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RIGOROUS COMPUTATION OF DIFFUSION COEFFICIENTS FOR
EXPANDING MAPS

0. JENKINSON, M. POLLICOTT & P. VYTNOVA

ABSTRACT. For real analytic expanding interval maps, a novel method is given for rigorously approx-
imating the diffusion coefficient of real analytic observables. As a theoretical algorithm, our approx-
imation scheme is shown to give quadratic exponential convergence to the diffusion coefficient. The
method for converting this rapid convergence into explicit high precision rigorous bounds is illustrated
in the setting of Lanford’s map @ +— 2z + x(1 — z) (mod 1).

1. INTRODUCTION

For a real analytic' expanding interval map T : X — X with absolutely continuous invariant
probability measure i, and a real analytic function g : X — R, the corresponding diffusion coefficient
(or variance) is the quantity O'Z (g) defined by

2

1 n—1 .

2 . T - i

a(9) —nlggon/ (Z;goT n/gdu> dp. (1)
1=

The quantity o7(g) plays a role in the central limit theorem: it is well known (see e.g. [11]) that

provided g is not equal to a coboundary plus a constant then

1 n—1
— oT' —n d
(G n fom)
converges in law to a normal distribution with mean zero and variance Jﬁ(g) > 0. A difficult problem
of practical interest is to calculate, or to approximate, the diffusion coefficient aﬁ(g), noting that
(1) is only rarely amenable to direct evaluation. Bahsoun, Galatolo, Nisoli & Niu [2] recently gave
a method for the rigorous approximation of diffusion coefficients, including error bounds, based on
Ulam’s method. They illustrated this approach with the particular map

T(z) =2z + %x(l —x) (mod 1) (2)

introduced by Lanford [3], and the function g(x) = 22, showing that 0.3458 < ai(g) < 0.4152.

In this paper we develop an alternative algorithm for approximating diffusion coefficients of ex-
panding interval maps. In general the method uses the periodic points of T', and exploits the real
analyticity of the map 7" and the function g. The method gives highly accurate approximations to
the diffusion coefficient, both at the level of a theoretical algorithm converging with a given asymp-
totic speed (namely quadratic exponential convergence, as described in Theorem 1 below), and, most
importantly, at the level of completely rigorous certified error bounds (see Theorems 2 and 3). The
real analyticity assumptions will be crucial in establishing both the theoretical asymptotics and the

By convention we say that T is real analytic whenever it is piecewise real analytic, i.e. the interval X admits a
partition into intervals, with T real analytic on each partition piece.
1
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concrete error bounds, since explicit use is made of the holomorphic extensions of the function g and
(the inverse branches of) the map T to certain regions of the complex plane. The general asymptotic
speed of our algorithm is as follows:

Theorem 1. Let T : X — X be a real analytic expanding interval map with absolutely continuous
invariant probability measure p, and suppose g : X — R is real analytic. There exists a sequence
o2 — Ui(g), where each o2 can be explicitly computed in terms of periodic points of period up to n.
The rate of convergence is quadratic exponential, in the sense that there exist constants C > 0 and
k € (0,1) such that

\Ui(g) — 02| < Ck™  foralln €N. (3)

The constants C' and k of Theorem 1 can be rendered explicit, a procedure which involves consid-
eration of holomorphic extensions to regions in the complex plane. A more challenging problem, in
the context of a specific map T and function g, is to establish effective error bounds on |az (9) — o2,
preferably of very high accuracy; a key purpose of this article is to show that in such practical settings
there is considerable scope for sharpening our optimal version of the simple asymptotic form (3) so
as to obtain effective high quality bounds on the diffusion coefficient. As a model case we shall orient
our discussion of this problem around the specific example considered in [2], namely Lanford’s map

T, and the function g(x) = 22, both of which are real analytic; henceforth we refer to this as the

2
I

theoretical and computer programming elements, and any proof of such bounds will invariably be

model problem. The problem of obtaining high accuracy rigorous estimates on o (g) involves both

computer-assisted. As a starting point we note that, using only a modern desktop computer, it is
possible to locate all the periodic points of the Lanford map T up to period P, for some? 20 < P < 30.
Choosing maximum period P = 25 yields the sequence of approximations to ai (g9) given in Table 2,
which at the level of non-rigorous empirical observation suggests that

o2 (g) = 0.36010948619916067289882418682857674924166999779722 4 1077 |

2
o
and indeed a more optimistic interpretation of Table 2 suggests the slightly more accurate

Ji(g) = 0.3601094861991606728988241868285767492416699977972288644 + 10~°° .

2

= (and in particular the last of

The task is to now harness these computed approximate values o
these computed approximations, 0123) so as to produce a fully rigorous approximation to ai(g), together
with an error bound. Any naive expectation that the theoretical asymptotic (3), together with specific
values for k and C, would automatically yield an effective error bound on \ai (g) — 02| is tempered by
the realisation that, for the model problem, & is reasonably close to the value® 1, and C' is extremely

2In general the specific value of P will depend on available hardware, on the computer programming implementation of
our algorithm, and on the time available to make the computation. For the Lanford map T we found it possible to locate
points up to period 20 in less than an hour, while locating points of period up to 25 took around a day (computations
were performed in an arbitrary precision environment, giving several hundred correct decimal digits); note that since T'
is a 2-branch map, incrementing the maximum period by one entails an approximate doubling of the computer run time.

3For any two branch expanding map, our techniques yield a value of k lying in the range [2*1/2, 1), while for the
Lanford map itself our optimal value is k /= 0.927734 (this is the square root of the quantity 6 defined in (57)). Note that
although the term k" s approximately 4.3 x 1072* when n = 25, the value of C in (3) is too large for the asympotic
estimate |07, (g) — on| < Ck™ to be effectively used until n is significantly larger (and, crucially, above the maximum
value of n for which all 2" period-n points can be located using the computational resources at our disposal).
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large.! Although, as noted above, the value P = 25 is deemed to be the maximum such that all (¢2)F_,
can be explicitly evaluated, a finer analysis® of the estimates yielding the asymptotic (3) suggests that

a good quality rigorous effective estimate on ai(g) remains out of reach for P < 30.

In order to obtain high quality effective estimates on |JZ(g) — 02| we therefore develop a hybrid
approach, consisting of three distinct types of computation, the first type being the exact evaluation
of 02 (see §3 for the formulae defining o2) for all sufficiently small values of n (i.e. for all 1 <n < P,
where e.g. P = 25 for the model problem), using exact locations of periodic points (i.e. evaluated
to a given precision, typically several hundred decimal places). We next make the observation (see

Corollary 1(b)) that ¢7(g) can be expressed in terms of certain infinite series; it turns out that there

are five such series, which for convenience we denote here® as Zn 1 sg ), for 1 < 5 <5, where it can

be shown that each sequence (sgf))n 1 is O(k" ) as n — oco. The error |02 (g) — 0| can then be

expressed in terms of the tails Y ». s of these series, and each of these is O(k?”) as P — o0, a

result which incidentally leads to the proof of Theorem 1. A consequence is that the task of obtaining
a concrete bound on |ai(g) — o3| reduces to bounding each tail > o0 5., Y ), and here we note that

the previously described difficulties in bounding |02( ) — o3| (for e.g. P =25 in our model problem)
(j

stem from the natural upper bounds on the terms sn) being insufficiently sharp for n ~ P.

Our resolution of this problem of insufficiently sharp bounds consists of splitting the tails Zn Pl sg )

into two parts, whose estimation can be tackled by distinct methods. Choosing some value’ Q > P

(J)
n= P+1

and the deep tail > ° —Q+1S (] ). The terms in the deep tail can be effectively bounded, essentially by a

(e.g. in our model example we take () = 40) we consider separately the intermediate sum Z

simple estimate of the form |sn | < Cr™ , the idea being that n > @ is large enough for the smallness

of k" to dominate the largeness of C, to the extent that the whole deep tail is extremely small.

For the purpose of estimating the intermediate (finite) sum Zn il s,(f ) we require some new tech-

niques, whose justification (see §6) stems from the theory of eigenvalues and approximation numbers

4The size of C will depend on k, and C becomes larger the closer k is chosen to the optimal value of approximately
0.927734 (see Footnote 3). As an indication of its order of magnitude, we use the fact (see Footnote 5) that |07 (g) — 07|
is related to (and in fact somewhat larger than) the quantity K7')s0En(0) = K7')a0([ [, (1 — 0" ) ~Len (D2 where
0 ~ 0.860691, K1 /20 ~ 3.631. We are at liberty to work with any ~ € (91/2, 1) = (0.9277347 1), and for example with the
concrete choice k = 0.95 we can compute sup,, ¢y K{l/ZOEn(6?)/0.95"2 ~ 4.440429 x 10'° (the supremum is attained at
n = 26), so that K{'5qEn(0) < C'k™ for €' = 4.5 x 10'°. It follows, after some additional calculations (along the lines
of those detailed in §8), that the value of C' in (3) could be chosen to be of the order of 10*! when x = 0.95.

5This finer analysis consists of using what we call Euler bounds, with the quality of the estimate on |o7.(g) — o7
closely related to the size of the quantities K{"E,(0) = K7 ([T7,(1 — 6%))~'0"""1/2 given in Tables 5 and 6 (for t =0
and t = 1/20 respectively), where § = x? ~ 0.860691, Ko ~ 3.378, K20 =~ 3.631. We note that for sufficiently small
values of n, the quadratic exponential decay of the term ™" T1/2 is swamped by the exponential increase of the term
K", and the strong increase of ([[I_,(1 — 6"))~" (though this latter term is bounded, by ([]?°,(1 — 6%))~" ~ 8876.45).
In particular, for n = 20 both K{*E,(0) terms are greater than 1 (hence n = 20 represents a hopeless case for this naive
method), while if n = 25 then K¢ E,(0) ~ 0.000084 and K7, Ey (0) ~ 0.00051, which in fact can be used (via arguments
similar to those used in the proof of Theorem 3) to justify only a single decimal digit of O’i (9)-

6In terms of the later notation, these series correspond (see Corollary 1(b)) to oo i nen(0), Y07 n(n — 1)en(0),
oo 1 ¢n(0), 3207 neh(0), and >-°7 ¢, (0), which themselves correspond to partial derivatives of the determinant of a
(transfer) operator.

