. Then it is clear that

(U ∩X,V ∪ Y ∪ u) is a 2-separation of M , and as U ∩X contains no parallel pairs, we

contradict the minimality of U , since U ∩X ⊆ U − u. It follows that λ(U ∪X) = 0. As

M is connected, this means that V ∩ Y = ∅. But then Y is a proper subset of U , and as

(X,Y ) is a 2-separation, we again reach a contradiction to our assumption on |U |.

We can now prove the rest of the characterisation.

Theorem 8.4. The excluded minors for the class of split matroids are S0, S1, S2, S3,
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and S4.

Proof. Let M be a connected excluded minor for the class of split matroids. If M

contains a loop, then it is isomorphic to the uniform matroid U0,1, and is therefore a

split matroid. Hence M is loopless. As M is connected and not split, it contains a

certificate, Z, for non-splitting. Both M |Z and M/Z are connected matroids and either

M |Z or M/Z is non-uniform. We would like to assume that M |Z is non-uniform, so

consider the case when this fails. Then M/Z is non-uniform. We will apply duality. Note

that E(M)−Z is a proper cyclic flat of M∗ by Lemma 8.8, and that M∗|(E(M)−Z) =

(M/Z)∗ while M∗/(E(M) − Z) = (M |Z)∗. Both of these matroids are connected, and

M∗|(E(M)−Z) = (M/Z)∗ is non-uniform. Therefore we relabel M∗ as M , and E(M)−Z

as Z. Now we can assume without loss of generality that M |Z is not uniform. In the

following analysis, we should expect to encounter S2, S3, and S4, but not S1, since it

does not possess a proper cyclic flat of this type. Instead, we will encounter its dual, S2.

Claim 8.12. Let z be an element in Z such that (M |Z)/z is connected and non-uniform.

Then (Z,E(M)− Z) is a 2-separation of M , and z ∈ clM (E(M)− Z).

Proof of Claim 8.12. Note that since M is loopless and M |Z is non-uniform, it follows

that r(Z) > 1. Now it is very easy to confirm that Z − z is a proper cyclic flat of M/z.

Moreover, (M/z)/(Z − z) = M/Z is connected, since Z is a certificate of non-splitting

in M . We have assumed that (M/z)|(Z − z) = (M |Z)/z is connected. Furthermore,

(M/z)|(Z−z) is not uniform by assumption. Thus Z−z is a certificate for non-splitting

in M/z. If M/z is connected, then this implies that M/z is not a split matroid, which

is impossible as M is an excluded minor for the class of split matroids. Therefore we let

(U, V ) be a separation in M/z.

If both U and V contain elements of Z, then (U ∩ Z, V ∩ Z) is a separation of

(M/z)|(Z − z) = (M |Z)/z, and we have assumed this matroid is connected. Therefore

we can assume without loss of generality that Z − z ⊆ U . If both U and V contain

elements of E(M) − Z, then (U − Z, V − Z) is a separation of the connected matroid
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(M/z)/(Z − z) = M/Z. Therefore we must have V = E(M) − Z, and U = Z − z. As

M is connected, (U, V ) is not a separation of M , and standard rank calculations show

that (U ∪ z, V ) is a 2-separation in M satisfying z ∈ clM (V ). This is exactly what we

set out to prove. �

Claim 8.13. Let z1 and z2 be distinct elements in Z such that (M |Z)/z1 and (M |Z)/z2

are both non-uniform. Then at most one of (M |Z)/z1 and (M |Z)/z2 is connected.

Proof of Claim 8.13. Assume that both (M |Z)/z1 and (M |Z)/z2 are connected. Then

Claim 8.12 implies that (Z,E(M) − Z) is a 2-separation of M , and both z1 and z2 are

in clM (E(M)− Z). This means that r((E(M)− Z) ∪ {z1, z2}) = r(E(M)− Z), and as

(Z,E(M)− Z) is a 2-separation, we can use the submodularity of the rank function to

establish that

r({z1, z2}) ≤ r(Z) + r((E(M)− Z) ∪ {z1, z2})− r(E(M))

= r(Z) + r(E(M)− Z)− r(M) = 1.

Because M has no loops, this implies that {z1, z2} is a parallel pair of M . Thus z2 is

a loop in (M |Z)/z1. Since this matroid is connected, it must consist of the single loop,

z2. Therefore Z = {z1, z2}. This implies that M |Z is isomorphic to the uniform matroid

U1,2, which is impossible as we have assumed that M |Z is non-uniform. �

Claim 8.14. Z contains a parallel pair.

Proof of Claim 8.14. We assume otherwise. Since M |Z is not uniform, it contains a

non-spanning circuit C. Let z be an arbitrary element in C. Then C − z is a non-

spanning circuit in (M/z)|(Z − z) = (M |Z)/z, so this matroid is non-uniform. Choose

distinct elements z and z′ from C. From Claim 8.13 we see that at most one of (M |Z)/z

and (M |Z)/z′ is connected. Without loss of generality, we assume that (M |Z)/z has a

separation, (U, V ). By assumption, z is not in a parallel pair in M |Z. Therefore (M |Z)/z

contains no loops. This implies that |U | ≥ 2 and |V | ≥ 2. Since M |Z is connected, we
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deduce that both (U, V ∪z) and (U ∪z, V ) are 2-separations of M |Z. As neither U nor V

contains a parallel pair, we can apply Lemma 8.11, and deduce that there are elements

z1 ∈ U and z2 ∈ V such that (M |Z)/z1 and (M |Z)/z2 are connected. If both (M |Z)/z1

and (M |Z)/z2 are non-uniform, then we have a violation of Claim 8.13. Therefore we

can assume without loss of generality that (M |Z)/z1 is uniform.

It cannot be the case that z1 is a coloop of (M |Z)/z, for then it would be a coloop in

the connected matroid M |Z. Therefore we let C ′ be a circuit of (M |Z)/z that contains

z1. Since (U, V ) is a separation, it follows that C ′ ⊆ U . There is a circuit, C, of M |Z

such that C is equal to either C ′ or C ′ ∪ z. Then C − z1 is a circuit of the uniform

matroid (M |Z)/z1, so C − z1 spans (M |Z)/z1. Thus C is a spanning circuit of M |Z

that is contained in U ∪ z. Therefore (U ∪ z, V ) is a 2-separation of M |Z satisfying

r(U ∪ z) = r(M |Z). This implies that r(V ) = 1. But |V | ≥ 2, so V ⊆ Z contains a

parallel pair and we have a contradiction. �

Henceforth we let {x, y} be a parallel pair contained in Z.

