ANALYSIS AND DESIGN OF PLANAR ACTIVE AND
PASSIVE QUASI-OPTICAL COMPONENTS USING

NEW FDTD TECHNIQUES

Javier Vazquez

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

Queen Mary, University of London
Department of Electronic Engineering
Supervisor: Prof. C. G. Parini

5 April 2002



ABSTRACT

New Quasi-optical sensor technology, based on the millimetre and submillimetre band of the
electromagnetic spectrum, is actually being implemented for many commercial and scientific
applications such as remote sensing, astronomy, collision avoidance radar, etc. These novel
devices make use of integrated active and passive structures usually as planar arrays. The
electromagnetic design and computer simulation of these new structures requires novel

numerical techniques.

The Finite Difference Time Domain method (FDTD) 1s well suited for the electromagnetic
analysis of integrated devices using active non-linear elements, but is difficult to use for large
and/or periodic structures. A rigorous revision of this popular numerical technique is
performed in order to permit FDTD to model practical quasi-optical devices. The system
impulse response or discrete Green’s function (DGF) for FDTD is determined as a
polynomial then the FDTD technique is reformulated as a convolution sum. This new
alternative algorithm avoids Absorbing Boundary Conditions (ABC’s) and can save large
amounts of memory to model wire or slot structures. Many applications for the DGF can be
foreseen, going beyond quasi-optical components. As an example, the exact ABC based on

the DGF for FDTD is implemented for a single grid wall is presented.

The problem of time domain analysis of planar periodic structures modelling only one
periodic cell is also investigated. Simple Periodic Boundary Conditions (PBC) can be
implemented for FDTD, but they can not handle periodic devices (such as phased shift arrays
or dichroic screens) which produce fields periodic in a 4D basis (three spatial dimensions plus

time). An extended FDTD scheme is presented which uses Lorentz type coordinate

transformations to reduce the problem to 3D.

The analysis of non-linear devices using FDTD is also considered in the thesis. In this case,
the non linear devices are always model using an equivalent lumped element circuit. These
circuits are introduced into the FDTD grid by means of the current density following an

iterative implicit algorithm. As a demonstration of the technique a quasi-optically feed slot

ring mixer with integral lens 1s designed ftor operation at 650 GHz.
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CHAPTER I: INTRODUCTION

1.1 Modelling of Quasi optical devices

1.1.1 The millimetre and submillimetre band.

The millimetre and submillimetre band (30GHz-3THz) is probably the last slice of the
electromagnetic spectrum which still remains relatively unexplored in terms of the generation,
detection, measurement, radiation and also from the point of view of applications. At these
frequencies, RF technology does not often provide suitable solutions because of high losses

and propagation effects. At the same time, optical devices and techniques are not possible in

many cases because of the low photon energy and long wavelength at these bands.

Nowadays, considerable effort is being applied to the development of these frequency bands.
As a consequence, this unexplored gap on the spectrum is being reduced. From the side of
infrared optical technology, Lasers based on lead salts are already operating at 10THz and
several procedures for generating and imaging beams at a few THz have been developed by
using non linear optic mixing [I1]. From the microwave side, new solid state devices are

reported to operate in the mmW/submmW band, as Gunn diodes (up to 200GHz) and
Schottky diodes (up to 1THz). Other special devices have been employed in the detection of

these frequencies, such Niobium bolometers and SIS (Superconductor-Insulator

Superconductor) junctions [2].

Traditionally, mmW and submmW have been used in scientific instruments for
radioastronomy and research on plasmas. New applications are also being identified for these

frequency bands, for instance, broadband communications, secure communication links,

wireless LAN, vehicle anti collision radars, detection of chemicals in air, food processing,
etc.[3]. Space projects have already a large number of applications for mmW/submmW. Earth
observation and space scientific missions are increasingly including newer and more
sophisticated instruments that operate in these frequency bands. Following this trend, a

number of future European Space Agency (ESA) projects on astronomy (i.e.

FIRST/PLANCK) and earth observation (i.e. MASTER) will require advanced submmW

instrumentation [4].



1.1.2 Devices and systems for the mmW/submmW band

The actual research in mmW/submmW technologies and applications has produced a set of

antenna and receiver designs that are quite characteristic of these high frequency bands. These
designs are highly conditioned by the special features of the propagation at mmW/submmW

and the low manufacturing tolerances associated with very small wavelengths.

One of the most significant constraints on devices operating at mmW/submmW 1s the large
losses in metallic waveguides and transmission lines. For instance, the attenuation of the
TE10 on a WR-4 rectangular waveguide at 250GHz is approximately 12 dB/m. In order to
avoid these losses the energy is typically guided through free space using a set of mirrors and
lenses which is usually referred as a Quasi-Optical waveguide [S5](Fig.1.1a). As a
consequence, filters and other passive devices have to be implemented Quasi-optically in free
space, typically by using passive arrays of metallic patches, the so called dichroic filters
[6](Fig 1.1b). These structures have a frequency selective transmission of waves in free space,

which is related to the resonant response of the metallic patches.

The high attenuation of transmission lines is also the main reason for using integrated
antennas designs in the mmW/submmW bands (Fig.1.1d). In these devices the active or
detecting device and associated circuits are directly incorporated into the receiving antenna in
order to avoid the transmission line losses from the antenna to the detector or the mixer. The
small size of the receiving antennas at these frequencies is also extremely suitable for the

integration of semiconductor devices, and the direct use of semiconductor manufacturing

techniques for the complete antenna.

Another limitation associated to submmW frequencies is the tiny dimensions of many devices
due to the small wavelength. Despite the impressive advance of the micro-machining
technology {7], it 1s still a challenge to manufacture 3D structures to be used as submmW
antennas or receivers. Planar technology is quite attractive at these frequencies since it has
been extensively developed for the manufacturing of very small components such as
semiconductor devices. However, conventional planar technology has a special problem for

its application at these bands: the propagation of surface modes due to electrically thick
dielectric substrates. However, surface modes can be suppressed by using substrate lenses {8]

for the planar structure.