7As will become clear, one virtue of this method is that it perfectly feasible, from a computational point of view, to
choose @ rather large (e.g. some value well over 100), a choice which may be important for expanding maps T for which
the expansion is rather mild, corresponding to significant inertia in the quadratic exponential decay of the terms s(] )
stemming from a value k € (0,1) being close to 1.
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applied to a certain auxiliary (transfer) operator; these techniques require a non-trivial amount of
computation, though a key point is that the computational effort is relatively light in comparison to
that required for locating the 2™ period-n points for some high value of n (e.g. n &~ P). The coefficients
s,gj ) are related to the Taylor series for the determinant of the transfer operator, and can be bounded
in terms of the approximation numbers of the operator. These approximation numbers can in turn be
bounded by making a judicious choice of basis for an underlying Hilbert space whose inner product is
defined by Lebesgue integration, and explicitly computing the norms of the images of (finitely many
of) these basis elements under the transfer operator yields a bound on the approximation numbers
which implies a bound on the sgj ) for P+ 1 <n < Q (see §7 for further details).

In §8 we combine all of these various ingredients, in the context of the model problem, to obtain
the following rigorous bound on the diffusion coefficient, noting that it represents a significant im-
provement® on the estimate 0.3458 < Jﬁ(g) < 0.4152 established in [2] for the same combination of
function g(z) = 2 and Lanford map 7.

Theorem 2. For the Lanford map T, with absolutely continuous invariant probability measure u, if
g(z) = 22 then the corresponding diffusion coefficient ai(g) satisfies

0.36010948619916067 < ai(g) < 0.36010948619916067 + 10717 .

The organisation of this article is as follows. Section 2 consists of preliminary material drawn from
the ergodic theory of expanding maps, thermodynamic formalism, and Hilbert spaces of holomorphic

functions. Our algorithm is described in §3, together with various reformulations of the diffusion

coefficient. The rapid convergence of the algorithm is illustrated in §4 for certain cases where 03 (g) is

2
5.(g) does not have a (known) closed form.

The key theoretical tools for deriving rigorous error estimates, based on the theory of eigenvalues and

known explicitly, and in §5 for the model problem, where o

approximation numbers, are developed in §6 and §7. These tools are then applied in detail to the
model problem in §8, proving a result (Theorem 3) that is slightly stronger than Theorem 2, and
concluding with a proof of Theorem 1. Some of the numerical data used in the proof of Theorem 3 is
collected as an Appendix.

2. PRELIMINARIES

2.1. Ergodic theory of expanding interval maps. Suppose the unit interval X = [0, 1] is parti-
tioned as X = X3 U...UX;, [ > 2, where X; = [z;—1, 7], and 0 = 29 < 21 < ... < 2y = 1. Given
T : X — X, we shall always assume that T'| x, is real analytic, for each 1 < i <. We say T is piecewise
expanding if there exists A > 1 such that |T"||x, > A for all 1 < i <. We say that T is Markov if
there exists a d x d matrix A (the transition matriz for T') with each entry either 0 or 1, such that
T(Xi) = Uj.a(,j)=1X; for each 1 <i <. The collection {X;}._, is called the Markov partition for T.
T is topologically mizing if some power of the transition matrix A is a strictly positive matrix.

It is well known (see [9]) that any topologically mixing piecewise C* expanding Markov map admits
a unique ergodic absolutely continuous invariant probability measure, and we shall denote this measure
by p. Our results are valid for all such maps, though to simplify the exposition we shall always assume
that T" is a full branch expanding map. In other words, each T'|x, is assumed to be a surjection onto

8While the rigorous estimate of [2] is less accurate than that of Theorem 2, the general strategy of [2] is based on
Ulam’s discretization method [16] and can be applied to a wider class of maps T and functions g for which there is no
analyticity assumption (see [2] for details and references, and e.g. [10] for a further guide to the literature on numerical
computations in the context of piecewise expanding maps).
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X, or, equivalently, every entry of the corresponding transition matrix A is a 1. For each 1 <1 <[
we write 7; := (T|x,) !, referring to {7;}}_; as the collection of inverse branches of T. Since T is
expanding, each inverse branch is a contraction mapping on X; indeed the real analyticity” of T ensures
that the inverse branches have a holomorphic extension to some common complex neighbourhood of
X on which they are all contraction mappings.

Notation 1. Let O, := {z = (2,T(z),..., 7" Y(z)) € X" : T"(x) = z} denote the collection of
periodic orbits of (not necessarily least) period n, considered as ordered n-tuples. For z € O, and
g: X — R, define

n—1 n—1
9o =Y 9(T'2) , my = (1" (2) = [[ T'(T'2) = exp ((log ")) .
i=0 =0

and for n > 1, t € C, define

an(t) == agn(t) = % Z %- (4)

For a continuous function f : X — R, its pressure P(f) = P(f,T) is defined (see e.g. [13]) by

P(f) = P(f,T) = lim l1og > ele

n—oo N
€0

2.2. The diffusion coefficient. Suppose g : X — R is real analytic. Its diffusion coefficient (or
variance) Ui(g) is defined by

n—1 2
1 4
2 I T i
%(g)—nlggon/<§_ogoT —n/gd,u) du .

The diffusion coefficient can be expressed in terms of pressure as follows:

Lemma 1. Let T : X — X be a real analytic expanding interval map with absolutely continuous
invariant probability measure p, and suppose g : X — R is real analytic. If p(t) :== P(tg —log|T"|),
then the integral of g with respect to u is given by

no) = [ gdn=1/(0). 9

and the diffusion coefficient is given by
a(9) = p"(0). (6)
Proof. For (5) see e.g. [L1, p. 60], [13, p.133]), and for (6) see e.g. [L1, p. 61], [13, p.133]). O

2.3. Holomorphic extensions. As noted in §2.1, the inverse branches of the real analytic expanding
map T extend as contraction mappings to some common (simply connected) complex neighbourhood U
of X. If g : X — R is real analytic then U may be chosen so that g is holomorphic on a neighbourhood
of U. By the Riemann mapping theorem, no generality is lost by assuming that U can be chosen to be
a disc D, and henceforth we make this assumption: an open disc D C C containing X will be called
admissible (for the map T and function g) if g has a holomorphic extension to a neighbourhood of

9As noted previously, by this we mean that T is piecewise real analytic, i.e. each T'|x, is real analytic, or in other
words each 7; is real analytic.
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D, and each inverse branch 7; has a holomorphic extension to D such that Uézln(D) C D. This will
allow consideration of transfer operators acting on certain Hilbert spaces of holomorphic functions.

Let D C C be an open disc of radius r, centred at c¢. The Hardy space H?(D) consists of those
holomorphic functions ¢ : D — C with sup,, fol lo(c + 0e®™*)|2 dt < oo. This is a Hilbert space,
with inner product given by (p,%) = fol o(c + re?™)ah(c + re2mit) dt, which is well-defined since
members of H?(D) extend as L? functions on the boundary dD; the norm of ¢ € H?(D) will be
written as ||¢] = (¢, go)l/ 2. Equivalently, H?(D) is the set of those holomorphic functions ¢ on

D such that if mg(z) = r%(z — )% for k > 0, then {(¢,my)} € 12(C) (see e.g. [14]), so that
ol (55 (g

2.4. Transfer operators and determinants. For a real analytic function ¢ : X — R, an important
ingredient in our method of approximating the diffusion coefficient UZ(g) is the function A, : C?=cC
defined by

Ag(z,t) = exp ( Za% ) (7)

for sufficiently small values of z, and by analytic continuation to the whole of C2. It can be shown
that (7) defines an entire function (see Corollary 4), with Taylor series expansion

Ag(z,t) =1+ Z con(t)z" =1+ Z en(t)2" (8)
n=1 n=1

where we write ¢, (t) for ¢, ,(t) whenever g is understood), from which we deduce the recurrence
9, g
relation

en(t) = con(t Z ag k(1) - coN-(1). (9)

For T and ¢ with holomorphic extensions to D as in §2.3, the corresponding transfer operator
Lyt : H*(D) — H?(D) is defined by

Logv(z)= Y v(y)e! W,

Ty=z

for z € X, and by holomorphic continuation for z € D, where f = tg — log|T"|. The function A, is
the determinant det(I — zL,;) (see [12]), and its zeros are precisely the reciprocals of the eigenvalues
of L, 4. The leading (i.e. largest in modulus) eigenvalue of £, is eP(t) = eP’(t9=log[T"]),

3. THE ALGORITHM

3.1. The diffusion coefficient in terms of derivatives of the determinant. The reformulation
(6) of the diffusion coefficient 07 (g) in terms of pressure, together with the fact that e P is a zero of
Agy(-,t), suggests the possibility of representing Jﬁ(g) in terms of partial derivatives of A,. In order
to establish such a representation, as Proposition 1 below, we first adopt the following notational
conventions:

Notation 2. We write first partial derivatives as

QA!]('% t) ’

DiAg(z,t 2Ag(z,t) , Dalg(z,t) = T

1) =5
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and second partial derivatives as

2 2 2

0
gatelml), Dele=l) = 5aR(=1) Dud(=t) =57

Proposition 1. If T : X — X is a real analytic expanding map with absolutely continuous invariant
probability measure i, the function g : X — R is real analytic, and the determinant Ay is defined by
(7), then the diffusion coefficient aﬁ(g) can be expressed as

DllAg(Zat) = Ag(z>t)‘

D11Ag(1,0)u(9)* — 2D12A¢(1,0)pu(g) + D22A(1,0)
2 2 1129\, 1229\ 1, 228g\1,
= . 1
0,.(9) = n(9)” + DA, (1,0) (10)
Proof. Let z(t) = e P® where p(t) = P(tg —log|T’|), so that p(0) = 0 and therefore
z2(0)=1. (11)
Differentiating gives
Z(t) = —p/(t)e V),
so Lemma 1 gives
#(0) = —plg) - (12)
Differentiating again gives
Z”(t) _ p/(t)Qe—p(t) - p//(t>e—p(t) ’
so evaluating at t = 0 and using Lemma 1 gives
Z(0) = 2'(0)* = 7(9), (13)
or in other words )
20 = ([ gau) ~oito). (1)

The zeros of Ay(-,t) are the reciprocals of the eigenvalues of £, ;, and since eP®) = z(t)~! is the
leading eigenvalue of L, ; then

