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ABSTRACT 

New Quasi-optical sensor technology, based on the millimetre and submillimetre band of the 

electromagnetic spectrum, is actually being implemented for many commercial and scientific 

applications such as remote sensing, astronomy, collision avoidance radar, etc. These novel 

devices make use of integrated active and passive structures usually as planar arrays. The 

electromagnetic design and computer simulation of these new structures requires novel 

numerical techniques. 

The Finite Difference Time Domain method (FDTD) is well suited for the electromagnetic 

analysis of integrated devices using active non-linear elements, but is difficult to use for large 

and/or periodic structures. A rigorous revision of this popular numerical technique is 

performed in order to permit FDTD to model practical quasi-optical devices. The system 

impulse response or discrete Green's function (DGF) for FDTD is determined as a 

polynomial then the FDTD technique is reformulated as a convolution sum. This new 

alternative algorithm avoids Absorbing Boundary Conditions (ABC's) and can save large 

amounts of memory to model wire or slot structures. Many applications for the DGF can be 

foreseen, going beyond quasi-optical components. As an example, the exact ABC based on 

the DGF for FDTD is implemented for a single grid wall is presented. 

The problem of time domain analysis of planar periodic structures modelling only one 

periodic cell is also investigated. Simple Periodic Boundary Conditions (PBC) can be 

implemented for FDTD, but they can not handle periodic devices (such as phased shift arrays 

or dichroic screens) which produce fields periodic in a 4D basis (three spatial dimensions plus 
time). An extended FDTD scheme is presented which uses Lorentz type coordinate 

transformations to reduce the problem to 3D. 

The analysis of non-linear devices using FDTD is also considered in the thesis. In this case, 

the non linear devices are always model using an equivalent lumped element circuit. These 

circuits are introduced into the FDTD grid by means of the current density following an 
iterative implicit algorithm. As a demonstration of the technique a quasi-optically feed slot 

ring mixer with integral lens is designed for operation at 650 GHz. 
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CHAPTER I: INTRODUCTION 

1.1 Modelling of Quasi optical devices 

1.1.1 The millimetre and submillimetre band. 

The millimetre and submillimetre band (30GHz-3THz) is probably the last slice of the 

electromagnetic spectrum which still remains relatively unexplored in terms of the generation, 

detection, measurement, radiation and also from the point of view of applications. At these 

frequencies, RF technology does not often provide suitable solutions because of high losses 

and propagation effects. At the same time, optical devices and techniques are not possible in 

many cases because of the low photon energy and long wavelength at these bands. 

Nowadays, considerable effort is being applied to the development of these frequency bands. 

As a consequence, this unexplored gap on the spectrum is being reduced. From the side of 
infrared optical technology, Lasers based on lead salts are already operating at IOTHz and 

several procedures for generating and imaging beams at a few THz have been developed by 

using non linear optic mixing [1]. From the microwave side, new solid state devices are 

reported to operate in the mmW/submmW band, as Gunn diodes (up to 200GHz) and 
Schottky diodes (up to ITHz). Other special devices have been employed in the detection of 

these frequencies, such Niobium bolometers and SIS (Superconductor-Insulator 

Superconductor) junctions [2]. 

Traditionally, mmW and submmW have been used in scientific instruments for 

radioastronomy and research on plasmas. New applications are also being identified for these 
frequency bands, for instance, broadband communications, secure communication links, 

wireless LAN, vehicle anti collision radars, detection of chemicals in air, food processing, 

etc. [3]. Space projects have already a large number of applications for mmW/submmW. Earth 

observation and space scientific missions are increasingly including newer and more 

sophisticated instruments that operate in these frequency bands. Following this trend, a 

number of future European Space Agency (ESA) projects on astronomy (i. e. 
FIRST/PLANCK) and earth observation (i. e. MASTER) will require advanced submmW 
instrumentation [4]. 
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1.1.2 Devices and systems for the mmW/submmW band 

The actual research in mmW/submmW technologies and applications has produced a set of 

antenna and receiver designs that are quite characteristic of these high frequency bands. These 

designs are highly conditioned by the special features of the propagation at mmW/submmW 

and the low manufacturing tolerances associated with very small wavelengths. 

One of the most significant constraints on devices operating at mmW/submmW is the large 

losses in metallic waveguides and transmission lines. For instance, the attenuation of the 

TE10 on a WR-4 rectangular waveguide at 250GHz is approximately 12 dB/m. In order to 

avoid these losses the energy is typically guided through free space using a set of mirrors and 

lenses which is usually referred as a Quasi-Optical waveguide [5](Fig. 1.1 a). As a 

consequence, filters and other passive devices have to be implemented Quasi-optically in free 

space, typically by using passive arrays of metallic patches, the so called dichroic filters 

[6](Fig 1.1 b). These structures have a frequency selective transmission of waves in free space, 

which is related to the resonant response of the metallic patches. 

The high attenuation of transmission lines is also the main reason for using integrated 

antennas designs in the mmW/submmW bands (Fig. l. ld). In these devices the active or 

detecting device and associated circuits are directly incorporated into the receiving antenna in 

order to avoid the transmission line losses from the antenna to the detector or the mixer. The 

small size of the receiving antennas at these frequencies is also extremely suitable for the 

integration of semiconductor devices, and the direct use of semiconductor manufacturing 

techniques for the complete antenna. 

Another limitation associated to submmW frequencies is the tiny dimensions of many devices 

due to the small wavelength. Despite the impressive advance of the micro-machining 

technology [7], it is still a challenge to manufacture 3D structures to be used as submmW 

antennas or receivers. Planar technology is quite attractive at these frequencies since it has 

been extensively developed for the manufacturing of very small components such as 

semiconductor devices. However, conventional planar technology has a special problem for 

its application at these bands: the propagation of surface modes due to electrically thick 

dielectric substrates. However, surface modes can be suppressed by using substrate lenses [8] 

for the planar structure. 
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The low power that is provided by solid state devices at these frequencies is a serious 
limitation for many applications. The power handling of mmW/submmW devices can be 

increased, by combining the output of solid state devices. This basic idea is used by an 

emerging technology based on arrays of active/non-linear elements. These structures are quite 

similar to the dichroic filters but as they include active/non linear elements, they can amplify 

or mix waves in free space in a Quasi-optical way. These devices can handle high power by 

combining the scattered wave from each active element in free space [5], [9], [10]. These 

active/non-linear arrays can be stacked, so they can behave as a sort of active/non-linear 

media. A fascinating range of devices are possible using this technology, from laser type 

generators to non-linear artificial crystals (Fig. 1.1c) [5], [9], [10], [11]. 

1.1.3 Modelling of planar structures at mmW/submmW band. The FDTD approach. 

Planar structures have an essential role for the quasi-optical systems for mmW/submmW 
band. Frequency selective surfaces (FSS), mesh grids, and other filtering devices are planar 

structures, and mixers and detectors at these frequencies can also be implemented as planar 

structures [12]. The active grids for power generation and amplification of mmW/submmW 

are based on planar arrays of integrated antennas and active devices [9], [1O], [1 I]. 

The electromagnetic design of these devices relies on numerical tools, which originally were 
developed for the analysis of microwave devices. As a consequence, these codes usually are 

not ready to cover all the requirements of the mmW/submmW planar design [1O], [11], [12]. 

The modelling of planar integrated receivers is an example of this situation, because they 

require the accurate modelling of both the radiating structures along with the matching circuit, 
filters and the non-linear detector at the same time. Active arrays for power combining also 
include active elements and additional circuits such as bias lines that are coupled to the rest of 

the structure. 

The Finite Difference Time Domain (FDTD) algorithm is a general method to solve 

numerically the electromagnetic equations in the time domain, and has been used extensively 

to model radiation, scattering, and circuit problems [13], [14]. The potential of this method for 

application to the modelling of active/non-linear and submmW structures has been pointed 

out by several authors [10][15]. The main advantages of FDTD for modelling at 

mmW/submmW band are summarised as follows. 

3 
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" FDTD is a time domain method, which is able to model non-linear and active media. As a 

result, integrated and active antennas can be fully analysed in a single model that 

includes the semiconductor devices and the electromagnetic interaction between 

passive parts. 

" FDTD is a full wave 3D method that is able to model mutual coupling effects in an 

arbitrarily complex design and for any number of ports in a single run. 

" FDTD with periodic boundary conditions can model infinite periodic linear/non-linear 

and active/passive arrays and FSS. Multilayer designs can also be modelled directly, 

since mutual coupling between layers is automatically considered. 

" FDTD can use pulsed excitations, making possible broadband analysis of the structures. 

Out of band responses are critical to the design of active antennas 

In spite of FDTD being potentially able to model planar integrated antennas and periodic 

structures, the method has to be extended in order to model these devices. Previous work [15], 

[16] has shown the required extensions for modelling of active/non linear devices in the 

FDTD numerical scheme. They introduce lumped element circuit models of devices, which 

are coupled to the electrical field at the FDTD cells. These methods are the basis for this 

research on integrated antennas 

Some authors [l 0], [ 16] have suggested connecting the SPICE circuit simulator to a FDTD 

code in order to analyse integrated antennas. The SPICE program can solve the non-linear 

circuit problem in the time domain and FDTD can solve the linear electromagnetic part also 

in the time domain. A major problem with this approach is the interfacing between both 

programs, since they have to run simultaneously to update the fields every time step. A 

practical interface can be implemented by obtaining previously the scattering matrix of the 

linear part using FDTD, then the matrix is used as input for the SPICE circuit model. The 

main limitation is the amount of computations necessary to evaluate the scattering matrix in a 

multiport system. 

In respect to the FDTD modelling of infinite periodic media, the boundary conditions for 

modelling infinite periodic arrays for FDTD have been already developed [17], but with the 

major constraint to normal incidence for FSS or sinusoidal excitation. The general FDTD 

analysis of infinite periodic arrays under oblique incidence or with phase shifted generators is 

still a matter of investigation [18], [l9], and it is part of this research. The modelling of infinite 
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arrays with FDTD is a powerful way of broadband analysis of mutilayer FSS and introduces 

the unexplored possibility of the full wave analysis of active/non linear arrays. 

Small finite arrays can be directly modelled using FDTD [20], but computer resources are a 

severe limitation for modelling of medium size arrays. On the other hand, Frequency domain 

methods, as the Conjugate Gradient technique are very efficient in solving passive finite array 

problems [21], [22]. As a result, only a few works at their early stages are reported dealing 

with general methods for FDTD modelling of finite array [23]. However, the FDTD method 

has the possibility of modelling practical active or non-linear finite arrays. This is a novel 

application that can not be implemented using frequency domain methods in a conventional 

way. 
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1.2 Finite Difference Electromagnetics. 

The numerical modelling of physical fields requires the description of the field and its 

fundamental laws by a finite number of parameters. This can be achieved by assuming that 

the field is described as the linear combination of a finite number of basis functions. 

Alternatively, it is possible to approximate the fundamental laws of the field using new 

discrete operators. The Method of Moments (MoM) and Finite Elements (FEM) use the first 

approach, but Finite Differences techniques (FD) [13] normally are using the second type of 

approximation. 

Both approaches are in fact connected, since the approximation of the field operators can be 

associated to the use of certain interpolation basis functions. The approximate discrete 

operator and the continuous one produces the same result for these basis functions (the 

discrete operator is exact in this case). For instance the approximation of a derivative by a FD 

assumes that the functions are line segments. 

However, the differences between both strategies are not trivial. In the field approximation 

method, the basis functions can be chosen to fit in a specific geometry, improving the 

efficiency of the method. In MoM, for instance, the model of circular or ring structures can be 

optimised using only few cylindrical basis functions. However, the procedure is often not 

valid for the general case of an arbitrary geometry. 

On the other hand, the approximation of field operators by discrete ones provides a quite 

general and flexible way of numerical simulation, but it can be rather stiff in terms of the 

modelling of arbitrary shapes. This occurs when the discrete operator is chosen without any 

consideration about the geometry of the problem. In practice, techniques like MoM and FE 

use general-purpose basis functions so they can deal with any arbitrary geometry, but 

allowing some degree of conformal meshing. FD techniques modify the discrete operator 
introducing variable steps or defining the equations in arbitrary curvilinear coordinates, so 

they can improve the geometrical modelling of the object. 

The numerical methods based on the approximation of the operator (as FD methods) have in 

addition a quite special feature. If the approximate discrete operator has similar algebraic 

properties to the continuous one (this is the case for FD's and derivatives), all the equations 

and theorems valid for the continuous fields can be translated for the discrete operator fields, 
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just replacing the field operators by discrete ones. For instance, it will be shown in this thesis 

how the Finite Difference Time Domain method (FDTD) to solve Maxwell's equations 

satisfies FD second order equations that are closely related to the FD scalar wave equation. 
These equations are formally similar to continuous equations for electromagnetic field. It will 

also be shown that FDTD can be alternatively formulated as finite sums in terms of a Discrete 

Green's Function (DGF), just as in continuous electromagnetic field theory. 

As a consequence, these numerical techniques can be considered as `approximate theories' 

rather than a numerical approximation of particular field equations. The analogy between the 

continuous and the discrete theory is limited to the formal similarity of the equations, 

concepts and theorems. The topology of the discrete space is completely different from the 

real space. As a consequence, the solutions provided by the discrete and continuous theories 

are qualitatively quite different, even if the quantitative error between them is very small. 

In this thesis the analytical formula of the impulse response or Discrete Green's Function for 

FDTD is obtained as a polynomial for I D, 2D and 3D problems. This polynomial function 

becomes the continuous time Green's function 6(r-ct)/r when At, Ax, Ay, Az->O. 

Mathematically this function has some interesting properties, and it can be seen as a 

multidimensional generalisation of the Tchebycheff polynomial. However, the full study of its 

mathematical properties is outside the scope of this thesis 

The methodology of this thesis (in particular chapters 11 and III) with respect to the FDTD 

modelling of electromagnetic fields is precisely to consider FDTD as an `approximate EM 

theory' in a discrete space-time. Equations and theorems are formulated for FDTD 

independently of the EM theory in the real space. In consequence, the equations and 

algorithm obtained are exact from the point of view of FDTD and therefore completely 

compatible with the original FDTD algorithm. 

The objective of this methodology is to generalise and obtain alternative formulations of the 

FD approximation of the EM theory, providing the right theoretical framework for advanced 
boundary conditions and hybrid modelling techniques. FDTD has a long history since it was 
devised in 1966 and this thesis presents an alternative view of the method, so it is more 
involved with new aspects of the technique rather than the compilation of existing 
developments in the method. 
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1.3 Objectives of this research. Document organisation 

The work presented in this document is intended to develop all the necessary theoretical tools 

and numerical algorithms for the Finite Difference Time Domain (FDTD) analysis of 

electromagnetic fields in planar devices. The final application is the analysis of Quasi-optical 

planar devices used in the millimetre and submillimetre frequency bands, in particular planar 

integrated/active antennas, Frequency Selective Surfaces (FSS) and Photonic Band Gap 

Structures (PBG). Besides practical implementations, this research work is also focussed in 

obtaining a general theoretical framework for finite difference methods to produce advanced 

boundary conditions and alternative algorithms. 

This report is organised into five chapters, including this introduction as chapter I. The second 

chapter deals with the basic theory of the FDTD method and the application to the modeling 

of planar structures. A FDTD code for planar structures has been generated and the results are 

compared to measured data on patch antennas available in the literature. This chapter also 

presents the basic algorithm to model non-linear elements, and in particular the lumped circuit 

model for a Schottky diode is presented. 

The third chapter is devoted to the theoretical investigation of the FDTD method. The Z 

transform is used to obtain second order FDTD equations. The relation between the finite 

difference scalar wave equation and FDTD is determined. FDTD is alternatively formulated 

in terms of finite sums, which includes the impulse response or discrete Green's function 

(DGF) of the FDTD method. The analytical formula of the DGF is presented in this chapter. 
Some application examples of the new FDTD algorithm are also demonstrated, including an 

example of exact absorbing boundary condition (ABC) for FDTD. Finally this chapter 

contains a study of higher order algorithms for FDTD to improve the algorithm dispersion 

and anisotropy of the method. 

The fourth chapter is dedicated to the modelling of infinite periodic structures using FDTD. 

The theoretical basis on which periodic media of infinite extent can be modelled is presented 
in this chapter. This work includes a novel FDTD algorithm to solve the periodic boundary 

condition for a planar structure illuminated by a plane wave of arbitrary angle of incidence. 

This method is verified by comparing results for a Frequency Selective Surface (FSS) with 

conventional frequency domain methods of calculation. 
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The fifth chapter is devoted to the design and modelling of an integrated receiver at 650 GHz 

for a general space-based earth observation mission. This design is intended to demonstrate 

the possibilities of the FDTD code to produce a state of the art design of a complete submmW 

device. 

The final chapter summarises the work of this thesis and makes recommendations for future 

work. 
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CHAPTER II: THE FDTD METHOD FOR PLANAR STRUCTURES 

2.1 Introduction to the FDTD method 

2.1.1 Central Finite Differences and Notation 

Finite differences (FD) are a classical mathematical subject developed in the early days of 
infinitesimal calculus and before. They have been applied extensively to numerical analysis and 

statistics. The numerical solution of differential equations has been traditionally closely related to 

the calculus of finite differences since FD's can be used as approximations to derivatives. 

Historically, several authors had proposed alternative notations for finite differences. In this 

chapter, the notation follows the standard used in [1] for FDTD. Following this notation, the 

integer displacement of a vector field is written as: 

P(x, 
y, z, r) = P, (x, y, z, r)z+ P, (X, y, z, r)y+ P, (X, y, z, r)z 

P" i.. l. k =PT; 'ýkx+PYý; ýý. 
ky+PI 

; ';. 
kZ=P(x+i0x, y+jey, z +Oz, r+nor) 

Ax, Ay, Az, At are real numbers (intervals or steps) i, j, k, n are integers (indexes) 

(Eq. 2. l) 

The displacement of a half interval is a very important operation for FD theory. The notation for 

the half displacement is shown in Eq. 2.2 for the `time index' n and for one `spatial index' i. The 

symbol ± indicates that the half displacement can be positive or negative. 

P; ', kl 2 =P(x+idr, y+joy, Z+Az, r+(n±1/2)Ar) 

Ptu2. j. k = P(x +(i ± 1/2)Ox, y+ j0y, z+ Oz, i+ nor) 
(Eq. 2.2) 

Similar definitions of half displacements can be done for the j and k indexes. The differences 

between displacements of a function are the so-called finite differences. The finite difference 

obtained from half displacements is called central FD. The central FD of a vector field is a good 
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approximation (O(h2) precision) of the partial derivative of vector field after an integer 

displacement. Using the FD operator D, and D_Y, the partial derivatives can be written as: 

ap 
at 

ap 
ax 

P) 

i, j, k 

H 

i.. l. k 

=D, P'. 
Ik +O(012) 

= DxPýi k +OiOxz) 

n+I/2 u-I/2 

DI fin 
i. k At 

- 
P, 

J. k 
- 

Ot 

II 

D. 
YP. i. k 

it it P'+I/2J. 
k - 

P-1/2J. 
k 

Ax 

(Eq. 2.3) 

This approximation of the derivatives by central FD is the basis to the numerical solution of 
differential equations that are replaced by analogue FD equations. Despite the fact that the 

approximation of derivatives by FD can be accurate, it is not sure that the approximation of a 

whole differential equation by a FD equation is accurate. The FD equation can be unstable or 

chaotic even if the original differential equation is regular [2]. As a consequence, the use of FD 

algorithms for the solution of differential equations should be carefully studied, providing full 

assessment of the stability of the equations as a system. 

2 1.2. Basic theory. Yee's Algorithm. 

The Finite Difference Time Domain (FDTD) method is an algorithm to solve numerically the 

time domain Maxwell's equations. The method is based on the approximation of partial 
derivatives in a regular grid of points by means of central differences. The partial derivatives of 

the curl Maxwell's equations (Eq. 2.4a) can be approached following this scheme: resulting in a 

set of discrete difference equations. Eq. 2.4b shows the discrete equations for the electric field curl 

equation by direct approximation of the partial derivatives. The magnetic field equations are in 

Eq. 2.4c. 
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ý D- p v- B= 0 (Maxwell's equations) (Eq. 2.4a) 
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(Eq. 2.4c) 

Each field component in the set of finite difference equations is related to field components in a 

previous time instant. As a result, the equation system can be solved by iteration, provided that 

the initial conditions for the field are known. At each iteration, the field is updated in a time 

instant later than the original. This iterative method is known as the Yee's curl algorithm [3]. In 

principle, this algorithm is just based on the curl Maxwell equations, but the divergence equations 

are automatically fulfilled by the discrete system [4]. The method presented in this section is 
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similar to the original formulation, which is based on the linear, isotropic, non-dispersive 

Maxwell equations in the time domain. 

As a consequence of the central difference scheme, the field components have to be located in the 

middle of other field component in order to compute the central difference. This means that the 

continuous field has to be sampled alternatively by the proper field component (Fig 2.1). The 

magnetic and electric field also has to be alternated in time for the same reason. This is the so- 

called `leap frog' algorithm. 

Ey 

Fig 2.1 Distribution of field components in an elementary FDTD cells. 

The algorithm can be extended to handle most known media (Table 2.1). Anisotropic and 

inhomogeneous media can be modelled with only minor changes on the equations. As the FDTD 

method works in the time domain, non linear and active media can be fully supported, but the 

iteration scheme to solve the finite difference equation can be much more complex that the basic 

one [2], [3] described here. 

Table 2.1. Type of Media vs. FDTD 

Type of Media FDTD support 
Anisotropic All types of anisotropy supported 

Lossy a Included in the FDTD. 

Dispersive FDTD + convolution (difficult) 

Inhomogeneous All types for c, µ, and a 

Non linear/Active Extended FDTD 

Charged particles, Plasma FDTD coupled to interaction operators 
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2.1.3 Divergence equation for FDTD. 

The Yee's algorithm is based on the FD approximation of Maxwell's curl equations. However the 

electromagnetic theory also requires some condition on the divergence of the fields. The Yee's 

algorithm for FDTD must satisfy a divergence FD equation analogue to the Maxwell divergence 

equation (Eq. 2.4a). The central FD approximation of the divergence operator is shown in Eq. 2.5. 

"E = i. J. k + xI i" j. k 

ý ]; ', ý, k + D-E_ I ; ',, k + O(Ax') + o(oy') + o(ý') 

(Eq. 2.5) 

Using the Yee's algorithm for a homogeneous, non lossy medium, the divergence condition of the 

FDTD electrical field can be derived. The equation 2.4a can be substituted for the electrical field 

into the FD divergence (Eq. 2.6). 

Dx Ex I i'i. k 
+ Dv E,. ý, 

ik+ 
D: E. I; 'i, 

k = 
, 

D, -'(DX(D}. H: ,;. 
k -D: H,, , 

;. k)+Dý, 
(D: Hxl"i ;. k -DH: 1n;. 

k)+D, (DHy 
;;. k -DyHxI n;, 

k 

D, -'_ (D., J., I1''l, k + DyJý, I. ';. 
k + D_J: 

I i'J, k / 

(Eq. 2.6) 

The magnetic field components in Eq. 2.6 cancel each other, so the FD divergence of the electrical 
field is only a function of the density of current. The density of current term in Eq. 2.6 can be 

considered as the electrical charge on the cell as a FD version of the law of charge conservation. 
As a consequence, the divergence condition for FDTD is finally written (Eq. 2.7). 

n 
nI In 

P;,. j. k D,, E_, ý;, l, k + Dv E, n 

;.;. k + D- E_ 
%. j, k - 

- D, P, "'. i, k = 
(DJ, I, I 

;, k + 

E 

II 
) 

, l, k +D: J: Ii' 
i l. k 

(Eq. 2.7) 
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A similar expression can be obtained for the magnetic field, just by following the same procedure 

as used for the electrical field. The Maxwell divergence equations have a counterpart in FD 

equations. The numerical fields are also divergence free from the FD point of view for all the 

cells without current density. These relationships will be used in the next chapter to construct 

second order FD equations. 

2.1.4 FDTD Stability, Dispersion and Anisotropy. 

The set of difference equations forming the FDTD method is an approximation of Maxwell's 

equations with a O(A2) precision. However, it is well known for general finite difference 

equations that approximation errors can be accumulated at each time step, so the solution to the 

discrete equation may diverge with respect to the solution of the original continuous differential 

equation. In that case, the difference equations form an unstable system. The stability of the 

FDTD method depends on the time and spatial steps used, so this choice is critical. 

Stability analysis can be performed by means of the Z transform to calculate the transfer function 

of the equation system [4], [5]. The stability of the procedure can be easily determined by the 

zero-pole analysis of the transfer function. The full Z transform analysis of the FDTD system is 

shown in the next chapter. Following this procedure, it is possible to find a stability condition for 

the FDTD algorithm: The Courant condition (Eq. 2.8) 

<_ At 
I 

111 
c 

AX2 A2 AZ2 

v (Eq. 2.8) 

The meaning of the stability limitation is that the discrete grid has to be able to model the flow of 

energy at light speed inside every cell to verify the law of conservation of energy. This condition 
holds for linear, isotropic, homogeneous media, but it is usually taken as a reference for other 

media. In general, non-linear media have different stability criteria [2]. For these media, the 

condition given in Eq. 2.8 is not enough to guarantee stability. 

