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Abstract

We construct, using geometric invariant theory, a quasi-projective
Deligne-Mumford stack of stable graded algebras. We also construct a
derived enhancement, which classifies twisted bundles of stable graded
A∞-algebras. The tangent complex of the derived scheme is given by
graded Hochschild cohomology, which we relate to ordinary Hochschild
cohomology. We obtain a version of Hilbert stability for non-commutative
projective schemes.
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Introduction

All our graded algebras will be unital and associative, with finite dimensional
graded pieces.

We study derived moduli of graded algebras. In the first part of this paper,
we construct a differential graded stack X, classifying graded algebras of a fixed
dimension ~d = (d1, d2, . . .). The construction is as a stack quotient of a vector
bundle of curved differential graded Lie algebras over a linear space, divided by
an algebraic ‘gauge’ group. The construction is infinite-dimensional, but equal
to the projective limit of its finite dimensional truncations.

For a graded algebra A, representing the point P of X, the tangent complex
of X at P has (shifted) Hochschild cohomology of A, computed with homoge-
neous cochains of degree 0, for cohomology groups: Hi(TX |P ) = HHi+1

gr (A). In
other words, the derived deformation theory of a graded algebra is given by its
(shifted) graded Hochschild cohomology.

In the second section, we study graded Hochschild cohomology in some de-
tail, and relate it to more familiar invariants. We do this for algebras A ‘coming
from geometry’, by which we mean that there exists a C-linear Grothendieck
category C , an object O of C , and an autoequivalence s of C , satisfying suit-
able hypotheses, such that A =

⊕
n≥0 HomC (O, snO). In the commutative

case, this essentially means that A =
⊕

n≥0 Γ
(
X,O(n)

)
, for a projective scheme(

X,O(1)
)
.

Our results can be understood as supporting the idea that (under certain
hypotheses), the derived deformation theory of the graded algebra A coincides
with the derived deformation theory of the triple (C ,O, s).
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In the last part of the paper we define a notion of stability for graded alge-
bras and construct a (derived) separated Deligne-Mumford stack X̃s classifying
stable graded algebras of fixed dimension vector. Our notion of stability comes
from geometric invariant theory for the finite-dimensional truncations X̃≤q of

X̃. We expect that for many interesting dimension vectors the stack X̃s (or at
least an interesting substack) will be of finite type.

In the commutative case, our notion of stability coincides with the classical
notion of Hilbert stability. Thus our stack X̃s extends the classical stack of
Hilbert stable projective varieties into the non-commutative world.

We speculate that the stack X̃s (or a suitable open substack) is a moduli
stack of non-commutative projective schemes in the sense of Artin-Zhang [1].

As an example, 3-dimensional quadratic Artin-Schelter regular algebras are
semi-stable, and generically stable [3].

Notation and Conventions

We work over a field of characteristic zero, which we shall denote by C. Unless
specified otherwise, a graded vector space will refer to a Z-graded vector space.
A graded vector space is locally finite, if each graded piece is finite dimensional
over C.

All our graded algebras will be unital and associative, locally finite and
graded in non-negative degrees. The component in degree zero will be assumed
to be equal to the ground field C. Often we will replace such an algebra A by
its graded ideal A>0 of elements of positive degree (A can be recovered from
A>0 in a canonical way).

Our algebraic stacks will have affine diagonal, but we do not require the
diagonal to be of finite type, in general.

We follow the Bourbaki convention that set inclusion (proper or not) is
denoted by ‘⊂’.

Acknowledgements
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We thank Gustavo Granja for the hospitality during our visit.

This work was supported by a grant from the Royal Society under the In-
ternational Exchange Scheme.

1 The derived stack of graded algebras

Gerstenhaber bracket

Let V =
⊕

n>0 Vn be a locally finite positively graded vector space. For p ≥ 0,
let

Lp = Homgr(V
⊗(p+1), V )
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be the vector space of (p + 1)-ary multilinear operations on V , which preserve
degree. We have

Lp =
∏
n

Hom
(
(V ⊗(p+1))n, Vn

)
,

which is a product of finite dimensional vector spaces. Therefore, it is an affine
C-scheme. If V is finite dimensional, it is an affine C-scheme of finite type.

On L =
⊕

p≥0 L
p we introduce a (non-associative) product ◦ : Lp ⊗ Lq →

Lp+q by the formula

(µ ◦ ν)(a0, . . . , ap+q) =

p∑
i=0

(−1)iqµ(a0, . . . , ν(ai, . . . , ai+q), . . . , ap+q) .

We antisymmetrize and obtain the Gerstenhaber bracket

[µ, ν] = µ ◦ ν − (−1)pqν ◦ µ .

The pair (L, [ , ]) is a graded Lie algebra (see [5]). It is finite dimensional, if V
is finite dimensional.

Augmentation. Sometimes it will be convenient to augment L by putting
a copy of C in degree −1, i.e., setting L−1 = C, and defining the differential
L−1 → L0 to be the map C → Homgr(V, V ) given by the tautological graded
endomorphism γ of V , which is multiplication by the degree, so γ(µ) = deg(µ)µ,
for homogeneous elements µ ∈ V . Define the bracket by [L−1, L] = 0. The
fact that the augmented object is a differential graded Lie algebra follows from
the fact that the tautological endomorphism γ is central in L. (This kind of
construction would not work with the identity in place of γ, as the identity is
not central.) We denote by L̃ the graded Lie algebra obtained by dividing L in

degree 0 by the ideal Cγ. Note that L̃ is quasi-isomorphic to the augmented L.

Maurer-Cartan equation

The Maurer-Cartan equation for L is

µ ◦ µ = 0 , µ ∈ L1 .

Thus a Maurer-Cartan element µ is a degree preserving binary operation µ :
V ⊗ V → V , satisfying the equation

(µ ◦ µ)(a, b, c) = 0 , for all a, b, c ∈ V .

Equivalently,

µ(µ(a, b), c) = µ(a, µ(b, c)) , for all a, b, c ∈ V ,

i.e., µ is associative. Thus the Maurer-Cartan locus MC(L) of L is the scheme
of all associative graded products on V . It is a closed subscheme of the affine
scheme L1.
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Gauge group—Moduli stack

The gauge group of L is G =
∏
nGL(Vn). It is an affine group scheme

over C, and it is algebraic, if V is finite dimensional. Its Lie algebra is
L0 = Homgr(V, V ). The gauge group acts on L by conjugation, preserving
the Gerstenhaber bracket, and hence the Maurer-Cartan locus. The moduli
stack of L is the stack quotient

X = [MC(L)/G] .

It classifies graded associative products on V up to change of basis in V . In other
words, X classifies graded associative algebras (without unit), whose underlying
graded vector space is isomorphic to V . The stack X is an algebraic stack with
affine diagonal, although the diagonal is not of finite type, unless V is finite
dimensional.

Let di = dimVi, and ~d = (d1, d2, . . .). The groupoid X(T ), for a scheme

T , is the category of bundles of graded algebras of rank ~d, parametrized by T .
Such a bundle of algebras is given by a graded vector bundle V =

⊕
n>0 Vn over

T , where rank Vn = dn, endowed with OT -bilinear operations Vi ⊗ Vj → Vi+j ,
satisfying associativity. (We can always add to such a bundle of graded algebras
a copy of OT in degree 0, and make it into a bundle of unital algebras, in a
canonical way.)

Definition 1.1 For a graded algebra, we call the automorphisms φλ, for
λ ∈ Gm, given by φλ(a) = λdeg aa on homogeneous elements, tautological.
The tautological automorphisms define the tautological one-parameter group of
automorphisms.

This leads to a modified moduli problem: Denote by Γ the central one-
parameter subgroup of G which acts with weight n on Vn, for all n. Let G̃ be
G/Γ. The Lie algebra of G̃ is L̃0. The group G̃ acts by conjugation on L̃, and

we call G̃ the gauge group of L̃. It is an affine group scheme over C. Consider
the quotient stack

X̃ = [MC(L)/G̃] ,

which is again an algebraic stack, the moduli stack of L̃.
We have a morphism of stacks X → X̃, which is a Gm-gerbe.
The moduli problem solved by X̃ is the following: for a scheme T , the

groupoid X̃(T ) is the groupoid of pairs (X,V ), where X is a Gm-gerbe over T ,
and V =

⊕
n>0 Vn is an X-twisted vector bundle on T , where Vn is n-twisted,

and rank(Vn) = dn, for all n > 0. Moreover, V is endowed with the structure
of graded algebra. We call such pairs (X,V ) twisted bundles of graded algebras.