Claim 8.15. {x, y} is the only parallel pair in M .

Proof of Claim 8.15. Assume that {a, b} is a parallel pair not equal to {x, y}. With-

out loss of generality, we can assume that a /∈ {x, y}. It is an easy exercise to show

that deleting an element from a parallel pair does not disconnect a connected matroid.

Therefore M\a is connected.

In the first case, assume that a, and hence b, is in Z. Then Z − a is a proper cyclic

flat of M\a, and (M\a)|(Z − a) is connected. As a is in the span of Z − a, it is a loop

in M/(Z − a). Therefore

M/Z = M/(Z − a)/a = M/(Z − a)\a = (M\a)/(Z − a)

so (M\a)/(Z − a) is also connected. Furthermore (M\a)|(Z − a) is non-uniform, since

r(Z − a) = r(Z) > r({x, y}), so {x, y} is a non-spanning circuit in (M\a)|(Z − a).
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Therefore Z − a is a certificate for non-splitting in the connected matroid M\a, and we

have a contradiction as M\a is a proper minor of M .

For the second case, we assume that a is not in Z. Therefore Z is a proper cyclic

flat of M\a, and (M\a)|Z = M |Z is connected and non-uniform. We know that M/Z

is connected, and {a, b} is a parallel pair in this matroid, since neither a nor b is in the

span of Z. Therefore (M\a)/Z = (M/Z)\a is obtained from a connected matroid by

deleting an element from a parallel pair, and is hence connected. Thus Z is a certificate

for non-splitting in the connected matroid M\a, and we again have a contradiction. �

Claim 8.16. r(Z) = 2

Proof of Claim 8.16. Assume that r(Z) > 2. Let z be an arbitrary element in Z−{x, y}.

Then (M |Z)/z is non-uniform, because it has rank at least two, but it also contains a

parallel pair. From Claim 8.13 we deduce that if z and z′ are distinct elements in

Z − {x, y} then at most one of (M |Z)/z and (M |Z)/z′ is connected. Thus we choose

distinct elements z and z′ in Z − {x, y}, and without loss of generality, we assume that

(M |Z)/z has a separation (U, V ). Since z is not in a parallel pair, it follows that (M |Z)/z

has no loops, so |U | ≥ 2 and |V | ≥ 2. We deduce that (U, V ∪ z) and (U ∪ z, V ) are

2-separations in (M |Z)/z. Since {x, y} is a circuit in (M |Z)/z, and (U, V ) is a separation

in this matroid, we relabel as necessary and assume that x, y ∈ V . Therefore U contains

no parallel pair of M |Z, so we can apply Lemma 8.11 to (U, V ∪z) and deduce that there

is an element z1 ∈ U such that (M |Z)/z1 is connected. The earlier conclusion shows

that if w is an element in Z − {x, y, z1}, then (M |Z)/w is not connected.

Let w be an arbitrary element in Z − {x, y, z1} and let (Uw, Vw) be a separation of

(M |Z)/w. As (M |Z)/w has no loops, we deduce that |Uw| ≥ 2 and |Vw| ≥ 2, and both

(Uw, Vw ∪ w) and (Uw ∪ w, Vw) are 2-separations of M |Z. Without loss of generality,

we assume that z1 is in Vw. We claim that x, y ∈ Uw. If this is not the case, then Uw

contains no parallel pair of M |Z. Therefore we can apply Lemma 8.11 to (Uw, Vw ∪ w)

and deduce that there is an element u ∈ Uw ⊆ Z − {x, y, z1} such that (M |Z)/u is
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connected. This contradicts an earlier conclusion, so x, y ∈ Uw, as claimed. Assume that

we have chosen w from Z − {x, y, z1} in such a way that |Uw| is as small as possible.

If w is not in the closure of Uw in M |Z, then it is in the coclosure of Vw. This implies

that (Uw, Vw ∪ w) is a separation in the connected matroid M |Z. Therefore w is in the

closure of Uw. The same argument shows that w is in the closure of Vw. Let C ⊆ Uw ∪w

be a circuit of M |Z that contains w. Then C * {x, y, w}, as {x, y} is a circuit in M |Z,

and w is not parallel to x or y. Let t be an element in C − {x, y, w}, so that t belongs

to Uw, and also to Z − {x, y, z1}. Therefore (M |Z)/t has a separation (Ut, Vt) where

z1 ∈ Vt and x, y ∈ Ut. As before, we see that |Ut| ≥ 2 and |Vt| ≥ 2, and both (Ut, Vt ∪ t)

and (Ut ∪ t, Vt) are 2-separations of M |Z, where t is in the closure of both Ut and Vt.

Let λ be the connectivity function of M |Z. Then λ is submodular, so

λ(Uw ∩ Ut) + λ(Uw ∪ Ut) ≤ λ(Uw) + λ(Ut) = 2.

Neither Uw ∩Ut nor E(M)− (Uw ∪Ut) is empty (the former contains x and y, the latter

contains z1). Therefore neither λ(Uw ∩ Ut) nor λ(Uw ∪ Ut) is zero. We deduce that

λ(Uw ∩Ut) = 1. We can apply the same argument to λ(Uw ∩ (Ut ∪ t)) + λ(Uw ∪ (Ut ∪ t))

and deduce that λ(Uw ∩ (Ut ∪ t)) = 1. Since t is in the closure of Vt it follows that

r(Z − (Uw ∩ Ut)) = r(Z − (Uw ∩ (Ut ∪ t))).

From λ(Uw∩Ut) = λ(Uw∩ (Ut∪ t)) we can deduce that r(Uw∩Ut) = r(Uw∩ (Ut∪ t)) and

therefore t is in the closure of Uw∩Ut. We have now shown that (Uw∩Ut, Z− (Uw∩Ut))

is a 2-separation of M |Z, and that t is in the closure of both sides. Standard rank

calculations now show that (Uw∩Ut, Z−(Uw∩(Ut∪t))) is a separation of (M |Z)/t. Note

that Uw ∩Ut contains {x, y}. But Uw ∩Ut does not contain t ∈ Uw, so |Uw ∩Ut| < |Uw|,

and we have a contradiction to our choice of w. This contradiction completes the proof

of Claim 8.16. �
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Claim 8.17. |Z| = 4

Proof of Claim 8.17. We now know that Z is a rank-two cyclic flat containing a parallel

pair, {x, y}. Therefore |Z| > 2. If |Z| = 3 then the element in Z − {x, y} would be a

coloop of M |Z, and thus Z would not be cyclic.

