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Abstract 

 

Background 

Despite increasing evidence supporting the clinical utility of immune infiltration in the estrogen 

receptor-negative (ER-) subtype, the prognostic value of immune infiltration for ER+ disease is 

not well defined.   

Methods 

Quantitative immune scores of cell abundance and spatial heterogeneity were computed using 

fully automated hematoxylin & eosin-stain image analysis algorithm and spatial statistics for 

1,178 postmenopausal patients with ER+ breast cancer treated with 5 years’ tamoxifen or 

anastrozole. Prognostic significance of immune scores was compared with Oncotype DX 21-gene 

recurrence score (RS), PAM50 risk of recurrence (ROR) score, IHC4, and clinical treatment score 

(CTS) available for 963 patients.  

Results 

Scores of immune cell abundance were not associated with recurrence-free survival. In contrast, 

high immune spatial scores indicating increased cell spatial clustering were associated with poor 

10-year, early (0-5 year) and late (5-10 year) recurrence-free survival (Immune Hotspot LR-χ2 = 

14.06, P < 0.001 for 0-10 year; LR-χ2 = 6.24, P = 0.01  for 0-5 year; LR-χ2 = 7.89, P = 0.005 for 5-10 

year). The prognostic value of spatial scores for late recurrence was similar to that of IHC4 and 

RS in both populations, but was not as strong as other tests in comparison for recurrence across 

10 years.  

Conclusions 

These results provide a missing link between tumor immunity and disease outcome in ER+ 

disease by examining tumor spatial architecture. The association between spatial scores and late 

recurrence suggests a lasting memory of pro-tumor immunity that may impact on disease 
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progression and evolution of endocrine treatment resistance, which may be exploited for 

therapeutic advances.  
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Introduction 

Estrogen receptor-positive (ER+) subtype accounts for about 80% of all breast cancers, 

the most common cancer in women. At diagnosis, the majority of ER+ patients have a good 

prognosis if treated with endocrine therapy. However, a subset of patients is at risk for disease 

recurrence and death, particularly after 5 years of adjuvant endocrine therapy. Differentiating 

these patients from low-risk patients who can safely avoid chemotherapy is a priority for breast 

cancer management (1). Currently available prognostic tests to predict risk in endocrine-treated 

patients include the widely used Oncotype DX 21-gene recurrence score (RS) (2), the PAM50 risk 

of recurrence (ROR) score (3), and the immunohistochemistry-based IHC4 test that is combined 

with the clinical treatment score (CTS) to integrate clinicopathological parameters (4). In 

particular, the amount of prognostic information provided for long-term (0-10 years) and late 

(beyond five years) recurrence varies across these tests (5, 6).  

Immune infiltration is not explicitly accounted for in any of the above tests. 

Increasing evidence supports the role of tumor-infiltrating lymphocytes (TILs) in influencing 

disease progression and treatment response in breast cancer (7-10). Characterization of the 

nature of immune responses is key to understanding tumor immunity and empowering 

immunotherapy.  However, the majority of reports focus on ER- and Human Epidermal growth 

factor receptor 2-positive (HER2+) breast cancers, where extensive immune infiltration is more 

common and immune scores were found to be highly predictive of survival and response to 

chemotherapy (8, 11-15). In contrast, there is a lack of definitive data on the prognostic value of 

immune scores in ER+ breast cancer following endocrine treatment (7, 16). A major reason for 

this is the absence of reproducible scoring methods to facilitate large-scale studies of ER+ breast 

cancer. This also limits the translation of immune scoring into clinical advances. 

We have developed quantitative and reproducible approaches to score lymphocytic 

infiltration (LI) in breast cancer, based on fully automated image analysis of routinely generated 

hematoxylin & eosin (H&E)-stained histology sections. Quantitative immune scores of overall LI 
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in tumors, as well as intra-tumor lymphocyte ratio (ITLR), were associated with good survival in 

ER- and ER-/HER2- breast cancer (17, 18). In addition, our automated image analysis scheme 

enables the study of complex spatial patterns of TILs (19). The spatial interactions among TILs 

and cancer cells generate complex ecological dynamics that can ultimately impact tumor 

progression and response to treatment (8, 20-22). In this study of 1,178 postmenopausal breast 

cancer patients with ER+ disease patients enrolled in the ATAC (Arimidex or Tamoxifen Alone or 

Combined) trial, our aims were to: 1) establish the prognostic value of H&E-based, quantitative 

scores of TIL abundance as well as spatial heterogeneity for 10-year, early (0-5 year) and late (5-

10 year) recurrence after endocrine therapy; 2) compare their prognostic value with established 

prognostic tests including RS, ROR, IHC4 and CTS; 3) evaluate a new histology-based model that 

combines IHC4 and immune scores as a cost-effective biomarker. 

