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Abstract. For real analytic expanding interval maps, a novel method is given for rigorously approx-

imating the diffusion coefficient of real analytic observables. As a theoretical algorithm, our approx-

imation scheme is shown to give quadratic exponential convergence to the diffusion coefficient. The

method for converting this rapid convergence into explicit high precision rigorous bounds is illustrated

in the setting of Lanford’s map x 7→ 2x+ 1
2
x(1− x) (mod 1).

1. Introduction

For a real analytic1 expanding interval map T : X → X with absolutely continuous invariant

probability measure µ, and a real analytic function g : X → R, the corresponding diffusion coefficient

(or variance) is the quantity σ2
µ(g) defined by

σ2
µ(g) = lim

n→∞

1

n

∫ (n−1∑
i=0

g ◦ T i − n
∫
g dµ

)2

dµ . (1)

The quantity σ2
µ(g) plays a role in the central limit theorem: it is well known (see e.g. [11]) that

provided g is not equal to a coboundary plus a constant then

1√
n

(
n−1∑
i=0

g ◦ T i − n
∫
g dµ

)
converges in law to a normal distribution with mean zero and variance σ2

µ(g) > 0. A difficult problem

of practical interest is to calculate, or to approximate, the diffusion coefficient σ2
µ(g), noting that

(1) is only rarely amenable to direct evaluation. Bahsoun, Galatolo, Nisoli & Niu [2] recently gave

a method for the rigorous approximation of diffusion coefficients, including error bounds, based on

Ulam’s method. They illustrated this approach with the particular map

T (x) = 2x+
1

2
x(1− x) (mod 1) (2)

introduced by Lanford [8], and the function g(x) = x2, showing that 0.3458 ≤ σ2
µ(g) ≤ 0.4152.

In this paper we develop an alternative algorithm for approximating diffusion coefficients of ex-

panding interval maps. In general the method uses the periodic points of T , and exploits the real

analyticity of the map T and the function g. The method gives highly accurate approximations to

the diffusion coefficient, both at the level of a theoretical algorithm converging with a given asymp-

totic speed (namely quadratic exponential convergence, as described in Theorem 1 below), and, most

importantly, at the level of completely rigorous certified error bounds (see Theorems 2 and 3). The

real analyticity assumptions will be crucial in establishing both the theoretical asymptotics and the

1By convention we say that T is real analytic whenever it is piecewise real analytic, i.e. the interval X admits a

partition into intervals, with T real analytic on each partition piece.
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concrete error bounds, since explicit use is made of the holomorphic extensions of the function g and

(the inverse branches of) the map T to certain regions of the complex plane. The general asymptotic

speed of our algorithm is as follows:

Theorem 1. Let T : X → X be a real analytic expanding interval map with absolutely continuous

invariant probability measure µ, and suppose g : X → R is real analytic. There exists a sequence

σ2
n → σ2

µ(g), where each σ2
n can be explicitly computed in terms of periodic points of period up to n.

The rate of convergence is quadratic exponential, in the sense that there exist constants C > 0 and

κ ∈ (0, 1) such that

|σ2
µ(g)− σ2

n| ≤ Cκn
2

for all n ∈ N . (3)

The constants C and κ of Theorem 1 can be rendered explicit, a procedure which involves consid-

eration of holomorphic extensions to regions in the complex plane. A more challenging problem, in

the context of a specific map T and function g, is to establish effective error bounds on |σ2
µ(g)− σ2

n|,
preferably of very high accuracy; a key purpose of this article is to show that in such practical settings

there is considerable scope for sharpening our optimal version of the simple asymptotic form (3) so

as to obtain effective high quality bounds on the diffusion coefficient. As a model case we shall orient

our discussion of this problem around the specific example considered in [2], namely Lanford’s map

T , and the function g(x) = x2, both of which are real analytic; henceforth we refer to this as the

model problem. The problem of obtaining high accuracy rigorous estimates on σ2
µ(g) involves both

theoretical and computer programming elements, and any proof of such bounds will invariably be

computer-assisted. As a starting point we note that, using only a modern desktop computer, it is

possible to locate all the periodic points of the Lanford map T up to period P , for some2 20 ≤ P ≤ 30.

Choosing maximum period P = 25 yields the sequence of approximations to σ2
µ(g) given in Table 2,

which at the level of non-rigorous empirical observation suggests that

σ2
µ(g) = 0.36010948619916067289882418682857674924166999779722± 10−50 ,

and indeed a more optimistic interpretation of Table 2 suggests the slightly more accurate

σ2
µ(g) = 0.3601094861991606728988241868285767492416699977972288644± 10−55 .

The task is to now harness these computed approximate values σ2
n (and in particular the last of

these computed approximations, σ2
P ) so as to produce a fully rigorous approximation to σ2

µ(g), together

with an error bound. Any naive expectation that the theoretical asymptotic (3), together with specific

values for κ and C, would automatically yield an effective error bound on |σ2
µ(g)− σ2

n| is tempered by

the realisation that, for the model problem, κ is reasonably close to the value3 1, and C is extremely

2In general the specific value of P will depend on available hardware, on the computer programming implementation of

our algorithm, and on the time available to make the computation. For the Lanford map T we found it possible to locate

points up to period 20 in less than an hour, while locating points of period up to 25 took around a day (computations

were performed in an arbitrary precision environment, giving several hundred correct decimal digits); note that since T

is a 2-branch map, incrementing the maximum period by one entails an approximate doubling of the computer run time.
3For any two branch expanding map, our techniques yield a value of κ lying in the range [2−1/2, 1), while for the

Lanford map itself our optimal value is κ ≈ 0.927734 (this is the square root of the quantity θ defined in (57)). Note that

although the term κn
2

is approximately 4.3 × 10−21 when n = 25, the value of C in (3) is too large for the asympotic

estimate |σ2
µ(g) − σ2

n| ≤ Cκn
2

to be effectively used until n is significantly larger (and, crucially, above the maximum

value of n for which all 2n period-n points can be located using the computational resources at our disposal).
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large.4 Although, as noted above, the value P = 25 is deemed to be the maximum such that all (σ2
n)Pn=1

can be explicitly evaluated, a finer analysis5 of the estimates yielding the asymptotic (3) suggests that

a good quality rigorous effective estimate on σ2
µ(g) remains out of reach for P ≤ 30.

In order to obtain high quality effective estimates on |σ2
µ(g) − σ2

n| we therefore develop a hybrid

approach, consisting of three distinct types of computation, the first type being the exact evaluation

of σ2
n (see §3 for the formulae defining σ2

n) for all sufficiently small values of n (i.e. for all 1 ≤ n ≤ P ,

where e.g. P = 25 for the model problem), using exact locations of periodic points (i.e. evaluated

to a given precision, typically several hundred decimal places). We next make the observation (see

Corollary 1(b)) that σ2
µ(g) can be expressed in terms of certain infinite series; it turns out that there

are five such series, which for convenience we denote here6 as
∑∞

n=1 s
(j)
n , for 1 ≤ j ≤ 5, where it can

be shown that each sequence (s
(j)
n )∞n=1 is O(κn

2
) as n → ∞. The error |σ2

µ(g) − σ2
P | can then be

expressed in terms of the tails
∑∞

n=P+1 s
(j)
n of these series, and each of these is O(κP

2
) as P →∞, a

result which incidentally leads to the proof of Theorem 1. A consequence is that the task of obtaining

a concrete bound on |σ2
µ(g) − σ2

P | reduces to bounding each tail
∑∞

n=P+1 s
(j)
n , and here we note that

the previously described difficulties in bounding |σ2
µ(g)− σ2

P | (for e.g. P = 25 in our model problem)

stem from the natural upper bounds on the terms s
(j)
n being insufficiently sharp for n ≈ P .

Our resolution of this problem of insufficiently sharp bounds consists of splitting the tails
∑∞

n=P+1 s
(j)
n

into two parts, whose estimation can be tackled by distinct methods. Choosing some value7 Q > P

(e.g. in our model example we take Q = 40) we consider separately the intermediate sum
∑Q

n=P+1 s
(j)
n

and the deep tail
∑∞

n=Q+1 s
(j)
n . The terms in the deep tail can be effectively bounded, essentially by a

simple estimate of the form |s(j)
n | ≤ Cκn

2
, the idea being that n > Q is large enough for the smallness

of κn
2

to dominate the largeness of C, to the extent that the whole deep tail is extremely small.

For the purpose of estimating the intermediate (finite) sum
∑Q

n=P+1 s
(j)
n we require some new tech-

niques, whose justification (see §6) stems from the theory of eigenvalues and approximation numbers

4The size of C will depend on κ, and C becomes larger the closer κ is chosen to the optimal value of approximately

0.927734 (see Footnote 3). As an indication of its order of magnitude, we use the fact (see Footnote 5) that |σ2
µ(g)− σ2

n|
is related to (and in fact somewhat larger than) the quantity Kn

1/20En(θ) = Kn
1/20(

∏n
i=1(1 − θi))−1θn(n+1)/2 , where

θ ≈ 0.860691, K1/20 ≈ 3.631. We are at liberty to work with any κ ∈ (θ1/2, 1) = (0.927734, 1), and for example with the

concrete choice κ = 0.95 we can compute supn∈NK
n
1/20En(θ)/0.95n

2

≈ 4.440429 × 1010 (the supremum is attained at

n = 26), so that Kn
1/20En(θ) ≤ C′κn

2

for C′ = 4.5× 1010. It follows, after some additional calculations (along the lines

of those detailed in §8), that the value of C in (3) could be chosen to be of the order of 1011 when κ = 0.95.
5This finer analysis consists of using what we call Euler bounds, with the quality of the estimate on |σ2

µ(g) − σ2
n|

closely related to the size of the quantities Kn
t En(θ) = Kn

t (
∏n
i=1(1− θi))−1θn(n+1)/2 given in Tables 5 and 6 (for t = 0

and t = 1/20 respectively), where θ = κ2 ≈ 0.860691, K0 ≈ 3.378, K1/20 ≈ 3.631. We note that for sufficiently small

values of n, the quadratic exponential decay of the term θn(n+1)/2 is swamped by the exponential increase of the term

Kn
t , and the strong increase of (

∏n
i=1(1 − θi))−1 (though this latter term is bounded, by (

∏∞
i=1(1 − θi))−1 ≈ 8876.45).

In particular, for n = 20 both Kn
t En(θ) terms are greater than 1 (hence n = 20 represents a hopeless case for this naive

method), while if n = 25 then Kn
0 En(θ) ≈ 0.000084 and Kn

1/20En(θ) ≈ 0.00051, which in fact can be used (via arguments

similar to those used in the proof of Theorem 3) to justify only a single decimal digit of σ2
µ(g).

6In terms of the later notation, these series correspond (see Corollary 1(b)) to
∑∞
n=1 ncn(0),

∑∞
n=1 n(n − 1)cn(0),∑∞

n=1 c
′
n(0),

∑∞
n=1 nc

′
n(0), and

∑∞
n=1 c

′′
n(0), which themselves correspond to partial derivatives of the determinant of a

(transfer) operator.
7As will become clear, one virtue of this method is that it perfectly feasible, from a computational point of view, to

choose Q rather large (e.g. some value well over 100), a choice which may be important for expanding maps T for which

the expansion is rather mild, corresponding to significant inertia in the quadratic exponential decay of the terms s
(j)
n ,

stemming from a value κ ∈ (0, 1) being close to 1.
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applied to a certain auxiliary (transfer) operator; these techniques require a non-trivial amount of

computation, though a key point is that the computational effort is relatively light in comparison to

that required for locating the 2n period-n points for some high value of n (e.g. n ≈ P ). The coefficients

s
(j)
n are related to the Taylor series for the determinant of the transfer operator, and can be bounded

in terms of the approximation numbers of the operator. These approximation numbers can in turn be

bounded by making a judicious choice of basis for an underlying Hilbert space whose inner product is

defined by Lebesgue integration, and explicitly computing the norms of the images of (finitely many

of) these basis elements under the transfer operator yields a bound on the approximation numbers

which implies a bound on the s
(j)
n for P + 1 ≤ n ≤ Q (see §7 for further details).