For a review of twisted sheaves, see [9]. Our terminology is as follows: a
quasi-coherent X-twisted sheaf F on T is a quasi-coherent sheaf on X. Such a
sheaf decomposes naturally into a direct sum F =

⊕
n∈Z Fn, where on Fn the

natural inertia action is equal to the n-th power of the linear action given by
the OX-module structure on F . If F = Fn, we refer to F as n-twisted. If all
Fn are vector bundles, we call F a twisted vector bundle.
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If the components of the dimension vector ~d of V are strongly coprime, by
which we mean that there exists a k such that (d1, 2d2, . . . , kdk) = 1, then

the gerbe X → X̃ is trivial. In this case, the universal twisted bundle of
algebras can be represented by a bundle of algebras. It can be constructed by
twisting the given action of G on V by the character χ : G → Gm, defined by
χ(g1, g2, . . .) = det(g1)r1 det(g2)r2 . . ., where the ri are such that

∑
iridi = 1.

The point is that this twist does not affect the action on L, but it changes the
action on V in such a way that it factors through G̃.

Derived moduli stack of algebras

One of the simplest kinds of derived moduli stacks is given by a bundle of
curved differential graded Lie algebras on a smooth algebraic stack (see [2], for
the definitions). In the present case, the construction is as follows.

We start with the affine scheme L1, and construct over it a bundle of curved
differential graded Lie algebras: the underlying graded vector bundle L =⊕

p≥2 L p is the trivial bundle over L1, with fibre Lp in degree p, for p ≥ 2.

The curvature map L1 → L2, given by x 7→ x ◦ x, gives rise to a global section
f of L 2, the curvature of our bundle of curved differential graded Lie algebras.
The twisted differential dµ : L i → L i+1 is given by dµ = [µ, · ], in the fibre
over µ ∈ L1. The Lie bracket on L is constant over L1, induced from the
Gerstenhaber bracket in each fibre.

Then we notice that the gauge group action on L1 lifts to an action on all of
L , preserving the structure of bundle of curved differential graded Lie algebras.
Thus, this structure descends to the quotient stack M = [L1/G], giving rise to
a bundle of curved differential graded Lie algebras over M . From now on, let
us reserve the notation (L , f, dµ, [ , ]) for the descendant bundle on M . (If V is
finite dimensional, each L p is a bundle of finite rank.)

Our moduli stack X is now realized as the closed substack X ⊂M , cut out
by the vanishing of the curvature f of L .

In [2], it is explained how a bundle of curved differential graded Lie alge-
bras (M,L ) gives rise to a differential graded stack, which we shall denote by
(M,RM ). In fact, the curved differential graded Lie algebra structure on L
defines a differential graded co-algebra structure on Sym L [1], which dualizes
to a differential graded algebra structure on RM = (Sym L [1])∨.

We also get a functor on differential graded schemes: if (T,RT ) is a differ-
ential graded scheme, we associate to it the set of pairs (V , µ), where V is a

graded vector bundle of dimension ~d over T , and µ is a global Maurer-Cartan
element of the sheaf of differential graded Lie algebras

HomOT (V ⊗•+1,V )⊗OT RT .

This is the same thing as the structure of a graded A∞-algebra on V ⊗OT RT .

We also have a bundle of curved differential graded Lie algebras over M̃ =
[L1/G̃], giving rise to a differential graded stack (M̃,R

M̃
), whose underlying
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classical stack is X̃. This gives rise to the derived stack of twisted bundles of
graded A∞-algebras.

Hochschild cohomology—Deformation theory

Let us consider a point of X, represented by the Maurer-Cartan element µ ∈ L1.
The derived stack (M,L ) gives rise to a complex of vector bundles on X, the
tangent complex, which governs deformations and obstructions of morphisms
from square zero extensions of differential graded schemes. (For details, see [2]).
At the point µ, this complex is our original graded Lie algebra L, endowed with
the twisted differential dµ = [µ, · ]. This differential is the Hochschild differential
of the associative algebra (V, µ). It makes (L, dµ, [ , ]) into a differential graded
Lie algebra.

Explicitly, for α ∈ Lp, α : V ⊗p+1 → V , we have

(dµα)(a0, . . . , ap+1) =

α(a0, . . . , ap) ap+1 + (−1)pa0 α(a1, . . . , ap+1)

− (−1)p
p∑
i=0

(−1)iα(. . . , aiai+1, . . .) ,

where we have written µ as concatenation.
The cohomology spaces

Hp(L, dµ) = HHp+1
gr (V, µ)

are the graded Hochschild cohomology spaces of the graded associative algebra
(V, µ), computed with Hochschild cochains which are homogeneous of degree
zero. Graded deformations/obstructions of the graded algebra (V, µ) are given
by H1(L, dµ) and H2(L, dµ), respectively.

Explicitly, if α : V ⊗2 → V is a 1-cocycle with respect to dµ (a Hochschild
2-cocycle), then

α(a, b) c− α(a, bc) + α(ab, c)− aα(b, c) = 0 . (1)

The corresponding infinitesimal deformation of (V, µ) is given by Vε = V ⊕εV
with multiplication ∗, which is determined on V ⊂ Vε by

a ∗ b = ab+ ε α(a, b) .

Associativity of ∗ follows from the cocycle condition (1).
If β : V → V is a 0-cochain (a Hochschild 1-cochain), then id +β : Vε → Vε

defines an isomorphism from ∗α to ∗α+dµβ .
The infinitesimal deformation given by α extends to C[ε]/ε3, if and only if

the primary obstruction α ◦ α vanishes in H2(L, dµ) = HH3
gr(V, µ).
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Truncation

Let V → V≤q be the truncation of V into degrees less than or equal to q, for a
positive integer q. We will always consider V≤q as a quotient of V . Repeating
the above constructions with V replaced by V≤q, we obtain a finite dimensional
graded Lie algebra L≤q =

⊕
Lp≤q, together with an epimorphism of graded Lie

algebras L→ L≤q. Let X≤q and X̃≤q denote the corresponding moduli stacks,
which are algebraic stacks of finite type, whose diagonal is affine of finite type.
We have

X = lim←−
q

X≤q , X̃ = lim←−
q

X̃≤q . (2)

Let us write M = [L1/G] and M̃ = [L1/G̃], etc. Then we have also τq : M →
M≤q, and a morphism of bundles of curved differential graded Lie algebras

L → τ∗qL≤q ,

for every q. Then
L = lim←−

q

τ∗qL≤q , (3)

(and a similar fact with tildes), as bundles of curved differential graded Lie
algebras.

To state the compatibility with truncations on the level of deformation the-
ory, let A = (V, µ) be an algebra giving rise to a point of X. Then we have

Hp(L, dµ) = lim←−
q

Hp(L≤q, d
µ) ,

as a direct consequence of (3). Thus, we also have

HHp
gr(A,A) = lim←−

q

HHp
gr(A≤q, A≤q) .

Remark 1.2 The projective system Lq is a projective system of C-vector
spaces, and all transition maps are obviously surjective. The reason to insist
that we think of V → V≤q as a quotient map is only to prove that the Hochschild
boundary commutes with the maps of the projective system. A simple argument
with lim←−

1 proves that taking cohomology commutes with the projective limit.

2 Graded Hochschild cohomology

In this section we will relate graded Hochschild cohomology to more familiar in-
variants. We will do this for certain graded rings S which ‘come from geometry’.
By this we mean that S is the homogeneous coordinate ring of a ‘sufficiently
amply polarized’ non-commutative projective scheme (C , A, s) in the sense of
[1]. Since our hypotheses are going to diverge slightly from [1], we will call our
triples (C , A, s) polarized Grothendieck categories, rather than non-commutative
projective schemes.

We will define the concept of reduced Hochschild cohomology for such a triple.
We apologize for this abuse of established terminology.
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2.1 Hochschild cohomology of a polarized Grothendieck
category

Preliminaries

We summarize a result from [11], which allows us to write down a relatively
small complex which computes the Hochschild cohomology of a Grothendieck
category.

Let C be a C-linear Grothendieck category, and A : u → C a C-linear
functor from a C-linear category u. This situation gives rise to the Yoneda
functor C → Mod(u), where Mod(u) is the category of right u-modules, i.e., the
category of C-linear functors uop → (C-vector spaces).

We will need to assume that C → Mod(u) is fully faithful and has an
exact left adjoint. By the Gabriel-Popescu theorem, for this it suffices that
{A(u)}u∈ob u is a generating family for C , and that A : u→ C is fully faithful.
By Theorem 1.2 of [10], this latter condition can be weakened to

(i) A : u→ C is faithful,

(ii) for objects u, v in u, and a morphism f : A(u)→ A(v) in C , there always
exists a family of morphisms ui → u in u, such that

∐
iA(ui) → A(u) is

an epimorphism in C , and f |A(ui) ∈ u, for all i.