Ag(z(t)at) =0, (15)
so differentiating (15) with respect to ¢ gives
D1 Ay(2(t),1)2' (t) + DaAg(2(t),t) =0, (16)
and therefore Do (1.0)
'(0) = -2 2 17
Combining (12) and (17) gives
DyA(1,0)
= =9 7 18
o) = SR (18)

Differentiating (16) with respect to t gives

DiAy(2(t),1)2" (t) + D11Ag(2(t), 1)2'(t)* + 2D12A4(2(1), )2 (t) + Doz Ay(2(t),t) = 0 (19)
and evaluating this at ¢ = 0 then using (11), (12) and (14), gives

D1Ay(1,0)(1(9)* — 072) + D11Ag(1,0)1(9)* — 2D12Ag(1,0)u(g) + D22g(1,0) =0,

in other words

2 _
O_Z _ M(g)2 + DllAg(laO):u’(g) 2D12Ag(1a0):u’(g) + D22Ag(1’0) ’
D1Ay(1,0)
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which is the required expression (10). O
Definition 1. If g : X — R is real analytic, with Ag(z,t) =1+ 7 | c,(t)z", then for N > 1 define
N / 2
OoN: = N
anl ncn(O)

Sl Den(0) (SS0) 23N e (0) (S0 + 3 i)

n=1 " 22]:1 nep (0) n=1"""n ZN L nen (0 n=1%n

i nen(0)

Corollary 1. Under the same hypotheses as Proposition 1,

+

(a) The diffusion coefficient Uz(g) can be expressed as

(2

A 2 A
Dary(1,00\?  Dudg(1,0) (BR2HG) — 2D18,(1,0) (BR2HG ) + Da2g(1,0)
n(9) = )+ ’ ’
® D1A4(1,0) D1Ay(1,0) '

(b) The diffusion coefficient ai(g) can be expressed as
20y _ [ 2one1n(0) ?
o= (S
, Zrann = Den(0) (EeO) a5 ne(0) (20 + 52, 4(0)
Zn:l ncTL(O) .

c) The sequence of approzimations (20) converges, with o3, — 02(g) as N — oo.
N “w
d) If g : X — R is real analytic such that [ gdp = 0, then 02(g) can be expressed as
m

_ Daplg(1,0) 307, cn(0)

n=1""n

Up(g) - DlAg(]-’O) o Z;O:I ’I’LCn(O) .

e g : X — R is real analytic such that | gdu =0, and o4, is defined by
Ifg: X - R l l h th d 0 dAJQV defined b

G52, = ZnNzlc%(O) 21
SN nea(0) 2!

then 6%, — o7.(g) as N — oco.

Proof. Part (a) follows from Proposition 1, by substituting (18) into (10). Since the Taylor series
around 0 for Agy(-,t) is written (cf. (8)) as Ag(z,t) =1+ > 77 cn(t)2", termwise differentiation yields
(b). Part (d) is a special case of formula (10) in Proposition 1, together with (b), while parts (c¢) and
(e) follow directly from the definitions of 0%, and 6% O

Remark 1. A consequence of Corollary 1 is that if g is known to have integral zero with respect
to the absolutely continuous invariant probability measure p, then there is a choice of sequence of
approximants to the corresponding diffusion coefficient: both the sequence 0']2\[ and the sequence (}]2\,
converge to az(g).
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3.2. Periodic orbit formulae. The quantities 012\, approximating the diffusion coefficient Jﬁ(g) are
accessible to us in terms of those periodic points of T" of period up to N. Recall from (4) that

an(t) = agn(t) = 1 Z M’

noco, Me~ 1
so that the k-th order derivative a{ (t) is given by
k
1 exp(t
agf)(t) S Z W (22)
Mg —

€0y,

We are interested in derivatives up to order 2, evaluated at ¢t = 0, so for n > 1 define

ap = ap(0), Bn:=a,0), v, :=al(0),

in other words

1 1 1 9 1 9z
on nzmg—l’ b nzmg—l’ T nzmg—l (23)

€0y x€0n €0y

3.3. Computer implementation. Although in certain special cases (e.g. the doubling map of §4)
the periodic points of 71" are rational and known explicitly, more generally a non-trivial aspect of our
algorithm is to locate these periodic points (to within a specified precision'?). For this, note that for
1 < i <1 the inverse branch 7; : X — X;, defined as ; = (T|x,)™!, is uniformly contracting. For
each £ € {1,...,1}" the composition 7 := 7¢, o... 07, is also uniformly contracting, and the set of
period-n points for 1" is precisely the set of fixed points of such compositions 7. The fixed point for the
contraction mapping 7 can be determined using standard techniques (e.g. choose xp € X and evaluate
x := 7%(xg) for suitably large k, such that |7(z) — 2| < d, where § is appropriately small; provided
T(z+¢e)—7(x) >nand 7(x) — 7(x — ) > n for ,n > 0 satisfying n > J + ¢, an intermediate value
argument guarantees that z is within ¢ of the true fixed point of 7).

Having located the period-n points of T, and formed the collection Oy, for all 1 < n < N, the
calculation of orbit sums a,(0) and their derivatives al,(0), a!’(0) is then possible (using (4) and (22))
for n = 1,..., N. Differentiation of the recurrence relation (9) yields recurrence relations for the
derivatives ¢}, (0) and ¢//(0) which can then be computed for n = 1,..., N, and substitution into (20)
gives the approximant UJQV.

4. TEST CASES: APPROXIMATION OF KNOWN DIFFUSION COEFFICIENTS

For certain combinations of map 1" and function g, the diffusion coefficient is known exactly. While
for these cases there is clearly no need for a numerical algorithm to approximate Ji(g), it is nonetheless
instructive to consider them, by way of a warm-up exercise.

1OSpeciﬁcaully7 we say that the chosen precision is 107" if any number € such that |e| < 10™™ is assumed to be zero; in
particular, if we are working with precision 10~™ then z is declared to be a point of period n for T if |T"(x) — x| < 107™.
In our computer programs the various data (T, g, and the 7;) are approximated with very high precision, of 107999
and this precision is maintained during the process of locating periodic points; the points themselves are computed with

guaranteed precision of 107259
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4.1. Perfect approximation of the diffusion coefficient via periodic orbits. As a simple first
example we describe here an expanding map T and function g whose diffusion coefficient Ji(g) is

exceedingly well approximated by the sequence ¢2: in fact it turns out that each o2 is equal to oi(g).

Let T : X — X be the doubling map, defined by T'(z) = 2z (mod 1) on [0,1) and T'(1) = 1,
its absolutely continuous invariant probability measure p being Lebesgue measure itself. Consider
the function g : X — R defined by g(z) = 2z — 1, which clearly satisfies [ gdu = 0. In fact g is
cohomologous to the function h defined by

hay = {71 e/
TV 41 freqy2,

and it is easily seen that % J (Z?gol hoT"%dy = 1 for all n > 1, so the corresponding diffusion
coefficient is given by the exact formula

n—1 2
1 )
200N _ 20\ 1 Z p _
J“(g)_a“(h)_nlggon/<-ohOT> =t

While the existence of an exact formula for 02 (g) means there is no need for numerical approximations,

“w
this example has the noteworthy feature that our approximations o2 are perfect for each value of n:

Proposition 2. For T : X — X the doubling map, and g(x) = 2x — 1,

Cyn(0) =ncgn(0)  foralln>1, (24)

so in particular

2 Z?:l Cg,i(o)

Jn—mzlzai(g) foralln > 1. (25)
Proof. If n > 1 and z € O, then m, = 2", and O, has cardinality 2", so «a, = TL(;TTL_I) Since
g(1 —z) = —g(z), and the set O, is invariant under x — 1 — x, (23) implies that
Bn=0 foralln>1, (26)
while
Vo = Nay, = ! foralln>1. (27)

2n —1
Now Agy(z,t) = exp (— Y o2 agn(t)z") for z of sufficiently small modulus, therefore

2
82 - n - n
wAg(z,t) = ( 1a'gm(t)z ) Ag(z,t) — (Z:l ay n(t)z ) Ag(z,1),

and setting t = 0, so that a,,(0) = 8, = 0 for all n > 1 by (26), gives

(- > Wﬂ) A,(z,0) (28)
n=1

62
@Ag(za t)

t=0

for z of sufficiently small modulus.
Now %Ag(z,t) = (— Sy nagm(t)z”*l) Ag(z,t), so that by (27),

(— Z nanzn_1> Ay(z,0) = (— Z vnz"_l) Ay(z,0). (29)
n=1 n=1

3}

&Ag(z, t)

t=0
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Comparing (28) and (29), which are valid for z of sufficiently small modulus, gives

2

a—Ag(z, t)

or? (30)

=z ;Ag(z, t)

t=0 Z

t=0
which is in fact valid for all z € C, by analytic continuation, since both sides of the equation are entire
functions of z. Writing Ag(z,t) =1+ -7 ¢gn(t)z™ we deduce from (30) that

i c’g/m(O)z" = i negn(0)2",
n=1 n=1

and the required equality (24), and hence (25), follows by comparing coefficients. O

Remark 2. The setting of Proposition 2 allows an explicit illustration of the quadratic exponential
decay of the coefficients ¢, (0) (and hence of the ¢//(0) = nc,(0)). Writing

seo=on(- 532 T ) men(Swn(i-2) =TT (- ).

e §=0

we see that

277,
0)=(-1)" ,
Cn( ) ( ) H?:1(2Z — 1) 3
and therefore'!
2m on on 1 n2—3n
(0 = ‘ = - =\ 75 ) 31
e (0)] H?zl(Z’ —-1) — Z;% 9k on(n—1)/2 <ﬁ) (31)
so in particular
1
cn(0) = O(/Q"Q) asn — oo, forall Kk > —. (32)

V2

4.2. Rapid approximation. Suppose, as in §4.1, that T : X — X is the doubling map, and now
define g : X — R by g(x) = 2. Clearly the integral of g is known explicitly, namely [ gdu = 1/3, and

if f=g—1/3then [ fdu=0, and ai(g) = ai( f), and the equivalent form of the diffusion coefficient

ai(f) = [fPdu+2>20, [ foT"fdu (see e.g. [3]) gives

o0 X 934+n _ 9gn—1
aﬁ(g):/f2du+22/foT”fdu: <4+222 2 “) _ . (33)
n=1

4n 27
More generally, for T' the doubling map, we note in passing that there are exact formulae for the

diffusion coefficient of monomials z* (e.g. for g(z) = 2® it can can be shown that Jﬁ(g) = 28 and