In §8 we combine all of these various ingredients, in the context of the model problem, to obtain

the following rigorous bound on the diffusion coefficient, noting that it represents a significant im-

provement8 on the estimate 0.3458 ≤ σ2
µ(g) ≤ 0.4152 established in [2] for the same combination of

function g(x) = x2 and Lanford map T .

Theorem 2. For the Lanford map T , with absolutely continuous invariant probability measure µ, if

g(x) = x2 then the corresponding diffusion coefficient σ2
µ(g) satisfies

0.36010948619916067 < σ2
µ(g) < 0.36010948619916067 + 10−17 .

The organisation of this article is as follows. Section 2 consists of preliminary material drawn from

the ergodic theory of expanding maps, thermodynamic formalism, and Hilbert spaces of holomorphic

functions. Our algorithm is described in §3, together with various reformulations of the diffusion

coefficient. The rapid convergence of the algorithm is illustrated in §4 for certain cases where σ2
µ(g) is

known explicitly, and in §5 for the model problem, where σ2
µ(g) does not have a (known) closed form.

The key theoretical tools for deriving rigorous error estimates, based on the theory of eigenvalues and

approximation numbers, are developed in §6 and §7. These tools are then applied in detail to the

model problem in §8, proving a result (Theorem 3) that is slightly stronger than Theorem 2, and

concluding with a proof of Theorem 1. Some of the numerical data used in the proof of Theorem 3 is

collected as an Appendix.

2. Preliminaries

2.1. Ergodic theory of expanding interval maps. Suppose the unit interval X = [0, 1] is parti-

tioned as X = X1 ∪ . . . ∪ Xl, l ≥ 2, where Xi = [xi−1, xi], and 0 = x0 < x1 < . . . < xl = 1. Given

T : X → X, we shall always assume that T |Xi is real analytic, for each 1 ≤ i ≤ l. We say T is piecewise

expanding if there exists λ > 1 such that |T ′| |Xi ≥ λ for all 1 ≤ i ≤ l. We say that T is Markov if

there exists a d × d matrix A (the transition matrix for T ) with each entry either 0 or 1, such that

T (Xi) = ∪j:A(i,j)=1Xj for each 1 ≤ i ≤ l. The collection {Xi}li=1 is called the Markov partition for T .

T is topologically mixing if some power of the transition matrix A is a strictly positive matrix.

It is well known (see [9]) that any topologically mixing piecewise Cω expanding Markov map admits

a unique ergodic absolutely continuous invariant probability measure, and we shall denote this measure

by µ. Our results are valid for all such maps, though to simplify the exposition we shall always assume

that T is a full branch expanding map. In other words, each T |Xi is assumed to be a surjection onto

8While the rigorous estimate of [2] is less accurate than that of Theorem 2, the general strategy of [2] is based on

Ulam’s discretization method [16] and can be applied to a wider class of maps T and functions g for which there is no

analyticity assumption (see [2] for details and references, and e.g. [10] for a further guide to the literature on numerical

computations in the context of piecewise expanding maps).
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X, or, equivalently, every entry of the corresponding transition matrix A is a 1. For each 1 ≤ i ≤ l

we write τi := (T |Xi)−1, referring to {τi}li=1 as the collection of inverse branches of T . Since T is

expanding, each inverse branch is a contraction mapping on X; indeed the real analyticity9 of T ensures

that the inverse branches have a holomorphic extension to some common complex neighbourhood of

X on which they are all contraction mappings.

Notation 1. Let On := {x = (x, T (x), . . . , Tn−1(x)) ∈ Xn : Tn(x) = x} denote the collection of

periodic orbits of (not necessarily least) period n, considered as ordered n-tuples. For x ∈ On and

g : X → R, define

gx :=
n−1∑
i=0

g(T ix) , mx := (Tn)′(x) =
n−1∏
i=0

T ′(T ix) = exp
(
(log T ′)x

)
,

and for n ≥ 1, t ∈ C, define

an(t) := ag,n(t) =
1

n

∑
x∈On

exp(tgx)

mx − 1
. (4)

For a continuous function f : X → R, its pressure P (f) = P (f, T ) is defined (see e.g. [13]) by

P (f) = P (f, T ) = lim
n→∞

1

n
log

∑
x∈On

efx .

2.2. The diffusion coefficient. Suppose g : X → R is real analytic. Its diffusion coefficient (or

variance) σ2
µ(g) is defined by

σ2
µ(g) = lim

n→∞

1

n

∫ (n−1∑
i=0

g ◦ T i − n
∫
g dµ

)2

dµ .

The diffusion coefficient can be expressed in terms of pressure as follows:

Lemma 1. Let T : X → X be a real analytic expanding interval map with absolutely continuous

invariant probability measure µ, and suppose g : X → R is real analytic. If p(t) := P (tg − log |T ′|),
then the integral of g with respect to µ is given by

µ(g) =

∫
g dµ = p′(0) , (5)

and the diffusion coefficient is given by

σ2
µ(g) = p′′(0) . (6)

Proof. For (5) see e.g. [11, p. 60], [13, p.133]), and for (6) see e.g. [11, p. 61], [13, p.133]). �

2.3. Holomorphic extensions. As noted in §2.1, the inverse branches of the real analytic expanding

map T extend as contraction mappings to some common (simply connected) complex neighbourhood U

of X. If g : X → R is real analytic then U may be chosen so that g is holomorphic on a neighbourhood

of U . By the Riemann mapping theorem, no generality is lost by assuming that U can be chosen to be

a disc D, and henceforth we make this assumption: an open disc D ⊂ C containing X will be called

admissible (for the map T and function g) if g has a holomorphic extension to a neighbourhood of

9As noted previously, by this we mean that T is piecewise real analytic, i.e. each T |Xi is real analytic, or in other

words each τi is real analytic.
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D, and each inverse branch τi has a holomorphic extension to D such that ∪li=1τi(D) ⊂ D. This will

allow consideration of transfer operators acting on certain Hilbert spaces of holomorphic functions.

Let D ⊂ C be an open disc of radius r, centred at c. The Hardy space H2(D) consists of those

holomorphic functions ϕ : D → C with sup%<r
∫ 1

0 |ϕ(c + %e2πit)|2 dt < ∞. This is a Hilbert space,

with inner product given by (ϕ,ψ) =
∫ 1

0 ϕ(c + re2πit)ψ(c+ re2πit) dt, which is well-defined since

members of H2(D) extend as L2 functions on the boundary ∂D; the norm of ϕ ∈ H2(D) will be

written as ‖ϕ‖ = (ϕ,ϕ)1/2. Equivalently, H2(D) is the set of those holomorphic functions ϕ on

D such that if mk(z) = r−k(z − c)k for k ≥ 0, then {(ϕ,mk)} ∈ l2(C) (see e.g. [14]), so that

‖ϕ‖ = (
∑∞

k=0 |(ϕ,mk)|2)1/2.

2.4. Transfer operators and determinants. For a real analytic function g : X → R, an important

ingredient in our method of approximating the diffusion coefficient σ2
µ(g) is the function ∆g : C2 → C

defined by

∆g(z, t) = exp

(
−
∞∑
n=1

ag,n(t)zn

)
(7)

for sufficiently small values of z, and by analytic continuation to the whole of C2. It can be shown

that (7) defines an entire function (see Corollary 4), with Taylor series expansion

∆g(z, t) = 1 +
∞∑
n=1

cg,n(t)zn = 1 +
∞∑
n=1

cn(t)zn (8)

(where we write cn(t) for cg,n(t) whenever g is understood), from which we deduce the recurrence

relation

cN (t) = cg,N (t) = − 1

N

N−1∑
k=0

ag,k(t) · cg,N−k(t) . (9)

For T and g with holomorphic extensions to D as in §2.3, the corresponding transfer operator

Lg,t : H2(D)→ H2(D) is defined by

Lg,tv(z) =
∑
Ty=z

v(y)ef(y) ,

for z ∈ X, and by holomorphic continuation for z ∈ D, where f = tg − log |T ′|. The function ∆g is

the determinant det(I − zLg,t) (see [12]), and its zeros are precisely the reciprocals of the eigenvalues

of Lg,t. The leading (i.e. largest in modulus) eigenvalue of Lg,t is ep(t) = eP (tg−log |T ′|).

3. The algorithm

3.1. The diffusion coefficient in terms of derivatives of the determinant. The reformulation

(6) of the diffusion coefficient σ2
µ(g) in terms of pressure, together with the fact that e−p(t) is a zero of

∆g(·, t), suggests the possibility of representing σ2
µ(g) in terms of partial derivatives of ∆g. In order

to establish such a representation, as Proposition 1 below, we first adopt the following notational

conventions:

Notation 2. We write first partial derivatives as

D1∆g(z, t) =
∂

∂z
∆g(z, t) , D2∆g(z, t) =

∂

∂t
∆g(z, t) ,
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and second partial derivatives as

D11∆g(z, t) =
∂2

∂z2
∆g(z, t) , D22∆g(z, t) =

∂2

∂t2
∆g(z, t) , D12∆g(z, t) =

∂2

∂z∂t
∆g(z, t) .

Proposition 1. If T : X → X is a real analytic expanding map with absolutely continuous invariant

probability measure µ, the function g : X → R is real analytic, and the determinant ∆g is defined by

(7), then the diffusion coefficient σ2
µ(g) can be expressed as

σ2
µ(g) = µ(g)2 +

D11∆g(1, 0)µ(g)2 − 2D12∆g(1, 0)µ(g) +D22∆g(1, 0)

D1∆g(1, 0)
. (10)

Proof. Let z(t) = e−p(t) where p(t) = P (tg − log |T ′|), so that p(0) = 0 and therefore

z(0) = 1 . (11)

Differentiating gives

z′(t) = −p′(t)e−p(t) ,
so Lemma 1 gives

z′(0) = −µ(g) . (12)

Differentiating again gives

z′′(t) = p′(t)2e−p(t) − p′′(t)e−p(t) ,
so evaluating at t = 0 and using Lemma 1 gives

z′′(0) = z′(0)2 − σ2
µ(g) , (13)

or in other words

z′′(0) =

(∫
g dµ

)2

− σ2
µ(g) . (14)

The zeros of ∆g(·, t) are the reciprocals of the eigenvalues of Lg,t, and since ep(t) = z(t)−1 is the

leading eigenvalue of Lg,t then

∆g(z(t), t) = 0 , (15)

so differentiating (15) with respect to t gives

D1∆g(z(t), t)z
′(t) +D2∆g(z(t), t) = 0 , (16)

and therefore

z′(0) = −D2∆g(1, 0)

D1∆g(1, 0)
. (17)

Combining (12) and (17) gives

µ(g) =
D2∆g(1, 0)

D1∆g(1, 0)
. (18)

Differentiating (16) with respect to t gives

D1∆g(z(t), t)z
′′(t) +D11∆g(z(t), t)z

′(t)2 + 2D12∆g(z(t), t)z
′(t) +D22∆g(z(t), t) = 0 (19)

and evaluating this at t = 0 then using (11), (12) and (14), gives

D1∆g(1, 0)(µ(g)2 − σ2
µ) +D11∆g(1, 0)µ(g)2 − 2D12∆g(1, 0)µ(g) +D22∆g(1, 0) = 0 ,

in other words

σ2
µ = µ(g)2 +

D11∆g(1, 0)µ(g)2 − 2D12∆g(1, 0)µ(g) +D22∆g(1, 0)

D1∆g(1, 0)
,
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which is the required expression (10). �

Definition 1. If g : X → R is real analytic, with ∆g(z, t) = 1 +
∑∞

n=1 cn(t)zn, then for N ≥ 1 define

σ2
N : =

( ∑N
n=1 c

′
n(0)∑N

n=1 ncn(0)

)2

+

∑N
n=1 n(n− 1)cn(0)

( ∑N
n=1 c

′
n(0)∑N

n=1 ncn(0)

)2

− 2
∑N

n=1 nc
′
n(0)

( ∑N
n=1 c

′
n(0)∑N

n=1 ncn(0)

)
+
∑N

n=1 c
′′
n(0)∑N

n=1 ncn(0)
. (20)

Corollary 1. Under the same hypotheses as Proposition 1,

(a) The diffusion coefficient σ2
µ(g) can be expressed as

σ2
µ(g) =

(
D2∆g(1, 0)

D1∆g(1, 0)

)2

+
D11∆g(1, 0)

(
D2∆g(1,0)
D1∆g(1,0)

)2
− 2D12∆g(1, 0)

(
D2∆g(1,0)
D1∆g(1,0)

)
+D22∆g(1, 0)

D1∆g(1, 0)
.