There exist (Section 1.10 in [7]) functorial injective resolutions for the objects
of u. This means we have a 2-commutative diagram

u
A //

E ""

~�
C

��
C•(C )

(4)

where C•(C ) denotes the differential graded category of complexes in C . For
every u ∈ u, the homomorphism of complexes A(u) → E(u) (given by the
natural transformation ‘⇒’ in the diagram) is an injective resolution.

Denote by Ẽ the u-bimodule defined by the functor E : u → C•(C ). We
have

Ẽ(u, v) = Hom•C
(
E(u), E(v)

)
= RHomC

(
A(u), A(v)

)
.

We shall consider the Hochschild cochain complex C•(u, Ẽ), see [11, (2.4)]. It
is the product total complex of the double complex whose p-th column is given
by

∏
u0,...,up

HomC

(
Homu(up−1, up)⊗ . . .⊗Homu(u0, u1),

Hom•C
(
E(u0), E(up)

))
.
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Proposition 2.1 ([11], Lemma 5.4.2) The complex C•(u, Ẽ) computes the
Hochschild cohomology of C as abelian category, and therefore governs the de-
formation theory of C as abelian category.

We will apply this result in the situation where {A(−n)}n∈N is a family
of objects of C , such that for every N , the family {A(−n)}n<N generates C .
We let u be the category whose objects are the negative integers, and whose
morphisms are given by

u(−m,−n) =

{
HomC

(
A(−m), A(−n)

)
if −m ≤ −n

0 if −m > −n
.

By construction, u comes with a faithful (although not necessarily full) functor
A : u → C , which satisfies Condition (ii), above. The Hochschild complex

C•(u, Ẽ) is given by

∏
−n0≤...≤−np

HomC

(
Hom

(
A(−np−1), A(−np)

)
⊗. . .⊗Hom

(
A(−n0), A(−n1)

)
,

Hom•C
(
E(−n0), E(−np)

))
. (5)

Polarized Grothendieck categories

Let C be a C-linear Grothendieck category. A polarization of C is a pair
(s,A), where s is an auto-equivalence of C , and A is an object of C , such that

(i) for every N , the family
(
A(n)

)
n<N

generates C ,

(ii) ExtiC
(
A,A(n)

)
= 0, if n > 0, and i > 0,

where we have written snA = A(n).
In addition, we will make the assumption that HomC (A,A) = C.
For example, the Grothendieck category of quasi-coherent OX -modules on a

projective C-scheme X is polarized by (F 7→ F (1),OX), if OX(1) is ‘sufficiently
ample’. It satisfies the additional assumption, if X is connected.

For another example, if (C , A, s) is a finite-dimensional non-commutative
projective scheme in the sense of [1], by which we mean that it satisfies the con-
ditions (H1), (H2), (H3), (H4), and (H5) of [ibid.], and has finite cohomological
dimension, then (s,A) is a polarization of C , if we replace s by a sufficiently
large power.

As explained in [1], Proposition 4.2., we may, and shall, assume that s is an
automorphism of C , rather than an autoequivalence.

We choose functorial injective resolutions for the objects A(−n), n ∈ N,

and use the complex C•(u, Ẽ), defined as above (5), to compute the Hochschild
cohomology of C .
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Reduced Hochschild cohomology

Let Ẽ∗ be the same u-bimodule as Ẽ, except that we set Ẽ(−1,−n) equal to
zero:

Ẽ∗(−m,−n) =

{
0 if −m = −1,

Ẽ(−m,−n) otherwise .

By the definition of u, we have that Ẽ∗ is a bi-submodule of Ẽ. Let E be the
quotient bimodule

0 // Ẽ∗ // Ẽ // E // 0 .

Again, by the definition of u, we have for all p that the p-th column
of C•(u, E) is a single copy of Ẽ(−1,−1) = Hom•C

(
E(−1), E(−1)

)
. The

Hochschild differential is trivial, and therefore C•(u, E) is quasi-isomorphic to

Ẽ(−1,−1) = RHomC (A,A).

We call the cohomology of C•(u, Ẽ∗) the reduced Hochschild cohomology

of C , with respect to the base object A, notation HH
∗
(C , A).

There is a short exact sequence of complexes

0 // C•(u, Ẽ∗) // C•(u, Ẽ) // C•(u, E) // 0 , (6)

which gives rise to a long exact sequence in cohomology

// HH
∗
(C , A) // HH∗(C ) // Ext∗C (A,A)

+1 // . (7)

Remark 2.2 As HH∗(C ) governs deformations of the abelian category C , and
Ext∗C (A,A) governs deformations of the object A within C (see [14]), the se-

quence (7) suggests that HH
∗
(C , A) governs the deformations of the pair (C , A).

This motivates our terminology. We apologize for the somewhat ad-hoc defini-
tion, which is motivated by its convenience for what follows.

Graded Hochschild cohomology

Define the unital graded C-algebra

S =
⊕
n≥0

HomC

(
A,A(n)

)
,

and the graded differential graded S-bimodule

M• =
⊕
n∈Z

Hom•C
(
E,E(n)

)
.

The grading coming from the autoequivalence s will be called the projective
grading and will be denoted using lower indices, in contrast to the cohomological
grading, which is indicated with superscripts.
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We have the Hochschild complex of S with values in M•

C•(S,M•)

and the subcomplex
C•gr(S,M

•)

of projective degree 0 cochains. These are the cochains which preserve the
projective degree.

Lemma 2.3 We have a short exact sequence of complexes of C-vector spaces

0 // C•gr(S,M
•) // C•(u, Ẽ)

1−s−1

// C•(u, Ẽ) // 0 . (8)

Proof. During this proof we will disregard the vertical degree (the coefficient
degree) and consider only the horizontal degree (the Hochschild degree). Thus,

Cp(u, Ẽ) will denote the p-th column (5) of C•(u, Ẽ). The same applies to
C•gr(S,M

•).
A p-cochain χ ∈ Cpgr(S,M

•), is a family (χ`1,...,`p)`1,...,`p≥0, where

χ`1,...,`p : S`p ⊗ . . .⊗ S`1 −→M•`1+...+`p

is a multilinear map. We associate to χ the p-cochain ψ ∈ Cp(u, Ẽ) given by
the family (ψn0,...,np)n0≥...≥np≥1, where

ψn0,...,np : HomC

(
A(−np−1), A(−np)

)
⊗ . . .⊗HomC

(
A(−n0), A(−n1)

)
−→ Hom•C

(
E(−n0), E(−np)

)
is the multilinear operation given by

ψn0,...,np(αp, . . . , α1) = s−n0χn0−n1,...,np−1−np(snp−1αp, . . . , s
n0α1)

Sending χ to ψ defines the injective arrow in (8).
The functor s−1 restricts to a fully faithful functor s−1 : u→ u, and defines

an endomorphism of the diagram (4), and so induces an endomorphism s−1 of

C•(u, Ẽ). Given a p-cochain ψ ∈ Cp(u, Ẽ), the p-cochain s−1ψ ∈ Cp(u, Ẽ) is
given by

(s−1ψ)n0,...,np(αp, . . . α1) = s
(
ψn0+1,...,np+1(s−1αp, . . . , s

−1α1)
)
.

So the condition (1− s−1)ψ = 0 is equivalent to

s
(
ψn0+1,...,np+1(s−1αp, . . . , s

−1α1)
)

= ψn0...,np(αp, . . . , α1) .

Such a ψ is the image of χ ∈ Cpgr(S,M
•), with

χ`1,...,`p(αp, . . . , α1) = sn0
(
ψn0,...,np(s−np−1αp, . . . , s

−n0α1)
)
,

12



where, for i = 0, . . . , p, we have used the abbreviation ni = n+
∑
j>i `j , for an

arbitrary n ≥ 1. This proves that (8) is exact in the middle.
To prove that (1 − s−1) is surjective, note that given φ, the equation φ =

(1− s−1)ψ is equivalent to s−1ψ = ψ − φ, which is a recursive equation for the
components of ψ in terms of those ψn0,...,np with np = 1. �

Sequences (6) and (8) exhibit two subcomplexes of C•(u, Ẽ). In the intersec-

tion of C•gr(S,M
•) and C•(u, Ẽ∗) inside C•(u, Ẽ), there is C•gr(S, S>0), giving

rise to the commutative diagram of complexes with exact rows and columns

C•gr(S, S>0) //

��

C•(u, Ẽ∗) //

��

R

β

��
C•gr(S,M

•) //

��

C•(u, Ẽ)
1−s−1

//

��

C•(u, Ẽ)

Q
α // C•(u, E)

(9)

Lemma 2.4 Both α and β are quasi-isomorphisms.

