
REVIEW
published: 06 November 2017

doi: 10.3389/fphys.2017.00890

Frontiers in Physiology | www.frontiersin.org 1 November 2017 | Volume 8 | Article 890

Edited by:

Stefano Morotti,

University of California, Davis,

United States

Reviewed by:

Hugo M. Vargas,

Amgen, United States

Najah Abi Gerges,

AnaBios Corporation, Inc.,

United States

*Correspondence:

Andrew Tinker

a.tinker@qmul.ac.uk

Specialty section:

This article was submitted to

Integrative Physiology,

a section of the journal

Frontiers in Physiology

Received: 26 June 2017

Accepted: 20 October 2017

Published: 06 November 2017

Citation:

Lane JD and Tinker A (2017) Have the

Findings from Clinical Risk Prediction

and Trials Any Key Messages for

Safety Pharmacology?

Front. Physiol. 8:890.

doi: 10.3389/fphys.2017.00890

Have the Findings from Clinical Risk
Prediction and Trials Any Key
Messages for Safety Pharmacology?

Jem D. Lane 1, 2 and Andrew Tinker 1*

1William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London, United Kingdom,
2Department of Cardiac Electrophysiology, Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom

Anti-arrhythmic drugs are a mainstay in the management of symptoms related to

arrhythmias, and are adjuncts in prevention and treatment of life-threatening ventricular

arrhythmias. However, they also have the potential for pro-arrhythmia and thus the

prediction of arrhythmia predisposition and drug response are critical issues. Clinical trials

are the latter stages in the safety testing and efficacy process prior to market release, and

as such serve as a critical safeguard. In this review, we look at some of the lessons to be

learned from approaches to arrhythmia prediction in patients, clinical trials of drugs used

in the treatment of arrhythmias, and the implications for the design of pre-clinical safety

pharmacology testing.
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INTRODUCTION

Cardiac arrhythmias range from the benign to the life-threatening. The former typically arise
in patients with structurally and functionally normal hearts, while the latter more commonly
arise in those with acquired or genetically-determined abnormalities in cardiac structure or
cellular electrophysiology. The two modalities currently available to directly target arrhythmias
with the aim of prevention and/or eradication are anti-arrhythmic drugs and catheter ablation.
Pharmacotherapy has been around for over 100 years, with quinine one of the first to be used
(Sneader, 2005), and ironically, one of the first to be associated with inducing arrhythmia (Schwartz
et al., 2016). For the majority of agents in use today, efficacy was based on clinical observation
rather than a priori understanding of molecular mechanisms. Anti-arrhythmic drugs have retained
a key role in the therapy of heart rhythm disorders, despite the advent of ablation. However,
their potential to cause harm through pro-arrhythmic effects has placed constraints on the use
of many existing drugs, and restricted the release of new agents to the market. The “catch-22”
facing such drugs is the requirement to alter cardiac electrophysiology enough, and under the right
circumstances, so as to prevent or terminate arrhythmias. Yet at the same time, they must not do so
too much or they risk triggering drug-induced arrhythmias. Thus, it would seem a fine balance has
to be achieved. In fact, what is required is detailed knowledge of the mechanisms of the arrhythmia
requiring treatment at the cellular, tissue and organ levels, and its vulnerable parameter(s) (Task
Force of the Working Group on Arrhythmias of the European Society of Cardiology, 1991; Rosen
and Janse, 2010). Even more problematic is that non-cardiac drugs sometimes developed for
relatively benign conditions can lead to malignant ventricular arrhythmias (Bednar et al., 2002).

Estimates of the incidence of drug-induced arrhythmia require the patient to come to medical
attention, and that the diagnosis be considered. The fact that many have concomitant structural
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heart disease makes disentangling drug-induced from
endogenous arrhythmia difficult. Partly because of this,
attention is focused on torsade de pointes (TdP), which outside
the setting of long QT syndrome (LQTS) is rare. TdP is also
characteristic of non-cardiac drug-induced long QT in patients
with normal hearts. With these considerations in mind, estimates
have been made (Sarganas et al., 2014).