(b) The diffusion coefficient σ2
µ(g) can be expressed as

σ2
µ(g) =

( ∑∞
n=1 c

′
n(0)∑∞

n=1 ncn(0)

)2

+

∑∞
n=1 n(n− 1)cn(0)

( ∑∞
n=1 c

′
n(0)∑∞

n=1 ncn(0)

)2
− 2

∑∞
n=1 nc

′
n(0)

( ∑∞
n=1 c

′
n(0)∑∞

n=1 ncn(0)

)
+
∑∞

n=1 c
′′
n(0)∑∞

n=1 ncn(0)
.

(c) The sequence of approximations (20) converges, with σ2
N → σ2

µ(g) as N →∞.

(d) If g : X → R is real analytic such that
∫
g dµ = 0, then σ2

µ(g) can be expressed as

σ2
µ(g) =

D22∆g(1, 0)

D1∆g(1, 0)
=

∑∞
n=1 c

′′
n(0)∑∞

n=1 ncn(0)
.

(e) If g : X → R is real analytic such that
∫
g dµ = 0, and σ̂2

N is defined by

σ̂2
N :=

∑N
n=1 c

′′
n(0)∑N

n=1 ncn(0)
, (21)

then σ̂2
N → σ2

µ(g) as N →∞.

Proof. Part (a) follows from Proposition 1, by substituting (18) into (10). Since the Taylor series

around 0 for ∆g(·, t) is written (cf. (8)) as ∆g(z, t) = 1 +
∑∞

n=1 cn(t)zn, termwise differentiation yields

(b). Part (d) is a special case of formula (10) in Proposition 1, together with (b), while parts (c) and

(e) follow directly from the definitions of σ2
N and σ̂2

N . �

Remark 1. A consequence of Corollary 1 is that if g is known to have integral zero with respect

to the absolutely continuous invariant probability measure µ, then there is a choice of sequence of

approximants to the corresponding diffusion coefficient: both the sequence σ2
N and the sequence σ̂2

N

converge to σ2
µ(g).
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3.2. Periodic orbit formulae. The quantities σ2
N approximating the diffusion coefficient σ2

µ(g) are

accessible to us in terms of those periodic points of T of period up to N . Recall from (4) that

an(t) = ag,n(t) =
1

n

∑
x∈On

exp(tgx)

mx − 1
,

so that the k-th order derivative a
(k)
n (t) is given by

a(k)
n (t) =

1

n

∑
x∈On

gkx exp(tgx)

mx − 1
. (22)

We are interested in derivatives up to order 2, evaluated at t = 0, so for n ≥ 1 define

αn := an(0), βn := a′n(0), γn := a′′n(0) ,

in other words

αn =
1

n

∑
x∈On

1

mx − 1
, βn =

1

n

∑
x∈On

gx
mx − 1

, γn =
1

n

∑
x∈On

g2
x

mx − 1
. (23)

3.3. Computer implementation. Although in certain special cases (e.g. the doubling map of §4)

the periodic points of T are rational and known explicitly, more generally a non-trivial aspect of our

algorithm is to locate these periodic points (to within a specified precision10). For this, note that for

1 ≤ i ≤ l the inverse branch τi : X → Xi, defined as τi = (T |Xi)−1, is uniformly contracting. For

each ξ ∈ {1, . . . , l}n the composition τ := τξ1 ◦ . . . ◦ τξn is also uniformly contracting, and the set of

period-n points for T is precisely the set of fixed points of such compositions τ . The fixed point for the

contraction mapping τ can be determined using standard techniques (e.g. choose x0 ∈ X and evaluate

x := τk(x0) for suitably large k, such that |τ(x) − x| < δ, where δ is appropriately small; provided

τ(x + ε) − τ(x) > η and τ(x) − τ(x − ε) > η for ε, η > 0 satisfying η > δ + ε, an intermediate value

argument guarantees that x is within ε of the true fixed point of τ).

Having located the period-n points of T , and formed the collection On, for all 1 ≤ n ≤ N , the

calculation of orbit sums an(0) and their derivatives a′n(0), a′′n(0) is then possible (using (4) and (22))

for n = 1, . . . , N . Differentiation of the recurrence relation (9) yields recurrence relations for the

derivatives c′n(0) and c′′n(0) which can then be computed for n = 1, . . . , N , and substitution into (20)

gives the approximant σ2
N .

4. Test cases: approximation of known diffusion coefficients

For certain combinations of map T and function g, the diffusion coefficient is known exactly. While

for these cases there is clearly no need for a numerical algorithm to approximate σ2
µ(g), it is nonetheless

instructive to consider them, by way of a warm-up exercise.

10Specifically, we say that the chosen precision is 10−m if any number ε such that |ε| < 10−m is assumed to be zero; in

particular, if we are working with precision 10−m then x is declared to be a point of period n for T if |Tn(x)−x| < 10−m.

In our computer programs the various data (T , g, and the τi) are approximated with very high precision, of 10−999,

and this precision is maintained during the process of locating periodic points; the points themselves are computed with

guaranteed precision of 10−250.
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4.1. Perfect approximation of the diffusion coefficient via periodic orbits. As a simple first

example we describe here an expanding map T and function g whose diffusion coefficient σ2
µ(g) is

exceedingly well approximated by the sequence σ2
n: in fact it turns out that each σ2

n is equal to σ2
µ(g).

Let T : X → X be the doubling map, defined by T (x) = 2x (mod 1) on [0, 1) and T (1) = 1,

its absolutely continuous invariant probability measure µ being Lebesgue measure itself. Consider

the function g : X → R defined by g(x) = 2x − 1, which clearly satisfies
∫
g dµ = 0. In fact g is

cohomologous to the function h defined by

h(x) =

{
−1 if x ∈ [0, 1/2)

+1 if x ∈ [1/2, 1] ,

and it is easily seen that 1
n

∫
(
∑n−1

i=0 h ◦ T i)2 dµ = 1 for all n ≥ 1, so the corresponding diffusion

coefficient is given by the exact formula

σ2
µ(g) = σ2

µ(h) = lim
n→∞

1

n

∫ (n−1∑
i=0

h ◦ T i
)2

dµ = 1 .

While the existence of an exact formula for σ2
µ(g) means there is no need for numerical approximations,

this example has the noteworthy feature that our approximations σ2
n are perfect for each value of n:

Proposition 2. For T : X → X the doubling map, and g(x) = 2x− 1,

c′′g,n(0) = ncg,n(0) for all n ≥ 1 , (24)

so in particular

σ2
n =

∑n
i=1 c

′′
g,i(0)∑n

i=1 icg,i(0)
= 1 = σ2

µ(g) for all n ≥ 1 . (25)

Proof. If n ≥ 1 and x ∈ On then mx = 2n, and On has cardinality 2n, so αn = 2n

n(2n−1) . Since

g(1− x) = −g(x), and the set On is invariant under x 7→ 1− x, (23) implies that

βn = 0 for all n ≥ 1 , (26)

while

γn = nαn =
2n

2n − 1
for all n ≥ 1 . (27)

Now ∆g(z, t) = exp (−
∑∞

n=1 ag,n(t)zn) for z of sufficiently small modulus, therefore

∂2

∂t2
∆g(z, t) =

( ∞∑
n=1

a′g,n(t)zn

)2

∆g(z, t)−

( ∞∑
n=1

a′′g,n(t)zn

)
∆g(z, t) ,

and setting t = 0, so that a′g,n(0) = βn = 0 for all n ≥ 1 by (26), gives

∂2

∂t2
∆g(z, t)

∣∣∣∣
t=0

=

(
−
∞∑
n=1

γnz
n

)
∆g(z, 0) (28)

for z of sufficiently small modulus.

Now ∂
∂z∆g(z, t) =

(
−
∑∞

n=1 nag,n(t)zn−1
)

∆g(z, t), so that by (27),

∂

∂z
∆g(z, t)

∣∣∣∣
t=0

=

(
−
∞∑
n=1

nαnz
n−1

)
∆g(z, 0) =

(
−
∞∑
n=1

γnz
n−1

)
∆g(z, 0) . (29)
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Comparing (28) and (29), which are valid for z of sufficiently small modulus, gives

∂2

∂t2
∆g(z, t)

∣∣∣∣
t=0

= z
∂

∂z
∆g(z, t)

∣∣∣∣
t=0

(30)

which is in fact valid for all z ∈ C, by analytic continuation, since both sides of the equation are entire

functions of z. Writing ∆g(z, t) = 1 +
∑∞

n=1 cg,n(t)zn we deduce from (30) that

∞∑
n=1

c′′g,n(0)zn =
∞∑
n=1

ncg,n(0)zn ,

and the required equality (24), and hence (25), follows by comparing coefficients. �

Remark 2. The setting of Proposition 2 allows an explicit illustration of the quadratic exponential

decay of the coefficients cn(0) (and hence of the c′′n(0) = ncn(0)). Writing

∆g(z, 0) = exp
(
−
∞∑
n=1

zn

n

2n

2n − 1

)
= exp

( ∞∑
j=0

log
(

1− z

2j

))
=
∞∏
j=0

(
1− z

2j

)
,

we see that

cn(0) = (−1)n
2n∏n

i=1(2i − 1)
,

and therefore11

|cn(0)| = 2n∏n
i=1(2i − 1)

≤ 2n∏n−1
k=1 2k

=
2n

2n(n−1)/2
=

(
1√
2

)n2−3n

, (31)

so in particular

cn(0) = O(κn
2
) as n→∞ , for all κ >

1√
2
. (32)

4.2. Rapid approximation. Suppose, as in §4.1, that T : X → X is the doubling map, and now

define g : X → R by g(x) = x2. Clearly the integral of g is known explicitly, namely
∫
g dµ = 1/3, and

if f = g− 1/3 then
∫
f dµ = 0, and σ2

µ(g) = σ2
µ(f), and the equivalent form of the diffusion coefficient

σ2
µ(f) =

∫
f2 dµ+ 2

∑∞
n=1

∫
f ◦ Tnf dµ (see e.g. [3]) gives

σ2
µ(g) =

∫
f2 dµ+ 2

∞∑
n=1

∫
f ◦ Tnf dµ =

1

45

(
4 + 2

∞∑
n=2

23+n − 2n−1 + 1

4n

)
=

7

27
. (33)

More generally, for T the doubling map, we note in passing that there are exact formulae for the

diffusion coefficient of monomials xk (e.g. for g(x) = x3 it can can be shown that σ2
µ(g) = 2783

11760), and

indeed for general polynomials, which can be derived from the following result:

Proposition 3. Let T : X → X be the doubling map, and µ Lebesgue measure. If Bk denotes the

k-th Bernoulli polynomial, then its diffusion coefficient is given by

σ2
µ(Bk) =

(
2k + 1

2k − 1

)
(k!)2

(2k)!
|β2k|

where β2k = B2k(0) is the 2k-th Bernoulli number.