Proof. In fact, the two claims are equivalent, so let us prove the one for α.
Let us start by noting that in C•gr(S,M

•), we can replace M• by

M•≥0 =
⊕
n≥0

Hom•C
(
E,E(n)

)
.

Consider the monomorphism of S-bimodules S>0 → M•≥0. By the second con-
dition that we require of polarizations, the quotient of M•≥0 modulo S>0 is
quasi-isomorphic to the bimodule M0 = Hom•C (E,E), which exists entirely in
projective degree 0. It follows that Q is quasi-isomorphic to C•gr(S,M0). But for
every p, we have Cpgr(S,M0) = M0. It follows that C•gr(S,M0) is, in fact, quasi-

isomorphic to Hom•C (E,E) = RHomC (A,A). The same is true for C•(u, E).
We have used the fact that graded Hochschild cohomology of S is invariant

under quasi-isomorphisms of the coefficient bimodule. This can be reduced to
the case of Hochschild cohomology of the category u via Lemma 2.3, which
applies to any u-bimodule. �

Corollary 2.5 There is a distinguished triangle of complexes of C-vector spaces

C•gr(S>0, S>0) // C•(u, Ẽ∗)
1−s−1

// C•(u, Ẽ)
+1 // ,

and hence a long exact sequence in cohomology

// HH∗gr(S>0, S>0) // HH
∗
(C , A)

1−s−1

// HH∗(C )
+1 // . (10)
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Proof. This is where we use the connectedness assumption that HomC (A,A) =
C. By this assumption, the normalized graded Hochschild complex of S with
values in S>0 is C•(S>0, S>0). �

Thus Diagram (9) gives rise to a diagram of long exact sequences in coho-
mology:

HH∗gr(S>0, S>0) //

��

HH
∗
(C , A)

1−s−1

//

��

HH∗(C )
+1 //

HH∗gr(S,M
•) //

��

HH∗(C )
1−s−1

//

��

HH∗(C )
+1 //

Ext∗C (A,A)

+1

��

Ext∗C (A,A)

+1

��

(11)

Heuristic Remarks

Unfortunately, this result about

(L, dµ)[−1] = C•gr(S>0, S>0) ,

with notation S>0 = (V, µ), is only about the tangent complex of our derived
stack as a complex, disregarding the structure of deformation functor, i.e. the
L∞-structure. We would like to make a few heuristic remarks, which may
explain the provenance of Diagram (11).

There is an octahedron of deformation functors

DefC (A)

��

DefC (A)

��
DefC (s) // Def(C , s, A) //

��

Def(C , A)

��
DefC (s) // Def(C , s) // Def(C )

Then there is an isomorphism Def(C ) = DefC (s)[1], so we can rewrite this as

DefC (A)

��

DefC (A)

��
Def(C , s, A) //

��

Def(C , A)

��

// Def(C )

Def(C , s) // Def(C ) // Def(C )
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and as
Def(C , s, A) //

��

Def(C , A)

��

// Def(C )

Def(C , s) //

��

Def(C ) //

��

Def(C )

DefC (A)[1] DefC (A)[1]

We believe that this latter diagram is, in fact, (11), and this justifies our
suspicion that C•gr(S>0, S>0)[+1] governs the deformation theory of the triple
(C , A, s). From Section 1, we know that C•gr(S>0, S>0)[+1] governs the de-
formation theory of (non-unital) graded algebras. This is consistent with the
Artin-Zhang philosophy that graded algebras are just triples (C , A, s) in dis-
guise.

2.2 Relative Hochschild cohomology (commutative case)

In the commutative case, we can interpret graded Hochschild cohomology of a
graded ring as reduced equivariant Hochschild cohomology. We will introduce
this concept, and prove results analogous to the non-commutative case.

Relative Hochschild cohomology for schemes

Let X be a separated scheme and X → Y a separated morphism of algebraic
stacks. Consider the diagonal morphism

∆ : X −→ X ×Y X ,

which is a closed immersion of schemes. As for any closed immersion of schemes,
the derived category object L∆∗∆∗OX splits off H 0(L∆∗∆∗OX) = ∆∗∆∗OX =
OX , and we write (L∆∗∆∗OX)red for the complement τ<0(L∆∗∆∗OX).

For a sheaf of OX -modules F , we define the relative Hochschild cohomology
of X over Y with values in F to be

HH∗Y (X,F ) = RHom(L∆∗∆∗OX ,F ) .

We also call
HH

∗
Y (X,F ) = RHom

(
(L∆∗∆∗OX)red,F

)
the reduced Hochschild cohomology of X over Y with values in F . For F =
OX , we use the usual abbreviations

HH∗Y (X) = HH∗Y (X,OX) , HH
∗
Y (X) = HH

∗
Y (X,OX) .

We have

HH∗Y (X,F ) = HH
∗
Y (X,F )⊕H∗(X,F ) ,

HH∗Y (X) = HH
∗
Y (X)⊕H∗(X,OX) .
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Equivariant Hochschild cohomology

If G is a reductive algebraic group, π : P → X is a principal G-bundle, and X →
BG the associated classifying morphism, then we write HH∗G for HH∗BG, and

HH
∗
G for HH

∗
BG, and speak of equivariant (reduced) Hochschild cohomology.

Proposition 2.6 For any quasi-coherent sheaf of OX-modules F , There is a
natural G-action on HH∗(P, π∗F ), and we have canonical isomorphisms

HH∗G(X,F ) = HH∗(P, π∗F )G , HH
∗
G(X,F ) = HH

∗
(P, π∗F )G .

In particular,

HH∗G(X) = HH∗(P )G , HH
∗
G(X) = HH

∗
(P )G .

Proof. Consider the cartesian diagram

P
∆′ //

π

��

P × P

π̃

��
X

∆ // X ×BG X

and write A = π∗OP , so that P is the relative spectrum of the OX -algebra A
over X. By flat base change, we have

π∗L∆∗∆∗OX = L∆′
∗
∆′∗OP ,

and therefore

RHom(π∗L∆∗∆∗OX , π
∗F ) = RHom(L∆′

∗
∆′∗OP , π

∗F ) ,

and by adjunction

HH∗G(X,A ⊗OX F ) = HH∗(P, π∗F ) .

We have a G-action on A , and the invariants are A G = OX . We get an
induced action on A ⊗OX F with invariants F , and an induced action on
HH∗G(X,A ⊗OXF ) with invariantsHH∗G(X,F ). This proves the claim for usual
Hochschild cohomology. The proof goes through also in the reduced case. �

Relation to ordinary Hochschild cohomology

We specialize to the case G = Gm.

Proposition 2.7 Let X be a separated scheme and X → BGm a morphism.
Denote the diagonal X → X ×X by ∆, and the diagonal X → X ×BGm X by

∆̃. Then in D(OX) there are distinguished triangles

L∆∗∆∗OX
(t−1) // L∆∗∆∗OX // L∆̃∗∆̃∗OX

+1 // , (12)
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and

L∆∗∆∗OX
(t−1) // (L∆∗∆∗OX)red // (L∆̃∗∆̃∗OX)red +1 // .

Proof. Let X be a scheme, and

Gm ×X
ι // R̃

π // R

a central extension of groupoids over X. The example which will concern us
is given by R̃ = X ×BGm X, and R = X ×X. Denote the identity sections of

R̃ and R by ∆̃ and ∆, respectively, and assume that ∆ is a closed immersion.
Then ι is a closed immersion, as it is a pullback of ∆. Let us denote the identity
of Gm ×X by e, and let t be the standard coordinate on Gm.

We have a short exact sequence of sheaves of O-modules on Gm ×X

0 // OGm×X
(t−1) // OGm×X

// e∗OX // 0 .

Applying ι∗ we get the short exact sequence

0 // ι∗OGm×X
(t−1) // ι∗OGm×X

// ι∗e∗OX // 0 .

We have ι∗OGm×X = π∗∆∗OX , and ι∗e∗OX = ∆̃∗OX , by the cartesian diagram

Gm ×X
ι //

��

R̃

π

��
X

∆̃

;;

∆ // R

So we can rewrite our exact sequence as

0 // π∗∆∗OX
(t−1) // π∗∆∗OX // ∆̃∗OX // 0 .