1
45

n=2

indeed for general polynomials, which can be derived from the following result:

Proposition 3. Let T': X — X be the doubling map, and p Lebesgue measure. If By denotes the
k-th Bernoulli polynomial, then its diffusion coefficient is given by

(2R 1 (K12
7u(Br) = <2k - 1> (2k)]

where Bor, = Boy(0) is the 2k-th Bernoulli number.

| Bk |

Hn fact a slight sharpening of (31) gives ¢, (0)| < K(l/\/i)’ﬁ*” for K = [2°,(1—27%)"" ~ 3.462746.
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n 0721 ln

7 | 0.2592 6043769067826947393267112262663116939168486481809969132 | 39

8 | 0.25925925 204436123648088652153817588245883502977988965009816 | 54
9 | 0.2592592592 8044946963297173564707938908379066357005434712266 | 70
10 | 10.2592592592592 2920165588728570045103044970940476420045080830 | 89
11 | 0.2592592592592592 7995766665750877478547938238966664497426822 | 110
12 | 0.25925925925925925925 231122434472300165656411496230961424753 | 133
13| 0.2592592592592592592592 6039994958602742793206134750195100492 | 159
14 | 0.259259259259259259259259259 16741839472832935929572240739708 | 186
15| 0.2592592592592592592592592592592 6289380219067410638708410596 | 215
16 | 0.259259259259259259259259259259259259 18842625999409134711672 | 246
17| 0.259259259259259259259259259259259259259259 94017594431303195 | 280
18 | 0.25925925925925925925925925925925925925925925925 602612899772 | 315
19| 0.2592592592592592592592592592592592592592592592592592 6685093 | 352
20 | 0.25925925925925925925925925925925925925925925925925925925925 | 392

TABLE 1. Quadratic exponential convergence of approximations o2 (formed using pe-
riodic points of period up to n) to the diffusion coefficient O'u( ) = 7/27 for T the

doubling map and g(x) = x2. Convergence is O(K”Q) as n — oo for any k > 1/v/2,
with [, = [logl/ﬁ|afl - ai(g)ﬂ tabulated (note that n? — 11 < I, < n? — 8 for
7 <n < 20).

Proof. The Bernoulli polynomial By is an eigenvector of the Perron-Frobenius operator £, with cor-
responding eigenvalue 2%, since it is readily checked that the generating function

G(x,y) = y—l ZB

satisfies LG(x,y) = G(x,y/2) (see [(]). Now O'u(Bk) = [Bidp+2Y 0, [ By oT"Bydu, and

k)2
/ By, o T"By dp = / BLL" By dp =27 / B dy =27k E%))'

since [ B? du = (%), |52k| (see e.g. [1]), so the result follows. O

For the purpose of observing the speed of approximation of our algorithm, the first six approxima-
tions'? 02 are 0? = 1/4, 03 ~ 0.200617, 03 =~ 0.321554, 07 ~ 0.191905, 02 ~ 0.262566, 02 ~ 0.259167,
which after a slow start show signs of approaching o2 = 7/27 = 0.259259. The successive approxi-
mants shown in Table 1 illustrate the quadratic exponential convergence, which as in §4.1 is O(/f"2)
as n — oo for any x > 1/4/2, with the integer parts I, of log, /5 o — 07(g)] also tabulated, and
observed to satisfy n? — 11 <1, < n? — 8 for 7 < n < 20.

121 this example we could equally well exploit the fact that [gdu = 1/3 is known precisely, and use the approx-
imations #2 given in Corollary 1(e), for the function f = g — 1/3 (which has zero mean). For example 67 ~ 0.27777,
6% ~ 0.43827, 632 ~ 0.38515, 63(g) = 0.22228, 62 =~ 0.26163, 67 ~ 0.25918, 52 ~ 0.259260, 63 ~ 0.2592592530,
62 ~ 0.259259259277, 63y ~ 0.259259259259232, and more generally the sequences o2 and &2 converge to o2 = 7/27 at
the same rate.
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2
o ln

n
5 | 0.758952899740951117289050379204640628558539620626312810772873 4
6 | 0.197308632855131955295248351242175440134141168057749343595655 8
7 | 0.369358110165438698087894292076038462203989053463605038232170 | 23
8
9

0.3 59726860572647647166355095586883486801678160823100080553030 | 38
0.3 60119513886829472800814356315023056103035487654360736238916 | 56
10| 0.3601 09316739022418987224588456622015209559108690908744627894 | 76
11| 0.360109 488057981893593934226218468806113624400705497746276066 | 99
12| 0.36010948 6185859588343561990599828878966607691239152388199536 | 123
13| 0.3601094861 99222993644688357957828705184562158699412145912511 | 149
14 | 0.360109486199 160481163645430040654615882458267775416396263478 | 178
15| 0.360109486199160 6'73287014050839470838927840191836038181843789 | 209
16 | 0.36010948619916067 2898306093693521789682071899149118320835685 | 241
17| 0.360109486199160672898 824643277247080597474593298682526056684 | 276
18 | 0.360109486199160672898824 186562820134550885626934057465459723 | 313
19| 0.360109486199160672898824186 828679098981571382241772652080312 | 351
20 | 0.360109486199160672898824186828 576723147913766774713709905523 | 392
21 | 0.3601094861991606728988241868285767 49246076750137553904058580 | 435
22| 0.36010948619916067289882418682857674924 1669504536317250742499 | 480
23 | 0.360109486199160672898824186828576749241669 997833840690090818 | 527
24| 0.360109486199160672898824186828576749241669997 797227061606200 | 576
25| 0.36010948619916067289882418682857674924166999779722 8864417886 | oo

TABLE 2. Quadratic exponential convergence of approximations 0721 (formed using
periodic points of period up to n) to the diffusion coefficient aﬁ(g) for the Lanford
map T'(z) = 2z + 1z(1 — z) (mod 1) with absolutely continuous invariant probability
measure g and function g(z) = 22. Convergence is O(/{"2) as n — oo for some k < 1,
and it appears that x may be chosen to be approximately equal to \/%; the quantities
lp = [logm |02 — 03;|] are tabulated.

5. THE LANFORD MAP: COMPUTED APPROXIMATIONS TO THE DIFFUSION COEFFICIENT

Let T: X — X be the Lanford map, introduced in [8] and defined by
1
T(x) =2z + 5:):(1 —z) (mod1).

As in [2], we shall be interested in approximating the diffusion coefficient Ui(g) where the function
g : X — R is defined by g(x) = 2. Table 2 gives the sequence of approximations o2 to UZ(g), using
points of period up to n = 25.

We note that 035 — 03,| < 10759, strongly suggesting that |03, — ai(g)| < 107, though of course
this does not constitute a rigorous proof. The remainder of this article is devoted to the development of
techniques for rigorously deriving an error bound for approximations of this kind; the approach is valid
in the general context of real analytic 7" and g, and in the particular case of our model problem (the
Lanford map T', and g(x) = x?), it turns out that we can rigorously prove |35 — 07 (g)| < 1.48 x 1071®
(see Theorem 3).
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Notation 3. Writing the Lanford map T as

Sz z? for € X := |0, 3=¥47
Ta)=<2 7% e (34)
¥ 1 forwe Xy ==

we see that its real analytic inverse branches 7; : X — X; are given by'?

o(z) = % (5-v25—8z) , m(z)= % (5 — /25 —8(z + 1)) . (35)

Remark 3. (a) As mentioned in §3.3, the fact that the 7; are contractions facilitates the location

of the period-n points for T', since they are fixed points of suitable compositions 7¢, 0---o7g,.
The computational procedure for locating the collection of period-n points is very swift for
smaller values of n; high level software packages such as Mathematica or Matlab may be
used for this purpose, though the exponential growth in the number of period-n points makes
it advantageous to use an imperative programming language for larger n. For this paper
the location of periodic points for the Lanford map was carried out on a personal computer
with Fortran FO7 compiler using MPFUN MPFR packages by D. Bailey (allowing for thread-safe
arbitrary precision computations), for all periods n up to n = 25, following the algorithm as
described in §3.

It is noteworthy that in all cases studied (those of §4 as well as this section), the approximations
to az(g) are rather inaccurate (e.g. not correct to 2 decimal places) until points of period at
least 5 are incorporated into the approximation.

In [2, §4.6], a non-rigorous experiment is performed, which seems to suggest that 02 (g) lies in
[0.361,0.363]. This contrasts with our sequence of approximations in Table 2, and in particular
with our best approximation 03;. It follows from Theorem 3 that the approximation error of
the experiment in [2] is at least 1073,

Note that mingex T7(z) = T"(1) = 3/2, corresponding to the fact that 2/3 is the largest value
attained on X by the derivatives of the inverse branches 7;. The value 2/3 appears to be
significant concerning the rate at which the approximants o2 approach the diffusion coefficient
JZ (9). Assuming o2 to be approximately equal to aﬁ(g), so that &y, 1= |02 03| ~ |o%—ai(g)|,
we note that the values ¢, := exp(n~2logé,) are close to /2/3 (e.g. e22 ~ 1/0.668617,

g93 ~ V/0.667478, €94 ~ 1/0.666508), and we therefore tabulate [, := [logmlaz — 03]

in Table 2 to illustrate the quadratic exponential convergence. In view of this, it is unsurpris-
ing that the value \/2/73 (or some value rather close to it) also appears to dictate the quadratic
exponential decay of the coefficients ¢, (t) of the determinants Ag(z,t) = 1+ 7 ¢, (t)z™: for
example the ¢, (0) in Table 7 are such that the terms ,, := exp(n~2log|c,(0)|) appear to be
converging to a value close to, or equal to, \/2/73 (e.g. for 20 < n < 25 the k,, are approximately
v/0.674246, 1/0.673346, 1/0.672570, 1/0.671899, 1/0.671313, 1/0.670801 respectively). On the
basis of the observed behaviour for the Lanford map, and for the doubling map in §4, one might

speculate that for more general real analytic maps 7' : X — X and functions g : X — R, if
R = (inf{mi/n cz € Op,n € N})7Y/2 then |02 — o (9)l = O(k™) as n — oo for all Kk > kr,
and that lim,_, exp(n=2log ¢y, (t)|) = kr for all t € C. This would constitute a strength-
ening of our results that if 6 € (k2%,1) is the contraction ratio for an admissible disc, then

L3Note that when discussing the Lanford map, our indexing of the intervals X; and inverse branches 7; differs from

that used in the rest of the article (where i = 1,...,! for some [ > 2).
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o2 — o2 (g)| = O(k™) as n — oo for all k> Y2 and limsup,,_,._ exp(n~2log legn(t)]) < 01/2
for all t € C.