Safety pharmacology seeks to exclude drugs with a significant
risk of pro-arrhythmia. The challenge is to set the threshold at
the correct level, so as to allow safe drugs to continue through
development and on to the market, and this is dependent on
the methods employed in risk assessment. These methods are
in the process of being modified, in light of advances in our
understanding of cellular electrophysiology, and the models
available. In this review, we focus on anti-arrhythmic drugs,
and the role of clinical data in informing our approaches to
assessment of their risks of pro-arrhythmia. We adhere to the
Vaughan-Williams classification system in referring to drugs by
class, acknowledging its limitations.

KEY CONCEPTS IN CARDIAC SAFETY
PHARMACOLOGY

Ion Channels and Cellular
Electrophysiology
Cardiomyocyte electrophysiology serves as the basis for
understanding arrhythmia mechanisms, pharmacological
anti-arrhythmic and pro-arrhythmic effects. The currents
responsible for generating these action potentials differ in atrial
and ventricular cardiomyocytes, and sinoatrial/atrioventricular
nodal tissue, as well as within different regions of each chamber
(Nerbonne and Kass, 2005; Grant, 2009; Figure 1).

Activation results in depolarization of the cellular membrane,
which if of sufficient magnitude to attain threshold voltage,
leads to generation of an action potential. This may then
excite a neighboring cell via gap junctions. If the source
current from one cell or group of cells is sufficient to
depolarize the neighboring cells (the “sink”), propagation occurs.
This cyclical process of transmembrane and intercellular ionic
fluxes requires reversal of the activation process, and this is
termed repolarization. Refractoriness is a distinct though closely
linked concept to repolarization, and describes the state of
a cell or tissue which is unexcitable, and unable to undergo
depolarization.

Mechanisms of Ventricular Arrhythmias
Traditionally, at a cellular and tissue level these have been
divided into disorders of impulse formation, disorders of
conduction/propagation, or a combination of both (Zipes
et al., 2005). With regards to tachyarrhythmias, the three
most commonmechanisms are abnormal automaticity, triggered
activity and re-entry. The latter two are considered most relevant
to ventricular arrhythmias. Triggered activity takes the form
of either early (EADs) or delayed afterdepolarizations (DADs).
EADs usually occur with delayed repolarization, which can cause
“repolarization instability,” rendering cells more susceptible to

premature depolarization (Shah et al., 2005). The postulated
mechanisms relate either to arrest of repolarization due to
diminished outward K+ currents, or abnormal Ca2+ influx,
either through L-type calcium channels or the Na+/Ca2+

exchange pump (Pogwizd and Bers, 2004; Shah et al., 2005).
They are best described as triggers for TdP in the setting of long
QT syndrome (LQTS). DADs occur during phase 4 following
completion of repolarization. They result from release of Ca2+

from the sarcoplasmic reticulum, which raises intracellular Ca2+

concentration ([Ca2+]i). The Na+/Ca2+ exchanger extrudes this,
with resultant import of Na+ and a net inward current which
causes premature depolarization (Nattel and Carlsson, 2006;
Figure 2).

Re-entry refers to a circus movement of wavefront
propagation, and wavelength is defined as the product of
conduction velocity and effective refractory period (ERP), and
as such, it represents the length (or volume) of tissue that is
refractory to new impulses. For re-entry to occur, wavelength
must be shorter than the re-entrant circuit path length. The
difference between these is known as the “excitable gap”—
the zone of non-refractory tissue between the wavefront and
wavetail. In theory therefore, prolonging wavelength beyond path
length should be antiarrhythmic. Indeed, this is the mechanism
of “Class III” anti-arrhythmics, though ironically, the discipline
of safety pharmacology in relation to anti-arrhythmic drugs has
arisen largely as a result of this effect. More complex iterations
of re-entry have been proposed, incorporating functional
refractoriness. In particular, the “leading circle model”, and
rotors are considered important in our attempts to understand
complex arrhythmias such as torsade de pointes and ventricular
fibrillation (Figure 3). “Substrate” is the term used to refer to
abnormal myocardium that either produces triggered activity,
or by virtue of fibrosis and/or altered cellular electrophysiology,
aids the creation of a path suitable for re-entry, or fosters wave
break and rotor formation.