 

 

Materials and Methods  

Study population 

Classical clinicopathologic factors (age, nodal status, tumor size, grade, randomized 

treatment) were collected from patients with ER+ primary breast cancer in the ATAC trial who 

were randomly assigned to either anastrozole or tamoxifen (23) (Supplementary Table 1). 1,178 

eligible patients who did not receive chemotherapy and from whom H&E-stained slides from 

formalin-fixed, paraffin-embedded tissues were available were included (Figure 1). Of these, 963 

patients were scored with prognostic scores including IHC4, RS, ROR46 and CTS (Table 1). 1,037 

tumors were HER2-, 909 of which were scored with prognostic scores. A subset of 91 TransATAC 

samples were randomly selected and scored on H&E sections according to international 

recommendations (24) by a histopathologist (KN). Baseline demographics and clinical 

characteristics for all patients included in this analysis are provided in Supplementary Table 1. 

Commented [Y1]: The section for image analysis was 
moved here per reviewer’s comment. Is this alright? 
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This study was approved by the South-East London Research Ethics Committee, and all patients 

included gave informed consent.  

 

H&E image analysis and validation 

We curated a digital database of H&E histology slides for TransATAC and applied our 

histology image analysis pipeline (17) (Supplementary Figure 1A). In brief, the image analysis 

pipeline exploits the nuclear morphological differences among cancer cells, lymphocytes, and 

stromal cells to differentiate them in H&E histological tissue sections. Cancer cell nuclei are 

generally large in size and demonstrate greater variability in appearance as compared to 

lymphocyte and stromal cell nuclei; lymphocyte nuclei are typically small, round and 

homogeneously basophilic, and nuclei of stromal cells including fibroblasts and endothelial cells 

are more elongated. The pipeline consisted of four stages: (1) unsupervised segmentation of the 

nuclei; (2) supervised classification of individual cell nuclei into cancer, lymphocyte, other cell 

nuclei, and artefacts; (3) kernel smoothing to correct local sporadic errors; and (4) a hierarchical 

multi-resolution model fitting to identify cancer cell clusters to further improve classification 

accuracy. The classifier was previously validated in METABRIC to have an overall accuracy of 

90.1% and a high correlation between image analysis and pathological scores in the entire cohort 

(17). 

To evaluate the accuracy of our image analysis pipeline for TransATAC, a test set of 627 

cells randomly sampled from 3 images were annotated by a pathologist (DNR) blinded to image 

analysis results (Supplementary Figure 1A). Accuracy for identifying the three cell types was: 

cancer cell 93.8%, lymphocyte 87.9% and stromal cell 84.2% (Supplementary Figure 1B). The 

balanced accuracy as the average for sensitivity and specificity for the three cell types were 

0.864 for cancer, 0.839 for lymphocyte and 0.876 for stromal cell (Supplementary Figure 1C). 

On average 217,101 cancer cells (±178677.5), 25,956 lymphocytes (±35365.21) and 161,341 
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stromal cells (±91862.59) were identified in each TransATAC whole-section sample, with a total 

of 525,718,198 cells identified in the whole cohort. 

 

Automated scoring of immune cell abundance and spatial heterogeneity   

Immune cell abundance scores include Lymphocytic Infiltration (LI) which summarizes 

the fraction of lymphocytes in all cells in the tumor section, Intra-Tumor Lymphocyte Ratio 

(ITLR), Adjacent-to-Tumor Lymphocyte Ratio (ATLR) and Distal-To-Tumor Lymphocyte Ratio 

(DTLR) which are defined as the number of specific types of lymphocytes normalized by the 

number of cancer cells (17, 18). Intra-Tumor Lymphocytes (ITLs), Adjacent-to-Tumor 

Lymphocytes (ATLs) and Distal-To-Tumor Lymphocytes (DTLs) were identified using 

unsupervised clustering based on their spatial proximities to cancer cells, which was quantified 

using a kernel density method on the distribution of cancer cells.  

