RANDOM CLUSTER DYNAMICS FOR THE ISING MODEL IS RAPIDLY MIXING*

By Heng Guo and Mark Jerrum
School of Mathematical Sciences Queen Mary, University of London

Abstract

We show that the mixing time of Glauber (single edge update) dynamics for the random cluster model at $q=2$ on an arbitrary n vertex graph is bounded by a polynomial in n. As a consequence, the Swendsen-Wang algorithm for the ferromagnetic Ising model at any temperature also has a polynomial mixing time bound.

1. Introduction. The Ising model is perhaps the best known model in statistical physics, and it has also been widely studied from an algorithmic perspective. An instance of the model is an undirected graph G, together with a parameter $\beta>0$. A configuration of the model is an assignment $\sigma \in$ $\{0,1\}^{V}$ of "spins" to the vertices of G. The weight $w(\sigma)$ of configuration σ is $\beta^{m(\sigma)}$ where $m(\sigma)$ is the number of monochromatic edges (edges $\{i, j\}$ with $\sigma(i)=\sigma(j))$ in G. It is of importance to compute the partition function of the system, which is the sum of weights $w(\sigma)$ over all configurations $\sigma \in\{0,1\}^{V}$.

If $\beta<1$ then the system is antiferromagnetic, and the partition function is computationally hard, even to approximate. However, in the ferromagnetic case ($\beta>1$), Jerrum and Sinclair (1993) gave a fully polynomial-time randomized approximation scheme (FPRAS) for the partition function, which is efficient and achieves any specified relative error. A direct approach using Markov chain Monte Carlo (MCMC) on the spin configurations described above fails, as the spin model exhibits multiple phases for sufficiently large β on, say, a complete graph. On the other hand, the "even subgraphs" model has the same partition function as that of the Ising model, and it does form the basis for a successful application of MCMC, as was shown by Jerrum and Sinclair (1993). (See Sections 2 and 3 for details of the various models referred to in this introduction.)

[^0]There is a third model which is equivalent to the Ising model in the sense of having the same partition function up to an easily computable factor, namely the random cluster model introduced by Fortuin and Kasteleyn (1972). Similarly to the even subgraphs model, the configurations of the random cluster model are subsets of the edge set of G. However, the random cluster model is more tightly related to the Ising model; in fact a random Ising configuration can be obtained by colouring the connected components (clusters) of a random cluster configuration independently and uniformly at random by 0 and 1 . Although we already have a polynomial-time algorithm for estimating the partition function of the Ising model, it is natural to wonder about the mixing time of the Gibbs sampler for random cluster configurations, which makes single edge-flip moves with Metropolis rejection probabilities. Indeed, it is conceivable that this dynamics mixes faster than the standard dynamics for the even subgraphs model.

Another reason for focusing on the random cluster model is that it extends the other two models in the following sense. There is a generalisation of the Ising model to $q \geq 2$ spins, known as the q-state Potts model, of which the Ising model is the special case $q=2$. Although the even subgraphs and spin formulations are defined only for integer q, the random cluster model makes sense for arbitrary positive real q. Thus, by studying the dynamics of the random cluster model at $q=2$, we may gain insight into the complexity of computing the partition function of the random cluster model at other values of q, particularly (for reasons that will be explained presently) in the range $0 \leq q<2$. Stated in other terms, we would hope to gain information about the complexity of approximating the Tutte polynomial $T(G ; x, y)$ in the region $0 \leq(x-1)(y-1)<2$, and $x, y \geq 1$, about which nothing is currently known except for the point $x=y=1$ and the (trivial) hyperbola $(x-1)(y-1)=1$ (Goldberg and Jerrum, 2008, 2014).

In this paper we prove that the Gibbs sampler (single edge-flip dynamics) for the random cluster model on an arbitrary graph mixes in time polynomial in $n=|V(G)|$, the number of vertices of G. (See Theorem 2.) One main tool is the well-known canonical paths technique for bounding mixing times via a parameter known as congestion (in the form presented by Sinclair (1992), see also (Diaconis and Stroock, 1991)). Another tool is a coupling between random cluster and even subgraph configurations discovered by Grimmett and Janson (2009). The existence of this coupling invites us to bound the congestion of the edge-flip dynamics on random cluster configurations in terms of the known bounds on congestion for the edge-flip dynamics on (augmented) even subgraph configurations, established by Jerrum and Sinclair (1993). Unfortunately, this translation between the models cannot be
handled by existing comparison techniques (Diaconis and Saloff-Coste, 1993; Dyer et al., 2006), and an extension of comparison methods to the current situation is a contribution of the paper, and one that may find applications elsewhere.

Swendsen and Wang (1987) proposed a Markov chain that is widely considered to be an efficient method for sampling random cluster configurations (and Ising spin configurations) in practice. (Refer to Section 2.2 for a description of this Markov chain.) Prior to this work, the study of the Swendsen-Wang algorithm and related cluster dynamics was focused on special graphs, such as the complete graph (the "mean-field" situation) or the two-dimensional lattice \mathbb{Z}^{2}. For complete graphs, the mixing time is very well understood for all $q \geq 1$ (Long et al., 2014; Blanca and Sinclair, 2015; Galanis, Štefankovič and Vigoda, 2015). For \mathbb{Z}^{2}, for all $q \geq 1$, the dynamics is fast mixing at all temperatures other than the critical one (Ullrich, 2013, 2014a; Blanca and Sinclair, 2016). When $q=2$, a polynomial upper bound was known in the critical case on \mathbb{Z}^{2} (Lubetzky and Sly, 2012; Ullrich, 2013, 2014a), whereas on \mathbb{Z}^{3} this was unknown. Recently, exponential mixing time lower bounds were established at the critical temperature on \mathbb{Z}^{2} when $q>4$, and for other q, the mixing time is at most subexponential (Gheissari and Lubetzky, 2016; Duminil-Copin et al., 2016), improving upon previous slow mixing results (Borgs et al., 1999).

On the other hand, little is known for the Swendsen-Wang algorithm on arbitrary graphs. Ullrich (2014b) has shown that the relaxation time of the Swendsen-Wang dynamics is always no more than that of the edge-flip dynamics, so our result provides the first polynomial upper bound on the mixing time of the Swendsen-Wang algorithm for the ferromagnetic Ising model on arbitrary graphs (see Theorem 9). This confirms a conjecture raised by Sokal in the 90s. However, the exponent in the bound we derive here is likely to be well above the true answer. Indeed, Peres has made and circulated (Peres, 2017) the following conjecture.

Conjecture 1 (Peres). The mixing time of the Swendsen-Wang algorithm for the ferromagnetic Ising model is $O\left(n^{1 / 4}\right)$ on an arbitrary graph.

The conjectured bound $O\left(n^{1 / 4}\right)$ comes from the mixing time at the critical temperature in a complete graph (Long et al., 2014), which is believed to be the worst case. In contrast, the bound we show is $O\left(n^{4} m^{3}\right)$ (see Theorem 9). Hopefully, the result presented here may be the first step on the road towards settling this conjecture.

Since the random cluster model is defined for all positive real q, it is natural to speculate on the mixing time of the Glauber dynamics when
$q \neq 2$. For $q>2$, the mixing time cannot be polynomial in general, owing to a first-order phase transition of the model on the complete graph identified by Bollobás, Grimmett and Janson (1996). This phase transition is a barrier to rapid mixing when $q>2$, as shown by Gore and Jerrum (1999) when q is an integer, and by Blanca and Sinclair (2015) for general $q>2$. In fact, there is no polynomial-time algorithm of any sort for evaluating the partition function of the random cluster model on general graphs when $q>$ 2, unless there is an FPRAS for counting independent sets in a bipartite graph (Goldberg and Jerrum, 2012). In contrast, in the range $0 \leq q \leq 2$ there is no known barrier to rapid mixing, and there is cause to be optimistic, particularly in the range $1<q<2$, in which the random cluster model is monotonic.
2. Definitions and the main results. For a graph $G=(V, E)$, we will use $n=|V|$ and $m=|E|$ throughout the paper. The ferromagnetic Ising model on a graph $G=(V, E)$ with parameter $\beta>1$ is defined by the following: for any $\sigma \in\{0,1\}^{V}$, the probability of being in configuration σ is

$$
\begin{equation*}
\pi(\sigma)=\frac{\beta^{m(\sigma)}}{Z_{\text {Ising }}(\beta)}, \tag{1}
\end{equation*}
$$

where $m(\sigma)$ is the number of mono-chromatic edges in σ, and its normalizing factor, the so-called partition function, is defined as

$$
Z_{I \operatorname{sing}}(\beta)=\sum_{\sigma \in\{0,1\}^{V}} \beta^{m(\sigma)}
$$