QTc
The QT interval on the electrocardiogram (ECG) reflects the
time between depolarization and repolarization of the ventricles.
This interval varies with heart rate, so that a correction
must be made (QTc). Measurement of the QT interval and
adjustment for heart rate (utilizing the R-R interval—the time
between successive QRS complexes) are deemed two of the
major challenges of electrocardiography (Rautaharju et al., 2009).
Various formulae are available, and while based onmeasurements
from only 39 subjects, Bazett’s correction is most commonly
used (QTc = QT/

√
(R-R). The QT interval is relied upon as an

easily accessed biomarker, reflecting repolarization. Its relevance
is borne out by its prolongation in the LQTS, and its presaging
TdP. Nevertheless, it has a number of shortcomings (Rautaharju
et al., 2009; Sager et al., 2014).

Repolarization Reserve and Risk Modifiers
As with most rare but serious occurrences, a single factor is rarely
sufficient on its own to lead to a ventricular arrhythmia. In the
case of TdP in particular, this is due to repolarization reserve.
This describes a degree of redundancy among repolarizing
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FIGURE 1 | Schematic cardiac action potentials from different regions of the heart, with the currents that generate them. Colored lines indicate the phase of the action

potential that the current participates in. Inward currents are in red, outward currents in blue. Currents - INa, inward Na+; ICaT, T-type Ca2+; ICaL, L- type Ca2+; Ito,f,

fast transient outward; Ito,s, slow transient outward; IKur, ultra-rapid K+ delayed rectifier; IKs, slow K+ delayed rectifier; IKr, rapid K+ delayed rectifier; IK1, inward

rectifier; IKATP, ADP-activated K+ channel; IKACh, muscarinic-gated K+ channel; If, “funny” current; INCX, Na
+/Ca2+ exchange current.

FIGURE 2 | Schematic ECG, action potentials with afterdepolarizations, and

onset of torsade de pointes. (A) normal QRS complex and T wave on an ECG.

(B) action potential with early afterdepolarizations (EADs). (C) action potential

with delayed afterdepolarization (DAD, *). (D) ECG showing onset of TdP, with

a sinus beat (S) followed by a ventricular premature beat (VPB, blue) which is

triggered by an EAD.

currents, such that if one is reduced, others may compensate to
a degree, maintaining action potential duration, and preventing
EADs (Roden and Abraham, 2011). Nevertheless, reserve only
protects up to a point, and when several factors act in concert,
protection may be lost and arrhythmia may ensue. Ion channel

polymorphisms with subclinical effects, impaired clearance of
an ion channel-blocking drug, concurrent use of more than one
drug, female sex (Makkar et al., 1993; Gaborit et al., 2010) and
hormonal derangement (Lane et al., 2012) are just a few of the
factors that may modify risk (Figure 4).

DRUG-INDUCED ARRHYTHMIAS

Whilst the focus of safety pharmacology for anti-arrhythmics
is the potential to induce ventricular tachyarrhythmias, it is
worth considering other arrhythmias that may result. For
example, a number of drugs have been shown to trigger
atrial fibrillation (AF) (Strickberger et al., 1997; van der
Hooft et al., 2004; Kaakeh et al., 2012). For example, there
are good data for adenosine, dobutamine, theophyllines and
acute alcohol excess precipitating AF (Strickberger et al., 1997;
van der Hooft et al., 2004; Kaakeh et al., 2012). In the
setting of reduced clearance or concomitant administration,
atrioventricular (AV) nodal-blocking drugs such as beta-
blockers and calcium channel antagonists may induce heart
block.

Ventricular arrhythmias may occur as a result of therapy with
Class I agents (Falk, 1989; The Cardiac Arrhythmia Suppression
Trial (CAST) Investigators, 1989; Tisdale and Miller, 2010),
though this is exceedingly rarely seen in practice, likely as
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FIGURE 3 | Types of re-entry. (A) Classical anatomical re-entry. The wavelength is the product of conduction velocity and refractory period (shown in red). The

excitable gap is the section of the circuit which is unexcited, ahead of the wavefront. (B) Leading circle re-entry. The wavefront impinges on the wavetail such that

there is no excitable gap. In addition, centripetal invasion creates a central region of functional refractoriness. (C) Rotor re-entry. The wavefront and wavetail meet at a

phase singularity, which rotates around an unexcited core. The wavelength (distance between the wavefront and tail) varies according to distance from the phase

singularity. Modified from Pandit and Jalife (2013).

