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Abstract. We prove that the algorithm of [19] for approximating the Hausdorff dimension
of dynamically defined Cantor sets, using periodic points of the underlying dynamical system,
can be used to establish completely rigorous high accuracy bounds on the dimension. The
effectiveness of these rigorous estimates is illustrated for Cantor sets consisting of continued
fraction expansions with restricted digits. For example the Hausdorff dimension of the set
E2 (of those reals whose continued fraction expansion only contains digits 1 and 2) can be
rigorously approximated, with an accuracy of over 100 decimal places, using points of period
up to 25.

The method for establishing rigorous dimension bounds involves the holomorphic exten-
sion of mappings associated to the allowed continued fraction digits, an appropriate disc
which is contracted by these mappings, and an associated transfer operator acting on the
Hilbert Hardy space of analytic functions on this disc. We introduce methods for rigorously
bounding the approximation numbers for the transfer operators, showing that this leads to
effective estimates on the Taylor coefficients of the associated determinant, and hence to
explicit bounds on the Hausdorff dimension.

1. Introduction

For a finite subset A ⊂ N, let EA denote the set of all x ∈ (0, 1) such that the digits
a1(x), a2(x), . . . in the continued fraction expansion

x = [a1(x), a2(x), a3(x), . . .] =
1

a1(x) + 1
a2(x)+

1
a3(x)+···

all belong to A. Sets of the form EA are said to be of bounded type (see e.g. [20, 23]);
in particular they are Cantor sets, and study of their Hausdorff dimension has attracted
significant attention.

Of particular interest have been the sets En = E{1,...,n}, with E2 = E{1,2} the most stud-
ied of these, serving as a test case for various general methods of approximating Haus-
dorff dimension. Jarnik [18] showed that dim(E2) > 1/4, while Good [15] improved this to
0.5306 < dim(E2) < 0.5320, Bumby [6] showed that 0.5312 < dim(E2) < 0.5314, Hensley
[16] showed that 0.53128049 < dim(E2) < 0.53128051, while Falk & Nussbaum [11]1 rig-
orously justified the first 8 decimal digits of dim(E2), proving that 0.531280505981423 ≤
dim(E2) ≤ 0.531280506343388 . A common element in the methods [6, 11, 16] is the study of

1This preprint has been split into the two articles [12] and [13], with [12] containing the approximation to
dim(E2).
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a transfer operator, while for the higher accuracy estimates [11, 16] there is some element of
computer-assistance involved in the proof.

In [19] we outlined a different approach to approximating the Hausdorff dimension of
bounded type sets, again using a transfer operator, but exploiting the real analyticity of
the maps defining continued fractions to consider the determinant ∆ of the operator, and
its approximation in terms of periodic points2 of an underlying dynamical system. While
some highly accurate empirical estimates of Hausdorff dimension were given, for example a
25 decimal digit approximation to dim(E2), these were not rigorously justified. Moreover,
although the algorithm was proved to generate a sequence of approximations sn to the Haus-
dorff dimension (depending on points of period up to n), with convergence rate faster than
any exponential, the derived error bounds were sufficiently conservative (see Remark 1 below)
that it was unclear whether they could be combined with the computed approximations to
yield any effective rigorous estimate.

In the current paper we investigate the possibility of sharpening the approach of [19] so as to
obtain rigorous computer-assisted estimates on dim(EA), with particular focus on E2. There
are several ingredients in this sharpening. The first step is to locate a disc D in the complex
plane with the property that the images of D under the mappings Tn(z) = 1/(z+ n), n ∈ A,
are contained in D. It then turns out to be preferable to consider the transfer operator as
acting on a Hilbert space of analytic functions on D, rather than the Banach space of [19]; this
facilitates an estimate on the Taylor coefficients of ∆ in terms of the approximation numbers
(or singular values) of the operator, which is significantly better than those bounds derived
from Banach space methods. The specific Hilbert space used is Hardy space, consisting of
those analytic functions on the disc which extend as L2 functions on the bounding circle.
The contraction of D by the mappings Tn(z) = 1/(n+z), n ∈ A, prompts the introduction of
the contraction ratio, which captures the strength of this contraction, and leads to estimates
on the convergence of the approximations to the Hausdorff dimension. The nth Taylor series
coefficient of ∆ can be expressed in terms of periodic points of period up to n, and for
sufficiently small n these can be evaluated exactly, to arbitrary precision. For larger n, we
show it is advantageous to obtain two distinct types of upper bound on the Taylor coefficients:
we refer to these as the Euler bound and the computed Taylor bound. The Euler bound is used
for all sufficiently large n, while the computed Taylor bound is used for a finite intermediate
range of n corresponding to those Taylor coefficients which are deemed to be computationally
inaccessible, but where the Euler bound is insufficiently sharp. Intrinsic to the definition of
the computed Taylor bounds is the sequence of computed approximation bounds, which we
introduce as computationally accessible upper bounds on the approximation numbers of the
transfer operator.

As an example of the effectiveness of the resulting method we rigorously justify the first
100 decimal digits3 of the Hausdorff dimension of E2, thereby improving on the rigorous

2The periodic points are precisely those numbers in (0, 1) with periodic continued fraction expansion, drawn
from digits in A. The reliance on periodic points renders the method canonical, inasmuch as it does not involve
any arbitrary choice of coordinates or partition of the space.

3The choice of 100 decimal digits in the present article is motivated by a number of factors. On the one hand
100 is considered a particularly round number, and an order of magnitude larger than the number of decimal
digits obtained (even non-rigorously) for the dimension of E2 in previous works. On the other hand, readily
available computer resources (namely, a program written in Mathematica running on a modestly equipped
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estimates in [6, 11, 15, 16, 18]. Specifically, we prove (see Theorem 1) that

dim(E2) = 0.53128050627720514162446864736847178549305910901839

87798883978039275295356438313459181095701811852398 . . . ,

using the periodic points of period up to 25.

2. Preliminaries

In this section we collect a number of results (see also [19]) which underpin our algorithm
for approximating Hausdorff dimension.

2.1. Continued fractions. Let EA denote the set of all x ∈ (0, 1) such that the digits
a1(x), a2(x), . . . in the continued fraction expansion

x = [a1(x), a2(x), a3(x), . . .] =
1

a1(x) + 1
a2(x)+

1
a3(x)+···

all belong to A. For any i ∈ N we define the map Ti by

Ti(x) =
1

i+ x
,

and for a given A ⊂ N, the collection {Ti : i ∈ A} is referred to as the corresponding iterated
function system. Its limit set, consisting of limit points of sequences Ti1 ◦ · · · ◦ Tin(0), where
each ij ∈ A, is precisely the set EA.

Every set EA is invariant under the Gauss map T , defined by

T (x) =
1

x
(mod 1) .

2.2. Hausdorff dimension. For a set E ⊂ R, define

Hδ
ε (E) = inf

{∑
i

diam(Ui)
δ : U = {Ui} is an open cover of E such that each diam(Ui) ≤ ε

}
,

and set Hδ(E) = limε→0H
δ
ε (E). The Hausdorff dimension dim(E) is then defined as

dim(E) = inf{δ : Hδ(E) = 0} .