Suppose that |Z| > 4, and let a, b, and c be elements of Z−{x, y}. Then M |{a, b, c, x}

is isomorphic to U2,4. Assume that M\a has a separation, (U, V ). Without loss of

generality, U contains two elements of {b, c, x}. Then a is in the closure of U , so (U∪a, V )

is a separation of M , a contradiction. Therefore M\a is connected. Exactly the same

argument shows that (M |Z)\a = (M\a)|(Z − a) is connected. We also know that

(M\a)/(Z−a) = M/Z is connected. It is clear that Z−a is a proper cyclic flat of M\a.

Furthermore (M\a)|(Z − a) is not uniform, as it has rank two and contains a parallel

pair. Therefore Z − a is a certificate for non-splitting in the connected matroid M\a.

This is a contradiction, so the proof of the claim is complete. �

Claim 8.18. If r(M) = 3 then M is isomorphic to S2, S3, or S4.

Proof of Claim 8.18. Assume that r(M) = 3. Let w be an arbitrary element not in Z.

Note that (M\w)|Z = M |Z is connected and non-uniform. Also, (M\w)/Z is a rank-1

matroid. It is loopless because Z is a flat. Hence it is connected. Since Z is a proper

cyclic flat of M\w, it is a certificate for M\w. Since M\w is a split matroid, M\w

cannot be connected. Note that M\w contains no parallel pair other than {x, y}, by

Claim 8.15. Since M\w has rank three and is not connected, it now follows that it is

equal to the direct sum of M |Z with a coloop, w′. Hence {w,w′} is a series pair in M ,

and M contains six elements. When we contract w, the element w′ is projected onto the

line spanned by Z. Thus, in M/w, the element w′ is in a parallel class of size three, two,

or one. These cases correspond to M being isomorphic to S2, S3, or S4, respectively. �

Henceforth we assume that r(M) > 3.

Claim 8.19. If w /∈ Z, then (M/Z)/w is not connected.
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Proof of Claim 8.19. Assume otherwise, so that (M/Z)/w is connected. Assume that

Z is not a flat in M/w, and let x be an element in clM/w(Z) − Z. Then x is a loop

of (M/Z)/w, and since this matroid is connected, it follows that it contains a single

element, x. Thus x and w are the only elements in E(M) − Z. As r(M) ≥ r(Z) + 2,

both x and w are coloops, a contradiction. Therefore Z is a proper cyclic flat of M/w.

Moreover, (M/w)|Z = M |Z is connected and non-uniform and (M/w)/Z is connected

by assumption. Hence Z is a certificate for M/w. As M/w is a split matroid, it cannot

be connected. Let (U, V ) be a separation of M/w.

As (M/w)|Z is connected, we can assume that Z ⊆ U . In fact, U = Z, for otherwise

(U−Z, V ) is a separation of (M/w)/Z, and this matroid is connected. Let C be a circuit

of M that contains an element of Z and an element of V . Then w /∈ C, for otherwise

C − w is a circuit in M/w that contains elements in U and V . As C is not a circuit of

M/w, it is a union of at least two circuits. Let z be an element in Z ∩C, and let D ⊆ C

be a circuit of M/w that contains z. Thus D is contained in U = Z. Note that D is not

a circuit of M , for it is properly contained in C. Therefore D∪w is a circuit of M . This

implies that w ∈ cl(Z), which is impossible as Z is a flat. �

Claim 8.20. If w /∈ Z, then M\w is not connected.

Proof of Claim 8.20. Because M/Z is connected, but (M/Z)/w is not by Claim 8.19,

it follows that (M/Z)\w is connected. Certainly Z is a proper cyclic flat in M\w.

Also (M\w)|Z = M |Z is connected and non-uniform, and (M\w)/Z = (M/Z)\w is

connected. Thus Z is a certificate for non-splitting in M\w. As M\w is a split matroid,

it cannot be connected. �

Now, continuing the proof of Theorem 8.4 we choose an element w /∈ Z, and let

X1, . . . , Xt be the connected components of M\w. Since (M |Z)\w = M |Z is connected

we can assume that Z ⊆ X1. Because M/Z is connected, but (M/Z)/w is not, by

Claim 8.19, we see that (M/Z)\w = (M\w)/Z is connected. The only way that this

can occur is if X1 = Z, and t = 2. Since M\w is a split matroid, and M |Z = M |X1 is
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not uniform, we deduce that M |X2 is uniform. As r(Z) = 2 and r(M) > 3, the rank

of M |X2 is at least two. Now M/Z is connected and is an extension of the uniform

matroid M |X2 by the element w. The rank of M/Z is at least two. Thus we can choose

w′ ∈ M/Z that is not equal or parallel to w. Therefore (M/Z)/w′ is an extension of a

uniform matroid by the element w and r((M/Z)/w′) ≥ 1. As w is not a loop or coloop

in (M/Z)/w′, it follows that (M/Z)/w′ is connected, contradicting Claim 8.19. Thus we

have a final contradiction that completes the proof of Theorem 8.4.



Part IV

A splitter theorem for connected

clutters
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Chapter 9

Clutters

This chapter has been submitted for publication under the same name, and was joint

work with Dillon Mayhew.

9.1 Introduction

A clutter is a pair (E,A), where E is a finite set, and A is a collection of subsets of E,

with the property that if A and A′ are distinct members of A, then A * A′. We refer

to E as the ground set of the clutter, and we call members of A rows of the clutter. In

the literature, elements of the ground set are often referred to as vertices, while rows are

called edges. Since we will later represent rows of a clutter by vertices in a graph, we

prefer to avoid this terminology. If M is a clutter, then E(M) denotes its ground set.

Clutters are also referred to as antichains and Sperner families.

For an example of a clutter, we may take the rows to be the circuits of a matroid, or

the set of bases of a matroid. Thus clutters are natural generalisations of matroids: they

lie somewhere on the spectrum between matroids, and completely general hypergraphs.