The Z transform analysis of the discrete equations also allows determination of the dispersion 

relation for the waves represented in the FDTD grid (the full mathematical demonstration also 
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can be found in the next chapter). The dispersion relation links the wave frequency to the wave 

numbers (Eq. 2.9). 

I, k. 
T& 

Izk,. AY I2 k_ Az 12, wNt 
Axz 

sin` 2+A2 sin 2+ Az sin 2 =(c&t) sing 2) 
.v 

Ox, Ay, Oz, At -+ 0 -(C)' 

(Eq. 2.9) 

The limit of this equation for zero spatial and time steps is the continuous dispersion relation for 

plane waves. The discrete dispersion relation is dispersive (phase velocity depends on frequency) 

and anisotropic (phase velocity depends on direction) (Fig. 2.2). 
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Fig. 2.2 Normalised phase velocity for the numerical waves propagating in a FDTD grid. The 

phase velocity depends on the cell size and the wave direction respect to the FDTD grid. 
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In Figure 2.2 the FDTD numerical value of the phase velocity is calculated using Eq. 2.9 as a 

function of the angle of propagation with respect to the grid (Ox = Ay = 2cAt) and for several 

cell sizes. The phase velocity of the numerical waves is smaller than the speed of light. The 

difference is bigger for waves propagating on the axes (0 and 90 Degrees). This shows the 

dispersive and anisotropic behaviour of the FDTD grid. The error in the phase velocity is about 

1% for a cell size of ? 110, which is often taken as the minimum cell size recommended for FDTD 

[2], [3]. 

However, the modelling of practical devices and circuits often requires cell sizes much smaller 

than x/10. The previous analysis has been done for propagating waves on the FDTD grid, but 

scattered waves contain a high proportion of evanescent waves. The numerical speed of light for 

FDTD is shown in Figure 2.3 for the propagating and evanescent waves according to Eq. 2.9. 
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Fig. 2.3 Normalised numerical speed of light for the numerical waves propagating in a FDTD grid 

including evanescent waves (sinO> 1). The numerical speed of light for the evanescent waves 

degrades more than for the propagating waves. 
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The percent error of the value of the speed of light is much higher for the evanescent waves 

(sinO> 1). This result suggest that a smaller cell size would be required to model accurately the 

evanescent waves since they have faster spatial changes than the propagating ones. As a 

consequence, scatterers generating a high proportion of evanescent waves (i. e. structures with 

circular symmetry or sharp edges) will require a cell size down to X/20 or x. /40 to achieve 1% 

error in the numerical value of the speed of light. 

2.1.5 Principle of equivalence for FDTD. 

In electromagnetic theory, the principle of equivalence states that the EM solutions can be 

reproduced exactly outside a volume containing the field sources from an appropriate current 

distribution (electric and magnetic) on the surface of that volume. This current distribution is 

directly related to the EM field tangent on the boundary of the volume [6]. 

This principle is extensively used to solve many electromagnetics problems and is a consequence 

of the uniqueness theorem and the boundary conditions for the fields at limiting surfaces [7]. The 

principle of equivalence can be used in FDTD to calculate the far field radiated by a structure 

from the near field estimated by FDTD in the vicinity of the structure. 

However, it still remains the question of finding a true FD principle of equivalence for FDTD. A 

`true' FD principle means that the Yee's algorithm can be updated alternatively using the 

equivalent currents at certain grid nodes where the EM fields are set to zero (or an arbitrary 

value). This FD principle of equivalence is different from the continuous one since the topology 

of the discrete space is essentially different from the real one. In the discrete FDTD grid the 

electrical and magnetic equivalent currents can not be defined at the same surface since they have 

different positions in the space for electrical and magnetic field. 

The first step is to determine how the FDTD algorithm can be updated if a field component is set 

to an arbitrary value by introducing equivalent currents in other nodes nearby. The equivalence 

between currents and fields is shown for a single magnetic field components in Eq. 2.10 The same 

idea can be applied to the rest of field components 
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(left) can be updated in an alternative 

way, assuming that an arbitrary value H0 for the magnetic field and a distribution of 

electrical current density (right). The magnetic field is also updated consistently introducing a 

equivalent magnetic current density. 
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The field at a node can be replaced by an arbitrary value, using an equivalent way by a 

distribution of current density (Fig. 2.4). This arbitrary value can be chosen to be zero, as if the 

node was filled by electric or magnetic perfect conductor. This can be considered the principle of 

equivalence for FDTD applied to a single cell. In order to obtain a general theorem, the single cell 

equivalence principle has to be extended to a complete subset of the FDTD grid. 

The vicinity set of DTD node is defined as the set of FDTD nodes which contributes to the field 

Iat that point. For instance, the vicinity of H 
i. J"+'i, k 

2 is the nodes H ýi 
j, k ,E E1 

, 
I" E ýi , 

H. 
i. l, k 1' i, i. k i+I. l. k s i, i, k 

Er j, ' .Ik. 
The field at the node can be evaluated from the field at the node vicinity. 

A region of the FDTD grid, F, is formed by a set of electric and magnetic nodes at any time step 

n. If a node belongs to F and its vicinity is also included in F, then this node is an inner element. 

The field at this inner node can be estimated inside F and no nodes from outside F are required to 

perform that calculation. If the vicinity of a node in F is not included within F, then it is a 

boundary element (Fig. 2.5). It is clear that the calculation of the field require nodes outside F at 

the boundary. As a result, the field in any finite region F of a FDTD grid can not be calculated 

just using the nodes of F. The external nodes which are necessary to compute the fields inside F 

are precisely the boundary nodes of F, the complementary set of F. This can be justified since 

any element on the boundary of F has one or more elements of its vicinity within F, which must 

be part of the boundary of F'. As a result, the field in a region F of the FDTD grid free of sources 

is determined at certain time step in a unique way from the field at previous time instants in F and 

the boundary of F'. 

The principle of equivalence can be applied to a region F. The inner nodes in F' does not 

contribute to the field in F so they can be set to an arbitrary value, for instance they can be set to 

zero. At the boundary of F', the equivalence between currents and fields is implemented 

(Eq. 2.10), so the fields can be also set to zero. A distribution of electrical and magnetic currents 

has to be introduced at the boundaries of F and F'. The currents are set at the vicinity of the 

boundary nodes of F. 

The current distribution is obtained by following the following procedure: 
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" Determine if the node belongs to the boundary of F' 

" If positive then determine which nodes of the vicinity belongs to F 

" In these vicinity nodes, introduce currents terms following Eq. 2.10 

" For the boundary node itself also currents are introduced according to Eq. 2.10, but the terms 

of the vicinity inside F' are assumed to be zero. 
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Fig. 2.5. Definition of subsets in a 2D TM FDTD grid. F is an open subset and F is its 

complementary set. The boundary of F is necessary to perform the complete field update inside 

F. The equivalence principle is implemented for F by setting to zero the field in F and 

introducing a density of currents in the boundary set of F and F, according to Eq. 2.10. 
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2.1.6 Absorbing boundary condition. Perfect Matching Layer (PML) 

A real computer has a limited memory, which is only able to represent a finite subset of the 

FDTD grid. All the sources and scatter relevant to the problem must be contained into this subset. 

As shown in the previous section, in order to update the fields inside the subset it is necessary to 

know the fields at the boundary of the complementary region. In some problems, the field at the 

boundary is determined (i. e. waveguide, metallic enclosures) or are directly related to the fields 

inside the subset (i. e. symmetry and periodicity conditions). However in many practical cases, the 

field at the boundary is not known, for instance to model the field radiated by a structure into an 

infinite region. In order to solve this problem, it is necessary to introduce a special algorithm 

(Absorbing Boundary Condition or ABC) to estimate the fields at the external boundary from the 

fields inside the computer-represented subset (Fig. 2.6). 
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Fig 2.6. The field at the boundary of F' is required to update the field inside F. A special 

algorithm is necessary to radiate or absorb incoming waves at this boundary (ABC). Otherwise, 

waves would be `numerically' reflected back into F. 
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This problem has been treated extensively by many authors [8], [9], [10], [11]. Absorbing 

boundary conditions (ABC) were implemented in the 70's and 80's using the theory of the one- 

way operators [8], [9]. One-way operators only allow wave propagation outward from the grid 
boundary. These procedures work very well for normally incident waves with respect to the 

boundaries, but usually they have a poor performance at large incidence angles (more than 45 

degrees from normal). 

The Mur's ABC is a one way operator technique which became quite popular due to its 

simplicity. Despite more sophisticated one way operator techniques being developed later on 

[ 10], [ 11 ], it is reported that the dynamic margin of the FDTD method with these ABC was in the 

order of-4OdB [2]. This relatively small dynamic margin imposes some limitation to the analysis 

of low reflectivity problems. 

The Perfect Matched Layer (PML) is a very low reflectivity ABC that has been more recently 
developed [12]. This boundary condition is based on the zero-reflection property of special lossy 

planar media, which satisfy the conditions given in Eq. 2.11. This kind of medium is perfectly 

matched to the air impedance, so no reflection occurs. Once the wave is inside the PML, it is 

attenuated because of the ohmic losses. The PML is several elementary FDTD cells thick in order 

to provide good absorption of the outgoing wave. Finally, the FDTD region is terminated setting 

to zero the fields at the boundary. 

ae 

ß(P)-6m\S/ 
it 

(Eq. 2.1 1) 

In order to produce a smooth transition from air cells to the PML cells, the conductivity is 

gradually increased for each layer, as the boundary becomes closer. The distribution law for the 

conductivity follows the Eq. 2.11, with the parameter n. For n=2 the conductivity profile is 

parabolic and exhibit the optimum absorption, especially for oblique incidence waves. 

In the PML method, the conductivity of the layer is applied only on a sub-component of the 

fields, so the algorithm is based on PML-modified Maxwell equations. The Cartesian components 

of the field are split and the resulting PML equations yield a set of 12 equations as follows: 
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(Eq. 2.12) 

The conductivity is different for each sub-component of the field. The sub-conductivity for the 

component normal to the PML are set to the value of Eq. 2.11 and the others are set to zero. As 

the PML is based on a set of planar layers, it can only be implemented for a planar boundary. The 

PML method is applied to rectangular grids implementing a PML for each wall of the FDTD 

region. At the corners of the grid, the PML's are overlapping with their respective conductivity 

distributions. The structure of the PML in a two dimensional grid is depicted in figure 2.6 
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Fig. 2.6. Distribution of conductivity in the 2D PML ABC. 

The performance of the PML ABC is reported in [I ] improving the dynamic margin of the FDTD 

method up to 70dB, which represent a big advance in respect to the previous existing ABC's. The 

PML can be placed close (up to 2 cells) to the object being modelled, with very low distortion of 

the result [ 13]. 

The PML ABC requires extra memory in order to implement it, since several layers of FDTD 

cells are dedicated to the PML. The performance of PML is also greatly reduced for long 

wavelength waves since the attenuation of the waves inside the PML decreases with frequency. 

As a result, the number of PML layers has to be increased for small cell sizes and more than 10 

layers are required in most practical models. 
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2.2: FDTD model of planar passive structures 

2.2.1. Modelling of metal layers of arbitrary shape and dielectric slabs. 

The Perfect Electrical Conductor (PEC) is a type of medium with infinite electrical conductivity. 

Inside such media, the only possible solution is zero electric field. This is also true for an 

electrical FDTD node with ß-oo. At the boundary, the electrical field tangent to the PEC should 

be zero, as the boundary conditions in electromagnetics enforce the continuity of the tangential 

fields. 

The FDTD grid has the field components situated at different spatial positions, so the definition 

of a PEC region in FDTD has to take into account the misalignment of field components. A PEC 

in FDTD is a subset of the FDTD grid determined by electric nodes set to zero. The PEC also 
includes the zero field magnetic nodes, which appear in between zero field electric nodes. 

An elegant definition of a PEC in FDTD is based on the vicinity and boundary set concepts given 

in the previous section: A PEC is a subset of the FDTD grid where the fields associated to each 

node are set to zero and its boundary set is purely electric. The figure 2.6 shows the PEC 

definition for a planar case. The boundary set of the PEC consist of nodes of electric field 

component tangent to the boundary itself. The same definition can be applied for Perfect 

Magnetic Conductors (PMC), but interchanging electric and magnetic fields. 

Planar metal layers can be implemented as a PEC following this definition. In this case, the 

cartesian nature of the FDTD grid is well suited for modelling planar objects. An infinitely thin 

planar PEC can be model in a single layer of electric field nodes. 
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Fig. 2.6. PEC in a 2D TM FDTD grid: the electric field is set to zero at the nodes inside the PEC. 

The boundary set of the PEC must be purely electrical. This definition is also valid for the 3D 

case. 

Dielectric media are defined as a spatial distributions of the electric permitivity s(x, y, z). The 

FDTD equations can implement a different value of a for each electric node of the grid, similar to 

the continuous dielectric distribution, but considered at discrete locations. However, the FDTD 

definition of a finite dielectric object has some essential differences with respect to continuous 

dielectric media. 

The boundary of a dielectric object has to be inserted into a FDTD grid with misalign field 

component nodes. As a result, the boundary of the dielectric regions is not perfectly symmetrical. 

Figure 2.7 shows the interface between two regions with different dielectric constants. Inside the 

medium 1, the first row contains electrical nodes normal to the interface. In the medium 2, the 

first row contains electrical nodes parallel to the interface. This creates an asymmetric situation at 

the interface between dielectric media. 
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Fig. 2.7. The first row of electric field nodes inside the medium I is normal to the interface, but is 

parallel at medium 2, due to the alternate position of field components in the FDTD grid. 

The transmission coefficient of planar waves from media l to 2 and 2 to I is related by the 

condition T12 = Vs, /e2 Tz, , ensuring the symmetry of the dielectric interface from the point of 

view of power. However as a result of the intrinsic asymmetry of the FDTD dielectric interface, 

the direct and reverse transmission coefficients are not related by the previous condition Fig. 2.8. 

There are significant consequences of this asymmetry, the resonant properties of dielectric 

structures are changed (for instance, the total transmission of a dielectric slab is based on the 

symmetry of the transmission coefficients). This will lead to inaccuracies on the calculation of 

resonant frequencies and improper cancel of multiple reflections. The difference between direct 

and reverse transmission can be about 3% for the interface of air-E. =2 and Ox/k,, = 0.1 . This 

suggests that accurate FDTD calculations on resonant effects involving dielectrics require very 

small cell sizes Ox/X,, 5 0.05. 
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As stated, there is qualitatively different behaviour of the interface between dielectric media in 

FDTD and the continuous electromagnetics. The FDTD approximation assumes the continuity of 
the derivatives, but this is not true at the interface of two dielectric media (Eq. 2.13). This implies 

that a boundary node of electric field in FDTD can not belong to two media simultaneously, since 
it requires more than one derivative for the magnetic/electric field in a single cell. 

aEy' aHX' aH. ' aEy2 _ 

axX2 ax. 2 

E' at - az ax £2 at az ax 

Boundary conditions 

aEv aEy2 
at - at 

aH' aHX2 aH. ' aH_2 

_ -ý az az ax ax 
(Eq. 2.13) 
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A FD approximation for dielectric interfaces is proposed in [15] by averaging the Eq. 2.13 in both 

sides of the interface. Basically, the FD equation is obtained in the same manner than Yee's 

algorithm with an average permitivity (e, +E2)/2. The average of the magnetic field derivative at 

each side of the interface is approximated by a central difference (Eq. 2.14). The accuracy of the 

procedure drops to O(Ox), but the symmetry of the interface has been restored.. 

E, +Ez aEy. 
_ 

axX 
_I 

ax' + ax, ' ( 
2ý at - az 2 ax ax 

1 
2 ý_ 

ý. aH: ' aH_'` 
_H'-Hz( ax 

+ 
ax 

j2 

Ax/2 +H12-H`z+O(Ox)1 Ox/2 1 ,) Ax 
H. ' 

+ O(Ax) 

(Eq. 2.14) 

The FDTD procedure described in Eq. 2.14 does not seem to improve significantly the estimation 

of the transmission coefficient. The accuracy of the calculation drops as the cell size increases. It 

provides a better result for the high-low E transmission, but it is worse low-high c transmission 

(Fig. 2.9). 
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2.2.2. Voltage sources, loads and linear passive circuits. 

Voltage sources and current sources can be implemented into elementary unit FDTD cells. 

Intensity can be modelled as external electrical currents using the density of current term j into 

the FDTD field equations. On the other hand, voltage sources also can be implemented by using 

external magnetic currents in the same way. 

A real generator with internal resistance can be modelled by a electrical/magnetic current, but in 

this case. these currents depends on the electrical or magnetic potential at the generator terminals 

to take into account the potential at the internal resistance. In some circumstances (quasi-static 

approach). this potential can be evaluated directly from the electrical field in the FDTD grid 

(Eq. 2. l 5). 

As the FDTD operates in time domain, the voltage source can generate voltage pulses as 

excitation. These broadband signals can be extracted and analysed via FFT in order to compute 

the impedance of the system at the generator terminals. 

E' = Kra4W) - Rg" i(l)) 
E`(i. j. k)+E'(i. j, k)1 

Z(j)=Vuý -Rg 
2J 1(1) (Eq. 2.15) 

Resistive loads can be implemented as a conductivity distribution in a FDTD cell, but the 

resistance can also be modelled as a real generator with zero voltage at the source which produces 

a density of current. Other linear lumped elements, such as capacitors or inductors can be 

introduced in the same way as resistance, either as density of currents or as distributed electric 

permitivity or magnetic permeability into the FDTD cell. 

2.23 Modelling examples 

An FDTD code has been implemented in order to show the ability of the method to model planar 

integrated antennas. The first step was the development of a software package, which could 

model passive multilayer planar structures of arbitrary shape. 

35 



This code uses PML ABC, sinusoidal and pulsed voltage sources, loads, and all the features to 

model planar structures as described in the previous section. The code is written in standard 

Fortran 77 in order to keep high portability. The geometry input is based on a MatlabTM front-end 

program, which is interfaced by a file to the main program. There is an ASCII file to input the 

parameters for the FDTD method such as grid dimensions, number of cells, type of PML and 

dielectric constants. The outputs of the code are broadband impedance at the input port, time 

domain voltages and intensities at specified points, density of currents at the printed circuits and 

electromagnetic field at given positions. 

In order to verify the accuracy of the calculations, several planar antennas have been analysed to 

determine their impedance (Figs. 2.8-2.11). All these cases are microwave patch antennas whose 

measured response can be found in the literature [15], [16], [17]. 
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Fig. 2.9 Impedance computation for a circular patch. The FDTD computed impedance is shown 

in a Smith chart (solid line) and it is compared to the measurements [161 (circles). A FDTD grid 

of 60x6Ox60 element is used. 
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Fig. 2.11. Current density on the metallic parts of the slot-coupled microstrip antenna at the 

resonance frequency. Copolar currents (Left) and Xpolar currents (Right) are presented. 
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2.3 FDTD modelling of non linear devices 

2.3.1 Basic Equations. 

A direct extension of the FDTD method to non-linear media can be obtained by a 

straightforward approximation of the partial derivatives of the general Maxwell's equations for 

non linear media by a central finite difference scheme, resulting in a non linear finite difference 

equations. However, non-linear FDTD can also be implemented from the classical linear method 

by means of non-linear operator introduced at the equations as some sort of external currents 

(Eq. 2.17) 

vxE__aB 
at 

Ox H= aD+ jeX +J(E, H) 

B=µ*H D=E*E 

(Eq. 2.17) 

In these equations the electrical field E and the displacement vector D are related linearly 

(the same for B, H), but the symbol J describes an operator on the field vectors E, H that can be 

non-linear. The symbol jrx represents the currents on the system due to an external (non 

electromagnetic source of energy). So, the non-linear part is modelled in this equation as the 

result of the interaction of a basic linear electromagnetic field with non-linear induced sources. 

The Eq. 2.17 presents a general formulation of the non-linear electromagnetic curl 

equations. This scheme is well suited to implement approximations that can model some 

particular problems. For instance, this set of equations can be useful to model weak non linear 

media by means of perturbational procedures [18], since these methods are based in the 

separation of the linear part of the solution from the non linear part. 
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Another particular case in which Eq. 2.17 can be easily approximated is depicted in Fig 

2.11. The non-linearity is strong but it occurs in regions that are electrically small compared to all 

the wavelengths that exist in the system. In this case the operator J is approximated by the finite 

sum of terms of currents produced at discrete space points, which are non-linearly related to the 

electromagnetic field at these points (Eq. 2.18). 

�(E, H)=ýý'j;, (E(r, , t), )(rý, t)) S(r'; ) 
(Eq. 2.18) 

The terms j of the sum are non-linear time operators on the electromagnetic fields at the 

position r. This approximation can be used to model the interaction of the electromagnetic fields 

in a linear structure with solid state devices. The non-linear part of many detectors is contained in 

a tiny region surrounding a junction of different materials, as it occurs for solid state diodes. 

Two essential problems have to be solved before using Eq. 2.17&2.18. First, The 

equations have to be approximated to a set of discrete equations using a central finite difference 

scheme. Second, the final form of the j operators has to be determined for each type of device. 
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Fig 2.11. A linear system with a finite number of non-linear electrically small scatters (left). In 

this case the linear part of the equations can be separated from the non-linear part. The link of 

both parts is obtained by a finite number of ports associated to the induced currents in each scatter 

(right). 
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The approximation to a discrete set of equations can be obtained by using the integral 

form of the equation 2.17 for elementary unit cell. For the sake of simplicity it will be only done 

for one field component. The integral form can be related to the differential form by means of the 

integral over each face of the unit cell. 

ýDy f(V x fl). dS =ýýy f aý 
+ jeS + J(E, fl) " dS 

(Eq. 2.19) 

Using equation 2.19, the Stokes theorem, and assuming that the r; point is at the centre 

of the integration surface, the non-linear part will be assumed to be caused by the electrical field 

(J=J(E)) 

_ ajý"ds ý dH d1= 
ý+ 

JeX"dS+ý. 1:; i 4x0y, ,' 
OxOy at 

ý' 

(Eq. 2.20) 

This equation can be finally approximated to a discrete form, taking into account the 

elementary grid cell of figure 2.1. The integral on the xy face of the elementary cubic cell can be 

approximated by: 

Ox0 
iH"d1=H=(i, j-1/2, k)eyHx(i, j+1/2, k)+Hj. (i+1/2, j, k)ýHj. (i-1/2, j, k)+O(OZ 

y (. 

I aJD'ds aD-(j,. i, k) ,) 
AxAy at - at + O(o (Eq. 2.21) 

The Eq. 2.21 show the procedure to approximate the spatial part of the curl equation to a 

set of discrete ones. It has been done here for one co-ordinate, but it can be easily extended for 

the rest of them. The time domain part of the equation remains continuous, and it has to be 

approximated by discrete equations. The basic FDTD algorithm uses a central difference scheme 

for the time domain co-ordinate. However, it can not be done in a straightforward manner for the 

cells that contains non-linear current elements. 
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8D' 
_(i, 

j, k, t) 
= öt - LN(i>J>k>t)+ la(E(i�Ji, ki>t)) 

(Eq. 2.22) 

Where L is the contribution of the H field in Eq. 2.2 1. The discrete approximated equation 

for time domain is obtained by means of central differences on the time domain. In this way for 

the cells without non-linear contributions the algorithm is exactly the normal FDTD, but in cells 

with non-linear devices the finite difference scheme has to be changed. 

-1µl -i) 
E, +I ziý_E ýinJ, 

>k, 
)+E ýý,,. Inki)+ 

ýz ý, j, k, ) 2a) 
n+I u h+1/2 n+I/2 

^ 

D (i, J, k)=D(i, J, k)+Ot L� (ý, J, k)+J (E(i,, Jl, k�t)) 

(Eq. 2.23) 

Equation 2.23 can not be solved in a direct way since j, are non-linear operators on the 

electrical field. In general, these operators can be approximated by a discrete scheme, but the 

equation 2.23 then become a transcendent equation that remains in an implicit form. 
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2.3.2 Lumped circuit element model. The Schottky diode. 

It is clear from equation 2.23 that the final form of the numerical algorithm depends on the 

explicit form of the j, operators. These operators will be related to the type of device that is 

intended to be model. However, the electrical behaviour of all practical devices can be modelled 

as a network of elementary circuit elements. This is a good approximation if the following 

conditions are assumed 

" The quasi-stationary approach is possible to model the device. 

" The device behaviour can be considered as the linear combination of non-linear effects. 

The first point is verified since electrically small scatters are considered. The second is usually 

verified since the currents at many devices are the result of currents produced by completely 

different physical sources that are combined in a linear way, although the physical sources can be 

non-linear (e. g. the recombination mechanism and space-charge capacitance in a diode). The 

result is that the device model can be handled as typical networks of circuits elements, but now 

these elements are non-linear. 

A major feature of this model is that the device can be split between several elementary FDTD 

cells. This is possible since contiguous cells can be considered to be series or parallel connected 

each other. However, it is necessary to verify first that the set of cells used to model a single 

device, are not too big compared to the wavelength. 