The low power that is provided by solid state devices at these frequencies is a serious
limitation for many applications. The power handling of mmW/submmW devices can be
increased, by combining the output of solid state devices. This basic idea is used by an
emerging technology based on arrays of active/non-linear elements. These structures are quite
similar to the dichroic filters but as they include active/non linear elements, they can amplify
or mix waves In free space in a Quast-optical way. These devices can handle high power by
combining the scattered wave from each active element in free space [5],[9],[10]). These
active/non-linear arrays can be stacked, so they can behave as a sort of active/non-linear
media. A fascinating range of devices are possible using this technology, from laser type

generators to non-linear artificial crystals (Fig.1.1¢) [5],[9],[10],[11].
1.1.3 Modelling of planar structures at mmW/submmW band. The FDTD approach.

Planar structures have an essential role for the quasi-optical systems for mmW/submmW

band. Frequency selective surfaces (FSS), mesh grids, and other filtering devices are planar
structures, and mixers and detectors at these frequencies can also be implemented as planar
structures [12]. The active grids for power generation and amplification of mmW/submmW

are based on planar arrays of integrated antennas and active devices [9],[10],[11].

The electromagnetic design of these devices relies on numerical tools, which originally were
developed for the analysis of microwave devices. As a consequence, these codes usually are
not ready to cover all the requirements of the mmW/submmW planar design [10],[11],[12].
The modelling of planar integrated receivers is an example of this situation, because they
require the accurate modelling of both the radiating structures along with the matching circuit,
filters and the non-linear detector at the same time. Active arrays for power combining also

include active elements and additional circuits such as bias lines that are coupled to the rest of

the structure.

The Finite Difference Time Domain (FDTD) algorithm is a general method to solve
numerically the electromagnetic equations in the time domain, and has been used extensively
to model radiation, scattering, and circuit problems [13],[14]. The potential of this method for
application to the modelling of active/non-linear and submmW structures has been pointed

out by several authors [10]{15]. The main advantages of FDTD for modelling at

mmW/submmW band are summarised as follows.
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e FDTD is a time domain method, which is able to model non-linear and active media. As a
result, integrated and active antennas can be fully analysed in a single model that
includes the semiconductor devices and the electromagnetic interaction between
passive parts.

e FDTD is a full wave 3D method that is able to model mutual coupling effects in an

arbitrarily complex design and for any number of ports in a single run.

e FDTD with periodic boundary conditions can model infinite periodic linear/non-linear

and active/passive arrays and FSS. Multilayer designs can also be modelled directly,

since mutual coupling between layers is automatically considered.

e FDTD can use pulsed excitations, making possible broadband analysis of the structures.

Out of band responses are critical to the design of active antennas

In spite of FDTD being potentially able to model planar integrated antennas and periodic
structures, the method has to be extended in order to model these devices. Previous work [13],
[16] has shown the required extensions for modelling of active/non hnear devices in the
FDTD numerical scheme. They introduce lumped element circuit models of devices, which
are coupled to the electrical field at the FDTD cells. These methods are the basis for this

research on integrated antennas

Some authors [10],[16] have suggested connecting the SPICE circuit stmulator to a FDTD
code in order to analyse integrated antennas. The SPICE program can solve the non-linear
circuit problem in the time domain and FDTD can solve the linear electromagnetic part also
in the time domain. A major problem with this approach is the interfacing between both
programs, since they have to run simultaneously to update the fields every time step. A
practical interface can be implemented by obtaining previously the scattering matrix of the

linear part using FDTD, then the matrix is used as input for the SPICE circuit model. The

main limitation is the amount of computations necessary to evaluate the scattering matrix in a

multiport system.

In respect to the FDTD modelling of infinite periodic media, the boundary conditions for

modelling infinite periodic arrays for FDTD have been already developed [17], but with the

major constraint to normal incidence for FSS or sinusoidal excitation. The general FDTD
analysis of infinite periodic arrays under oblique incidence or with phase shifted generators 1s

still a matter of investigation [18],[19], and it is part of this research. The modelling of infinite



arrays with FDTD is a powerful way of broadband analysis of mutilayer FSS and introduces

the unexplored possibility of the full wave analysis of active/non linear arrays.

Small finite arrays can be directly modelied using FDTD [20], but computer resources are a
severe limitation for modelling of medium size arrays. On the other hand, Frequency domain
methods, as the Conjugate Gradient technique are very efficient in solving passive finite array
problems [21], [22]. As a result, only a few works at their early stages are reported dealing
with general methods for FDTD modelling of finite array [23]. However, the FDTD method
has the possibility of modelling practical active or non-linear finite arrays. This is a novel

application that can not be implemented using frequency domain methods in a conventional

way.



1.2 Finite Difference Electromagnetics.

The numerical modelling of physical fields requires the description of the field and its
fundamental laws by a finite number of parameters. This can be achieved by assuming that
the field is described as the linear combination of a finite number of basis functions.

Alternatively, it 1s possible to approximate the fundamental laws of the field using new

discrete operators. The Method of Moments (MoM) and Finite Elements (FEM) use the first
approach, but Finite Differences techniques (FD) [13] normally are using the second type of

approximation.

Both approaches are in fact connected, since the approximation of the field operators can be
associated to the use of certain interpolation basis functions. The approximate discrete
operator and the continuous one produces the same result for these basis functions (the

discrete operator is exact in this case). For instance the approximation of a derivative by a FD

assumes that the functions are line segments.

However, the differences between both strategies are not trivial. In the field approximation
method, the basis functions can be chosen to fit in a specific geometry, improving the
efficiency of the method. In MoM, for instance, the mode! of circular or ring structures can be
optimised using only few cylindrical basis functions. However, the procedure is often not

valid for the general case of an arbitrary geometry.