2.3. Pressure formula. For a continuous function f : EA → R, its pressure P (f) is given
by

P (f) = lim
n→+∞

1

n
log

 ∑
Tnx=x
x∈EA

ef(x)+f(Tx)+...+f(T
n−1x)

 ,

and if f = −s log |T ′| then we have the following implicit characterisation of the Hausdorff
dimension of EA (see [3, 4, 10, 21]):

Lemma 1. The function s 7→ P (−s log |T ′|) is strictly decreasing, with a unique zero at
s = dim(EA).

laptop) performed the necessary calculations, in particular the high accuracy evaluation of points of period
up to 25, in a reasonable timeframe (approximately one day), and it turns out that this choice of maximum
period is sufficient to rigorously justify 100 decimal digits.
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2.4. Transfer operators. For a given A ⊂ N, and s ∈ R, the transfer operator LA,s, defined
by

LA,sf(z) =
∑
i∈A

1

(z + i)2s
f

(
1

z + i

)
,

preserves various natural function spaces, for example the Banach space of Lipschitz func-
tions on [0, 1]. On this space it has a simple positive eigenvalue eP (−s log |T ′|), which is the
unique eigenvalue whose modulus equals its spectral radius, thus by Lemma 1 the Hausdorff
dimension of EA is the unique value s ∈ R such that LA,s has spectral radius equal to 1.

2.5. Determinant. The determinant for LA,s is the entire function defined for z of suffi-
ciently small modulus4 by

∆(z, s) = exp−
∞∑
n=1

zn

n
tr(LnA,s) , (1)

and for other z ∈ C by analytic continuation; here the trace tr(LnA,s) is given (see [19, 22]) by

tr(LnA,s) =
∑
i∈An

|T ′i (zi)|s

1− T ′i (zi)
=
∑
i∈An

∏n−1
j=0 T

j(zi)
2s

1− (−1)n
∏n−1
j=0 T

j(zi)2
, (2)

where the point zi, which has period n under T , is the unique fixed point of the n-fold
composition Ti = Ti1 ◦ Ti2 ◦ · · · ◦ Tin .

When acting on a suitable space of holomorphic functions, the eigenvalues of LA,s are
precisely the reciprocals of the zeros of its determinant. In particular, the zero of minimum
modulus for ∆(s, ·) is e−P (−s log |T ′|), so the Hausdorff dimension of EA is characterised as the
value of s such that 1 is the zero of minimum modulus of ∆(s, ·).

In fact we shall later show that, when LA,s acts on such a space of holomorphic functions, its
approximation numbers decay at an exponential rate (see Corollary 1), so that LA,s belongs
to an exponential class (cf. [1, 2]) and is in particular a trace class operator, from which the
existence and above properties of trace and determinant follow (see [25]).

As outlined in [19], this suggests the possibility of expressing ∆(z, s) as a power series

∆(z, s) = 1 +

∞∑
n=1

δn(s)zn ,

then defining D by

D(s) := ∆(1, s) = 1 +
∞∑
n=1

δn(s) .

The function D is an entire function of s (see [19]), and solutions s of the equation

0 = 1 +

∞∑
n=1

δn(s) = D(s) (3)

have the property that the value 1 is an eigenvalue for LA,s; in particular, the unique zero of
D in the interval (0, 1) is precisely dim(EA), being the unique value of s for which 1 is the
eigenvalue of maximum modulus for LA,s.

4The power series
∑∞

n=1
zn

n
tr(Ln

A,s), and hence the expression (1), is convergent for |z| < e−P (−s log |T ′|).
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As a result of the trace formula (2), the coefficients δn(s) are computable5 in terms of the
periodic points of T |EA

of period no greater than n, so for some suitable N ∈ N, chosen so
that δ1(s), . . . , δN (s) can be computed to a given precision in reasonable time, we can define
DN by

DN (s) := 1 +

N∑
n=1

δn(s) . (4)

A solution to the equation
DN (s) = 0 (5)

will be an approximate solution to (3), where the quality of this approximation will be related
to the smallness of the discarded tail

∞∑
n=N+1

δn(s) . (6)

In particular, any rigorous estimate of the closeness of a given approximate solution sN of (5)
to the true Hausdorff dimension dim(EA) will require a rigorous upper bound on the modulus
of the tail (6).

Remark 1. In [19] we considered the set E2 = E{1,2} and, although the empirical estimates
of its Hausdorff dimension appeared convincing, the estimate on the tail (6) was not sharp
enough to permit any effective rigorous bound. Essentially6, the bound in [19] was |δn(s)| ≤
εn := CKnnn/2θn(n+1) where C = γ

∏∞
r=1(1 − γr)−1 ≈ 122979405533, K = 45

16π ≈ 0.895247,

and θ =
(
8
9

)1/4 ≈ 0.970984. Although the bounding sequence εn tends to zero, and does

so at super-exponential rate O(θn
2
), the considerable inertia in this convergence (e.g. the

sequence increases for 1 ≤ n ≤ 39 to the value ε39 ≈ 1.31235 × 1022, and remains larger
than 1 until n = 85) renders the bound ineffective in practice, in view of the exponentially
increasing computation time required to calculate the δn(s) (as seen in this article, we can
feasibly compute several million periodic points, but performing calculations involving more
than 285 points is out of the question).

Remark 2. The specific rigorous approximation of dimension is performed in this article
only for the set E2 (see §6), corresponding to the iterated function system consisting of the
maps T1(x) = 1/(x+1) and T2(x) = 1/(x+2). In principle, however, it can be performed for
arbitrary iterated function systems consisting of real analytic maps T1, . . . , Tl satisfying the
open set condition (i.e. there exists a non-empty open set U such that Ti(U)∩Tj(U) = ∅ for i 6=
j, and Ti(U) ⊂ U for all i). In this setting the accuracy of our Hausdorff dimension estimate
depends principally on the contractivity of the maps Ti and the number l of such maps, with
stronger contraction and a smaller value of l corresponding to increased accuracy. Stronger
contraction (as reflected by smallness of the contraction ratio defined in §3.4) is associated
with more rapid decay of the Taylor coefficients of the determinant ∆(z, s), implying greater
accuracy of the polynomial truncations, while for l > 2 the time required to locate the points
of period up to n increases by a factor of roughly (l/2)n relative to the case l = 2 (note that

5By this we mean that for a given s, the δn(s) are computable exactly, to arbitrary precision.
6In [19] we actually worked with det(I− zL2

A,s) rather than det(I− zLA,s), though the methods there lead

to very similar bounds for both determinants.
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for infinite iterated function systems, i.e. l = ∞, our method is rarely applicable, since it
is usually impossible to locate all period-n points for a given n, though here non-rigorous
approximations may be obtained by suitable approximation). If the Ti are not Möbius maps
then for practical purposes there is some minor decrease in the efficiency of our method: the
compositions Ti are more highly nonlinear than in the Möbius case, so evaluation of their
fixed points typically takes slightly longer.

Remark 3. Work of Cusick [7, 8] on continuants with bounded digits characterised the
Hausdorff dimension of En = E{1,...,n} in terms of the abscissa of convergence of a certain
Dirichlet series, and Bumby [5, 6] showed that 0.5312 < dim(E2) < 0.5314. Hensley [16]
obtained the bound 0.53128049 < dim(E2) < 0.53128051 using a recursive procedure, and
in [17, Thm. 3] introduced a general approach for approximating the Hausdorff dimension of
EA, obtaining in particular the empirical estimate dim(E2) = 0.5312805062772051416 . . .