FIGURE 4 | Drug effects and interactions. AP, Action potential; EP, electrophysiological; EAD, early afterdepolarization; DAD, delayed afterdepolarization; TdP, torsade

de pointes; MMVT, monomorphic ventricular tachycardia; VF, ventricular fibrillation. Modified from Roden (2004).

a result of the restriction of use of these drugs to patients
without evidence of QRS or QT prolongation on the ECG, and
structurally normal hearts. Closer attention has been paid to
drugs that prolong the QT interval due to the risk of precipitating
TdP. Probably this largely stems from the fact there are more
drugs that affect repolarizing K+ currents than INa, so the
incidence of arrhythmias is higher due to more widespread use.
It may be that in addition, repolarizing currents have less reserve
than does INa, and phase 3 of the action potential is as a result,
more vulnerable.

At present, clinical practice relies largely on drug indication,
ECG markers, indices of cardiac contractility, electrolyte levels
and concurrent use of other medication with QT prolonging
effects (Drew et al., 2010) to guide risk assessment. More
accurate evidence-based scoring systems have been developed
(discussed below). Of the ECG biomarkers available, QRS
duration, QT interval, T wave morphology and non-sustained
or sustained VT are the most easily assessed and clinically
useful (Wellens et al., 2014). For example, there has been
interesting work done looking at periodic oscillations in
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repolarization as measured using the T-wave. The authors
found a low frequency oscillation <0.1Hz associated with
sympathetic activity but not heart rate variability or respiratory
ventilation. It correlated strongly with outcomes after myocardial
infarction (Rizas et al., 2014, 2017). However, it is complex
to measure. In the absence of a more readily available and
accessible measure of cardiac repolarization, the QT interval
has retained its role as an important biomarker despite its
many shortcomings (Hondeghem, 2006). However, even without
the difficulties in measurement, reliance on this oversimplifies
the assessment of drug-induced repolarization disturbance
(Hondeghem, 2006).

PRE-CLINICAL APPROACHES TO
SCREENING

A major issue for industry is identifying cardiac risk for non-
cardiac drugs: there seems to be little interest in developing
new antiarrhythmic agents for ventricular arrhythmia for
the reasons discussed below. However, it is also important
not to exaggerate potential toxicity and discard potentially
useful agents. Until recently, screening for pro-arrhythmia
was based on the International Conference on Harmonization
non-clinical and clinical evaluation guidelines, S7B and E14,
respectively (International Conference on Harmonsation of
Technical Requirements for Registration of Pharmaceuticals for
HumanUse, 2005a,b). Essentially, these focused onmeasurement
of the human ether-a-go-go related gene (hERG) channel current
IKr, and the ECG parameter QTc, as means of identifying drugs
with the potential to cause TdP. Heterologous expression systems
and animal models have been central to pre-clinical screening,
with guinea pig, rabbit, dog and monkey being the most utilized
species (Friedrichs et al., 2005; Champeroux et al., 2015). And
non-rodent models have demonstrated good correlation of in
vivo QT measurements with those in humans (Vargas et al.,
2015).

Whilst effective at excluding torsadogenic compounds from
market release, proposals for a new screening paradigm have
come about due to concerns about oversensitivity and low
specificity for detecting pro-arrhythmic potential with the
S7B/E14 guidelines, as well as a drive to reduce the number of
animals involved in experiments (Lu et al., 2008; Sager et al.,
2014; NC3Rs). In addition, improvements in understanding
of ion channel physiology, species differences in both cardiac
electrophysiology and pharmacokinetics (Haushalter et al.,
2008), developments in computer modeling, and the advent
of stem cell technology, have reached a stage where it is
advantageous to try to incorporate them in the process. A new
paradigm known as the Comprehensive in vitro Proarrhythmia
Assay (CiPA) has therefore been proposed, and is supported
by a number of national and international government and
commercial bodies (CiPA project, 2000). CiPA recommends
a move toward human-based approaches, with screening of
multiple ion channels and computer modeling central to
this. There is also the aspiration to use human induced
pluripotent stem cell (iPSC) models. Overall there is a move

away from the emphasis on IKr and the QT interval, due
to recognition of the co-dependence and interplay of ionic
currents, multichannel effects of drugs (Li et al., 2017), and
the shortcomings of the QT interval and importance of other
ECG parameters such as the PR and QRS intervals (Sager et al.,
2014).