Immune cell spatial scores quantify the amount of spatial clusters, or hotspots, formed 

by lymphocytes and/or cancer cells within the section (Figure 2) (13). Getis-Ord spatial analysis 

was carried out to identify tumor regions with statistically significant spatial clustering of 

immune cells, i.e., immune hotspots. This means that, the frequency of immune cells appearing 

at these locations is greater than expected by chance given the distribution of all cells in the 

entire tumor section and that, importantly, the difference between the actual and expected 

value is statistically significant. A p-value was computed for each spatial region, which can be 

used to determine statistical significance using a significance level of 0.05. Previously, tumors 

with a high amount of regions that are both immune hotspots and cancer hotspots (immune-

cancer hotspots) were found to have good prognosis in ER- cancer (13). Here for comparison in 

ER+ breast cancer, Cancer Hotspot and Immune Hotspot scores that examine only one type of 

cell at a time were also included.  

For validation of the inter-correlations among immune scores, H&E-stained, whole-

section images of 743 ER+, treatment-naïve primary tumors from the METABRIC study (25) were 
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analyzed using the same methods. All patient specimens were obtained with appropriate ethical 

approval from the relevant institutional review boards.  

 

Statistical analyses 

Our primary objective was to assess whether immune scores had statistically significant 

prognostic information for predicting 10-year recurrence in postmenopausal women with breast 

cancer given either tamoxifen or anastrozole monotherapy but not chemotherapy. Secondary 

analyses included determining the prognostic ability of immune scores in predicting early (0-5 

year) and late recurrences (5-10 year), in patients divided into subgroups by HER2 status, and 

the additional prognostic information provided by tests in multivariable comparisons including 

age (<65, ≥65 years), nodal status (0,1-3,4+), tumor size (≤1cm, >1 to ≤2cm, >2to ≤3cm, >3 cm), 

centrally read grade (poor, intermediate, well differentiated), and randomized treatment 

(anastrozole v tamoxifen). Hazard Ratios are for a change in 1 SD in the overall dataset to 

compare the effect size between different immune scores. The contribution of each of the 

variables was evaluated by the change in likelihood ratio χ2 (LR-χ2; 1 df, significance level χ2=3.84) 

in three ways: by univariate analyses, as an addition to a model containing only the clinical 

variables, and as a difference in LR-χ2 when the variable was added to the IHC4 score. Sample 

splitting was used in which the immune score was dichotomized by using half the data as the 

training set, and then the cut-off points for each score were evaluated in the remaining half of 

the data as the validation set. Since the use of optimizing cut-offs may lead to overestimation of 

prognostic power, dichotomized variables were only used for analysis presented in Figure 2B-D, 

and continuous variables were used elsewhere. For measuring correlation among immune 

scores and with pathological TIL scores, Spearman’s correlation was used. All statistical analyses 

were performed using STATA version 13.1 or R version 3.3.1.  All statistical tests were two-sided 

and a P value of less than 0.05 was considered statistically significant.  
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Results 

Correlations among immune scores 

Four immune abundance scores (overall Lymphocytic Infiltration LI, Intra-Tumor 

Lymphocyte Ratio ITLR, Adjacent-to-Tumor Lymphocyte Ratio ATLR and Distal-To-Tumor 

Lymphocyte Ratio DTLR) and three spatial scores (Immune Hotspot, Cancer Hotspot, Immune-

Cancer Hotspot) were calculated based on fully automated histology image analysis on whole 

section slides (Figure 2, Table 1, Supplementary Figure 2. There was a strong, negative 

correlation between ITLR and DTLR (r = -0.888, Table 2), indicating that lymphocytes either 

infiltrate into close contact with cancer cells, or largely stay in the stromal area. Correlations 

among spatial scores were also strong (r = 0.502-0.796), suggesting that spatial clustering of 

cancer cells and lymphocytes tends to co-occur in the same tumors. These data were further 

validated in the METABRIC cohort (25) (n = 743, Table 2. We then compared the automated 

scores to a pathologist’s TIL score (24) in a subset of 91 TransATAC samples. Overall, a weak 

correlation between the pathologist’s score and all automated scores was found (r < 0.260), with 

the highest correlation observed between TILs scoring and DTLR (r = 0.259) (Supplementary 

Figure 3).    

 

Prognostic value of immune scores 

None of the immune abundance scores provided significant prognostic information for 

recurrence (p > 0.1). In contrast, high spatial scores were associated with significantly poor 

recurrence-free survival across 10 years in the univariate analysis (n = 1,178, Immune Hotspot 

LR-χ2 = 14.06, P < 0.001; Table 3). When dichotomized, immune spatial scores were also 

prognostic (Immune Hotspot training set n = 589, p = 0.01, Hazard Ratio HR = 1.88 and 95% 

Confidence Interval CI = [1.16-3.07]; validation set n = 589, p = 0.002, HR = 2.21 [1.35-3.63], 

Figure 2, Supplementary Figure 4). In addition, immune spatial scores were significantly 
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prognostic for early (0-5 year) and late recurrence (5-10 year) (Immune Hotspot 0-5 year: LR-χ2 

= 6.24, P = 0.01; 5-10 year: LR-χ2 = 7.89, P = 0.005; Table 3). In the multivariate analysis adjusted 

for clinical variables as expressed by the CTS including node status, tumor size, grade, age and 

treatment, spatial scores remained prognostic for all three time windows, except for Cancer 

Hotspot for early recurrence and Immune-Cancer Hotspot for late recurrence (Table 3).  