It may seem as though clutters are significantly more general objects than matroids, but

there are some reasons to view them as being closer to the matroid end of the spectrum.

102
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In particular, there are notions of deletion and contraction for clutters. If M = (E,A)

is a clutter, and v is an element of E, we define M\v to be the clutter

(E − v, {A ∈ A : v /∈ A})

and we let M/v be the clutter on the set E−v whose rows are the sets in {A−v : A ∈ A}

that are minimal under subset-inclusion. Note here we include the sets A which do

not contain v. We say that M\v and M/v are produced by deleting and contracting

v respectively. These clutter operations extend the matroidal operations: if M is the

clutter of circuits in the matroid N , then M\v and M/v are the clutters of circuits in the

matroids N\v and N/v. Any clutter produced from M by a (possibly empty) sequence of

deletions and contractions is a minor of M . A minor produced by a non-empty sequence

of deletions and contractions is a proper minor.

The following result is in [10], and shows that the order of deletion and contraction

is immaterial.

Proposition 9.1. Let M = (E,A) be a clutter, and let v and v′ be elements of E. Then

(i) (M\v)\v′ = (M\v′)\v, (ii) (M/v)/v′ = (M/v′)/v, and (iii) (M\v)/v′ = (M/v′)\v.

Clutters, moreover, have a duality involution that is analogous to matroid duality.

If M = (E,A) is a clutter, then the blocker of M , written b(M), has E as its ground

set, and its rows are the minimal subsets of E that have non-empty intersection with

each row of M . Edmonds and Fulkerson [16] proved that b(b(M)) = M . This involution

swaps deletion and contraction, just as matroid duality does. Thus b(M\v) = b(M)/v

and b(M/v) = b(M)\v.

In this chapter we present evidence that pushes clutters further in the matroid

direction along the matroid-hypergraph continuum. We show that some connectivity

behaviour in matroids is actually just a special case of a clutter phenomenon. To do so,

we must develop a notion of connectivity for clutters.

Definition 9.2. Let M = (E,A) be a clutter. A separation of M is a partition of E into
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non-empty parts, X and Y , such that every row is contained in X or Y . If M admits

no separation then it is connected.

This is a natural way to define connectivity for clutters, since it generalises connectiv-

ity for graphs and for matroids. If M = (E,A) is a clutter and each row has cardinality

two, then M can be identified with a simple graph G, with vertex set E, whose edges

are the rows of M . In this case, M is connected if and only if G is. Similarly, if the rows

of M are the circuits of a matroid, N , then separations of M and N exactly coincide.

Therefore M is connected if and only if N is.

We would like to know which inductive properties of matroid connectivity extend to

connected clutters. Our first observation is a negative one. If N is a connected matroid,

and e is an element of its ground set, then either N\e or N/e is a connected matroid [33,

Theorem 4.3.1]. This phenomenon does not extend to clutters. To see this, consider a

clutter, M , whose edges all have cardinality two, and therefore correspond to the edges of

a graph, G. Assume v is a cut-vertex in G. Then M\v corresponds to the graph produced

from G by deleting v and all edges incident with it. This is certainly not a connected

clutter. On the other hand, M/v is produced by removing v, all rows containing v, all

rows containing a neighbour of v in G, and then adding all such neighbours as singleton

rows. It is clear that this clutter will also fail to be connected.

On the other hand, our main theorem is positive. Brylawski [8] and Seymour [39]

independently proved that if M is a connected matroid with a connected proper minor,

N , then we can delete or contract an element from M in such a way to preserve connec-

tivity, and the minor N . We prove that this is a special case of a clutter phenomenon.

Theorem 9.3. Let M and N be connected clutters and assume that N is a proper minor

of M . There exists an element, v ∈ E(M), such that either M\v or M/v is connected

and has N as a minor.

This type of theorem is known as a splitter theorem, after Seymour’s well-known

splitter theorem for 3-connected matroids [40]. We obtain, as a corollary, a weaker type
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of statement, known as a chain theorem.

Corollary 9.4. Let M be a non-empty connected clutter. Then there is an element,

v ∈ E(M), such that either M\v or M/v is a connected clutter.

Proof. Since every clutter has the empty clutter as a minor, we simply apply Theorem 9.3

with N equal to the empty clutter.

We note that our notion of connectivity is not invariant under taking blockers. To

see this, let M be a clutter whose rows are the circuits of a matroid, N . Assume that

N admits a separation, (X,Y ), but that the dual matroid, N∗, has no circuits of size

less than three. By an earlier observation, (X,Y ) is also a separation of M . The rows

of b(M) are the bases of N∗ [21]. Assume that (X ′, Y ′) is a separation of b(M), and let

x and y be elements from X ′ and Y ′, respectively. Then no basis of N∗ contains both x

and y, so N∗ contains a circuit of size at most two, contrary to hypothesis. Thus b(M)

is a connected clutter, even though M is not.

The main tool we use to prove Theorem 9.3 is the incidence graph of a clutter. Let

M = (E,A) be a clutter. We use G(M) to denote the incidence graph of M . The vertex

set of G(M) is E ∪ A. We say that vertices in E are black and vertices in A are white.

Every edge of G(M) joins a black vertex to a white vertex, so G(M) is bipartite. The

vertex v ∈ E is adjacent to A ∈ A in G(M) if and only if v is contained in A.

The incidence graph allows us to study clutter connectivity in graph theoretical terms.

Proposition 9.5. Let M be a clutter. If G(M) is connected, then M is connected. If

M is connected, and is not the clutter with a single element and one, empty, row, then

G(M) is connected.

Proof. Assume that G(M) is not connected. We will prove that either M is not con-

nected, or M is equal to the special clutter described in the statement of the proposition.

Let (A,B) be a partition of the vertices of G(M) into non-empty parts, such that no

edge joins a vertex in A to a vertex in B. Assume that both A and B contain elements
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of E(M). Then (A ∩ E(M), B ∩ E(M)) is clearly a separation of M , and M is not

connected. Therefore we will assume that A contains no element of E(M). Thus every

vertex in A is white. It follows that G(M) has a white vertex that is connected to no

black vertex, and that therefore M has an empty row. Since M is a clutter, it follows

that M has exactly one, empty, row, and that therefore G(M) contains a single white

vertex, and no edges. Note that E(M) is non-empty, for otherwise G(M) contains a

single vertex, and moreover is connected. If E(M) contains at least two elements, then

we can find a separation of M . Thus we assume that E(M) contains exactly one element,

and deduce that M is the clutter described in the proposition.