CiPA is still in the process of being validated (Cavero et al.,
2016; Colatsky et al., 2016), and has not yet been accepted
to supersede the S7B/E14 guidelines. The hope that iPSC
derived cardiomyocytes can assume a confirmatory role within
the framework, is ambitious and perhaps the least certain of
CiPA’s four components, given their relative novelty. There is
a growing acceptance that these cells are immature compared
to native adult myocytes and are more fetal in terms of their
electrophysiology and other properties (Veerman et al., 2015;
Rodriguez et al., 2016). The latter may be circumvented by use
of human cardiac tissue, for example from organ donors (Page
et al., 2016), though this is not without its own difficulties,
chiefly the lack of availability in many countries. It may
be worthwhile to calibrate findings in iPSC cardiomyocytes
with those from human myocytes to validate measurements.
Nevertheless, a reappraisal of existing guidelines’ strengths
and weaknesses, and attempts to enhance the accuracy of
cardiac safety testing by making use of new techniques and
improved understanding, is commendable. And importantly,
the new paradigm is being systematically validated prior to
implementation.

CLINICAL TRIALS ON ANTIARRHYTHMIC
DRUGS

Clinical trials have been of paramount importance in the
field of safety pharmacology for anti-arrhythmics. Unexpected
findings have brought about the widespread use of beta-blockers
in heart failure, and the restricted use of many other drugs
such as flecainide and sotalol. They enable assessment of hard
endpoints rather than surrogates, and provide opportunities to
test repolarization and activation reserve in vivo. The main
stages in this development process are illustrated in Figure 5. An
overview of two of the most important trials is provided, prior to
looking at the evidence relating to a number of anti-arrhythmic
drugs. Rather than provide an exhaustive account of clinical trials
involving anti-arrhythmic drugs, we try to focus on randomized
trials that have been instructive in terms of safety, or changed
practice.

Cardiac Arrhythmia Suppression Trial
(CAST)
This landmark randomized controlled trial (RCT) was both
disappointing and hugely influential. To investigate whether
suppression of ventricular premature beats (VPBs) in patients
following myocardial infarction (MI) reduced their risk of
sudden death, patients were assigned to the Na+ channel/INa
blockers, encainide, flecainide, moricizine, or placebo (flecainide
also has some hERG/IKr-blocking effects, but INa blockade is
pharmacodynamically more important). A preliminary report
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FIGURE 5 | Milestones of research and development.

of the drug titration phase in 1989 revealed that despite their
apparent suppression of VPBs, there was an excess of arrhythmic
deaths in patients assigned to encainide or flecainide (The
Cardiac Arrhythmia Suppression Trial (CAST) Investigators,
1989). This was confirmed in the full report of 1498 patients
assigned to these two drugs or placebo. An excess of both
arrhythmic and non-arrhythmic cardiac deaths were seen (Echt
et al., 1991). A few points are noteworthy regarding the study.
Firstly, beta-blocker use was low by contemporary standards:
between 20 and 30% across all groups. Calcium channel blocker
use, primarily diltiazem, was high (47–53%), as was digitalis
(16–24%). Secondly, mean baseline left ventricular ejection
fraction (LVEF) was 39–40%. The second part of the study
comparing moricizine to placebo is less widely discussed, but
found similar results (The Cardiac Arrhythmia Suppression
Trial II Investigators, 1992). The drug was withdrawn in 2007
(Structural Bioinformatics Group at Charité, 2000). The fallout
has resulted in avoidance of flecainide (and other “Class IC”
drugs) in patients with “structural heart disease”—particularly
ischaemic heart disease with a history of MI, but extrapolated to
essentially anyone with any abnormality in ventricular structure
and function. The rationale for this has been questioned
(Kramer and Josephson, 2010). In terms of possible mechanisms
for the observed pro-arrhythmia, slowing of conduction
velocity with resultant facilitation of re-entry has been posited
(Ruskin, 1989), though late development of ischaemia and
accumulation of high drug levels may also have contributed
(Aliot et al., 2011).

Survival with Oral d-Sotalol (SWORD) Trial
This RCT recruited a similar patient demographic to CAST: those
with LVEF <40% and a history of MI (Waldo et al., 1996).