6. EIGENVALUES AND APPROXIMATION NUMBERS

In this section we recall the definition of approximation numbers s,(Lg ;) for the transfer operator
L, .+, and introduce a sequence a, (t) of upper bounds for s, (Lg+), which we call approzimation bounds.
By then defining the associated contraction ratio 6 € (0,1) we are able to establish (see Corollary 2)
the exponential bound s,(Ly:) < an(t) < K8", for a certain explicit constant K; > 0, which in
particular will facilitate (see Corollary 3 in §7) a proof of the quadratic exponential decay of the
Taylor coefficients for the associated determinant.

Let D C C be an open disc of radius p centred at ¢, and let {\,(¢)}>2; denote the eigenvalue
sequence for the operator L, : H2(D) — H?(D), with the convention that eigenvalues are ordered by
decreasing modulus and repeated according to their algebraic multiplicities. The Taylor coefficients
cn(t) of Ay(-,t) then satisfy (see e.g. [15, Lem. 3.3]) the identity

)= > J[r®.

1< i j=1
For i > 1, the i'" approzimation number of Ly, : H*(D) — H?(D) is defined to be the value
$i(Lg¢) = inf{||Lys — M| : rank(M) < i},

and the well known relation |37, _ _; [Ii_; A (t)‘ <D i<zin =1 86, (Lg ) (seee.g. [7, Cor. VI.2.6])
implies that

ea® < > I8 (La)- (36)

11<...<ip j=1

If, for k£ > 0, we define my : D — C by
mi(z) = 0 "z —o)F, (37)

then {my}2, constitutes an orthonormal basis for H(D). For n > 1 we can define the corresponding

n" approzvimation bound c,(t) by

. 1/2
an(t) = ( > Hﬁg,t(mk)!!2> ) (38)

k=n—1

and these values yield a simple upper bound on the approximation numbers of the transfer operator:
Lemma 2. Forn > 1, the n'* approzimation number of Ly : H*(D) — H%(D) satisfies
sn(Lgt) < an(t) . (39)

Proof. 1f f € H*(D) then {(f,my)};, € ((C). Defining £\ := £, P, where P, : H*(D) — H2(D)

is defined by P,(f) = Z;g(f, myg) mg, we obtain the estimate

[e.o] oo

(Lot — LYNFI =11 S (fom) Loalm)l < S 1 mu) 1 Lg,e(ma)l]

k=n—1 k=n—1
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and the Cauchy-Schwarz inequality then implies

00 1/2 00 1/2 00 1/2
(Lt — LI FI < ( > ||£g,t(mk)||2> ( I, mk)\2> < ( > Hﬁg,t(mk)HQ) I
1

k=n— k=n—1 k=n—1

and hence || L — Eét? | < (i 1L (mu)|?) 12 _ an(t). But Eglt) has rank n — 1, so the required
inequality (39) follows. O

Definition 2. Let D’ be the smallest disc, concentric with D, such that U!_,7;(D) C D’, and g, ¢’ the
respective radii of D, D’. The corresponding contraction ratio 8 = 6p is defined to be 8 = 0p := o'/ o.

Lemma 3. Let D be an admissible disc, with contraction ratio 8 = 0p. If g : (0,1) — R has a
holomorphic continuation to a bounded function on D, and each |7/(-)| has a holomorphic continuation
to a bounded function on D, then for all k > 0,

l
L9 (mi) || < 6> [lwilloo - (40)
i=1
Proof. Defining w;; : D — C by w;4(2) = etg(”(z))m’(z)\, we can write Lg; = 25:1 M; 1C;, where
Ci, M, : H?(D) — H?(D) are given by C;f := f o7; and M f == w; f. It follows that

l l
1Lg,e(mu)ll < D [ MieCilmp )| < D Nwie ool Ci ()| (41)

i=1 i=1
Now each 7;(D) is contained in the disc D’, with the same centre ¢ as D, and of radius ¢’ = 0o,
therefore |C;(my)(2)] = 0 *|7i(2) — c|F < 07%(0)F = 6F for all z € D. It follows that ||C;(my)|| < 6F
and combining this with (41) gives the required inequality (40). O

! .
Corollary 2. Under the hypotheses of Lemma 3, if K; := % then
sn(Lgt) < an(t) < K0"  foralln>1. (42)
Proof. Combining (38) and Lemma 3 gives

I~ 1/2 l
9n—1
onlt) < ( 5 e%) DT A oy
k 1 i=1 162 i=1

=n—

oo — Kt0n7

while the inequality s, (L) < apn(t) is the content of Lemma 2. O

7. EULER BOUNDS AND COMPUTED BOUNDS

In this section we introduce two different kinds of bound on the Taylor series coefficients of the
determinant Ay(-,t). The first of these, the Euler bound, has a simple closed form and is readily seen
to converge to zero at a quadratic exponential rate. This implies the quadratic exponential decay of
the Taylor coefficients (see Corollary 3), and hence that the determinant is an entire function (see
Corollary 4); importantly, the inequality proved in Corollary 3 is subsequently used in §8 to rigorously
bound one part of the error term in our diffusion coefficient approximation. The second kind of bound
on the Taylor coefficients of the determinant is based on the approximation bounds v, (¢) introduced in
§6, and motivated by the recognition (see the comments in §1) that despite the quadratic exponential
decay of the Euler bounds, for practical purposes they may be insufficiently sharp even for moderately
large values of n. By first defining an upper computed approzimation bound oy, n 4+ (t) (the large integer



DIFFUSION COEFFICIENTS 17

N plays the role of a proxy for co in the definition (38) of ay,(t)), the inequality (36) then motivates
our definition of the upper computed Taylor bound (53), and the resulting Taylor coefficient bound
in Proposition 4 provides a key ingredient for the validated approximation of the diffusion coefficient
aﬁ(g) described in §8.

Let us write
7nn(n—‘,—l)/Q

E,(r) = [T, 1 —r) - Z plattin (43)

11 <...<lp
In view of the following bound (44), and the fact that the identity in (43) was first given by Euler
(cf. [5, Ch. 16]), we shall refer to the quantity K}'E, () as the Euler bound on the n'* Taylor coefficient
of the determinant Ag(-,1).

Corollary 3. Under the hypotheses of Lemma 3, if Ag(z,t) =1+ Y 7 ¢, (t)z" then
len ()] < KPPEp(0)  for alln > 1. (44)
Proof. From (36) and (42), |en(t)| < 32 o i Tlimy 8i;(Lge) S K732 o i) it Fin_ 0

Corollary 4. Under the hypotheses of Lemma 3, if Ag(z,t) =1+ > 07 en(t)z", and k € (61/2,1),
then
cn(t) = O(K"Q) as n — oo (45)

for allt € C, and in particular the determinant Agy(-,t) is an entire function.

Proof. The asymptotic (45) is immediate from (44), and this in particular implies that the Taylor
coefficients of Ag4(+,t) tend to zero faster than any exponential, hence the function is entire. g

In order to exploit Lemma 2, which asserts that s, (Lg:) < an(t) = (350,,_; ||£g,t(mk)”2)1/27 we
require a practical means of computing the approximation bound v, (t). This will consist of bounding
3o 1 1£g.6(my)||? by the sum of an exactly computed long finite sum Zg:n_l | Lg.:(my)||? (the
H?(D) norms of the summands can be evaluated using numerical integration'*
known in closed form) and a rigorous upper bound on >°7° . [|£g.(mg)||* using (40).

With this in mind, for n, N € N with n < N, we define the lower computed approrimation bound

, since each L4 my, is

=n—1

N 1/2
agnN—(t) = ann—(t) := < > Hﬁg,t(mk)HQ) , (46)
k

and the upper computed approximation bound

1/2
92(N+1) /

. 2
g vt () = iy (0) = (v ()2 + (Z ”wi’t”°°> T (4)
Lemma 4. Fort € C, andn, N € N withn < N,
G- (8) € @nt) < v (£) < K1+ 6227020, (48)

Proof. The inequality a, n—(t) < ap(t) is clear. To prove an(t) < an, N +(t) we use (40) to give
92(N+1)

2
N N l
an(t)? = Y1 ||£g,t(mk)”2+zziN+1 [ Lg.e(ma)lI* < > p—ny \Iﬁg,t(mk)ller(Zi:l Hwi,tHoo) =gz

Mg o for the computations in §8 these integrals were computed with 70 digit accuracy using Mathematica.
g p g p g y g
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and the inequality follows. To prove that a, n 1 (t) < K¢(1 4+ 02(N+2-2)1/29" note that combining
(42) with ap N — (1) < ap(t) gives ap n—(t) < K:0™, so (47) gives

2 1/2
2(N+1) 1/2
) 61 — 2 = ((Kten)2 + KEQZ(NH)) / :

an N+(t) < | (K 6")? (

and the result follows. O

The o, v+ (t) can now be used to give rigorous upper bounds on the Taylor coefficients of Ag4(-, ).
Fort € C, and n, M, N € N with n < M < N, define the Taylor bound ﬁny+(t) by

M
g,n,N,+(t) = Pn N+ Z H ’LJ,N+ (49)
11<...<ip j=1
where the sum is over those i = (i1,...,4,) € N” which satisfy i; < is < ... < i,, and the sequence
(a%N’Jr(t)),‘f:l is defined by:

B {amN,Jr(t) forl<n<M, 0

M
« t) =
n’N’+( ) Ko™ forn > M .