11In fact a slight sharpening of (31) gives |cn(0)| ≤ K(1/
√

2)n
2−n for K =

∏∞
i=1(1− 2−i)−1 ≈ 3.462746.
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n σ2
n ln

7 0.2592 6043769067826947393267112262663116939168486481809969132 39

8 0.25925925 204436123648088652153817588245883502977988965009816 54

9 0.2592592592 8044946963297173564707938908379066357005434712266 70

10 0.2592592592592 2920165588728570045103044970940476420045080830 89

11 0.2592592592592592 7995766665750877478547938238966664497426822 110

12 0.25925925925925925925 231122434472300165656411496230961424753 133

13 0.2592592592592592592592 6039994958602742793206134750195100492 159

14 0.259259259259259259259259259 16741839472832935929572240739708 186

15 0.2592592592592592592592592592592 6289380219067410638708410596 215

16 0.259259259259259259259259259259259259 18842625999409134711672 246

17 0.259259259259259259259259259259259259259259 94017594431303195 280

18 0.25925925925925925925925925925925925925925925925 602612899772 315

19 0.2592592592592592592592592592592592592592592592592592 6685093 352

20 0.25925925925925925925925925925925925925925925925925925925925 392

Table 1. Quadratic exponential convergence of approximations σ2
n (formed using pe-

riodic points of period up to n) to the diffusion coefficient σ2
µ(g) = 7/27 for T the

doubling map and g(x) = x2. Convergence is O(κn
2
) as n → ∞ for any κ > 1/

√
2,

with ln := [log1/
√

2 |σ
2
n − σ2

µ(g)|] tabulated (note that n2 − 11 ≤ ln ≤ n2 − 8 for

7 ≤ n ≤ 20).

Proof. The Bernoulli polynomial Bk is an eigenvector of the Perron-Frobenius operator L, with cor-

responding eigenvalue 2−k, since it is readily checked that the generating function

G(x, y) =
yexy

ey − 1
=
∞∑
n=0

Bn(x)
yn

n

satisfies LG(x, y) = G(x, y/2) (see [6]). Now σ2
µ(Bk) =

∫
B2
k dµ+ 2

∑∞
n=1

∫
Bk ◦ TnBk dµ, and∫

Bk ◦ TnBk dµ =

∫
BkLnBk dµ = 2−kn

∫
B2
k dµ = 2−kn

(k!)2

(2k)!
|β2k|

since
∫
B2
k dµ = (k!)2

(2k)! |β2k| (see e.g. [1]), so the result follows. �

For the purpose of observing the speed of approximation of our algorithm, the first six approxima-

tions12 σ2
n are σ2

1 = 1/4, σ2
2 ≈ 0.200617, σ2

3 ≈ 0.321554, σ2
4 ≈ 0.191905, σ2

5 ≈ 0.262566, σ2
6 ≈ 0.259167,

which after a slow start show signs of approaching σ2 = 7/27 = 0.2592̇59̇. The successive approxi-

mants shown in Table 1 illustrate the quadratic exponential convergence, which as in §4.1 is O(κn
2
)

as n → ∞ for any κ > 1/
√

2, with the integer parts ln of log1/
√

2 |σ
2
n − σ2

µ(g)| also tabulated, and

observed to satisfy n2 − 11 ≤ ln ≤ n2 − 8 for 7 ≤ n ≤ 20.

12In this example we could equally well exploit the fact that
∫
g dµ = 1/3 is known precisely, and use the approx-

imations σ̂2
n given in Corollary 1(e), for the function f = g − 1/3 (which has zero mean). For example σ̂2

1 ≈ 0.27777,

σ̂2
2 ≈ 0.43827, σ̂2

3 ≈ 0.38515, σ̂2
4(g) = 0.22228, σ̂2

5 ≈ 0.26163, σ̂2
6 ≈ 0.25918, σ̂2

7 ≈ 0.259260, σ̂2
8 ≈ 0.2592592530,

σ̂2
9 ≈ 0.259259259277, σ̂2

10 ≈ 0.259259259259232, and more generally the sequences σ2
n and σ̂2

n converge to σ2 = 7/27 at

the same rate.
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n σ2
n ln

5 0.758952899740951117289050379204640628558539620626312810772873 4

6 0.197308632855131955295248351242175440134141168057749343595655 8

7 0.3 69358110165438698087894292076038462203989053463605038232170 23

8 0.3 59726860572647647166355095586883486801678160823100080553030 38

9 0.3 60119513886829472800814356315023056103035487654360736238916 56

10 0.3601 09316739022418987224588456622015209559108690908744627894 76

11 0.360109 488057981893593934226218468806113624400705497746276066 99

12 0.36010948 6185859588343561990599828878966607691239152388199536 123

13 0.3601094861 99222993644688357957828705184562158699412145912511 149

14 0.360109486199 160481163645430040654615882458267775416396263478 178

15 0.360109486199160 673287014050839470838927840191836038181843789 209

16 0.36010948619916067 2898306093693521789682071899149118320835685 241

17 0.360109486199160672898 824643277247080597474593298682526056684 276

18 0.360109486199160672898824 186562820134550885626934057465459723 313

19 0.360109486199160672898824186 828679098981571382241772652080312 351

20 0.360109486199160672898824186828 576723147913766774713709905523 392

21 0.3601094861991606728988241868285767 49246076750137553904058580 435

22 0.36010948619916067289882418682857674924 1669504536317250742499 480

23 0.360109486199160672898824186828576749241669 997833840690090818 527

24 0.360109486199160672898824186828576749241669997 797227061606200 576

25 0.36010948619916067289882418682857674924166999779722 8864417886 ∞

Table 2. Quadratic exponential convergence of approximations σ2
n (formed using

periodic points of period up to n) to the diffusion coefficient σ2
µ(g) for the Lanford

map T (x) = 2x+ 1
2x(1− x) (mod 1) with absolutely continuous invariant probability

measure µ and function g(x) = x2. Convergence is O(κn
2
) as n → ∞ for some κ < 1,

and it appears that κ may be chosen to be approximately equal to
√

2/3; the quantities

ln := [log√
2/3
|σ2
n − σ2

25|] are tabulated.

5. The Lanford map: computed approximations to the diffusion coefficient

Let T : X → X be the Lanford map, introduced in [8] and defined by

T (x) = 2x+
1

2
x(1− x) (mod 1) .

As in [2], we shall be interested in approximating the diffusion coefficient σ2
µ(g) where the function

g : X → R is defined by g(x) = x2. Table 2 gives the sequence of approximations σ2
n to σ2

µ(g), using

points of period up to n = 25.

We note that |σ2
25 − σ2

24| ≤ 10−50, strongly suggesting that |σ2
25 − σ2

µ(g)| ≤ 10−50, though of course

this does not constitute a rigorous proof. The remainder of this article is devoted to the development of

techniques for rigorously deriving an error bound for approximations of this kind; the approach is valid

in the general context of real analytic T and g, and in the particular case of our model problem (the

Lanford map T , and g(x) = x2), it turns out that we can rigorously prove |σ2
25−σ2

µ(g)| < 1.48×10−18

(see Theorem 3).
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Notation 3. Writing the Lanford map T as

T (x) =


5x
2 −

x2

2 for x ∈ X0 :=
[
0, 5−

√
17

2

)
5x
2 −

x2

2 − 1 for x ∈ X1 :=
[

5−
√

17
2 , 1

]
,

(34)

we see that its real analytic inverse branches τi : X → Xi are given by13

τ0(x) =
1

2

(
5−
√

25− 8x
)
, τ1(x) =

1

2

(
5−

√
25− 8(x+ 1)

)
. (35)

Remark 3. (a) As mentioned in §3.3, the fact that the τi are contractions facilitates the location

of the period-n points for T , since they are fixed points of suitable compositions τξ1 ◦ · · · ◦ τξn .

The computational procedure for locating the collection of period-n points is very swift for

smaller values of n; high level software packages such as Mathematica or Matlab may be

used for this purpose, though the exponential growth in the number of period-n points makes

it advantageous to use an imperative programming language for larger n. For this paper

the location of periodic points for the Lanford map was carried out on a personal computer

with Fortran F07 compiler using MPFUN MPFR packages by D. Bailey (allowing for thread-safe

arbitrary precision computations), for all periods n up to n = 25, following the algorithm as

described in §3.

(b) It is noteworthy that in all cases studied (those of §4 as well as this section), the approximations

to σ2
µ(g) are rather inaccurate (e.g. not correct to 2 decimal places) until points of period at

least 5 are incorporated into the approximation.

(c) In [2, §4.6], a non-rigorous experiment is performed, which seems to suggest that σ2
µ(g) lies in

[0.361, 0.363]. This contrasts with our sequence of approximations in Table 2, and in particular

with our best approximation σ2
25. It follows from Theorem 3 that the approximation error of

the experiment in [2] is at least 10−3.

(d) Note that minx∈X T
′(x) = T ′(1) = 3/2, corresponding to the fact that 2/3 is the largest value

attained on X by the derivatives of the inverse branches τi. The value 2/3 appears to be

significant concerning the rate at which the approximants σ2
n approach the diffusion coefficient

σ2
µ(g). Assuming σ2

25 to be approximately equal to σ2
µ(g), so that δn := |σ2

n−σ2
25| ≈ |σ2

n−σ2
µ(g)|,

we note that the values εn := exp(n−2 log δn) are close to
√

2/3 (e.g. ε22 ≈
√

0.668617,

ε23 ≈
√

0.667478, ε24 ≈
√

0.666508), and we therefore tabulate ln := [log√
2/3
|σ2
n − σ2

25|]
in Table 2 to illustrate the quadratic exponential convergence. In view of this, it is unsurpris-

ing that the value
√

2/3 (or some value rather close to it) also appears to dictate the quadratic

exponential decay of the coefficients cn(t) of the determinants ∆g(z, t) = 1+
∑∞

n=1 cn(t)zn: for

example the cn(0) in Table 7 are such that the terms κn := exp(n−2 log |cn(0)|) appear to be

converging to a value close to, or equal to,
√

2/3 (e.g. for 20 ≤ n ≤ 25 the κn are approximately√
0.674246,

√
0.673346,

√
0.672570,

√
0.671899,

√
0.671313,

√
0.670801 respectively). On the

basis of the observed behaviour for the Lanford map, and for the doubling map in §4, one might

speculate that for more general real analytic maps T : X → X and functions g : X → R, if

κT := (inf{m1/n
x : x ∈ On, n ∈ N})−1/2 then |σ2

n − σ2
µ(g)| = O(κn

2
) as n → ∞ for all κ > κT ,

and that limn→∞ exp(n−2 log |cg,n(t)|) = κT for all t ∈ C. This would constitute a strength-

ening of our results that if θ ∈ (κ2
T , 1) is the contraction ratio for an admissible disc, then

13Note that when discussing the Lanford map, our indexing of the intervals Xi and inverse branches τi differs from

that used in the rest of the article (where i = 1, . . . , l for some l ≥ 2).
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|σ2
n − σ2

µ(g)| = O(κn
2
) as n→∞ for all κ > θ1/2, and lim supn→∞ exp(n−2 log |cg,n(t)|) ≤ θ1/2

for all t ∈ C.

6. Eigenvalues and approximation numbers

In this section we recall the definition of approximation numbers sn(Lg,t) for the transfer operator

Lg,t, and introduce a sequence αn(t) of upper bounds for sn(Lg,t), which we call approximation bounds.