On the other hand, the approximation of field operators by discrete ones provides a quite
general and flexible way of numerical simulation, but it can be rather stiff in terms of the
modelling of arbitrary shapes. This occurs when the discrete operator is chosen without any
consideration about the geometry of the problem. In practice, techniques like MoM and FE
use general-purpose basis functions so they can deal with any arbitrary geometry, but
allowing some degree of conformal meshing. FD techniques modify the discrete operator
introducing variable steps or defining the equations in arbitrary curvilinear coordinates, so

they can improve the geometrical modelling of the object.

The numerical methods based on the approximation of the operator (as FD methods) have in

addition a quite spectal feature. If the approximate discrete operator has similar algebraic

properties to the continuous one (this is the case for FD’s and derivatives), all the equations

and theorems valid for the continuous fields can be translated for the discrete operator fields,



just replacing the field operators by discrete ones. For instance, it will be shown in this thesis
how the Finite Difference Time Domain method (FDTD) to solve Maxwell’s equations
satisties FD second order equations that are closely related to the FD scalar wave equation.
These equations are formally similar to continuous equations for electromagnetic field. It will
also be shown that FDTD can be alternatively formulated as finite sums in terms of a Discrete

Green’s Function (DGF), just as in continuous electromagnetic field theory.

As a consequence, these numerical techniques can be considered as ‘approximate theories’
rather than a numerical approximation of particular field equations. The analogy between the
continuous and the discrete theory i1s limited to the formal similarity of the equations,
concepts and theorems. The topology of the discrete space is completely different from the
real space. As a consequence, the solutions provided by the discrete and continuous theories

are qualitatively quite different, even if the quantitative error between them is very small.

In this thesis the analytical formula of the impulse response or Discrete Green’s Function for

FDTD 1s obtained as a polynomial for 1D, 2D and 3D problems. This polynomial function

becomes the continuous time Green’s function &(r-ct)/r when At, Ax, Ay, Az—0.
Mathematically this function has some interesting properties, and it can be seen as a
multidimensional generalisation of the Tchebycheff polynomial. However, the full study of its

mathematical properties is outside the scope of this thesis

The methodology of this thesis (in particular chapters Il and IlI) with respect to the FDTD
modelling of electromagnetic fields is precisely to consider FDTD as an ‘approximate EM
theory’ in a discrete space-time. Equations and theorems are formulated for FDTD
independently of the EM theory in the real space. In consequence, the equations and

algorithm obtained are exact from the point of view of FDTD and therefore completely

compatible with the original FDTD algorithm.

The objective of this methodology is to generalise and obtain alternative formulations of the
FD approximation of the EM theory, providing the right theoretical framework for advanced
boundary conditions and hybrid modelling techniques. FDTD has a long history since it was
devised Iin 1966 and this thesis presents an alternative view of the method, so it is more
involved with new aspects of the technique rather than the compilation of existing

developments in the method.



1.3 Objectives of this research. Document organisation

The work presented in this document is intended to develop all the necessary theoretical tools
and numerical algorithms for the Finite Difference Time Domain (FDTD) analysis of
electromagnetic fields in planar devices. The final application is the analysis of Quasi-optical
planar devices used in the millimetre and submillimetre frequency bands, in particular planar
integrated/active antennas, Frequency Selective Surfaces (FSS) and Photonic Band Gap
Structures (PBG). Besides practical implementations, this research work is also focussed in
obtaining a general theoretical framework for finite difference methods to produce advanced

boundary conditions and alternative algorithms.

This report is organised into five chapters, including this introduction as chapter 1. The second
chapter deals with the basic theory of the FDTD method and the application to the modeling
of planar structures. A FDTD code for planar structures has been generated and the results are
compared to measured data on patch antennas available 1n the literature. This chapter also

presents the basic algorithm to model non-linear elements, and in particular the lumped circuit

model for a Schottky diode is presented.

The third chapter i1s devoted to the theoretical investigation of the FDTD method. The Z
transform 1s used to obtain second order FDTD equations. The relation between the finite
difference scalar wave equation and FDTD is determined. FDTD is alternatively formulated

In terms of finite sums, which includes the impulse response or discrete Green’s function
(DGF) of the FDTD method. The analytical formula of the DGF 1s presented in this chapter.

Some application examples of the new FDTD algorithm are also demonstrated, including an
example of exact absorbing boundary condition (ABC) for FDTD. Finally this chapter

contains a study of higher order algorithms for FDTD to improve the algorithm dispersion

and antsotropy of the method.

The fourth chapter is dedicated to the modelling of infinite periodic structures using FDTD.
The theoretical basis on which periodic media of infinite extent can be modelled is presented
in this chapter. This work includes a novel FDTD algorithm to solve the periodic boundary
condition for a planar structure illuminated by a plane wave of arbitrary angle of incidence.

This method is veritied by comparing results for a Frequency Selective Surface (FSS) with

conventional frequency domain methods of calculation.



The fifth chapter i1s devoted to the design and modelling of an integrated receiver at 650 GHz

for a general space-based earth observation mission. This design is intended to demonstrate
the possibilities of the FDTD code to produce a state of the art design of a complete submmW

device.