2.3.2.1 The Schottky diode circuit element model. 

The ability of the lumped circuit element method to model devices can be shown for the Schottky 

diode (Fig 2.12) whose circuit equivalent is well known. This device is extensively used as a high 

frequency detector so this model can be used for further investigations. The lumped element 

model of Schottky diodes is extensively used up to the mmW frequency band (approx. 100GHz). 

For higher frequencies, there are more sophisticated mathematical models, based on non-linear 

time domain differential equations. Interfaces between FDTD and these models can be 

implemented since both are in time domain. 
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Cj(Vd)+C(Vd) 

Gj(Vd) 

Fig. 2.12. Simple lumped element circuit model for the Schottky diode and its connection to the 

FDTD grid. 

As stated before each circuit element depicted in figure 2.12 can be associated to a physical 

effect. The series resistance Rs is caused by the resistance of the silicon in intrinsic state 

connecting the junction to the output terminal. The non-linear capacitance can be considered the 

sum of two contributions: the junction capacitance due to the space-charge zone being free of 

holes in reverse mode and the diffusion capacitance due to the distribution of electrons into the 

semiconductor in forward mode. 

\ 
CJ(V4)=CJ(O)/, - vý, m vd < (Do Il 

0 
)I 

ýý C, (V, )=C0) cte2+m 
Vd Vd >ý 

cte I( 0o 

CU(Vý)= kT 
rD loe 

(Eq. 2.24) 

Cj is the junction capacitance related to the voltage at diode terminals V, CE(O) is the zero bias 

capacitance and m, ctel, cte2 are suitable constants taking into account the geometry and 

semiconductor features of the diode. C, is the diffusion capacitance highly related to the 

recombination time t�of electrons into the semiconductor. G(V) is the classical expression for 
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the conductance of a diode but introducing the parameteril known as the junction emission 

coefficient to model a real device. 

GJ(Vd) =1. " 
(e('/"k"')'v., 

-1) (Eq. 2.25) 

The currents on the diode can be related to the EM fields in the FDTD cell. The voltage at the 

diode terminals is estimated from the time average of the electrical field at the cell. In this way, 

the currents in the device can be solved numerically using the voltage-intensity relation of the 

device. 

Id =G, (Vd )'Vd +(CJ(Vd)+CD(Vd ))dv, 
dt 

V., = 

n+I E. 
r 
ý, 

+i/z j. k + EX in 
; +U'-. i. k AX-1 dRs + 0(h2) 

L 

Id = Jxý+1 z;, 
k'DyOz+O(hz) 

E n+i 
-En d vý 

s 
I; 

+1/ 2, l, k x I; +1/2, J, k 

dt At "Ax+O(h2) (Eq. 2.26) 

The density of current in the FDTD cell is calculated from Id and introduced into the FDTD 

equations to update the electric field component. The algorithm is now implicit since Id and 

n+1 Ex li+I/2, 
j, k 

in Eq. 2.26 are non-linear functions depending on themselves. The solution is obtained 

by iteration, using the currents and fields at the previous time instants as initial guess to estimate 

the current and field at the actual time. The result is used as initial guess to estimate the current 

and fields. The algorithm is stable for small values of At but no simple stability criterion is 

given, since for a non-linear system the stability depends also on the initial conditions. For 

instance, a diode operating deep into the forward region exhibit a low resistance, so in general 

At must be much smaller than the Courant stability condition for FDTD (Eq. 2.8). 

2.3.2.2 The Bipolar Transistor circuit element model. 

Bipolar transistors can be described using an equivalent circuit involving two diodes and current 

sources (Fig. 2.13). The transistor is a two-port device, so at least two FDTD cells are required to 
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implement the interface. The collector-base current is introduced in one FDTD cell and the base- 

emitter current in the other. 

i+1 

i 

Fig. 2.13 Equivalent circuit of a bipolar transistor connected to the FDTD grid. The device is 

inserted in two FDTD cells 

The device equations (Eq. 2.27) are consistent with the equivalent circuit using a ideal diode 

model [19]. As for the diode, The currents and voltages can be associated to the field at some 

nodes of the FDTD grid. 

I, = G, (V., )"V, -a fGE (VBF. )" VeE + (C<:., (VHC) + CCD VHC" )) 
dV�c 

dt 

1 =G f; (V, rF )"YHF - a, Gc . (Vec )"Yer +(CF, (VRF. )+CF7)(VIE ))dVBr. , dt 

VH,. Ox - I, R,, +O(hz) 

n+I n E, Ii+I/2, 
j, k 

+ E,, Ii+I1Z, 
I, k 

2 
Iý. Jx In 

I/22 j. k * AyAz +0 `h 2) 
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E n+i 
-E 

n dV 
R(. 

li+l/2, 
j, k Gx 

li+l/2, 
j, k 

dt At "Ax+O(h2) 

n+1 n 

VHh. ' - 
E, li1/2, 

J, k + Ex ý; 
-1lZ, i, k 

. Ox - 1E . RsF. + O(h 2) 

Ir: =JxIJ ]/2jk'AyAz+O(h21 

n+I 
dVHi. 

_ 
Ex ý; 

-1/2, i, k - 
Ex In 

; -i/2,. i, k Ax + O(h Z) 
dt At (Eq. 2.27) 

The procedure for the time stepping of Eq. 2.27 is the same as for the diode Eq. 2.26. The 

algorithm is implicit, but now it forms a system to solve the currents and fields at the emitter and 

collector. 
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2.4 Conclusions for Chapter II 

The Finite Difference Time Domain (FDTD) method has been presented as an effective 

numerical solver of the Maxwell's equation in time domain, extensively used to model radiation, 

scattering and guided wave problems. The requirements of the method are mainly determined by 

stability and numerical dispersion introduced by the technique. The stability limit is fixed by the 

Courant condition to determine the maximum stable time step. The numerical dispersion 

determines the maximum cell size but it is not fixed in an exact way. The condition for travelling 

waves is commonly accepted as A. /10 for 1% error in the phase velocity. For evanescent waves, 

typically at the vicinity of the scatter, the condition can be extended to X/20 or X/40 depending on 

the complex propagation constant of the wave. This condition seems to be consistent with the 

practical experience of FDTD modelling. 

Finite differences have similar algebraic properties to derivatives. As a consequence, this thesis 

chapter shows how FDTD often satisfy similar relations and theorems than Maxwell's equations 

just exchanging the derivative operator for the central finite difference (this will be seen in detail 

in the next chapter). However, the topology of the FDTD space defined on the FDTD cell is 

essentially different of the topology of the continuous space-time since fields components are 

defined at different spatial and time locations. PEC, dielectric media and the principle of 

equivalence can be directly implemented in FDTD, but they are defined in a finite set of nodes. 

As a result, the interface between dielectric media is asymmetrical resulting in a degradation of 

the model, also, the principle of equivalence is not defined in a surface but in a set of boundary 

nodes. 

FDTD provides all the necessary numerical devices for the modelling of planar structures 

including metallic and dielectric parts and circuit elements as voltage/current generators and 

passive loads. FDTD has a natural ability to obtain broadband data, and to handle complicated 3D 

structures. A FDTD code for the modelling of passive planar structures have been developed. The 

results of the code for several patch antenna configurations has been compared to measured data 

obtained from the literature. 

FDTD is a time domain method that can be extended to handle non-linear media. This is the basis 

for the modelling of non-linear/active semiconductor devices inside a FDTD grid. Many devices 
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can be represented by lumped element circuits, and mathematically described as non-linear 

systems of time domain differential equations. These equations can be coupled to the FDTD 

method using the elementary cells as ports. The voltage at the device terminals is related to the 

electrical field in the FDTD cell and the current at the device determines the density of current in 

the cell. The combination in a single model of non-linear devices and planar passive structures 

allows the simulation of new quasi-optical devices like active arrays. 
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CHAPTER III: DISCRETE GREEN'S FUNCTION FORMULATION OF THE 

FDTD METHOD 

3.1 Introduction. 

The FDTD method is a well-known technique to solve numerically the Maxwell equations in the 

time domain. As previously described, FDTD has widespread applications in microwave circuit 

design and antenna modelling mainly because of its ability to represent almost all kind of media 

and the simplicity by which it can model broadband 3D problems. The classical FDTD 

formulation (Yee's algorithm), is based on a finite difference approximation of the partial 

derivatives of Maxwell's equations [1]. The practical implementation of this algorithm requires 

the computation of free space nodes between scatterers and special termination conditions for the 

grid when an open radiation problem is investigated (Absorbing Boundary Conditions or ABC) 

[2]. 

The FDTD methods is usually demanding in terms of the memory requirements if compared to 

frequency domain method for electromagnetic modelling. The reasons for the extra storage using 

FDTD are basically the low order accuracy of the method (O(h2)) and the recursive form of the 

algorithm. The method's accuracy is given by the linear approximation implicit in the finitte 

difference aproximation. As a consequence, the cell size required to obtain good results is far 

away from the real Nyquist sampling rate for the fields. The recursive nature of the classic Yee's 

algorithm for FDTD implies that all the cells contained in a given volume (including those in the 

free space without sources) must be computed and the volume must be terminated with an ABC. 

As a result of this large memory requirement, the application of FDTD has been limited to the 

analysis of electrically small regions (usually several wavelengths maximum). The modelling of 

large or even medium size antennas and scatterers (finite arrays, reflectors, large wire antennas) is 

impossible for the resources of most computers despite the outstanding improvement of RAM in 

modern computers. 

Much effort has been devoted to improve these features of FDTD. The algorithm's accuracy has 

been improved largely using wavelet expansions in the so-called multiresolution schemes [3]. 

Multiresolution techniques still require the computation of free space nodes and the 
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implementation of ABC specially designed for these algorithms. Other researchers have 

implemented time domain boundary conditions in order to model several scatter regions avoiding 

the modelling of the free space volume in between them (Multi-Region FDTD [4]). This 

technique is very promising for solving problems involving several distant scatters in the time 

domain, but it does not avoid the modelling of free space nodes in each region and the 

implementation of ABC. 

A different approach to avoid these problems is possible on the grounds that the Yee algorithm is 

not the only possible formulation of the FDTD method. The classical theory of discrete systems 

shows that linear and time invariant systems, such as FDTD, can be represented by means of a 

convolution of the input sequence with the response of the system to an impulse. This is the 

discrete version of the Green's function technique extensively used in electromagnetics. This 

formulation does not require ABC or computation of free space nodes, but the analytical formula 

of the impulse response or discrete Green's function of the FDTD system must be known for a 

practical implementation of the algorithm 

This chapter presents the convolution formulation of FDTD as an alternative algorithm to solve 

time domain electromagnetic problems. This new algorithm for FDTD produces identical results 

to the classical Yee algorithm for FDTD, so, they can be combined without interface problems or 

numerical reflections. The analytical form of the Discrete Green's function for FDTD has been 

obtained and is presented here as a polynomial function of the spatial and time steps. 

Finally, the convolution formulation of FDTD and the Discrete Green Function's formula are 
demonstrated by solving some canonical problems. The first problem presented is the impedance 

calculation of a dipole antenna in the presence of a parasitic element without using ABC or 

computing free space cells, leading to major saving of memory storage. The second problem is 

the implementation of the exact ABC for FDTD in a wall to produce a virtually reflectionless grid 
boundary. 
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3.2 Finite Difference Electromagnetics and the Convolution Formulation of 

the FDTD method. 

3.2.1. Finite Difference Electromagnetics. 

Numerical methods in electromagnetics are based on discrete approximation of the field 

equations. Discrete formulations usually follow a similar development to the continuous 

equations, so in general, it is possible to redefine physical laws and concepts from the continuous 

physical world to equivalent discrete laws and entities. Usually the discrete method can be seen as 

a discrete network of impedance loads and a finite number of ports and nodes operating in 

continuous world, but it can be also seen as a discrete world with a set of discrete physical laws. 

This is true for the numerical methods based on finite differences (like FDTD) because finite 

differences have similar algebraic properties to the partial derivatives [2]. 

In this section, the formal analogy between the continuous Maxwell's equations, and the discrete 

set of FDTD equations is exploited to obtain alternative formulations and new aspects of the 

FDTD method. The first step is the representation of the FDTD system in the spectral domain 

using the Z transform. Secondly, the second order discrete equations are determined, and the link 

with the scalar wave equation is established in a similar way to that for continuous 

electromagnetics. Finally, The FDTD equations are formulated as discrete convolutions with the 

impulse response or Discrete Green's functions of the FDTD method. 

3.2.2. Z transform representation of the FDTD system. 

The Z transform is a powerful tool, extensively used to analyse the behaviour of discrete filters 

and systems (see chapter 4 of [5]). Their properties with respect to discrete systems are similar to 

the Laplace transform for continuous functions. Using the Z transform the finite difference 

equations can be reduced to algebraic polynomial expressions, as the Laplace transform does for 

differential equations. 

The definition of the Z transform of a sequence is similar to the expansion as a power series of a 

function of the complex variable z (Eq. 3. I a). The Z transform of a shifted sequence is just the 
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transform of the non-shifted sequence multiplied by z to the power of the shifted index (Eq. 3.1 b). 

This is a remarkable property of great benefit to handle finite difference equation since the 

transform of finite difference of the sequence can be easily obtained from the original Z transform 

(Eq. 3.1 c) 

-II 

X(z) x[n]z 
_, ý 

(Eq. 3. I a) 

x[n - m] -+ z-", X (z) 

(Eq. 3.1 b) 

x[n]-x[n-1] ý (1-z-')X(z) 

(Eq. 3.1 c) 

The FDTD equations can be represented in Z transform terms [6]. In this case there are 4 

independent indexes (n, ij, k), so aZ transform for each of them is required. This means that there 

are 4 complex variables in the transformed space (n, i, j, k) _+ (Q, X, Y, Z) 
. In Eq. 3.2 is shown 

the transform of one of the FDTD equations for the electrical field. The term '/2 in the indexes of 

the magnetic field has been omitted, since from now the treatment will be strictly discrete and the 

index can take integer values only. 

At H"(i, j+ l, k) - H_"(i, j, k) H, ". (i, j, k + 1) - H", (i, j, k) 
E"''(i j k)=E; (i, j k) +s 

Ay Oz 
ý -J 

u 
Z transform 

u 
S2 -1 Ex(n, X, Y, Z) = 

Y-1 
H: (S2, X, Y, Z) 

Z-1H 
(S2, X, Y, Z) - Jx(S2, X, Y, Z) 

ät Ay Oz 

s 

(Eq. 3.2) 
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The finite difference operators for each index can be defined in terms of the Z transform as 

functions of the complex variables n, X, Y, Z (Eq. 3.3). This can be used to simplify the notation 

for the rest of the formulas. 

D =52-1 Di _X-1 � At Ax 

_ 
Y-1 Dk _ 

Z-1 
D; Ay Az 

(Eq. 3.3) 

Using the definition of the finite difference operators in the Z domain the FDTD equations can be 

written in the transform Z domain in a compact way, by means of vectors and matrices. 

H(S2, X, Y, Z)= 
ý ý"' ýAh E(S2, X, Y, Z)-M(f2, X, Y, Z)ý E(f2, X, Y, Z)= 

D" (Ar 
"H(S2, X, Y, Z)-J(S2, X, Y, Z» 

0 Z-'Dk -Y -'Dl. 0 -Dk Di 

A,, =- Z-' Dk 0 X-'D; A, = Dk 0-D; 

Y-'D; -X-'D; 0 -Dj D; 0 

(Eq. 3.4) 

3.2.3. Finite difference second order equations 

3.2.3.1. Finite difference vector wave equation 

The finite difference equations of the FDTD method depend simultaneously on the magnetic and 

electric fields and contain only first order finite differences. With analogy to the continuous 

Maxwell's equations, it is possible to obtain second order equations (wave equations) on the 

electrical or magnetic field separately. The vector wave equations can be obtained by substitution 

of the electric field equations into the magnetic field equation and vice-versa [7]. 

The Z transform representation of the FDTD equations is quite appropriate to obtain the finite 

difference vector wave equation in a direct way. In order to obtain the expression of the finite 

difference vector equation for the electric field, the Z transform of the magnetic field (Eq. 3.4) is 

substituted into the expression for the electric field, yielding equation. 3.5. 
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Q-'D" 
.! -A, "Ahl J+ A, "M -J 

(Y-Di +Z-'Dk) -Y-'D, Dj -Z 'Di Dk 

Ar - Ah = -X-'D; Di (X-'D,? +Z-'Dk) -Z-'DjDk 

-X-D, Dk -Y-1 DjDk (X-'D? +Y-'D) 

(Finite difference vector wave equation) (Eq. 3.5a) 

2 -' 

vXvxE+ ýaE a> 
c2 at2 at 

(Continuous wave vector equation) (Eq. 3.5b) 

This expression for the discrete vector wave equation (Eq. 3.5a) is given in the Z domain but it 

can be easily translated to the real domain just by taking D-terms as finite difference operators. It 

can be compared to the continuous equation for the vector wave equation (Eq. 3.5b). As it can be 

seen, the discrete and continuous equations are similar if the finite difference operator is replaced 

by partial derivatives. The solutions to the discrete vector wave equation are fully compatible 

with the FDTD system since they are deduced from it without any additional consideration. 

3 . 2.3.2 The finite difference scalar wave equation. 

The continuous scalar wave equation (Eq. 3.6b) has been used to describe physical wave 

phenomena such as sound waves, waves in fluids or heat propagation. This equation has also a 

discrete version in terms of second order finite differences (Eq. 3.6a). Under some conditions 

related to the divergence of the fields, the scalar and wave equations can be shown to be 

equivalent. The Maxwell's divergence equations and the continuity condition of currents link the 

vector and the scalar equation [7]. 
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S2-' 

D" 
-(X-'D; 

''+Y'Dý +Z-'D2) (D=0 
c` 

Where S2-'. D' = S2-' 
(S2 -1ý 

- 
S2 '-2+ S2 Z-"(D`- 20" + (G"-' 

° Ot'' ýtý At2 

(Finite Difference Scalar Wave Equation in Z domain) (Eq. 3.6a) 

1 ago 
_ v2 =0 c2 a12 

(Continuous Scalar Wave Equation) (Eq. 3.6b) 

3.2.3.3 Relationship between vector and scalar wave equations. Dispersion formula. 

In order to obtain the relationship between the discrete vector and scalar equation it is also 

necessary to use the "divergence" equations. These equations are not included within the FDTD 

method in an explicit way. However, The FDTD equations are "divergence-free" for the 

elementary FDTD cell in the absence of sources, as demonstrated in the literature [1]. This is 

essential in order to produce real solutions in source-free regions, which must be divergence free. 

The divergence terms provide an additional relationship between the electric field and the 

currents. This is possible in the continuous case by using Maxwell's divergence equation for the 
displacement vector and the continuity law for the currents (Eq. 3.7b). The equivalent finite 

difference equation in the Z domain for the divergence equation is defined in Eq. 3.7. 

s(X-'"D,. "E, +Y'"Dj "E,, +Z-'"Dk"E, )=-D�'(X-'"D. "JY+Y'"Dj "Jv+2'"Dk J_) 

(Eq. 3.7a) 

a(y' E) 
E at -v' i 

(Eq. 3.7b) 
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The divergence term (Eq. 3.7a) can be introduced into the finite difference vector wave equation 

(Eq. 3.5a). The divergence term is used to simplify the non-diagonal parts of the matrix Ae " Ah so 

it becomes a diagonal matrix. The result is the non homogeneous scalar wave equation on every 

component of the electric field. 

D, 2 
S2' 

D; 
-(X-'D; +Y-'D2 +Z-'Dk) E_? ° Dn(I+c-zDnzDD'")J+Ae -M 

c- c 

D=D; z+Djy+Dkz 

f)'= X-'D; z+Y-'Dj +Z-'Dki 

(Eq. 3.8) 

The solution to the equation 3.8 should be exactly the same as the solution of the FDTD system 

for the electric field. If the excitation currents are zero, the equation 3.8 becomes the 

homogeneous scalar equation. In that case, a solution is possible only for the values of the 

complex parameters in the Z domain that cancel the scalar wave operator (Eq. 3.9). 

S2"' 
DZ' 

c -(X-'D; +Y-'Dj +Z-'Dk)=0 

(Eq. 3.9) 

This is the dispersion formula for the discrete system. This expression is similar to the formula 

k2 - (ks +k' +k 2)=0 in the continuous case. Eq. 3.9 shows the relationship for the complete 

complex plane. In the particular case of the unit circle of the complex plane the formula becomes 

the normal formula of dispersion (Eq. 3.10) as shown in the literature [2]. 

22 wit 22 kxdx 22 kyAy 22k. Az 
sin sin + sin + sin 

c2it2 

(2)- 

ix2 2 iy2 2 iz2 

(2 

_ e-"' X=e; krAY Y= e_k'°" Z=e. ik: " 

Dispersion Formula (Eq. 3.10) 
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3.2.4. FDTD as a convolution. 

Classical Theory of linear systems shows that any linear invariant system can be completely 
determined by the response of the system to an impulse (see Chapter 5 of [5]). The FDTD 

equations can be seen as a linear system whose `inputs' are the sources J and M and where the 

`outputs' are the E and H fields at n, i j, k (Fig. 3.1). The impulse response of the FDTD equation 

is defined as a set of 2x2 matrix which represent the E and H discrete fields that are obtained 

when the field sources J and M are Kronecker delta impulse functions with arbitrary unit vectors 

j and m (Eq. 3.11). 

Output 
ýý 

FDTD SYSTEM 

Fig. 3.1. FDTD as a linear system 

11 

Impulse excitation M=S 
km 

Input 

= 

Eimp [Gej J LGem Jfik 
Impulse response 

Yk J 

=r1, ý 1, ý Hin+p 
LGhj Jijk 

[Ghm 
Jýk %l1 

(Eq. 3.1 1) 

The sources J and M can be expressed in terms of convolution sum with a delta Kronecker 

function (Eq. 3.12). This classical property, which is intrinsic of any discrete sequence, is essential 

to the actual theory. 
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'%n _ -ii 
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Sýn'%d 

Mn yk -ý i-ij-jk-k '! Vl 
ijk' 

n, i j, k, 

(Eq. 3.12) 

The Eq. 3.12 and the impulse response of Eq. 3.11 can be combined to obtain the field response of 

the FDTD to an arbitrary excitation. This is possible since FDTD is linear and the response can be 

considered the superposition of the impulse responses of Eq. 3. l 1. 

I 
k�r, 

In I[Gei 

]mnl 

ý rýýý 

[G,,,, ] 
iff--li' i- i' k-k' 

Il f r 1k 
' LGhnl JfMi J j'lk(Convolution 

form of the FDTD method) (Eq. 3.13) 

The Equation 3.13 is the formulation of the FDTD method as a convolution sum of the sources 

with the impulse response which assume a matrix form. The impulse response matrix corresponds 

to the dyadic Green's function concept in continuous electromagnetics and it will be referred to as 
Discrete Green's Function (DGF) for the FDTD method. 
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3.3 Discrete Time Domain Green's Function of the FDTD Equations 

The FDTD method has been reformulated in terms of a convolution sum of the sources J and 

M and the impulse response or discrete Green's function of the FDTD system of equations. 

The analytical form of Discrete Green's Function (DGF) can be obtained as the solution of 

FDTD to impulse (delta Kronecker) excitations. Numerically, it can be obtained from the Yee 

algorithm, but this solution has to be calculated and stored for all the indices n, i, j, k in a 

certain region. The knowledge of the analytical formula of the discrete Green's function will 

overcome this problem since such a formula allows the calculation of the impulse response at 

a certain single index position. This is very significant, as it would permit the analytical 

determination of the exact FDTD response across a homogeneous region without the need to 

calculate the fields at all intermediate nodes. This analytical formula will depend on the 

spatial and time steps At, Ax, oy 
, 
Az and it will reveal the true dependence of the FDTD 

method with respect to the step size. 

The procedure to find the analytical form of the discrete Green's function, is largely based on 

the spectral representation of the FDTD system and the second order equations formulated in 

the previous section. As shown, the electric field solution of the FDTD system also satisfies 

the scalar wave equation, in that way, the problem of finding the impulse response of the 

whole FDTD system can be related to the much simpler problem of finding the impulse 

response to the scalar equation. 

3.3.1. The spectral representation of discrete Green's function for the FDTD equations. 

3.3.1.1 Impulse response to the scalar equation: Z domain representation 

The excitation for the Impulse response analysis can be considered a shifted Kronecker delta 

in four indexes. Using basic Z transform relations the excitation can be represented in the Z 

domain in a simple way (Eq. 3.14). 

s�_», =8(n-n')8(i-i')8(j-j')8(k-k')? >S2 "X`'ýY`j'2ký 
ý iJ 

./ 
/k-k, 

(Eq. 3.14) 

From the Z domain formula for the scalar equation (Eq. 3.8) and Eq. 3.14 the Z domain form 

of the impulse response for the scalar equation can be obtained (Eq. 3.15). This formula is just 
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the ratio between the impulse response in the Z domain and the `transfer function' of the 

scalar wave equation. 

r= 
c-n' "-i'Y-J' Z-k 

z 

_(X-IDz +Y-'Dý +Z-'Dk ) 
c 

(Eq. 3.15) 

The impulse response of the scalar function in the real domain can be obtained by means of 

the inverse Z transform in the complex domain. This produces the complex plane integral 

representation of the impulse response of the scalar equation. 