None of the patients in this study received trastuzumab if their tumors were HER2+, as 

is current practice. In the HER2- population (n=1,037), again spatial scores but not abundance 

scores were prognostic for all time windows (Table 3). In the multivariate analysis, spatial scores 

were prognostic for all time windows except for Immune Hotspot and Immune-Cancer Hotspot 

for early recurrence (Table 3). We henceforth focused on spatial scores only.  

 

Comparison of immune spatial scores with RS, IHC4, ROR, and CTS 

The prognostic value of spatial scores for late recurrence (5-10 year) is similar to that of 

IHC4 and RS in both the overall population (Immune Hotspot: LR-χ2 = 6.93, IHC: LR-χ2 = 6.75, RS: 

LR-χ2 = 6.79) and the HER2- population (Immune Hotspot LR-χ2 = 9.80, IHC4 LR-χ2 = 10.87, RS LR-

χ2 = 7.78, Figure 3). None of these scores, however, added to IHC4 and RS for early recurrence 

(∆LR-χ2 ≤ 3.84) or was as prognostic as ROR and CTS in any time window (Figure 3). We then 

examined the additional prognostic value of spatial scores to IHC4 and RS for 0-10 year and late 

recurrence. Immune-Cancer Hotspot provided statistically significant prognostic value when 

added to IHC4 and RS for years 0-10 whereas Immune Hotspot also added prognostic value to 

IHC4 and RS for late recurrence (∆LR-χ2 > 3.84, Table 4). Cancer Hotspot, on the other hand, 

added prognostic information to IHC4 and RS in both time windows (Table 4). In the HER2- 

population, Immune Hotspot and Immune-Cancer Hotspot added statistically significant 

prognostic information to IHC4 and RS in both time windows (Table 4). Again, Cancer Hotspot 

added statistically significant information to IHC4 and RS in both time windows (Table 4). 
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However, none of the spatial scores provide significant prognostic information beyond that of 

CTS or ROR in the HER2- or the overall population (∆LR-χ2 ≤ 3.84). 

 

IHC4+Immune spatial score 

To evaluate a new biomarker based entirely on histology slides, we sought to determine 

the prognostic value of a combined model of IHC4 and spatial scores for 0-10 year and late 

recurrence. The prognostic value of IHC4 and RS are similar in the two-time windows and 

populations (∆LR-χ2 ≤ 3.84). For predicting recurrence across 10 years, Cancer Hotspot combined 

with IHC4 achieved a better performance than RS alone in both cohorts (overall population ∆LR-

χ2= 9.23; in HER2-: ∆LR-χ2 = 6.54, Figure 3). For predicting late recurrence, prognostic value 

higher than RS was observed for IHC4 combined with any of the spatial score in both 

populations, except for Immune-Cancer Hotspot in the overall population (Figure 3). However, 

none of the combined scores outperformed CTS and ROR. Finally, IHC4 combined with spatial 

scores added prognostic value to CTS, similar to that achieved by the RS but lower than ROR in 

the overall population (∆LR-χ2: IHC4+Immune Hotspot = 22.64, IHC4+Immune-Cancer Hotspot = 

22.96, IHC4+Cancer Hotspot = 23.38, RS = 23.53, ROR 29.18).  

 

 

Discussion 

In this study, we aimed to establish the prognostic value of immune scores for 

recurrence in ER+ breast cancer patients treated with anastrozole or tamoxifen. While immune 

response and immunotherapy for ER- diseases have been under the spotlight, correlation of TILs 

with outcomes in ER+ disease is less clear (16), with many studies reporting the lack of significant 

prognostic association (11, 15, 26, 27). In line with these reports, we did not find prognostic 

value in immune abundance scores that only account for the amount of TILs in the entire 

histology section or in specific tumor regions including intra-tumor, adjacent-tumor, and distal-
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tumor, as scored by digital histology slide image analysis. In contrast, our immune scores based 

on the spatial heterogeneity of TILs were highly prognostic, particularly for late recurrence after 