The objective was to evaluate whether a phase 3 K+ channel
(hERG/IKr) blocker, d-sotalol, reduced all-cause mortality
compared to placebo. The trial was stopped prematurely due
to an increased risk of death in the d-sotalol group (5.0 vs.
3.1%, relative risk 1.65, p = 0.006) (Waldo et al., 1996). This
was presumed to be primarily due to arrhythmias; unfortunately
beyond the fact that the risk of death was higher in women,
justification for this assumption could be challenged. In terms
of possible mechanisms for arrhythmic death, beta-blocker use
was again low pre-randomization (32–33%), and digoxin use was
high (48–50%). Importantly though, patients were initiated on
100mg twice daily of d-sotalol, and if tolerated with a QTc <

520ms, the dose was increased to 200mg twice daily. Then, if
this dose was tolerated with a QTc < 560ms, patients remained
on this dose for the study’s duration. Such QT prolongation is
well-established as a risk for TdP (Makkar et al., 1993; Drew et al.,
2010), and would be inconceivable in a modern trial.

Amiodarone
Amiodarone interacts with multiple ion channels, resulting in
reduced INa, IKr, IKs, ICaL, as well as antagonizing α- and β-
adrenoceptors and acetylcholine receptors (Zimetbaum, 2012;
Darbar, 2014). It has been studied in a large number of
randomized trials in the setting of AF or ventricular arrhythmias
(Doval et al., 1994; Julian et al., 1997; Roy et al., 2000; Bardy et al.,
2005; Singh et al., 2005; Connolly et al., 2006; Le Heuzey et al.,
2010). Paradoxically it often prolongs the QT interval, yet has
long been known to have a low incidence of TdP, possibly due
to its actions on inward currents (Lazzara, 1989; Vorperian et al.,
1997; Roden, 2004). There is a higher risk of bradycardic events
nevertheless (Vorperian et al., 1997). More recently, a meta-
analysis of over 8,000 patients in RCTs comparing amiodarone
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to placebo or control found amiodarone was associated with
a reduction in sudden cardiac death, though not a significant
reduction in overall mortality (Piccini et al., 2009). Notably,
in the GESICA trial it was found to confer improved survival
in the setting of heart failure (Doval et al., 1994). And in the
European Myocardial Infarct Amiodarone Trial (EMIAT), it was
demonstrated to reduce arrhythmic deaths by 35% in those with
LVEF ≤ 40%, though had no effect on all-cause or cardiac
mortality (Julian et al., 1997). The lack of benefit on overall
mortality was supported by SCD-HeFT (Bardy et al., 2005). Thus,
it is one of the few drugs considered safe for use in patients with
a history of MI and reduced LV function.

Beta-Adrenoceptor Antagonists
This class of drugs exerts effects via antagonism of β1
and/or β2-adrenoceptor signaling. β1-adrenoceptors signal via
the stimulatory G protein, Gs, and the cyclic adenosine
monophosphate (cAMP) and protein kinase A (PKA) cascade.
PKA increases ICaL, IKs and possibly INa (Brodde and Michel,
1999; Grant, 2009). β2-adrenoceptor signaling is more complex:
it also couples to Gs, but can also be induced to couple to Gi,
the inhibitory isoform (Xiao et al., 1995). This increases IKACh,
and may negatively regulate ICaL (Nagata et al., 2000; Zuberi
et al., 2010). β-adrenoceptor antagonists are the most studied
anti-arrhythmics, due to their use for both supraventricular and
ventricular arrhythmias, as well as heart failure and hypertension
(Packer et al., 1996, 2002; MERIT-HF Study Group, 1999; The
Cardiac Insufficiency Bisoprolol Study II, 1999; Pedersen et al.,
2014; Katritsis et al., 2017). They have been demonstrated to
reduce mortality in heart failure, including the risk of sudden
cardiac death (Hjalmarson, 1997; MERIT-HF Study Group, 1999;
The Cardiac Insufficiency Bisoprolol Study II, 1999; Packer et al.,
2002). Risk of pro-arrhythmia is essentially limited to the small
risk of AV conduction block, which in the absence of overdose,
severe renal dysfunction or concomitant AV nodal-blocking drug
use, occurs extremely rarely.