By then defining the associated contraction ratio θ ∈ (0, 1) we are able to establish (see Corollary 2)

the exponential bound sn(Lg,t) ≤ αn(t) ≤ Ktθ
n, for a certain explicit constant Kt > 0, which in

particular will facilitate (see Corollary 3 in §7) a proof of the quadratic exponential decay of the

Taylor coefficients for the associated determinant.

Let D ⊂ C be an open disc of radius % centred at c, and let {λn(t)}∞n=1 denote the eigenvalue

sequence for the operator Lg,t : H2(D)→ H2(D), with the convention that eigenvalues are ordered by

decreasing modulus and repeated according to their algebraic multiplicities. The Taylor coefficients

cn(t) of ∆g(·, t) then satisfy (see e.g. [15, Lem. 3.3]) the identity

cn(t) =
∑

i1<...<in

n∏
j=1

λij (t) .

For i ≥ 1, the ith approximation number of Lg,t : H2(D)→ H2(D) is defined to be the value

si(Lg,t) := inf{‖Lg,t −M‖ : rank(M) < i} ,

and the well known relation
∣∣∣∑i1<...<in

∏n
j=1 λij (t)

∣∣∣ ≤∑i1<...<in

∏n
j=1 sij (Lg,t) (see e.g. [7, Cor. VI.2.6])

implies that

|cn(t)| ≤
∑

i1<...<in

n∏
j=1

sij (Lg,t) . (36)

If, for k ≥ 0, we define mk : D → C by

mk(z) = %−k(z − c)k , (37)

then {mk}∞k=0 constitutes an orthonormal basis for H2(D). For n ≥ 1 we can define the corresponding

nth approximation bound αn(t) by

αn(t) =

( ∞∑
k=n−1

‖Lg,t(mk)‖2
)1/2

, (38)

and these values yield a simple upper bound on the approximation numbers of the transfer operator:

Lemma 2. For n ≥ 1, the nth approximation number of Lg,t : H2(D)→ H2(D) satisfies

sn(Lg,t) ≤ αn(t) . (39)

Proof. If f ∈ H2(D) then {(f,mk)}∞k=0 ∈ l2(C). Defining L(n)
g,t := Lg,tPn, where Pn : H2(D)→ H2(D)

is defined by Pn(f) =
∑n−2

k=0(f,mk)mk, we obtain the estimate

‖(Lg,t − L(n)
g,t )f‖ = ‖

∞∑
k=n−1

(f,mk)Lg,t(mk)‖ ≤
∞∑

k=n−1

|(f,mk)|‖Lg,t(mk)‖ ,
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and the Cauchy-Schwarz inequality then implies

‖(Lg,t − L(n)
g,t )f‖ ≤

( ∞∑
k=n−1

‖Lg,t(mk)‖2
)1/2( ∞∑

k=n−1

|(f,mk)|2
)1/2

≤

( ∞∑
k=n−1

‖Lg,t(mk)‖2
)1/2

‖f‖ ,

and hence ‖Lg,t−L(n)
g,t ‖ ≤

(∑∞
k=n−1 ‖Lg,t(mk)‖2

)1/2
= αn(t). But L(n)

g,t has rank n−1, so the required

inequality (39) follows. �

Definition 2. Let D′ be the smallest disc, concentric with D, such that ∪li=1τi(D) ⊂ D′, and %, %′ the

respective radii of D,D′. The corresponding contraction ratio θ = θD is defined to be θ = θD := %′/%.

Lemma 3. Let D be an admissible disc, with contraction ratio θ = θD. If g : (0, 1) → R has a

holomorphic continuation to a bounded function on D, and each |τ ′i(·)| has a holomorphic continuation

to a bounded function on D, then for all k ≥ 0,

‖Lg,t(mk)‖ ≤ θk
l∑

i=1

‖wi,t‖∞ . (40)

Proof. Defining wi,t : D → C by wi,t(z) = etg(τi(z))|τ ′i(z)|, we can write Lg,t =
∑l

i=1Mi,tCi, where

Ci,Mi,t : H2(D)→ H2(D) are given by Cif := f ◦ τi and Mi,tf := wi,tf . It follows that

‖Lg,t(mk)‖ ≤
l∑

i=1

‖Mi,tCi(mk)‖ ≤
l∑

i=1

‖wi,t‖∞‖Ci(mk)‖ . (41)

Now each τi(D) is contained in the disc D′, with the same centre c as D, and of radius %′ = θ%,

therefore |Ci(mk)(z)| = %−k|τi(z) − c|k < %−k(%′)k = θk for all z ∈ D. It follows that ‖Ci(mk)‖ ≤ θk

and combining this with (41) gives the required inequality (40). �

Corollary 2. Under the hypotheses of Lemma 3, if Kt :=
∑l
i=1 ‖wi,t‖∞
θ
√

1−θ2 then

sn(Lg,t) ≤ αn(t) ≤ Ktθ
n for all n ≥ 1 . (42)

Proof. Combining (38) and Lemma 3 gives

αn(t) ≤

( ∞∑
k=n−1

θ2k

)1/2 l∑
i=1

‖wi,t‖∞ =
θn−1

√
1− θ2

l∑
i=1

‖wi,t‖∞ = Ktθ
n ,

while the inequality sn(Lg,t) ≤ αn(t) is the content of Lemma 2. �

7. Euler bounds and computed bounds

In this section we introduce two different kinds of bound on the Taylor series coefficients of the

determinant ∆g(·, t). The first of these, the Euler bound, has a simple closed form and is readily seen

to converge to zero at a quadratic exponential rate. This implies the quadratic exponential decay of

the Taylor coefficients (see Corollary 3), and hence that the determinant is an entire function (see

Corollary 4); importantly, the inequality proved in Corollary 3 is subsequently used in §8 to rigorously

bound one part of the error term in our diffusion coefficient approximation. The second kind of bound

on the Taylor coefficients of the determinant is based on the approximation bounds αn(t) introduced in

§6, and motivated by the recognition (see the comments in §1) that despite the quadratic exponential

decay of the Euler bounds, for practical purposes they may be insufficiently sharp even for moderately

large values of n. By first defining an upper computed approximation bound αn,N,+(t) (the large integer
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N plays the role of a proxy for ∞ in the definition (38) of αn(t)), the inequality (36) then motivates

our definition of the upper computed Taylor bound (53), and the resulting Taylor coefficient bound

in Proposition 4 provides a key ingredient for the validated approximation of the diffusion coefficient

σ2
µ(g) described in §8.

Let us write

En(r) :=
rn(n+1)/2∏n
i=1(1− ri)

=
∑

i1<...<in

ri1+...+in . (43)

In view of the following bound (44), and the fact that the identity in (43) was first given by Euler

(cf. [5, Ch. 16]), we shall refer to the quantity Kn
t En(θ) as the Euler bound on the nth Taylor coefficient

of the determinant ∆g(·, t).

Corollary 3. Under the hypotheses of Lemma 3, if ∆g(z, t) = 1 +
∑∞

n=1 cn(t)zn then

|cn(t)| ≤ Kn
t En(θ) for all n ≥ 1 . (44)

Proof. From (36) and (42), |cn(t)| ≤
∑

i1<...<in

∏n
j=1 sij (Lg,t) ≤ Kn

t

∑
i1<...<in

θi1+...+in . �

Corollary 4. Under the hypotheses of Lemma 3, if ∆g(z, t) = 1 +
∑∞

n=1 cn(t)zn, and κ ∈ (θ1/2, 1),

then

cn(t) = O(κn
2
) as n→∞ (45)

for all t ∈ C, and in particular the determinant ∆g(·, t) is an entire function.

Proof. The asymptotic (45) is immediate from (44), and this in particular implies that the Taylor

coefficients of ∆g(·, t) tend to zero faster than any exponential, hence the function is entire. �

In order to exploit Lemma 2, which asserts that sn(Lg,t) ≤ αn(t) =
(∑∞

k=n−1 ‖Lg,t(mk)‖2
)1/2

, we

require a practical means of computing the approximation bound αn(t). This will consist of bounding∑∞
k=n−1 ‖Lg,t(mk)‖2 by the sum of an exactly computed long finite sum

∑N
k=n−1 ‖Lg,t(mk)‖2 (the

H2(D) norms of the summands can be evaluated using numerical integration14, since each Lg,tmk is

known in closed form) and a rigorous upper bound on
∑∞

k=N+1 ‖Lg,t(mk)‖2 using (40).

With this in mind, for n,N ∈ N with n ≤ N , we define the lower computed approximation bound

αg,n,N,−(t) = αn,N,−(t) :=

(
N∑

k=n−1

‖Lg,t(mk)‖2
)1/2

, (46)

and the upper computed approximation bound

αg,n,N,+(t) = αn,N,+(t) :=

αn,N,−(t)2 +

(
l∑

i=1

‖wi,t‖∞

)2
θ2(N+1)

1− θ2

1/2

. (47)

Lemma 4. For t ∈ C, and n,N ∈ N with n ≤ N ,

αn,N,−(t) ≤ αn(t) ≤ αn,N,+(t) ≤ Kt(1 + θ2(N+2−n))1/2θn . (48)

Proof. The inequality αn,N,−(t) ≤ αn(t) is clear. To prove αn(t) ≤ αn,N,+(t) we use (40) to give

αn(t)2 =
∑N

k=n−1 ‖Lg,t(mk)‖2+
∑∞

k=N+1 ‖Lg,t(mk)‖2 ≤
∑N

k=n−1 ‖Lg,t(mk)‖2+
(∑l

i=1 ‖wi,t‖∞
)2

θ2(N+1)

1−θ2 ,

14e.g. for the computations in §8 these integrals were computed with 70 digit accuracy using Mathematica.



18 O. JENKINSON, M. POLLICOTT & P. VYTNOVA

and the inequality follows. To prove that αn,N,+(t) ≤ Kt(1 + θ2(N+2−n))1/2θn, note that combining

(42) with αn,N,−(t) ≤ αn(t) gives αn,N,−(t) ≤ Ktθ
n, so (47) gives

αn,N,+(t) ≤

(Ktθ
n)2 +

(
l∑

i=1

‖wi,t‖∞

)2
θ2(N+1)

1− θ2

1/2

=
(

(Ktθ
n)2 +K2

t θ
2(N+2)

)1/2
,

and the result follows. �

The αn,N,+(t) can now be used to give rigorous upper bounds on the Taylor coefficients of ∆g(·, t).
For t ∈ C, and n,M,N ∈ N with n ≤M ≤ N , define the Taylor bound βMn,N,+(t) by

βMg,n,N,+(t) = βMn,N,+(t) :=
∑

i1<...<in

n∏
j=1

αMij ,N,+(t) , (49)

where the sum is over those i = (i1, . . . , in) ∈ Nn which satisfy i1 < i2 < . . . < in, and the sequence

(αMn,N,+(t))∞n=1 is defined by:

αMn,N,+(t) :=

{
αn,N,+(t) for 1 ≤ n ≤M ,

Ktθ
n for n > M .

(50)

Note that from (42), (48) and (50) we have sn(Lg,t) ≤ αMn,N,+(t), which combined with (36) estab-

lishes that the Taylor bounds βMn,N,+(t) are indeed bounds on the modulus of the nth Taylor coefficient

of ∆g(·, t):
|cn(t)| ≤ βMn,N,+(t) . (51)

As computable approximations to βMn,N,+(t) we then define the lower computed Taylor bound by

βM,−
g,n,N,+(t) = βM,−

n,N,+(t) :=
∑

i1<...<in≤M

n∏
j=1

αij ,N,+(t) . (52)

and for Q ∈ N with n ≤ Q ≤M ≤ N we define the upper computed Taylor bound by

βM,+
g,n,N,+(t) = βM,+

n,N,+(t) := βM,−
n,N,+(t) +

n−1∑
l=0

βM,−
l,N,+(t) θM(n−l)En−l(θ)K

n−l
t

(
1 + θ2(N+2−Q)

)(n−l)/2
.