The random cluster model with parameters (p, q) is defined on subsets of edges $S \subseteq E$ such that

$$
\begin{equation*}
\pi_{R C}(S) \propto p^{|S|}(1-p)^{|E \backslash S|} q^{\kappa(S)} \tag{2}
\end{equation*}
$$

where $\kappa(S)$ is the number of connected components in the subgraph (V, S). The partition function is

$$
Z_{R C}(p, q)=\sum_{S \subseteq E} p^{|S|}(1-p)^{|E \backslash S|} q^{\kappa(S)}
$$

Denote this measure by $\pi_{R C ; p, q}(\cdot)$ or simply $\pi_{R C}(\cdot)$ when there is no confusion. We use Ω throughout this article to denote the state space of random cluster models, namely $\{0,1\}^{E}$. It is well known that, for $q=2$ and $p=1-\frac{1}{\beta}$, the random cluster model is equivalent to the Ising model in the sense that
their partition functions are equal up to some easily computable factor (see (10)). The random cluster model was introduced by Fortuin and Kasteleyn (1972), who also showed the equivalence between partition functions of the random cluster and the Ising model. Edwards and Sokal (1988) further elucidated the connection: for general integer $q>0$, there is a coupling between the random cluster and the Potts model with q spins (where Ising is the special case of $q=2$).

The (lazy) single bond flip dynamics $P_{R C}$ is defined as follows based on the Metropolis filter.

$$
P_{R C}(x, y)= \begin{cases}\frac{1}{2 m} \min \left\{1, \frac{\pi_{R C}(y)}{\pi_{R C}(x)}\right\} & \text { if }|x \oplus y|=1 \tag{3}\\ 1-\frac{1}{2 m} \sum_{e \in E} \min \left\{1, \frac{\pi_{R C}(x \oplus\{e\})}{\pi_{R C}(x)}\right\} & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

where $x, y \in \Omega$. It is not hard to see, for example, by checking the detailed balance condition, that $\pi_{R C}(\cdot)$ is the stationary distribution of $P_{R C}$. Note that the Markov chain is lazy, i.e., it remains at its current state with probability at least $\frac{1}{2}$. This eliminates the possibility of the transition matrix P having negative eigenvalues, and simplifies the analysis later.

For a Markov chain with transition matrix P and stationary distribution π, we are interested in its mixing time, that is, how fast it converges to the stationary distribution, defined as follows:

$$
\begin{equation*}
\tau_{\varepsilon}(P):=\min \left\{t: \max _{x \in \Omega}\left\|P^{t}(x, \cdot)-\pi\right\| \leq \varepsilon\right\} \tag{4}
\end{equation*}
$$

where $\|\cdot\|$ is the total variation distance, namely

$$
\left\|\pi-\pi^{\prime}\right\|=\frac{1}{2} \sum_{x \in \Omega}\left|\pi(x)-\pi^{\prime}(x)\right| .
$$

Our main result is a mixing time upper bound of the single bond flip dynamics $P_{R C}$ that is polynomial in the number of vertices.

Theorem 2. For the random cluster model with parameters $0<p<1$ and $q=2$, we have that

$$
\tau_{\varepsilon}\left(P_{R C}\right) \leq 8 n^{4} m^{2}\left(m \ln (1-p)^{-1}+\ln \varepsilon^{-1}\right)
$$

2.1. Preliminaries on Markov chains. If a Markov chain is lazy, then the second-largest eigenvalue (in absolute value) of the transition matrix P is
just the second eigenvalue, denoted by λ_{2}. The relaxation time is defined as

$$
\begin{equation*}
T_{\text {rel }}(P):=\frac{1}{1-\lambda_{2}} . \tag{5}
\end{equation*}
$$

The relaxation time is closely related to the mixing time, as shown by the following proposition (see for example (Diaconis and Stroock, 1991, Proposition 3)).

Proposition 3. For a lazy, ergodic, reversible Markov chain P and any initial state $x_{0} \in \Omega$,

$$
\tau_{\varepsilon}(P) \leq T_{\text {rel }}\left(\ln \pi\left(x_{0}\right)^{-1}+\ln \varepsilon^{-1}\right)
$$

Our goal is to bound $\tau_{\varepsilon}\left(P_{R C}\right)$. We can choose the initial state to be the empty set of edges, which has weight $\pi(\emptyset)=\frac{\left.(1-p)^{|E|}\right|^{2}|V|}{Z_{R C}}$. Also for $\beta=\frac{1}{1-p}$ we have $Z_{R C}(p, 2)=\beta^{-|E|} Z_{\text {Ising }}(\beta) \leq 2^{|V|}$, and therefore $\pi(\emptyset) \geq(1-p)^{|E|}$. Hence, $\ln \pi\left(x_{0}\right)^{-1} \leq m \ln (1-p)^{-1}$.

Canonical paths are a useful technique to bound the relaxation time of Markov chains, introduced by Sinclair and Jerrum (1989); Jerrum and Sinclair (1989). Let $\Gamma=\left\{\gamma_{x y}: x, y \in \Omega\right\}$ be a collection of paths, where $\gamma_{x y}=\left\{z_{0}, \ldots, z_{\ell}\right\}$ is a "canonical" path from $x=z_{0}$ to $y=z_{\ell}$ of length ℓ where each step $\left(z_{i}, z_{i+1}\right)$ is a valid transition of the Markov chain, namely $P\left(z_{i}, z_{i+1}\right)>0$. The congestion $\varrho(\Gamma)$ associated with these paths is

$$
\begin{equation*}
\varrho(\Gamma):=\max _{\left(z, z^{\prime}\right) \in \Omega^{2}, P\left(z, z^{\prime}\right)>0} \frac{L}{\pi(z) P\left(z, z^{\prime}\right)} \sum_{\substack{x, y \in \Omega^{2} \\ \gamma_{x y} \exists\left(z, z^{\prime}\right)}} \pi(x) \pi(y), \tag{6}
\end{equation*}
$$

where $L=L(\Gamma)$ denotes the maximum length of paths in Γ.
A more general technique is provided by the flow formulation for congestion. A (valid) flow Γ is a collection of paths, where each path $\gamma \in \Gamma$ is assigned a weight $w t(\gamma)$, such that

$$
\begin{equation*}
\sum_{\gamma \text { is from } x \text { to } y} w t(\gamma)=\pi(x) \pi(y) . \tag{7}
\end{equation*}
$$

The congestion of Γ is defined as

$$
\begin{equation*}
\varrho(\Gamma):=\max _{\left(z, z^{\prime} \in \Omega^{2}, P\left(z, z^{\prime}\right)>0\right.} \frac{L}{\pi(z) P\left(z, z^{\prime}\right)} \sum_{\gamma \in \Gamma,\left(z, z^{\prime}\right) \in \gamma} w t(\gamma) . \tag{8}
\end{equation*}
$$

The canonical paths are just a flow where for each pair (x, y) there is only one path with positive weight.

Sinclair (1992) showed that the relaxation time can be bounded by the congestion of any flow Γ.

Proposition 4. For a lazy, ergodic, reversible Markov chain Pand any flow Γ,

$$
T_{r e l}(P) \leq \varrho(\Gamma)
$$

The main task is to design a good flow $\Gamma_{R C}$ so that $\varrho\left(\Gamma_{R C}\right)$ is bounded by a polynomial in n.

TheOrem 5. There is a collection $\Gamma_{R C}$ of paths for the random cluster dynamics such that its congestion $\varrho\left(\Gamma_{R C}\right) \leq 8 m^{2} n^{4}$.

Theorem 5 will be proved in Section 4. In particular, it implies a bound on the relaxation time of $P_{R C}$.

Corollary 6. For the Markov chain $P_{R C}, T_{r e l}\left(P_{R C}\right) \leq 8 m^{2} n^{4}$.
Theorem 2 follows from Proposition 3 and Corollary 6.
2.2. The Swendsen-Wang algorithm. Swendsen and Wang (1987) proposed the following algorithm to sample Ising configurations with parameter β. For an Ising configuration $\sigma=\sigma_{t} \in\{0,1\}^{V}$ at time t,

- Let M be the set of monochromatic edges under σ, that is, $(u, v) \in M$ if $\sigma(u)=\sigma(v)$.
- For each edge $e \in M$, delete it with probability β^{-1}. Let M^{\prime} denote the set of monochromatic edges that were not deleted.
- In the subgraph $\left(V, M^{\prime}\right)$, for each connected component, choose uniformly at random and independently from $\{0,1\}$, and assign the chosen spin to all vertices in that component.