3. Hilbert Hardy space, approximation numbers, approximation bounds

In this section we introduce the Hilbert space upon which the transfer operator acts, then
make the connection between approximation numbers for the operator and Taylor coefficients
of its determinant, leading to so-called Euler bounds on these Taylor coefficients.

3.1. Hardy space. Let D ⊂ C be an open disc of radius r, centred at c. The Hilbert
Hardy space H2(D) consists of those functions f which are holomorphic on D and such

that sup%<r
∫ 1
0 |f(c + %e2πit)|2 dt < ∞. The inner product on H2(D) is defined by (f, g) =∫ 1

0 f(c + re2πit)g(c+ re2πit) dt, which is well-defined since any element of H2(D) extends as

an L2 function of the boundary ∂D. The norm of f ∈ H2(D) will be simply written as

‖f‖ = (f, f)1/2.
An alternative characterisation of H2(D) (see e.g. [24]) is as the set of functions f which

are holomorphic on D and such that if mk(z) = r−k(z − c)k for k ≥ 0, then

f =
∞∑
k=0

f̂(k)mk

where the sequence (f̂(k))∞k=0 is square summable. The norm ‖f‖ can then be expressed as

‖f‖2 =

∞∑
k=0

|f̂(k)|2 .

3.2. Approximation numbers. Given a compact operator L : H → H on a Hilbert space
H, its ith approximation number si(L) is defined as

si(L) = inf{‖L−K‖ : rank(K) ≤ i− 1} ,

so that in particular s1(L) = ‖L‖.
The following result exploits our Hilbert space setting, and represents an improvement over

analogous Banach space estimates in [19] (where e.g. a multiplicative factor nn/2 reduces the
quality of the bound on |δn(s)|).
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Lemma 2. If LA,s : H2(D)→ H2(D), then the nth Taylor coefficient δn(s) of its determinant
can be bounded by

|δn(s)| ≤
∑

i1<...<in

n∏
j=1

sij (LA,s) . (7)

Proof. If {λn(s)} is the eigenvalue sequence for LA,s, ordered by decreasing modulus and
counting algebraic multiplicities, then (see e.g. [25, Lem. 3.3]) we have

δn(s) =
∑

i1<...<in

n∏
j=1

λij (s) ,

and ∣∣∣∣∣∣
∑

i1<...<in

n∏
j=1

λij (s)

∣∣∣∣∣∣ ≤
∑

i1<...<in

n∏
j=1

sij (LA,s)

by [14, Cor. VI.2.6], so the result follows. �

In view of the link between Hausdorff dimension error estimates and the tail (6), together
with the bounding of terms in this tail by sums of products of approximation numbers pro-
vided by Lemma 2, it will be important to establish upper bounds on the Taylor coefficients
δn(s) for those n where it is not computationally feasible to evaluate exactly via periodic
points. We shall derive two distinct types of such upper bound, which we refer to as Euler
bounds and computed Taylor bounds. There is an Euler bound on δn(s) for each n, given as
a simple closed form; this bound will be used for all sufficiently large values of n, though for
low values of n may be too conservative for our purposes. The finitely many computed Taylor
bounds will be on the Taylor coefficients δP+1(s), . . . , δQ(s) where P is the largest integer for
which we locate all period-P points, and Q is chosen so that the Euler bounds on |δn(s)| are
sufficiently sharp when n > Q. In view of Lemma 2, the computed Taylor bounds will be
derived by first bounding the finitely many approximation numbers s1(LA,s), . . . , sN (LA,s),
for some N ∈ N, by explicitly computable quantities that we call computed approximation
bounds. The computations required to derive the computed approximation bounds are not
onerous, the main task being the evaluation of numerical integrals defining certain H2 norms
(of the transfer operator images of a chosen orthonormal basis).

We shall approximate LA,s by first projecting H2(D) onto the space of polynomials up
to a given degree. Let LA,s : H2(D) → H2(D) be a transfer operator, where D ⊂ C is an
open disc of radius % centred at c, and {mk}∞k=0 is the corresponding orthonormal basis of
monomials, given by

mk(z) = %−k(z − c)k . (8)

3.3. Approximation bounds.

Definition 1. For n ≥ 1, define the nth approximation bound αn(s) to be

αn(s) =

( ∞∑
k=n−1

‖LA,s(mk)‖2
)1/2

. (9)
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Proposition 1. For each n ≥ 1,

sn(LA,s) ≤ αn(s) . (10)

Proof. For f ∈ H2(D) we can write

f =
∞∑
k=0

f̂(k)mk

where the sequence (f̂(k))∞k=0 is square summable. Define the rank-(n − 1) projection Πn :
H2(D)→ H2(D) by

Πn(f) =

n−2∑
k=0

f̂(k)mk ,

where in particular Π1 ≡ 0.
The transfer operator LA,s is approximated by the rank-(n− 1) operators

L(n)A,s := LA,sΠn ,

and ‖LA,s − L(n)A,s‖ can be estimated using the Cauchy-Schwarz inequality as follows:

‖(LA,s − L(n)A,s)f‖ = ‖
∞∑

k=n−1
f̂(k)LA,s(mk)‖ ≤

∞∑
k=n−1

|f̂(k)|‖LA,s(mk)‖

≤

( ∞∑
k=n−1

‖LA,s(mk)‖2
)1/2( ∞∑

k=n−1
|f̂(k)|2

)1/2

≤

( ∞∑
k=n−1

‖LA,s(mk)‖2
)1/2

‖f‖ ,

and therefore ‖LA,s−L(n)A,s‖ ≤
(∑∞

k=n−1 ‖LA,s(mk)‖2
)1/2

= αn(s). Since L(n)A,s has rank n−1,

it follows that sn(LA,s) ≤ αn(s), as required. �

3.4. Contraction ratios. Let Ci : H2(D)→ H2(D) be the composition operator

Cif = f ◦ Ti .

The estimate arising in the following lemma motivates our definition below (see Definition
2) of the contraction ratio associated to a disc D and subset A ⊂ N.

Lemma 3. Let D and D′ be concentric discs, with radii % and %′ respectively. If, for i ∈ A,
the image Ti(D) is contained in D′, then for all k ≥ 0,

‖Ci(mk)‖ ≤
(
%′

%

)k
. (11)
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Proof. Let c denote the common centre of the discs D,D′. If z ∈ D then

|Ci(mk)(z)| = %−k|Ti(z)− c|k < %−k(%′)k = (%′/%)k ,

so ‖Ci(mk)‖ ≤ (%′/%)k, as required. �

For each i ∈ A, s ∈ R, if the open disc D is such that −i /∈ D then define the weight
function wi,s : D → C by

wi,s(z) =

(
1

z + i

)2s

,

and the multiplication operator Wi,s : H2(D)→ H2(D) by

Wi,sf = wi,sf .