1-11' 1iff iI'S2 "X'Y'Z kdS2 dX dY dZ gi-i'. j-l'. k-k' r2 7c J14 

(Eq. 3.16) 

If the grid is stable (no poles inside the unit circle), the integration path for the inverse 

transform can be taken as the unit circle in the complex plane for all the Z variables. In this 

case, the integral is real and quite similar to the integral representation of the Green's function 

for the continuous case [7] (Eq. 3.17). 

1 27/ý/ 2>r4x 2>d0y 2>re el(k, 
(i-ýpc+k, U-J'lýy+k_(k-k')A +w(ýi-ný) 

dk rrrr, 
dk: aý x dky gi-i', l-! ', k-k' ýý4 AAA .p Sz -(SZ +S2 '}'S? 

1 
J1\xy/ 

z2zw At 22z k�Au 
s, _, Z sin s� =Z sin 

) 
... u= x, y, z 

c`Ot 2 Du 2 

(Eq. 3.17) 

3.3.1.2 Impulse response to the vector wave equation: Z domain representation 

The vector wave equation can be reduced to the scalar wave equation for the electromagnetic 

field in the discrete and continuous case. This means that the electrical field must satisfy both 

the scalar and vector wave equations, simultaneously. However, the excitation term is 

different for vector and scalar equations. In the case of the vector wave equation, the 

excitation is directly the density of current as for the FDTD system. For the scalar wave 
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equation the excitation is an operator applied on the density of current (Eq. 3.18). This is true 

for the continuous and discrete case. 

es«,, 
u. 'E=-'J+/1'1l1 

=Z°D�(1-c-ZD�ZDD'"ý 
c 

0 -Dk Dj 

A= Dk 0 -D, 

- Dj D. 0 

(Eq. 3.18) 

Using this relation the Green's function for the wave equation can be directly related to the 

Green's function of the scalar equation by applying the new operator to the current density. 

The impulse response to the discrete equation in the Z domain can also be determined from 

the scalar impulse response in the Z domain in a similar way (Eq. 3.19). 

l1 
_ 

//y ý 11 
l- .%+ 

A- m) ri, 
J, k 

;jk vector impulse response I",. "ý k scalar impulse response 

8=8; kj electrical current excitation S=6; 
j ,k" 

rrt magnetic current excitation 

(Eq. 3.19) 

3.3.2. Time Domain Impulse Response (Discrete Green's Function) for the FDTD 

method. 

In continuous electromagnetics the Green's function of the scalar equation can be determined 

either by inverse transform of the spectral representation or by direct integration of the 

equation in differential form. The mathematical solution is extremely simplified in the 

continuous case by using the spherical symmetry of the problem. The Green's function 

problem can be reduced to a one-dimensional problem in spherical co-ordinates. 

However, it is not possible to use the same spherical symmetry conditions in the discrete case. 
The continuous space-time is isotropic, but the discrete Cartesian grid is essentially 
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anisotropic [1]. As a consequence, the discrete grid does not support rotationally symmetric 

solutions and so for the discrete case a much more complicated 4 dimensional approach is 

required. 

3.3.2.1 General solution of the homogeneous scalar wave equation 
The discrete scalar wave equation can be solved by separately solving each co-ordinate 

contribution to the equation. In this method, the homogeneous (homogeneous here implies 

without excitation) equation is solved for a single index (usually the time index, here equal to 

n). The remaining operator terms, concerned with the other co-ordinates, are handled as 

constants (Eq. 3.20). This technique is due to G. Boole who, in the 19`h century, used it ([8] 

, 
[9]) for solving finite difference equations. This method can be derived using the Z domain 

for all the spatial components, but operating in the real domain for the time index. 

(Dn+, - 2(I)" + (Ti-' =K (V 

(1) = (D "(X, Y, Z) K= (XD2 +YDý +ZDk ) 

(Eq. 3.20) 

The complex exponential sequence can be tested as solution to the equations 3.20, since they 

are eigenfunctions for any linear system. The parameter of the complex exponential is 

obtained from direct substitution into Eq. 3.21. 

m" =C, (X, Y, Z)e'"`"A' +C2(X, Y, Z)e-'"`ß4i 

(D�" - 20" + (D"-' =K" (D" => cos(coOt) " On = (1 +2 
)4%" 

on =C, (X, Y, Z)einarccos(p) +CZ(X, Y, Z)e-inarccos(rp) 1+ 
K 

_2 

(Eq. 3.21) 

The result can be obtained in terms of Tschebycheff polynomials, which is much more 

convenient for further manipulation (Eq. 3.22). This is the general solution for the scalar wave 

equation. 
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on = B, (X, Y, Z)"T�(gyp)+B2(X, Y, Z) 1-cp2U�_, (cp) 

B, =C, +C2 
B2 =j(C, -C2) 

T�(cp) = cos(narccos((p)) (Tschebycheff polynomial first order) 

U" (( P) - 
sin((n + 1) arccos(V)) (Tschebycheff polynomial second 

1-cp 2 

order) 
General solution for the scalar wave equation (Eq. 3.22) 

3.3.2.2 Green's function for the scalar wave equation 

The constants C, and C2 of the general solution for the homogeneous equation are 

determined by the initial conditions of the problem. In the case of a point source excitation 

(Kronecker delta), the field is zero for the time instant n=0, and it is I for the time instant 

n=1. (It should be noted that the excitation is I for n=0; the excitation happens just one step 

before the field). The impulse response can now be obtained, but it is still in Z domain for the 

spatial indexes (Eq. 3.23). 

I'"(X, Y, Z)= U,, 1('P) 
(impulse response on index n) 

B, =O 

(point source excitation) 

(Eq. 3.23) 

I 

1-(p 2 

The discrete impulse response is in the real domain for the time index and in the Z domain for 

the spatial indexes. In order to obtain the explicit form of the impulse response for all the 

indexes in real domain, the Tschebycheff polynomial can be expanded as a power sum 

[ 10](Eq. 3.23 ). 

r�+I (X, Y, Z) = Un «P) _ 
2(-1)n, n-m (2(p) )n-zm 

, n=o m 

(Eq. 3.24) 

The inverse Z transform of Eq. 3.24 for spatial indexes can be obtained from the inverse 

transform of all the terms (2(p) n 
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For the 1D case, the problem is considered only for the spatial index i. The 1D solution can be 

used as starting point for the multidimensional case. For this case, the operator cp has now a 

simplified form. 

2T =2+K K= c2XD20t2 

(Ey. 3.25) 

The function cp can be reduced to a product ofXterms expanding the second order polynomial 

using it two roots (Eq. 3.26). 

2=a(X -' -2ß +X)-> 2V =aX(X-' -R, )(X-' -Rz) 
zz At 

ý3=a_al RI=ß+Vß2-1 R2=ß_j2 -1 R, R2=1 

(Eq. 3.26) 

The inverse transform of the power terms can be obtained in a direct way by binomial 

expansion into simple powers of X. Finally, the multiplication of the power terms in Eq. 3.24 

is transformed into a convolution in the spatial domain (Eq. 3.27). 

i 

(X-'-R, )' ? "(-R, )P+; 

(2ýP)P -aPXP(X-'_Ri)P(X-'-R2)P 
Z1 oaPj 

p 

ipl 
(-R2)P-'(-R, )'-' 

r=o 

(Eq. 3.27) 

The result of the inverse transform is a polynomial that can be identified as orthogonal Jacobi 

polynomials J ; °'a ) (x) on the unit circle [ 10], multiplied by an extra term (Eq. 3.28). 

(2ýP)'- Z-ý 4a"Jn(''', )(ý)'(Rz-Ri )P-; _ 
R, +R2 
R, - R2 

(Eq. 3.28) 
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The impulse response of the one-dimensional scalar wave equation can be determined as a 

polynomial of the grid parameters given in Eq. 3.26. This can by achieved by introducing 

Eq. 3.28 into Eq. 3.24. This leads to the following formula for the impulse response of the finite 

difference scalar wave equation in 1 D: 

If 

- R, ), i-; -z�t g;, +1 =I -1)^, 
n- m 

a, ý z»ýJ; '; 
- z,,, (4)(R2 

m=0 
m 

=R'ý 
+R, R, =ß+ 

ß2-1 R2=ß- (32-1 , =a 
1 C20i2 

a=z 
6x 

(Eq. 3.29) 

The result of this formula can be compared to the impulse response obtained using the simple 

time stepping algorithm (Eq. 3.30) on the scalar wave equation with a Kronecker's delta as 

excitation of the grid (Fig. 3.2). 

z 
oil" = 20i it _0: 1 +c Ott 

(0; 
+1 -207 ; 

- 

Time stepping algorithm for the 1D finite difference scalar wave equation (Eq. 3.30) 

20 40 60 80 100 

Fig. 3.2 One-dimensional Green's function of the finite difference scalar wave equation for 

n=20 with Ar=1 and czt=0.707. The solid line is the result for the time stepping algorithm 

(Eq. 3.30), the asterisks show the calculations with the Green's function formula of Eq. 3.29. 
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Closer inspection of this result shows that the difference between the numerical and analytical 

calculation of the DGF lies in the sixth decimal place. This tiny difference is basically due to 

the finite precision of the floating point representation of real numbers in computers. 

The multidimensional impulse response can also be expanded into the power series of 

Eq. 3.24. The spatial dependence is more complicated as it is the sum of three contributions 

(one per spatial dimension). Eq. 3.31 shows the 3D version of the cp operator. 

2cp=2+c2 Ot2 (XD; +YDý +ZDk) (Eq. 3.31) 

This term of spatial dependence can be related directly to the one-dimensional case in order to 

perform the inverse Z transform. This can be obtained by using the trinomial power 

expansion. 

(2ýp)p = (2ýpX +2Vy +2ýp, )p = ý(P; Px, Py, P. )'(21px)°s (2ýpy)P°(2(p. )°: 

(P; Px>P,., P: )= P! 

PxrPyrP.! 
P-Px+Py+P= 

(Eq. 3.32) 

Using the inverse transform of Eq. 3.27 for the one-dimensional case, Eq. 3.32 can be inverse 

transformed to the real domain as a sum of Jacobi polynomials. 

(2ýo)°"E(P; Px, Py, PZ)" j-jaP. Jr"i(4iXR2s -Ris)P, (Eq. 3.33) 

The impulse response in the 3D case for the scalar wave equation can be deduced by 

substitution of the inverse transform of Eq. 3.33 into the general solution of Eq. 3.24. Leading 

to the impulse response of the finite difference scalar wave equation 3D (Eq. 3.34). 

70 



n+I 
g;, i, k =ý (- ý )m 

m=o ý .., / 

ý., _ 
2s 

RI.,. - R2s 

aý -1 

ý(n-2m>P. 
r, Pv, P_) fl a,. ý'" 

l=i. l. k 

(I . r) r., -r 

ß, 2-1 R,., =ß., - ß,. '-l 

c2Ot2 Ox2 +Dy2 +Oz2 
Os'' Os' 

+ P. r 
+ P, =n-2m 

. s=x, y, z 

(Eq. 3.34) 

This expression of the impulse response for the 3D case can be compared to the calculation of 

the impulse response using a conventional time stepping algorithm. The results are presented 

for a 2D case in Fig. 3.3. 

Fig. 3.3 Two-dimensional impulse response of the finite difference scalar wave equation for 

n=20 with dx=1, Ay=1 and cAt=0.632. 
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The impulse response in the multidimensional case is not simply a discrete version of the 

Green's function for the continuous equation. The impulse response reflects the basic 

properties of the discrete grid such as dispersion and anisotropy that do not happen for the 

continuous co-ordinates. The impulse excitation contains all the frequencies allowed in the 

discrete grid. For some frequencies Ax is close to V2. In this case, the wave propagation in 

the numerical FDTD grid shows very strong dispersion. 

3.3.2.3. Discrete Green's Function for the FD Vector Wave Equation (FDTD's Green's 

function 

As shown, the FDTD equations are strongly related to the so called FD scalar wave equation. 

The spectral representation of the discrete Green's function for the vector wave (FDTD 

equation) and the scalar wave equation are thus related by the operators 8 and A described in 

Eq. 3.18. These operators can also be used to establish the link between the time domain 

representations of the Green's function. 

Using Eq. 3.18, and the definition of the scalar discrete Green's function Eq. 3.34 the FDTD 

discrete Green's function is obtained (Eq. 3.35). The notation used in Eq. 3.35 is set according 

to the convolution formula for FDTD Eq. 3.13 where the Green's function assumes matrix 

form. 

I_ ZpD' rý-+ 
Lýri 

l 
iik 

C 

Dn -D? -X 'D; DJ -X-'D; Dk 

-Y-'D; Dý D� -Dý -Y-'DýDk 
- Z-'D; Dk - Z-'D; Dk Dn - Dk 

(( n_ 
LGem 

1 
Jijk 

0- Dk Dj 

Dk 0-D; 

- Dj D. 0 

g ijk 

öijk 

(Eq. 3.35) 

Where D,, represents finite difference operators and X, Y, Z displacement operators (Egs. 3. lb, 

3.3 and 3.36). gk (Ox, Ay, Az, At) is the DGF for the finite difference scalar equation (Eq. 

3.34). 

72 



1n n-I Inn ý gijk = gijk X gijk = gi-Ilk 

_52-1 D_ 
X-1 

ý° 
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-1 Y gilk J-lk 

z gJk - gJk-1 

--1 D. = 
Y1 

Dk -Z ý Dy Az 

(Eq. 3.36) 

The analytical formula from Eq. 3.35 can be compared to the numerical computation of the 

DGF for FDTD using the Yee algorithm. The excitations for the numerical computation are 
delta Kronecker impulses placed at i j=k=0 and time step n=1. The direction and type 

(electric or magnetic current) of the excitation impulse determines the term of the DGF matrix 

that is being numerically obtained. Fig 3.4 shows some of the. terms of the DGF for the 

electrical and magnetic currents. The differences between the formula and the numerical 

calculation (ideally zero) are very low (about -120dß) and are mainly due to the finite 

precision of floating point numbers in real computers. 

8 
x 103 

o. o1s 

0.01 F 

0.005F 

vaeeeaýaaeea0 )ý 0 0 
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5 10 15 20 25 30 35 40 45 50 -0.015' I 
05 10 15 20 25 30 35 40 45 5C 

Fig. 3.4. Magnetic current Discrete Green's Function (after 20 iterations) Gzxcomponent 

(left) Gyx component (right) (solid line FDTD, triangles DGF formula) ax=ay--az=0.3. 
em 
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3.4. Application of the Time Domain Green's Function for FDTD to 

Electromagnetic Modelling. 

For many numerical EM techniques, the primary objective of an electromagnetic simulation is 

the calculation of the currents induced on a composite structure. These currents are generally 

produced by an incident field, which is generated by external sources not included within the 

model. The computed currents on the structure can be used to estimate the electromagnetic 

properties of the structure such as radiation pattern, RCS, impedance, scattering matrix, etc. 

The convolution formula for FDTD of Eq. 3.13 describes the electromagnetic fields at discrete 

locations as a function of the sources J and M. For electromagnetic modelling, this formula 

has to be inverted to determine the currents on the scatter from the incident field. The 

inversion result is presented in this section as the scattering equation. This equation resembles 

the EFIE and MFIE formulas for the continuous electromagnetic field [11]. The scattering 

equation can be used to solve time domain problems, producing similar results to FDTD but 

avoiding the need for ABC and the computation of fields at free space nodes. 

Another application of the DGF method is to improve the Yee FDTD algorithm's modelling 

capabilities, rather than to solve the electromagnetic problem by itself. A classical problem of 

FDTD is the implementation of ABC. Using the equivalence principle for FDTD, the DGF 

method can provide an exact solution to the ABC problem, which is introduced in this 

section. 

3.4.1 DGF-FDTD Modelling of Scattering Problems 

3.4.1.1 Scattering formula for DGF-FDTD 

The solution to scattering problems using the convolution form of FDTD is possible if the 

formula of Eq. 3.13 can be inverted, so the currents on an object can be obtained as a function 

of the incident field. Initially, scattering problems with only electric and magnetic conductors 

will be considered (Fig. 3.5), although the method can be extended to dielectric media in a 

straightforward manner. 
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Fig. 3.5. Geometry of a scattering problem involving magnetic and electric conductors in a 

grid. 

The boundary condition at the electric and magnetic conductors in the FDTD grid is enforced 

by setting to zero the either the total electric or the magnetic field at the nodes which are filled 

with the electric or magnetic conductors (Eq. 3.37). 

E, = E;,, 
c + E,. 

cu, =0i, j, k (=-Electric Conductor 

H, = H;,, 
c + H,, 

u, =0i, j, kE Magnetic Conductor 

(Eq. 3.37) 

The scattered fields can be determined from the currents induced on the structure using the 

DGF (Eq. 3.13). Using the Eq. 3.13 and the boundary condition of Eq. 3.37, it is possible to link 

mathematically the incident field to the currents induced onto the scatter (Eq. 3.38) 
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(Eq. 3.38) 

In order to solve in a practical way the scattering equation it is possible to use the special 

properties of the DGF. The DGF for time index n equal to zero is a spatial delta Kronecker for 

the electrical current-electrical field and zero for magnetic current-electrical field and vice 

versa for the magnetic field. This property allows one to rewrite the Eq. 3.38 as the scattering 

formula Eq. 3.39 
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FGl, ý, r jG 1,. Ir M I; ýl hj J1 i-i' r i' k k' L hIU k k' jk 

i, j, k, i', j', k' E Scatterer 

(Scattering algorithm)(Eq. 3.39) 

In the Equation 3.39, the currents on the scatterer are related to the incident field at the same 

time instant and to the currents at previous time steps. As a consequence, the induced currents 

can be solved for each time step from information previously calculated, starting from the 

index n=0 (before n=0, the incident field and the current are supposed to be zero). 

3.4.1.2 Antenna Modelling Using DGF-FDTD algorithm 

The Scattering formula Eq. 3.39 can be used to model antenna devices since the currents on 

the antenna can be computed from the incident field. The metallic parts of the antenna will 

support the electrical induced currents of Eq. 3.39. Slots on a ground plane can be considered 

as induced magnetic currents on Eq. 3.39. The relative positions of the electrical and magnetic 

currents follow the same field distributions as those of the electrical and magnetic field in the 

Yee algorithm for FDTD (Fig. 3.6). The modelling of the structures follows the same staircase 

pattern as do as the FDTD Yee's models, since the DGF technique is basically a different 

algorithm for the same FD numerical approximation of Maxwell's equations. 
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JY 

Fig. 3.6. Electric and Magnetic currents spatial locations in FDTD. 

The antenna ports can be seen as a set of i, j, k nodes where the incident field is applied. Each 

node is associated to a single antenna port. The currents Jyk 
, 

Mk at these nodes define the 

currents or the voltage at the port terminal. The electric or magnetic incident fields at the port 

nodes define also the voltage or the currents applied to the antenna port by an external 

generator. Impedance and scattering matrix parameters for each port can be obtained using 

basic circuit theory from the currents and voltages calculated for each port. The data 

computed are time domain, so broadband information can be obtained following standard 

FDTD procedures [12] (Eq. 3.40). 

1En+I + En 

FFT * inc x ine ý 

2" -/n 
ýý \z 

Zant(w) = FFT (Jx"i, yAz) 
Ex inc -eli gl IR.. / Jg, II-kg (Eq. 3.40) 

Equation 3.13 requires the summation of all previous time instant contributions from n=0, 

resulting in a very high number of computations and large memory requirements. However in 

practice, it is not necessary to perform the whole summation, as the DGF is zero for 

n< max(i, j, k) (the excitation has not yet arrived). For signals 
0> max(&, \y, Az), the 

DGF can be truncated since the `tail' of the function is only contributed by dispersive 

77 



frequencies This 
« max( ox, Ay, A)" This truncation can be performed by appropiate 

windowing of the DGF. A type of window showing good results is presented in Eq. 3.41, but 

additional research is required to fully asses the impact of the window type on the 

computations. 

0 n<n;, n>n, 
[WDG]=W(n)"[DG] W(n) 1 n; <n<no 

-n0 

ý 

(, ýQn ý 

n, >n>no 

n; = max(i, j, k) and n, , no ,6n, m are suitable parameters (Eq. 3.41) 

The DGF-FDTD algorithm is used to compute the impedance of a dipole antenna in order to 

demonstrate the accuracy of the method in modelling a wire antenna in a full 3D problem. 

The incident field is a delta source at the dipole terminals, then the density of current on the 

dipole at time step n is calculated using Eq. 3.39 in an iterative form from the dipole currents 

at previous time steps. The impedance is computed from the density of current obtained from 

the scattering algorithm Eq. 3.39 at the delta source (Eq. 3.40). The results are compared to 

simulations using the well established NEC (Method of Moments) code. The wires are 

modelled in DGF-FDTD as current elements at the corners of the relevant elementary FDTD 

cell. In this case, the number of unknowns required to solve the problem in the time domain is 

relatively small (40 time steps multiplied by 168 nodes) for DGF FDTD compared to 

(50x5Ox25 nodes) for conventional FDTD. 

This significant reduction occurs since only the scattering nodes (those forming the 

conducting structure of the dipole) of the grid are considered. The number of calculations to 

be performed per time step is of the order of N, " N, where N. is the number of scatterer 

nodes, and N, is the number of elements in the time window. If the number of scatterer nodes 

is small (i. e. wire antennas) the number of operations is much lower than the required N' for 

Yee's algorithm (where N is the grid's size). 

However, it is necessary to include the computation of the DGF at each node, and this adds 

complexity to the process. This can be avoided by a selective pre-calculation and storage of 

the DGF, since identical calls to it are repeated for similar relative position between nodes. 

Figure 3.7 shows the impedance of a single dipole and Figure 3.8 shows the impedance of a 

78 



dipole loaded with a parasitic dipole nearby. Agreement with the NEC computations is very 

good and it is not affected by the windowing of the DGF. The deviation between the two 

methods in the imaginary part can be explained in terms of the cross-sectional shape of the 

wire (circular for NEC, square for DGF-FDTD) and the size of the delta gap source used in 

both methods. For stability the NEC solution for this thick wire dipole uses only 7 elements 

and so has a wider delta gap source than that used for FDTD (where the dipole is 21 cells 

long). Since the DGF is an exact solution to the FDTD equations, the results for these dipole 

examples obtained with a conventional FDTD code, produce identical results (down to the 5th 

decimal position) for the density of current on the dipole. 

Freq. (Mhz) 

Fig. 3.7. Impedance as function of the frequency for dipole of length 0.5m and wire 

diameter of 32mm. (* Real part NEC, + Imaginary part NEC. Solid Line DGF-FDTD) 
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Fig. 3.8. Impedance as function of the frequency for dipole as used in Fig. 3.7 but in 

presence of an identical parasitic element located 0.25m away (see inset to figure). (* 

Real part NEC, + Imaginary part NEC. Solid Line DGF-FDTD) 
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Fig. 3.9. Dipole pattern L=0.5m w diam=0.008m at 200 MHz (Dots NEC, Solid Line DGF- 

FDTD) 
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3.4.2 Exact Absorbing Boundary Conditions Using the DGF-FDTD algorithm 

As stated previously, The DGF method can be combined with the Yee's FDTD algorithm 

without getting any interfacing problems or numerical errors between them since they are 

exact algorithms of the same FD problem. On the other hand, The DGF method doesn't 

require the implementation of ABC's because can determine the field at any point just from 

the currents without computing the free space nodes in between. This property of the DGF 

method makes possible to provide an ABC based on the DGF because it can calculate exactly 

the field at the boundary of the grid from fields inside the grid. 

3.4.2.1 Principle of Equivalence and the Exact DGF ABC for the FDTD al orithm 

For the calculation of the EM field at the boundary, it is necessary to make use of the rigorous 

equivalence principle for FDTD in order to represent the EM field just outside the grid 
boundary in terms of radiation from an equivalent current distribution. 

The concept of the DGF boundary condition is illustrated the 2D case. In Fig. 3.10 for the TM 

mode the principle of equivalence in a single wall is shown. The convolution formula for 

FDTD (Eq. 3.13) can be used to predict the electric field outside the boundary, providing a 

termination value for the FDTD grid. This value is then used by the Yee's algorithm to 

compute the field inside the boundary as is the case for any ABC. 

The DGF ABC for a wall perpendicular to the z-axis can be derived from the convolution 

formula, substituting the currents by the fields at the grid boundary according to the principle 

of equivalence (Eq. 3.42) (see Chapter II section 2.1.5, equation 2.10 of this thesis). 
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(Eq. 3.42) 
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Fig. 3.10. Principle of equivalence on a wall for a 2D TM FDTD cell. The electrical field at 

the position k+1 in the normal FDTD grid (left) is consistent (according to FDTD equations) 

with an equivalent grid (right) which includes magnetic and electric currents. The other field 

components of the cell are set to zero. 

