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Abstract

We describe some group theory which is useful in the classifica-
tion of combinatorial objects having given groups of automorphisms.
In particular, we show the usefulness of the concept of a friendly sub-
group: a subgroup H of a group K is a friendly subgroup of K if every
subgroup of K isomorphic to H is conjugate in K to H. We explore
easy-to-test sufficient conditions for a subgroup H to be a friendly
subgroup of a finite group K, and for this, present an algorithm for
determining whether a finite group H is a Sylow tower group. We also
classify the maximal partial spreads invariant under a group of order
5 in both PG(3, 7) and PG(3, 8).
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1 Introduction

The following situation is common when classifying combinatorial objects.
We have some appropriate finiteG-set Ω, and we want to classify the elements
of Ω satisfying a given G-invariant property, up to the action of the group G.

For example, suppose we are classifying t-(v, k, λ) designs up to isomor-
phism, for some given t, v, k, λ. Then G = Sym(v) and Ω can be taken to be
the set of all size b := λ

(
v
t

)
/
(
k
t

)
multisets of k-subsets of V := {1, . . . , v}. The

action of G on Ω is the natural one on multisets of subsets of V (the natural
action on multisets is like the natural action on sets but with multiplicities
preserved), and the property we require of an element B ∈ Ω is that every
t-subset of V is contained in exactly λ elements of B; that is, we require that
(V,B) is a t-(v, k, λ) design.

Often a complete classification is too difficult, and we impose the addi-
tional condition that each object we seek is invariant under at least one of
some specified (non-conjugate) subgroups of G. This is the situation we con-
sider in this paper (see also [1], [4], [9], [10], [11], [14]). We are especially in-
terested in the avoidance of unnecessary G-equivalence checks of H-invariant
objects (which are often done via the determination of canonical G-orbit
representatives of the given objects (see [8], [12], [13])), when often easier
NG(H)-equivalence checks suffice (where NG(H) = {x ∈ G : x−1Hx = H}).

Our approach is group-theoretical, and we show the usefulness of friendly
subgroups: a subgroup H of a group K is a friendly subgroup of K if every
subgroup of K isomorphic to H is conjugate in K to H. We note that some
of the algebraic approaches in [11] to the classification of t-designs invariant
under a given group of automorphisms use Sylow subgroups in a similar way
to one way we employ friendly subgroups. See also [10].

After giving illustrative examples (the classification of the maximal partial
spreads invariant under a group of order 5 in both PG(3, 7) and PG(3, 8)),
we shall explore easy-to-test sufficient conditions for a subgroup H to be a
friendly subgroup of a finite group K, and for this, present an algorithm for
determining whether a finite group H is a Sylow tower group.

The theory in this paper is implemented in the DESIGN package [15].
This GAP [2] package can construct, classify, partition and study block de-
signs satisfying a very wide range of user-specified properties, including be-
ing invariant under a given group H of automorphisms. The designs may
be t-designs (with or without repeated blocks), but in general need not have
constant block-size nor constant replication-number.
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2 Friendly subgroups

The usefulness of friendly subgroups is based on the following two straight-
forward results.

Proposition 2.1 Let G be a group acting on a set Ω, and let A,B ∈ Ω, with
H a friendly subgroup of GA (the stabiliser in G of A), and H a subgroup
of GB. Then A and B are in the same G-orbit if and only if they are in the
same NG(H)-orbit.

Proof. The if-part is trivial. For the converse, suppose x ∈ G with Ax = B.
Then GB = (GA)x = x−1GAx, and so Hx is a friendly subgroup of GB. Since
H ≤ GB, it must be conjugate in GB to Hx, and so there is a y ∈ GB with
Hxy = H. We thus have xy ∈ NG(H) and Axy = By = B.

Proposition 2.2 Let G be a group acting on a set Ω, and let A,B ∈ Ω, with
H a friendly subgroup of GA. Then if B is in the same G-orbit as A, every
subgroup of GB that is isomorphic to H is conjugate in G to H.