We may write

LA,s =
∑
i∈A

Wi,sCi ,

so that

‖LA,s(mk)‖ ≤
∑
i∈A
‖Wi,sCi(mk)‖ ≤

∑
i∈A
‖wi,s‖∞‖Ci(mk)‖ ,

and if %′i is such that Ti(D) is contained in the concentric disc D′i of radius %′i then Lemma 3
implies that

‖LA,s(mk)‖ ≤
∑
i∈A
‖wi,s‖∞(%′i/%)k . (12)

For our purposes it will be more convenient to work with a slightly simpler (and less sharp)
version of (12). This prompts the following definition:

Definition 2. Let A ⊂ N be finite, andD ⊂ C an open disc of radius % such that ∪i∈ATi(D) ⊂
D. Let D′ be the smallest disc, concentric with D, such that ∪i∈ATi(D) ⊂ D′, and let %′

denote the radius of D′. The corresponding contraction ratio h = hA,D is defined to be

h = hA,D =
%′

%
. (13)

Lemma 4. Let A ⊂ N be finite, and D an admissible disc, with contraction ratio h = hA,D.
For all k ≥ 0,

‖LA,s(mk)‖ ≤ hk
∑
i∈A
‖wi,s‖∞ . (14)

Proof. If D′ is as in Definition 2 then %′ = maxi∈A %
′
i in the notation of (12), and the result

follows from (12). �

Corollary 1. Let A ⊂ N be finite, and D an admissible disc, with contraction ratio h = hA,D.
For all n ≥ 1,

sn(LA,s) ≤ αn(s) ≤ Ksh
n (15)

where

Ks =

∑
i∈A ‖wi,s‖∞
h
√

1− h2
. (16)
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Proof. Now

αn(s) =

( ∞∑
k=n−1

‖Ls(mk)‖2
)1/2

from Definition 1 and Proposition 1, so Lemma 4 gives

αn(s) ≤

( ∞∑
k=n−1

h2k

)1/2∑
i∈A
‖wi,s‖∞ =

hn−1√
1− h2

∑
i∈A
‖wi,s‖∞ ,

and the result follows. �

3.5. Euler bounds. We can now derive the Euler bound on the nth Taylor coefficient of the
determinant:

Proposition 2. Let A ⊂ N be finite, and D an admissible disc, with contraction ratio
h = hA,D. If the transfer operator LA,s has determinant det(I − zLA,s) = 1 +

∑∞
n=1 δn(s)zn,

then for all n ≥ 1,

|δn(s)| ≤ Kn
s h

n(n+1)/2∏n
i=1(1− hi)

. (17)

Proof. By Lemma 2,

|δn(s)| ≤
∑

i1<...<in

n∏
j=1

sij (LA,s) ,

so Corollary 1 gives

|δn(s)| ≤ Kn
s

∑
i1<...<in

hi1+...+in ,

and the result follows by repeated geometric summation (as first noted by Euler [9, Ch. 16]).
�

Henceforth we use the notation

En(r) :=
rn(n+1)/2∏n
i=1(1− ri)

=
∑

i1<...<in

ri1+...+in , (18)

so that (17) can be written as

|δn(s)| ≤ Kn
s En(h) , (19)

and we define the righthand side of (19) (or equivalently of (17)) to be the Euler bound on
the nth Taylor coefficient of the determinant.

4. Computed approximation bounds

For all n ≥ 1, the nth approximation bound

αn(s) =

( ∞∑
k=n−1

‖LA,s(mk)‖2
)1/2

is, as noted in Proposition 1, an upper bound on the nth approximation number sn(LA,s).
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Each mk is just a normalised monomial (8), and the operator LA,s is available in closed
form, so that

LA,s(mk)(z) =
∑
i∈A

(Ti(z)− c)k

%k(z + i)2s
,

and we may use numerical integration to compute7 each Hardy norm ‖LA,s(mk)‖ as

‖LA,s(mk)‖2 =

∫ 1

0

∣∣∣∣∣∑
i∈A

(Ti(γ(t))− c)k

%k(γ(t) + i)2s

∣∣∣∣∣
2

dt , (20)

where γ(t) = c+ %e2πit.
Evaluation of αn(s) involves the tail sum

∑∞
k=n−1 ‖LA,s(mk)‖2, and in practice we can

bound this by the sum of an exactly computed long finite sum
∑N

k=n−1 ‖LA,s(mk)‖2, for some

N � n, and a rigorous upper bound on
∑∞

k=N+1 ‖LA,s(mk)‖2 using (14). More precisely, we
have the following definition:

Definition 3. Given n,N ∈ N, with n ≤ N , define the lower and upper computed approxi-
mation bounds, αn,N,−(s) and αn,N,+(s), respectively, by

αn,N,−(s) =

(
N∑

k=n−1
‖LA,s(mk)‖2

)1/2

, (21)

and

αn,N,+(s) =

αn,N,−(s)2 +

(∑
i∈A
‖wi,s‖∞

)2
h2(N+1)

1− h2

1/2

. (22)

Evidently the lower computed approximation bound αn,N,−(s) is a lower bound for αn(s), in
view of the positivity of the summands in (9) and (21), while Lemma 5 below establishes that
the upper computed approximation bound αn,N,+(s) is an upper bound for αn(s). Moreover,
both αn,N,+(s) and αn,N,−(s) are readily computable: they are given by finite sums and, as
already noted, the summands ‖LA,s(mk)‖2 are computable to arbitrary precision.

Lemma 5. Let s ∈ R. For all n,N ∈ N, with n ≤ N ,

αn,N,−(s) ≤ αn(s) ≤ αn,N,+(s) . (23)

Proof. The inequality αn,N,−(s) ≤ αn(s) is immediate from the definitions. To prove that
αn(s) ≤ αn,N,+(s) note that

αn(s)2 =
N∑

k=n−1
‖LA,s(mk)‖2 +

∞∑
k=N+1

‖LA,s(mk)‖2 ,

7Numerical integration capability is available in computer packages such as Mathematica, and these norms
can be computed to arbitrary precision; although higher precision requires greater computing time, these
computations are relatively quick (e.g. for the computations in §6 these integrals were computed with 150
digit accuracy).
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which together with (14) gives

αn(s)2 ≤
N∑

k=n−1
‖LA,s(mk)‖2 +

(∑
i∈A
‖wi,s‖∞

)2
h2(N+1)

1− h2
,

and the result follows. �

Remark 4. The upper bound αn,N,+(s) will be used in the sequel, as a tool in providing
rigorous estimates on Hausdorff dimension. In practice N will be chosen so that the values
αn,N,−(s) and αn,N,+(s) are close enough together that the inequality (23) determines αn(s)
with precision far higher than that of the desired Hausdorff dimension estimate; in particular,
N will be such that the difference αn,N,+(s)−αn,N,−(s) = O(hN ) is extremely small relative
to the size of αn(s).

Combining (15) with (23) immediately gives the exponential bound

αn,N,−(s) ≤ Ksh
n for all n ≤ N , (24)

though the analogous bound for αn,N,+(s) (which will be more useful to us in the sequel)
requires some extra care:

Lemma 6. Let s ∈ R. For all n,N ∈ N, with n ≤ N ,

αn,N,+(s) ≤ Ks(1 + h2(N+2−n))1/2hn . (25)

Proof. Combining (24) with (22) gives

αn,N,+(s) ≤

(Ksh
n)2 +

(∑
i∈A
‖wi,s‖∞

)2
h2(N+1)

1− h2

1/2

,

but (16) gives (∑
i∈A ‖wi,s‖∞

)2
1− h2

= K2
sh

2 ,

so

αn,N,+(s) ≤
(

(Ksh
n)2 +K2

sh
2(N+2)

)1/2
,

and the result follows. �

The utility of (25) stems from the fact that in practice N − n will be large, and that for
sufficiently small values of n the following more direct analogue of (24) can be used:

Corollary 2. Let s ∈ R. Suppose N,Q ∈ N, with Q ≤ N . If

J = JQ,N,s := Ks

(
1 + h2(N+2−Q)