Now suppose M is not connected and has a separation (A,B). White vertices corre-

sponding to rows in A are incident only with elements of A; white vertices corresponding

to rows in B are incident only with elements of B. There are no other white vertices in

G(M), so this means that there are no paths between vertices in A and vertices in B.

Thus G(M) must be disconnected.

9.2 Proof of the main theorem

If v is a vertex of a graph, then Neigh(v) represents the set of neighbours of v (this set

excludes v). We say Neigh(v) is the open neighbourhood of v. We write Neigh(v) for the

closed neighbourhood of v. That is, Neigh(v) = Neigh(v) ∪ {v}. In order for a bipartite

graph with black and white vertices to be the incidence graph of a clutter, it is necessary

and sufficient that, if u and v are distinct white vertices of G, Neigh(u) cannot be a

subset of Neigh(v).

The next result follows immediately from the definition of deletion in clutters.

Proposition 9.6. If M is a clutter, and v is in E(M), then G(M\v) = G(M)\Neigh(v).

Clutter contraction is somewhat more complicated to observe in the incidence graph.

We will use only one special case of contraction. We say that the black vertices, u and
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v, are twins if Neigh(u) = Neigh(v).

Proposition 9.7. Let M be a connected clutter. If v and v′ are twin black vertices, then

G(M/v) = G(M)\v and is therefore connected.

Proof. We form M/v by removing the element v from E(M) and taking the rows, with

v deleted, which are minimal under subset-inclusion. Suppose that G(M)\v has two

distinct white vertices, u and w, such that every neighbour of u is a neighbour of w.

This property does not hold in G(M), so v must have been adjacent to u but not w. As

v′ is a twin of v, then v′ is also adjacent to u and not w. These adjacencies remain in

G(M)\v, and so we have Neigh(u) * Neigh(w). This shows that in G(M)\v, there is no

pair of distinct white vertices, one of whose neighbourhood is contained in the other. It

follows that G(M)\v is the incidence graph of M/v.

Finally, it is clear that G(M)\v is connected as for every path using v, replacing v

with v′ gives a second path, and so deleting v cannot increase the number of components

in the graph.

Note this result says that if M = (E,A) is a connected clutter with twins v, v′, then

(E, {A− v | A ∈ A} is a clutter, with no need for the usual minimality condition.

With this setup, we can immediately begin the proof of the main result.

Theorem 9.8. Let M and N be connected clutters and assume that N is a proper minor

of M . There exists an element, v ∈ E(M), such that either M\v or M/v is connected

and has N as a minor.

Proof. Assume that M and N form a counterexample to the theorem. We will let G

stand for G(M).

Claim 9.9. There is an element v ∈ E(M) such that N is a minor of M\v.

Proof of Claim 9.9. Assume that this is not the case. Then N is a minor of M/u for

some u ∈ E(M). Now M/u is not connected, or else M and N would not give us



Chapter 9. Clutters 108

a counterexample. Therefore G(M/u) is disconnected by Proposition 9.5. Since N is

connected, it follows easily that E(N) is contained in a connected component of G(M/u).

Choose C, a component of G(M/u) such that C does not contain E(N). If C consists of

a single white vertex, then M/u has an empty row, and this means that it has exactly one

row. Hence G(M/u) contains a single white vertex (and possibly some black vertices) and

no edges. This means that N contains at most one element, or else it is not connected.

Since M/u is not connected we have that M/u 6= N , so E(M/u) must contain an element

that is not in E(N). Let u′ be such an element. Then u′ is an isolated black vertex in

G(M/u), so N is a minor of M/u\u′ and hence of M\u′, contrary to assumption. We

must now assume that C contains a black vertex, u′. As C is a component of G(M/u)

and C does not contain any element of E(N), we see that N is a minor of M/u\u′ and

hence of M\u′, which is a contradiction. �

Note that if u and v are black vertices, then Neigh(u) may be a subset of Neigh(v).

Say that v is a minimal black vertex if there is no black vertex, u, such that Neigh(v)

properly contains Neigh(u).

Claim 9.10. There is a minimal black vertex, v, of G, such that N is a minor of M\v.

Proof of Claim 9.10. Assume the statement is false. By Claim 9.9, we can choose a

non-minimal black vertex v′ so that N is a minor of M\v′. Let v′ have the smallest

possible degree. First assume |E(N)| > 1, so G(N) is connected by Proposition 9.5. Say

G\Neigh(v′) has components C1, . . . , Ct, where E(N) ⊆ C1. As v′ is not minimal, we

will choose a minimal black vertex v with Neigh(v) ⊂ Neigh(v′). Note this implies v is

an isolated vertex in G\Neigh(v′), and so is one of the components C1, . . . , Ct. Then v

is clearly not in C1, so N is a minor of M\v′\v, and hence of M\v, as desired.

Now we consider the case that |E(N)| is at most 1. We will still assume v′ is not

minimal, so Neigh(v) is properly contained in Neigh(v′), for some minimal black vertex

v. If v /∈ C1, then M is a minor of M\v′\v, and hence of M\v, for the same reasons

as in the previous case. Thus v ∈ C1, implying C1 is a single vertex as v is isolated
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Figure 9.1: Structure of G(M)

in G\Neigh(v′). If |E(N)| = 0, then v can be any minimal black vertex and the result

follows as N will be a minor of M\v. Thus we assume that E(N) = {v}. Note that v is

isolated after deleting Neigh(v′). This means N is the clutter with E(N) = {v} and no

rows. Choose a black vertex u′ ∈ C2. Then N is a minor of M\u′. If u′ is a minimal black

vertex, the result follows. So let u be a minimal black vertex with Neigh(u) ⊂ Neigh(u′).

If u ∈ C2, then N is a minor of M\u and the result also follows. If u /∈ C2, then no

neighbour of u is in C2, but any such neighbour is also a neighbour of u′. It follows that

all the neighbours of u are also neighbours of v′. This means u is an isolated vertex after

deleting Neigh(v′), so N is a minor of M\u, completing the proof of Claim 9.10. �

Now fix v to be a minimal black vertex such that N is a minor of M\v. Let C1, . . . , Ct

be the connected components of G(M\v), where t ≥ 2. Since N is connected, we can

assume that E(N) is contained in C1.