Proof. Suppose x ∈ G with Ax = B. Then GB = (GA)x, and so Hx is a
friendly subgroup of GB. Thus, if J ≤ GB with J ∼= H, then J is conjugate
in GB to Hx, and so J is conjugate in G to H.

When classifying H-invariant objects up to G-equivalence (that is, up to
being in the same G-orbit), for a given H ≤ G, one often first classifies the
objects up to NG(H)-equivalence (see [1], [15]). Proposition 2.1 allows us to
avoid many tests to determine G-equivalence when NG(H)-orbit represen-
tatives of the H-invariant objects have already been determined. For such
an NG(H)-orbit representative A, if H is a friendly subgroup of GA then no
G-equivalence tests involving A are required.

When classifying objects such that each is invariant under at least one
of the groups in a given set {H1, . . . , Hm} of pairwise isomorphic, but non-
conjugate, subgroups of G (such as a set of conjugacy class representatives
of the subgroups of some prime order p), Proposition 2.2 allows us to avoid
many tests to determine when an Hi-invariant object is G-equivalent to an
Hj-invariant one. For a given Hi-invariant A, if Hi is a friendly subgroup of
GA, then A cannot be in the same G-orbit as an Hj-invariant object, when
i 6= j.

3



We note that, unlike the methods given in [10], [11], we generally need to
be able to directly compute the G-stabilisers (automorphism groups) of the
objects we classify, but this avoids certain other computations often required
by the methods in [10], [11]. Depending on the problem under consideration,
determining G-stabilisers can be easier in practice than determining canoni-
cal G-orbit representatives (which is what we aim to avoid having to do). For
example, in GAP, when G is a permutation group, determining stabilisers of
point-sets is faster in practice than Linton’s important procedure [12] to find
the lexicographically least set in a G-orbit of a given point-set. Although
methods more efficient than Linton’s are being developed [8], they still ap-
pear to require more work than determining a G-stabiliser of the set under
consideration. On the other hand, there appears to be little time difference
to computing the automorphism group of a graph and also canonically la-
belling that graph using nauty [13]. Sometimes, however, it is possible to
avoid computing G-stabilisers altogether, for we may be able to deduce that
a non-trivial subgroup J of our assumed group of automorphisms H must
be a friendly subgroup of any possible automorphism group of the objects
we seek. (See [11] for some instances of this and also our illustrative ex-
amples in the next section.) Then Proposition 2.1 tells us that to classify
our H-invariant objects up to isomorphism, it suffices to classify them up to
NG(J)-equivalence.

3 Illustrative examples

To illustrate the application of friendly subgroups, we now describe the clas-
sification of the maximal partial spreads invariant under a group of order 5
in both PG(3, 7) and PG(3, 8). Some of the explanation below is taken from
the author’s webpage [17].

First, some definitions. Let V be an (n + 1)-dimensional vector space
over the finite field Fq. The projective space PG(n, q) is the geometry whose
elements are the subspaces of V , with two elements being incident if one is
contained in the other. The points and lines of PG(n, q) are respectively the
1- and 2-dimensional subspaces of V . We identify a line with the set of points
it contains. A partial spread in PG(n, q) is a set of lines, no pair of which has
a point in common, and a partial spread in PG(n, q) is maximal if it is not
properly contained in any partial spread of PG(n, q). Two partial spreads in
PG(n, q) are equivalent if there is an element of the projective general linear
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group PGL(n + 1, q) (acting naturally on sets of projective lines) mapping
one of the partial spreads to the other.