5 years of endocrine therapy. This suggests a lasting memory of tumor immunity on disease 

progression and evolution of treatment resistance in ER+ cancer. Such spatial heterogeneity may 

reflect spatial distribution patterns of different immune cell subsets. Intra-tumor heterogeneity 

of cancer cells may also in turn influence immune spatial distribution through cytokine secretion 

and neoantigen presentation. While the biological mechanisms remain to be investigated, our 

finding has significant clinical implication, which suggests that TILs have been previously 

overlooked in ER+ diseases due to the lack of in-depth analysis of TILs on the tissue spatial 

organization level. Our findings highlight the importance of examining not just cell abundance 

but also spatial patterns that can be indicative of immune functional phenotypes and disease 

prognosis.  

In contrast to our observation in ER- tumors (13), high Immune-Cancer Hotspot score, 

indicating increased spatial clustering in immune and cancer cells, correlated with poor 

prognosis in ER+ breast cancer. However, this is consistent with our previous finding that 

immune gene signature was associated with poor response to endocrine therapy in a 

neoadjuvant setting (28, 29). The difference may be due to immune composition and 

functionality in the two subtypes, and mechanisms by which immune response contributes to 

hormonal therapy resistance (30, 31). In a recent study of immune composition in 7,270 breast 

cancers, higher fraction of T-regulatory cells and M2 macrophages and lower fraction of M1 

macrophages was found in ER+ compared with ER- cancers (12). Therefore, compared with ER- 

subtype, the immune landscape of ER+ subtype is characterized by increased T-cell regulation 

and macrophage polarization towards pro-tumorigenic M2, which is consistent with our results.  

Strengths of this study include the large patient cohort with long-term follow-up 

systematically collected in a well-documented clinical trial, well-characterized samples that 

enables a direct comparison with established biomarkers, and fully automated and reproducible 
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methods for immune scoring. These allowed us to evaluate quantitative immune scoring based 

entirely on H&E-stained tumor slides, which are readily generated as part of clinical routine. 

Comparison of the automated immune scores with a pathologist’s score following 

recommendations for TIL evaluation in breast cancer (24) in a subset of samples showed a weak 

correlation overall. This is, however, unsurprising when one considers that the automated scores 

include regions of the tumor that are excluded on pathological evaluation. Indeed, the latter 

includes stromal TILs only, which are assessed as percentage surface area that is inflammatory 

as opposed to fibroblastic (25). In contrast, the automated scores count either the absolute 

number of lymphocytes in relation to cancer cells, or the frequency of (co-)clustering of immune 

and cancer cells. Thus, the information gleaned from these methods potentially provides 

different biological information about the interaction between these cell types, and, as 

demonstrated herein, can provide valuable prognostic information. Developing a histology-

based test as such thus has the advantages of cost effectiveness and general applicability. The 

prognostic value of immune scores for late recurrence is similar to that of IHC4 and RS which is 

the most widely used test for residual risk of recurrence following surgery and endocrine. 

Although they did not add prognostic value to CTS, in almost all occasions immune scores add 

prognostic information to the individual components that make up CTS, including node status, 

size, grade, age and treatment. Since CTS was developed and optimized using TransATAC 

samples (4), the independent prognostic value of immune scores remains to be validated in 

further endocrine adjuvant therapy studies with homogeneous treatments such as POETIC (32). 

In addition, the strong prognostic value of CTS and ROR could be partly explained by the use of 

tumor size in their calculation, which is a highly prognostic factor. Furthermore, IHC4 combined 

with immune score is statistically significantly more prognostic than RS, particularly for late 

recurrence. The clinical utility of IHC4+ immune scores as a combined histology-based test is well 

worth exploring.   
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Weaknesses of our study include the use of a single histology slide per tumor such that 

intra-tumor heterogeneity cannot be fully addressed, and the lack of immune markers that may 

provide further insights for immune functions in ER+ disease and better predictors due to little 

residual tissue available. In addition, whether our methods can sufficiently address challenges 

arising from variability in factors including fixation, staining, and acquisition in a clinical setting, 

need to be evaluated before implementation. Our results also only apply to women who are 

chemotherapy-free. 