This formula computes the electrical field on the boundary wall at the present time instant 

from the electrical field on the wall at previous time steps and the magnetic field just before 

the wall. This value of the electrical field can be used to update the Yee algorithm. It is 

possible to compare the field at a wall computed using Yee for a large grid with that using the 

DGF ABC (Eq. 3.42). The differences are extremely low mainly due to the finite precision of 

floating point real number representation in computers. Figure. 3.11 shows (in a similar 

fashion to the PML local error estimation in the classical Taflove's book [2]) the local error of 

the DGF ABC computation of the field. and these errors are one order of magnitude below the 

PML ABC in [13]. 
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Fig. 3.11. Logarithm of the normalised local error Log 
ýE.,,, 

X; F. - E�r,,, yeee 
I' )of 

the electrical field 

at a wall (k=constant, 25x25 cells) computed using the DGF ABC of Eq. 3.42. The field 

source is a small dipole situated 10 cells away from the wall. 

The computer requirements to apply Eq. 3.42 directly are very large. From the point of view of 

memory requirements, the fields should be stored for each position on the boundary wall for a 

significant number of time instants. From the point of view of CPU time, each point at the 

boundary is calculated as the sum of contributions from all the nodes on the boundary wall 
(including all applicable previous time instants). The result of this is that the order of the 

number of computations is very high NX"NY"N,. As a consequence, the speed of the 

FDTD is seriously degraded by this direct implementation of the DGF ABC. 

3.4.2.2 FFT implementation of the Exact DGF ABC 

The performance of the DGF ABC can be dramatically improved using the special properties 

of the convolution method. The Equation 3.42 is essentially a 2D discrete convolution that 

can be evaluated using FFT techniques (Eq. 3.43). The FFT technique introduces two major 

improvements. First, the order of the calculations can be reduced from N2 to N' loge N, 

where N is the number of cells of the model. Secondly, the FDTD nodes separation can be 

increased to the Nyquist criteria (samples every X/2) since the field in FDTD is heavily 
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oversampled (samples every X/10) to avoid the dispersion of the FD grid. Once the 

calculation has been done the nodes in the middle can be obtained by `zero-padding' FFT 

interpolation. 

FFT -' Eý I �Y, u -I Oz 

�-I 

FFT[ixH". 'I ][I' ]""+FFT[ixE. '. '.. I 1 [F ]'ý" 
ij wall-1 ei 'ý wall 

, 1. ll 

(Eq. 3.43) 

This FFT-DGF ABC technique can be used for waveguides or periodic surface problems. It 

has the advantage that it is exact, and it works for any angle of incidence (providing that the 

Nyquist criterion is satisfied). The storage requirements are largely reduced by the decimation 

of nodes. The matrices [I'e, ]" and [r. ]" are the 2D Fourier transform of the DGF for k=0. 

These matrices can be pre calculated and stored so the speed of the algorithm is not affected. 
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3.5 Higher order general algorithms for the FDTD 

In EM field theory, the phase velocity of waves in a vacuum is equal to the speed of light for 

all wavelengths (non dispersive) and propagation direction (isotropic). As stated, FDTD 

equations are dispersive (wave phase velocity depends on the ratio of the wavelength to cell 

size) and anisotropic (phase velocity depends on the propagation direction with respect to the 

FDTD grid). This is because of the fundamental differences between discrete (finite 

differences) and continuous (derivatives) mathematics. The maximum size of the FDTD cells 

is limited to X/10 or smaller mainly because of the dispersion effect. 

The search for higher order algorithms to improve the dispersion of the FDTD method started 

very early [2] in the 70's. The basic idea is to obtain a more accurate estimation of the 
derivatives in Maxwell's equations using more field nodes to perform the calculation. Time 

derivatives are not usually evaluated using higher order formulas since extra field time nodes 
implies heavy storage requirements. Recently there is renewed interest in high order 

algorithms [3], Multi resolution (MRTD) techniques are using advanced forms of 
interpolation to improve the accuracy of the estimation of spatial derivatives in Maxwell's 

equations. 

This section is devoted to showing some of the fundamental limitations of high order methods 

to achieving dispersion-less algorithms. Instead of using high order interpolation formulas 

between nodes, an equivalent mathematical device is used. A generalised central finite 

difference operator is introduced as a series of finite differences. The classical Lagrange 

formula of derivatives exactly represented by finite differences series is used as the starting 

point. 

From here, two types of low dispersion algorithms are described. First, the spatially low 

dispersion algorithm and secondly the space-time low dispersion algorithms. The first type is 

based on the accurate approximation of spatial derivatives in Maxwell's equation. General 

formulas for the algorithm's coefficients are given for any order of the method. These 

algorithms minimize the anisotropy of the method. The second type is based on the balance 

between the dispersion introduced by the time and the spatial finite difference. These 

algorithms minimize the dispersion of the method in selected directions. It is noted that 

MRTD algorithms as in [3] belong to the first type so it is believed that the general 

conclusions for this type of algorithms are applicable to MRD schemes. 
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3.5.1 Generalisation of the Central Finite Difference Operator in FDTD. 

As stated, the FDTD algorithm is based on the approximation of derivatives in Maxwell 

equations by a discrete operator, D, representing the finite difference of the fields. This 

operator can be extended to a general form of central finite differences (Eq. 3.44). The series 

only include odd powers of D in order to preserve the `central' operator type, but there is no 

restriction on the coefficients for each term. 
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The FDTD finite differences for the spatial indexes are updated using the new FD operator 

described in Eq. 3.44. For the time index, the conventional central FD is used in order to store 
in memory just the fields at the previous time instant. The generalised FDTD takes a new 
form, so the vicinity (Chapter 2) of a node contains an infinite set of nodes. Equation 3.45 

shows the new FDTD equation for the z component of the magnetic field. 

H "+1/2 _H 
er bE"bE^+M =Ii, j, k "Ii, j. k µ 

ý/ý 

x/ YIi+1/2+l, j, k Y/ xli, j+I/2+/, k 
+ 

(Eq. 3.45) 

All the relationships obtained for FDTD remain the same but changing the central FD by the 

generalized operator. As a consequence the dispersion relation for the generalised algorithm 

can be written directly (Eq. 3.46). The new dispersion relation can be controlled by the 

coefficients of the generalised operator to produce algorithms with specific dispersion 

properties. 

SF' 7 -1, U2 +Z 1Tl. z)=ý 

(Eq. 3.46) 
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This is the dispersion formula for the discrete system, similar to the formula 

k2 - (kX + k; + k? ) =0 in the continuous case. Eq. 3.46 shows the relationship for the 

complete complex plane. The dispersion formula on the unit circle of the complex plane 

depends on the propagation constants as in the continuous case (Eq. 3.47). 
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(Eq. 3.47) 

In the particular case (a�=1, a, =a2=... =0) the Eq. 3.47 becomes the FDTD dispersion 

formula. The stability of the algorithm depends on the coefficients of the generalised finite 

difference operator. The algorithm becomes unstable if sin 2 ((oot/2) >I since imaginary 

arguments are required. Let us assume that in the interval - it < k,, As < 71 the odd functions 

defined in Eq. 3.47 are monotonic, so they have the extrema at the interval bounds. In this 

case, the stability limit can be easily found precisely at the interval limits (Eq. 3.48). 
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(Eq. 3.48) 

It is interesting to notice the relationship of the central FD to the operators continuous 

derivative (Eq. 3.49). This symbolic relation is based on the Taylor expansion of a function, so 

the operator displacement can be represented as an operator exponential function of the 
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derivative. This notation was introduced by Lagrange [8] (based on Newton's formula) and 

provides the key to obtaining the symbolic relations between FD and the exact derivatives. 

XE; = E(x + tAx + Ax) = 
Ox� a"E(x n iAx) 
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Axt? a� ex a 
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X112 ý 112 

=ý sinhl 
ý& 

J 
(Eq. 3.49) 

As a consequence the generalised operator can be also considered as an operator function for 

the exact derivative. This time the relation is in terms of a power series (Eq. 3.50) 
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(Eq. 3.50) 

3.5.2. Low dispersion generalised FDTD algorithms. 

The coefficients of the generalised operator (Eq. 3.44) can be used to synthesise algorithms 

with low dispersion of the spectral components. In these special algorithms, the phase 

velocity of the plane waves resulting from Eq. 3.47 remains almost constant even for a node 

size of few cells per wavelength. 

A possible strategy to obtain low dispersion algorithms is to improve the accuracy of the 

approximation of the spatial derivatives. The time derivative is still approximated by a simple 

central FD to avoid the usage of extra memory. The fourth order FDTD and the so called 

multiresolution techniques [3] are of this kind. The generalised operator can be selected to 

improve the dispersion both of spatial and time derivatives approximations. Another 

possibility reported in the literature [2] is to enforce null dispersion at certain angles of 

propagation with respect to the grid (Normally 45,135,225,315 Degrees). This has been 

implemented for the plain FDTD and the fourth order spatial FDTD. 
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3.5.2.1. Spatially low dispersion algorithms 

The objective of these low dispersion algorithms is to improve the approximation of the 

spatial derivatives in FDTD. The spatially dispersionless algorithm is achieved when the 

approximation of the derivatives is exact. In this case the algorithm is isotropic and presents 

the same spatial velocity in all directions. This is possible if the fields are sampled according 

to the Nyquist criterion (see chapter 3 of [5]). In the case of exact approximation, the 

dispersion law is described in Eq. 3.51. 

c20t2 
sin2l 

wýtJ=kx +ky +k? 
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(Eq. 3.51) 

The coefficients of the generalised operator can be determined in order to satisfy the Eq. 3.5 1. 

From the general form of the dispersion relation, Eq. 3.46, it is possible to conclude the 

condition for the coefficients (Eq. 3.52), where only the x component is shown for the sake of 

simplicity. Multiresolution schemes in [3] use advanced interpolation based on wavelets to 

achieve the same result: a very accurate estimation of the spatial derivatives. 

kx = (-1)' 1( 
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xsinCk2xl 1=0 
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(Eq. 3.52) 

The coefficients can be obtained using the Taylor's expansion of the hyperbolic arcsine 

(Eq. 3.53). These coefficients allow the exact determination of the partial spatial derivative of 

the fields, provided they are bandlimited and sampled according to the Nyquist criteria. Using 

= ä/äx 
. the coefficients from Eq. 3.53 into Eq. 3.50, it is clear that now D! 

xy-, 
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(Eq. 3.53) 

The coefficients of Eq. 3.53 define the convolution sequence b,, to obtain the derivative in the 

central point for a bandlimited function in an exact way (Eq. 3.54). 
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(Eq. 3.54) 

The implementation of the exact derivative operator requires an infinite number of nodes to 

contribute to the calculation. Practical algorithms using a finite number of nodes can be 

obtained in a straightforward manner by truncating the coefficients of the generalised operator 

(ao, al,... a,,, 0,0... ). This produces a similar truncation of the sequence b,, since it depends 

on coefficients of order n or superior. 

The truncated operator using the coefficients of Eq. 3.54 provides the exact derivatives for 

polynomials. The algorithms resulting from the truncation are equivalent to the higher order 

method using central interpolation polynomials. Table 3.1 shows the sequences b� for 

different truncation orders. The truncation in the first coefficients produces the plain FDTD 

method. The truncation in the second coefficient produces the fourth order FDTD algorithm. 
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Order of truncation Coefficie nts 
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The dispersion law of Eq. 3.50 is formally closer than FDTD Eq. 3.53 to the real dispersion 

formula from Maxwell's equations (w/c)2 = kx +k2+ kz . However, this is true only for 

small values of the time step, At < At.. /3 (cetm,, = Ax// Ax = Ay = Az ), Fig. 3.12 

since the dispersion is due to the error in the estimation of the time derivative. The 

Multiresolution techniques presented in [3] also belongs to this type of techniques and 

exhibits the same type of performance. 
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Fig. 3.12. Dispersion law for At < 0.9At. (Left) and At < 0.25Atm. (Right). The spatial 

higher order algorithms only improve the dispersion law if the time step is very small 
compared to the maximum stable time step. (Solid Line: Spatially dispersionless (Eq. 3.5 1), 

Dot-Dash Line: FDTD, Dot Line: Fourth Order, Dash Line: Sixth Order). 
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The coefficients of the truncated generalised operator can be optimised to produce minimum 

spatial dispersion in a specific interval of the cell size axis. In this case, the coefficients are 

calculated by minimum squares fitting of the arcsine in Eq. 3.53. This produces the best fit to 

the spatially dispersionless law (Eq. 3.51) which is isotropic. As a consequence, the best fit 

algorithm produces also the lowest anisotropic dispersion law. Following standard 

procedures, the numerical fitting (minimum squares) in the interval - 0.25A < Ax < 0.25A has 

been done for two coefficients in order to optimise the fourth order algorithm. The new 

coefficients are b, = -b_2 = 0.0559194and bo = -b_, =1.16132 (standard fourth order 

A =-b Z =0.041666and bo = b_, =1.125) and the resulting dispersion law is shown in Fig. 3.13, 

and the phase velocity versus angle (Fig. 3.14). 
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Fig. 3.13. Dispersion curve for FDTD (Solid Line: Spatially dispersionless (Eq. 3.51), Dot 

Dashed: FDTD, Dot Line: Fourth Order FDTD (truncated), Dashed Line: Fourth Order FDTD 

(minimum squares)). The Fourth order FDTD exhibit a dispersion curve more regular (flat) 

than the minimum squares approach, which has a better performance for large cell sizes. 
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Fig. 3.14. Dispersion of the phase velocity vs. angle of the wave propagation with respect to 

the grid. The cell size is, Ax=Ay=O. 15 , (Top) and zx=Ay=0.2?, (Bottom). (Solid Line: Ideal 

isotropic (Eq. 3.51), Dot Dashed: FDTD, Dot Line: standard 4th Order FDTD, Dashed Line: 

4th Order FDTD (minimum squares)). The minimun square approximation is the best fit of a 

finite order algorithm to the spatially dispersionless case (isotropic), as a result it exhibit the 

lowest angular dependance for the overall Ox/X. 
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3.5.2.2. Space-Time low dispersion algorithms 

The approximation of spatial partial derivatives in FDTD using the generalised operator from 

Eq. 3.53 produces an isotropic algorithm, but dispersive with frequency because of the error 

associated to the central FD approximation of the time derivative. As a consequence, in order 

to improve the frequency dispersion of plain FDTD, this isotropic algorithm requires time 

steps smaller than the maximum allowed for stability. The algorithms based on the truncation 

of the exact generalised operator or on the minimum squares approximation of it also require 

small time steps. Paradoxically, the higher the order of the approximation, the smaller the 

value of the time step is required (\t < 0.50tmax fourth order FDTD and At < 0. Mtmax for 

sixth order FDTD). The multiresolution technique presented in [3] can be seen as a higher 

order (18th order) approximation to Eq. 3.10, so it also requires very small time steps 

(At = 0.2Atmax ). 

An alternative way to obtain low frequency dispersion without decreasing the time step, is to 

determine the generalised operator for a frequency dispersionless algorithm at one (or several) 

angles of propagation. This basic idea is presented in [2] for the fourth order algorithm, 

adjusting the two coefficients to cancel the error at 0 and 45 step angles, but at a single 

frequency. A general approach is presented in Eq 3.55, so the coefficients are choosen to 

minimise the error at several angles and frequencies. 
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(Eq. 3.55) 

This general formula determines the coefficients of the generalised operator to obtain a 

dispersionless algorithm at the wave propagation direction defined by the angles 0 and 0. The 
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Eq. 3.55 can be considered just for the angles (ax=1, (xy=0, az=0) (ax=0, ay=1, az=0) 

(ax=0, ay=0, az=1). In this case, the algorithm is optimized for frequency dispersion rather 

than for isotropy (Eq. 3.56). 
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(Eq. 3.56) 

The exact coefficients to satisfy Eq. 3.56 can be obtained by a change of variable and the 

Taylor series expansion (Eq. 3.57). 
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(Eq. 3.57) 

These coefficients for the generalised operator implement the dispersion free exact algorithm 

for the wave propagation along the cartesian axis. The series can be truncated to obtain a 

practical algorithm with a finite number of coefficients. The truncated algorithm improves the 

dispersive behaviour of FDTD using normal time stepszt = Atma (maximum time step 

according to Courant condition) for any order of truncation. This type of algorithm allows one 

to use high order methods (>4`h order) without decreasing the time step, as happens for the 

spatially low dispersion algorithms such as multiresolution schemes [3]. The new coefficients 

for the fourth order truncation are b, = -b_2 = 0.03125 and bo = -b_, =1.09375 (standard 

fourth order b, =--k2 =0.041666and bo = b_, =1.125) and the resulting dispersion law is 

shown in Fig. 3.15. 
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Fig. 3.15. The dispersion curve of the space-time low dispersion algorithm (angle of 

propagation 0 Deg. At=0.5Ax). (Solid Line: FDTD, Dashed Line: Fourth Order, Dot Line: 

Sixth Order, Dash Dot Line: Eight Order). The high order algorithms decrease dispersion 

without reduced time steps. For At=0.9&t,,, , the eight order algorithm is below 0.1 % speed of 

light error for a U4 cell size. 

The exact spatially dispersionless algorithm presents no angular dispersion (isotropy) but it is 

not optimized to compensate the frequency dispersion produced by the approximation of the 

time derivative. The exact space time dispersionless algorithm presents no frequency 

dispersion for propagation on the cartesian axis (with coefficients from Eq. 3.56), but it is not 

optimized for isotropy. As a consequence, these generalised operators do not improve the 

isotropy of the algorithms just by increasing the algorithm's order, unless the time step is 

reduced. 
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Fig. 3.16. Dispersion of the phase velocity vs. angle of the wave propagation with respect to 

the grid. The cell size is, Ax=Ay=0.15X (Top) and dx=oy=0.2X (Bottom). (Solid Line: 8`h 

order, Magenta line: 6 ̀h order, Black Dot Line: 4th Order FDTD, Red line: FDTD ). 
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3.6 Conclusions of the Chapter III. 

This chapter has been devoted to the investigation of new techniques on FDTD 

electromagnetic analysis, searching for new algorithms in order to avoid some of the 

limitations of the classical Yee's algorithm, such as the implementation of ABC's, free space 

nodes calculation, heavy oversampling of the fields, etc. For this a theoretical study of the 

FDTD discrete equation has been performed, using the classical discrete systems theory both 

in the real and spectral domain. Higher order FDTD schemes has been also investigated to 

improve the dispersion of the algorithm. Finally examples on the DGF-FDTD technique have 

been implemented. The result of this study can be summarized on the following points: 

" The FDTD method is described as a system. In a homogeneous and linear region the 

method can be represented either by finite difference equations or as a discrete 

convolution of the currents with the impulse response or Discrete Time Domain Green's 

Function (DGF) for FDTD. 

" The FDTD equations use first central differences, but are strongly related to second order 

finite difference equations, in particular to the finite difference scalar wave equation. The 

DGF for FDTD and the scalar FD wave equation are directly related. 

" The analytical formula of the DGF for the FDTD system is given in Eq. 3.35 using the 

DGF for the scalar wave equation Eq. 3.34. The DGF is obtained as a superposition of 
Jacobi polynomials. The inner structure and all the properties of FDTD are contained in 

the DGF 

" Using the DGF, the FDTD method can be implemented as a discrete convolution sum 

which produces exactly the same result as that of the Yee algorithm for FDTD based on 
finite difference equations. 

" Although DGF FDTD is equivalent to the Yee algorithm, it does not require ABC. The 

steps Ax, Ay, Az, At are the same as for the Yee algorithm in order to ensure stability and 

low dispersion of the grid. However the sampling rate of the field and currents can be 

reduced close to the Nyquist criteria combining FFT or Wavelets analysis along with the 

DGF FDTD method 

" The DGF FDTD method has been demonstrated by solving scattering problems in the 

time domain and computing any antenna parameters (antenna pattern, impedance). 

Despite DGF FDTD being equivalent to the Yee algorithm, it does not require ABC and 

only the currents on the scatterer need to be stored. 
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" The DGF FDTD can lead to large reductions in memory storage for modelling ID or thin 

objects (wires, slots), but implemented in a straightforward manner require a much large 

number of operations per time steps than conventional FDTD. 

" The DGF FDTD can provide an exact ABC condition for the FDTD Yee algorithm, using 

the principle of equivalence between fields and currents. The concept has been 

demonstrated for a single wall of an FDTD grid with reflectivities of -110dB on the 

boundary. The main reason for this reflectivity is the finite precision of floating points in 

computers which reduces the computed accuracy of the DGF. 

" The DGF FDTD can be combined with FFT algorithms to increase its performance. The 

idea has been applied to the DGF ABC in a wall. This technique produces an exact ABC 

for FDTD that is also very efficient from the numerical point of view since it uses 

reduced sampling, but is only useful for waveguide or periodic structure problems. 

" General formulas for higher order FDTD algorithms are obtained using the generalised 

finite difference concept. 

" Higher order schemes can be used to improve the accuracy of the spatial derivatives 

(Spatially low dispersive schemes). However, the wave dispersion is not improved by this 

type of higher order algorithms, unless the time step is decreased accordingly. The 

classical fourth order FDTD is a good compromise between accuracy and time step 

duration. However, higher order algorithms such as the MRD in [3] (equivalent to 18'h 

order) require a time step five to ten times smaller than the Courant limit. These 

techniques minimise the anisotropy of the method. 

"A different approach is to compensate the dispersion of time and spatial finite difference 

schemes (space time low dispersion algorithms). This technique minimise the wave 

dispersion at discrete propagation angles. Although dispersion for these schemes are 

anisotropic, they are a good alternative to the spatially low dispersion schemes since no 

reduction of the time step size is required. 

In general terms, the classic Yee algorithm is based on the estimation of the EM field at 

certain time instant using the current density as field source [1]. The DGF FDTD scattering 

algorithm calculates the density of current at a certain time instant using the incident field as 

source of the induced currents. This is the main reason for the different performance of both 

algorithms. The density of current only exists in cells where the scatterers are placed, but the 

EM field exists elsewhere. The DGF method only deals with the cells forming the scatterers. 

Ideally, Yee's algorithm deals with all the cells where the EM field is not zero. In this way, 

ABC's can be considered special algorithms, which provide the Yee algorithm with 
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termination into a finite volume. These considerations are very important to understand the 

different usage of computer memory (Table 3.1). 

FD TD 
Antenna type DGF FDTD unknowns Expected Ratio 

unknowns 

Wire, Slot Nscatterers Nome Nx Ny Nz 0.1 to 0.01 

Planar, Patch Nxsca Nysca Ntime Nx Ny Nz 0.1 to I 

Volume, horn, 
Nxsca Nysca Nzsca Ntime Nx Ny Nz I to 10 

dielectric antenna 

Table 3.1 Number of unknowns for DGF FDTD calculations 

Table 3.1 shows the number of unknowns required for the Yee and DGF algorithms. 

Yee'algorithm always requires a rectangular grid (6 components) able to contain the antenna 

plus the layers used for ABC and some safety cells between the ABC and the antenna. The 

DGF algorithm basically requires to store the currents on the antenna for a number of 

previous time instants. The number of time steps is determined by the time required by the 

wave to cross the object. For wire and slot antennas that can be represented by a small number 

of electric/magnetic current cells, thus the DGF requires much less memory storage (expected 

from 10 to 100 times) than Yee's algorithm (including the ABC). This situation is reversed 
for modeling volume antennas (e. g. a dielectric rod) since it would be necessary to use a large 

number of current cells. 

On the other hand, the induced current on a cell depends on the rest of the induced currents on 

the scatterer. For the Yee algorithm the EM field at a cell only depends on the EM fields at 

the surrounding cells. Using directly equation 3.19, the number of computations per time step 

is in the order of N,,,,, " N, 
1,,,.. As a consequence, computations rise very quickly as the 

number of scatterers increase. So, the direct implementation of equation 3.19 requires larger 

computation time than normal FDTD even for wire and slot antennas of some complexity. 

However, under certain conditions the DGF can be implemented using FFT as for the DGF 

ABC. Wavelets or other discrete wave expansion techniques are also well suited to be 

combined with Eq. 3.19. These techniques are out of the scope of this work, but an estimation 
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of the number of computation are given in table 3.2 for a FFT method, including a decimation 

factor to take into account the reduction of field samples used by this technique. 

Method Number " computations 

FDTD NX - NY "N, 

DGF FDTD N 
ý',,, " 

N,;,,, 
e 

DGF FDTD & FFT N,,, 
,, , N, 

Ip, e 
(estimated) N,, 

eC;,,, 

Table 3.2 Number of unknowns for DGF FDTD calculations 

Regarding future work that can be derived from this chapter, the DGF FDTD algorithm has a 

significant potential to solve time domain EM problems especially when used jointly with the 

classical FDTD Yee algorithm. The DGF FDTD technique is suitable for combining with 

FFT, as shown in the single wall DGF ABC, producing high performance algorithms, which 

are compatible with the Yee algorithm. 

Future work on the DGF method must exploit the ability of the technique to be combined with 

DSP techniques. The convolution algorithm is quite suitable to be implemented using discrete 

Fourier or Wavelet expansions of the density of current nodes. The result of using these 

techniques will be the reduction of the number of field and current samples to be stored and 

computed, since the heavily oversampled FDTD grid can be decimated at a rate close to the 

Nyquist criteria. 