)1/2
(26)

then

αn,N,+(s) ≤ Jhn for all 1 ≤ n ≤ Q . (27)

Proof. Immediate from Lemma 6. �
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Remark 5. In practice Q will be of some modest size, dictated by the computational re-
sources at our disposal; specifically, it will be chosen slightly larger than the largest P ∈ N for
which it is feasible to compute all periodic points of period ≤ P (e.g. in §6, when estimating
the dimension of the set E2 = E{1,2}, we explicitly compute all periodic points up to period
P = 25, and in the proof of Theorem 1 we choose Q = 28). The value N will be chosen to
be significantly larger than Q (e.g. in the proof of Theorem 1 we choose N = 600). Since
N+2−Q is large, hN+2−Q will be extremely small, and J = JQ,N,s will be extremely close to
Ks; ideally this closeness ensures that the two constants JQ,N,s and Ks are indistinguishable
to the chosen level of working precision (e.g. in the proof of Theorem 1, N + 2 − Q = 574
and h ≈ 0.511284, so hN+2−Q ≈ 5.9 × 10−168, whereas computations are performed to 150
decimal digit precision).

5. Computed Taylor bounds

In order to use the computed approximation bounds to provide a rigorous upper bound on
the Taylor coefficients of the determinant det(I−zLA,s), we now fix a further natural number

M , satisfying M ≤ N . For any such M , it is convenient to define the sequence (αMn,N,+(s))∞n=1

to be the one whose nth term equals αn,N,+(s) until n = M , and whose subsequent terms are
given by the exponential upper bound on sn(LA,s) and αn(s) (cf. (15)):

αMn,N,+(s) :=

{
αn,N,+(s) for 1 ≤ n ≤M ,

Ksh
n for n > M .

(28)

This allows us to make the following definition:

Definition 4. Let s ∈ R. For n,M,N ∈ N with n ≤M ≤ N , the Taylor bound βMn,N,+(s) is
defined by

βMn,N,+(s) :=
∑

i1<...<in

n∏
j=1

αMij ,N,+(s) , (29)

where the sum is over those i = (i1, . . . , in) ∈ Nn which satisfy i1 < i2 < . . . < in.

As the name suggests, the Taylor bound βMn,N,+(s) bounds the nth Taylor coefficient of the

determinant det(I − zLA,s) = 1 +
∑∞

n=1 δn(s)zn:

Lemma 7. Let s ∈ R. For n,M,N ∈ N with n ≤M ≤ N ,

|δn(s)| ≤ βMn,N,+(s) . (30)

Proof. Combining (15), (23) and (28) gives

sn(LA,s) ≤ αMn,N,+(s) for all 1 ≤ n ≤M ≤ N ,

and combining this with Lemma 2 gives (30). �

Note that βMn,N,+(s) is precisely the nth power series coefficient for the infinite product∏∞
i=1(1 + αMi,N,+(s)z), and that the sum in (29) is an infinite one; thus we will seek a com-

putationally accessible approximation to βMn,N,+(s). We expect that βMn,N,+(s) is well ap-

proximated by the nth power series coefficient for the finite product
∏M
i=1(1 + αMi,N,+(s)z) =∏M

i=1(1 + αi,N,+(s)z), namely the value βM,−
n,N,+(s) defined as follows:
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Definition 5. Let s ∈ R. For n,M,N ∈ N with n ≤ M ≤ N , the lower computed Taylor

bound βM,−
n,N,+(s) is defined as

βM,−
n,N,+(s) :=

∑
i1<...<in≤M

n∏
j=1

αij ,N,+(s) . (31)

Remark 6.
(i) The fact that βM,−

n,N,+(s) is defined in terms of upper computed approximation bounds

αij ,N,+(s), together with the finiteness of the sum (and product) in (31), ensures that

βM,−
n,N,+(s) can be computed (to arbitrary precision).

(ii) Clearly, an equivalent definition of βM,−
n,N,+(s) is

βM,−
n,N,+(s) =

∑
i1<...<in≤M

n∏
j=1

αMij ,N,+(s) . (32)

The lower computed Taylor bound βM,−
n,N,+(s) is obviously smaller than the Taylor bound

βMn,N,+(s), though in view of (30) we require an upper computed Taylor bound (introduced

in Definition 6 below) that is larger than βMn,N,+(s). The following result estimates the

difference βMn,N,+(s)− βM,−
n,N,+(s), and subsequently (see Definition 6) provides the inspiration

for the definition of the upper computed Taylor bound:

Lemma 8. Let s ∈ R. Given Q,M,N ∈ N with Q ≤ M ≤ N , and J = JQ,N,s defined by
(26),

βMn,N,+(s)− βM,−
n,N,+(s) ≤

n−1∑
l=0

Jn−lβM,−
l,N,+(s)hM(n−l)En−l(h) for all 1 ≤ n ≤ Q . (33)

Proof. Let n be such that 1 ≤ n ≤ Q. The set In := {i = (i1, . . . , in) ∈ Nn : i1 < . . . < in}
can be partitioned as In =

⋃n
l=0 I

(l)
n , where the I(l)n are defined by

I(l)n =


{i = (i1, . . . , in) ∈ In : M < i1} if l = 0 ,

{i = (i1, . . . , in) ∈ In : il ≤M < il+1} if 1 ≤ l ≤ n− 1 ,

{i = (i1, . . . , in) ∈ In : in ≤M} if l = n .

Define

β
M,(l)
n,N,+(s) :=

∑
i∈I(l)n

n∏
j=1

αMij ,N,+(s) for each 0 ≤ l ≤ n ,

so that in particular

β
M,(n)
n,N,+(s) = βM,−

n,N,+(s) . (34)

With this notation, and since In =
⋃n
l=0 I

(l)
n , we can express βMn,N,+(s) as

βMn,N,+(s) =
∑
i∈In

n∏
j=1

αMij ,N,+(s) =

n∑
l=0

β
M,(l)
n,N,+(s) . (35)
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Combining (34) and (35) gives

βMn,N,+(s)− βM,−
n,N,+(s) =

n−1∑
l=0

β
M,(l)
n,N,+(s) . (36)

In order to bound each β
M,(l)
n,N,+(s) in (36) we use the fact that αMi,N,+(s) ≤ Jhi for all

1 ≤ i ≤ Q (see Corollary 2) to obtain

β
M,(l)
n,N,+(s) =

∑
i∈I(l)n

n∏
j=1

αMij ,N,+(s) ≤ Jn−l
∑
i∈I(l)n

hil+1+...+in

l∏
j=1

αMij ,N,+(s) , (37)

and introducing ι = (ι1, . . . , ιn−l) ∈ In−l with il+k = ιk + M for 1 ≤ k ≤ n − l, we can
re-express the righthand side of (37) to obtain

β
M,(l)
n,N,+(s) ≤ Jn−l

∑
i∈I(l)l

l∏
j=1

αMij ,N,+(s)


 ∑
ι∈In−l

h(n−l)Mhι1+...+ιn−l

 ,

and therefore
β
M,(l)
n,N,+(s) ≤ Jn−lβM,−

l,N,+(s)hM(n−l) En−l(h) . (38)

Now combining (36) and (38) gives the required bound (33). �

Remark 7. In practice the l = n − 1 term on the righthand side of (33) tends to be the
dominant one, as M is chosen large enough so that hM is extremely small.