The final chapter summarises the work of this thesis and makes recommendations for future

work.
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CHAPTER Ill: THE FDTD METHOD FOR PLANAR STRUCTURES

2.1 Introduction to the FDTD method

2.1.1 Central Finite Differences and Notation

Finite differences (FD) are a classical mathematical subject developed in the early days of
infinitesimal calculus and before. They have been applied extensively to numerical analysis and
statistics. The numerical solution of differential equations has been traditionally closely related to
the calculus of finite differences since FD’s can be used as approximations to derivatives.
Historically, several authors had proposed alternative notations for finite differences. In this

chapter, the notation follows the standard used in [1] for FDTD. Following this notation, the

integer displacement of a vector field is written as:

ﬁ(x,y,z,t) = P‘_(x,y,z,f).{"l' Rr(X,y,Z,f)J‘}+ P:(xayazat):z

e

H A

P:”M =P Xt P YTt R‘-’L._;.k z=P(x+iAx,y+ JAy,z + Az,t + nAt)
Ax,Ay,Az, At are real numbers (intervals or steps) i, J,k,n are integers (indexes)

(Eq.2.1)

The displacement of a half interval is a very important operation for FD theory. The notation for

the halt displacement is shown in Eq.2.2 for the ‘time index’ n and for one ‘spatial index’ i. The

symbol + indicates that the half displacement can be positive or negative.

1_5,'31,"/7 = P(x +iAx,y + jAy,z + Az,t + (n £ 1/2) A1)

N .

U2k }S(x +(i ]/2)Ax,y + JAy,z + Az, 1 + nAt)

(Eq.2.2)

Similar definitions of half displacements can be done for the j and & indexes. The differences
between displacements of a function are the so-called finite differences. The finite difference

obtained from half displacements is called central FD. The central FD of a vector field is a good
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approximation ( Q(h’) precision) of the partial derivative of vector field after an integer

displacement. Using the FD operator D, and D,, the partial derivatives can be written as:

—1n pn+l/2 pn-1/2
a[)t _"" HH‘ R - —P .
=D, P + O(Ar") D F = L o
or|, ., At
— (1 = -
aP rh nn '+ * _P'- '
=DP", +O(AXY) DpP", = 2k ~ Licyak
| T -

(Eq.2.3)

This approximation of the derivatives by central FD is the basis to the numerical solution of
differential equations that are replaced by analogue FD equations. Despite the fact that the
approximation of derivatives by FD can be accurate, it is not sure that the approximation of a
whole differential equation by a FD equation is accurate. The FD equation can be unstable or
chaotic even if the original differential equation is regular [2]. As a consequence, the use of FD
algorithms for the solution of differential equations should be carefully studied, providing full

assessment of the stability of the equations as a system.

2 1.2. Basic theory. Yee’s Algorithm.

The Finite Difference Time Domain (FDTD) method is an algorithm to solve numerically the
time domain Maxwell’s equations. The method is based on the approximation of partial
derivatives in a regular grid of points by means of central differences. The partial derivatives of
the curl Maxwell’s equations (Eq.2.4a) can be approached following this scheme: resulting in a
set of discrete difference equations. Eq.2.4b shows the discrete equations for the electric field curl

equation by direct approximation of the partial derivatives. The magnetic field equations are in

Eq.2.4c.
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E | 0 - (H‘L.;n I.t_H:i.j-lz,l) (H*"li.f-i::_H"' i-mz-ll) J r
| iy =(ii i +(.ﬂ ﬁ}} - A= o t,_.j.*
1 2 n+l | 2 el 2
E b (" E " (® (H L-j-tﬂ ) H'L.;‘-t-l ) N (H el 204 ] H:IH '“) - J
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1 + i.j.k | + i f A
\, 28: ik ) 28' ik J
(Eq. 2.4b)
H nel'2 pe H w412 D (E’ :',;+I!2.I¢ B E" :,*;-uz.k) (E‘ :.;',.uuz R E"‘:.;.L-H:) + M &
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H nel 2 , H n+l 2 ) (E'rl:jjﬂ 2 B E"[j,ht 2) _ (E:I:n 2. 4.k N E:l:'-l 2-1’1} + M "
g = Dis ’I-‘.;.t =D A- Ax iik
»ll nil 2 (E-‘|:+1 154 E’ :4 2 jt) (E"|:;+| il Etl:'-ﬁl I,t) .
H: =D;H_ -1),.; 2 —— +M:|
i jk “li. j.k Ax Av ) &
(l O,k ) [ At J
D =\ zﬂj,jj y D' = i
i gk 4 o. i jk 4 c
]+ —Ldd J ] + 44 ]
\ 2“, ok \ 2“; j.k
(Eq. 2.4¢)

Each field component in the set of finite difference equations is related to field components in a
previous time instant. As a result, the equation system can be solved by iteration, provided that
the initial conditions for the field are known. At each iteration, the field is updated in a time
instant later than the original. This iterative method is known as the Yee’s curl algorithm [3]. In
principle, this algorithm is just based on the curl Maxwell equations, but the divergence equations

are automatically fulfilled by the discrete system [4]. The method presented in this section is
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stimilar to the original formulation, which 1s based on the linear, isotropic, non-dispersive

Maxwell equations in the time domain.

As a consequence of the central difference scheme, the field components have to be located in the
middle of other field component in order to compute the central difference. This means that the
continuous field has to be sampled alternatively by the proper field component (Fig 2.1). The
magnetic and electric field also has to be alternated in time for the same reason. This 1s the so-

called ‘leap frog’ algorithm.

Fig 2.1 Distribution of field components in an elementary FDTD cells.

The algorithm can be extended to handle most known media (Table 2.1). Anisotropic and
inhomogeneous media can be modelled with only minor changes on the equations. As the FDTD
method works in the time domain, non linear and active media can be fully supported, but the

iteration scheme to solve the finite difference equation can be much more complex that the basic
one [2], [3] described here.

Table 2.1. Type of Media vs. FDTD
Type of Media FDTD support

All types of ani;‘Btropy supported

c Included in the FDTD.
FDTD + convolution (difficult)

Non linear/Active Extended FDTD

Anisotropic

Charged particles, Plasma

FDTD coupled to interaction operators
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2.1.3 Divergence equation for FDTD.