Claim 9.11. If u is a black vertex which is not in C1, then u has no twin vertex.

Proof of Claim 9.11. First suppose that u = v, and let u′ be a twin of u. We know that

N is a minor of M\u, and we have that u′ is isolated in G(M\u). It follows easily from

Propositions 9.5 and 9.7 that M/u′ is connected. Moreover, as G(M/u′) = G(M)\u′,

the only way M/u′ cannot contain N as a minor is if E(N) = {u′}. But this would imply
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that M/v does contain N as a minor, and is connected, and the theorem would follow.

Now let u 6= v. Assume that u is a black vertex in Ci where i 6= 1, and assume that u′ is

a twin of u. Since u is contained in Ci, a component of G(M\v), and E(N) is contained

in C1, it follows that N is a minor of M\v/u, and hence of M/u. But Propositions 9.5

and 9.7 imply that M/u is connected, a contradiction to our counterexample. �

If u is any minimal black vertex, and C is any connected component of G\Neigh(u),

then we define C to be a good component. Therefore C1, . . . , Ct are good components.

The next claim shows that good components contain minimal black vertices.

Claim 9.12. Let u be a minimal black vertex, and assume that u is not in C1. Let C

be a component of G\Neigh(u). Then C contains a minimal black vertex.

Proof of Claim 9.12. First, we prove that C contains a black vertex. If not, then C is a

single white vertex, w. Since G(M) is connected, w is adjacent with a black vertex, x,

in G(M). Neither w nor x belongs to Neigh(u), so w and x are adjacent in G\Neigh(u).

Thus C contains the black vertex, x, contrary to hypothesis. Therefore C contains at

least one black vertex. Let x′ be an arbitrary black vertex in C. If x′ is minimal, the

result follows. Hence assume that there is a black vertex x with Neigh(x) ⊂ Neigh(x′).

Choose x so that its degree is as small as possible, implying that x is minimal. If

x ∈ C, the result follows, so say x ∈ D where D is some connected component of

G\Neigh(u) other than C. If x is adjacent to a white vertex in D, we will clearly not

have Neigh(x) ⊂ Neigh(x′). So D = {x}, and x is adjacent only to neighbours of u. As

u is a minimal black vertex, we deduce that x and u are twin vertices, which contradicts

Claim 9.11. �

Note that it is possible for one good component to be contained in another. Let u be

a minimal black vertex. We say that a component C in G\Neigh(u) is minimal if the

vertex set of C does not properly contain the vertex set of a good component.

Claim 9.13. Let u be a minimal black vertex, and let C be a component in G\Neigh(u)
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that is disjoint from C1. Assume that C is a minimal good component. If w is a black

vertex in C, then w has a common neighbour with u.

Proof of Claim 9.13. Assume there is a black vertex in C that has no common neighbour

with u. We will prove that there is a minimal black vertex with this property. Let w′ be

an arbitrary black vertex in C that has no white neighbour in common with u. If w′ is

not a minimal black vertex, then we can assume that w is a minimal black vertex and

that Neigh(w) ⊂ Neigh(w′). Then w is joined to w′ by a path of length 2, and this path

does not contain a white vertex adjacent with u, since w′ does not have a neighbour

in common with u. This means that w and w′ are joined by a path in G\Neigh(u),

so both are in C. In fact, w cannot have a neighbour in common with u, because any

such neighbour would also be a neighbour of w′. Thus w is a minimal black vertex in C

having no common neighbours with u.

Any white vertex not in C that is adjacent to a black vertex in C must also be

adjacent to u. It immediately follows that any white vertex not in C is not adjacent to

w. Therefore every vertex not in C is also a vertex in G\Neigh(w). This implies that

the vertices not in C are contained in a connected component of G\Neigh(w). Since

w ∈ C, and C is disjoint from C1, it follows that N is a minor of M\w. Therefore M\w

is not connected, since M and N form a counterexample to the theorem. It follows that

G\Neigh(w) is not connected. Let D be a connected component in G\Neigh(u) that is

different from the one containing the vertices not in C. Every vertex in D is also in C.

But the vertex set of D is a proper subset of the vertex set of C, since it doesn’t contain

w. Recall that w is a minimal black vertex, and thus D is a good component. This

contradicts the minimality of C, finishing the proof of Claim 9.13. �

Claim 9.14. Let u be a minimal black vertex, where u /∈ C1, and let C be a component

in G\Neigh(u). Assume that C is a minimal good component. Then C contains at least

two black vertices.

Proof of Claim 9.14. By Claim 9.12, we see that C contains a minimal black vertex, w.
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Assume that w is the only black vertex in C. We also assume that C contains a white

vertex, x. Then w is the only neighbour of x. By Claim 9.13, we can let y be a common

neighbour of w and u. Then {w} = Neigh(x) ⊆ Neigh(y), a contradiction, since G is the

incidence graph of a clutter. Therefore C = {w}. Thus Neigh(w) ⊆ Neigh(u). Since u

is a minimal black vertex, this means that Neigh(w) = Neigh(u), so u has a twin vertex.

As u /∈ C1, this is a contradiction to Claim 9.11. �

Claim 9.15. Let u be a minimal black vertex that is not in C1. Let C be a component of

G\Neigh(u), and assume that C is a minimal good component. If w is a minimal black

vertex in C, then the component of G\Neigh(w) that contains u also contains every

vertex in C\Neigh(w).

Proof of Claim 9.15. Note that C contains at least two black vertices by Claim 9.14.

Therefore C\Neigh(w) contains at least one vertex. Let x be an arbitrary vertex in

C\Neigh(w), and let C ′ be the component of G\Neigh(w) containing x. There must be

a vertex in C ′ that is not in C, for otherwise the vertex set of C ′ is a proper subset of the

vertex set of C, which contradicts the minimality of C. It follows that in G\Neigh(w),

there is a path from x to a vertex not in C. Any such path must contain a neighbour

of u. It now follows that in G\Neigh(w) there is a path from x to u. As x was chosen

arbitrarily from C\Neigh(w), we see that the component of G\Neigh(w) that contains

u also contains every vertex in C\Neigh(w), exactly as desired. �

Claim 9.16. At least one of the components C2, . . . , Ct is not minimal.