Definition 6. Let s ∈ R. For n,Q,M,N ∈ N with n ≤ Q ≤ M ≤ N , define the upper

computed Taylor bound βM,+
n,N,+(s) by

βM,+
n,N,+(s) := βM,−

n,N,+(s) +

n−1∑
l=0

Jn−lQ,N,s β
M,−
l,N,+(s)hM(n−l)En−l(h) .

From Lemma 8 it then follows that the upper computed Taylor bound βM,+
n,N,+(s) is indeed

larger than the Taylor bound βMn,N,+(s):

Corollary 3. Let s ∈ R. If Q,M,N ∈ N with Q ≤M ≤ N , then

βMn,N,+(s) ≤ βM,+
n,N,+(s) for all 1 ≤ n ≤ Q .

Proof. Immediate from Lemma 8 and Definition 6. �

Finally, we deduce that the nth Taylor coefficient δn(s) of the determinant det(I − zLA,s)
can be bounded in modulus by the upper computed Taylor bound βM,+

n,N,+(s) (a quantity we

can compute to arbitrary precision):

Proposition 3. Let s ∈ R. If Q,M,N ∈ N with Q ≤M ≤ N , then

|δn(s)| ≤ βM,+
n,N,+(s) for all 1 ≤ n ≤ Q .

Proof. Lemma 7 gives |δn(s)| ≤ βMn,N,+(s), and Corollary 3 gives βMn,N,+(s) ≤ βM,+
n,N,+(s), so

the result follows. �
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Remark 8. In §6, for the computations in the proof of Theorem 1, we choose N = 600,
M = 400, and Q = 28, using Proposition 3 to obtain the upper bound on |δn(s)| for P + 1 =
26 ≤ n ≤ 28, having explicitly evaluated δn(s) for 1 ≤ n ≤ 25 using periodic points of period
up to P = 25.

6. The Hausdorff dimension of E2

Here we consider the set E2, corresponding to the choice A = {1, 2}. We shall suppress
the set A from our notation, writing Ls instead of LA,s.

The approximation sN to dim(E2), based on periodic points of period up to N , is the zero
(in the interval (0, 1)) of the function DN defined by (4); these approximations are tabulated
in Table 1 for 18 ≤ n ≤ 25. We note that the 24th and 25th approximations to dim(E2)
share the first 129 decimal digits

0.5312805062772051416244686473684717854930591090183987798883978039

27529535643831345918109570181185239880428057243075187633422389339

though the rate of convergence gives confidence that the first 139 digits

0.531280506277205141624468647368471785493059109018398779888397803927529

5356438313459181095701811852398804280572430751876334223893394808223090

of s25 are in fact correct digits of dim(E2).
It turns out that we can rigorously justify around three quarters of these decimal digits,

proving that the first 100 digits are correct. In fact we prove slightly more than that, by
setting s− to be the value

s− = 0.531280506277205141624468647368471785493059109018398

77988839780392752953564383134591810957018118523987 ,

and setting s+ = s− + 2/10101 to be the value

s+ = 0.531280506277205141624468647368471785493059109018398

77988839780392752953564383134591810957018118523989 .

We then claim:

Theorem 1. The Hausdorff dimension of E2 lies in the interval (s−, s+).

Proof. We will show that D(s−) and D(s+) take opposite signs, and deduce that dim(EA),
as the zero of D, lies between s− and s+.

Let D ⊂ C be the open disc centred at c, of radius %, where c is the largest real root of
the polynomial

128c7 + 768c6 + 1296c5 − 192c4 − 1764c3 − 108c2 + 819c− 216 ,

so that

c ≈ 0.758687144013554292899790137015621955739402945444266741967051997691009 ,

and

% =
−c+

√
−6c+ 5c2 + 12c3 + 4c4

2c
, (39)
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n sn
18 0.531280506277205141624468647368471785493059109018398779888397803927529535645

596972005085668529391352118806494054592120629038239974478243258576620540205
19 0.531280506277205141624468647368471785493059109018398779888397803927529535643

831345931151408384198942403518425963034455124305471103063941900681921725781
20 0.531280506277205141624468647368471785493059109018398779888397803927529535643

831345918109570144457186603287266737112934351614056377793361034907544181115
21 0.531280506277205141624468647368471785493059109018398779888397803927529535643

831345918109570181185239840988322512589524907498366765561230541095944497891
22 0.531280506277205141624468647368471785493059109018398779888397803927529535643

831345918109570181185239880428057259226147992212780800516214656456345194120
23 0.531280506277205141624468647368471785493059109018398779888397803927529535643

831345918109570181185239880428057243075187635944921448427780108909724612227
24 0.531280506277205141624468647368471785493059109018398779888397803927529535643

831345918109570181185239880428057243075187633422389339330546198723829886067
25 0.531280506277205141624468647368471785493059109018398779888397803927529535643

831345918109570181185239880428057243075187633422389339480822309014454563836

Table 1. Approximations sn ≈ dim(E2); each sn is a zero of a truncation
Dn (formed using only periodic points of period ≤ n) of the function D

so that

% ≈ 0.957589818521375342814351002388265920293251603461349541441037951859499 .

The relation (39) ensures that T1(c−%) and T2(c+%) are equidistant from c, and this common
distance is denoted by %′ = T1(c− %)− c = c− T2(c+ %), so that

%′ ≈ 0.48960063348666271539624547964205669003751747416510762619582637319401 .

The specific choice of c is to ensure that the contraction ratio h = %′/% is minimised, taking
the value

h =
%′

%
≈ 0.51128429314616176482942956363790038479511374855036304746799036536341 .

Having computed the points of period up to P = 25 we can form the functions s 7→ δn(s)
for 1 ≤ n ≤ 25, and evaluate these at s = s− (cf. Table 2) to give

D25(s
−) = 1 +

25∑
n=1

δn(s−) = (−1.584605810787991617286291643870 . . .)× 10−101 < 0 , (40)

and at s = s+ to give

D25(s
+) = 1 +

25∑
n=1

δn(s+) = (1.454514082498475271478438451769 . . .)× 10−101 > 0 . (41)

We now aim to show that the approximation D25 is close enough to D for (40) and (41)
to imply, respectively, the negativity of D(s−) and the positivity of D(s+). In other words,
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Figure 1. Inner disc D′ (dashed) contains images T1(D), T2(D) of the outer
disc D, in the rigorous bound on the dimension of E2

we seek to bound the tail
∑∞

n=26 δn(s), and this will be achieved by bounding the individual
Taylor coefficients δn(s), for n ≥ 26 = P +1. It will turn out that for n ≥ 29 the cruder Euler
bound on δn(s) is sufficient, while for 26 ≤ n ≤ 28 we will use the Taylor bounds described
in §5. More precisely, for P + 1 = 26 ≤ n ≤ 28 = Q we will use the upper computed Taylor

bound8 βM,+
n,N,+(s) for suitable M,N ∈ N.

Henceforth let Q = 28, M = 400, N = 600 (so that in particular Q ≤ M ≤ N , as was
assumed throughout §5) and consider the case s = s−.

We first evaluate9 the H2(D) norms of the monomial images Ls(mk) for 0 ≤ k ≤ N = 600.
These norms are decreasing in k; Table 3 contains the first few evaluations, for 0 ≤ k ≤ 10,
while for k = 600 we have

‖Ls(m600)‖ = (2.297607298251023508986187604945746 . . .)× 10−176 .