To classify the maximal partial spreads in PG(n, q) invariant under a
given subgroup H of G := PGL(n+1, q), we form the graph ∆ whose vertices
are the H-orbits of pairwise disjoint lines, with two vertices of ∆ joined by
an edge precisely when the vertices are distinct and their union is again a set
of pairwise disjoint lines. Then the H-invariant partial spreads correspond to
the cliques of ∆, and the H-invariant maximal partial spreads are precisely
the unions U of the maximal cliques of ∆, such that no line of PG(n, q) not
in U is disjoint from every line in U . Now the normaliser N := NG(H) of
H acts as a group of automorphisms of ∆, and we use the GRAPE package
[16] to construct ∆ and determine its maximal cliques, up to the action of
N . We then determine which of these cliques gives us a maximal partial
spread. The question then is, which elements of the resulting set M of N -
inequivalent maximal partial spreads are equivalent under the action of G?
If H is a friendly subgroup of each G-stabiliser of a partial spread in M , then
we know that the elements of M are pairwise inequivalent. This is in fact
the case when n = 3, q = 7 or 8, and H is a subgroup of order 5.

Now a Sylow 5-subgroup of G := PGL(4, 7) is cyclic of order 25. It follows
that there is a single G-conjugacy class of subgroups of order 5. Let H be
such a subgroup, and let N = NG(H). We have |G| = 4635182361600 and
|N | = 1600.

For (n, q) = (3, 7) we construct the graph ∆ on H-orbits of pairwise
disjoint lines, as described above, and find that ∆ has just 410 vertices. We
then find the maximal cliques of ∆, up to N -equivalence, and determine
those corresponding to maximal partial spreads of PG(3, 7), obtaining the
set M as above of maximal partial spreads. All this work takes under 26
seconds of CPU-time on a Pentium i5 PC running Linux.

Now if K is any subgroup of G containing H, then H must be a friendly
subgroup of K, since H is either a Sylow 5-subgroup of K, or the unique
subgroup of order 5 in a Sylow 5-subgroup of K. Thus, M is a set of G-
equivalence class representatives of the H-invariant maximal partial spreads.
Counting the maximal partial spreads of PG(3, 7) invariant under a group of
order 5 we find that, up to equivalence, there are exactly

426, 1332, 419, 94, 15, 15
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such maximal partial spreads of respective sizes

25, 30, 35, 40, 45, 50

(and no others). An unnecessary (but reassuring) check for G-inequivalence
of these maximal partial spreads using Steve Linton’s program described in
[12] (and available in [16] as the function SmallestImageSet) took about
3140 CPU-seconds.

Since a Sylow 5-subgroup of G := PGL(4, 8) is also cyclic (in fact it is
cyclic of order 5), we may classify the maximal partial spreads in PG(3, 8)
invariant under a group H of order 5 as we did in PG(3, 7). We find that,
up to NG(H)-equivalence, and hence up to G-equivalence, there are exactly

3, 7530, 80501, 33738, 3111, 237, 18

such maximal partial spreads of respective sizes

25, 30, 35, 40, 45, 50, 65

(and no others). The total time taken for this classification was about 2133
CPU-seconds (without any final unnecessary checks for G-inequivalence). We
believe it was previously unknown that PG(3, 8) has a maximal partial spread
having as few as 25 lines (see [7]).

4 Verifying friendliness

Given finite groups H and K, with H a subgroup of K, it is often possible
to use relatively cheap computational tests to verify that H is a friendly
subgroup of K (when it is such a subgroup). This is often the case when
H is a Hall subgroup of K, that is, when the order of H is coprime to its
index in K. In particular, if H is a Sylow tower group (defined below) and a
Hall subgroup of K then H is a friendly subgroup of K (see Theorem 4.1).
Typically in our applications, H is small and fixed for many overgroups K.

Suppose H is a finite group, and 1 = T0 < T1 < ... < Tk = H is a normal
series for H, such that, for i = 1, . . . , k, Ti/Ti−1 is isomorphic to a Sylow
pi-subgroup of H, for some prime pi dividing |H|. Then H is called a Sylow
tower group having complexion (p1, . . . , pk) (unlike some authors, we do not
require that a Sylow tower group has a complexion (p1, . . . , pk) satisfying
p1 > · · · > pk). In the next section we give an algorithm to determine
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whether a given finite group is a Sylow tower group. Note that if a finite
group H is a Sylow tower group then H is soluble, but the converse does not
hold in general. However, each finite supersoluble group is a Sylow tower
group (see [6]).