The Yee’s algorithm is based on the FD approximation of Maxwell’s curl equations. However the
electromagnetic theory also requires some condition on the divergence of the fields. The Yee’s

algorithm for FDTD must satisfy a divergence FD equation analogue to the Maxwell divergence

equation (Eq.2.4a). The central FD approximation of the divergence operator is shown in Eq.2.5.

- | 1 H o
V-E — D,\' E.rL‘._j.k + DJ’E-" i,4.k

ijk

1k FO(AX) + O(Ay* ) + O(Az?)

(Eq.2.5)

Using the Yee’s algorithm for a homogeneous, non lossy medium, the divergence condition of the

FDTD electrical field can be derived. The equation 2.4a can be substituted for the electrical field
into the FD divergence (Eq. 2.6).

D.E[ ,+D,E, | g, =
| n
;Dr ( o )+D (DH‘ ,J,k_Dny|i,j,k))
D_l H
e ( luk Uk+D-J~U")
(Eq.2.6)

The magnetic field components in Eq.2.6 cancel each other, so the FD divergence of the electrical
field is only a function of the density of current. The density of current term in Eq.2.6 can be

considered as the electrical charge on the cell as a FD version of the law of charge conservation.

As a consequence, the divergence condition for FDTD is finally written (Eq.2.7).

pf;k
X

+D.E.|] ,

Vii.j.k

- D, p::j,k = (D.‘r'].t‘l:'.j,k ¢ T D.J. L ;k)

(Eq.2.7)
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A similar expression can be obtained for the magnetic field, just by following the same procedure
as used for the electrical field. The Maxwell divergence equations have a counterpart in FD
equations. The numerical fields are also divergence free from the FD point of view for all the
cells without current density. These relationships will be used in the next chapter to construct

second order FD equations.

2.1.4 FDTD Stability, Dispersion and Anisotropy.

The set of difference equations forming the FDTD method i1s an approximation of Maxwell’s

equations with a O(A’) precision. However, it is well known for general finite difference

equations that approximation errors can be accumulated at each time step, so the solution to the
discrete equation may diverge with respect to the solution of the original continuous differential
equation. In that case, the difference equations form an unstable system. The stability of the

FDTD method depends on the time and spatial steps used, so this choice 1s critical.

Stability analysis can be performed by means of the Z transform to calculate the transfer function
of the equation system [4], [S]. The stability of the procedure can be easily determined by the
zero-pole analysis of the transfer function. The full Z transform analysis of the FDTD system 1s

shown in the next chapter. Following this procedure, it is possible to find a stability condition for

the FDTD algorithm: The Courant condition (Eq.2.8)

At < L
\[ 1 1 1
¢ 2 + 2 + 2
Ax® Ay Az (Eq.2.8)

The meaning of the stability limitation is that the discrete grid has to be able to model the flow of
energy at light speed inside every cell to verify the law of conservation of energy. This condition
holds for linear, isotropic, homogeneous media, but it is usually taken as a reference for other
media. In general, non-linear media have different stability criteria [2]. For these media, the

condition given in Eq.2.8 is not enough to guarantee stability.

The Z transform analysis of the discrete equations also allows determination of the dispersion

relation for the waves represented 1in the FDTD grid (the full mathematical demonstration also
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can be found in the next chapter). The dispersion relation links the wave frequency to the wave

numbers (Eq.2.9).
1 (kA 1 . (kANY 1 (kA (1Y . (0A)
———Z-SIIT' ' + ; S ' + ; SIN | — |=|— | sin

Ax 2 J Ay 2 Az 2 cN 2 )

X

Ax,Ay,Az, At — 0 k_n,2 +k,‘,2 +k_,2 =(—]

' C
(Eq.2.9)

The limit of this equation for zero spatial and time steps is the continuous dispersion relation for

plane waves. The discrete dispersion relation is dispersive (phase velocity depends on frequency)

and anisotropic (phase velocity depends on direction) (Fig.2.2).
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Fig.2.2 Normalised phase velocity for the numerical waves propagating in a FDTD grid. The

phase velocity depends on the cell size and the wave direction respect to the FDTD grid.
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In Figure 2.2 the FDTD numerical value of the phase velocity is calculated using Eq.2.9 as a
function of the angle of propagation with respect to the grid (Ax = Ay =2cAt) and for several

cell sizes. The phase velocity of the numerical waves is smaller than the speed of light. The

difference is bigger for waves propagating on the axes (0 and 90 Degrees). This shows the

dispersive and anisotropic behaviour of the FDTD grid. The error in the phase velocity is about

1% for a cell size of A/10, which is often taken as the minimum cell size recommended for FDTD

2], [3].

However, the modelling of practical devices and circuits often requires cell sizes much smaller

than A/10. The previous analysis has been done tor propagating waves on the FDTD grid, but

scattered waves contain a high proportion of evanescent waves. The numerical speed of light for

FDTD 1s shown in Figure 2.3 for the propagating and evanescent waves according to Eq.2.9.
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° o
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O
-,..l

0.65

0.6

Sin(theta)

F1g.2.3 Normalised numerical speed of light for the numerical waves propagating in a FDTD grid

including evanescent waves (sin6>1). The numerical speed of light for the evanescent waves

degrades more than for the propagating waves.
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The percent error of the value of the speed of light is much higher for the evanescent waves

(sinB>1). This result suggest that a smaller cell size would be required to model accurately the
evanescent waves since they have faster spatial changes than the propagating ones. As a

consequence, scatterers generating a high proportion of evanescent waves (i.e. structures with
circular symmetry or sharp edges) will require a cell size down to A/20 or A/40 to achieve 1%

error in the numerical value of the speed of light.

2.1.5 Principle of equivalence for FDTD.

In electromagnetic theory, the principle of equivalence states that the EM solutions can be
reproduced exactly outside a volume containing the field sources from an appropriate current
distribution (electric and magnetic) on the surface of that volume. This current distribution 1is

directly related to the EM field tangent on the boundary of the volume [6].