Proof of Claim 9.16. Assume that C2, . . . , Ct are all minimal good components. Say a

black vertex, u, in one of C2, . . . , Ct is interesting if v is in the same component as C1

in G\Neigh(u). Assume u is interesting, and chosen so that |Neigh(u) ∩ Neigh(v)| is

smallest possible. We assume that u is in Ci, where i ≥ 2. Note that N is a minor of

M\u, and hence M\u is not connected. Thus G\Neigh(u) is not connected. Let D be

a component in G\Neigh(u) not containing v. Then D has no vertex in common with

Ci\Neigh(u), by Claim 9.15. It also has no vertex in common with C1, since v is in the
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same component as C1 in G\Neigh(u). Therefore any vertex that is not in D, but is

adjacent to a vertex in D, must be a neighbour of w that is not in Ci. Any such vertex

is also a neighbour of v. Hence D is a connected component of G\Neigh(v). Now we can

assume that D = Cj , where i 6= j and j ≥ 2. Choose w, a black vertex in Cj . In order for

Cj to be disconnected from the component containing v in G\Neigh(u), we must have

that Neigh(w) ∩ Neigh(v) ⊆ Neigh(u) ∩ Neigh(v), implying that w is interesting. Now

Neigh(w)∩Neigh(v) = Neigh(u)∩Neigh(v) by the choice of u. Since w was arbitrary, this

means Cj\Neigh(w) is disconnected from v in G\Neigh(w), contradicting Claim 9.15.

Now assume that there is no interesting vertex. Let y be a vertex in Neigh(v) that

is adjacent to a vertex in C1. Let w be an arbitrary black vertex in C2. Then C1 is

disconnected from v in G\Neigh(w), as w is not interesting by assumption, which implies

y ∈ Neigh(w). As w was arbitrary, y is adjacent to every black vertex in C2, as well as

v. Thus if x is a white vertex in C2, then Neigh(x) ⊂ Neigh(y), a contradiction as G is

the incidence graph of a clutter. �

From now on, we assume that C2 is a good component, but not minimal. Let C be

a minimal good component, and assume that the vertex set of C is properly contained

in the vertex set of C2. Let u be a minimal black vertex such that C is a component of

G\Neigh(u).

Claim 9.17. u ∈ C2.

Proof of Claim 9.17. If this is not the case, then any common neighbour of u and a

vertex in C must be a common neighbour of v and a vertex in C2. This implies that C

is a connected component of G\Neigh(v), which is impossible because the veretx set of

C is properly contained in the vertex set of a connected component of G\Neigh(v). �

By Claim 9.12, we can choose a minimal black vertex, w, in C. Let H be the

component of G\Neigh(w) that contains u. By Claim 9.15, H also contains C\Neigh(w).

Assume that we have chosen C, u, and w, so that H is as large as possible.



Chapter 9. Clutters 114

Claim 9.18. Let D be a component of G\Neigh(w) not equal to H. Then D is a minimal

good component.

Proof of Claim 9.18. Note that D is a good component, since it is disconnected when

we delete w and its neighbours. Assume D is not minimal. Let D′ be a minimal good

component such that the vertex set of D′ is properly contained in the vertex set of D.

Let u′ be a minimal black vertex such that D′ is a component in G\Neigh(u′). Suppose

u′ /∈ D. Then any neighbour of u′ that is adjacent to a vertex in D′ is not in D, but

is adjacent to a vertex in D. The only such vertices are in Neigh(w). This means that

D′ is a component of G\Neigh(w), but this is impossible, since the vertex set of D′ is

properly contained in a the vertex set of a component of G\Neigh(w). Therefore u′ is in

D.

u

y Neigh(u) ∩Neigh(w)

w

C

u′ w′

D

D′

1

Figure 9.2: Further structure in G(M)

Assume that there is vertex, y, in Neigh(w) ∩ Neigh(u) that is adjacent to u′. Let

w′ be an arbitrary minimal black vertex contained in D′, and assume that y is not a

neighbour of w′. Let x be an arbitrary vertex in H. Then x and u are joined by a path,

Px, in G\Neigh(w). By concatenating Px with the two edges uy and yu′, we obtain a

path joining x to u′. Assume that this is not a path in G\Neigh(w′), so that some vertex

in the path is adjacent to w′. Such a vertex can only be a white vertex, so it is not u or

u′. Moreover, we have assumed that y is not adjacent to w′. Therefore some vertex in

Px is adjacent to w′. But Px is a path in G\Neigh(w) that contains u, and u is not in D,

a connected component of G\Neigh(w). Therefore there can be no edge from a vertex
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in D, such as w′, to a vertex in Px. Now we see that the component of G\Neigh(w′)

that contains u′ also contains x. As x was arbitrary, this component contains every

vertex in H, as well as u′. This violates our choice of C, u, and w, since we could have

chosen D′, u′, and w′ instead. We conclude that y is adjacent to w′. Since w′ was an

arbitrary minimal black vertex in D′, we conclude that every minimal black vertex in D′

is adjacent to y. Next we will show that every black vertex in D′ is adjacent to y.

Let x′ be a black vertex in D′. If x′ is minimal, then we are done, so assume otherwise.

Then there is a black vertex, x, such that Neigh(x) ⊂ Neigh(x′). We may as well assume

that x is a minimal black vertex. If x is in D′, then x is adjacent to y, so x′ is adjacent

to y, as desired. Therefore we assume that x is not in D′. Then Neigh(x) ⊆ Neigh(u′).

As u′ is a minimal black vertex, we deduce that Neigh(x) = Neigh(u′). Since u′ is not

contained in C1, it cannot be the case that u′ has a twin vertex, by Claim 9.11. Therefore

x and u′ are the same vertex. But y is adjacent to u′, and now we again conclude that x,

and hence x′, is adjacent to y, as desired. Therefore every black vertex in D′ is adjacent

to y. This means that if z is an arbitrary white vertex in D′, then every neighbour of z

is a neighbour of y, so Neigh(z) ⊆ Neigh(y) which is a contradiction to the fact that G is

the incidence graph of a clutter. We must conclude that u′ is not adjacent to any vertex

in Neigh(w) ∩ Neigh(u). This also means that no black vertex in D′ can be adjacent to

a vertex in Neigh(w) ∩Neigh(u), since any vertex that is not in D′, but is adjacent to a

black vertex in D′, is adjacent to u′.