The following result details many instances of friendly subgroups of finite
groups.

Theorem 4.1 Let K be a finite group and H a subgroup of K. Then H is
a friendly subgroup of K if one or more of the following holds:

1. H = K;

2. K is cyclic;

3. H is a Hall subgroup of K and H is a Sylow tower group;

4. H is a nilpotent Hall subgroup of K (such as a Sylow subgroup), or
more generally, H is a friendly subgroup of a nilpotent Hall subgroup
of K;

5. K is soluble and H is a Hall subgroup of K, or more generally, K is
soluble and H is a friendly subgroup of a Hall subgroup of K;

6. H is a simple normal subgroup of K and |H|2 does not divide |K|.

Proof.

1. Trivial.

2. If K is cyclic then H is the unique subgroup of K of order |H|.

3. Suppose H is a Hall subgroup of K and is a Sylow tower group of
complexion (p1, . . . , pk). Now if J ≤ K with J ∼= H then J is also a
Hall subgroup of K and a Sylow tower group of complexion (p1, . . . , pk),
so by [6, Theorem A1], J is conjugate to H.

4. Suppose that H is a friendly subgroup of a nilpotent Hall subgroup L
of K, and that J ≤ K with J ∼= H. Then, by [18], J is conjugate to a
subgroup J∗ of L, and since H is a friendly subgroup of L, J∗ (being
isomorphic to H) is conjugate to H.
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5. Suppose K is soluble, that H is a friendly subgroup of a Hall subgroup
L of K, and that J ≤ K with J ∼= H. Then, by [5], J is conjugate to
a subgroup J∗ of L, and since H is a friendly subgroup of L, J∗ (being
isomorphic to H) is conjugate to H.

6. Suppose H is a simple normal subgroup of K. Let J ≤ K with H 6=
J ∼= H. Since H∩J is a normal subgroup of J , we must have H∩J = 1,
and so HJ is a subgroup of K of order |H|2. Thus, if |H|2 does not
divide |K|, then H is the only subgroup of its isomorphism class in K.

It is worth noting that F. Gross, using the Classification of Finite Sim-
ple Groups, shows that every odd-order Hall subgroup of a finite group is a
friendly subgroup of that group (see [3]), but I prefer not to use this sledge-
hammer to crack the odd nut.

5 Determining whether H is a Sylow tower

group

We now present an algorithm which determines whether a given finite group
H is a Sylow tower group. The algorithm given here is implemented in GAP
and works well in practice for permutation groups and PC-groups (groups
with polycyclic presentations), making use of the ability to compute a set of
representatives of the Sylow subgroups of a given finite soluble group.

Suppose H is a finite group, and suppose 1 = T0 < T1 < ... < Tm ≤ H,
such that, for i = 1, . . . ,m, Ti is a normal subgroup of H and Ti/Ti−1 is
isomorphic to a Sylow pi-subgroup of H, for some prime pi dividing |H|.
Then (T0, . . . , Tm) is called a partial Sylow tower for H, having complexion
(p1, . . . , pm), and a partial Sylow tower for H is a Sylow tower for H if its
last element is equal to H.

Lemma 5.1 Suppose (T0, . . . , Tm) is a partial Sylow tower, having com-
plexion (p1, . . . , pm), for a finite group H, and let i ∈ {1, . . . ,m}. Then
Ti = Ti−1P , for every Sylow pi-subgroup P of H.

Proof. Since Ti/Ti−1 is isomorphic to a Sylow pi-subgroup of H, the order
of Ti is such that Ti contains a Sylow pi-subgroup of H, and since Ti is normal
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in H, Ti contains every Sylow pi-subgroup of H. In addition, since pi does
not divide |Ti−1|, we conclude that Ti = Ti−1P , for every Sylow pi-subgroup
P of H.