The DGF techniques are quite suitable to implement boundary conditions for the FDTD Yee's 

algorithm, using the exact principle of equivalence between fields and currents in the FDTD 

grid. Future work can deal with exact 3D formulations of the ABC, boundary conditions in a 

multi-region FDTD, and to obtain reflectionless interface problems between subgridded 

FDTD meshes. 
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CHAPTER IV: MODELING OF PERIODIC STRUCTURES WITH FDTD 

4.1 Introduction 

Periodic structures are being used extensively in antenna and circuit technology in many 

practical devices as array antennas, transmission line and waveguide filters, corrugated horns, 

Frequency selective surfaces, etc. Nowadays, periodic structures themselves are being 

investigated, for instance, to obtain artificial crystals with a complete `photonic band gap', a 
frequency band in which no electromagnetic radiation is allowed to propagate. Other new 
developments using periodic structures are the arrays of integrated antennas. In this case, 

active and nonlinear elements are introduced in the array to obtain distributed amplifiers, 

mixers or oscillators. 

FDTD can introduce some advantages to model periodic structure devices. First of all, it is a 

time domain method, which can handle nonlinear/active devices in the structure in order to 

model arrays of detectors or amplifiers [1]. FDTD can provide an accurate 3D modeling of 

the periodic structure including metallic and dielectric parts of arbitrary shape. 

The frequency domain modeling of these infinite periodic structures can take advantage of the 

periodicity properties to reduce the modeling just to one periodic cell of the structure. This 

can be done using modal expansions of the field [2](the so-called Bloch mode), or introducing 

special boundary conditions that ensure periodicity. 

It is possible for FDTD to implement boundary conditions to calculate the complete response 

of the structure from just one periodic cell. This chapter describes how this boundary 

condition for periodic media can be obtained for the FDTD algorithm. 

There are special difficulties in implementing a periodic boundary condition in time domain. 

These problems arise when the sources of the field excite each part of the periodic structure at 
different time instants, and the time domain method computes the field in a causal way (This 

is the case of FDTD). 
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Plane Wave 
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Fig. 4.1. The field at a given periodic cell depends of the scattering at adjacent cells on 

previous time instants. The boundary condition is not causal since it requires future values of 

the field as input to estimate the boundary condition at present. 

This situation occurs for example, in an infinite phase shift array, the excitation source is 

applied with a time delay to each element and in an infinite dichroic surface which is 

scattering a plane wave under oblique incidence (see Fig. 4. I). In these cases, the computation 

of the field from a single periodic cell will require to have knowledge of the field previously 

scattered by the cells of the neighborhood. As the method is causal, there is no means to 

predict the fields produced at previous time instants outside the periodic cell which is being 

modeled. In the frequency domain methods [3], the prediction of fields at a future time instant 

can be made on the grounds that the fields are sinusoids at a single frequency in steady state, 

so a time delay can be computed as a phase shift in the sinusoidal behavior. 
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The periodic boundary condition can be implemented in FDTD for sinusoidal, single 
frequency excitation, in a similar way to the frequency domain methods as reported in 
literature [4], [5]. However, this means a severe restriction for the FDTD method, which can 

not be used as a time domain method, for broadband or non-linear analysis. The technique has 

been extended to broadband analysis, performing computer intensive frequency domain-time 

domain conversions at the boundary of the periodic cell [6]. Recently, a specific numerical 

method has been developed [7] to solve periodic problems in time domain, however the 

technique is not compatible with FDTD and associated techniques. 

This chapter is devoted to describing the theoretical basis and numerical implementation of 

boundary condition for infinite periodic media in order to calculate the electromagnetic field 

dispersed by the structure just by modeling a single periodic cell. First the periodic functions 

are defined using the concept of a translation operator. These definitions are used to show 

some properties. (some of them quite intuitive) of time domain fields in periodic media, 
including the `Bloch theorem' for the time domain fields. Finally, the FDTD boundary 

conditions for infinite periodic media are presented as well as the numerical implementation 

of them. FDTD is extended to implement a general periodic boundary condition (PBC). 

Unlike the solutions presented in literature the PBC is purely time domain and it can be 

considered an extension of FDTD rather than a separate technique. The physical meaning of 

the technique is given in terms of the special relativity theory. 
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4.2 Electrodynamics on periodic media 

4.2.1 The translation operator. 

Physical objects and laws have often symmetry properties. Symmetry basically means that 

these objects and laws remain the same after certain associated transforms (i. e. a geometrical 

rotation). The symmetry properties can be used to reduce the complexity of a problem, for 

instance, the problem can be solved for a limited region and the complete solution can be built 

using the symmetry transformations. In fact, these techniques have been used extensively in 

electromagnetics (i. e. the image theory), using the basic symmetry properties of the boundary 

conditions. Finally, the concept of symmetry and invariance is of major importance for 

modern physics since all valid physical laws have to be invariant to a set of basic transforms 

and symmetries. 

Periodicity can be considered as a special kind of symmetry. In this case, the system is 

unchanged if everything is translated at certain direction and distance [8]. In a formal way, the 

translation can be defined as an operator (Eq. 4.1). 

T, - "g(x)=g(x+X) x =(x, y, z, t) X =(LT, L, 
, L=>T) (Eg4.1) 

T. is the translation operator on the four dimensional function g(x) and the vector 

represents the displacement of the system in four dimensions (see Fig. 4.2). 

Fig. 4.2 Translation of a distribution g by a vector X 
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The translation operator can commute with common operations of functions such as sum or 

multiplication. It also commutes with any linear, invariant and stable operator (Eq. 4.2) 

ThV(g+h)=TX "g+Tv "h 

TX(gh)=TXg"TXh 

TX (Xg) = XTX "gX constant 

T- (®g) = O(T-, " g) 0 Linear, invariant operator 

4.2.2 Periodic Functions 

(Eq. 4.2) 

A Periodic system can be defined as those that remain unchanged after a translation. The 

translation operator can be used to write this definition in a simple way (Eq. 4.3) 

TV ' S(x) = g(x) (Eq. 4.3) 

This is the basic condition for a function to be periodic with period X. It is easy to show that 

the condition of Eq. 4.3 can be satisfied for period vectors nX, but the period X is defined as 

the vector with the smallest absolute value in Eq. 4.3. The properties of the translation 

operator (Eq. 4.2) can be used to show that the sum and product of periodic functions are also 

periodic. A periodic function is also obtained by a linear invariant transformation (i. e. a 

derivative or a Laplacian) of a periodic function. 
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Fig. 4.2 Periodic function with period X 

A function can be simultaneously periodic for several periodic vectors X that are linearly 

independent. This means that in a physical space of four dimensions, the state functions can 

be periodic in up to four directions in space-time. Each of these vectors will be called a lattice 

vector by analogy with the term used in crystallography. 

' g(x) = g(x) 

i=1,2,3,4 X, linearly independent (Eq. 4.4) 

A function verifying Eq. 4.4 is periodic in a multidimensional way (Fig. 4.3). The lattice 

vectors of such functions can be a basis of the domain (so-called lattice basis). The periodic 

function can be built by repeating the elementary volume defined by the lattice basis. 
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Tzý, ' g(x) = g(x) 
Tx., 'g(x)=g(x) 
T,., 'g(X)=g(X) 

Fig. 4.3 Multidimensional periodic function and lattice vectors. 

The periodic function can have other kinds of symmetry (i. e. mirror symmetry) apart from 

discrete translation. In that case the periodic function can be built from a small region into the 

volume defined by the lattice basis. 

Other operators can also be used to extend the definition of periodicity given in Eq. 4.3. 

However the special properties of periodic functions can be limited if those operator can not 

commute with linear systems. 

4.2.3 Time domain electromagnetic field in periodic media. 

The interaction of the electromagnetic field with physical media is described by means of the 

electrical permitivity c, the magnetic permeability p, and the conductivity a. These 

parameters model the average electrical properties of the media at microscopic level. In 

general, from the point of view of electromagnetics, a media is periodic when c, . t, ß are 

periodic functions with the same lattice vectors X, (Eq. 4.5). 
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Tý. 
r 

c(x)=s(x) E(x, y, z, t) 

- P(x) = µ(x) 
Tx "a(x)=a(x) 

i =1.. n X, linearly independent 

µ(x, Y, z, 

a(x, y, z, t) 

(Eq. 4.5) 

In this definition of periodicity for electromagnetic media, it is possible for some parameters 

to be constant or to have lattice vectors of type nX (see Fig 4.5). 

The Maxwell equations for periodic media are shown in Eq. 4.6. The constitutive parameters 

are now periodic functions of the position and time, so they can not be commuted with the 

derivatives and differential operators. In general, the field sources are not periodic, but in 

many practical cases (for instance antenna arrays) the sources can be distributed periodically. 

aµ(x, y, z, t)"N OxE=- 
at 

vx H= ä s(x, 

aY, 
Z, 
t 

r) E+ 
a (x, y, z, r) " E+ j:, 111 

0"D= p o"B=0 

E(x, y, z, t), µ(x, y, Z, t), ß (x, y, Z, t) Periodic 

(Eq. 4.6) 

The solutions for the electromagnetic field in Eq. 4.6 have a special form due to the periodicity 

of the media. These properties can be found by applying the translation operator to the 

Maxwell equations for periodic media. Using the properties of the translation operator 

(Eq. 4.2) it is possible to show that the Eq. 4.6 remain invariant to the translation, except for 

the external current term (Eq. 4.7). 
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Ox(T-"E)=- 
0 ý(x, 

y, z, t)(TX ' H)ý 
'A at 

a(E(x, y, Z, t)(T... " E)) 
V x(T}. "H)= at 

x +ß(x, y, Z, t)"(T. r "E)+Tý. Jew 

V. (TX "D)=TX "pv- (TV "B)=0 

c(x, y, z, t), µ(x, y, z, t), a(x, y, z, t) Periodic 

(Eq. 4.7) 

In the case where the sources of the field are also periodic, the Maxwell's equations after the 

translation remain the same. This implies that also the field solution must remain invariant to 

the translation. This shows the intitutive property that the fields must be periodic if the media 

and the sources are periodic. 

TX"j=j => TX"E=E Ta, -H=H (Eq. 4.8) 

In the general case, the sources are not periodic, so the fields are not periodic. On the other 

hand, an arbitrary distribution of current can be considered as the superposition of harmonic 

sources using Fourier transform as shown in Eq. 4.9. These elementary harmonic functions are 

not periodic because of a constant term (X in Eq. 4.9). 

Jex, = 
JJ(k, kX, kx, w) e'(k, 

x+k, y+k_: +w, )dkxdk 
ydk, 

dw 

e 
j(k, x+ký, y+k, z+rul) 

. 
lk, k, k. w 

ý_e j(k, L, +k,, L, +k, L, +(o7') 

-ý 
jk, 

k, k. m 
Tý j 

k, k,, k: w 

X= (Ls, Lv 9 L., T) (Eq. 4.9) 

This harmonic source can be introduced in Eq. 4.7. The result is that the field is also a 

eigenfunction of the translation operator with a eigenvalue X. In order to fulifil this condition, 

the field solutions with the harmonic source have to be periodic function multiplied by a 

elementary harmonic function. This principle is the Bloch Theorem [2], [8] for a4 dimensional 

periodic system (Eq. 4.10). 
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T -' x ýT "E= aE where A= ej(k, c, +k, ý., +ki.: +wr) 
X' . 

%k, k, k: w 
ýk, k,, k, w r k, k,, k. w k, k, k, w 

Assuming E 
=U . e-l(k, 

x+k, y+k_. +wl) where Ukxk k is an arbitrary function 
k, k, k, m k, k, k_m , :w 

-j(k, x+kyy+k:: +wl) ý/+ ýT 
Tx Ek, k k. w 

= Tý. (UkrkykW )Xe = ý, Ekxkykm ýLX'V kkkz(o = Ukrkk. 
(o 

Ukrk, k_w is an periodic function (Eq. 4.10) 

(Bloch Theorem) 

The Ukk periodic function can be expanded as a Fourier series. Each exponential term of 

the series multiplied by the exponential harmonic term in Eq. 4.10 is the kernel of the Bloch 

modes. As any source can be expanded as a sum of harmonic functions, the total field 

generated by an arbitrary source can be considered as the superposition of fields of the type 

shown in Eq. 4.10. 
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4.3 Extended FDTD in Periodic Media. 

4.3.1 Periodic boundary conditions 

In the previous section it was shown that the electromagnetic field in periodic media with 

periodically distributed sources can be also described as a periodic function. This result is 

applicable to many practical situations of periodic media as infinite antenna arrays of dichroic 

surfaces illuminated by plane waves. This periodical behavior can be used to calculate the 

fields by solving the problem just for one periodic cell, since the the rest of the fields can be 

obtained easily by simple translation of the fields on a single cell. This means that the 

electromagnetic problem can be solved in a finite size volume, but it is necessary to develop a 

procedure to solve the problem at the boundary of this volume and enforce the periodicity at 

the same time. 

The boundary condition is obtained by assuming that the field solution and its derivatives can 

be obtained by a translation of the field cell , so the fields outside the periodic cell that are 

necessary to calculate the fields at the boundary can be simply be estimated by the fields 

inside the cell by a translation (Fig. 4.5). In order to apply this condition it is necessary that the 

boundary of the region being modeled has to be the same boundary that forms the periodic 

cell (true for both time and space coordinates). 

IL: Ili 4 . \'.. II 

Fig. 4.5 The periodic boundary condition: The field outside the boundary in point I can be 

obtained from the field inside the boundary at position 2. 

FDTD usually requires a regular grid of points alongside the cartesian axis. As a consequence, 
if the periodicity does not follow an orthogonal pattern, it is not possible to fit directly the 
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discrete grid of points defined by the FDTD method into the periodic cell (Fig. 4.6). This 

problem of applying the boundary condition can be solved by interpolation. 

------------------- 

Oo0o0o0b0 

Io uag aC 8.6 ............ .... _, 

.......... ........... .... ........... 

Fig. 4.6. The basic FDTD algorithm is defined in a cartesian ortogonal basis. As a 

consequence, the discrete points for the fields are distributed in a rectangular mesh that is not 

well suited to apply periodic boundary condition in all cases. The FDTD method can be 

redefined in the lattice basis. 

However, an alternative procedure is obtained by expressing the equations in the lattice basis 

coordinates, so now the regular grid matches the shape of the boundary of the periodic cell. 
This basis change only introduce some modifications of the Maxwell equations that can be 

implemented in FDTD 
. 
The FDTD algorithm in an arbitrary non orthogonal basis is obtained 

using the concept of covariant and contravariant coordinates [1]. 

The FDTD method also requires sampling of the time coordinate at regular steps, in addition, 

the method is causal so the field is computed at a time instant using the knowledge of the field 

at previous time instants. As stated in previous sections, the periodicity of the problem can be 

essentially four dimensional (for instance the phase shifted array), with field sources that do 

not act simultaneously in every space periodic cell. 
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Fig. 4.7 Periodic boundary conditions including the time dependance (i. e. phase shifted array) 

is not well suited for the FDTD grid which represent field at a single time instant. 

The typical space-time FDTD grid is not well suited to handle periodic boundary conditions 

for these situations since the boundaries of the periodic cells are now at different time instants 

(Fig. 4.7). If the FDTD grid is maintained, an extrapolation procedure is required to predict 

the fields at future time instants. This is possible for sinusoidal signals in steady state, since 

the estimation of the field at future time instants can be obtained as a simple phase delay on 

the sinusoidal response. However, in that case the periodic boundary conditions for the FDTD 

method is restricted to monocromatic sources and linear media. 

For the more general case, the problem can be tackled using a change of basis for the time 

coordinate. The lattice vectors including its time component are the new coordinate basis to 

solve the EM fields (Eq. 4.11). In this way, the periodic boundary condition can be applied 

directly in the new time coordinates, but the Maxwell equations in the new basis have extra 

terms that must be included in the FDTD algorithm. 

t' =t+ä "r" X= (Lr, L., L., T), d. X= -T => X' = (LX, 19 

_, O) (Eq. 4.11) 

Where a is a suitable 3D spatial vector constant with inverse velocity units. In the new basis, 

the lattice vectors should have no time component. This transformation can be introduced into 

the Maxwell's equations. New terms are generated for the equations that can be written by 

using new field functions, Eh and He. 
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VxH=EaEh+j' pxE=_µaHe 
at, at, 

bý=E+E-'(äxH) He=H-µ-'(äxE) 

Y= (x, Y, z, t') (Eq. 4.12) 

A finite difference algorithm has been developed to solve the set of equation (Eq. 4.12). The 

extra terms in the Maxwell equations after the transform, introduce additional memory 

requirements for the algorithm. In addition, the basic FDTD code has to be modified to take 

into account these terms, so it is not possible to use an existing FDTD code to implement a 

time domain code for periodic structures. However, there is a possible way to avoid this 

problems. Instead of using just the time transform (Eq. 4.1 I) , 
it is possible to use the Lorentz 

transform. 

Lorentz's Transforms 

x' =y "(x-vt) 

I 
y= v/ 

c 

Y, =y 
v 

z'=z t'=y "(t- Z x) 
c 

C velocity of light 

V velocity of the observer 
(Eq. 4.13) 

Maxwell equations are invariant to the Lorentz transform. This means that the equations 

remain formally the same after the transformation, without any additional term, so the basic 

FDTD algorithm can be used now to solve the problem. The physical meaning of this 

procedure is clear: Using the Lorentz transform (Eq. 4.13), the frame of reference corresponds 

to a relativistic observer. For this observer, physical laws (including Maxwell equations) 

remain unchanged, but the perception of an outside static observer can be rather different. 

117 



Maxwell curl equation after Lorentz's transform Eq. 

ý aH' vxH'=E aa 
+j vxEý=-µ 

at 
E'=y"E+Zo"ßxH H'=y"H-xE/Zo 

lvx, Q, OI Y= 

y -' 00 

010 

001 

(Eq. 4.14) 

For the relativistic observer two simultaneous events can be seen as non simultaneous and 

viceversa. This strange feature can be used in our problem, for instance an observer moving 

parallel to a phase shift array can see all the array elements perfectly in phase (without any 

time delay between them), but a stationary observer will see that each array element has its 

own phase. 

4.3.2 Numerical implementation. 

The equations 4.13 have been numerically implemented to demonstrate the ability of the 

periodic boundary condition and the time transform method to handle a complete 4 

dimensional periodic situation. The problem which is intended to be solved is the calculation 

of the plane wave transmission and reflection coefficients for Frequency Selective Surfaces 

(FSS) under any angle of incidence. 

In this case, the media is essentially periodic in two spatial dimensions. The incident field is a 

plane wave Gaussian pulse, that propagates at certain angles with respect to the periodic 

surface. In order to approximate the time derivatives following a central difference scheme, 

the new field functions Eh and He defined in Eq. 4.13 will be used. 
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OxH=s 
aEh+ 

j' H=A-'(He+, u-'ä xEh) 

OxE=-µ e E=A-'(Eh+E-'ä xHe) 
ý 

-c2(ay +a? ) aa, - c' ara "c2 
A= aa, - c' 1-c2(dý +a? ) a,, a. "c2 

axa, c-2 a,, a_ c2 1-c2(as +ay ) 

(Eq. 4.15) 

These equations become the normal Maxwell's equations for ä=0. The structure of the 

equations are similar to the Maxwell's equations for the new field functions, but the vectors 

on the each side of the equation are different. In order to be compatible with FDTD, as these 

equations become the normal Maxwell's equations for ä=0, the FDTD basic central 

difference scheme and the alternate gridding of each field component will be maintaned 

(Fig. 4.8). 

Ehy 

Ehx 

Fig 4.8 The new field components are spatially and temporally alternated, following the 

FDTD scheme. 

However the new system exhibits terms which have time and spatial dependence 

simultaneously in the same equation. This it is not compatible with a pure central difference 

scheme of alternated components. The spatial derivatives in that case have to be solved as a 

second order finite difference. The time finite difference equation it now implicit rather than 
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explicit since the equations present terms at the same time instant but different spatial 

positions, so the equation can not be solved in a explicit way. 

Implicit schemes can be solved by using an iterative procedure on the equations, by guessing 

an initial value for the solution at the next time instant and using the new calculation as new 

initial condition. This procedure makes the algorithm slower and also it requires more 

memory. 

The meaning of the vector a depends on the type of problem proposed. Vector a determines 

the ratio between spatial period and the time delays between periodic cells. The time delays 

depends on the incident field. In the case of an incident plane wave these are the time periods 

needed by the plane wave to cover the lengths of the spatial lattice vectors of the periodic 

structure. The meaning of vector a for FSS or PBG analysis is now clear as a function of the 

angles of the incident plane wave (Eq. 4.16). 

=(Lr, O, O, T1), d -XI =-T, T, = 
Lx 

sin B cos 4 aX =_ 
sin B cos 

cc 

TZ =L, sin B sin 4ay sin B sin 4 

cc 

(Eq. 4.16) 

The numerical procedure is similar to the FDTD scheme regarding the terms under the 

rotational operator and the time derivative. The additonal new term is introduced in the 

equations in the following way (for the sake of simplicity only one coordinate is shown): 

Otl Esýr ý(i, j, k)-Esýr ý(i. j-l, k)- 
He"'iz(i j k)r' = He. ""' Z(i, j, k)+ 

ýY µ 

j, k)-E" 
,r 

(i-I, j, k) 

Ox 

E�w = A-' . (Eh�cv +e_' "ä x(He" 112(P +Hen-12)l2) and fie ., 1/2(o = He"-in (Eq. 4.17) 

Where p is the index for the iterative algorithm for the implicit equation. A similar expression 

can be obtained for the Eh field and for the rest of the components. If a: is set to zero, the 

algorithm is unstable when the inverse of a is close to the speed of light. This happens for 

angles of incidence close to 90 degrees to the normal, where there is a singular situation. In 

principle velocities larger than light speed can be used to analyze the incidence of evanescent 

waves on the structure. 
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In this new coordinate system, the boundary condition for the perfect conductor is also 

changed. The situation is similar to the modification of boundary conditions for a relativistic 

moving observer. For instance, static surface charge in a media boundary for a stationary 

observer is observed as surface currents on the conductor for the moving one. In fact, the 

tangent electric field is zero at the surface of the perfect conductor, but the new field vector 

Eh is not null since it is also related to the magnetic field. For a layer of perfect conductor on 

a plane perpendicular to the z axis, the boundary condition can be obtained by setting to zero 

the Ey and Ex components on Eq. 4.12. The final boundary condition is shown in Eq. 4.18, 

introducing the average of field components as they are in different positions. 

EhX = -Z° a y, 
He: 

c 

Ehv =-Z° axHe_ 

EhX+l (i, j, k) = Eh° (i, j, k) - 
c° 

cc, (Hen+z (i +i, j, k) + He"+Z (i -i, j, k)) 

zo 
j, k) = Eh" (i, j, k) -oa., (Hen+' (i + i, j, k) + He. n+Z (i z, j, k)) 

c 

4.3.3 Test cases. 

(Eq. 4.18) 

A computer code has been implemented, in order to demonstrate the method proposed in the 

previous section. This software calculates the transmission coefficient of a plane wave on a 

FSS for any angle of incidence and it is capable of modeling thick surfaces and non linear 

devices in the infinite array. The code simulates the incidence of a plane wave Gaussian pulse 

on the FSS and it outputs the broadband transmission and reflection of the zero order Floquet 

mode at the given angle of incidence. 

The software is verified using three standard cases of FSS whose transmission coefficient are 

given in literature [3], [9], [10] for mode matching (MM), method of moment (MOM) and 

integral equation (IE) computations. The cell dimensions and distribution is depicted in figure 

4.8a. 
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Case 1 

I\ _'0111111 

Case 2 

-------------- 

-ý 

Tx =16mm 

---------------------- 
Lx =20mm 

W1 

Case 3 

W2 

Lx=8.99mm 

W 1=0.5588mm 

W2=1.125mm 

F, ý 3.5 

t=0.076mm 

G=0.5588mm 

Fig. 4.8a Unit cell for the test cases. Case I (Left) mesh of square holes with null thickness. 

Case 2 (Middle) infinite free standing array of perfectly conducting square patches. Case 3 

(Right) Double square loop of metal lines on a thin layer of dielectric (E, =3.5, t=0.076mm) 

The results show a good agreement of the FDTD calculations with the computations using 

other methods. Despite there is no measured data, the results of transmission coefficient 

obtained with Mode Matching are expected to be extremely close to measurements for the 

simple square geometry. The transmission observed using FDTD match very well in that case 

for both polarizations. No rigorous criteria for the stability of the method has been developed, 

but initial analysis suggest that the stability criteria is similar to the courant condition for 

FDTD but multiplied by cosO. 

The amount of computations required for the oblique incidence case is also bigger than for the 

normal incidence, due to the extra loop required to solve the implicit equations. The 

computation time in a PC 300 MHz Pentium, required for the test cases have been about Ih 

for cases 1&2 (30 Deg. oblique incidence) and 40 min (normal incidence) and 2h (30 deg. 

oblique incidence) for case 3. The output of the code for the test cases is the transmission and 

reflection coefficient (TE & TM) at approximately 100 frequency points from 0 to 20GHz. 