The resulting spin configuration is σ_{t+1} at time $t+1$.
Ullrich (2014b) showed that the relaxation time of the Swendsen-Wang algorithm is no larger than that of the single bond flip dynamics. In fact, the result of (Ullrich, 2014b) holds for any integer $q>0$, but here we only need it for $q=2$.

Proposition 7 (Ullrich 2014b, Theorem 5). Let $P_{S W}$ be the transition matrix of the Swendsen-Wang algorithm to sample Ising configurations with a parameter $\beta>1$. Let $P_{R C}$ be the transition matrix of the corresponding single bond flip dynamics for the random cluster model with $p=1-\beta^{-1} \in(0,1)$ and $q=2$. Then for any graph $G, T_{r e l}\left(P_{S W}\right) \leq T_{r e l}\left(P_{R C}\right)$.

Combining Corollary 6 and Proposition 7 we have the following.

Corollary 8. For the Swendsen-Wang algorithm, $T_{\text {rel }}\left(P_{S W}\right) \leq 8 m^{2} n^{4}$.
Again, we use Corollary 8 together with Proposition 3, implying a polynomial mixing time upper bound for the Swendsen-Wang algorithm.

Theorem 9. Let $P_{S W}$ be the transition matrix of the Swendsen-Wang algorithm to sample Ising configurations with a parameter $\beta>1$. we have that

$$
\tau_{\varepsilon}\left(P_{S W}\right) \leq 8 n^{4} m^{2}\left(m \ln \beta+\ln \varepsilon^{-1}\right)
$$

3. Random even subgraphs. There is yet another formalism of the Ising model, that is, the so-called "high-temperature expansion" or even subgraphs model. We still pick a subset of edges $S \subseteq E$ but with the further restriction that every vertex in the induced subgraph (V, S) has even degree. Denote by $\Omega_{\text {even }}(G)$ the state space of all such even subgraphs of G. We usually simply write $\Omega_{\text {even }}$ when there is no confusion. In this even subgraphs model we want to sample from $\Omega_{\text {even }}$ with parameter $p \leq 1 / 2$, so that edges are more inclined to be "out" than "in". That is, for any $S \in \Omega_{\text {even }}$,

$$
\begin{equation*}
\pi(S) \propto p^{|S|}(1-p)^{|E \backslash S|} \tag{9}
\end{equation*}
$$

and

$$
Z_{\text {even }}(p)=\sum_{S \in \Omega_{\text {even }}} p^{|S|}(1-p)^{|E \backslash S|} .
$$

Distributions (1), (2), and (9) have in fact the same partition function, up to certain scaling factors:

$$
\begin{equation*}
Z_{\text {Ising }}(\beta)=\beta^{|E|} Z_{R C}\left(1-\frac{1}{\beta}, 2\right)=2^{|V|} \beta^{|E|} Z_{\text {even }}\left(\frac{1}{2}\left(1-\frac{1}{\beta}\right)\right) \tag{10}
\end{equation*}
$$

The first equivalence was discovered by Fortuin and Kasteleyn (1972), (see also (Grimmett, 2006)). The second one is also a classical result, known as early as in (van der Waerden, 1941). More detailed explanations can be found in Appendix A.

Grimmett and Janson (2009) discovered the following coupling between even subgraphs and random cluster configurations.

Theorem 10 (Grimmett and Janson 2009, Thm 3.5). Take a random even subgraph S from distribution (9) with parameter $p \leq 1 / 2$, and add each edge e $\notin S$ independently with probability $\frac{p}{1-p}$ to get a random subgraph R. Then R is a random cluster configuration, that is, it satisfies (2) with parameters ($2 p, 2$).

For completeness we give a proof of Theorem 10.
Proof. The number of even subgraphs of a (not necessarily simple) graph $G=(V, E)$ is well known to be

$$
\begin{equation*}
\left|\Omega_{\text {even }}(G)\right|=2^{|E|-|V|+\kappa(G)}, \tag{11}
\end{equation*}
$$

where $\kappa(G)$ is the number of connected components of G.
For each $r \subseteq E$,

$$
\begin{aligned}
\operatorname{Pr}(R=r) & \propto \sum_{s \subseteq r, s \text { even }}\left(\frac{p}{1-p}\right)^{|s|}\left(\frac{p}{1-p}\right)^{|r \backslash s|}\left(\frac{1-2 p}{1-p}\right)^{|E \backslash r|} \\
& \propto p^{|r|}(1-2 p)^{|E \backslash r|} N(r),
\end{aligned}
$$

where $N(r)$ is the number of even subgraphs of (V, r). By (11), $N(r)=$ $2^{|r|-|V|+\kappa(r)}$. Hence,

$$
\operatorname{Pr}(R=r) \propto(2 p)^{|r|}(1-2 p)^{|E \backslash r|} 2^{\kappa(r)} .
$$

However, it is not clear how to sample from $\Omega_{\text {even }}$ with edge weights directly in an efficient way, partly because of the rigid structure of the all even requirement. On the other hand, Jerrum and Sinclair (1993) designed a Markov chain to do so by moving among all subgraphs, but with each odd degree vertex incurring a penalty. Note that the Jerrum-Sinclair Markov chain together with the Grimmett-Janson coupling (Theorem 10) yields an efficient sampler for random cluster models and Ising configurations. It is more straightforward and efficient than the one given by Randall and Wilson (1999), which also uses the Jerrum-Sinclair chain.

An alternative (but similar) Markov chain is to move between even subgraphs and near-even subgraphs, for which we allow exactly two odd degree vertices (or "holes"). This is the so-called "worm" process, introduced by Prokof'ev and Svistunov (2001).

Let Ω_{k} be the collection of subgraphs where k many vertices have odd degrees. Then $\Omega_{0}=\Omega_{\text {even }}$ and the state space $\Omega_{\text {worm }}$ of the "worm" process is $\Omega_{w o r m}:=\Omega_{0} \cup \Omega_{2}$. For each pair of vertices (u, v) such that $u \neq v$, denote by $\Omega(u, v)$ the set of subgraphs of G in which u and v have odd degrees and all other vertices are even. Then

$$
\Omega_{2}=\bigcup_{u, v \in V} \Omega(u, v)
$$

For a subset of edges $S \subseteq E$, let $w_{p}(S):=p^{|S|}(1-p)^{|E \backslash S|}$. We give a penalty of n^{-2} to each near-even subgraph:

$$
w_{\text {worm }}(S):= \begin{cases}w_{p}(S) & \text { if } S \in \Omega_{0} \tag{12}\\ n^{-2} w_{p}(S) & \text { if } S \in \Omega_{2} \\ 0 & \text { otherwise }\end{cases}
$$

The "worm" measure is defined as the following:

$$
\pi_{w o r m}(S):= \begin{cases}\frac{w_{w o r m}(S)}{Z_{\text {worm }}(p)} & \text { if } S \in \Omega_{\text {worm }} \tag{13}\\ 0 & \text { otherwise }\end{cases}
$$

where $Z_{\text {worm }}(p)=\sum_{S \in \Omega_{\text {worm }}} w_{\text {worm }}(S)$.
The winding idea of (Jerrum and Sinclair, 1993) provides a way to design canonical paths between states in $\Omega_{\text {worm }}$ with low congestion. We will not need to analyze it in full detail for the worm process. Instead, we only care about paths from one even subgraph to another.

Theorem 11. There is a collection of paths

$$
\Gamma_{\text {worm }}=\left\{\gamma_{x y} \mid x, y \in \Omega_{0}\right\}
$$

equipped with a weight function wt (\cdot) such that the following holds:

1. For any path $\gamma \in \Gamma_{\text {worm }}$ and any state $w \in \gamma, w \in \Omega_{\text {worm }}$;
2. $w t\left(\gamma_{x y}\right)=\pi_{\text {even }}(x) \pi_{\text {even }}(y)$;
3. Each state w appears at most once in γ and $L\left(\Gamma_{w o r m}\right) \leq m$;
4. for any transition $\left(w, w^{\prime}\right)$ where $w^{\prime}=w \oplus\{e\}$,

$$
\sum_{\gamma \in \Gamma_{\text {worm }} \text { and } \gamma \ni\left(w, w^{\prime}\right)} w t(\gamma) \leq n^{4} \pi_{\text {worm }}(w) .
$$

Moreover, in the special case $w^{\prime}=w \cup\{e\}$ for some $e \notin w$, we have the additional bound

$$
\sum_{\gamma \in \Gamma_{\text {worm }} \text { and } \gamma \ni\left(w, w^{\prime}\right)} w t(\gamma) \leq n^{4} \pi_{\text {worm }}(w) \frac{p}{1-p} .
$$

Note that $\Gamma_{\text {worm }}$ is not a complete collection of canonical paths for $\pi_{\text {worm }}(\cdot)$. The proof of Theorem 11 is an adaptation of (Jerrum and Sinclair, 1993) and is given in Appendix B. Note that Collevecchio et al. (2016) give an analysis of a complete set of canonical paths for the worm process, but their result does not quite fit our situation.