(53)

In practice the sum on the righthand side of (53) will be extremely small, though is sufficient for

the upper computed Taylor bound to be an upper bound on |cn(t)|:

Proposition 4. For t ∈ C, and Q,M,N ∈ N with Q ≤M ≤ N ,

|cn(t)| ≤ βM,+
n,N,+(t) for all 1 ≤ n ≤ Q . (54)

Proof. If In := {i = (i1, . . . , in) ∈ Nn : i1 < . . . < in} then In =
⋃n
l=0 I

(l)
n is a disjoint union,

where the I(l)
n are defined by I(l)

n = {i = (i1, . . . , in) ∈ In : il ≤ M < il+1} for 1 ≤ l ≤ n − 1 and

I(0)
n = {i = (i1, . . . , in) ∈ In : M < i1}, I(n)

n = {i = (i1, . . . , in) ∈ In : in ≤ M}. If we define

β
M,(l)
n,N,+(s) :=

∑
i∈I(l)n

∏n
j=1 α

M
ij ,N,+

(s) for 0 ≤ l ≤ n, so that β
M,(n)
n,N,+(s) = βM,−

n,N,+(s), we obtain

βMn,N,+(s)− βM,−
n,N,+(s) =

n−1∑
l=0

β
M,(l)
n,N,+(s) . (55)
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Setting J := Kt

(
1 + θ2(N+2−Q)

)1/2
, Lemma 4 gives αn,N,+(t) ≤ Jθn for all 1 ≤ n ≤ Q, and this can be

used to bound each β
M,(l)
n,N,+(s) =

∑
i∈I(l)n

∏n
j=1 α

M
ij ,N,+

(s) ≤ Jn−l
∑

i∈I(l)n
θil+1+...+in

∏l
j=1 α

M
ij ,N,+

(s) , or

in other words β
M,(l)
n,N,+(s) ≤ Jn−l(

∑
i∈I(l)l

∏l
j=1 α

M
ij ,N,+

(s))(
∑

ι∈In−l θ
(n−l)Mθι1+...+ιn−l), and therefore

β
M,(l)
n,N,+(s) ≤ Jn−lβM,−

l,N,+(s) θM(n−l) En−l(θ), and substituting these bounds into (55) gives

βMn,N,+(t)− βM,−
n,N,+(t) ≤

n−1∑
l=0

βM,−
l,N,+(t) θM(n−l)En−l(θ)J

n−l for all 1 ≤ n ≤ Q . (56)

Now (53) and (56) together give βMn,N,+(t) ≤ βM,+
n,N,+(t), which combined with (51) gives (54). �

8. Validated numerics: the Lanford map

With the theory of §6 and §7 in hand, we are finally in a position to rigorously justify the quality

of our computed approximation (see §5) to the diffusion coefficient σ2
µ(g) in the case of our model

problem, namely the case of T the Lanford map, µ its absolutely continuous invariant probability

measure, and g : X → R the function g(x) = x2. In §8.1 we choose a suitable disc D, compute the

associated contraction ratio θ and constants Kt, and make choices of the natural numbers M,N,Q

which arise in connection with the computed Taylor bounds of §7. In §8.2 we establish (see Proposition

5) rigorous bounds on the tails of five series which arise in the formula for σ2
µ(g) derived in Corollary 1;

each series represents a certain derivative of the determinant, and the bounds are established via our

Euler bounds and computed Taylor bounds on its Taylor coefficients cn(t). In §8.3 these tail estimates

are combined with the exact evaluations of the corresponding truncated series obtained via periodic

point calculations (as described in §5) to prove a rigorous bound on σ2
µ(g) (see Theorem 3). In §8.4

we prove Theorems 1 and 2, which were stated in §1; Theorem 2 is seen to be a minor variant of

Theorem 3, while the more abstract Theorem 1 is established by combining the techniques used to

prove Theorem 3 with the Taylor series asymptotic (45) from Corollary 4.

8.1. Computed approximation bounds and computed Taylor bounds. Choosing15 D to be

the open disc centred at c = 0.664, of radius % = 0.87, we note that both image discs τ0(D) and

τ1(D) are contained in the disc D′ centred at c, of radius %′ = τ1(c + r) − c, and the corresponding

contraction ratio can be computed as

θ =
%′

%
=

918− 10
√

2955

435
= 0.860691685064194628752049570062144712194108488685514534 . . . (57)

For i = 0, 1 we have

wi,t(z) = etg(τi(z))τ ′i(z) = et(τi(z))
2
τ ′i(z) .

We shall be particularly interested in the choices t = 0 and16 t = 1/20, and in these cases the

supremum norm on D for both functions w0,t and w1,t is attained by evaluating at z = c+ %,

‖w0,0‖∞ = τ ′0(c+ %) = 10

√
5

1591
= 0.56059589378465950773976123712854581727310648803927 . . . ,

15We make this choice so as to minimise the error estimates arising from the computed Taylor bounds.
16The choice t = 1/20 is close to optimal for the purpose of estimating c′n(0) and c′′n(0) via Cauchy’s integral formula

in the proof of Proposition 5. This involves, respectively, the integration of cn(ζ)ζ−2 and cn(ζ)ζ−3 over a circular contour

centred at 0, and for both integrands there is a tension between the bound on |cn(ζ)|,which increases with |ζ|, and the

bound on |ζ−k| (for k = 2, 3), which decreases with |ζ|.
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‖w1,0‖∞ = τ ′1(c+ %) = 10

√
5

591
= 0.91979546023193796360889752457354830828352420883553 . . . ,

‖w0,1/20‖∞ = exp

(
1

20
g(τ0(c+ %))

)
τ ′0(c+ %) = 0.575158859780423676330133482123073962520 . . . ,

‖w1,1/20‖∞ = exp

(
1

20
g(τ1(c+ %))

)
τ ′1(c+ %) = 1.016328356027323344809430682923765554385 . . . .

We can then compute K0 and K1/20 to be

K0 =
‖w0,0‖∞ + ‖w1,0‖∞

h
√

1− θ2
= 3.378338827972047629989286401578445782815 . . .

K1/20 =
‖w0,0‖∞ + ‖w1,0‖∞

h
√

1− θ2
= 3.6318660202903086618402475203542507816 . . .

We know that |cn(t)| ≤ Kn
t En(θ) for all n ≥ 1, and will be interested in those n which are large

enough for this bound to be effective, for the cases t = 0 and t = 1/20. It is easily computed that

in both of these cases, the Euler bound Kn
t En(θ) does not even become smaller than 1 until n > 20,

and when n = 26 (the smallest value of n for which we do not have access to the period-n points) it

is of the order of 10−5 for small t, so the Euler bound by itself would only permit a bound on σ2
µ(g)

which is accurate to around 1 decimal place. It is therefore crucial that we use the computed Taylor

bounds in order to yield the high accuracy bound on σ2
µ(g) given in Theorem 3, and in the proof of

that result we use the Euler bounds only for n > 40.

Henceforth let Q = 40, M = 300, N = 400 (so that in particular Q ≤ M ≤ N , as was assumed

throughout §7), and consider the two cases t = 0 and t = 1/20.

We first evaluate the H2(D) norms of the monomial images Lg,t(mk) for 0 ≤ k ≤ N = 400. These

norms are decreasing in k, and Table 3 contains the first few evaluations, for 0 ≤ k ≤ 10. Using these

norms ‖Lg,t(mk)‖ we then evaluate, for 1 ≤ n ≤M = 300, the upper computed approximation bounds

αn,N,+(t) = αn,400,+(t) defined (cf. (47)) by17

αn,N,+(t) =

 N∑
k=n−1

‖Lg,t(mk)‖2 +

(
2∑
i=1

‖wi,t‖∞

)2
θ2(N+1)

1− θ2

1/2

.

These bounds are decreasing in n; Table 4 contains the first few evaluations, for 1 ≤ n ≤ 10.

The upper computed approximation bounds αn,400,+(t) are then used to form the upper computed

Taylor bounds18 βM,+
n,N,+(t) = βM,−

n,N,+(t) +
∑n−1

l=0 J
n−l
Q,N,t β

M,−
l,N,+(t) θM(n−l)En−l(θ), where

βM,−
n,N,+(t) = β300,−

n,400,+(t) =
∑

i1<...<in≤300

n∏
j=1

αij ,400,+(t) ,

which are listed in Tables 5 and 6.

17Note that h ≈ 0.860691 and N = 400, so θ2(N+1)

1−θ2 < 2.2× 10−52. Moreover
∑2
i=1 ‖wi,t‖∞ < 1.7 for both t = 0 and

t = 1/20, thus (
∑2
i=1 ‖wi,t‖∞)2 θ

2(N+1)

1−θ2 < 6.4 × 10−52. Combining these bounds with the values taken by αn,N,+(t), it

follows that for 1 ≤ n ≤ 300, the approximation bound αn(t) = (
∑∞
k=n−1 ‖Lg,t(mk)‖2)1/2 agrees with both computed

approximation bounds αn,N,−(t) and αn,N,+(t) to well beyond the desired 70 decimal place precision used in these

calculations.
18The difference βM,+n,N,+(t) − βM,−n,N,+(t) =

∑n−1
l=0 J

n−l
Q,N,t β

M,−
l,N,+(t) θM(n−l)En−l(θ) is small enough that the upper and

lower computed Taylor bounds, and the Taylor bound βMn,N,+(t), agree to well beyond the 70 decimal place precision

used in these computations.
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8.2. A tale of five tails: the ingredients for validating the diffusion coefficient. The following

Proposition 5 gives rigorous bounds on the tails of five series appearing in the formula for σ2
µ(g) derived

in Corollary 1.

Proposition 5. ∣∣∣∣ ∞∑
n=26

ncn(0)

∣∣∣∣ ≤ 6.8 · 10−22 =: ε1 , (58)

∣∣∣∣ ∞∑
n=26

n(n− 1)cn(0)

∣∣∣∣ ≤ 1.7 · 10−20 =: ε2 , (59)

∣∣∣∣ ∞∑
n=26

c′n(0)

∣∣∣∣ ≤ 3.4 · 10−21 =: ε3 , (60)

∣∣∣∣ ∞∑
n=26

nc′n(0)

∣∣∣∣ ≤ 8.7 · 10−20 =: ε4 , (61)

∣∣∣∣ ∞∑
n=26

c′′n(0)

∣∣∣∣ ≤ 6.7 · 10−20 =: ε5 . (62)

Proof. Now |cn(0)| ≤ βM,+
n,N,+(0), and |cn(0)| ≤ Kn

0En(θ), therefore∣∣∣∣ ∞∑
n=26

ncn(0)

∣∣∣∣ ≤ 40∑
n=26

nβM,+
n,N,+(0) +

∞∑
n=41

nKn
0En(θ) , (63)

and using the values in Table 5 we readily compute the finite sum19

40∑
n=26

nβM,+
n,N,+(0) ∈

(
6.761 · 10−22 ± 10−24

)
, (64)

while the closed form expression for the Euler bound Kn
0En(θ) means we also readily compute that

∞∑
n=41

nKn
0En(θ) ∈

(
1.376 · 10−29 ± 10−31

)
. (65)

Combining (63), (64) and (65) gives∣∣∣∣ ∞∑
n=26

ncn(0)

∣∣∣∣ ≤ 6.772 · 10−22 ,

which is the required (58).