Now we apply L∆̃∗ to this exact sequence of O-modules on R̃, to obtain the
distinguished triangle (12). �

Corollary 2.8 There are long exact sequences

// HH∗Gm(X) // HH∗(X) // HH∗(X)
+1 // ,

and
// HH

∗
Gm(X) // HH

∗
(X) // HH∗(X)

+1 // .
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A lemma on Hochschild cohomology of quasi-affine schemes

If X is quasi-affine, say X ⊂ V = SpecA, we can apply the usual tilde con-
struction to the Hochschild complex C•(A) of A. We obtain a complex of
quasi-coherent sheaves C•(A)∼|X on X, whose component in degree p is the
free OX -module

Cp(A)∼|X = OX ⊗C A
⊗p .

Removing the degree 0 part from C•(A) gives the reduced Hochschild complex
C•(A), and the associated complex of quasi-coherent sheaves C•(A)∼|X , which
is obtained from C•(A)∼|X by removing the component in degree 0.

Lemma 2.9 In the derived category of X, the complex C•(A)∼|X represents the
object L∆∗∆∗OX , where ∆ : X → X ×X is the absolute diagonal. Moreover,
the complex C•(A)∼|X represents (L∆∗∆∗OX)red.

Proof. This follows from [13], where it is proved that on a quasi-projective
scheme the complex of non-quasi-coherent sheaves CX

• , which sheafifies the
Hochschild complex, represents the derived category object L∆∗∆∗OX .

Then we have a canonical quasi-isomorphism

C•(A)∼|X
∼ //CX

• ,

because Hochschild homology commutes with localization. �

Now suppose F = M̃ |X , for an A-module M .

Lemma 2.10 We have spectral sequences

Epq2 = HHp
(
A,Hq(X,F )

)
=⇒ HHp+q(X,F ) ,

Epq2 = HH
p(
A,Hq(X,F )

)
=⇒ HH

p+q
(X,F ) .

Proof. By the previous lemma, the derived category object
RHom(L∆∗∆∗OX ,F ) can be represented by the complex C•(A,F ) of
sheaves on X, whose degree p component is

HomOX

(
OX ⊗C A

⊗p,F
)

= HomC(A⊗p,F ) ,

i.e., an infinite product of copies of F . It follows that Hochschild cohomology
of X with values in F is equal to hypercohomology

HH∗(X,F ) = H∗
(
X,C•(A,F )

)
.

This hypercohomology can be computed using a finite affine Čech cover U of X,
because an infinite product of quasi-coherent sheaves is acyclic over an affine
scheme (even though not quasi-coherent in itself). Thus

H∗
(
X,C•(A,F )

)
= tot

(
Č•
(
U, C•(A,F )

))
= tot

(
C•
(
A, Č•(U,F )

))
.
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We now consider the double complex. Computing cohomology in the Čech di-
rection gives us C•

(
A,Hq(X,F )

)
, because infinite products are exact in the

category of A-modules. Next, computing cohomology in the Hochschild di-
rection gives us HHp

(
A,Hq(X,F )

)
, by definition. Thus the desired spectral

sequence is the standard E2 spectral sequence of our double complex.
The proof is the same for the reduced case. �

Graded Hochschild cohomology

Let A be a locally finite commutative graded C-algebra, such that

(i) A is graded in non-negative degrees: A = A≥0,

(ii) A is connected: A0 = C,

(iii) A is generated in degree 1.

Let V = SpecA, and Y = V \ 0, where 0 ∈ V is the vertex defined by
the homogeneous maximal ideal A>0. Moreover, let X = Y/Gm = ProjA, and
denote the quotient map by π : Y → X. Assume further that

(iv) for all n > 0, the homomorphism An → Γ
(
X,OX(n)

)
is bijective,

(v) for all q > 0 and n > 0, we have Hq
(
X,OX(n)

)
= 0.

Let us remark that

Hq(Y,OY ) = Hq(X,π∗OY ) =
⊕
n

Hq
(
X,OX(n)

)
.

For example, if X is a connected projective scheme, and OX(1) is a sufficiently
ample line bundle, then A =

⊕
i Γ
(
X,OX(i)

)
satisfies our assumptions.

Theorem 2.11 We have

HH
∗
Gm(X) = HH∗gr(A>0, A>0) .

Proof. By Proposition 2.6, we have

HH
∗
Gm(X) = HH

∗
gr(Y ) .

We can then use Lemma 2.10 to determine HH
∗
gr(Y ). In fact, Gm acts on the

relevant spectral sequence, and we get an induced spectral sequence of invariants

Epq2 = HH
p

gr

(
A,Hq(Y,OY )

)
=⇒ HH

p+q

gr (Y ) . (13)

To deal with the E2-term, notice that, passing to the normalized complex, we
have

HHp
(
A,Hq(Y,OY )

)
= HHp

(
A>0, H

q(Y,OY )
)
,

This implies also

HH
p

gr

(
A,Hq(Y,OY )

)
= HH

p

gr

(
A>0, H

q(Y,OY )
)
.
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For q > 0 and p > 0, we have

HHp
gr

(
A>0, H

q(Y,OY )
)

= 0 ,

because there are no graded cochains in the relevant degrees (and taking invari-
ants commutes with computing Hochschild cohomology). So the E2-term of the
spectral sequence (13) is entirely contained in the row q = 0. We deduce that

HH
∗
gr(Y ) = HH

∗
gr

(
A>0, H

0(Y,OY )
)gr

.

We have
Cpgr

(
A>0, H

0(Y,OY )
)

= Cpgr(A>0, A>0) ,

and we conclude that HH
∗
gr(Y ) = HH

∗
gr(A>0, A>0). �

Remark 2.12 This argument would fail for non-reduced Hochschild cohomol-
ogy, because the corresponding spectral sequence would also contain the non-
vanishing n = 0 column. This is the reason for working with reduced Hochschild
cohomology. In fact, for Hochschild cohomology, we have

HH∗Gm(X) = HH∗gr(A>0, A>0)⊕H∗(X,OX) .

Corollary 2.13 There is a long exact cohomology sequence

// HH∗gr(A>0, A>0) // HH
∗
(X) // HH∗(X)

+1 // . (14)

This sequence is also the sequence (10), for S = A.

2.3 The smooth case

Hochschild-Kostant-Rosenberg

We return to the case of a separated scheme X, with a separated morphism
X → Y to an algebraic stack Y , and assume that X → Y is smooth, of relative
dimension d. The usual proof of the Hochschild-Kostant-Rosenberg theorem
goes through and gives

L∆∗∆∗OX =

d⊕
j=0

ΩjX/Y [j] ,

(L∆∗∆∗OX)red =

d⊕
j=1

ΩjX/Y [j] .

Corollary 2.14 For relative Hochschild cohomology, we have

HHq
Y (X) =

d⊕
j=0

Hq−j(X,ΛjTX/Y )

HH
q

Y (X) =

d⊕
j=1

Hq−j(X,ΛjTX/Y ) .
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In particular, consider the case Y = BGm, and X smooth. The bundles
ΛjTX/BGm can be related to the ΛjTX by considering the short exact sequence
of vector bundles on X

0 //OX //TX/BGm
//TX //0

(the Euler sequence), which induces, for every j > 0, another short exact se-
quence of vector bundles

0 //Λj−1TX //ΛjTX/BGm
//ΛjTX //0 .

If A is a graded ring as in Theorem 2.11, and X = ProjA is smooth of
dimension d, then for q > 0 we have

HHq
gr(A>0, A>0) =

d+1⊕
j=1

Hq−j(X,ΛjTX/BGm) .

Further considerations

We consider the case that
(
X,OX(1)

)
is a smooth projective connected scheme

of dimension d. The polarization OX(1) gives rise to the morphism X → BGm.
Assume that OX(1) is sufficiently ample, so that the hypotheses of Theorem 2.11
are satisfied. Let A be the homogeneous coordinate ring of X. Then A defines
a point of the derived moduli scheme of algebras constructed in Section 1. The
tangent complex at X of the derived scheme is

HH∗gr(A>0, A>0)[1] =

d+1⊕
j=1

H∗(X,ΛjTX/BGm)[1− j] .

Therefore, the virtual dimension of the derived scheme at the point X is

1− χ(X,OX) = (−1)1+dimXpa(X) ,

i.e., the arithmetic genus up to sign.
In this case, the beginning of the long exact sequence (14), or (10), is a

direct sum of long exact sequences as in Figure 1, where we have written
T̃ for TX/BGm . The left column contains HH∗(X)[−1], the middle column

HH
∗
Gm(X) = HH∗gr(A>0, A>0), and the right column HH

∗
(X).