Note that from (42), (48) and (50) we have s,,(Lg:) < N+( ), which combined with (36) estab-
lishes that the Taylor bounds B%N, +(t) are indeed bounds on the modulus of the nt" Taylor coefficient
of Ag(-,1):

ea())] < By, (8). (51)

As computable approximations to 5%\[7 +(t) we then define the lower computed Taylor bound by

B =80 = > et (52)

1< <in <M j=1

and for Q € N with n < Q < M < N we define the upper computed Taylor bound by

(n=1)/2
M, M, M, e e _
B (1) = B (8) = B (1 +Z B () oMV E, () K (1 4 p2N+2 Q>) .
(53)
In practice the sum on the righthand side of (53) will be extremely small, though is sufficient for
the upper computed Taylor bound to be an upper bound on |c¢,(t)|:

Proposition 4. Fort € C, and Q, M, N € N with Q < M < N,
len(t ]<5nN+t) foralll<n<Q. (54)

Proof. If Z,, :== {i = (iy,... zn) € N : 4 < ... < iy} then Z,, = U;L:OLSZ) is a disjoint union,
where the Z}(L) are defined by I ={i = (il,...,in) €T, i <M<iyi}forl1 <l<n-1and
IO = {i = (y,...yin) € Ty M < iy}, IV = {i = (il,.. Jin) € Ty in < MY, If we define

M,(1 _ ,
ﬁm\gl(s) = E;‘ez,(f) | J af‘j{N7+( s) for 0 <1 < n, so that 3, N+( s) = B%N7+(s), we obtain

B (s) = B () = S B (s) . (55)
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Setting J := K4 ( + 02(N+2*Q))1/2, Lemma 4 gives oy, n 4 (t) < JO" for all 1 < n < @, and this can be
- 4 I
used to bound each 3, N+( §) = D ierd 1=, O‘KN,Jr(S) < Jn lzégy@ girerttin T, O‘%N,+(3) ,or

in other words B%\SlJ ) < J" I(Z;‘GIZ”) Hé-zl ai\j{Nﬁ(S))(deIn,l g(n=OMgu+t. 4ty and therefore

ﬁy]\gll(s) < J”_lﬁu\’,, (s) M (=D E._,(#), and substituting these bounds into (55) gives

My (1) = B (t Z PN (O OMTDE, (0)" ! forall 1<n < Q. (56)
1=0
Now (53) and (56) together give B%N7+(t) < B%j\;t_k (t), which combined with (51) gives (54). O

8. VALIDATED NUMERICS: THE LANFORD MAP

With the theory of §6 and §7 in hand, we are finally in a position to rigorously justify the quality
of our computed approximation (see §5) to the diffusion coefficient Ji(g) in the case of our model
problem, namely the case of T" the Lanford map, u its absolutely continuous invariant probability
measure, and ¢ : X — R the function g(z) = z2. In §8.1 we choose a suitable disc D, compute the
associated contraction ratio ¢ and constants K;, and make choices of the natural numbers M, N, Q
which arise in connection with the computed Taylor bounds of §7. In §8.2 we establish (see Proposition
5) rigorous bounds on the tails of five series which arise in the formula for JZ (g) derived in Corollary 1;
each series represents a certain derivative of the determinant, and the bounds are established via our
Euler bounds and computed Taylor bounds on its Taylor coefficients ¢, (¢). In §8.3 these tail estimates
are combined with the exact evaluations of the corresponding truncated series obtained via periodic
point calculations (as described in §5) to prove a rigorous bound on Ui(g) (see Theorem 3). In §8.4
we prove Theorems 1 and 2, which were stated in §1; Theorem 2 is seen to be a minor variant of
Theorem 3, while the more abstract Theorem 1 is established by combining the techniques used to
prove Theorem 3 with the Taylor series asymptotic (45) from Corollary 4.

8.1. Computed approximation bounds and computed Taylor bounds. Choosing'® D to be
the open disc centred at ¢ = 0.664, of radius ¢ = 0.87, we note that both image discs 79(D) and
71(D) are contained in the disc D’ centred at ¢, of radius ¢’ = 11(¢c + r) — ¢, and the corresponding
contraction ratio can be computed as

' 918 — 104/2955
h=2 = BT T 0.860691685064194628752049570062144712194108488685514534 ... (57)
0

For ¢ = 0,1 we have
wig(z) = 9T (2) = T (2
We shall be particularly interested in the choices t = 0 and'® ¢t = 1 /20, and in these cases the
supremum norm on D for both functions wg; and w;; is attained by evaluating at z = ¢ + o,

)
lwo ollee = T6(c + 0) = 10 Trol = 0.56059589378465950773976123712854581727310648803927 . . . ,

15We make this choice so as to minimise the error estimates arising from the computed Taylor bounds.

16The choice ¢ = 1/20 is close to optimal for the purpose of estimating ¢, (0) and ¢//(0) via Cauchy’s integral formula
in the proof of Proposition 5. This involves, respectively, the integration of ¢, ()¢ ™2 and ¢, (¢)¢ ™2 over a circular contour
centred at 0, and for both integrands there is a tension between the bound on |¢,(¢)|,which increases with |¢|, and the
bound on |¢™*| (for k = 2,3), which decreases with |¢|.
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5
{(c+0) =10 T 0.91979546023193796360889752457354830828352420883553 . . . ,

1
o 1 /20]l00 = exp (20 (To(c + @))) (e + 0) = 0.575158859780423676330133482123073962520 . . . ,

1
[y 1 /20|00 = exp (20 g(m1(c+ e))) 7 (c+ o) = 1.016328356027323344809430682923765554385 . . . .

We can then compute Ko and K7 /g to be

~Nlwoplleo + (w100

Koy = = 3.378338827972047629989286401578445782815 . ..
hv1 — 6?2
HwO,OHOO + le,OHOO
K90 = Wi = 3.6318660202903086618402475203542507816 . . .

We know that |c,(t)| < K{*E,(0) for all n > 1, and will be interested in those n which are large
enough for this bound to be effective, for the cases t = 0 and ¢t = 1/20. It is easily computed that
in both of these cases, the Euler bound K}'E,(6) does not even become smaller than 1 until n > 20,
and when n = 26 (the smallest value of n for which we do not have access to the period-n points) it
is of the order of 1075 for small ¢, so the Euler bound by itself would only permit a bound on aﬁ(g)
which is accurate to around 1 decimal place. It is therefore crucial that we use the computed Taylor
bounds in order to yield the high accuracy bound on O'Z (g9) given in Theorem 3, and in the proof of
that result we use the Euler bounds only for n > 40.

Henceforth let @@ = 40, M = 300, N = 400 (so that in particular @ < M < N, as was assumed
throughout §7), and consider the two cases t = 0 and t = 1/20.

We first evaluate the H?(D) norms of the monomial images L, ;(my) for 0 < k < N = 400. These
norms are decreasing in k, and Table 3 contains the first few evaluations, for 0 < k < 10. Using these
norms || Ly ¢(my)|| we then evaluate, for 1 < n < M = 300, the upper computed approximation bounds

an,N7+(t) = Ozn7400,+(t) defined (Cf. (47)) by”
? g2(N+D)
1-—6?

These bounds are decreasing in n; Table 4 contains the first few evaluations, for 1 < n < 10.
The upper computed approximation bounds o, 400+ (t) are then used to form the upper computed

Taylor bounds'® ﬁnN-i-( ) = BnN+( )+ 30 JG 1 ltﬁl Nt t)oM(=DE, _1(0), where

n
M,— 300,—
Bui () = By 160+ (t) = Z H i; 400,+ (t)

11 <...<1, <300 j=1

N
ann ()= | Y [ Lga(ma)* + (

k=n—1

which are listed in Tables 5 and 6.

1"Note that h ~ 0.860691 and N = 400, so ‘921(7#;21) < 2.2 x 107°2. Moreover 3., |wi,t||oc < 1.7 for both ¢ = 0 and
t =1/20, thus (327, [lwieleo)? 921(1:,;;1) < 6.4 x 10752, Combining these bounds with the values taken by an, n (1), it
follows that for 1 < n < 300, the approximation bound an(t) = (3, [[£g.t(mx)||?)"/? agrees with both computed

approximation bounds an,n,—(t) and an,n,+(t) to well beyond the desired 70 decimal place precision used in these

calculations.

18The difference BLMA;:L( ) — ﬁfyj\f+(t) = JQ Nt 5%\,;( )M =D, _1(0) is small enough that the upper and
lower computed Taylor bounds, and the Taylor bound Bn’ ~.+(t), agree to well beyond the 70 decimal place precision
used in these computations.
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8.2. A tale of five tails: the ingredients for validating the diffusion coefficient. The following

Proposition 5 gives rigorous bounds on the tails of five series appearing in the formula for UZ (g) derived

in Corollary 1.

Proposition 5.

o0
> nea(0)] 681072 =gy,

n=26
[o.¢]
> n(n—1)en(0)| < 1.7-107% = g5,
n=26
oo
> (0) <34-107% =g,
n=26

> nc,(0)] <8.7-107%0 =: gy,
n=26

D> 0)] <6.7-107% =i g5,
n=26

Proof. Now |c,(0)| < ﬁnN+( ), and |c,(0)| < KJ'E,(0), therefore

Z nep (0 Z nﬁnNJr 0) + Z nKgyEn(0)

n=26 ‘ n=26 n=41

and using the values in Table 5 we readily compute the finite sum'?

Z Byt (0) € (67611072 £10724) |
n=26

(58)

(59)

(60)

(64)

while the closed form expression for the Euler bound K§E,(f) means we also readily compute that

o0
D nKyE,(0) € (1376107 £107°") .
n=41

Combining (63), (64) and (65) gives

[o.¢]
> ncn(O)‘ <6.772-10722,
n=26

which is the required (58).
In a similar way, Table 5 gives the finite sum

40

> n(n—1)B)3(0) € (169110720 £1072%)
n=26

while the closed form expression for K E,(#) means we also readily compute that

o0
Y n(n— 1)Ky En(0) € (5.505 - 1072 £107%0)
n=41

YNote that the n = 26 term dominates, since 26 x 526 v (0)~26-(2.572...)- 1072% =~ 6.687 - 10722

(65)

(66)

(67)
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so adding the above two quantities gives

[e.9]

> n(n - 1)cn(0)’ <1.7-107%,
n=26

which is the required bound (59).
Next we require an estimate on the terms ¢, (0). From Cauchy’s integral formula

/ _1/ cn()
a0 =5 S @,

where Iy, is the positively oriented circle of radius p centred at 0, we see that |c},(0)] < % maxyer, |ca(t)],
and making the choice p = 1/20 gives |c;,(0)| < 20maxer, ,,, [cn(t)|. Therefore