In a similar way, Table 5 gives the finite sum

40∑
n=26

n(n− 1)βM,+
n,N,+(0) ∈

(
1.691 · 10−20 ± 10−22

)
(66)

while the closed form expression for Kn
0En(θ) means we also readily compute that

∞∑
n=41

n(n− 1)Kn
0En(θ) ∈

(
5.505 · 10−28 ± 10−30

)
(67)

19Note that the n = 26 term dominates, since 26× βM,+26,N,+(0) ≈ 26 · (2.572 . . .) · 10−23 ≈ 6.687 · 10−22.
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so adding the above two quantities gives∣∣∣∣ ∞∑
n=26

n(n− 1)cn(0)

∣∣∣∣ ≤ 1.7 · 10−20 ,

which is the required bound (59).

Next we require an estimate on the terms c′n(0). From Cauchy’s integral formula

c′n(0) =
1

2πi

∫
Γp

cn(t)

t2
dt ,

where Γp is the positively oriented circle of radius p centred at 0, we see that |c′n(0)| ≤ 1
p maxt∈Γp |cn(t)|,

and making the choice p = 1/20 gives |c′n(0)| ≤ 20 maxt∈Γ1/20
|cn(t)|. Therefore∣∣∣∣ ∞∑

n=26

c′n(0)

∣∣∣∣ ≤ 20

(
40∑

n=26

βM,+
n,N,+(1/20) +

∞∑
n=41

Kn
1/20En(θ)

)
, (68)

and using the values in Table 6 we can evaluate the finite sum

20
40∑

n=26

βM,+
n,N,+(1/20) ∈

(
3.336 · 10−21 ± 10−23

)
, (69)

while the closed form expression for Kn
1/20En(θ) allows the computation

20
∞∑

n=41

Kn
1/20En(θ) ∈

(
1.304 · 10−28 ± 10−30

)
. (70)

Combining (68), (69) and (70) gives ∣∣∣∣ ∞∑
n=26

c′n(0)

∣∣∣∣ ≤ 3.34 · 10−21 ,

which is the required bound (60).

Similarly, ∣∣∣∣ ∞∑
n=26

nc′n(0)

∣∣∣∣ ≤ 20

(
40∑

n=26

nβM,+
n,N,+(1/20) +

∞∑
n=41

nKn
1/20En(θ)

)
, (71)

and the values in Table 6 give ∣∣∣∣∣20
40∑

n=26

βM,+
n,N,+(1/20)

∣∣∣∣∣ ≤ 8.679 · 10−20 , (72)

while the closed form expression for Kn
1/20En(θ) allows the computation

20
∞∑

n=41

nKn
1/20En(θ) ∈

(
5.35 · 10−27 ± 10−29

)
. (73)

Combining (71), (72) and (73) gives ∣∣∣∣ ∞∑
n=26

nc′n(0)

∣∣∣∣ ≤ 8.68 · 10−20 ,

which is the bound (61).
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To bound c′′n(0), Cauchy’s integral formula gives

c′′n(0) =
1

2πi

∫
Γp

cn(t)

t3
dt ,

so |c′′n(0)| ≤ 1
p2

maxt∈Γp |cn(t)|, and again choosing p = 1/20 we have

|c′′n(0)| ≤ 400 max
t∈Γ1/20

|cn(t)| ,

so that ∣∣∣∣ ∞∑
n=26

c′′n(0)

∣∣∣∣ ≤ 400

(
40∑

n=26

βM,+
n,N,+(1/20) +

∞∑
n=41

Kn
1/20En(θ)

)
. (74)

The values in Table 6 then give

400

40∑
n=26

βM,+
n,N,+(1/20) ∈

(
6.673 · 10−20 ± 10−22

)
(75)

while (70) implies

400
∞∑

n=41

Kn
1/20En(θ) ∈

(
2.609 · 10−27 ± 10−29

)
. (76)

Combining (74), (75) and (76) gives ∣∣∣∣ ∞∑
n=26

c′′n(0)

∣∣∣∣ ≤ 6.68 · 10−20

which is the required bound (62). �

8.3. The rigorous bound on the diffusion coefficient. In the proof of Theorem 3 we shall make

repeated use of the following simple lemma, in settings where A and B are quantities which cannot

be computed precisely, but where a and b are computable approximations, and errors α and β can be

derived.

Lemma 5. If A,B, a, b ∈ R and α, β > 0 satisfy |A− a| ≤ α and |B − b| ≤ β, then

|AB − ab| ≤ (|b|+ β)α+ |a|β , (77)

and ∣∣∣∣ 1

A
− 1

a

∣∣∣∣ ≤ α

|a|(|a| − α)
. (78)

We can now justify the quality of our computed approximation to σ2
µ(g) as follows:

Theorem 3. If T is the Lanford map, µ is its absolutely continuous invariant probability measure,

and g(x) = x2, then the diffusion coefficient σ2
µ(g) can be approximated by σ2

25, which is derived using

T -periodic points of period up to 25, so that

|σ2
µ(g)− σ2

25| < 1.48× 10−18 . (79)

Proof. For economy of notation, let us write

RN =

N∑
n=1

ncn(0) , SN =

N∑
n=1

n(n− 1)cn(0) , (80)
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TN =
N∑
n=1

c′n(0) , UN =
N∑
n=1

nc′n(0) , VN =
N∑
n=1

c′′n(0) , (81)

where for our purposes N will equal either 25 or ∞, so in particular Corollary 1(b) gives

σ2
µ(g) =

(
T∞
R∞

)2

+
S∞

(
T∞
R∞

)2
− 2U∞

(
T∞
R∞

)
+ V∞

R∞
. (82)

Our periodic orbit calculations (as described in §5) yield the following:

R25 =
25∑
n=1

ncn(0) ∈
(
−0.121872639684483619872± 10−20

)
(83)

S25 =
25∑
n=1

n(n− 1)cn(0) ∈
(
0.684579623068217935744± 10−20

)
(84)

T25 =

25∑
n=1

c′n(0) ∈
(
−0.046788840783927713075± 10−20

)
(85)

U25 =
25∑
n=1

nc′n(0) ∈
(
0.404063585125598237926± 10−20

)
(86)

V25 =
25∑
n=1

c′′n(0) ∈
(
0.183427185483761853214± 10−20

)
(87)

Using (78) with A = R∞ and a = R25,∣∣∣∣ 1

R∞
− 1

R25

∣∣∣∣ ≤ ε1

|R25|(|R25| − ε1)
=: η1 ∈

(
4.578 · 10−20 ± 10−22

)
. (88)

Combining (88) with (85) and (60), and using (77), we obtain∣∣∣∣ T∞R∞ − T25

R25

∣∣∣∣ ≤ (|R25|−1 + η1)ε3 + |T25|η1 =: η2 ∈
(
3.004 · 10−20 ± 10−22

)
. (89)

Using (77) again gives∣∣∣∣ ( T∞R∞
)2

−
(
T25

R25

)2 ∣∣∣∣ ≤ (2

∣∣∣∣ T25

R25

∣∣∣∣+ η2

)
η2 =: η3 ∈

(
2.306 · 10−20 ± 10−22

)
. (90)

Using (77) again we see that∣∣∣∣S∞( T∞R∞
)2

− S25

(
T25

R25

)2 ∣∣∣∣ ≤ (|S25|+ ε2)η3 +

∣∣∣∣ T25

R25

∣∣∣∣2ε2 =: η4 ∈
(
1.829 · 10−20 ± 10−22

)
. (91)

Using (77) again we see that∣∣∣∣U∞( T∞R∞
)
− U25

(
T25

R25

) ∣∣∣∣ ≤ (|U25|+ ε4)η2 +

∣∣∣∣ T25

R25

∣∣∣∣ε4 =: η5 ∈
(
4.553 · 10−20 ± 10−22

)
. (92)

Writing

WN = SN

(
TN
RN

)2

− 2UN

(
TN
RN

)
+ VN ,

we use (91) and (92) to see that

|W∞ −W25| ≤ η4 + 2η5 + ε5 =: η6 ∈
(
1.763 · 10−19 ± 10−21

)
, (93)
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and hence ∣∣∣∣W∞R∞ − W25

R25

∣∣∣∣ ≤ (|R25|−1 + η1)η6 + |W25|η1 =: η7 ∈
(
1.437 · 10−18 ± 10−20

)
. (94)

Now

σ2
µ(g) =

(
T∞
R∞

)2

+
W∞
R∞

, σ2
25 =

(
T25

R25

)2

+
W25

R25
,

so from (90) and (94) we deduce

|σ2
µ(g)− σ2

25| ≤ η3 + η7 ≤ 1.48 · 10−18 ,

and the desired bound (79) follows. �

8.4. Conclusion. We conclude by proving the two theorems stated in §1, beginning with Theorem

2, which follows readily from Theorem 3:

Proof of Theorem 2. Our algorithm (see Table 2) gives

σ2
25 ∈

(
0.3601094861991606728988± 10−20

)
and Theorem 3 gives |σ2

µ(g)− σ2
25| < 1.48× 10−18, therefore

σ2
µ(g) ∈ (0.36010948619916067143, 0.36010948619916067435) ,

which in particular implies the required result. �

Finally, the more abstract Theorem 1 can be proved using ideas similar to those used in the proof

of Theorem 3:

Proof of Theorem 1. Writing ∆g(z, t) = 1 +
∑∞

n=1 cn(t)zn, the asymptotic (45) implies that each of

cn(0), c′n(0) and c′′n(0) is O(κn
2
) as n → ∞, for some κ ∈ (0, 1). For the sums defined in (80), (81),

it then follows that each of the five tails |R∞ − Rn|, |S∞ − Sn|, |T∞ − Tn|, |U∞ − Un|, |V∞ − Vn| is

O(κn
2
) as n → ∞. Using Lemma 5 we then successively deduce, via arguments analogous to those

used in the proof of Theorem 3, that the intermediate quantities |1/R∞ − 1/Rn|, |T∞/R∞ − Tn/Rn|,
|(T∞/R∞)2 − (Tn/Rn)2|, |S∞(T∞/R∞)2 − Sn(Tn/Rn)2|, |U∞(T∞/R∞) − Un(Tn/Rn)|, |W∞ − Wn|,
|W∞/R∞ −Wn/Rn| are also all O(κn

2
) as n→∞. Since

σ2
µ(g) =

(
T∞
R∞

)2

+
W∞
R∞

, σ2
n =

(
Tn
Rn

)2

+
Wn

Rn
,

we then deduce that |σ2
µ(g)− σ2

n| = O(κn
2
) as n→∞, as required.