Furthermore, our study also provides relevant information for new treatment strategy 

in the high-risk ER+ population identified by immune scores. Our findings support different 

immunosuppressive mechanisms in the ER+ and ER-subtypes, and in light of these results call 

for the development of novel cancer therapeutics targeting the pathways that reverse these 

mechanisms specifically for ER+ disease. This may also help explain why anti-PD1 checkpoint 

inhibition, despite demonstrating activity as monotherapy in early phase trials in ER+ breast 

cancer, had low response rates compared with triple-negative breast cancer and highly variable 

among trials (33, 34). Further, we speculate that immune scores may be useful as predictive 

biomarkers for immunotherapy, given the limited clinical utility of PDL1 expression in guiding 

patient selection (35).  

In summary, enabled by fully automated image analysis of histology sections, our study 

provided an additional dimension to the analysis of immune functional phenotype in breast 

cancer. Spatial data provided by histology, once quantitatively analyzed, will aid the 

identification of clinically relevant features, potentially yielding predictions more powerful than 

measurements of cell abundance that ignore the spatial context. 
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Tables  

Table 1. Immune scores and prognostic scores* 

Type and Name Definition Reference 

Immune abundance scores (based on 
H&E) 

  

LI: Lymphocytic Infiltrate Fraction of lymphocytes in all cells. Cells were 
identified using automated histology image 
analysis.  

Yuan et al., 2012 (17) 

ITLR: Intra-Tumor Lymphocyte Ratio  The number of intra-tumor lymphocytes 
normalized by the number of cancer cells.  
Intra-tumor lymphocytes were identified as the 
cluster of lymphocytes to be the closest to 
cancer cells based on their spatial proximity in 
unsupervised clustering. 

Yuan et al., 2015 (18) 

ATLR: Adjacent-Tumor Lymphocyte 
Ratio 

The number of adjacent-to-tumor lymphocytes 
normalized by the number of cancer cells. 
Adjacent-to-tumor lymphocytes were 
identified as the intermediate cluster of 
lymphocytes based on their spatial proximity 
to cancer cells in unsupervised clustering. 

DTLR: Distal-Tumor Lymphocyte 
Ratio  

The number of distal-tumor lymphocytes 
normalized by the number of cancer cells. 
Distal-tumor lymphocytes were identified as 
the cluster of lymphocytes to be the furthest 
away from cancer cells based on their spatial 
proximity in unsupervised clustering. 

Immune spatial scores (H&E)   
Cancer Hotspot Fraction of tissue displaying spatial clustering 

of cancer cells. Tumor regions with spatial 
clustering of cancer cells were identified using 
Getis-Ord hotspot analysis, which assigned 
statistical significance of difference between 
observed local cancer cell density and global 
mean. 

Nawaz et al., 2015 
(13) 

Immune Hotspot Fraction of tissue displaying spatial clustering 
of immune cells. Tumor regions with spatial 
clustering of immune cells were identified in a 
similar way as cancer hotspots. 

Immune-Cancer Hotspot Fraction of tissue displaying spatial clustering 
of immune and cancer cells simultaneously, in 
other words, tumor regions that are both 
immune hotspots and cancer hotspots.  

Prognostic scores   
IHC4 (IHC) Immunohistochemistry-based score as a 

combination of ER, PgR, HER2, Ki67 expression, 
previously derived using TransATAC samples.  

Cuzick et al., 2011 (4) 

CTS (clinical) Clinical treatment score that consider node 
status, size, grade, age and treatment, 
previously derived using TransATAC samples. 

Cuzick et al., 2011 (4) 
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RS (Molecular) Oncotype DX 21-gene recurrence score based 
on RNA expression of 21 prespecified 
Oncotype DX genes.  

Paik et al., 2004 (2) 

ROR (Molecular) PAM50 risk of recurrence score that combine 
molecular signatures with clinical information 
on tumor size. 

Nielsen et al., 2010 (3) 

*Unless specified otherwise, the scores were predefined for validation in external cohorts.  

H&E: hematoxylin & eosin, IHC: immunohistochemistry.  
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Table 2. Correlations among immune scores and clinical variables in TransATAC and METABRIC* 