> d )<20<Zﬂm+1/20 ZKWO ) (68)

n=26 n=26 n=41

and using the values in Table 6 we can evaluate the finite sum

20 Z BN (1/20) € (3.336 - 1072 £107%) | (69)
n=26

while the closed form expression for K ?/QOEn(Q) allows the computation

20 > K{ypBn(0) € (1.304- 1072 +£1077) . (70)
n=41

Combining (68), (69) and (70) gives

> 02(0)‘ <3.34-107%,
n=26
which is the required bound (60).
Similarly,
00 40 00
> nc;(O)’ <20 (Z nﬁnN+(1/20) + ) nK?/QOEn(9)> , (71)
n=26 n=26 n=41

and the values in Table 6 give

20 Z BN (1/20)] < 867910720, (72)
n=26
while the closed form expression for K7’ 120 E n(0) allows the computation
oo
20 > nK{)poEn(6) € (535107 +£107%) . (73)
n=41

Combining (71), (72) and (73) gives

oo
> nc;(o)‘ <8.68-1072
n=20

which is the bound (61).
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To bound ¢/ (0), Cauchy’s integral formula gives

" 1 / cn(t)
S dt
w0 =55 R

so | (0)] < % maxyer, |ca(t)|, and again choosing p = 1/20 we have

|2 (0)] <400 max |en(t)],
tely /20

so that

> ‘<400<Z Bl (1/20) + ZK1/20 ) (74)

n=26 n=26 n=41
The values in Table 6 then give

400 Z an N+ (1/20) € (6.673 210720 4 10—22) (75)
n=26
while (70) implies
400 Z K90 En € (2.609 - 10727 4+ 10—29) . (76)
n=41

Combining (74), (75) and (76) gives

> c;;(O)’ < 6.68- 10720

n=26
which is the required bound (62). O

8.3. The rigorous bound on the diffusion coefficient. In the proof of Theorem 3 we shall make
repeated use of the following simple lemma, in settings where A and B are quantities which cannot
be computed precisely, but where a and b are computable approximations, and errors « and 8 can be
derived.

Lemma 5. If A,B,a,b € R and o, 8 > 0 satisfy |A —a| < o and |B —b| < 3, then

AB — ab < (Ib] + B)a + |l (77)
and
1 1 «
e [ 78
’A al = Talllal =) (78)

We can now justify the quality of our computed approximation to Jﬁ(g) as follows:

Theorem 3. If T is the Lanford map, p is its absolutely continuous invariant probability measure,
and g(x) = 22, then the diffusion coefficient Uz(g) can be approzimated by o35, which is derived using
T-periodic points of period up to 25, so that

o2 (g) — 035 < 1.48 x 1071%. (79)

Proof. For economy of notation, let us write

N
Ry = chn(()) ,
n=1

(n—1)cy,(0) , (80)

uMz
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N N N
Tn =Y d(0), Unv=> nd(0), Vn=>_ c0),
n=1 n=1 n=1

where for our purposes N will equal either 25 or oo, so in particular Corollary 1(b) gives

TOO>2+SOO(};Z~;) — 2o (F2) + Voo

R

Our periodic orbit calculations (as described in §5) yield the following:

Ros = Z nc,(0) € (—0.121872639684483619872 + 10~20)

25

S5 = _n(n—1)cy(0) € (0.684579623068217935744 £ 10~°)
n=1
25

Tys =Y _ c,(0) € (—0.046788840783927713075 £ 10~°)

n=1
Uss = Z ncl, (0.404063585125598237926 + 10~2°)
Vs = Zc” (0.183427185483761853214 + 10~ )

Using (78) with A = Ry and a = Ras,
‘ 1 1 €1
S 5| =
Rew R | Ros|(| Ras| — 1)
Combining (88) with (85) and (60), and using (77), we obtain
T T35

Ro  Ras
Using (77) again gives

(&) (=)

Using (77) again we see that

Too \ Tos
‘Soo <Roo) G <R25>

Using (77) again we see that

T, Ty Ty
e <
Uso <Roo> Uas <R25> ' _(|U25|+€4)772+|R5

Writing
T T
WNSN(RZ) —2UN <N>+VN,

=:m € (4.578 10720 £ 107 %) .

< (|Ras| ™" + m)es + |Tos|m =: m2 € (3.004- 10720 £10722) .

T:
< (2’]::5 + n2> ne =: 173 € (2.306- 102" £1072?) .
25

2

T:
< (|Sa25] 4 €2)m3 + ’R%
25

eg=:15 € (455310720 £ 107%%) .

we use (91) and (92) to see that
[Woo — Was| < ma+ 215 +e5 =: 16 € (1.763- 107" £ 1072 |

ex=:m € (1.829-10720 £ 107%%) .

(93)
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and hence

W, W - - -
‘ ROo — =2 < (|Ras| ™" + ) + [Was | = 7 € (1437-107° £107) . (94)
(0.9}

Rys

T \> W Tos \2 W
20\ _ [ 1o o0 2 _ (225 25
"“(9)_<Roo> TR 0B (R25> T s

so from (90) and (94) we deduce

Now

|02(9) — 035] <3 + 17 < 14810718,
and the desired bound (79) follows. 0

8.4. Conclusion. We conclude by proving the two theorems stated in §1, beginning with Theorem
2, which follows readily from Theorem 3:

Proof of Theorem 2. Our algorithm (see Table 2) gives
035 € (0.3601094861991606728988 £ 10~ ")
and Theorem 3 gives |ai(g) — 03| < 1.48 x 10718, therefore

az(g) € (0.36010948619916067143,0.36010948619916067435) ,

which in particular implies the required result. O

Finally, the more abstract Theorem 1 can be proved using ideas similar to those used in the proof
of Theorem 3:

Proof of Theorem 1. Writing Ag(z,t) = 1+ > > ¢y(t)2", the asymptotic (45) implies that each of
¢n(0), ¢, (0) and ¢(0) is O(k™) as n — oo, for some « € (0,1). For the sums defined in (80), (81),
it then follows that each of the five tails |Rooc — Rnl, |Soo — Snls [Too — Tnl, [Uso — Unl, Voo — Vil is
O(Kn2) as n — o0o. Using Lemma 5 we then successively deduce, via arguments analogous to those
used in the proof of Theorem 3, that the intermediate quantities |1/Ro — 1/Ry|, |Too/Roo — T/ R,
‘(TOO/ROO)Q - (Tn/Rn)2‘7 ’SOO<T<>O/R020)2 B Sn<Tn/Rn)2‘7 ’UOO(TOO/ROO) B Un(Tn/RnN? ’Woo - Wn’a
[Weo/Roo — Wy /Ry are also all O(k™") as n — oo. Since

() T 2+Woo ) T, 2+Wn
o == —_— op == ——
g R R. @ " \R, R,

we then deduce that ]ai(g) — 02| = O(k"") as n — oo, as required.
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APPENDIX: NUMERICAL DATA FOR THE MODEL PROBLEM

Here we include data (presented in truncation form) for various quantities used in the computation
of the diffusion coefficient o7 (g) for T the Lanford map and g(z) = 2.

[Zg0(m)] [Egymomi)]
1.072230506759545960034369362057 | 1.104172678680527349319786186152
0.596049717149185539323469146180 | 0.620723147283434643992316098783
0.369763875353908620799790724929 | 0.391166259479521916734808474235
0.276119593229594517922547820447 | 0.294425025977306244191853146578
0.227958491432695605245256206959 | 0.243204075162724802921362562931
0.190220640114195164926195507651 | 0.202979268290409813682614341952
0.157555706161007126216732351954 | 0.168328947218208073434709811106
0.130346940510248254547131671735 | 0.139478565402897511685346267479
0.108292842592902764391596660436 | 0.116036335936760027044425349805
0.090419617507249250203174802637 | 0.096984795408680571918324496924
0.075776600475413904133208619148 | 0.081344472381130192060647906273

© 00 O UL Wi+~ Ol

—
(es)

TABLE 3.  H?(D) norms |Ly:(my)| for Lanford map transfer operator L, for
g(z) = 2%, with t = 0 and t = 1/20, for disc D centred at ¢ = 0.664, of radius
0= 0.87.

an,N,+(0) anN+(1/20)
1.373917067043466452425251967170 | 1.427638696131557424132789994351
0.859051714093795610515690567921 | 0.904961293287001451810486961337
0.618623134205199498661411971713 | 0.658526929422198922934937003214
0.495952879472559770705729997203 | 0.529760959508181474382332373956
0.411979646210643105413017982909 | 0.440409557454526223835417989155
0.343164909446721117383095192041 | 0.367168021648856750761912948529
0.285619087510134990387118189296 | 0.305960410455054090995726782844
0.238231951270665058019616852773 | 0.255493910483664743663872215393
0.199409472457670207966369603912 | 0.214062766700294085737845205391
0.167441924108017577833206337586 | 0.179884509699295419905710072835

O © 00O U WS

—_

TABLE 4. Upper computed approximation bounds oy, n 4 (t) for Lanford map transfer
operator Ly, for g(z) = 22, with ¢t = 0 and t = 1/20, for disc D centred at ¢ = 0.664,
of radius ¢ = 0.87, with N = 400.