Since paths in $\Gamma_{\text {worm }}$ go through $\Omega_{\text {worm }}$ instead of $\Omega_{\text {even }}$, we need to extend Theorem 10 to $\Omega_{\text {worm }}$. It will no longer be exact.

Take a random subgraph S from $\pi_{\text {worm }}$ (13) with parameter $p \leq 1 / 2$. Again we add each edge $e \notin S$ independently with probability $\frac{p}{1-p}$ to get R. Denote by $\widehat{\pi}(\cdot)$ the law of R.

Lemma 12. For any $R \subseteq E$,

$$
\frac{\widehat{\pi}(R)}{\pi_{R C ; 2 p, 2}(R)} \leq \frac{3}{2} .
$$

Proof. Similarly to the proof of Theorem 10, it is not hard to see that

$$
\widehat{\pi}(R) \propto p^{|R|}(1-2 p)^{|E \backslash R|}\left(N(R)+n^{-2} N^{\prime}(R)\right)
$$

where $N(R)$, as before, is the number of even subgraphs of (V, R), and $N^{\prime}(R)$ is the number of subgraphs of R that belong to Ω_{2}. Note that for each neareven subgraph there is a penalty of n^{-2} for its weight (see (12)). We use (11) to count the number of even subgraphs of R, which is $2^{|R|-|V|+\kappa(R)}$.

Let $\Omega_{R}(u, v)$ be the set of near-even subgraphs of R with holes u and v. If u, v are in different connected components of (V, R), then there is no possible such subgraph and $\left|\Omega_{R}(u, v)\right|=0$. Otherwise u, v are in the same component of (V, R), and we can add an extra edge (u, v) to R to get a graph R^{\prime}. Applying (11) to R^{\prime} we get that

$$
N\left(R^{\prime}\right)=2^{|R|+1-|V|+\kappa(R)}=N(R)+\left|\Omega_{R}(u, v)\right| .
$$

The second equality is because each even subgraph of R^{\prime} either uses the new edge (u, v) or not. If it does not use (u, v), then it is an even subgraph of R. Otherwise it is (after removing the edge (u, v)) a near-even subgraph of R with holes u and v. Hence,

$$
\left|\Omega_{R}(u, v)\right|=2^{|R|-|V|+\kappa(R)},
$$

as $N(R)=2^{|R|-|V|+\kappa(R)}$.
Let $c(R)$ be the number of pairs of vertices from every component of (V, R). That is,

$$
\begin{equation*}
c(R):=\sum_{i=1}^{\kappa(R)}\binom{n_{i}}{2} \tag{14}
\end{equation*}
$$

where n_{i} is the size of the i th component of (V, R) with the convention that $\binom{1}{2}=0$. Then we have that

$$
N^{\prime}(R)=2^{|R|-|V|+\kappa(R)} c(R)
$$

and

$$
\widehat{\pi}(R) \propto(2 p)^{|R|}(1-2 p)^{|E \backslash R|} 2^{\kappa(R)}\left(1+\frac{c(R)}{n^{2}}\right)
$$

The lemma follows by noticing that $0 \leq c(R) \leq \frac{n(n-1)}{2}$.
4. Lifting canonical paths. Let $p \leq 1 / 2$ be the parameter of the even subgraph and the worm measure. Let $\Gamma_{\text {worm }}$ be the collection of paths as in Theorem 11. We will use Lemma 12 to lift $\Gamma_{\text {worm }}$ to a flow $\Gamma_{R C}$ for $P_{R C}$, the single edge-flip Markov chain for the random cluster model with parameter $2 p$. This flow $\Gamma_{R C}$ will be the one used in the proof of Theorem 5.

We first construct a flow $\Gamma_{R C}^{\prime}$ from $\Gamma_{\text {worm }}$. Let $\gamma=\left\{w_{0}, w_{1}, \cdots, w_{\ell}\right\}$ be a path in $\Gamma_{w o r m}$ where $w_{0}, w_{\ell} \in \Omega_{0}$, and $\ell \leq L\left(\Gamma_{w o r m}\right)$. We lift γ to a flow (random path) as follows. First we add each edge $e \notin w_{0}$ with probability $p^{\prime}=\frac{p}{1-p}$ independently as in Lemma 12 , to obtain the starting state Z_{0} of the path. In other words, letting

$$
\delta(w, z):=\left(p^{\prime}\right)^{|z \backslash w|}\left(1-p^{\prime}\right)^{|E \backslash z|}
$$

for subsets of edges $w \subseteq z \subseteq E$, we draw a superset Z_{0} of w_{0} such that $\operatorname{Pr}\left(Z_{0}=z\right)=\delta\left(w_{0}, z\right)$ for any $z \supseteq w_{0}$. Note that

$$
\pi_{R C}(z)=\sum_{w \subseteq z, w \in \Omega_{0}} \pi_{e v e n}(w) \delta(w, z)
$$

by Theorem 10, and

$$
\widehat{\pi}(z)=\sum_{w \subseteq z, w \in \Omega_{\text {worm }}} \pi_{w o r m}(w) \delta(w, z)
$$

by definition.
We construct Z_{1}, \cdots, Z_{ℓ} inductively. Given Z_{k-1} for $1 \leq k \leq \ell$, we construct Z_{k} by mimicking the transition from w_{k-1} to w_{k} while ensuring that

$$
\operatorname{Pr}_{\gamma}\left(Z_{k}=z\right)=\delta\left(w_{k}, z\right)
$$

for any $z \supseteq w_{k}$ at the same time. Here the subscript γ emphasises that probabilities are with respect to a fixed path γ. By the induction hypothesis, $\operatorname{Pr}_{\gamma}\left(Z_{k-1}=z\right)=\delta\left(w_{k-1}, z\right)$ for any $z \supseteq w_{k-1}$. For Z_{k}, there are two cases:

- If $w_{k}=w_{k-1} \cup\{e\}$ for some edge $e \notin w_{k-1}$, then let $Z_{k}=Z_{k-1} \cup\{e\}$. We have that

$$
\begin{aligned}
\operatorname{Pr}_{\gamma}\left(Z_{k}=z\right) & =\operatorname{Pr}_{\gamma}\left(Z_{k-1}=z\right)+\operatorname{Pr}_{\gamma}\left(Z_{k-1}=z \backslash\{e\}\right) \\
& =\delta\left(w_{k-1}, z\right)+\delta\left(w_{k-1}, z \backslash\{e\}\right) \\
& =\delta\left(w_{k}, z\right) p^{\prime}+\delta\left(w_{k}, z\right)\left(1-p^{\prime}\right)=\delta\left(w_{k}, z\right),
\end{aligned}
$$

for any $z \supseteq w_{k}$.