Let P be a shortest-possible path between u and u′ in G. First assume that there

is no vertex in P that is adjacent to a vertex in D′. Let w′ be an arbitrary minimal

black vertex in D′. Then P is a path from u to u′ in G\Neigh(w′). If x is an arbitrary

vertex in H, then x is joined by a path, Px, to u in G\Neigh(w). Since w′ is not adjacent

to any vertex in Neigh(u) ∩ Neigh(w), we see that Px is also a path in G\Neigh(w′).

By concatenating Px and P , we obtain a path from x to u′ in G\Neigh(w′). Therefore

the component of G\Neigh(w′) that contains u′ also contains every vertex in H, and we

again have a contradiction to our choice of C, u, and w. Thus there is a vertex in P that
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is a neighbour of a vertex in D′.

Note that any vertex not in D′ that is a neighbour of a vertex in D′ is in Neigh(u′),

as D′ is a connected component of G\Neigh(u′). Since P is a shortest path from u to

u′, we see that P contains exactly one vertex, y, that is adjacent to a vertex in D′. Let

w′ be an arbitrary minimal black vertex in D′. If y is not adjacent to w′, then P is a

path from u to u′ in G\Neigh(w′). We get a contradiction to our choice of C, u, and w,

exactly as before. Therefore y is adjacent to every minimal black vertex in D′.

We show that y is adjacent to every black vertex in D′. Let x′ be a black vertex in D′,

and assume that x′ is not adjacent to y. Then x′ is not a minimal black vertex, so let x be

a minimal black vertex such that Neigh(x) ⊂ Neigh(x′). If x is in D′, then y ∈ Neigh(x),

and we have a contradiction, so x /∈ D′. This means that Neigh(x) ⊆ Neigh(u′). Because

u′ is a minimal black vertex, and does not have a twin by Claim 9.11, this implies that

x = u′. But y is in Neigh(u′), so we again see that y is adjacent to x. Thus y is adjacent

to every black vertex in D′. If z is a white vertex in D′, then every neighbour of z is a

neighbour of y, which is impossible. From this final contradiction we see that D must

be a minimal good component. This completes the proof of Claim 9.17. �

Now we can finish the proof of the main theorem. Let D be a component of

G\Neigh(w) that is not equal to H. By Claim 9.18, we see that D is a minimal

good component. Any vertex not in D, but adjacent to a vertex in D, must be in

Neigh(u) ∩ Neigh(w). It therefore follows that D is a component of G\Neigh(u). By

Claim 9.12 we see that D contains a minimal black vertex, w′. Let x be an arbitrary

vertex in H, and let Px be a path from x to u in G\Neigh(w). Assume that Px is not a

path in G\Neigh(w′). Then some vertex of Px is adjacent to w′. No vertex in Px is in

D, since Px is a path in G\Neigh(w) containing u, and D is a component of G\Neigh(w)

that does not contain u. Therefore there is a vertex in Px that is not in D, but is adjacent

to a vertex in D (namely w′). Any such vertex must be in Neigh(u) ∩ Neigh(w). But

this is impossible, because no vertex of Px is in Neigh(w). Let H ′ be the component of
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G\Neigh(w′) that contains u. We have just shown that H ′ contains all the vertices of H.

By Claim 9.15, we see that H ′ also contains D−Neigh(w′), and Claim 9.14 implies that

this set is not empty. Thus we have contradicted our choice of C, u, and w, because we

could have chosen D, u, and w′ instead. Thus there is no possible counterexample, and

the result follows.
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Tables of evaluations

The second table gives Q′M (x, y) and TM (x, y) for certain matroids. The table on the

next page gives Q′ for the following polymatroids:

• P (M1) = Conv{(2, 1, 0, 1), (2, 0, 1, 1), (2, 0, 0, 2), (1, 0, 2, 1), (0, 1, 2, 1), (1, 2, 0, 1),

(0, 2, 1, 1), (1, 1, 0, 2), (0, 1, 1, 2), (1, 0, 1, 2)}.

This is the graphic polymatroid of the graph

.

• P (M2) = Conv{(2, 1, 1, 1), (2, 1, 0, 2), (2, 0, 2, 1), (2, 0, 1, 2), (1, 2, 1, 1), (1, 2, 0, 2)},

which is the graphic polymatroid of the path P4.

• P (M3) is the graphic polymatroid of the 4-cycle.

• P (M4) = Conv{(2, 1, 1, 1, 1), (2, 1, 0, 1, 2), (2, 1, 0, 2, 1), (2, 0, 2, 1, 1), (2, 0, 1, 2, 1),

(1, 2, 1, 1, 1), (1, 2, 1, 0, 2), (1, 2, 0, 2, 1), (1, 2, 0, 1, 2), (1, 1, 1, 1, 2),

(1, 1, 2, 0, 2)}.

This is the graphic polynomial of the path P5.

• P (M5) is the graphic polynomial of the 5-cycle.
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• P (M6) = Conv{(2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2)}

• P (M7) = Conv{(2, 1, 2, 1), (2, 1, 1, 2), (1, 2, 2, 1), (1, 2, 1, 2)}

• P (M8) = Conv{(2, 1, 0, 2), (2, 0, 1, 2), (1, 2, 0, 2), (1, 0, 2, 2)}

Note that the last three polymatroids cannot be graphic: P (M6) and P (M8) would have

four edges and five vertices, but neither is the polymatroid of P5 above, while P (M7)

would have four edges and six vertices, and it can be easily checked no graph with the

correct structure can be found.

Polymatroid Q′(x, y)

P (M1) x3 + 3x2y + 3xy2 + y3 + x2 + xy + x

P (M2) x3 + 3x2y + 3xy2 + y3 = (x+ y)3

P (M3) x3 + 3x2y + 3xy2 + y3 + x2 + 2xy + y2 + x+ y + 1

= (x+y)4−1
x+y−1

P (M4) x4 + 4x3y + 6x2y2 + 4xy3 + y4 = (x+ y)4

P (M5) (x+y)5−1
x+y−1

P (M6) x3 + 3x2y + 3xy2 + y3 − 3xy − 2y2 + y

P (M7) x3 + 3x2y + 3xy2 + y3 − x2 − 2xy − y2

P (M8) x3 + 3x2y + 3xy2 + y3 − xy − y2 − x
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