The computer memory required for the test cases is about 6Mb for case3 and 2.5Mb for case 
1 &2. 
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Transmitted Power 
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Fig. 4.9 Transmitted power for the case I (mesh of square holes) with oblique incidence of 

30 degrees for TM (top) and TE (bottom) polarization. The extended FDTD result (solid line) 

(140x21 x21 cells) is compared to Mode Matching (MM) calculations (triangles). 
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Transmission coef. vs. Frequency 
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Fig. 4.10. Tranmission coefficient for the case 2 (infinite array of square patches) with oblique 
incidence of 30 degrees for TE (up) and TM (down) polarization. The extended FDTD result 
(140x21x21 cells) is compared to Method of Moments (MoM) calculations. 
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Transmission vs. frequency (0 Dag. ) 
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Fig. 4.11. Tranmission coefficient for the case 3 (double square loop on thin dielectric slab) at 

normal incidence (above) and at oblique incidence of 30 degrees (below) for TE (left) and 

TM (right) polarization. The extended FDTD result (140x32x32cells) is compared to Integral 

Equation method (IE) computations 
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4.4. Electrodynamics in finite periodic media 

4.4.1. Mathematical Definition of the Finite Array 

The definition of an antenna array is given in [11] as "an assembly of radiation elements in an 

electrical and geometrical configuration". The mathematical definition of array should match 

this practical definition in electromagnetics, but in the general context of abstract functions. 

The "radiation elements" can be described electrically in terms of distributions of 

conductivity, permitivity and current density, so the array can be defined as a set of associated 

functions which resembles the electrical properties of each element Eq. 4.20. The "geometrical 

configuration" should be also introduced as a set of points in space, which defines the location 

of every element. 

lg0 (X)3 91 (x),..., gN-2 (x)9 gN-1 üx) 

(X'O, XI,..., 'xN_2,. 
xN-1 ) (Eq. 4.20) 

The mathematical definition of finite array is the sum of the set of associated functions 

translated to the associated location of each element (Ey. 4.21). 

N-1 

G(x) = g,, (x -x�) 
�=o 

4.4.2 The cyclic translation operator for finite arrays 

(Eq. 4.2 1) 

The complexity of a problem dealing with finite arrays can be reduced if symmetry properties 

occur. Symmetry is basically the property of a system to remain the same after a 

transformation (i. e. a rotation) and it is related to the degree of redundancy in the system. 

Infinite periodic functions are a case of a strong symmetry with respect to a discrete 

translation. In a Cartesian co-ordinate system, finite arrays can not be invariant to translations 

and hence they can not be periodic. 
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The finite periodic arrays are invariant to cyclic translations of the associated positions, as if 

the elements were distributed in a circle, since all the elements of the finite periodic array are 

identical. This property is a basic symmetry of the finite periodic array. In order to establish 

this symmetry, the cyclic translation can be defined as an operator for finite arrays. 

N-I N-1 

G/x\ -Ign 
(X 

- nOx) _ g,, (Y - n'Oz) Tc mG(x) _X it = MODn+m 
NJ 

n=0 n=0 

MOD(n/N)=remainder of n/N 

TT. ' is the m-element cyclic translation operator of the finite array G (Eq. 4.22) 

For the sake of simplicity the definition only covers the equispaced finite arrays. The cyclic 

translations (CT) can be composed. The result of the compositions of CT (composition means 

that two or more CT are applied sequentially) can be considered another CT. The CT set with 

the composition operation has structure of a commutative group. Other basic operations can 

be commuted with the CT. 

T(. " (G+H)=T(. "' "G+T(. "' "H 

(A "G)=X "T(. "' "G 

Tý. "' (OG) = O(T(. ' - G) 0 Linear, invariant 

(Eq. 4.23) 

There is a major difference with respect to the discrete translation operator: the multiplication 

of functions does not commute with the cyclic translation (Eq. 4.24). As a consequence, the 

solutions to many physical equations, possible with infinite periodic functions, can not be 

described in terms of finite periodic arrays. 

Tc"'(GH) # TC, G"T("H 3G, H (Eq. 4.24) 
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4.4.3 Finite periodic arrays 

A finite periodic array is a truncation of an infinite periodic function to a finite number of 

periods. The resulting function can be described as a finite array, which is not periodic 

anymore, but intuitively it still keeps a strong symmetry. The elements of the finite periodic 

array are equal and this is the basis of his symmetry. Following Fig. 4.12 , 
if a physical law 

(i. e. gravity) defines an interaction between elements of the finite periodic array, the mutual 

interaction between elements only depends on the relative index distance between them, for 

instance the interaction between elements I and 3 is the same than for elements 3 and 5. It is 

significant how the forces are distributed in the finite array of Fig. 4.12, being zero at the 

centre (as for the infinite periodic array) and increasing toward the edges. 

Ftot1=1 
> 

Ftot2=0.4 
--º 

F21 F32 
-ý --ý 

Ftot3=0 

F12 F23 
ý----- ý- -- 

F43 

Ftot4=-0.4 

4- 

Ftot5=-1 

4 

F54 
º -f 

F34 F45 
ý ---= 4 

F31 F42 F53 

F13 F24 F35 
ý- f-- ý= 

F41 
ýº 

F52 
=º 

F14 F25 
ý= f-= 

F51 
=-º 

F15 
4- 

Fig. 4.12 Gravitation forces in a finite periodic array of mass spheres. The mutual forces only 

depend on the relative distance between elements. The mutual forces show the strong 

imbedded symmetry in the system, rather than the total forces on the system. The total force 

for the central element is zero as for an infinite periodic array, but the total forces are 

increasing at the edge elements. 
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The finite periodic arrays remain invariant under a cyclic translation transformation. This 

means that finite periodic arrays are eigenfunctions of the cyclic translation operator 

(Eq. 4.25). This property can be used as a mathematical test for finite periodic structures. The 

CT symmetry does not include any internal symmetry of the array elements. Other types of 

symmetry can be found simultaneously, or in combination with the CT, but this is not 

considered here. 

T. "'G =G 
G is a finite periodic array (Eq. 4.25) 

The definition of the finite periodic array in terms of the CT operator can be used to obtain 

some basic features of the finite periodic arrays. For instance, if an operation commute with 

the CT operator, then the result of this operator on a finite periodic array is also a finite 

periodic array. As an immediate result, the linear transformation of a finite periodic array is 

another finite periodic array, but the product of two finite periodic arrays it is not necessarily 

a finite periodic array. 

4.4.4 Inner dot product for finite arrays 

In general, the product of functions does not commute with the CT operator. However, it is 

possible to define some kind of "dot product" for finite arrays, which can commute with the 

CT operator (Eq. 4.26). 

N-1 

G®Hgnhn G, H are finite 
n=0 

arrays 

T. "(G (9 H) = Tt. 'G ® T("H (Eq. 4.26) 

The normal product between finite arrays can be associated to a matrix for the products of all 

the array elements. The diagonal of the matrix is precisely the inner product. The terms of the 

matrix off the diagonal represent the "mutual coupling" terms between the elements of the 

array. 
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N-I N-I 

G"H= EEgnhn. G, Hare finite arrays 
n=0 n'=0 

goho g, ho 
""" gN-Iho ý 

gohl glhl ... ... 

Soh, 
-1 "" "" 

9N-IhN-1 / 

(Eq. 4.28) 

These mutual coupling terms can be considered as finite arrays using less elements than g and 

h. They are the result of inner product between finite arrays, which are truncated from the 

initial arrays g and h. The truncation of the arrays can be defined also as an operation on finite 

arrays (Eq. 4.29). 

N-1 N-k-I Truncation of finite arrays: Left 
(G)+k = Sn(x - nz\) _ g;, (x-nOx) 

n=k n=o (top) and Right (bottom) 

g,, (T - (n - k)A )=g,, (5F - nAx) truncation of k elements. 
N-k-I 

(i'i) k-ý 
gn(X - 110X) 

n=0 (Eq. 4.29) 

Therefore, the product of functions can be written in terms of inner products and hence as a 

sum of finite arrays of different lengths (Eq. 4.30). As the inner product commutes with the 

CT, the product of finite periodic arrays can be expressed as a superposition of finite periodic 

arrays of different length, each of them representing the different mutual interaction terms 

Fig. 4.13. 

N-1 

G"H =G®H+Z(G'k ®H -k+G -k ® H'k) 
k-1 

(Eq. 4.30) 

The terms of Eq. 4.30 can be identified in the matrix expression of Eq. 4.28. The Eq. 4.31 

shows the equivalence of the inner dot product terms in the matrix representation. 

( 
.G 

G-H= 
ýk ® H+k` ... Hý 

,--; 
(Eq. 4.3 1) 
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For instance, in the case of two finite arrays with only three elements, the finite array product 
is the following: 

G=go+g, +g2 H=ha+h, +hZ=>G"H= 

(goho giho gzho) 

g1ho g1hi gýh2 
ýg2ho g2hi g2h2 ) 

G"H=G®H+G+'®H-'+G-'®H+'+G+2®H-2+G-2®H+'` 

G0H= goho + g, h, + g2h2 

G-1 0 H+' = Sohl + Sih2 i G0H-=g, ho + gZh, 

G-2 0 H+2 = Sohl G. 2 ® H-2 = S2ho 

(Eq. 4.32) 

4.4.5 Time domain electromagnetic field in finite periodic media 

The interaction of the electromagnetic field and media is described by means of the electrical 

permitivity E, the magnetic permeability µ, and the conductivity a. These parameters model 

the average electrical properties of the media at microscopic level. In general, from the point 

of view of electromagnetic field, a media is a finite periodic array when E, j. 4 a are finite 

periodic arrays of the same type (Eq. 4.32). 

T(. k 
E(x) = E(x) E(x, y, Z, t) 

Trk ýfý(x) = µ(z) µ(x, y, Z, t) 

. 6(z)-6(x) Q(x, y, Z, t) 

(Eq. 4.32) 

The properties of the electromagnetic field in finite periodic media can be investigated using 

the CT operator. The CT operator can be applied to Maxwell's equations for the 

electromagnetic field for different situations. If they commute with the CT operator then the 

field also has CT symmetry, this means that it is a finite periodic array. 
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For instance, the Maxwell equations for a homogeneous media, but with a finite periodic 

array for the density of current commute with the CT operator, so if the density of current is a 

finite periodic array, then the EM field is also a finite periodic array. 

However if the media is a finite periodic array, in general, Maxwell equation do not commute 

with CT, even if the excitation current j is finite periodic array. This is because the product of 

functions does not commute with CT (Eq. 4.33). 

V x(Tc. k'E)=-aW(T<'k'H)1 
at 

(T" (k 
Ff) a(T` k (E(x' y' ̀ 'r + Ox "= at 

Tý- (ß k 

0"(Tc`"D)=T, * 
-pV "(T(. 

k"B)=0 

E (x, y, z, t), 6 (x, y, z, t), i, (x, y, z, t) Finite periodic arrays 

(Eq. 4.33) 

The non-commutation of Maxwell's equations and CT is the major difference with respect to 

the infinite periodic array case where the discrete translation commutes with Maxwell 

equations. However, EM field can be split into two components, which would verify the 

following condition 

E=El +Ein 

H=H, +FIM 

OxH, - ý 
®E, +jrs, 

at 

VvF-- 
aWl 

,) 
ý- -I - at (Eq. 4.34) 

Since Eq. 4.34 commutes with the CT, this means that E, is also a finite periodic array. These 

equations determine the conditions (Eq. 4.35) which have to be verified by EA, , according to 
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the composition of the displacement vector and the conductivity, in a sum of inner product 

terms along the lines of Eq. 4.30. 

IV-1 

D=eE=eE, +sE,, =s®E, +., (E +'(2)t, +s k®E, +k)+sEM 
k=1 

N-1 

., 
(a'k ® E, k+ a-k ® E, 'k )+ aE,,, aE = aE, + aEM =a®E, + 2] 

k=l (Eq. 4.35) 

The equations for EM are similar to Maxwell's equations for the complete field, but the 

equivalent density of current is a sum of truncated finite periodic array distributions. 

_ 
N-1 

_ ýXHM =ÖýEL'M +6EM +y G+k + 

8r k=1 

+k a(E+k (& Ei 
k)+6 

k® El k 
J- 

at 
(Induced currents by coupling from E, ) (Eq. 4.36) 

The physical meaning of these equations can be described in terms of mutual interactions. 

The field is decomposed in a non-interacting term, which represent the field radiated by 

the finite array of elements without any mutual coupling. The remaining term E. , represent 

the mutual interactions and is generated by the induced currents in each element. 

The field k, can itself be decomposed following a similar procedure of Eq. 4.34-4.36. One 

part of E,,, designated E,,, will represent the scattered field by the array elements 

illuminated by E, ,a second part represents the remaining mutal coupling field, which is 

produced by rescattering of this field. If the decomposition is done for each excitation current 

j +" ,j" the associated fields are finite periodic arrays of the same type as the currents. The 

total field can be expanded in a series of finite periodic array functions, which represent the 

scattered and rescattered field from the initial term (the field generated by the array without 

any mutual coupling effect). This series can be truncated to neglect higher order mutual 

coupling effects, for instance neglect E,,, and above. 
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A-1 N-1 k N-A-I 
Er 

+[E +k 
+EA)+ýý 

+k + 
k' \+tk. +k' + F. +k. -A' +Ek, +A' +E -A. ". A' 

1+.... 

r/ Lr /p m if] m ur ) 
A-1 A=] IA'-I A'=1 

(Eq. 4.37) 

Fig. 4.13 shows the meaning of some of the terms for the Eq. 4.37 in terms of interactions 

between elements of the finite array. A major feature of the expansion formula in Eq. 4.37 is 

that all the field elements are finite periodic arrays and satisfy the modified Maxwell equation 

formula of Eq. 4.34. This property can be used to exploit the symmetry of the structure in 

order to reduce the amount of computations in a numerical simulation of the finite periodic 

array. In addition for electrically large array elements where only adjacent element coupling 

was significant, this means that E� +k (k>1) could be neglected. 

E, 

ýýý /-ýý__ 
ýýý E, 

Arýýý«ý E u 

Ell 

E� 

3 Ell 

Ell -3 

+4 E� 

E il 

Fig. 4.13 The terms of equation 4.37 are related to the mutual scattering between array 

elements. The figure shows for a5 element array, which elements are scattering the field 

(dark balls) for the first order terms of the (Eq. 4.37). As all the array elements are similar the 

E� " fields are finite periodic arrays with N-k elements. 
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4.5 Conclusions of the Chapter IV 

Periodic media can be considered as a kind of media distribution with discrete translational 

symmetry. The electromagnetic equations in this periodic media are also invariant with 

respect to this discrete translational symmetry. As a result, the EM field in periodic media 

have a special structure, a superposition of harmonic kernels multiplied by a periodic function 

(Bloch theorem). 

The concept of periodicity and translational symmetry can be formulated in a non orthogonal 

basis in space-time. In fact, as shown in this chapter, non-orthogonal periodicity of the EM 

field occurs in many practical cases, as in a triangular lattice array or in a FSS under oblique 

incidence. The non-orthogonal periodic media has been succesfully modeled using frequency 

domain methods. However, the basic Finitte Difference Time Domain (FDTD) method is 

formulated in an orthogonal cartesian basis for all four dimmensions (x, y, z, t). This orthogonal 

formulation of the method does not provide the adequate framework to deal with general 

periodic media. 

Here it has been shown that FDTD can be also formulated in a non orthogonal basis. The 

transformation of the time axis allows the method to analyse phase shifted arrays and FSS 

under oblique incidence. The new algorithm has been implemented in a computer code. This 

code can estimate the transmission of plane waves throught a FSS at any azimuthal angle of 

incidence and has been verified from data in the literature. 

The new algorithm requires a lower time step than normal FDTD to ensure stability. As a 

consequence, the analysis of oblique incidence cases requires more time to compute than 

FDTD requires for the normal incidence case. However, such CPU time and memory 

requirements are perfectly compatible with current PC computers. In fact, the test cases 

presented here required less than 2h and 6Mb RAM (at the worst case) in a 300MHz Pentium 

processor. 

It has been shown that finite periodic media can be described as a kind of media distribution 

with cyclic translational symmetry. However in this case, the electromagnetic equations in 

finite periodic media are not invariant to the cyclic translation (they are only invariant with 

respect to the field sources). As a result, there is not an equivalent Bloch Theorem for finite 

periodic media. This means that the fields in finite periodic media and for cases of a finite 
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periodic excitation the fields are not a finite periodic array, but it can be described as the 

superposition of finite periodic fields representing the `mutual coupling' interactions. The 

main advantage of using mutual coupling terms for modelling is to reduce the problem just to 

the model of a single element of the finite array in order to evaluate the field radiated by the 

element and to treat separately the mutual interactions. 

It has been shown that each mutual interaction term is a solution of Maxwell's equations with 

some induced currents. These induced currents are related to the mutual interaction field of a 

lower order. For the first term (field scatter by the elements without mutual interaction) the 

currents are related to the incident fields or the currents produced by the sources. In the 

context of modelling finite arrays using FDTD, this means that each mutual interaction term 

can be solved using FDTD on a single element, provided that the induced currents from a 

lower order term has been calculated, starting from the fields scattered by a single array 

element. A possible practical approach for the calculation of the induced currents is to use PO 

to estimate the fields beyond the near field region of the array elements (modeled using 

FDTD). The implementation of this hybrid technique is beyond the scope of this thesis. 
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CHAPTER V: DESIGN OF A SUB-MILLIMETRE PLANAR INTEGRATED 

RECIEVER USING FDTD 

5.1 Introduction 

Integrated planar antennas are an attractive and relatively cheap technology for millimetre and 

sub-millimetre receivers. They can be manufactured using lithography and etching techniques 

up to a resolution of microns and they can incorporate semiconductor devices that can be 

mounted directly on the substrate, improving the accessibility of the devices with respect to 

non-planar systems. 

Integrated planar receivers usually consist of a receiving antenna with a solid state detector. In 

the sub-millimetre region these detectors are usually temperature sensors or bolometers. The 

temperature of the bolometer is increased because of the ohmic transformation of submmW 

energy into heat. The change of the bolometer dc resistance with the temperature can be 

measured with a voltmeter and it is proportional to the amount of submmW power dissipated 

at the bolometer. Recently, Schottky diodes have became available due to advances in 

semiconductor technology so coherent detection at these frequencies is also possible. 

Integrated receivers have a great relevance in the field of submmW scientific instrumentation 

[1], [2]. Planar integrated receivers can form imaging arrays of detectors, in an elegant and 

compact way that non-planar antennas can not imitate. On the same substrate, planar 

integrated receivers can provide the circuit auxiliary elements and the antenna, simplifying 

the design and the manufacturing. 

Integrated receivers are serious candidates for high-performance scientific instruments 

applications in space astronomy and earth observation. Future instrumentation for space 

projects in Europe such as MASTER, and FIRST [3](Far Infrared Space Telescope) have 

demanding requirements of detectors and imaging arrays with low noise figures. 

This chapter presents the design of a submmW integrated receiver. This integrated single 

element is intended to be part of an imaging array. In fact, the objective of this chapter is to 

demonstrate a practical model of integrated receiver using FDTD, under realistic 

requirements. This demonstration exercise is the final step in developing FDTD modelling 

techniques for planar quasi optical devices. 
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5.2 Sub-millimetre planar antennas in dielectric substrates 

5.2.1 Sub-mmW planar antennas on thin substrates 

The initial designs of planar antennas for mmW and submmW antennas were based on 

substrates much thinner than the wavelength. Several designs of resonant antennas on thin 

substrates were built and tested in the late 70's, as single dipoles, twin slot arrays, annular slot 

[1] etc. Microstrip patches were also tested but they show particularly high conduction losses 

above 100 GHz. Microstrip dipoles and slots have exhibited much better performance than 

patches and extensive work has been done in this area [1]. 

At mmW and sub-mmW frequencies, the planar antennas on thin substrates exhibit low gain 

on the radiation pattern which imposes a severe limitation on the applicability of this kind of 

antennas. The main causes for this low gain are the losses associated with surface modes, 

which propagate into the substrate, and limit the power radiated into the air half space Fig. 5.1. 

Air Half Space 

h 

Fig. 5.1. Ray optics image of propagation on a dielectric slab wave-guide. The wave is 

"trapped" inside the dielectric. From the point of view of the antenna, the power is 

propagating as surface modes, which prevent energy from being radiated into the air. 

In respect to the power radiated into the air half space rather than the dielectric substrate, it 

has been shown [2] that for slots on an infinitely thick substrate, the ratio between power 

radiated into the dielectric substrate and the air follow Eq. 5.1. 

Pswbstrale 

_0 
3/2 

Pair -' r 
(Eq. 5.1) 

This formula shows that the power is mostly radiated into the dielectric substrate even for 

moderate dielectric constants. This result indicates that substrates with high dielectric 

constants should be used to reduce the losses associated to backward radiation into the air. For 

140 



instance, the power radiated into a silicon substrate is 97.5% of the total power radiated by a 

slot. 

However, Eq. 5.1 is for an infinitely thick substrate. In case of an electrically thin substrate, it 

is necessary to take into account the amount of power that could be "trapped" within the 

dielectric as surface modes. The substrate can be considered as a dielectric slab wave-guide in 

which modes can propagate. The power of the surface modes generated by a slot on a thin 

dielectric substrate on a ground plane has been derived in [2] (Eq. 5.2). Surface mode losses 

become null when substrate thickness approaches zero. As the substrate thickness increases, 

the losses also increase very quickly, following an oscillatory pattern later. As a consequence, 

the gain of a slot on a thin substrate for a thickness«A. d/4 is slightly higher in the substrate 

side than in the air half space. The gain raises in the substrate if thickness is increased and it 

drops (to levels of a tenth of the gain) for thickness above ß. d/4. 

P, u = 3s, heXo / 16 (surface mode TE) 

Pu 
.= 

3E, he2o cost 9/ 16 (surface mode TM) (Eq. 5.2) 

Unlike the microwave band, planar antennas on thin substrates are difficult to implement at 

sub-mmW frequencies, since the substrate thickness should face heavy surface mode losses or 

be extremely thin (<30Am for silicon substrate, <70Am for a quartz substrate at 600GHz). 

Even if the substrate is thin enough to avoid surface mode propagation, the loss budget can be 

close to 50% because of strong backward radiation into the air. Despite the bad performance 

of planar antennas on thin substrates in terms of gain and loss budgets, the radiation pattern of 

these antennas remains almost unaffected by the substrate. These pattern are capable of a high 

degree of symmetry, only limited by manufacturing errors and by the parasitic radiation from 

feed lines and other circuit elements. 

5.2.2 Sub-mmW planar antennas on infinite/lens substrates 

Surface modes are a major drawback to planar antennas on thin substrates for sub-mmW 

applications. However, if surface modes can be avoided, for instance in an infinitely thick 

substrate, planar antennas on high dielectric constant substrate are able to radiate most of the 

power into the substrate with low backward radiation into the air (Eq. 5.1). 
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An ingenious and simple way of solving the surface mode problem is to mount a lens on the 

back of the planar antenna [1](Fig. 5.2). Lens antennas are able to avoid ray incidence at large 

angles at which total reflection occurs in the dielectric. Surface mode losses are replaced by 

reflection losses caused by reflections at the lens air dielectric surface. Reflection losses at 

near normal incidence are much smaller than surface mode losses, but for substrates with high 

dielectric constants they can be significantly high (2dB for silicon). These losses can be 

avoided by using matching layers that can work very well for narrow band [6]. 

Types of substrate lenses 

Elliptical Hyper-hemispherical spherical 

Fig. 5.2. Substrate lenses can solve the problem of surface modes for planar antennas on thin 

dielectric slabs. The planar antenna is placed on the lens focus, so the rays are nearly normal 

to the lens surface, so total internal reflection is avoided. 

There are many types of lenses that can be used for these designs. Elliptical lenses provide a 
high gain radiation pattern, with a narrow beam (depending on the lens aperture). 

Hemispherical and Hyper-hemispherical lenses, are aplanatic designs, which are virtually free 

of spherical aberration or coma [7]. These lenses are quite interesting for imaging arrays or 

monopulse applications, where array elements are normally placed away from the lens focus, 

introducing coma aberration if the system does not verify the Abbe sine condition [7]. On the 

other hand, the hyper-hemispherical lenses require an additional lens (objective lens) or 

mirrors to focus the plane waves incoming from the far field (Fig 5.3). 

The loss budget for planar antennas on lens substrates is outstandingly improved with respect 

to antennas on thin substrates (Table 5.1). Materials for lens substrates such as Silicon and 
Galium Arsenide exhibit low losses (loss tangent 0.0001 at 200GHz) in the mmW and 

submmW band [8], providing the high dielectric constant (11.7 for Si and 13 for GaAs) 

required to avoid strong backward radiation. Semiconductor materials provide the substrate 
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for active or non-linear devices that are included in the integrated antenna. The inclusion of a 

matching layer for the lens reduces the overall losses for the substrate lens to quite acceptable 

values. 

------------ 
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Fig. 5.3 Hyper-hemispherical lens with an objective lens. The virtual focus for the objective 
lens is displaced a distance of (n-1/n) R with respect to the real focus into the lens. The system 
forms a virtual image in its focal plane. 