Thus, the infinitesimal non-commutative polarized automorphisms of X are
given by

HH
1

Gm(X) = H0(X, T̃ ) .

This is equal to the classical, commutative infinitesimal automorphisms of the
pair

(
X,OX(1)

)
. It is an extension of the kernel of H0(X,TX) → H1(X,OX)

by C = H0(X,OX).
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0 // H0(X,OX) // H0(X, T̃ ) // H0(X,TX)

// H1(X,OX) // H1(X, T̃ ) // H1(X,TX)

��

0 // H0(X,TX) // H0(X,Λ2T̃ ) // H0(X,Λ2TX)

//

H2(X,OX) // H2(X, T̃ ) // H2(X,TX) //

H1(X,TX) // H1(X,Λ2T̃ ) // H1(X,Λ2TX) //

0 // H0(X,Λ2TX) // H0(X,Λ3T̃ ) // H0(X,Λ3TX) //

Figure 1

The infinitesimal non-commutative polarized deformations of X are given

by HH
2

Gm(X). This splits up into two direct summands

HH
2

Gm(X) = H1(X, T̃ )⊕H0(X,Λ2T̃ ) .

There is the classical, commutative part H1(X, T̃ ). This is an extension of
the kernel of H1(X,TX) → H2(X,OX), i.e., the infinitesimal deformations of
X lifting to the pair

(
X,OX(1)

)
, by the cokernel of H0(X,TX)→ H1(X,OX),

i.e., the infinitesimal deformations of OX(1), modulo those that come from in-
finitesimal automorphisms of X.

Then there is the non-commutative part H0(X,Λ2T̃ ). This is an exten-
sion of the kernel of H0(X,Λ2TX)→ H1(X,TX) by H0(X,TX). The subspace
H0(X,TX) corresponds to non-commutative deformations of the graded sheaf
of algebras

⊕
n O(n) coming from automorphisms of X, via the ‘twisted co-

ordinate ring construction’. The quotient space consists of non-commutative
deformations of the structure sheaf (given by H0(X,Λ2TX), which map to zero
in H1(X,TX).

The infinitesimal non-commutative polarized obstructions of X are given

by HH
3

Gm(X), and split up into three parts. The classical, commutative part

H2(X, T̃ ), and two non-classical parts H1(X,Λ2T̃ ) and H0(X,Λ3T̃ ). In partic-
ular, they contain H0(X,Λ2TX) as a subspace.

Remark 2.15 For the obstruction theory to be perfect at X, i.e., for the higher
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obstructions to vanish, we could require

Hi(X,ΛjTX) = 0 , for all i+ j ≥ 3.

For X a curve this is always true. This leads to the speculation that there may
be interesting moduli spaces of non-commutative polarized curves, which admit
virtual fundamental classes.

For surfaces, this would give the three conditions

H1(X,Λ2TX) = 0 , H2(X,TX) = 0 , H2(X,Λ2TX) = 0 .

3 Stability for graded algebras

In this section we study the geometric invariant theory quotient associated to
the action of G on L1 (notation from Section 1). Because of (2) we restrict to
the case of truncated algebras. Then both L1 and G are of finite type, and we
are in a classical geometric invariant theory context.

3.1 The GIT problem

Here we construct quasi-projective moduli schemes of finite graded stable alge-
bras. We start by setting up a Geometric Invariant Theory problem.

Let q be a positive integer, ~d = (d1, . . . , dq) a vector of positive integers, and

V =

q⊕
i=1

Vi

a finite-dimensional graded vector space of dimension ~d. Let G =
∏q
i=1 GL(Vi).

We write elements of V as x = (x1, . . . , xq) and elements of G as g = (g1, . . . , gq).
Let R = Homgr(V

⊗2, V ), with elements written as µ = (µij)ij , where µij :
Vi ⊗ Vj → Vi+j . Note that µij 6= 0 only if i, j ≥ 1 and i + j ≤ q. Consider the
left action of G on R by conjugation. More precisely, for g ∈ G and µ ∈ R, we
have

(g ∗ µ)ij = gi+j ◦ µij ◦ (g−1
i ⊗ g

−1
j ) .

Remark 3.1 This is not a space of quiver representations. So we cannot di-
rectly quote results for moduli of quiver representations. Although similar tech-
niques do apply.

There are two canonical one-parameter subgroups of G. The anti-diagonal
∆−1 : Gm → G acts by scalar multiplication (i.e., by weight 1) on R, and
hence destabilizes every point of R. The other, Γ : Gm → G given by Γ(t) =

(t, t2, . . . , tq) acts trivially on R, prompting us to pass from G to G̃ = G/Γ.

Definition 3.2 We call a vector of integers θ = (θ1, . . . , θq) a stability pa-
rameter if
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(i)
q∑
i=1

θidi < 0 ,

(ii)
q∑
i=1

iθidi = 0 .

Any stability parameter defines a character χθ of G̃ by

χθ(g1, . . . , gq) =

q∏
i=1

det(gi)
θi .

The second condition on θ says that θ factors through G → G̃, and the first
condition implies that 〈χ,∆−1〉 > 0.

We then linearize the action of G̃ on R by taking the trivial line bundle on
R, and lifting the action to R × C by the formula g ∗ (µ, t) = (g ∗ µ, χ(g)−1t).

Then the GIT quotient of R by G̃ is

R�G̃ = Proj

∞⊕
n=0

Γ(R)G̃χn ,

where
Γ(R)G̃χn = {f ∈ Γ(R) | f(g ∗ µ) = χ(g)nf(µ)}

are the twisted invariants. Note that the condition 〈χ,∆−1〉 > 0 implies that⊕
n Γ(R)G̃χn is non-negatively graded.
The GIT quotient is a projective scheme, because the affine quotient

Spec Γ(R)G̃ is reduced to a point.
Let Rs ⊂ Rss ⊂ R be the open subsets of stable and semi-stable points in

R, respectively. Then [Rs/G̃] is a separated Deligne-Mumford stack with quasi-

projective coarse moduli space Rs�G̃. Moreover, Rss�G̃ = R�G̃ is a projective

scheme, containing Rs�G̃ as an open subscheme. If Rs = Rss, then [Rs/G̃] is

a proper Deligne-Mumford stack with projective coarse moduli space R�G̃.
When we need to specify the stability parameter, we call points of Rs (Rss)

θ-(semi)-stable.

3.2 The Hilbert-Mumford criterion

We recall the Hilbert-Mumford criterion (see Proposition 2.5 in [8]):

Proposition 3.3 (Hilbert-Mumford numerical criterion) The point µ ∈
R is (semi)-stable (with respect to the linearization given by χ) if and only if

for every non-trivial one-parameter subgroup λ of G̃, such that limt→0 λ(t) ∗ µ
exists in R, we have 〈χ, λ〉 > 0 (≥ 0).
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Proposition 3.4 The point µ ∈ R is θ-(semi)-stable, if and only if for all
descending filtrations V = V (0) ⊃ V (1) ⊃ . . ., compatible with the lower grading,
and satisfying the conditions

(i) For n sufficiently large, V (n) = 0, but V (1) 6= 0,

(ii) (V (k)) does not dominate the tautological filtration, where to dominate the
tautological filtration means that V (k) ⊃ V≥k, for all k,

(iii) µ(V (i), V (j)) ⊂ V (i+j), for all i, j,

we have
q∑
i=1

θiwi > 0 (≥ 0) .

Here wi =
∑
m≥1 dimV

(m)
i is the weight function of the filtration V (k).

Proof. A one-parameter subgroup of G̃ is the same thing as a one-parameter
subgroup of G, up to translation by Γ. One-parameter subgroups of G are the
same thing as gradings on each of the Vi, which we denote by upper indices
Vi =

⊕
m V

m
i . The upper grading V =

⊕
i,m V

m
i gives rise to the same one-

parameter subgroup of G̃ as the upper grading V =
⊕

i,m V
m+i
i . Thus we call

the upper gradings
⊕
V mi and

⊕
V m+i
i equivalent. The upper grading defined

by V = V 0, as well as all equivalent upper gradings are called trivial, as they
correspond to the trivial cocharacter of G̃. In each equivalence class there is
a unique upper grading such that no weights are negative, but there exists a
non-zero space V mi with m < i. Let us call such an upper grading standard.