28

O. JENKINSON, M. POLLICOTT & P. VYTNOVA

BN (0)

P 0o uo o s wh+— o3

W W W W W W W WWWhNNDDNDDNDNDNNDNLDN ==
O © 0O T WINHFH O OWNO U WNRFE O OO Oo Utk WwN

1.00000000000000000000000000000000000000000000000000000000000000000000
5.91638169450327064883976456644941924161928830677363819808060713539812
15.5930056102352819935534233140316517118382599986298995283355433265137
24.4736698639000709743844193449874942721011409850977481543023124773696
25.7754808258198078216455439547621024386170650161794423308493443983097
19.4469054872453784049349390698326933609483810493437472532611644864792
10.9521106238726346156568796927347289533024574453173311671485824407656
4.73540458221471556223636638770483729911053037108254251152025488489004
1.60412835316935512560742467899726193208922561294836648618663181927698
0.43227019694704976367374985472246979377359534967354408439065009492980
0.09375908154725806062303320968739024457872407061926883003524399861986
0.01652150342101168996424088686783098220114453369280456250511074495407
0.00238293237948001749697274680572517696435951680662097428497778020760
0.00028304269463672625512060912147671161988441921765835179658913188285
0.00002782677155849364747420872094284640017560258716690718789367793928
2.27392403136506520702724564410473340446650639579722032205330246 x 10~°
1.55001252830385066339340115927214700511589047296031298506903537 x 10~7
8.83999766101668028957629529487694836331978784991495390797963332 x 10~
4.22910735620174411941773831057180480980291549806736590593484206 x 1010
1.70094619827541573471532294812274420039877275633876944149746895 x 10~
5.76253574844793924863326504428979970720822216845679266337327572 x 10713
1.64719543361358736487381155317306660980894721531616471482462791 x 10~ 14
3.97851343969582857919989434542234955671337278329883396694974188 x 10716
8.13015813907035571457013570353731056069789743557218471587901060 x 1018
1.40725206079897102652397486145471051771037644337044022147968721 x 10~17
2.06526294831298446834304647553465436309716315513236215167585825 x 102
2.57215243104667105215824167841697542562499595143189055321291537 x 10723
2.72070490994043636692628731754208142998380316685815821651703231 x 1025
2.44590093688207448627993621838824589670936482665024996736095949 x 1027
1.87002244040068058743646064182298912700729836481886839796879296 x 10~2°
1.21662223061110407539286299080285544487051750134294707706848536 x 103!
6.73894859299114408105902864970222134509197580734796373553489611 x 1034
3.17951954702135581037427993130825377583766175736565112414287832 x 1036
1.27835316671718885749177319622144884560379835925694002589279209 x 1038
4.38158222578128011907566552141075137983249232012587406086472299 x 104!
1.28073190382903792751606572170641919527714030160004122585114832 x 10~43
3.19356882118247708913130052922372437303467184375302002671812072 x 1046
6.79543778777729442805037570050636716580086586696826218847684626 x 1049
1.23425230994365846085219734895268399165400230577981026871766096 x 10~51
1.91403130218947580428297036198227018700547685312967193646613596 x 1054
2.53488275012643454408402888067456803151862774782787701968600395 x 10~°7

TABLE 5. 'UpperConqnﬂedfﬁmdorboundsBﬁﬁf+(ﬂibrLanﬁndmnaptranﬂbropenuor
Ly with t = 0, g(x) = 2%, M = 300, N = 400, and disc D centred at ¢ = 0.664, of
radius o = 0.87.




DIFFUSION COEFFICIENTS

BN, (1/20)

P 0o uo o s wh+— o3

W W W W W W W WWWhNNDDNDDNDNDNNDNLDN ==
O © 0O T WINHFH O OWNO U WNRFE O OO Oo Utk WwN

1.00000000000000000000000000000000000000000000000000000000000000000000
6.27842519703334406022340033748927178829675608493814980507714608797459
17.6003362119988183866754213426824373437028159179692389550954549117423
29.4366898216927944152313565661448722215928824631400913757149291269852
33.0867611911634920240882205854397496498017624116086418773855567059626
26.6753356435110348555530771923660527098027868636067429378252055347670
16.0710965899538078436477208145810313529265723398946425024786919332663
7.44063666302454054383943558694860088009355060221952940348668203608729
2.70127094064217596236351990259358495525841780837765629213799111450263
0.78071782310801484862526127910162690666654602643063005600755159227045
0.18174627347531441236057904915305258962787959831002794386840974964700
0.03439486702274223053770708403705609182708982722820690472000498696375
0.00533095477056366674311114131747398500384802945013153524121964534649
0.00068082190626498655702769374902264509667584958345813328144351285726
0.00007200388275841965360071435691243740847574318817522346898702039135
6.33271392110873459655379479015310649620066560990384843859282266 x 10~°
4.64800848470789807590971030856240671418742805942662945873297418 x 10~7
2.85553568027041612564729759621742273463462761215038353862022367 x 10~8
1.47219033472979293213438915492415236429139393490859859980761806 x 10~
6.38341105718717757915909774574402061895030645318360898190706892 x 10~ 11
2.33228685756150438219265787953400833864987726565924390772235464 x 1012
7.19235908955625772063753408644833359500811213574185949878327842 x 1014
1.87477911111247179179899643900730715712136223446850276009517444 x 1010
4.13590334226334088615441884060439848738610606398417273687178495 x 1017
7.73070140894702140522209504941473132524640938008515421479045415 x 1019
1.22553689288336734377055577029417960323883309163815462793346801 x 10~20
1.64920824712133774857887341667964355887802022954017778167641175 x 1022
1.88541699764734059705504785147513397623798878093845816667050018 x 10~
1.83243033954492300016575720796250290917142059356438926786130103 x 1026
1.51499027117462581296207671180385128334726539966767247928642535 x 1028
1.06610892290501996421078468465905043866340941985470001595680173 x 1030
6.38889899955948918993224875553710714558745184415119687576651408 x 10733
3.26201347689449394139927031534076848195196188267851020944823308 x 1035
1.41959703603586750328152045570639202099993714044440242822016384 x 10737
5.26783612982327434661909624961672214739725086799900939911078203 x 1040
1.66740574038123727102261424406832509052875443488407531926208542 x 10~42
4.50332846038763649055145870908682675097043038881690772288865126 x 1045
1.03810074880453070195009955535972632680521900405212333475588763 x 10~47
2.04305109106193115584629645721971197363097686254964237369887319 x 1070
3.43371464442528749462619173440602768944065612071967642619009054 x 1053
4.92944333332153669605064037563063626241759423036425615345390256 x 10756

TABLE 6. 'UpperConqnﬂedfﬁmdorboundsBﬁﬁf+(ﬂibrLanﬁndmnaptranﬂbropenuor
Ly with t =1/20, g(z) = 2%, M = 300, N = 400, and disc D centred at ¢ = 0.664, of
radius o = 0.87.
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n E.(0) Ky E,(0) K10 En(0) cn(0)

1| 6.178322417156 | 20.872466513610 | 22.438839249268 | -2.6666666666666
2| 17.65689470317 | 201.52119806742 | 232.90240067474 | 2.7671447514335
3| 31.06413807670 | 1197.7575633058 | 1488.1570459342 | -1.4795873463144
4| 37.77912144494 | 4921.1281303006 | 6573.1134807116 |  0.4548595107266
5| 33.81588669461 | 14881.160574758 | 21368.295194231 | -0.0850094435255
6| 23.16343104695 | 34436.746764748 | 53159.612067142 |  0.0099728366537
71 12.46666302384 | 62614.173627336 | 103910.38491503 | -0.0007489690661
8| 5.372126671547 | 91153.192091602 | 162624.05897399 |  0.0000364631148
9| 1.879626036050 | 107745.78610040 | 206652.10008498 | —1.160290 x 106
10 | 0.539728880137 | 104521.99820457 | 215513.18595829 2.426597 x 108
11| 0.128260613487 | 83912.867873119 | 186003.58802690 | —3.347923 x 10~ 10
12 | 0.025393003771 | 56124.506215835 | 133743.26007194 | 3.055073 x 10~12
13| 0.004210820328 | 31441.870270393 | 80547.925161555 | —1.847222 x 10~14
14 | 0.000587419646 | 14818.127696936 | 40809.937890039 | 7.410060 x 10~17
15| 0.000069186089 | 5896.1273174416 | 17456.857546576 | —1.973903 x 10~ 19
16 | 6.900312 x 1076 | 1986.6439509659 | 6323.3303122469 | 3.493983 x 10722
17 | 5.842164 x 1077 | 568.23539709633 | 1944.3781298067 | —4.111689 x 10~2°
18 | 4.207596 x 1078 | 138.25848435416 | 508.59355192450 | 3.217996 x 10728
19 | 2.582298 x 1079 | 28.666012024725 | 113.36342306436 | —1.675484 x 10731
20 | 1.352474 x 10710 | 5.0721615997794 | 21.563803644473 | 5.804730 x 10~3°
21 | 6.052600 x 1012 | 0.7668479758598 | 3.5048398385881 | —1.338407 x 1038
22 | 2.316879 x 10713 | 0.0991685458492 | 0.4872585410565 | 2.054103 x 1042
23 | 7.592813 x 10715 | 0.0109793456797 | 0.0579947377200 | —2.098636 x 1046
24 | 2.131922 x 10716 | 0.0010414738636 | 0.0059140789758 | 1.427503 x 1059
25 | 5.132067 x 10~ | 0.0000846978646 | 0.0005170562827 | —6.465176 x 10~°°
26 | 1.059758 x 10719 | 5.908676 x 1076 | 0.0000387777099

27 | 1.878111 x 1072' | 3.537593 x 10~7 | 2.495896 x 106

28 | 2.857674 x 10723 | 1.818454 x 108 | 1.379264 x 10~7

29 | 3.734497 x 1072% | 8.028327 x 10719 | 6.546314 x 10~*
30 | 4.192848 x 10727 | 3.045126 x 101! | 2.669338 x 10710
31 | 4.045340 x 10729 | 9.925545 x 10713 | 9.353613 x 1012
32| 3.354789 x 10731 | 2.780787 x 10714 | 2.817211 x 10~13
33| 2.391781 x 10733 | 6.697725 x 10716 | 7.294669 x 10~15
34 | 1.466203 x 1073% | 1.387085 x 10717 | 1.624083 x 10~16
35 | 7.729370 x 10738 | 2.470337 x 10719 | 3.109479 x 1018
36 | 3.504471 x 10740 | 3.783885 x 102! | 5.120307 x 10~20
37| 1.366704 x 10742 | 4.985320 x 10723 | 7.252333 x 10722
38 | 4.584986 x 10~% | 5.650148 x 10~2° | 8.836315 x 10~24
39 | 1.323263 x 10747 | 5.508981 x 10727 | 9.262096 x 10~26

40 | 3.285698 x 10720 | 4.621211 x 10~29 | 8.352576 x 10~28

41 | 7.019503 x 10753 | 3.335322 x 103! | 6.480805 x 1030

421 1.290338 x 10755 | 2.071276 x 10733 | 4.326691 x 1032

43 | 2.040971 x 10758 | 1.106814 x 1073° | 2.485531 x 10734

44 | 2.777937 x 10761 | 5.089363 x 10738 | 1.228667 x 1036

45 | 3.253667 x 10764 | 2.013804 x 10740 | 5.226549 x 10737

TABLE 7. Lanford map: quantities E, (), Euler bounds K§FE,(8) > |c,(0)| and

K?/QOEn(Q) > |en(1/20)|, for disc D centred at ¢ = 0.664 of radius o = 0.87 (so
6 ~ 0.860691), and coefficients ¢, (0) of determinant Ay(z,0) =1+ > °7  ¢,(0)2" for

1 <n<25.
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