- If $w_{k}=w_{k-1} \backslash\{e\}$ for some edge $e \in w_{k-1}$, then let $Z_{k}=Z_{k-1}$ with probability p^{\prime} and $Z_{k}=Z_{k-1} \backslash\{e\}$ with probability $1-p^{\prime}$. For any $z \supseteq w_{k}$ such that $e \in z$,

$$
\operatorname{Pr}_{\gamma}\left(Z_{k}=z\right)=\operatorname{Pr}_{\gamma}\left(Z_{k-1}=z\right) p^{\prime}=\delta\left(w_{k-1}, z\right) p^{\prime}=\delta\left(w_{k}, z\right),
$$

and for any $z \supseteq w_{k}$ such that $e \notin z$,

$$
\begin{aligned}
\operatorname{Pr}_{\gamma}\left(Z_{k}=z\right) & =\operatorname{Pr}_{\gamma}\left(Z_{k-1}=z \cup\{e\}\right)\left(1-p^{\prime}\right) \\
& =\delta\left(w_{k-1}, z \cup\{e\}\right)\left(1-p^{\prime}\right)=\delta\left(w_{k}, z\right) .
\end{aligned}
$$

Given γ, the lifted path $Z=\left\{Z_{0}, Z_{1}, \cdots, Z_{\ell}\right\}$ is constructed as above. A particular flow path $\zeta=\left\{z_{0}, z_{1}, \cdots, z_{\ell}\right\}$ in the random cluster world may be lifted from multiple paths from $\Gamma_{\text {worm }}$, and its weight is assigned to be the aggregation:

$$
w t(\zeta)=\sum_{\gamma \in \Gamma_{\text {worm }}} w t(\gamma) \operatorname{Pr}_{\gamma}(Z=\zeta) .
$$

This finishes the construction of $\Gamma_{R C}^{\prime}$.
However, $\Gamma_{R C}^{\prime}$ is not a valid flow for $\pi_{R C}(\cdot)$. Recall that the valid flow should satisfy (7). An equivalent view of (7) is that if we draw a random path according to the weight function $w t(\cdot)$, the initial and final states should be independently distributed according to $\pi_{R C}(\cdot)$. Under this view, the problem with $\Gamma_{R C}^{\prime}$ is that Z_{0} and Z_{ℓ} are correlated, even though the marginal distribution of each is $\pi_{R C}(\cdot)$.

We resolve this issue next by constructing $\Gamma_{R C}$. Given $\gamma \in \Gamma_{\text {worm }}$ with length ℓ, we construct Z_{0}, \cdots, Z_{ℓ} the same as in $\Gamma_{R C}^{\prime}$. To repair the distribution of Z_{ℓ}, we append further transitions to re-randomize edges that are not in w_{ℓ}. More precisely, let $\left\{e_{1}, e_{2}, \cdots, e_{k}\right\}$ be the edges that are not in w_{ℓ} where $k=\left|E \backslash w_{\ell}\right|$. Given $Z_{\ell+i-1}$ for $1 \leq i \leq k$, let $Z_{\ell+i}=Z_{\ell+i-1} \backslash\left\{e_{i}\right\}$ with probability $1-p^{\prime}$ and $Z_{\ell+i}=Z_{\ell+i-1} \cup\left\{e_{i}\right\}$ with probability p^{\prime}. As in $\Gamma_{R C}^{\prime}$, for a random cluster path $\zeta=\left\{z_{0}, z_{1}, \cdots, z_{\ell+k}\right\}$, its weight is defined
to be

$$
w t(\zeta)=\sum_{\gamma \in \Gamma_{w o r m}} w t(\gamma) \operatorname{Pr}_{\gamma}(Z=\zeta)
$$

This finishes the construction of $\Gamma_{R C}$. The longest path in $\Gamma_{R C}$ has length at most $L\left(\Gamma_{\text {worm }}\right)+m$, that is, $L\left(\Gamma_{R C}\right) \leq L\left(\Gamma_{\text {worm }}\right)+m \leq 2 m$.

Fix a path $\gamma=\left\{w_{0}, w_{1}, \cdots, w_{\ell}\right\}$. For any $0 \leq i \leq \ell$ and $z \supseteq w_{i}$, we have $\operatorname{Pr}_{\gamma}\left(Z_{i}=z\right)=\delta\left(w_{i}, z\right)$, because of the construction of $\Gamma_{R C}^{\prime}$. Moreover, for any $1 \leq i \leq\left|E \backslash w_{\ell}\right|$ and $z \supseteq w_{\ell}$, we have $\operatorname{Pr}_{\gamma}\left(Z_{\ell+i}=z\right)=\delta\left(w_{\ell}, z\right)$. This can be shown by inductively going through the construction above. The rerandomization does not change the marginal distribution but removes the correlation between Z_{0} and $Z_{\ell^{\prime}}$, where $\ell^{\prime}=\ell+\left|E \backslash w_{\ell}\right|$ (conditional on γ).

Lemma 13. The flow $\Gamma_{R C}$ is valid for $\pi_{R C}(\cdot)$, namely it satisfies (7).
Proof. We verify (7) as follows:

$$
\begin{aligned}
& \sum_{\zeta \text { is from } x \text { to } y} w t(\zeta) \\
= & \sum_{\substack{w \subseteq x, w^{\prime} \subseteq y \\
w, w^{\prime} \in \Omega_{0}}} \sum_{\gamma \text { is from } w \text { to } w^{\prime}} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{0}=x, Z_{\ell^{\prime}}=y\right) \\
= & \sum_{\substack{w \subseteq x, w^{\prime} \subseteq y \\
w, w^{\prime} \in \Omega_{0}}} \sum_{\gamma \text { is from } w \text { to } w^{\prime}} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{0}=x\right) \operatorname{Pr}_{\gamma}\left(Z_{\ell^{\prime}}=y\right) \\
= & \sum_{w \subseteq x, w^{\prime} \subseteq y} \sum_{\gamma \text { is from } w \text { to } w^{\prime}} w t(\gamma) \delta(w, x) \delta\left(w^{\prime}, y\right) \\
= & \sum_{w \subseteq x, w^{\prime} \subseteq y}^{w, w^{\prime} \in \Omega_{0}} \pi_{\text {even }}(w) \pi_{\text {even }}\left(w^{\prime}\right) \delta(w, x) \delta\left(w^{\prime}, y\right) \\
= & \left(\sum_{w \subseteq x, w \in \Omega_{0}} \pi_{\text {even }}(w) \delta(w, x)\right)\left(\sum_{w^{\prime} \subseteq y, w^{\prime} \in \Omega_{0}} \pi_{\text {even }}\left(w^{\prime}\right) \delta\left(w^{\prime}, y\right)\right) \\
= & \pi_{R C}(x) \pi_{R C}(y),
\end{aligned}
$$

where in the last step we use Theorem 10.
Lemma 14. Let $2 p \leq 1$ be the parameter for the random cluster model.

1. For a transition $\left(z, z^{\prime}\right)$ where $z^{\prime}=z \cup\{e\}$ for some $e \notin z$,

$$
\sum_{\zeta \in \Gamma_{R C}, \zeta \ni\left(z, z^{\prime}\right)} w t(\zeta) \leq \frac{p}{1-p} \cdot 2 n^{4} \pi_{R C}(z)
$$

2. For a transition $\left(z, z^{\prime}\right)$ where $z^{\prime}=z \backslash\{e\}$ for some $e \in z$,

$$
\sum_{\zeta \in \Gamma_{R C}, \zeta \ni\left(z, z^{\prime}\right)} w t(\zeta) \leq \frac{1-2 p}{1-p} \cdot 2 n^{4} \pi_{R C}(z)
$$

3. For a transition (z, z),

$$
\sum_{\zeta \in \Gamma_{R C}, \zeta \ni(z, z)} w t(\zeta) \leq 2 m n^{4} \pi_{R C}(z)
$$

Proof. Fix γ, let Z be a random path lifted from γ and ℓ be the length of γ. Thus the path is $\gamma=\left(w_{0}, \ldots, w_{\ell}\right)$ and, in particular, the final state of the path is w_{ℓ}. For a state $w \in \gamma$, let $i(\gamma, w)$ be index of w in γ and $k(w, e)$ be the index of e in the set $E \backslash w$, following the enumeration mentioned previously. Any w only appears once in $\gamma \in \Gamma_{\text {worm }}$ and hence $i(\gamma, w)$ is well defined.

We want to bound the traffic in $\Gamma_{R C}$ that goes through $\left(z, z^{\prime}\right)$. Let $p^{\prime}=$ $\frac{p}{1-p}$. Depending on z^{\prime}, we have three cases.