This principle is extensively used to solve many electromagnetics problems and is a consequence
of the uniqueness theorem and the boundary conditions for the fields at limiting surfaces [7]. The

principle of equivalence can be used in FDTD to calculate the far field radiated by a structure

from the near field estimated by FDTD in the vicinity of the structure.

However, it still remains the question of finding a true FD principle of equivalence for FDTD. A
‘true’ FD principle means that the Yee’s algorithm can be updated alternatively using the
equivalent currents at certain grid nodes where the EM fields are set to zero (or an arbitrary
value). This FD principle of equivalence is different from the continuous one since the topology
of the discrete space is essentially different from the real one. In the discrete FDTD grid the
electrical and magnetic equivalent currents can not be defined at the same surface since they have

different positions in the space for electrical and magnetic field.

The first step is to determine how the FDTD algorithm can be updated if a field component is set

to an arbitrary value by introducing equivalent currents in other nodes nearby. The equivalence

between currents and fields is shown for a single magnetic field components in Eq.2.10 The same

idea can be applied to the rest of field components
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J|
i j.k Wijk & Y Ex

vy L,

Fig.2.4. The electrical components surrounding ¢ | (left) can be updated in an alternative

way, assuming that an arbitrary value Hf)‘ for the magnetic field and a distribution of
“ Vi )k

electrical current density (right). The magnetic field is also updated consistently introducing a

equivalent magnetic current density.
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The field at a node can be replaced by an arbitrary value, using an equivalent way by a
distribution of current density (Fig.2.4). This arbitrary value can be chosen to be zero, as if the
node was filled by electric or magnetic perfect conductor. This can be considered the principle of
equivalence for FDTD applied to a single cell. In order to obtain a general theorem, the single cell

equivalence principle has to be extended to a complete subset of the FDTD grid.

The vicinity set of DTD node is defined as the set of FDTD nodes which contributes to the field

n+1/2
K.

n

. 2 \
i j.k ¥

at that point. For instance, the vicinity of H _| is the nodes g |7 E,

M ‘n
ijk X

ik igk’

E |" . . The field at the node can be evaluated from the field at the node vicinity.

P vl ok

A region of the FDTD grid, F, is formed by a set of electric and magnetic nodes at any time step

n. If a node belongs to F and its vicinity is also included in F, then this node 1s an inner element.
The field at this inner node can be estimated inside F and no nodes from outside F are required to
perform that calculation. If the vicinity of a node in F 1s not included within F, then 1t 1s a
boundary element (Fig.2.5). It is clear that the calculation of the field require nodes outside F at
the boundary. As a result, the field in any finite region F of a FDTD grid can not be calculated
just using the nodes of F. The external nodes which are necessary to compute the fields inside F
are precisely the boundary nodes of F', the complementary set of F. This can be justified since
any element on the boundary of F has one or more elements of its vicinity within F', which must
be part of the boundary of F'. As a result, the field in a region F of the FDTD grid free of sources

1s determined at certain time step in a unique way from the field at previous time instants in F and
the boundary of F'.

The principle of equivalence can be applied to a region F. The inner nodes in F' does not

contribute to the field in F so they can be set to an arbitrary value, for instance they can be set to
zero. At the boundary of F', the equivalence between currents and fields is implemented
(Eq.2.10), so the fields can be also set to zero. A distribution of electrical and magnetic currents

has to be introduced at the boundaries of F and F'. The currents are set at the vicinity of the

boundary nodes of F.

The current distribution is obtained by following the following procedure:
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e Determine if the node belongs to the boundary of F'
e If positive then determine which nodes of the vicinity belongs to F
e In these vicinity nodes, introduce currents terms following Eq.2.10

e For the boundary node itself also currents are introduced according to Eq.2.10, but the terms

of the vicinity inside F' are assumed to be zero.
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Fig.2.5. Definition of subsets in a 2D TM FDTD grid. F is an open subset and F’ is its

complementary set. The boundary of F’ is necessary to perform the complete field update inside
F. The equivalence principle is implemented for F by setting to zero the field in F’ and

introducing a density of currents in the boundary set of F and F’, according to Eq.2.10.
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2.1.6 Absorbing boundary condition. Perfect Matching Layer (PML)

A real computer has a limited memory, which i1s only able to represent a finite subset of the

FDTD grid. All the sources and scatter relevant to the problem must be contained into this subset.
As shown 1n the previous section, in order to update the fields inside the subset it is necessary to
know the fields at the boundary of the complementary region. In some problems, the field at the
boundary 1s determined (i.e. waveguide, metallic enclosures) or are directly related to the fields
inside the subset (i.e. symmetry and periodicity conditions). However in many practical cases, the
field at the boundary is not known, for instance to model the field radiated by a structure into an
infinite region. In order to solve this problem, 1t 1s necessary to introduce a special algorithm

(Absorbing Boundary Condition or ABC) to estimate the fields at the external boundary from the
fields inside the computer-represented subset (Fig. 2.6).
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Fig 2.6. The field at the boundary of F’ is required to update the field inside F. A special

algorithm 1s necessary to radiate or absorb incoming waves at this boundary (ABC). Otherwise,

waves would be ‘numerically’ reflected back into F.
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This problem has been treated extensively by many authors [8], [9], [10], [11]. Absorbing
boundary conditions (ABC) were implemented in the 70’s and 80°s using the theory of the one-
way operators [8], [9]. One-way operators only allow wave propagation outward from the grid
boundary. These procedures work very well for normally incident waves with respect to the
boundaries, but usually they have a poor performance at large incidence angles (more than 45

degrees from normal).