Dataset / variable 
ITL ATL DTL LI 

Cancer 

Hotspot 

Immune 

Hotspot 

Immune-Cancer 

Hotspot 
Age Grade Node Size Treatment 

TransATAC             

ITL -- -- -- -- -- -- -- -- -- -- -- -- 

ATL -0.317 -- -- -- -- -- -- -- -- -- -- -- 

DTL -0.888 -0.154 -- -- -- -- -- -- -- -- -- -- 

LI -0.01 0.381 -0.174 -- -- -- -- -- -- -- -- -- 

Cancer Hotspot -0.422 0.309 0.289 0.167 -- -- -- -- -- -- -- -- 

Immune Hotspot -0.395 0.409 0.213 0.476 0.796 -- -- -- -- -- -- -- 

Immune-Cancer Hotspot -0.408 0.203 0.327 0.341 0.502 0.75 -- -- -- -- -- -- 

Age 0.01 0.018 -0.019 -0.036 0.145 0.077 0.033 -- -- -- -- -- 

Grade -0.168 0.126 0.114 0.144 0.268 0.287 0.243 0.128 -- -- -- -- 

node 0.007 0.212 -0.018 0.213 0.096 0.096 0.107 0.188 0.099 -- -- -- 

Size 0.021 -0.012 -0.016 -0.051 0.231 0.194 0.155 0.247 0.171 0.322 -- -- 

Treatment 0.028 -0.03 -0.014 0.044 -0.023 0.021 0.048 -0.002 -0.014 0.007 0.024 -- 

METABRIC             

ITL -- -- -- -- -- -- -- -- -- -- -- -- 

ATL -0.276 -- -- -- -- -- -- -- -- -- -- -- 

DTL -0.83 -0.306 -- -- -- -- -- -- -- -- -- -- 

LI 0.077 0.199 -0.191 -- -- -- -- -- -- -- -- -- 

Cancer Hotspot -0.331 0.035 0.307 0.062 -- -- -- -- -- -- -- -- 

Immune Hotspot -0.319 0.16 0.223 0.29 0.849 -- -- -- -- -- -- -- 

Immune-Cancer Hotspot -0.253 0.051 0.221 0.152 0.796 0.824 -- -- -- -- -- -- 

*ITLR: Intra-Tumor Lymphocyte Ratio, ATLR: Adjacent-to-Tumor Lymphocyte Ratio, DTLRL: Distal-To-Tumor Lymphocyte Ratio, LI: Lymphocytic Infiltration. 
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Table 3. Comparison of prognostic value of immune scores, classical clinical variables, and prognostic scores tests in univariate and multivariate analyses 

adjusted for nodal status, grade, size, age and treatment (all CTS components).  

Group n 
No. of 

Recurre
nces 

Univariate Multivariate* 

Immune Hotspot Cancer Hotspot Immune-Cancer Hotspot Immune Hotspot Cancer Hotspot Immune-Cancer Hotspot 

HR(95%CI) LR-χ2 P† HR(95%CI) LR-χ2 P† HR(95%CI) LR-χ2 P† HR(95%CI) LR-χ2 P† HR(95%CI) LR-χ2 P† HR(95%CI) LR-χ2 P† 

All patients                     

0-5 years 1178 103 1.23 (1.06-
1.43) 

6.24 0.01 1.31 (1.12-
1.53) 

9.83 0.002 1.30 (1.14-
1.49) 

11.46 <0.00
1 

1.13 (0.97-
1.32) 

4.56 0.03 1.20 (1.02-
1.41) 

2.36 0.12 1.20 (1.05-
1.38) 

5.85 0.015
6 

5-10 years 1019 113 1.26 (1.09-
1.47) 

7.89 0.005 1.30 (1.11-
1.52) 

9.34 0.002 1.24 (1.05-
1.47) 

5.45 0.01 1.16 (1.00-
1.35) 

3.61 0.05 1.21 (1.03-
1.42) 

5.11 0.02 1.14 (0.97-
1.35) 

2.27 0.13 

0-10 years 1178 216 1.25 (1.23-
1.39) 

14.06 <0.00
1 

1.30 (1.17-
1.46) 

19.16 <0.001 1.28 (1.15-
1.42) 

16.72 <0.00
01 

1.15 (1.03-
1.28) 

5.91 0.01 1.20 (1.08-
1.35) 

9.59 0.002 1.17 (1.06-
1.30) 

7.77 0.005
3 

HER2-
negative 
patients 

                    

0-5 years 
1037 78 1.23 (1.04-

1.46) 
4.63 0.03 1.33 (1.11-

1.59) 
8.50 0.003 1.26 (1.06-

1.49) 
5.56 0.01 1.12 (0.94-

1.34) 
1.49 0.22 1.21 (1.01-

1.46) 
3.78 0.05 1.14 (0.96-

1.36) 
2.00 0.16 

5-10 years 

909 102 1.33 (1.14-
1.54) 

10.9 0.001 1.39 (1.18-
1.62) 

13.77 <0.001 1.33 (1.12-
1.57) 

8.63 0.003 1.23 (1.06-
1.42) 

6.31 0.01 1.30 (1.11-
1.53) 

9.09 0.002 1.22 (1.04-
1.44) 