Now let µ ∈ R be given. Let λ be a one-parameter subgroup of G, corre-
sponding to the double grading V = ⊕V mi on V . Then limt→0 λ(t) ∗ µ exists in
R, if and only if none of the λ-weights of µ are negative. This is equivalent to
µ preserving the descending filtration given by V ≥n =

⊕
m≥n V

m, by which we

mean that µ(V ≥m, V ≥n) ⊂ V ≥m+n. Note that this condition is preserved under
equivalence of upper gradings, even though the upper filtration itself changes in
the equivalence class.

Now suppose that µ ∈ R preserves the filtration V ≥n, given by λ. Then

〈χ, λ〉 =

q∑
i=1

θi
∑
m

m dimV mi .

Note that for standard upper gradings, we have V ⊂ V ≥0, and hence∑
m

m dimV mi =
∑
m≥1

dimV ≥mi ,

so that we have

〈χ, λ〉 =

q∑
i=1

θi
∑
m≥1

dimV ≥mi .

Thus we conclude that µ ∈ R is stable if and only if for every descending
filtration V = V (0) ⊃ V (1) ⊃ . . . (compatible with the lower grading), satisfying
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(i) (non-trivial) V (1) 6= 0, but V (n) = 0, for n� 0,

(ii) (standard) there exists a k, such that V (k) 6⊃ V≥k,

(iii) µ(V (m), V (n)) ⊂ V (m+n),

we have
∑q
i=1 θi

∑
m≥1 dimV

(m)
i > 0 (≥ 0). �

3.3 Reformulation using test configurations

Suppose now that A is an associative and unital graded algebra, which is locally
finite and connected, with A0 = C.

Test configurations for A

Definition 3.5 A test configuration for A is a bundle of graded unital al-
gebras B (as defined in Section 1) over the affine line A1, together with a
Gm-action on the bundle B, lifting the natural action on A1, such that the
restriction of B to Gm ⊂ A1 is Gm-equivariantly isomorphic to the constant
bundle with fibre A.

Two test configurations for A are equivalent, if one can be obtained from
the other by multiplying the Gm-action by a suitable power of the tautologi-
cal action. A test configuration for A is trivial, if it is equivalent to a Gm-
equivariantly constant test configuration.

The special fibre B|0 of a test configuration is a graded algebra with the same
Hilbert function as A, endowed with a Gm-action. The weight of the Gm-action
on the graded piece of degree i of B|0 is denoted wi, and the function

F (i) =
wi

idimAi
,

defined for i > 0, is the Futaki function of the test configuration B. (It takes
values in Q ∪ {∞}.) The Futaki functions of two equivalent test configurations
differ by a constant integer. The Futaki function of a trivial test configuration
is a constant integer.

A test configuration for A, together with a Gm-equivariant trivialization of
its restriction to Gm ⊂ A1, is the same thing as a doubly graded C[t]-subalgebra

B =
⊕
k∈Z

B(k)t−k ⊂ A[t, t−1] ,

such that every Bi ⊂ Ai[t, t
−1] is a finitely generated C[t]-submodule of rank

dimAi. The test configuration is trivial, if and only if there exists an ` ∈ Z,
such that

B
(k)
i =

{
Ai if k ≤ i`
0 if k > i`

For our purposes it will not be important to distinguish between a test config-
uration and one with Gm-equivariant trivialization over Gm ⊂ A1, and so we
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will identify test configurations with doubly graded C[t]-algebras B ⊂ A[t, t−1]
such that rkBi = dimAi, for all i.

By definition, generators of a test configuration B for A are generators for
the algebra of global sections B = Γ(A1,B) as C[t]-algebra.

Remark 3.6 If A admits a finitely generated test configuration, then A is
finitely generated, itself.

Admissible test configurations

Definition 3.7 A test configuration B is called admissible, if it is equivalent
to a test configuration which can be written as

A[t] ⊂ B ⊂ A[t, t−1] .

Let us suppose B is an admissible test configuration written in this way. We
have

wi =
∑
k>0

dimB
(k)
i .

Moreover,

(i) every B(k) for k > 0 is a two-sided ideal in A,

(ii) A ⊃ B(1) ⊃ B(2) ⊃ . . .,
(iii) B(k)B(`) ⊂ B(k+`), for all k, ` > 0,

(iv) for every i > 0, there exists an ` > 0, such that B
(k)
i = 0, for all k ≥ `.

Definition 3.8 We call a sequence of two-sided ideals
(
I(k)

)
k>0

in A satisfying
these conditions an admissible family of ideals in A.

An admissible family of ideals
(
I(k)

)
k>0

defines a test configuration by

B =
⊕
k∈Z

I(k) t−k ,

where we set I(k) = A, for all k ≤ 0. The special fibre of this test configuration
is

B/tB =
⊕
k≥0

I(k)/I(k+1) .

Remark 3.9 If A is finitely generated, then every test configuration for A is
admissible.

Standard admissible test configurations

If a test configuration is admissible, there is a unique equivalent test configura-
tion with the properties

(i) A[t] ⊂ B,
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(ii)
⊕

k∈ZA≥k t
−k $ B.

Such a test configuration is called standard admissible.
A test configuration is standard admissible if and only if the corresponding

admissible family of ideals does not contain the tautological admissible family
given by I(k) = A≥k. Such an admissible family of ideals is called standard
admissible.

Stability

Now let us return to the setup of 3.1. Suppose that µ ∈ R = L1 is a Maurer-
Cartan element, so that A = (V, µ) is a graded algebra with Ai = 0, for i > q.

Proposition 3.10 The Maurer-Cartan element µ is θ-(semi)-stable if and only
if, for every non-trivial test configuration for A, the weights wi satisfy∑

i

θiwi > 0 (≥ 0) .

Proof. As Ai = 0 for i � 0, all test configurations for A are admissible. Be-
cause of

∑
i iθidi = 0, the stability condition

∑
i θiwi > 0 (≥ 0) is independent

of the choice of a test configuration within its equivalence class. So to test the
condition of this proposition it is sufficient to use standard admissible test con-
figurations. To conclude, we remark that non-trivial standard admissible test
configurations correspond exactly to the filtrations of V , which are tested in
Proposition 3.4. �

This proposition motivates the following definition.

Definition 3.11 A finite graded algebra A is θ-(semi)-stable, if

(i)
∑
i θi dimAi < 0,

(ii)
∑
i iθi dimAi = 0,

(iii) for every non-trivial test configuration for A, the weights satisfy∑
i

θiwi > 0 (≥ 0) .

Proposition 3.12 To test (semi)-stability of A, it suffices to check standard
admissible families of ideals in A.

3.4 Standard stability parameters

We fix a dimension vector (d1, . . . , dq) and a stability parameter θ, as above,
and study θ-stability of finite graded algebras A with dimAi = di.

Let us remark that there is no a priori reason to expect complete moduli of
stable algebras:
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Remark 3.13 We can eliminate θ1 from the stability condition. The stability
parameter condition becomes

q∑
i=2

(i− 1)diθi > 0 ,

and as stability condition we obtain

q∑
i=2

(d1wi − idiw1)θi > 0 (≥ 0) ,

or
q∑
i=2

(
F (i)− F (1)

)
idiθi > 0 (≥ 0) .

We see that no matter the choice of stability parameter θ, an admissible sequence
of ideals with constant Futaki function will always violate stability. The Futaki
function being constant means that

wk = kdk
w1

d1
, for all k ≥ 1 .

There is no a priori reason why d1 should not divide w1, and so there is no divis-
ibility condition on the dimension vector (d1, d2, . . .) which would exclude the
possibility of strictly semi-stable objects. Therefore, there is no such condition
that would ensure a projective coarse moduli space of stable algebras.

For certain stability parameters, stability implies generated in degree 1:

Proposition 3.14 Suppose that θ1 < 0 and θi ≥ 0, for all i > 1. Then θ-stable
algebras are generated in degree 1. If, in addition, θi > 0, for all i > 1, then
θ-semi-stable algebras are generated in degree 1.

Proof. Write I = A≥1, and consider the admissible sequence of ideals of
powers of I, given by I(k) = Ik, for all k ≥ 1. Assume that not Ik = A≥k, for
all k. Then (Ik) is properly contained in the tautological filtration, and hence
does not dominate it. Thus (Ik) is standard admissible.

If A is θ-stable, then (−θ1)w1 <
∑
i>1 θiwi. This implies (−θ1)d1 <∑

i>1 θiwi, and hence
∑
i>1 iθidi <

∑
i>1 θiwi. This is a contradiction, be-

cause wi ≤ idi, for all i. Thus Ik = A≥k, for all k, which implies that A is
generated in degree 1.