The following theorem forms the theoretical basis of our iterative algo-
rithm, which, when given a soluble non-nilpotent finite group H, either as-
cends a Sylow tower for H, or when failing to do so, provides a proof that
none such exists. The algorithm is detailed in Figure 1, using the LATEX
package clrscode. It would be easy to modify this algorithm to compute a
Sylow tower for H when H is a Sylow tower group, since in that case (after
removing the nilpotency check and when H 6= 1) the i-th iteration of the
while-loop of the algorithm constructs in T the i-th term of a Sylow tower,
except for the final term, which is H itself.

Theorem 5.2 Let H be a Sylow tower group, let p1, . . . , pk be the distinct
primes dividing |H|, and let {P1, . . . , Pk} be a set of representative Sylow
subgroups of H, with Pi a Sylow pi-subgroup.

Suppose that (T0, . . . , Tm) is a partial Sylow tower for H, with m < k.
Then there exists an i ∈ {1, . . . , k} such that TmPi is a normal subgroup of
H, and properly contains Tm (in which case (T0, . . . , Tm, TmPi) is a partial
Sylow tower for H, extending (T0, . . . , Tm)).

Proof. Let (U0, . . . , Uk) be a Sylow tower forH, having complexion (q1, . . . , qk)
(thus q1, . . . , qk is some particular ordering of p1, . . . , pk). Now let j be the
least element of {1, . . . ,m + 1} such that qj does not divide |Tm| (such a j
exists), and define i by pi = qj.

By the preceding lemma, Uj−1 is generated by the union of all the Sylow
subgroups for all the primes in {q1, . . . , qj−1}, and by the lemma and the
definition of j, we see that Uj−1 is a subgroup of Tm. By the definition of i,
Uj = Uj−1Pi, and so TmPi = TmUj, the product of two normal subgroups of
H. Thus TmPi is normal in H, and since pi does not divide |Tm|, we have
that TmPi/Tm is isomorphic to Pi.

5.1 Some counts of Sylow tower groups

The algorithm given in Figure 1 has been implemented as a GAP function, and
we use this to determine the number of Sylow tower groups amongst groups
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Figure 1: Algorithm to determine whether H is a Sylow tower group

IsSylowTowerGroup(H)

� Given a finite group H, this function returns true
� if H is a Sylow tower group, and returns false if not.
if H is not soluble

then return false;
if H is nilpotent

then return true;
P ← a list of representatives of the non-trivial Sylow subgroups of H;
� P contains exactly one Sylow p-subgroup for each prime p dividing |H|.
T ← {1H};
while Length(P ) > 1

do � T is the highest term of a partial Sylow tower for H,
� T 6= H, and |T | is coprime to the order of each element of P .
if there is no Q in P such that 〈T,Q〉 is normal in H

then � By Theorem 5.2, H cannot be a Sylow tower group.
return false;

Q← the first Q in P such that 〈T,Q〉 is normal in H;
T ← 〈T,Q〉;
Remove Q from P ;

� There is now just one element left in P , T is the last term
� of a partial Sylow tower for H, and this partial Sylow tower
� can be extended to a Sylow tower by adjoining H itself.
return true;
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of small order, transitive permutation groups of low degree, and primitive
permutation groups of modest degree. All timings are in CPU-seconds on a
Pentium i5 PC running Linux.

Using the GAP library of small groups, we obtain a list of the 7012 groups
(up to isomorphism) of order at most 255. We determine that 6836 of these
are Sylow tower groups in about 4 seconds. This compares with 6998 of the
groups being soluble, 6590 being supersoluble, and 3722 being nilpotent.

Using the GAP library of transitive groups, we obtain a list of the 4952
transitive groups (up to permutation isomorphism) of degrees 2 to 23. We
determine that 2772 of these are Sylow tower groups in about 95 seconds.
This compares with 4212 of the groups being soluble, 1819 being supersoluble,
and 1487 being nilpotent.

Using the GAP library of primitive groups, we obtain a list of the 2269
primitive groups (up to permutation isomorphism) of degrees 2 to 256. We
determine that 702 of these are Sylow tower groups in about 22 seconds.
This compares with 939 of the groups being soluble, 438 being supersoluble,
and 54 being nilpotent.
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