Other types of lenses can be applied as substrate for planar antennas. Fresnel lenses can 

provide simple and compact geometry for planar lenses with the drawback of reduced 

aperture efficiency. A simple type of Fresnel lens uses is based on corrugations on a dielectric 

substrate to compensate the electrical path from the feed at the focus (Figure 4). Metal plate 

lenses can also do the work and they are easy to manufacture, but they exhibit very low 

aperture efficiency and do not overcome the surface wave problem. 
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Fig. 5.4. FDTD calculation of the Electrical field radiated at 90 GHz by a Fresnel lens of 
18mm radius. The electrical permitivity of the lens material is 3. The figure on the left shows 

the profile of the lens. the feed is a elementary dipole situated at the bottom. 

5.2.3 The annular slot as a submmW antenna 

The planar antennas used in mmW and sub-mmW bands usually require a high rotationally 

symmetry for their patterns in order to form part of a quasi-optical network. Quasi-optical 

systems are based on the propagation of Gaussian beam modes [9]. These Gaussian beam 

modes are an approximation of free space electromagnetic solutions that hold for low angles 

of propagation (paraxial approximation) and perfect symmetry of revolution. As a 

consequence, the measure of how Gaussian is the radiation pattern of the planar antenna 
(Gaussian efficiency) is a major figure of merit for the device. 
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Several types of mmW/sub-mmW antennas have shown high Gaussian efficiency. Of most 

significance is the corrugated horn, which is able to produce a beam with up to 98% Gaussian 

efficiency. Despite some impressive micro-manufacturing achievements [ 10], [ 11 ], corrugated 

horns are difficult to manufacture for sub-mmW operation due to the tiny dimensions of the 

corrugations. 

Planar antennas can also achieve a high degree of Gaussian efficiency for some 

configurations. Narrowband planar antennas are particulary successful in achieving 

rotationally symmetric Gaussian beams. The most popular narrowband planar antennas are 

the double dipole/slot and the annular slot (Fig. 5.5a, b). Broadband planar antennas have in 

general worse Gaussian efficiency than narrowband. Log-Periodic, spiral and bow-tie are 

some broadband antennas, that have been implemented successfully for submmW operation 

(Fig 5.5c, d). 

H 
A) B) 

H 
z 

C) D) 

Figure 5.5. mmW/sub-mmW planar antennas. A) twin dipoles. B) annular slot. C) Log- 

Periodic slot array. D) Bow-tie antenna. The twin and annular slot are used for bandwidths 

smaller than 5%. The Log-Periodic slot array and the bow tie are broadband antennas, for 

instance a log-periodic planar antenna has been reported [1] to operate from 26GHz to 
220GHz. 

The annular slot antenna produces a quite rotationally symmetric pattern at the first resonance 

mode of the structure (X=rd) (Fig. 5.6). The electric field in the annular slot for the first 
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resonant mode is anti-symmetric as shown in the figure 5.7 with two zero field points at 

opposite sides of the ring. The antenna is smaller than the twin resonant slot and the 

bandwidth can be controlled by the ring slot width. The impedance of an annular slot depends 

strongly in the dielectric constant of the substrate, for instance, the impedance of a typical 

annular slot on silicon at the first resonance is about 100 ohms, but in quartz it can raise to 

200 ohms [12]. This impedance is suitable to connect semiconductor devices such as Schottky 

diodes or FET transistors, although additional matching lines could be needed to adapt the 

device. 
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Figure 5.6. Radiation pattern of a free-standing annular slot at the first resonance (left). 
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Figure 5.7 Overview of the electric field distribution in the annular slot at the first resonance. 

The vectors show the direction of the total E field in the slot. (The electrical field has been 

computed using FDTD) 

Copolar Jx Xpolar Jy 

Figure 5.8 Overview of the current distribution on the ground plane of an annular slot at the 

first resonance. The four bright spots correspond to the connection point for the voltage 

sources (Currents computed using FDTD). 
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5.3 Design of a ring slot integrated mixer with substrate lens for 

submmW 

5.3.1 System requirements 
In order to establish the electrical requirements of the design, the KASIMIR project [3] from 

ESA will be taken as a reference. The main objective of KASIMIR is to develop an integrated 

receiver based on a planar Schottky diode for the sub-mmW band. The integrated receiver 

should include all the necessary elements to provide impedance matching between the 

antenna and the diode, DC return lines and an Intermediate Frequency (IF) port isolated from 

the Radio-Frequency (RF) and the Local Oscillator (LO) signals. The LO is injected quasi- 

optically, so, no additional transmission lines are required to drive LO power into the 

integrated receiver. Image frequency is assumed to be rejected by an external element such a 

dichroic plate or a Martin-Pupplet interferometer. The receiver specifications are summarised 

in table 5.2. 

Table 5.2: Receiver design objectives 

Parameter Spec. 

Central Frequency 650 GHz 

IF Frequency 10 GHz 

RF Rejection at IF port >-20 dB 

Crosspolar Level <-30 dB 

Gaussian efficiency >94%-98% 

The antenna type will be an annular slot planar antenna using coplanar technology. The 

substrate will be made of silicon or GaAs with a silicon lens placed on top to eliminate 

surface modes. The diode for the KASIMIR project is mounted in a vertical position with one 

terminal connected to the antenna port using a 10µm diameter special base of metal alloy. The 

other terminal is connected by means of a finger (Fig. 5.9). 
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Fig. 5.9. Vertical Schottky diode for submmW with finger and special metal base to reduce 

series resistance. (Photo: European Space Agency from a diode manufactured at the Institut 

for Hochfrequenztechnik, University of Darmstadt, Darmstadt, Germany) 

5.3.2 Design considerations 

Additional circuits have to be incorporated to the ring slot basic antennas to fulfil the 

requirements of the mixing diode. These circuits have to share the ground plane with the 

annular slot since coplanar technology is requested for the complete receiver. The devices that 

are included in the integrated antenna sharing the ground plane are summarised in table 5.3. 

Table 5.3: Devices in the integrated antenna 

Device Type 

Antenna Annular Slot 

IF line Coplanar line 

IF Filter Stub or X/4 Sections 

Matching line (optional) Coplanar 

Mixing diode Vertical Schottky 

The matching line is to be defined since the diode impedance at the central frequency is still 

unknown in the context of the KASIMIR project. In principle, there are two matching options, 

first is the direct connection of the diode to the ring slot. This option assumes a diode 
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impedance (real part) close to 100 ohms (approximately the same value as the ring slot at 

resonance) and controlled by the DC bias, the reactive impedance of the diode (normally 

negative) is matched by the diode finger and the annular slot itself. The second option is the 

connection of the diode to the ring slot using a coplanar matching line. In this option the diode 

impedance is assumed to be low, approximately 20 j20 ohms, which is matched to the 

antenna by a transmission line. 

The designs proposed for the integrated antenna are shown in Fig. 5.10 for the design without 

matching line and in Fig. 5.11 for the design with matching line. Both designs include a 

coplanar stub inside the ring slot, acting as isolation filter for the antenna IF line. The diode is 

inside the ring slot for the design of figure 5.10, so the design is quite compact and so could 

be included in an imaging array. 

Configuration 1 

Annular slot width 10µm 

IF Line width 

(inner conductor) 

2,5µm 

IF Line width (total) 18µ111 

Fig. 5.10. Integrated receiver without matching line. The diode is adapted to the antenna 

impedance by using the DC bias and the finger. 
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Configuration 2 
Annular slot width IOtn 

IF Line width 

Inner conductor) 

2.5µm 

IF Line width (total) 18pm 

Matching Line width 
(Inner conductor) 

7.5µm 

Matching Line width 
(total) 

18 tin 

Fig. 5.1I. Integrated antenna design with matching line. The antenna impedance is 

transformed to for matching a low impedance diode. 

5.3.3 Imbbeded Radiation Patterns 

The imbedded radiation pattern of the planar antenna is the radiation pattern of the antenna 

within the lens substrate, and so the planar antenna on an infinite dielectric substrate is an 

approximation. The importance of accurately obtaining the imbedded pattern is the need for 

high Gaussian efficiency of the beam and a good rotational symmetry. For the overall design, 

the final Gaussian efficiency of the beam is determined by the complete pattern of lens plus 

planar antenna and not just by the imbedded pattern of the planar antenna. 

The imbedded patterns estimated using FDTD are shown in figure 5.12 for the configuration 

without matching line and figure 5.13 for the configuration with matching line. The Figure 

5.12 show that the pattern symmetry improves if the IF stub in the centre of the antenna is 

made slightly larger in order to avoid the strong parasitic radiation of the stub at resonance. 
The symmetry of the pattern is good for both designs up to the -10dB level. 
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Fig. 5.12 Imbedded pattern at 650GHz estimated by FDTD for the integrated antenna in figure 

5.10 without matching line. (E plane: solid line, H plane: dashed line). 
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Fig. 5.13 Imbedded pattern at 650GHz estimated by FDTD for the integrated antenna in figure 

5.11 with matching line. On the left, the pattern with de-tuned IF stub, on the right, the pattern 

with the IF stub perfectly tuned. (E plane: solid line, H plane: dashed line). 
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5.3.4 Impedance and IF isolation 

The impedance at the diode terminals has been estimated using FDTD by analysing the circuit 

without the diode, and this is shown in figure 5.15 for both configurations of figures 5.10 and 
5.11. The impedance calculations take into account the diode finger (length 10µm, height 

2.5µm). The impedance at diode terminals is close to the proposed objective (100+j20 for the 

configuration of Fig 5.10 and 20+j20 for the configuration of Fig. 11). 
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Fig. 5.15. FDTD computed impedance at diode terminals for the design without matching line 

(Fig. 5.10) (Left) and for the design with matching line (Fig. 5.1 1) (Right). 

The RF isolation at the IF has been calculated using FDTD and it is shown in figure 5.17. 

Despite the fact that the stub has been slightly drifted off resonance to avoid parasitic 

radiation, the computed isolation of the IF line is about 20dB with respect to the RF, which 

meets the design specification. 
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Fig. 5.16. Estimated isolation of the IF line calculated using FDTD. The estimated isolation is 

above 20dB for the central frequency (650GHZ) and it improves for the LO at 640GHz. 
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5.3.5 Initial modelling for the Mixer 

At the present stage, the necessary data for the modelling of the submmW Schottky diode are 

not available. In order to test the ability of the extended FDTD code to model the integrated 

mixer, a simple test case is proposed. This simple case consists of an annular slot with an 

ideal diode on it (Fig. 5.17). The voltage sources for the RF and LO are in series in the same 

node with the diode, simulating Quasi-Optical excitation. The annular slot is modelled in a 

grid of 100x100x80 cells with PML boundary conditions. The algorithm has been run for 

30000 time steps to ensure the steady state of the mixed signals. Experimentally the stability 
has been obtained for a 0.2 times the courant limit for the time step, but it has to be noted that 

stability depends on the amplitude of the source signals and the DC bias (if any) 

The spectral analysis of the currents (Fig. 5.17) calculated with FDTD shows the signals that 

are generated by mixing of the RF and LO. The signal can be identified as the 

intermodulation products at frequencies nfRF ±mfio including the IF (fRF - fro) and LO 

harmonics (mfLO ). 

o. x Idt.. oIO 

-AAN\O, - 
Gj(Vd) 

G(V) = lo 
" 

(g(9ln, k"T)'Vd 
_I ) 

0.18 F 

0.16 

0.14 

9 

012 

o. ne 

0.06E 

0.04 

0 

. 02 

ý 
10 15 20 

Flep(GRZI 
25 35 

Figure 5.17. FDTD estimation of the currents in the circuit of the figure. For this test case, the 

OL frequency is 9GHz (big peak) and the RF is at 7.5GHz. The IF (fio - fRF =1.5GHz) is 

clearly visible as well as the image frequency (2fio -fRF=10.5GHz) and the LO harmonic 

(2fio=18GHz). 
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5.4 Conclusions for chapter V. 

Planar antennas are an attractive option to implement integrated receivers for mmW/sub- 

mmW. However, planar antennas mounted on thin dielectric substrates can suffer severe gain 

loss due to surface mode propagation as showed in previous published work. A simple and 

effective solution to avoid surface mode propagation can be implemented using substrate 

lenses. 

Using as a reference the requirements for the ESA project KASIMIR on integrated receivers 
for sub-mmW, two designs of planar antenna, based on an annular slot are produced. These 

designs are intended to be mounted on a silicon substrate lens. The first design is for a high 

impedance mixing diode, the second is for a low impedance diode which require a matching 

line. 

Both design are analysed using FDTD and they demonstrate the ability of the designs to 

match the initial requirements in terms of imbedded radiation pattern inside the lens, 

impedance at the diode port and IF isolation. In future advanced analysis, FDTD will model 
the non-linear diode as well, in order to optimise the conversion loss of the receiver. At the 

time of completing the thesis, the diode data and the manufacture of the proposed design was 
not undertaken. Therefore, a simple test case with an ideal diode is presented in order to 
demonstrate how the FDTD can handle all the frequencies involved in the mixing process. 

Future work should also consider the use of alternative semiconductor lenses. Planar Fresnel 
lenses can be highly suitable for integration in a planar substrate using IC techniques for 
arrays of detectors. This type of lens does not require the accurate machining of the lens 
surface. The lens is made of air dielectric steps with the proper width, location and thickness. 
Aperture efficiency and bandwidth are reduced in this type of design for the sake of ease of 
manufacture. 
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CHAPTER VI: CONCLUSIONS AND FUTURE WORK 

This thesis is a contribution to the understanding in depth of the FDTD method to solve 

electromagnetic problems, in particular those involving planar, periodic or non-linear media 

and structures. The methodology used here to study this numerical technique relies on the 

theoretical analysis of FDTD as an independent electromagnetic theory which is defined in a 

finite universe, rather than consider FDTD as an approximation of Maxwell's equations and 

its associated continuous electromagnetic theorems. 

The similarity of the properties and operations of finite differences and partial derivatives 

establish a formal analogy between the equations of electromagnetic theory and FDTD. 

However, the topology of the space where the equations are defined (continuous and discrete) 

is completely different. The discrete topology of FDTD space-time frame leads to a different 

treatment of boundary problems. A formal definition of PEC and PMC in FDTD is given in 

terms of the concepts of vicinity and boundary set and the ambiguity of defining a dielectric 

interface in FDTD is also addressed. The equivalence principle between currents and fields is 

also demonstrated for FDTD, but the exact discrete equivalence theorem is intrinsically 

different of the continuous equivalence principle, since magnetic and electric fields and 

currents can not be located in the same "surface" in FDTD. The analysis of the FDTD method 

uses the Z transform as the mathematical tool to represent the discrete sequences in a spectral 
domain. 

The aforementioned similarity between finite difference and continuous electromagnetic 

equations is demonstrated in this thesis. The finite difference second order equations are 
obtained in a similar fashion to continuous equations. These equations are the formal link 
between the finite difference scalar wave equation and the FDTD system. As happens in 

continuous electromagnetic theory, this relation between scalar and vector waves is 
fundamental to implementing vector solutions from simpler scalar ones. 

However, the main finding obtained in this thesis as a result of the finite electromagnetic 

approach is the discrete Green's function for FDTD. Under some general conditions, the finite 

difference equations can be seen as a linear system relating the sources (J and M) and the 
fields (E and H). As a result, FDTD can be alternatively formulated as a finite sum of fields at 
discrete locations rather than a finite difference system of equations. FDTD is in fact 

represented as a convolution of the field sources and a discrete matrix function. Following the 

classical theory of linear systems, this matrix function describes the impulse response of the 

159 



FDTD system. This convolution sum is the discrete equivalent to the Green's function integral 

of the continuous EM theory. The discrete matrix function is therefore playing the role of the 

dyadic Green's function in the continuous case. 

The formulation of FDTD as finite sums shows that the method does not require ABC's to be 

solved exactly (numerically speaking) in a finite domain. In fact, the only nodes that are 

essential to solve the EM fields in FDTD are those where the sources or boundary conditions 

exist. This type of result was pointed out by diaoptikcs techniques proposed for TLM by 

researchers some time ago. As for the author is aware, these techniques did not make any 

attempt to obtain the discrete Green's as an analytical function nor to obtain further theoretical 

relations out of them. 

This thesis presents the analytical form of the discrete Green's function for FDTD. First, the 

relation between the discrete scalar Green's function and the discrete matrix (dyad) one is 

obtained. Second, the scalar Green's function for the finite difference scalar wave equation is 

also obtained for the 1D, 2D and 3D cases. The discrete Green's function is an degree 

polynomial of At, Ax, Ay, Az.. This polynomial can be expressed as a superposition of Jacobi 

polynomials. The formulas of the DGF in the Z transform spectral domain are also obtained 

as a by-product of the analysis. This function plays a similar role for FDTD to the function 

e -"1I r- r'I for frequency domain EM theory. 

Some of the possibilities of this function is shown in this thesis to solve FDTD without ABC's 

in an integral equation fashion. The possibility of obtaining numerically exact ABC's in 

conjunction with the equivalence principle for FDTD is also addressed with an example. In 

this case, the DGF formulation of the FDTD method can obtain an exact FDTD solution at the 

boundary of the numerical grid, Therefore no numerical reflection are expected at the 

interface as happens using any other ABC. 

The main drawback for the direct numerical solution using this formulation is the formidable 

amount of computations necessary to evaluate the EM fields. A direct comparison between 

the Yee's algorithm and the DGF method it is not possible since its performance depends on 

the size of the object to model. The number of operations required for the DGF technique to 

compute one time step are in the order of Nt*N4 where N is the number of nodes in the 

structure. and Nt is the number of previous time instants. Only Nt*N nodes (two components) 

are required to be stored using the DGF technique. The amount of operations required for the 

Yee's algorithm to compute one time step is in the order of Nx*Ny*Nz where Nx, Ny, Nz are 
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the length, width and height of a rectangular grid containing the structure to be model (usually 

additional nodes are provided for the ABC). Also Nx*Ny*Nz nodes (six components) are 

stored for the computations. If the structure occupies a small number of nodes N, but it only 

can be enclosed in a large volume, (i. e. a wire or a plate) the DGF technique will require a 

moderate number of operations and an amazingly low amount of memory to compute the 

scattered fields just to produce the exactly the same result as Yee's algorithm. However, as N 

increases (i. e. for any non planar structure) the amount of computations rise to very high 

values and even the amount of required memory storage is comparable to the Yee's algorithm. 

This large number of computations implies some limitations about using the DGF technique 

to solve complex EM problems on its own. However, the application of the method to 

enhance the Yee's algorithm or provide an adequate framework for numerically exact general 

purpose boundary conditions in FDTD seems perfectly possible. 

Future work based on the Green's function has many possibilities. The solution of boundary 

problems (i. e. between regions with different steps) can be studied using this approach. It has 

to be noted that boundary problems can be treated by this technique exacting the same 

solution that the original Yee's algorithm would produce. As a consequence, the technique 

does not produce numerical reflections at the boundaries. This formulation is well suited to 

applying higher order interpolation techniques and therefore implement multiresolution and 

conformal techniques, which are 100% compatibles with FDTD Yee's algorithm. 

Another source of future work is the mathematical understanding of the scalar DGF. This 

function verifies the finite difference scalar wave equation which is a recursive formula on the 

indexes n, i, j, k and the variables At, Ax, Ay, Az. This recursive formula can be seen as a 

multidimensional generalisation of the recursive formula for the Tschebycheff polynomials. 

This suggest the scalar DGF can have in different forms similar properties to these 

polynomials but in a multidimensional environment. If this can be proven these functions can 

be used as an improved form of response for multidimensional filters, taper for antenna arrays 

etc. 

Besides the analysis of the FDTD method, this thesis revisits the subject of higher order 

polynomial approximations for FDTD. The study is carried out using the concept of a 

generalised finite difference operator, which is described in series form. For certain 

coefficients of the series and sampling conditions, this operator is exactly a representation of 

the derivative of a function, as it was demonstrated by Lagrange in the early 19th century. 
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The introduction of higher order schemes for the time index has not been considered since 

this implies more time steps are needed and therefore more memory requirements. The study 

shows two possible strategies to achieve low dispersion higher order algorithms. 

The first one only uses higher order approximations of the spatial terms to produce accurate 

estimations of the spatial derivatives only. This is implemented by using the exact 

representation of the derivatives as an infinite series of finite differences and truncating this 

series to certain number of terms (order of the approximation). No matter how accurate is this 

approximation, it does not provide a better dispersion characteristic of the algorithm, since the 

dispersion of the time term due to a finite 't prevails. Dispersion can only be reduced in this 

case if At is also decreased accordingly (in many cases, up to ten times). This is a conclusion 

that can be applied to any technique (i. e. wavelets etc. ) that are intended to improve the 

FDTD algorithm by a better approximation of the spatial derivatives. The second strategy is 

based on obtaining a balance of the dispersion of the time and spatial terms. For a given 

direction it is possible to obtain an operator represented by an infinite series of finite 

differences which provide zero dispersion. This series is truncated to the order of the 

algorithm. This approach presents an excellent low dispersion for the selected directions 

without reducing the time step. However, dispersion increases with angle away from the 

chosen direction. 

This thesis also deals with the modelling of 2D periodic structures using FDTD. The FDTD 

technique operates in time domain and it is causal with respect to time. The direct formulation 

of boundary conditions that enforce the periodicity of the scattered fields, according to the 

Bloch theorem results in non-causal schemes that are not compatible with FDTD. This means 

that for a general incident field the evaluation of the periodic boundary conditions require the 

knowledge of EM fields in future and past time instants. In some cases of incident field, for 

instance, a plane wave normally incident to the 2D periodic structure plane, the periodic 

condition is causal since it depends only on fields at the present time instant. A solution to 

non norma I incidence is proposed using coordinate basis transformation including the time 

axis. In the new basis, the problem is causal with respect to the new time coordinate. As a 

result a causal finite difference scheme using only EM fields at previous time instants (in the 

new transformed time) is obtained. 

The coordinate transformation can be implemented in different ways. The Lorentz 

transformations can relate to a new basis where the periodic boundary conditions are causal 

with respect the transformed time. In this case the transformation has physical meaning since 
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it can be seen as the scattering problem seen by a relativistic observer moving parallel to the 

periodic observer. This approach has the advantage that Maxwell equations are invariant with 

respect the Lorentz's transform. As a result, Maxwell equations are the same for the moving 

observer and therefore FDTD can be directly applied to solve the problem. The main 

drawback of this solution is the movement of the structure being analised with respect the 

observer and the FDTD grid. In the general case, this solution requires the interpolation of the 

structure across the grid or else to fix the solution at a set of discrete values of the problem 

parameters (angle of incidence or scan angle). 

The solution preferred here is based on a 'static' transformation that avoid the movement of 

the structure with respect to the observer and grid. No interpolation is required for the 

structure, but Maxwell's equations are not invariant to the transformation of coordinates in 

this case. As a consequence, some extra terms are added to Maxwell's equations and FDTD 

should be extended to account for them. 

A possible line of future work is to use the Lorentz transform to develop a method that uses 

FDTD (without any extension) to solve periodic problems. An interesting possibility is to 

investigate the FDTD methods invariance with respect to discrete coordinate index 

transformations. Is it possible to develop a true discrete version of the special relativity? If 

not, what are the limitations? 

The final part of the thesis is devoted to the practical use of FDTD to design a new type of 
quasi-optical planar receiver at submm wave frequencies. The integrated receiver consists of a 
coplanar annular slot on a silicon substrate, which feeds an elliptical silicon lens. The receiver 
should include a mixing diode and IF filters incorporated to the design of the annular slot. The 
LO power is injected quasi optically via the annular slot antenna. The image frequency 

rejection filters of the mixer are external to the receiver (i. e. dichroic plates). 

Two different designs are considered. The first design places the mixing diode inside the 

annular slot and a RF/IF isolating slab is also inside the central region of the annular slot. The 

second design includes a diode matching stub connected to the annular slot. The mixing diode 

is placed at the end of this stub, but the RF/IF isolating stub is still placed at the central region 

of the slot. The concept of using the central part of the annular slot for the isolating stub 

and/or the mixing diode is highly innovative. This design is very compact and highly suitable 

for coplanar imaging arrays where the integrated receivers should share the same substrate 

with the beamforming network. However, there is the potential danger of severe distortion of 

the radiation pattern of the annular slot, because of the undesired radiation from the filtering 
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stub. The impedance of the combined structure slot+filter should be carefully modelled to 

evaluate the matching of the passive part of the receiver to the mixing diode. 

The FDTD model shows that the pattern from the structure is only slightly distorted by the 

filtering stub. The calculated isolation and bandwidth of the RF/IF stub is adequate for the 

mixer in this application (-20dB in a 5% bandwidth). Regarding, the matching for the diode, 

the configuration with the diode on the central region of the annular slot provide a high 

impedance at resonance (> 100ohms) that is too high for the optimum RF diode impedance 

(typically about 20 ohms). The configuration with external matching stub can provide a lower 

impedance by using a quarter wavelength transformer section. 

Future work on the modelling of those integrated antennas should aim to determine large and 

small signal non linear models for the active components, based on experimental 

characterisation. Experimental verification of this FDTD approach is vital to prove its 

accuracy and hence provide a CAD design for millimetre and sub millimetrewave active 

antennas that requires no experimental design iteration. The ultimate objective will be the 

accurate design of imaging arrays of integrated receivers operating in the submmW region. 
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