8As will be noted shortly, the upper computed Taylor bound we use agrees with the corresponding Taylor
bound to over 200 decimal digits, so in particular the two quantities are indistinguishable at the 150 digit
precision level of these computations.

9As described in §4, (20) can be readily evaluated to arbitrary precision using numerical integration; for
this particular computation the precision level used was 150 decimal places.
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Using these norms ‖Ls(mk)‖ we then evaluate, for 1 ≤ n ≤M = 400, the upper computed
approximation bounds αn,N,+(s) = αn,600,+(s) defined (cf. (22)) by10

αn,N,+(s) =

 N∑
k=n−1

‖Ls(mk)‖2 +

(
2∑
i=1

‖wi,s‖∞

)2
h2(N+1)

1− h2

1/2

.

These bounds are decreasing in n; Table 4 contains the first few evaluations, for 1 ≤ n ≤ 10,
while for n = 400 we have

α400,600,+(s) = (3.806826780744825698066314723072781 . . .)× 10−147 .

The upper computed approximation bounds αn,600,+(s) are then used to form the upper

computed Taylor bounds11 βM,+
n,N,+(s) = βM,−

n,N,+(s) +
∑n−1

l=0 J
n−l
Q,N,s β

M,−
l,N,+(s)hM(n−l)En−l(h),

where

βM,−
n,N,+(s) = β400,−n,600,+(s) =

∑
i1<...<in≤400

n∏
j=1

αij ,600,+(s) ,

which for 26 ≤ n ≤ 28 = Q are12

βM,+
26,N,+(s) = (7.0935010683530957339350457686786431427508 . . .)× 10−103,

βM,+
27,N,+(s) = (7.0379118021870691622913562125699156503586 . . .)× 10−111,

βM,+
28,N,+(s) = (3.5360715444914082167026977943200738452867 . . .)× 10−119,

so in particular Proposition 3 gives

28∑
n=26

|δn(s)| ≤
28∑

n=26

βM,+
n,N,+(s) < 7.1× 10−103. (42)

It remains to derive the Euler bounds on the Taylor coefficients δn(s) for n ≥ 29. For
s > 0, the functions w1,s(z) = 1/(z + 1)2s and w2,s(z) = 1/(z + 2)2s have maximum modulus
on D when z = c− %, so

‖w1,s‖∞ = 1/(1 + c− %)2s and ‖w2,s‖∞ = 1/(2 + c− %)2s . (43)

A computation using (43) gives

‖w1,s‖∞ ≤ 1.2657276413750668025007241047661655434034644495987711959332997 (44)

and

‖w2,s‖∞ ≤ 0.5351507690357290789991731014616306223833750046974228167583536 , (45)

10Note that h ≈ 0.511284 andN = 600, so h2(N+1)

1−h2 ≤ 8.8×10−351. Moreover (6) gives
∑2

i=1 ‖wi,s‖∞ ≤ 1.81,

thus (
∑2

i=1 ‖wi,s‖∞)2 h2(N+1)

1−h2 ≤ 2.9 × 10−350. Combining these bounds with the values taken by αn,N,+(s),

it follows that for 1 ≤ n ≤ 400, the approximation bound αn(s) = (
∑∞

k=n−1 ‖Ls(mk)‖2)1/2 agrees with both

computed approximation bounds αn,N,−(s) and αn,N,+(s) to at least 200 decimal places, a level well beyond
the desired precision used in these calculations.

11The difference βM,+
n,N,+(s) − βM,−

n,N,+(s) =
∑n−1

l=0 J
n−l
Q,N,s β

M,−
l,N,+(s)hM(n−l)En−l(h) is smaller than 1.86 ×

10−210 for 26 ≤ n ≤ 28 = Q, so in fact the upper and lower computed Taylor bounds, and the Taylor bound
βM
n,N,+(s), agree to well beyond the 150 decimal place precision used in these computations.
12See also Table 6 for computations of βM,+

n,N,+(s) for 1 ≤ n ≤ 28 = Q.
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thus

‖w1,s‖∞ + ‖w2,s‖∞ ≤ 1.8008784104107958814998972062277961657868394542961940127 ,

and therefore Ks = (‖w1,s‖∞ + ‖w2,s‖∞)/(h
√

1− h2) is bounded by

Ks ≤ 4.098460062897625162727128104751085223751087056801141844 . (46)

Now |δn(s)| ≤ Kn
s En(h), and we readily compute (see also Table 5) that

K29
s E29(h) < 3.991837779947559× 10−109 ,

K30
s E30(h) < 2.976234382308237× 10−117 ,

and we easily bound ∣∣∣∣∣
∞∑

n=29

δn(s)

∣∣∣∣∣ ≤
∞∑

n=29

Kn
s En(h) < 4× 10−109 . (47)

Combining (47) with (42) gives, for s = s−,∣∣∣∣∣
∞∑

n=26

δn(s)

∣∣∣∣∣ < 7.2× 10−103 . (48)

Combining (48) with (40) then gives

D(s−) = 1 +

∞∑
n=1

δn(s−) < 0 . (49)

It remains to show that D(s+) is positive. In view of (41), for this it is sufficient to
show that |

∑∞
n=26 δn(s)| < 10−101 for s = s+. In fact the stronger inequality (48) (which

we have proved for s = s−) can also be established for s = s+, using the same general
method as for s = s−, since the intermediate computed values for the norms ‖Ls(mk)‖,
computed approximation bounds αn,N,+(s), computed Taylor bounds βM,+

n,N,+(s), and Euler

bounds Kn
s En(h), are sufficiently close to those for s = s− = s+ − 2/10101. Combining (41)

with inequality (48) for s = s+ gives the required positivity

D(s+) = 1 +
∞∑
n=1

δn(s+) > 0 . (50)

The map s 7→ D(s) is continuous and increasing, so the fact that D(s−) < 0 < D(s+)
implies that its unique zero (which is equal to the dimension) is contained in (s−, s+). �

Remark 9. If, as in Theorem 1, our aim is to rigorously justify 100 decimal places of the
computed approximation sP to the Hausdorff dimension, then roughly speaking P should be
chosen so that the modulus of the tail

∑∞
n=P+1 δn(s) can be shown to be somewhat smaller

than 10−100 for s ≈ sP . Since |δn(s)| is bounded above by the upper computed Taylor bound

βM,+
n,N,+(s), the fact that βM,+

26,N,+(s) < 7.1 × 10−103 (see Table 6) for suitably large M,N ,

together with the rapid decay (as a function of n) of these bounds, suggests that we may
choose P = 25, i.e. that it suffices to explicitly locate the periodic points of period ≤ 25.

The choice of the value Q is relatively unimportant, as the upper computed Taylor bounds
are only slightly more time consuming to compute than the (instantaneously computable)
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Euler bounds; in the proof of Theorem 1 we chose Q such that the Euler bounds Kn
s En(h)

were substantially smaller than 10−100 for n > Q (our choice Q = 28 has this property, as
does any larger Q, and indeed the choice Q = 27 may also be feasible, cf. Table 5).