The Mur’s ABC is a one way operator technique which became quite popular due to its
simplicity. Despite more sophisticated one way operator techniques being developed later on
[10], [11], 1t 1s reported that the dynamic margin of the FDTD method with these ABC was in the

order of —40dB [2]. This relatively small dynamic margin imposes some limitation to the analysis

of low reflectivity problems.

The Perfect Matched Layer (PML) i1s a very low reflectivity ABC that has been more recently
developed [12]. This boundary condition is based on the zero-reflection property of special lossy
planar media, which satisfy the conditions given in Eq.2.11. This kind of medium is perfectly
matched to the air impedance, so no reflection occurs. Once the wave is inside the PML, it is
attenuated because of the ohmic losses. The PML is several elementary FDTD cells thick in order

to provide good absorption of the outgoing wave. Finally, the FDTD region is terminated setting

to zero the fields at the boundary.

s_o_
e M
\H
- P
°(p) G"’[a, (Eq.2.11)

In order to produce a smooth transition from air cells to the PML cells, the conductivity is
gradually increased for each layer, as the boundary becomes closer. The distribution law for the
conductivity follows the Eq.2.11, with the parameter n. For n=2 the conductivity profile is

parabolic and exhibit the optimum absorption, especially for oblique incidence waves.

In the PML method, the conductivity of the layer is applied only on a sub-component of the
fields, so the algorithm s based on PML-modified Maxwell equations. The Cartesian components

of the field are split and the resulting PML equations yield a set of 12 equations as follows:
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The conductivity is different for each sub-component of the field. The sub-conductivity for the
component normal to the PML are set to the value of Eq.2.11 and the others are set to zero. As
the PML is based on a set of planar layers, it can only be implemented for a planar boundary. The
PML method is applied to rectangular grids implementing a PML for each wall of the FDTD

region. At the comers of the grid, the PML’s are overlapping with their respective conductivity

distributions. The structure of the PML in a two dimensional grid is depicted in figure 2.6
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FDTD Grid

Fig.2.6. Distribution of conductivity in the 2D PML ABC.

The performance of the PML ABC is reported in [1] improving the dynamic margin of the FDTD
method up to 70dB, which represent a big advance in respect to the previous existing ABC’s. The

PML can be placed close (up to 2 cells) to the object being modelled, with very low distortion of
the result [13].

The PML ABC requires extra memory in order to implement it, since several layers of FDTD
cells are dedicated to the PML. The performance of PML 1is also greatly reduced for long
wavelength waves since the attenuation of the waves inside the PML decreases with frequency.

As a result, the number of PML layers has to be increased for small cell sizes and more than 10

layers are required in most practical models.
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2.2: FDTD model of planar passive structures

2.2.1. Modelling of metal layers of arbitrary shape and dielectric slabs.

The Perfect Electrical Conductor (PEC) is a type of medium with infinite electrical conductivity.

Inside such media, the only possible solution i1s zero electric field. This 1s also true for an

electrical FDTD node with o—. At the boundary, the electrical field tangent to the PEC should

be zero, as the boundary conditions in electromagnetics enforce the continuity of the tangential
fields.

The FDTD grid has the field components situated at different spatial positions, so the definition
of a PEC region in FDTD has to take into account the misalignment of field components. A PEC
in FDTD is a subset of the FDTD grid determined by electric nodes set to zero. The PEC also

includes the zero field magnetic nodes, which appear in between zero field electric nodes.

An elegant definition of a PEC in FDTD is based on the vicinity and boundary set concepts given
in the previous section: A PEC is a subset of the FDTD grid where the fields associated to each
node are set to zero and its boundary set is purely electric. The figure 2.6 shows the PEC
definttion for a planar case. The boundary set of the PEC consist of nodes of electric field
component tangent to the boundary itself. The same definition can be applied for Perfect

Magnetic Conductors (PMC), but interchanging electric and magnetic fields.
Planar metal layers can be implemented as a PEC following this definition. In this case, the

cartesian nature of the FDTD grid is well suited for modelling planar objects. An infinitely thin

planar PEC can be model in a single layer of electric field nodes.
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Fi1g.2.6. PEC in a 2D TM FDTD grid: the electric field is set to zero at the nodes inside the PEC.
The boundary set of the PEC must be purely electrical. This definition 1s also valid for the 3D

Casce.

Dielectric media are defined as a spatial distributions of the electric permitivity £(x,y,z). The

FDTD equations can implement a different value of € for each electric node of the grid, similar to
the continuous dielectric distribution, but considered at discrete locations. However, the FDTD

definition of a finite dielectric object has some essential differences with respect to continuous

dielectric media.

The boundary of a dielectric object has to be inserted into a FDTD grid with misalign field
component nodes. As a result, the boundary of the dielectric regions is not perfectly symmetrical.
Figure 2.7 shows the interface between two regions with different dielectric constants. Inside the
medium 1, the first row contains electrical nodes normal to the interface. In the medium 2, the

first row contains electrical nodes parallel to the interface. This creates an asymmetric situation at

the interface between dielectric media.
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Fig.2.7. The first row of electric field nodes inside the medium 1 is normal to the interface, but is

parallel at medium 2, due to the alternate position of field components in the FDTD grid.

The transmission coefficient of planar waves from media 1 to 2 and 2 to | is related by the

condition T, = \/¢ /e, T, , ensuring the symmetry of the dielectric interface from the point of

view of power. However as a result of the intrinsic asymmetry of the FDTD dielectric interface,

the direct and reverse transmission coefficients are not related by the previous condition Fig.2.8.