Dofetilide
A “pure” IKr blocker, dofetilide was investigated in patients with
severe LV impairment and heart failure as a treatment for AF
in the DIAMOND-CHF study (Torp-Pedersen et al., 1999). It
performed better than placebo in converting patients with AF
to sinus rhythm, though the rate of conversion by 1 month
was low (12% vs. 1%). Maintenance of sinus rhythm was also
higher for the dofetilide group. It was shown to be associated
with a reduced rate of hospitalization for worsening heart failure.
However, there was a 3.3% rate of TdP in those treated with the
drug. A subsequent trial (DIAMOND-MI) investigated use of
the drug in patients with recent MI and LV dysfunction (Køber
et al., 2000). Again, there was no effect on all-cause or cardiac
mortality, nor on arrhythmic deaths. It showed some efficacy in
restoring sinus rhythm in those with AF, but there was a TdP
event rate of approximately 1%. Further trials, predominantly in
AF and atrial flutter have confirmed its anti-arrhythmic efficacy,
but also its pro-arrhythmic potential (Bianconi et al., 2000; Singh
et al., 2000). Thus, dofetilide exhibits reasonable anti-arrhythmic
efficacy, and does not appear to increase mortality, yet there is a

significant risk of TdP such that its use requires close monitoring
(Abraham et al., 2015; Schwartz et al., 2016). Therefore, whilst
current guidelines indicate it can be used to treat atrial flutter
acutely (Katritsis et al., 2017), alternative drug therapy and
catheter ablation have rendered this largely obsolete, in Europe
at least.

Dronedarone
This multichannel blocking drug is similar to amiodarone
but with reduced extra-cardiac effects (Tadros et al., 2016).
Despite a promising start in trials such as EURIDIS/ADONIS
and ATHENA (Singh et al., 2007; Hohnloser et al., 2009),
subsequent trials in patients with permanent AF and heart failure
did not support its anti-arrhythmic potency, and moreover, it
was associated with worsening of heart failure and increased
mortality (Køber et al., 2008; Connolly et al., 2011). Nevertheless,
there does not appear to be a significant pro-arrhythmic
tendency, reinforcing the notion that drugs with multichannel
effects and complex actions can still be safe, in this regard at least.

ALTERNATIVE AND EVOLVING CLINICAL
APPROACHES

The preceding discussion has shown that there is room for
improvement in prediction of pro-arrhythmia. At the clinical
level, strategies can broadly be divided into those focusing on
the drugs, and those focusing on patient factors. Haverkamp
et al addressed both in 2001 (Haverkamp et al., 2001). They
identified many of the clinical risk factors still in use today, and
came up with what is to our knowledge the first attempt to
stratify drugs according to propensity to induce TdP. The list
of drugs was limited, and the classification was not developed.
Around the same time, the Georgetown University Center
for Education and Research on Therapeutics (GUCERT) was
awarded money to investigate the potential of drugs to induce
TdP. Subsequently based in Arizona and renamed, AZCERT,
a not-for-profit organization published lists of drugs known to
be associated with, and causative of QT prolongation and TdP
at www.qtdrugs.org. Currently the lists are available at www.
crediblemeds.org. Brugadadrugs.org is a similar website set up
by the University of Amsterdam Academic Medical Center,
providing advice on drugs to avoid, and drugs with possible
therapeutic use for patients with Brugada syndrome (University
of Amsterdam Academic Medical Center, 2017).

Clinical risk factors for ventricular fibrillation (VF) were
evaluated by Da Costa et al in 91 patients with pause-dependent
TdP in the setting of QT prolongation. LVEF, presence of
structural heart disease, and an index of QT dispersion were
found to be significant predictors (Da Costa et al., 2000). And
clinical scoring systems based on patient factors have been
developed. For example, Tisdale et al utilized data from 900
patients to develop a scoring system to predict QTc prolongation,
and then validated this in 300 additional patients (Tisdale et al.,
2013). Female sex, diagnosis of MI, sepsis, LV dysfunction,
administration of QT-prolonging drugs, use of loop diuretics,
serum K+

< 3.5 mEq/L and QT interval on admission >450ms
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were identified as independent risk factors. The system had
reasonable sensitivity and specificity. Although useful, it utilized
a biomarker rather than a patient outcome as an endpoint. Such
risk scores are likely to gain importance as electronic prescribing
becomes more widespread, with automated alert systems also
becoming more feasible (Haugaa et al., 2013).