To prove the additional claim, assume that V is θ-semi-stable. Then we can
still conclude that

∑
i>1 iθidi ≤

∑
i>1 θiwi. Thus, from wi ≤ idi, and the fact

that none of the θi vanish, we conclude that wi = idi, for all i > 1. Again, we
reach a contradiction, proving that A is generated in degree 1. �

Remark 3.15 We have, in both cases, proved that any admissible sequence

of ideals which is contained in the tautological one, and satisfies I
(1)
1 = A1, is

necessarily the tautological sequence.
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Proposition 3.16 Suppose that we have θi ≤ 0, for all i < q. Then every
θ-stable algebra has no non-zero ideal I, which vanishes in degree q. If θi < 0,
for all i < q, we can reach the same conclusion for θ-semi-stable algebras.

Proof. In fact, if we assume that I(k) is an admissible sequence of ideals which
vanishes in degree q, we can conclude that I(k) = 0, for all k ≥ 1, under either
of the two assumptions. �

Remark 3.17 If θq = 0, there are no stable algebras.

Remark 3.18 If we want the assumptions of both Propositions 3.14 and 3.16
to hold, we need to have θ1 < 0, and θq > 0, as well as θi = 0, for all 1 < i < q.
For the conclusions to hold, we need to assume stability, not just semi-stability.

Definition 3.19 The stability parameter θ is standard, if θ1 and θq are the
only non-zero θi.

For a standard stability parameter θ, the stability condition reads

θqwq > (−θ1)w1 (≥) .

This is equivalent to
F (q) > F (1) (≥) ,

which is independent of the sizes of θ1 and θq.
When not specified otherwise, we always work with a standard stability

condition, and make the following definition.

Definition 3.20 Let A be a finite graded algebra, graded in the interval [0, q].
Then A is called (semi)-stable, if for every non-trivial test configuration for
A, the Futaki function satisfies F (q) > F (1) (≥). It suffices to check admissible
families of ideals, or standard admissible sequences of ideals.

Corollary 3.21 Suppose A is stable. Then A is generated in degree 1, and has
no non-trivial two-sided ideals which vanish in degree q.

Moduli

Consider the dimension vector ~d = (d1, . . . , dq), and the associated stack of

twisted bundles of graded algebras of dimension ~d, which we called X̃≤q in

Section 1. Let X̃s
≤q be the open substack of stable algebras. It is a closed

substack of the quotient stack [Rs/G̃], and it is a separated Deligne-Mumford
stack with quasi-projective coarse moduli space, which is a closed subscheme of
Rs�G̃. The C-points of this coarse moduli space correspond in a one-to-one

fashion to isomorphism classes of stable algebras of dimension ~d.

30



3.5 Unbounded algebras

For simplicity, we will only consider stability, not semi-stability. In view of
Corollary 3.21, we will only consider algebras generated in degree 1.

Proposition 3.22 Fix an integer q > 1, and let A be a graded algebra, finitely
generated in degree 1. The following are equivalent

(i) For every test configuration B for A, whose truncation B≤q is a non-
trivial test configuration for A≤q, the Futaki function satisfies F (q) >
F (1).

(ii) For every non-trivial test configuration for A generated in degrees ≤ q, the
Futaki function satisfies F (q) > F (1).

(iii) For every non-trivial test configuration for A generated in degree 1, the
Futaki function satisfies F (q) > F (1).

(iv) For every filtration A1 ) V (1) ⊃ . . . ⊃ V (r) ) 0 of A1 by vector subspaces,
the admissible sequence of ideals generated by {V (k)} has a Futaki function
which satisfies F (q) > F (1).

(v) The truncation A≤q is stable.

Proof. The fact that (i) implies (ii), follows because if a test configuration B
for A is generated in degrees ≤ q, and is non-trivial, then also its truncation
B≤q is non-trivial.

Obviously, (ii) implies (iii).
Next we claim that (iii) implies (iv). Here we will use that A is generated in

degree 1. The admissible sequence of ideals generated by the filtration {V (k)}
is the smallest admissible sequence of ideals {I(k)}, with I

(k)
1 = V

(k)
1 , for all

k > 0. The corresponding test configuration B is generated as C[t]-algebra by⊕
k≥0 V

(k)t−k ⊂ A1[t, t−1] inside A[t, t−1], if we set V (0) = A1. It is generated
in degree 1. Thus, (iii) implies (iv).

Now let us assume that (iv) is satisfied. To prove (v), i.e., that A≤q is stable,
it suffices to check all standard admissible test configurations for A≤q. Among
these, it suffices to check those that are generated in degree 1, because adding
generators in higher degree can only increase F (q), without affecting F (1). But
non-trivial standard admissible test configurations generated in degree 1 are all
generated by a filtration {V (k)} as in (iv).

Finally, the fact that (v) implies (i) is, again, trivial. �

Remark 3.23 For a given dimension d1 of A1, in Condition (iv), we can further
reduce to considering only flags whose dimensions (dimV (1),dimV (2), . . .) come
from a finite list of integer sequences, but as we currently have no use for this
fact, we will not prove it here.

Definition 3.24 A connected graded algebra, finitely generated in degree 1,
is called q-stable, if any of the equivalent conditions in Proposition 3.22 is
satisfied. It is called stable, if there exists and N > 0, such that it is q-stable
for all q ≥ N .
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Commutative case

Suppose that (Y,OY (1)) is a connected projective C-scheme, such that
Hi(Y,O(1)) = 0, for all i > 0. Let A be the homogeneous coordinate ring
of (Y,OY (1)). This is the image of Sym Γ(Y,O(1)) →

⊕
i≥0 Γ(Y,O(n)), and is

a connected graded algebra, generated in degree 1.

Proposition 3.25 The polarized scheme (Y,OY (1)) is Hilbert stable if and only
if A is stable in the sense of Definition 3.24.

Proof. For the definition of Hilbert stability (more precisely, Hilbert stabil-
ity with respect to r = 1), see [12]. By definition, the Hilbert stability of
(Y,OY (1)) is tested against all filtrations of A1 = Γ(Y,OY (1)), exactly as in
Proposition 3.22 (iv). This immediately implies the result. �

Moduli

Return to the moduli stack
X̃ = lim←−

q

X̃≤q .

We have now defined open substacks X̃s
≤q ⊂ X̃≤q of stable algebras. We let X̃s

q

be the preimage of X̃s
≤q in X̃. This is the substack of q-stable algebras. Hence

we have in X̃ a family of open substacks X̃s
q , parametrized by q ∈ N. A point

in X̃ represents a stable algebra if and only if it is in almost all open substacks
X̃s
q ⊂ X̃. The locus of stable algebras in X̃ is

X̃s =
⋃
N∈N

⋂
q≥N

X̃s
q .

We see no obvious reason why X̃s should be an open substack of X̃.

Discussion

We have, for every N ∈ N a diagram⋂
q≥N X̃

s
q
� � //

� _

��

X̃s
N

// // X̃s
≤N

X̃s

(15)

and we find it reasonable, that there should exist dimension vectors ~d and in-
tegers N , for which all arrows in (15) are isomorphisms, so that X̃s = X̃s

≤N ,

and X̃s is a finite type, separated, (in fact quasi-projective) Deligne-Mumford
stack.

In the commutative case (where ~d is a numerical polynomial), the cate-
gory of graded algebras generated in degree 1, with fixed Hilbert polynomial, is
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bounded. This is due to results of Macaulay-Gotzmann-Gasharov (see [4, 6]) on
persistence and the Macaulay bound. Furthermore, it can be shown that stabil-
ity is also a bounded condition, namely it can be checked in the N -truncation,
for a for sufficiently large N (depending on ~d).

From this it follows that, in the commutative case, the corresponding claim
X̃s = X̃s

≤N , holds. This, in particular, implies that the commutative analogue

of the stack X̃s can be realized as a moduli stack of projective polarized schemes
(by taking Proj).

Lack of suitable persistence theorems and flattening stratifications currently
keep us from generalizing this result to the non-commutative case. But it stands
to reason, by analogy with the commutative case, that for certain dimension
vectors ~d, the stack X̃s, or an open substack, is indeed a moduli stack for stable
non-commutative projective schemes, where we propose the following definition
for the latter.

Definition 3.26 Call a sufficiently ample (meaning that Hi
(
C ,O(n)

)
vanishes

for i > 0 and n > 0) non-commutative projective scheme (C ,O, s) stable, if⊕
n>0 Γ(C ,O(n)) is a stable graded algebra.

Further evidence for this expectation is provided by the deformation theory
arguments from Section 1, which indicate that the derived deformation theory
of a non-commutative projective scheme coincides with that of its algebra of
homogeneous coordinates.
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