The values M and N are chosen large enough to ensure that the bound (7) on |δn(s)| is
rendered essentially as sharp as possible using our method (see Proposition 1) of bounding
approximation numbers by approximation bounds; equally, the values M and N are of course

chosen small enough to allow the βM,+
n,N,+(s) to be evaluated in reasonable time.
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n δn(s)
0 1.00000000000000000000000000000000000000000000000000000000000000000
1 −0.76853713973783664059555880616494947204728086574720496608180647371
2 −0.26021976366093635437716029700462536967772836185911363417403187305
3 0.02765000991360418692432023659242068499500195127534488833324814033
4 0.00112374639478016294259719123593672797015144554465624446191255585
5 −0.0000167586893262829053963800867331298214048355450207764533921201
6 −9.4420708961650542507455077292536505589082088322403413391248× 10−8

7 2.002631154264594909155061001947400470978400350528119075400× 10−10

8 1.608231764929372179126081732895703844557686618425008678027× 10−13

9 −4.893556025044534292717368610780157833682056735012684894922× 10−17

10 −5.651862783135703772626682291328447783083215443130743201938× 10−21

11 2.479739513988220884083251961840541108885795134827792410316× 10−25

12 4.136401121594147971038636851634368411897631129671577551043× 10−30

13 −2.624756973891155869061345045877184074663200387233753736326× 10−35

14 −6.338941892590978104708773275720546500369680606966992807613× 10−41

15 5.828730628244270965574851653454290059269126664657684771853× 10−47

16 2.041279162245973098261089683937621906304968188235420213343× 10−53

17 −2.723457305394335826243564087510129051800792696839009712149× 10−60

18 −1.384617032922521104261197591114142447361756695512763047462× 10−67

19 2.682974662699446094806576747549474738085235119849542148518× 10−75

20 1.981785501971166402977117745705012463041957402989929807212× 10−83

21 −5.581047861819085366787152065083481128824923252068053906083× 10−92

22 −5.99310412272224270828369069621010481279832938275818217131× 10−101

23 2.45423524572073669786403014748119272764064394193220008396× 10−110

24 3.83313875710563588641117264949062942911961150094959790393× 10−120

25 −2.28353558134974299687217160340929697313195978714612008350× 10−130

Table 2. Exact (to the given precision) Taylor coefficients δn(s) for the de-
terminant det(I − zLs) = 1 +

∑∞
n=1 δn(s)zn for E2 transfer operator Ls with

s = s−

k ‖Ls(mk)‖
0 1.0270790783376427840070677716704413443556765790531396305598028764891
1 0.3937848239109563523505359783093188356154137707117445532439663747781
2 0.1714591180108060752265529053281347472947978460219396035391070667691
3 0.0784792797693053045975192814445601433860119013766718128894674834037
4 0.0368985150737907248938351875080596507139356576758391651885254166051
5 0.0176517923866933707140642945427091399723431868286590018130953901715
6 0.0085477463829669713632455215487177327086334690252589671713112735110
7 0.0041762395195693491669377402131475622078401074275749884365926135321
8 0.0020541561464629266556123666395075007822413063382433235450055746854
9 0.0010155981305058227350650668511905652569101368771929481102954501965

10 0.0005041555520431887383182315523421205104649185947907910778866174462

Table 3. H2(D) norms ‖Ls(mk)‖ for E2 transfer operator Ls with s = s−,
and disc D centred at c ≈ 0.758687, of radius % ≈ 0.957589
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n αn,N,+(s)
1 1.1168188427493689387528468664326403365355467885350235197794937054219
2 0.4386261441833328551532057324432712062653963332311641747430735557039
3 0.1932004317245564565674981131652477003552483794394786484356380783895
4 0.0890403148551906045843926762042532922519090868320365095369073804490
5 0.0420616252230294091406255836554145185951240978356520620177902539293
6 0.0201910847096391145836053749493573987118330733550628154025906529456
7 0.0098027612073790924969564942497359805350512687186310168243371528657
8 0.0047989747927418270016992324939068507919767494168737399281723990294
9 0.0023641452020886181354412370986078224447913391845724242369671517436

10 0.0011703098147530048368486863035363234141272479119157896271724328508

Table 4. Upper computed approximation bounds αn,N,+(s) for E2 transfer
operator Ls with s = s−, N = 600, and disc D centred at c ≈ 0.758687, of
radius % ≈ 0.957589

n Kn
s En(h)

26 1.7205402918728479471042338789554711763326940740466743× 10−86

27 9.5978010692386084808038394023982841330869065861226330× 10−94

28 2.737417814947540988901740511033648063467122791471394× 10−101

29 3.991837779947558814663544901589857709951099663953540× 10−109

30 2.976234382308236859886112971018657684658758908913873× 10−117

31 1.134550484615336330129091070266090192517568093692057× 10−125

32 2.211276104496105402944501365002379392554065222342807× 10−134

Table 5. Euler bounds Kn
s En(h) (on the nth Taylor coefficient of the deter-

minant for the E2 transfer operator Ls) with s = s−



24 O. JENKINSON & M. POLLICOTT

n βM,+
n,N,+(s)

0 1.00000000000000000000000000000000000000000000000000000000000000000000000000
1 1.91923648979580309318951635180234393904884374850026688921303476745864277943
2 1.09811675194206604762230704346732795997751970929683510044470721043734001309
3 0.24618999584155235513565815243210418520583365378089116293710254687241434795
4 0.02398559740297469793182812221795461172137513819594467292973150895628420238
5 0.00106919598571977874103212434018320434942648472790810029433803585219678501
6 0.00002245831360965568426299680358374853210939596804716334173441483413901923
7 2.2642019462375962430662506716612064307152569131758370772288306840900× 10−7

8 1.1092419528871585130899796268449651654078217715387698682639501376708× 10−9

9 2.663650269994059350891751457108890432732071400321264474469330002798× 10−12

10 3.155171165530321941301909639176345854820087927706592194812388623174× 10−15

11 1.852432231426985677242256749394660424524281973738655903624698338156× 10−18

12 5.410594019029701157763137174999660406055719684315663742414740542830× 10−22

13 7.885051899585888435773423343552379506988548488916647635158418850050× 10−26

14 5.747100233562844459509048233665882356972216861732638504210303895791× 10−30

15 2.099041252743632552050904627419516338940376363311264696658378460074× 10−34

16 3.847903057092197973673777897871275775937411069875824271304861796633× 10−39

17 3.545294989432407670621821723745739978197914980574557158230527004120× 10−44

18 1.643668789004361742194939215063268183353658869302130234108066601797× 10−49

19 3.838399584352345469129330407144020664484419600898330810312866654442× 10−55

20 4.519027888488147753152792404295333548952705689939991946764902639890× 10−61

21 2.684346574656834154151019745874691411943090212034757600858330903379× 10−67

22 8.050690502405021083882671470235302010905655390286812186449358629811× 10−74

23 1.219830446701270894665408875558427194881417102614891830624858080153× 10−80

24 9.342902106203197589981798759839115586201690686680609856085682409723× 10−88

25 3.619108237222286228053279698772494015265793565703855372730270709162× 10−95

26 7.09350106835309573393504576867864314275082021347185128923856949603× 10−103

27 7.03791180218706916229135621256991565035863969280596747417493561373× 10−111

28 3.53607154449140821670269779432007384528678228577107631018236474461× 10−119

Table 6. Upper computed Taylor bounds βM,+
n,N,+(s) for E2 transfer operator

Ls with s = s−, M = 400, N = 600, and disc D centred at c ≈ 0.758687, of
radius % ≈ 0.957589