The ultimate aim of precision medicine is to tailor treatment
to the specific patient and the genetic make-up is likely to play
a major role in determining this. There have been substantial
efforts to understand the genomic architecture of the heritability
of the QT interval in the general population. A variety of loci have
been identified from genome wide association study (GWAS)
findings (Arking et al., 2014). It was shown that one of the
signals in the nitric oxide synthase 1 adaptor protein predicted
predisposition to drug-induced long QT syndrome (Jamshidi
et al., 2012). Furthermore, Strauss and colleagues created a
“genetic QT” score, and investigated its ability to predict drug-
induced QTc prolongation, and TdP (Strauss et al., 2017). While
it was a significant predictor of both, the predictive power was
modest, leaving much of the variability unaccounted for.

IMPLICATIONS FOR SAFETY
PHARMACOLOGY

The literature on the use of antiarrhythmic drugs illustrates a
number of important points.

There Is No Universal Biomarker Predicting
Risk
The QTc remains an important biomarker, though it is far
from the only clinical marker of a drug’s pro-arrhythmic risk.
Clinical trials have demonstrated that amiodarone and beta-
blockers remain two of the safest agents in terms of pro-
arrhythmia. Their mechanisms are different, yet they both
exert anti-arrhythmic effects, and cardiac contra-indications are
few. Importantly, amiodarone confounds the predictive power
of IKr and QTc screening, by virtue of its APD and QT-
prolonging effects, with minimal associated pro-arrhythmic risk.
It highlights the oversensitivity of the S7B and E14 guidelines:
had it not been in use already, one of the most effective
and safe (in arrhythmia terms) drugs may have been excluded
from the market. Amiodarone’s cardiac safety, together with
flecainide’s and sotalol’s pro-arrhythmogenicity, serve as the
strongest reminders of the current importance of clinical trials
and post-marketing surveillance in bringing to light unexpected,
unpredicted and counterintuitive findings; of how predictions
based on theory may not be borne out in practice. But where this
is the case, there is an opportunity to learn.

Underlying Patient Pathology Is Important
The presence of pre-existing cardiac conditions such as LV
impairment and ischaemic heart disease modulate risk of pro-
arrhythmia, such that use of certain drugs, deemed safe in those
with structurally normal hearts, is given careful consideration
in patients with a history of these conditions. They, and other
risk modifiers, such as female sex, diuretic use, hypokalaemia,

and concomitant use of other QT-prolonging drugs, identified
in clinical reports and risk models (Drew et al., 2010), must be
included in in silico models (Wiśniowska and Polak, 2016) if
computer modeling and prediction is to fully realize its potential.
Identification of drugs with significant risk of arrhythmia may
enable us to gain insight into the reasons for this. For example,
the list of drugs available at www.crediblemeds.org may have
arisen due to similarities in the behavior of the drug molecules
in their interaction with ion channels, or alternatively their
pharmacokinetics. Ultimately, feedback such as this to pre-
clinical models, and clinical trials’ validation of these models will
hopefully lead, via an iterative process, to greater confidence in
the predictive powers of computer, animal and stem cell models
(Carusi et al., 2012), with a greater burden of safety testing and
prediction occurring in these, rather than in trials in humans.
Those models that cannot predict with reasonable accuracy must
be honed, or discarded. Increased pre-clinical predictive accuracy
should allow more compounds to reach the clinical trial stage.
This, together with post-marketing surveillance, will retain a key
role in highlighting unexpected findings, due to our inability
to completely account for human physiology, pathophysiology,
pharmacokinetics, and pharmacodynamics, as well as inter-
individual variability in these factors, in any model.

Ion Channels Remodel in Disease and
Disease Specific Models May Be
Necessary
Many of the experimental and computational approaches rely
on the assessment of a compound against parameters or cells
derived from healthy normal individuals. However, it is clear
that the expression of ion channels significantly remodels in
pathological states and this may account for proarrhythmia
under such conditions. For example, in atrial fibrillation the
expression of L-type calcium currents in the atria is reduced and
this in itself generates a substrate for further atrial fibrillation
(Wijffels et al., 1995; Gaspo et al., 1997; Yue et al., 1999). It is
clear that ion channel remodeling also occurs in many other
cardiac pathologies although is not so well defined (Nattel et al.,
2007). On this background individual genetic differences are
likely to modify the response (Munroe and Tinker, 2015). Thus,
we may see the development of disease specific computational
models and/or engineered cellular assay systems. In this regard
the development of computational approaches to explore models
with large numbers of varying parameters is likely to be valuable
(Britton et al., 2013, 2017).
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