4.95 0.026 

0-10 years 
1037 180 1.28 (1.15-

1.44) 
15.10 <0.00

1 
1.36 (1.21-

1.53) 
22.17 <0.001 1.29 (1.14-

1.45) 
13.98 <0.00

1 
1.18 (1.05-

1.32) 
7.01 0.008 1.26 (1.12-

1.42) 
12.49 <0.00

1 
1.18 (1.05-

1.32) 
6.33 0.012 

*Adjusted for node, grade, tumor size, age, treatment. CI=confidence interval; HR=hazard ratio; CTS=clinical treatment score 
† Likelihood Ratio χ 2, P-value two-sided  
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Table 4. Additional prognostic value of immune spatial scores to IHC4 and RS in all patients 

and Her2- subgroup.  

All patients 

Immune Spatial Score  

0-10 (N=963) 5-10 (N=824) 

HR (95%CI) ∆LR-χ2 P* HR (95%CI) 
∆LR-
χ2 

P* 

       

Cancer Hotspot to IHC4 1.22 (1.08-1.37) 9.72 0.002 1.24 (1.04-1.47) 5.57 0.02 

Cancer Hotspot to RS 1.25 (1.11-1.41) 12.46 <0.001 1.27 (1.07-1.49) 6.97 0.008 

Immune Hotspot to IHC4 1.13 (1.01-1.27) 3.93 0.05 1.19 (1.02-1.40) 4.10 0.04 

Immune Hotspot to RS 1.14 (1.02-1.28) 4.50 0.03 1.21 (1.03-1.42) 4.71 0.03 

Immune-Cancer Hotspot 
to IHC4 

1.17 (1.04-1.31) 5.87 0.02 NS NS NS 

Immune-Cancer Hotspot 
to RS 

1.15 (1.02-1.29) 4.76 0.03 NS NS NS 

Her2 subgroup 

0-10 (N=848) 5-10 (N=733) 

HR (95%CI) ∆LR-χ2 P* HR (95%CI) 
∆LR-
χ2 

P* 

Cancer Hotspot to IHC4 1.26 (1.11-1.43) 11.73 <0.001 1.32 (1.12-1.57) 9.31 0.002 

Cancer Hotspot to RS 1.29 (1.14-1.46) 14.28 <0.001 1.37 (1.16-1.61) 11.82 <0.001 

Immune Hotspot to IHC4 1.14 (1.02-1.30) 4.56 0.03 1.23 (1.05-1.44) 5.71 0.02 

Immune Hotspot to RS 1.15 (1.02-1.30) 4.84 0.03 1.26 (1.08-1.47) 7.12 0.008 

Immune-Cancer Hotspot 
to IHC4 

1.17 (1.04-1.33) 5.64 0.02 1.24 (1.04-1.48) 4.95 0.03 

Immune-Cancer Hotspot 
to RS 

1.13 (0.99-1.29) 3.22 0.07 1.23 (1.03-1.47) 4.69 0.03 

* Likelihood Ratio χ 2, P-value two-sided  

CI=confidence interval; HR=hazard ratio; RS=Oncotype DX 21-gene recurrence score. 

Figure legends 

Figure 1. Consort diagram for the availability of samples for analysis from the ATAC (Arimidex, 

Tamoxifen Alone or Combined) trial. ER, estrogen receptor; IHC, immunohistochemistry; PgR, 

progesterone receptor; ROR, Risk of Recurrence score; RS, recurrence score.  
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Figure 2. Illustration of the pipeline for identifying spatial hotspots with visual examples, and 

the Kaplan-Meier estimates for 10-year recurrence according to immune spatial scores in the 

validation set, split into two groups using cutoffs selected in the training set. A) An example of 

TransATAC H&E image and corresponding map of identified cancer and immune cells. Scale bar 

illustrates 2.5mm. B-D) Visual examples of hotspots and Kaplan-Meier curves illustrating survival 

associations with immune spatial scores. Scale bar illustrates 35μm. Kaplan-Meier curves were 

calculated and tested for equality using the log-rank test. The numbers of patients at risk in each 

group at various time points are given below each graph. All statistical tests were two-sided. HR: 

hazard ratio (95% confidence interval).  

 

Figure 3. Barplots of likelihood scores for immune spatial and prognostic scores as well as 

combination of IHC4 and each immune spatial score (IHC4+I) for 0-10 and 5-10 year time 

window in A) overall population and B) HER2- population. Kaplan-Meier curves were 

calculated and tested for equality using the log-rank test. The numbers of patients at risk in 

each group at various time points are given below each graph. All statistical tests were two-

sided. 

 

 