There are significant consequences of this asymmetry, the resonant properties of dielectric
structures are changed (for instance, the total transmission of a dielectric slab is based on the
symmetry of the transmission coefficients). This will lead to inaccuracies on the calculation of

resonant frequencies and improper cancel of multiple reflections. The difference between direct

and reverse transmission can be about 3% for the interface of air-€,=2 and Ax /A, =0.1. This

suggests that accurate FDTD calculations on resonant effects involving dielectrics require very

small cell sizes Ax/L, < 0.05.
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Fig.2.8. Transmission coefficient for a normal incidence on an interface air-dielectric (€,/-2)

estimated using FDTD as a function of the normalized cell size inside the dielectric medium. The

theoretical |T" : solid line, /1/¢, -|T,,_.. |: dashed line).
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As stated, there is qualitatively different behaviour of the interface between dielectric media in
FDTD and the continuous electromagnetics. The FDTD approximation assumes the continuity of
the derivatives, but this is not true at the interface of two dielectric media (Eq.2.13). This implies
that a boundary node of electric field in FDTD can not belong to two media simultaneously, since

it requires more than one derivative for the magnetic/electric field in a single cell.

Boundary conditions

0E, ©OE)

JOE, _oH' oH' O’ oH] oH] oot

a0z ox o 0z & oH,' _oH,'  oH. 0H
0z Oz ox  Ox

(Eq.2.13)
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A FD approximation for dielectric interfaces i1s proposed in [15] by averaging the Eq.2.13 in both
sides of the interface. Basically, the FD equation is obtained in the same manner than Yee’s

algorithm with an average permitivity (g, +¢,)/2. The average of the magnetic field derivative at

each side of the interface is approximated by a central difference (Eq.2.14). The accuracy of the

procedure drops to O(Ax), but the symmetry of the interface has been restored..

(g,+8,\0E, oH, 1[oH' 0oH®

. 2 ) o Oz 2\5x ox

/ | 2\ (g ' _ g2 2 _H° H'-HF
| (OH. OH. |(H, -H,” H, HE__+O(Ax))= : Ax-—"'--+O(Ax)

— 4 —

(Eq.2.14)

The FDTD procedure described in Eq.2.14 does not seem to improve significantly the estimation

of the transmission coefficient. The accuracy of the calculation drops as the cell size increases. It

provides a better result for the high-low € transmission, but it is worse low-high € transmission

(F1g.2.9).
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Fig.2.9. Transmission coefficient for a normal incidence on an interface air-dielectric (er=2)

estimated using normal FDTD (solid line) and the procedure of Eq.2.14 (dashed line). The
| 15 0.8258. (T, 4w | : right, \/]/gr T, . left).

icl —air

theoretical [T,

air —dicl
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2.2.2. Voltage sources, loads and linear passive circuits.

Voltage sources and current sources can be implemented into elementary unit FDTD cells.
Intensity can be modelled as external electrical currents using the density of current term j into
the FDTD field equations. On the other hand, voltage sources also can be implemented by using

external magnetic currents in the same way.

A real generator with internal resistance can be modelled by a electrical/magnetic current, but in
this case. these currents depends on the electrical or magnetic potential at the generator terminals
to take into account the potential at the internal resistance. In some circumstances (quasi-static
approach). this potential can be evaluated directly from the electrical field in the FDTD grid
(Eq.2.15).

As the FDTD operates in time domain, the voltage source can generate voltage pulses as
excitation. Thesc broadband signals can be extracted and analysed via FFT in order to compute

the impedance of the system at the generator terminals.

ey o Py oo \
E = gradwt)- Rg-i(n)) v :(M):E ) 2(/)= ) ~Re
< ) I(f) (Eq.2.15)

Resistive loads can be implemented as a conductivity distribution in a FDTD cell, but the
resistance can also be modelled as a real generator with zero voltage at the source which produces
a density of current. Other linear lumped elements, such as capacitors or inductors can be
introduced in the same way as resistance, either as density of currents or as distributed electric

permitivity or magnetic permeability into the FDTD cell.

2.2.3 Modelling examples

An FDTD code has been implemented in order to show the ability of the method to model planar

integrated antennas. The first step was the development of a software package, which could

model passive multilayer planar structures of arbitrary shape.
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This code uses PML ABC, sinusoidal and pulsed voltage sources, loads, and all the features to
model planar structures as described in the previous section. The code is written in standard
Fortran 77 in order to keep high portability. The geometry input is based on a Matlab™ front-end
program, which is interfaced by a file to the main program. There i1s an ASCII file to input the
parameters for the FDTD method such as grid dimensions, number of cells, type of PML and
dielectric constants. The outputs of the code are broadband impedance at the input port, time
domain voltages and intensities at specified points, density of currents at the printed circuits and

electromagnetic field at given positions.

In order to verify the accuracy of the calculations, several planar antennas have been analysed to

determine their impedance (Figs. 2.8-2.11). All these cases are microwave patch antennas whose

measured response can be found in the literature {15}, [16], [17].
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Fig.2.8 Modelling of a square patch antenna .The computed impedance (real part: solid line,

imag. part: dashed line) is compared to the measured one [15] (crosses and asterisks). A FDTD

grid of 60x60x60 element 1s used.

Fig. 2.9 Impedance computation for a circular patch. The FDTD computed impedance is shown

in a Smith chart (solid line) and 1t 1s compared to the measurements [16] (circles). A FDTD grid

of 60x60x60 element 1s used.
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Fig.2.10. S11 computation for a slot-coupled rectangular patch. The calculations show a good
agreement at the resonance frequency (2.3GHz) but some differences outside resonance. The

FDTD results in [17] show very good agreement with measurements using a high resolution (620

cells, here 240 cells) in order to model the narrow slot.
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Fig. 2.11. Current density on the metallic parts of the slot-coupled microstrip antenna at the

resonance frequency. Copolar currents (Left) and Xpolar currents (Right) are presented.
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2.3 FDTD modelling of non linear devices

2.3.1 Basic Equations.

A direct extension of the FDTD method to non-linear media can be obtained by a
straightforward approximation of the partial derivatives of the general Maxwell’s equations for
non linear media by a central finite difference scheme, resulting in a non linear finite difference
e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>