�
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Appendix: Numerical data for the model problem

Here we include data (presented in truncation form) for various quantities used in the computation

of the diffusion coefficient σ2
µ(g) for T the Lanford map and g(x) = x2.

k ‖Lg,0(mk)‖ ‖Lg,1/20(mk)‖
0 1.072230506759545960034369362057 1.104172678680527349319786186152
1 0.596049717149185539323469146180 0.620723147283434643992316098783
2 0.369763875353908620799790724929 0.391166259479521916734808474235
3 0.276119593229594517922547820447 0.294425025977306244191853146578
4 0.227958491432695605245256206959 0.243204075162724802921362562931
5 0.190220640114195164926195507651 0.202979268290409813682614341952
6 0.157555706161007126216732351954 0.168328947218208073434709811106
7 0.130346940510248254547131671735 0.139478565402897511685346267479
8 0.108292842592902764391596660436 0.116036335936760027044425349805
9 0.090419617507249250203174802637 0.096984795408680571918324496924

10 0.075776600475413904133208619148 0.081344472381130192060647906273

Table 3. H2(D) norms ‖Lg,t(mk)‖ for Lanford map transfer operator Lg,t for
g(x) = x2, with t = 0 and t = 1/20, for disc D centred at c = 0.664, of radius
% = 0.87.

n αn,N,+(0) αn,N,+(1/20)

1 1.373917067043466452425251967170 1.427638696131557424132789994351
2 0.859051714093795610515690567921 0.904961293287001451810486961337
3 0.618623134205199498661411971713 0.658526929422198922934937003214
4 0.495952879472559770705729997203 0.529760959508181474382332373956
5 0.411979646210643105413017982909 0.440409557454526223835417989155
6 0.343164909446721117383095192041 0.367168021648856750761912948529
7 0.285619087510134990387118189296 0.305960410455054090995726782844
8 0.238231951270665058019616852773 0.255493910483664743663872215393
9 0.199409472457670207966369603912 0.214062766700294085737845205391

10 0.167441924108017577833206337586 0.179884509699295419905710072835

Table 4. Upper computed approximation bounds αn,N,+(t) for Lanford map transfer
operator Lg,t for g(x) = x2, with t = 0 and t = 1/20, for disc D centred at c = 0.664,
of radius % = 0.87, with N = 400.
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n βM,+
n,N,+(0)

0 1.00000000000000000000000000000000000000000000000000000000000000000000
1 5.91638169450327064883976456644941924161928830677363819808060713539812
2 15.5930056102352819935534233140316517118382599986298995283355433265137
3 24.4736698639000709743844193449874942721011409850977481543023124773696
4 25.7754808258198078216455439547621024386170650161794423308493443983097
5 19.4469054872453784049349390698326933609483810493437472532611644864792
6 10.9521106238726346156568796927347289533024574453173311671485824407656
7 4.73540458221471556223636638770483729911053037108254251152025488489004
8 1.60412835316935512560742467899726193208922561294836648618663181927698
9 0.43227019694704976367374985472246979377359534967354408439065009492980
10 0.09375908154725806062303320968739024457872407061926883003524399861986
11 0.01652150342101168996424088686783098220114453369280456250511074495407
12 0.00238293237948001749697274680572517696435951680662097428497778020760
13 0.00028304269463672625512060912147671161988441921765835179658913188285
14 0.00002782677155849364747420872094284640017560258716690718789367793928
15 2.27392403136506520702724564410473340446650639579722032205330246× 10−6

16 1.55001252830385066339340115927214700511589047296031298506903537× 10−7

17 8.83999766101668028957629529487694836331978784991495390797963332× 10−9

18 4.22910735620174411941773831057180480980291549806736590593484206× 10−10

19 1.70094619827541573471532294812274420039877275633876944149746895× 10−11

20 5.76253574844793924863326504428979970720822216845679266337327572× 10−13

21 1.64719543361358736487381155317306660980894721531616471482462791× 10−14

22 3.97851343969582857919989434542234955671337278329883396694974188× 10−16

23 8.13015813907035571457013570353731056069789743557218471587901060× 10−18

24 1.40725206079897102652397486145471051771037644337044022147968721× 10−19

25 2.06526294831298446834304647553465436309716315513236215167585825× 10−21

26 2.57215243104667105215824167841697542562499595143189055321291537× 10−23

27 2.72070490994043636692628731754208142998380316685815821651703231× 10−25

28 2.44590093688207448627993621838824589670936482665024996736095949× 10−27

29 1.87002244040068058743646064182298912700729836481886839796879296× 10−29

30 1.21662223061110407539286299080285544487051750134294707706848536× 10−31

31 6.73894859299114408105902864970222134509197580734796373553489611× 10−34

32 3.17951954702135581037427993130825377583766175736565112414287832× 10−36

33 1.27835316671718885749177319622144884560379835925694002589279209× 10−38

34 4.38158222578128011907566552141075137983249232012587406086472299× 10−41

35 1.28073190382903792751606572170641919527714030160004122585114832× 10−43

36 3.19356882118247708913130052922372437303467184375302002671812072× 10−46

37 6.79543778777729442805037570050636716580086586696826218847684626× 10−49

38 1.23425230994365846085219734895268399165400230577981026871766096× 10−51

39 1.91403130218947580428297036198227018700547685312967193646613596× 10−54

40 2.53488275012643454408402888067456803151862774782787701968600395× 10−57

Table 5. Upper computed Taylor bounds βM,+
n,N,+(t) for Lanford map transfer operator

Lg,t with t = 0, g(x) = x2, M = 300, N = 400, and disc D centred at c = 0.664, of
radius % = 0.87.
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n βM,+
n,N,+(1/20)

0 1.00000000000000000000000000000000000000000000000000000000000000000000
1 6.27842519703334406022340033748927178829675608493814980507714608797459
2 17.6003362119988183866754213426824373437028159179692389550954549117423
3 29.4366898216927944152313565661448722215928824631400913757149291269852
4 33.0867611911634920240882205854397496498017624116086418773855567059626
5 26.6753356435110348555530771923660527098027868636067429378252055347670
6 16.0710965899538078436477208145810313529265723398946425024786919332663
7 7.44063666302454054383943558694860088009355060221952940348668203608729
8 2.70127094064217596236351990259358495525841780837765629213799111450263
9 0.78071782310801484862526127910162690666654602643063005600755159227045
10 0.18174627347531441236057904915305258962787959831002794386840974964700
11 0.03439486702274223053770708403705609182708982722820690472000498696375
12 0.00533095477056366674311114131747398500384802945013153524121964534649
13 0.00068082190626498655702769374902264509667584958345813328144351285726
14 0.00007200388275841965360071435691243740847574318817522346898702039135
15 6.33271392110873459655379479015310649620066560990384843859282266× 10−6

16 4.64800848470789807590971030856240671418742805942662945873297418× 10−7

17 2.85553568027041612564729759621742273463462761215038353862022367× 10−8

18 1.47219033472979293213438915492415236429139393490859859980761806× 10−9

19 6.38341105718717757915909774574402061895030645318360898190706892× 10−11

20 2.33228685756150438219265787953400833864987726565924390772235464× 10−12

21 7.19235908955625772063753408644833359500811213574185949878327842× 10−14

22 1.87477911111247179179899643900730715712136223446850276009517444× 10−15

23 4.13590334226334088615441884060439848738610606398417273687178495× 10−17

24 7.73070140894702140522209504941473132524640938008515421479045415× 10−19

25 1.22553689288336734377055577029417960323883309163815462793346801× 10−20

26 1.64920824712133774857887341667964355887802022954017778167641175× 10−22

27 1.88541699764734059705504785147513397623798878093845816667050018× 10−24

28 1.83243033954492300016575720796250290917142059356438926786130103× 10−26

29 1.51499027117462581296207671180385128334726539966767247928642535× 10−28

30 1.06610892290501996421078468465905043866340941985470001595680173× 10−30

31 6.38889899955948918993224875553710714558745184415119687576651408× 10−33

32 3.26201347689449394139927031534076848195196188267851020944823308× 10−35

33 1.41959703603586750328152045570639202099993714044440242822016384× 10−37

34 5.26783612982327434661909624961672214739725086799900939911078203× 10−40

35 1.66740574038123727102261424406832509052875443488407531926208542× 10−42

36 4.50332846038763649055145870908682675097043038881690772288865126× 10−45

37 1.03810074880453070195009955535972632680521900405212333475588763× 10−47

38 2.04305109106193115584629645721971197363097686254964237369887319× 10−50

39 3.43371464442528749462619173440602768944065612071967642619009054× 10−53

40 4.92944333332153669605064037563063626241759423036425615345390256× 10−56

Table 6. Upper computed Taylor bounds βM,+
n,N,+(t) for Lanford map transfer operator

Lg,t with t = 1/20, g(x) = x2, M = 300, N = 400, and disc D centred at c = 0.664, of
radius % = 0.87.
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n En(θ) Kn
0En(θ) Kn

1/20En(θ) cn(0)

1 6.178322417156 20.872466513610 22.438839249268 -2.6666666666666
2 17.65689470317 201.52119806742 232.90240067474 2.7671447514335
3 31.06413807670 1197.7575633058 1488.1570459342 -1.4795873463144
4 37.77912144494 4921.1281303006 6573.1134807116 0.4548595107266
5 33.81588669461 14881.160574758 21368.295194231 -0.0850094435255
6 23.16343104695 34436.746764748 53159.612067142 0.0099728366537
7 12.46666302384 62614.173627336 103910.38491503 -0.0007489690661
8 5.372126671547 91153.192091602 162624.05897399 0.0000364631148
9 1.879626036050 107745.78610040 206652.10008498 −1.160290× 10−6

10 0.539728880137 104521.99820457 215513.18595829 2.426597× 10−8

11 0.128260613487 83912.867873119 186003.58802690 −3.347923× 10−10

12 0.025393003771 56124.506215835 133743.26007194 3.055073× 10−12

13 0.004210820328 31441.870270393 80547.925161555 −1.847222× 10−14

14 0.000587419646 14818.127696936 40809.937890039 7.410060× 10−17

15 0.000069186089 5896.1273174416 17456.857546576 −1.973903× 10−19

16 6.900312× 10−6 1986.6439509659 6323.3303122469 3.493983× 10−22

17 5.842164× 10−7 568.23539709633 1944.3781298067 −4.111689× 10−25

18 4.207596× 10−8 138.25848435416 508.59355192450 3.217996× 10−28

19 2.582298× 10−9 28.666012024725 113.36342306436 −1.675484× 10−31

20 1.352474× 10−10 5.0721615997794 21.563803644473 5.804730× 10−35

21 6.052600× 10−12 0.7668479758598 3.5048398385881 −1.338407× 10−38

22 2.316879× 10−13 0.0991685458492 0.4872585410565 2.054103× 10−42

23 7.592813× 10−15 0.0109793456797 0.0579947377200 −2.098636× 10−46

24 2.131922× 10−16 0.0010414738636 0.0059140789758 1.427503× 10−50

25 5.132067× 10−18 0.0000846978646 0.0005170562827 −6.465176× 10−55

26 1.059758× 10−19 5.908676× 10−6 0.0000387777099
27 1.878111× 10−21 3.537593× 10−7 2.495896× 10−6

28 2.857674× 10−23 1.818454× 10−8 1.379264× 10−7

29 3.734497× 10−25 8.028327× 10−10 6.546314× 10−9

30 4.192848× 10−27 3.045126× 10−11 2.669338× 10−10

31 4.045340× 10−29 9.925545× 10−13 9.353613× 10−12

32 3.354789× 10−31 2.780787× 10−14 2.817211× 10−13

33 2.391781× 10−33 6.697725× 10−16 7.294669× 10−15

34 1.466203× 10−35 1.387085× 10−17 1.624083× 10−16

35 7.729370× 10−38 2.470337× 10−19 3.109479× 10−18

36 3.504471× 10−40 3.783885× 10−21 5.120307× 10−20

37 1.366704× 10−42 4.985320× 10−23 7.252333× 10−22

38 4.584986× 10−45 5.650148× 10−25 8.836315× 10−24

39 1.323263× 10−47 5.508981× 10−27 9.262096× 10−26

40 3.285698× 10−50 4.621211× 10−29 8.352576× 10−28

41 7.019503× 10−53 3.335322× 10−31 6.480805× 10−30

42 1.290338× 10−55 2.071276× 10−33 4.326691× 10−32

43 2.040971× 10−58 1.106814× 10−35 2.485531× 10−34

44 2.777937× 10−61 5.089363× 10−38 1.228667× 10−36

45 3.253667× 10−64 2.013804× 10−40 5.226549× 10−39

Table 7. Lanford map: quantities En(θ), Euler bounds Kn
0En(θ) ≥ |cn(0)| and

Kn
1/20En(θ) ≥ |cn(1/20)|, for disc D centred at c = 0.664 of radius % = 0.87 (so

θ ≈ 0.860691), and coefficients cn(0) of determinant ∆g(z, 0) = 1 +
∑∞

n=1 cn(0)zn for
1 ≤ n ≤ 25.
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