1. First assume that $z^{\prime}=z \cup\{e\}$ where $e \notin z$. The traffic may be from $\Gamma_{R C}^{\prime}$ transitions or from the part we append at the end of each $\Gamma_{R C}^{\prime}$ path. Hence we have the following bound:

$$
\begin{aligned}
& \quad \sum_{\zeta \in \Gamma_{R C}, \zeta \ni\left(z, z^{\prime}\right)} w t(\zeta) \\
& =\sum_{w \subseteq z}\left(\sum_{\gamma \ni(w, w \cup\{e\})} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{i(\gamma, w)}=z, Z_{i(\gamma, w)+1}=z^{\prime}\right)\right. \\
& \left.\quad+\sum_{\gamma=\left(w_{1}, \ldots, w_{\ell}\right), w_{\ell}=w} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{\ell+k(w, e)-1}=z, Z_{\ell+k(w, e)}=z^{\prime}\right)\right) \\
& =\sum_{w \subseteq z}\left(\sum_{\gamma \ni(w, w \cup\{e\})} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{i(\gamma, w)}=z\right)\right. \\
& \left.\quad+\sum_{\gamma, w_{\ell}=w} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{\ell+k(w, e)-1}=z\right) p^{\prime}\right)
\end{aligned}
$$

$$
=\sum_{w \subseteq z} \delta(w, z)\left(\sum_{\gamma \ni(w, w \cup\{e\})} w t(\gamma)+\sum_{\gamma, w_{\ell}=w} w t(\gamma) p^{\prime}\right)
$$

Hence by Theorem 11,

$$
\begin{aligned}
& \sum_{\zeta \in \Gamma_{R C}, \zeta \ni\left(z, z^{\prime}\right)} w t(\zeta) \\
= & \sum_{w \subseteq z} \delta(w, z)\left(\sum_{\gamma \ni(w, w \cup\{e\})} w t(\gamma)+\sum_{\gamma, w_{\ell}=w} w t(\gamma) p^{\prime}\right) \\
\leq & \sum_{w \subseteq z} \delta(w, z)\left(n^{4} \pi_{w o r m}(w) \frac{p}{1-p}+\pi_{\text {even }}(w) p^{\prime}\right) \\
= & p^{\prime} n^{4} \sum_{w \subseteq z} \delta(w, z) \pi_{w o r m}(w)+p^{\prime} \sum_{w \subseteq z, w \in \Omega_{0}} \delta(w, z) \pi_{\text {even }}(w) \\
= & p^{\prime} n^{4} \widehat{\pi}(z)+p^{\prime} \pi_{R C}(z) \\
\leq & 2 p^{\prime} n^{4} \pi_{R C}(z)
\end{aligned}
$$

where we use Lemma 12 in the last line. Also note that $\pi_{\text {even }}(w)=0$ if $w \notin \Omega_{0}$.
2. Next assume that $z^{\prime}=z \backslash\{e\}$ where $e \in z$. Similarly to the previous case, we have that

$$
\begin{aligned}
& \sum_{\zeta \in \Gamma_{R C}, \zeta \ni\left(z, z^{\prime}\right)} w t(\zeta) \\
= & \sum_{w \subseteq z, w \ni e} \sum_{\gamma \ni(w, w \backslash\{e\})} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{i(\gamma, w)}=z, Z_{i(\gamma, w)+1}=z^{\prime}\right) \\
& +\sum_{w \subseteq z, w \not \supset e} \sum_{\gamma, w_{\ell}=w} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{\ell+k(w, e)-1}=z, Z_{\ell+k(w, e)}=z^{\prime}\right) \\
= & \sum_{w \subseteq z, w \ni e} \sum_{\gamma \ni(w, w \backslash\{e\})} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{i(\gamma, w)}=z\right)\left(1-p^{\prime}\right) \\
& +\sum_{w \subseteq z, w \not \supset e} \sum_{\gamma, w_{\ell}=w} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{\ell+k(w, e)-1}=z\right)\left(1-p^{\prime}\right) \\
= & \sum_{w \subseteq z, w \ni e}\left(1-p^{\prime}\right) \delta(w, z) \sum_{\gamma \ni(w, w \backslash\{e\})} w t(\gamma) \\
& +\sum_{w \subseteq z, w \not \supset e}\left(1-p^{\prime}\right) \delta(w, z) \sum_{\gamma, w_{\ell}=w} w t(\gamma) .
\end{aligned}
$$

Again we use Theorem 11 and Lemma 12:

$$
\begin{aligned}
& \sum_{\zeta \in \Gamma_{R C}, \zeta \ni\left(z, z^{\prime}\right)} w t(\zeta) \\
\leq & \sum_{w \subseteq z} \delta(w, z)\left(1-p^{\prime}\right)\left(n^{4} \pi_{\text {worm }}(w)+\pi_{\text {even }}(w)\right) \\
\leq & \left(1-p^{\prime}\right) n^{4} \sum_{w \subseteq z} \delta(w, z) \pi_{w o r m}(w)+\left(1-p^{\prime}\right) \sum_{w \subseteq z, w \in \Omega_{0}} \delta(w, z) \pi_{\text {even }}(w) \\
= & \left(1-p^{\prime}\right) n^{4} \widehat{\pi}(z)+\left(1-p^{\prime}\right) \pi_{R C}(z) \\
\leq & 2\left(1-p^{\prime}\right) n^{4} \pi_{R C}(z) .
\end{aligned}
$$

3. At last we handle the case that $z=z^{\prime}$. Then we have the following bound

$$
\begin{aligned}
& \sum_{\zeta \in \Gamma_{R C}, \zeta \ni(z, z)} w t(\zeta) \\
= & \sum_{w \subseteq z}\left(\sum_{\gamma \ni w} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{i(\gamma, w)}=z, Z_{i(\gamma, w)+1}=z\right)\right. \\
& \left.\quad+\sum_{\gamma, w_{\ell}=w} w t(\gamma) \sum_{i=1}^{|E \backslash w|} \operatorname{Pr}_{\gamma}\left(Z_{\ell(\gamma)+i-1}=z, Z_{\ell(\gamma)+i}=z\right)\right) \\
\leq & \sum_{w \subseteq z}\left(\sum_{\gamma \ni w} w t(\gamma) \operatorname{Pr}_{\gamma}\left(Z_{i(\gamma, w)}=z\right)+\sum_{\gamma, w_{\ell}=w} w t(\gamma) \delta(w, z)|E \backslash w|\right) \\
= & \sum_{w \subseteq z} \delta(w, z)\left(\sum_{e \in z} \sum_{\gamma \ni(w, w \oplus\{e\})} w t(\gamma)+|E \backslash w| \sum_{\gamma, w_{\ell}=w} w t(\gamma)\right) .
\end{aligned}
$$

By Theorem 11 and Lemma 12,

$$
\begin{aligned}
\sum_{\zeta \in \Gamma_{R C}, \zeta \ni(z, z)} w t(\zeta) & \leq m \sum_{w \subseteq z} \delta(w, z)\left(n^{4} \pi_{\text {worm }}(w)+\pi_{\text {even }}(w)\right) \\
& \leq 2 m n^{4} \pi_{R C}(z)
\end{aligned}
$$

Note that in Lemma 14 we analyzed self-loop transitions (z, z) as well. We may remove self-loop transitions from the flow $\Gamma_{R C}$ without increasing the congestion. However, doing so would make one transition in $\Gamma_{R C}$ correspond to potentially more than one steps before the lifting, making the analysis more difficult.

Now we are ready to prove Theorem 5.

Proof of Theorem 5. The flow $\Gamma_{R C}$ is constructed at the beginning of this section and is verified in Lemma 13. We analyze its congestion in the following. There are three cases depending on the transition $\left(z, z^{\prime}\right)$. Note that the parameter of the random cluster is $2 p$, where $p<1 / 2$ is the parameter for the even subgraph model.

For any transition $\left(z, z^{\prime}\right)$ where $z^{\prime}=z \cup\{e\}$ for some $e \notin z$,

$$
\begin{aligned}
& \frac{L\left(\Gamma_{R C}\right)}{\pi_{R C}(z) P_{R C}\left(z, z^{\prime}\right)} \sum_{\zeta \in \Gamma_{R C}, \zeta \ni\left(z, z^{\prime}\right)} w t(\zeta) \\
\leq & \frac{L\left(\Gamma_{R C}\right)}{\pi_{R C}(z) P_{R C}\left(z, z^{\prime}\right)} \cdot \frac{p}{1-p} \cdot 2 n^{4} \pi_{R C}(z) \\
\leq & 2 m n^{4} \cdot \frac{p}{1-p} \cdot \frac{2 m}{\min \left\{1, \frac{2 p}{2(1-2 p)}\right\}} \\
\leq & 4 m^{2} n^{4},
\end{aligned}
$$

where we use Lemma 14 in the first inequality and $p \leq 1 / 2$ in the last.
Similarly, for a transition $\left(z, z^{\prime}\right)$ where $z^{\prime}=z \backslash\{e\}$ for some $e \in z$,

$$
\begin{aligned}
& \frac{L\left(\Gamma_{R C}\right)}{\pi_{R C}(z) P_{R C}\left(z, z^{\prime}\right)} \sum_{\zeta \in \Gamma_{R C}, \zeta \ni\left(z, z^{\prime}\right)} w t(\zeta) \\
\leq & \frac{L\left(\Gamma_{R C}\right)}{\pi_{R C}(z) P_{R C}\left(z, z^{\prime}\right)} \cdot \frac{1-2 p}{1-p} \cdot 2 n^{4} \pi_{R C}(z) \\
\leq & 2 m n^{4} \cdot \frac{1-2 p}{1-p} \cdot \frac{2 m}{\min \left\{1, \frac{1-2 p}{2 p}\right\}} \\
\leq & 8 m^{2} n^{4},
\end{aligned}
$$

where we use Lemma 14 in the first inequality and $p \leq 1 / 2$ in the last.
For any transition $\left(z, z^{\prime}\right)$ where $z^{\prime}=z$, since the chain is lazy, $P_{R C}\left(z, z^{\prime}\right) \geq$ $1 / 2$ and

$$
\begin{aligned}
\frac{L\left(\Gamma_{R C}\right)}{\pi_{R C}(z) P_{R C}\left(z, z^{\prime}\right)} \sum_{\zeta \in \Gamma_{R C}, \zeta \ni\left(z, z^{\prime}\right)} w t(\zeta) & \leq \frac{L\left(\Gamma_{R C}\right)}{\pi_{R C}(z) P_{R C}\left(z, z^{\prime}\right)} \cdot 2 m n^{4} \pi_{R C}(z) \\
& \leq 4 m^{2} n^{4}
\end{aligned}
$$

where we use Lemma 14 in the first line.

APPENDIX A: EQUIVALENCE OF THE THREE MODELS

The equivalence between the Ising model and the random cluster model with $q=2$ can be found, for example, in (Grimmett, 2006). An alternative
explanation is as follows. In the Ising model, instead of assigning vertices 0 or 1, we assign "equal" or "independent" to edges. Each "equal" edge has an weight of $\beta-1$, and "independent" edge has weight 1 . This does not change the partition function of the Ising model, since for each edge, if the two endpoints are equal, the weight is $\beta-1+1=\beta$, whereas if the two endpoints are different, the weight is 1 . For a subset $S \subseteq E$ of edges assigned "equal", each component of S has two possible assignments. Therefore the weight of S is $(\beta-1)^{|S|} 2^{\kappa(S)}$. After rescaling by $\beta^{|E|}$, this matches the random cluster formulation (2) with $p=1-\frac{1}{\beta}$ and $q=2$. This gives the first equality of (10).

The equivalence between the Ising model and even subgraphs model can be explained via a holographic transformation by Hadamard matrix $H=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] .{ }^{1}$ This view will be useful in the next section. In the Ising model, vertices have functions Equality on their adjacent d many halfedges, which after the transformation becomes Even function, defined as follows:

$$
\operatorname{EvEn}\left(x_{1}, \cdots, x_{d}\right)= \begin{cases}2 & \text { if } \bigoplus_{i} x_{i}=0 \\ 0 & \text { otherwise }\end{cases}
$$

On the edges, the function (on the two half-edges) is

$$
\operatorname{IsING}\left(x_{1}, x_{2}\right)= \begin{cases}\beta & \text { if } x_{1}=x_{2} \\ 1 & \text { otherwise }\end{cases}
$$

whereas after the transformation it is a weighted equality function:

$$
\operatorname{WEQ}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{\beta+1}{2} & \text { if } x_{1}=x_{2}=0 \\ \frac{\beta-1}{2} & \text { if } x_{1}=x_{2}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, for a subset S of edges (both half-edges are 1), its weight is

$$
w t(S)= \begin{cases}2^{|V|}\left(\frac{\beta-1}{2}\right)^{|S|}\left(\frac{\beta+1}{2}\right)^{|E \backslash S|} & \text { if } S \in \Omega_{e v e n} \\ 0 & \text { otherwise }\end{cases}
$$

The requirement of $S \in \Omega_{\text {even }}$ arises because each vertex requires even degree, and when all degree constraints are satisfied, the vertices contribute

[^1]$2^{|V|}$ in total. We may rewrite the weight of $S \in \Omega_{\text {even }}$:
$2^{|V|}\left(\frac{\beta-1}{2}\right)^{|S|}\left(\frac{\beta+1}{2}\right)^{|E \backslash S|}=2^{|V|} \beta^{|E|}\left(\frac{1}{2}\left(1-\frac{1}{\beta}\right)\right)^{|S|}\left(\frac{1}{2}\left(1+\frac{1}{\beta}\right)\right)^{|E \backslash S|}$
Hence setting $p=\frac{1}{2}\left(1-\frac{1}{\beta}\right)$ matches (9) and taking out an appropriate scaling factor yields the second equality of (10).

APPENDIX B: CONGESTION OF THE WORM PROCESS

Throughout this section fix $p \leq 1 / 2$. Recall that Ω_{k} is the collection of subgraphs where k many vertices have odd degrees. Then $\Omega_{0}=\Omega_{\text {even }}$, and $\Omega_{0} \cup \Omega_{2}=\Omega_{\text {worm }}$. Define

$$
Z_{k}:=\sum_{S \in \Omega_{k}} w_{p}(S),
$$

where $w_{p}(S)=p^{|S|}(1-p)^{|E \backslash S|}$. Then $Z_{0}=Z_{\text {even }}(p)$ and $Z_{\text {worm }}(p)=Z_{0}+$ $n^{-2} Z_{2}$.

Lemma $15 . \quad Z_{2} \leq\binom{ n}{2} Z_{0}$.
Proof. We adopt the holographic transformation view of the even subgraphs model. A vertex that only allows odd degrees is equivalent to the following function:

$$
\operatorname{OdD}\left(x_{1}, \cdots, x_{d}\right)= \begin{cases}2 & \text { if } \bigoplus_{i} x_{i}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Transforming back to the Ising model, this vertex is still an Equality on all adjacent half-edges, but with a weight of -1 when all half-edges are assigned 1. Hence for every $u, v \in V$,

$$
\begin{equation*}
Z_{u, v}:=\sum_{S \in \Omega(u, v)} w_{p}(S) \leq Z_{0}, \tag{15}
\end{equation*}
$$

because the left hand side can be transformed to the original Ising model with u and v having weights -1 . Summing over all possible pairs of vertices in (15) yields $Z_{2} \leq\binom{ n}{2} Z_{0}$.

In particular, Lemma 15 implies that $Z_{\text {worm }}=Z_{0}+n^{-2} Z_{2} \leq Z_{0}+$ $n^{-2}\binom{n}{2} Z_{0} \leq 3 Z_{0} / 2$. Now we are ready to prove Theorem 11 .

Proof of Theorem 11. Let I and F be two configurations in Ω_{0}, denoting the initial and final states. Then $I \oplus F \in \Omega_{0}$. The canonical path from I to F will be identical to those in (Jerrum and Sinclair, 1993). Fix an arbitrary ordering of all cycles in G. For each cycle we designate a starting vertex and a direction around the cycle. Hence each cycle is an ordered tuple of edges. Since $I \oplus F$ is an even subgraph, we can cover $I \oplus F$ by a collection of edge-disjoint cycles. Let $\left\{C_{1}, \cdots, C_{r}\right\}$ be the first such in our ordering. Let e_{1}, \cdots, e_{k} be the edges of $\left\{C_{1}, \cdots, C_{r}\right\}$ taken in order (first order the edges according to the cycle they occur in, and then by their position within the cycle, counting from the start vertex). The canonical path γ from I to F is defined to be $Z_{0}=I, Z_{i}=Z_{i-1} \oplus e_{i}$, and $Z_{k}=F$. Intuitively the canonical path unwinds C_{i} one by one from $i=1$ to $i=r$. Clearly $L=L\left(\Gamma_{\text {worm }}\right) \leq m$ as it can use every edge at most once.

This path is always in $\Omega_{0} \cup \Omega_{2}$ because if we start to unwind a cycle, then the current state is an even subgraph. If we are unwinding a path, then we always flip an edge that is adjacent to an odd degree vertex.

For any transition $\left(w, w^{\prime}\right)$ where $w^{\prime}=w \oplus e$ for some edge $e \in E$, we use a combinatorial encoding as in (Jerrum and Sinclair, 1993) for all paths passing through $\left(w, w^{\prime}\right)$. For any two configurations $I, F \in \Omega_{0}$, let $\varphi(I, F)=$ $I \oplus F \oplus w$. We claim that $\varphi: \Omega_{0}^{2} \rightarrow \Omega_{0} \cup \Omega_{2}$ is an injection. This is because given $\left(w, w^{\prime}\right)$ and $U=\varphi(I, F)$, we can recover the unique (I, F). First, since $w \oplus U=I \oplus F$, all edges not in $w \oplus U$ have the same state in both I and F, and their states are the same as those in w. Then for edges in $w \oplus U$, due to the construction of the canonical path, there is a unique ordering among those edges, including $e=w \oplus w^{\prime}$. For any edge before e, its status in w has been changed to that in F, and its status in U is still the same as that in I. For any edge after e (including e itself), its status in w is still the same as that in I, and in U is the same as in F.

Recall that $w_{p}(S)=p^{|S|}(1-p)^{|E \backslash S|}$ for any subset of edges $S \subset E$. Since $I \oplus F=w \oplus U$ and $I \cap F=w \cap U$, we have that

$$
w_{p}(I) w_{p}(F)=w_{p}(w) w_{p}(U)
$$

Therefore,

$$
\begin{aligned}
\sum_{\gamma \ni\left(w, w^{\prime}\right)} w t(\gamma) & =\sum_{\substack{I, F \in \Omega_{0}^{2} \\
\gamma_{I F} \ni\left(w, w^{\prime}\right)}} \pi_{\text {even }}(I) \pi_{\text {even }}(F)=\sum_{\substack{I, F \in \Omega_{0}^{2} \\
\gamma_{I F} \ni\left(w, w^{\prime}\right)}} \frac{w_{p}(I) w_{p}(F)}{Z_{0}^{2}} \\
& =\sum_{\substack{I, F \in \Omega_{0}^{2} \\
\gamma_{I F}}} \frac{w_{p}(w) w_{p}(\varphi(I, F))}{Z_{0}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \leq w_{p}(w) \sum_{U \in \Omega_{0} \cup \Omega_{2}} \frac{w_{p}(U)}{Z_{0}^{2}} \\
& =\frac{Z_{0}+Z_{2}}{Z_{0}^{2}} \cdot w_{p}(w)
\end{aligned}
$$

By the definition of $\pi_{\text {worm }}(12)$ and (13), $\pi_{\text {worm }}(w)=\frac{w_{\text {worm }}(w)}{Z_{\text {worm }}} \geq \frac{w_{p}(w)}{n^{2} Z_{w o r m}}$. This implies that

$$
\sum_{\gamma \ni\left(w, w^{\prime}\right)} w t(\gamma) \leq \frac{Z_{0}+Z_{2}}{Z_{0}} \cdot \frac{Z_{w o r m}}{Z_{0}} \cdot n^{2} \pi_{w o r m}(w)
$$

(by Lemma 15)

$$
\begin{aligned}
& \leq\left(1+\binom{n}{2}\right)\left(1+\binom{n}{2} n^{-2}\right) n^{2} \pi_{w o r m}(w) \\
& \leq n^{4} \pi_{w o r m}(w)
\end{aligned}
$$

For the last claim of the theorem, let $w^{\prime}=w \cup\{e\}$ for some $e \notin w$. We can do the same combinatorial encoding for w^{\prime}. That is, let $U^{\prime}=\varphi^{\prime}(I, F)=$ $I \oplus F \oplus w^{\prime}$. It is easy to verify as above that φ^{\prime} is an injection. Then as above,

$$
\begin{aligned}
\sum_{\gamma \ni\left(w, w^{\prime}\right)} w t(\gamma) & \leq \frac{Z_{0}+Z_{2}}{Z_{0}^{2}} \cdot w_{p}\left(w^{\prime}\right) \\
& =\frac{Z_{0}+Z_{2}}{Z_{0}^{2}} \cdot w_{p}(w) \cdot \frac{p}{1-p} \\
& \leq n^{4} \pi_{w o r m}(w) \frac{p}{1-p}
\end{aligned}
$$

ACKNOWLEDGEMENTS

We thank the anonymous referees for their helpful comments.

REFERENCES

Blanca, A. and Sinclair, A. (2015). Dynamics for the Mean-field Random-cluster Model. In RANDOM 528-543. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Blanca, A. and Sinclair, A. (2016). Random-cluster dynamics in \mathbb{Z}^{2}. Probab. Theory Related Fields. DOI: 10.1007/s00440-016-0725-1.
Bollobás, B., Grimmett, G. and Janson, S. (1996). The random-cluster model on the complete graph. Probab. Theory Related Fields 104 283-317. MR1376340
Borgs, C., Chayes, J. T., Frieze, A., Kim, J. H., Tetali, P., Vigoda, E. and Vu, V. H. (1999). Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics. In FOCS 218-229. MR1917562
Cai, J., Guo, H. and Williams, T. (2016). A Complete Dichotomy Rises from the Capture of Vanishing Signatures. SIAM J. Comput. 45 1671-1728.

Collevecchio, A., Garoni, T. M., Hyndman, T. and Tokarev, D. (2016). The worm process for the Ising model is rapidly mixing. J. Stat. Phys. 164 1082-1102.
Diaconis, P. and Saloff-Coste, L. (1993). Comparison Theorems for Reversible Markov Chains. Ann. Appl. Probab. 3 696-730.
Diaconis, P. and Stroock, D. (1991). Geometric bounds for eigenvalues of Markov chains. Ann. Appl. Probab. 1 36-61. MR1097463
Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I. and Tassion, V. (2016). Discontinuity of the phase transition for the planar random-cluster and Potts models with $q>4$. ArXiv, abs/1611.09877.
Dyer, M., Goldberg, L. A., Jerrum, M. and Martin, R. (2006). Markov chain comparison. Probab. Surv. 3 89-111. MR2216963
Edwards, R. G. and Sokal, A. D. (1988). Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D (3) 38 20092012. MR965465

Fortuin, C. M. and Kasteleyn, P. W. (1972). On the random-cluster model. I. Introduction and relation to other models. Physica 57 536-564. MR0359655
Galanis, A., Štefankovič, D. and Vigoda, E. (2015). Swendsen-Wang Algorithm on the Mean-Field Potts Model. In RANDOM 815-828.
Gheissari, R. and Lubetzky, E. (2016). Mixing times of critical 2D Potts models. ArXiv, abs/1607.02182.
Goldberg, L. A. and Jerrum, M. (2008). Inapproximability of the Tutte polynomial. Inform. and Comput. 206 908-929. MR2433765
Goldberg, L. A. and Jerrum, M. (2012). Approximating the partition function of the ferromagnetic Potts model. J. ACM 59 Art. 25, 31. MR2995824
Goldberg, L. A. and Jerrum, M. (2014). The complexity of computing the sign of the Tutte polynomial. SIAM J. Comput. 43 1921-1952. MR3291539
Gore, V. K. and Jerrum, M. R. (1999). The Swendsen-Wang process does not always mix rapidly. J. Stat. Phys. 97 67-86. MR1733467
Grimmett, G. (2006). The random-cluster model. Springer.
Grimmett, G. and Janson, S. (2009). Random even graphs. Electron. J. Combin. 16 Research Paper, 46, 19. MR2491648
Jerrum, M. and Sinclair, A. (1989). Approximating the Permanent. SIAM J. Comput. 18 1149-1178.
Jerrum, M. and Sinclair, A. (1993). Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22 1087-1116. MR1237164
Long, Y., Nachmias, A., Ning, W. and Peres, Y. (2014). A Power Law of Order 1/4 for Critical Mean Field Swendsen-Wang Dynamics. Memoirs of the AMS 232.
Lubetzky, E. and Sly, A. (2012). Critical Ising on the Square Lattice Mixes in Polynomial Time. Commun. Math. Phys. 313 815-836.
Peres, Y. (2017). personal communication.
Prokof'ev, N. and Svistunov, B. (2001). Worm Algorithms for Classical Statistical Models. Phys. Rev. Lett. 87160601.
Randall, D. and Wilson, D. (1999). Sampling Spin Configurations of an Ising System. In SODA 959-960.
Sinclair, A. (1992). Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow. Comb. Probab. Comp. 1 351-370.
Sinclair, A. and Jerrum, M. (1989). Approximate counting, uniform generation and rapidly mixing Markov chains. Inform. and Comput. 82 93-133. MR1003059
Swendsen, R. and Wang, J.-S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev. Lett. 58 86-88.

Ullrich, M. (2013). Comparison of Swendsen-Wang and heat-bath dynamics. Random Struct. Algorithms 42 520-535.
Ullrich, M. (2014a). Rapid mixing of Swendsen-Wang dynamics in two dimensions. Dissertationes Mathematicae 502.
Ullrich, M. (2014b). Swendsen-Wang Is Faster than Single-Bond Dynamics. SIAM J. Discrete Math. 28 37-48.
van der Waerden, B. L. (1941). Die lange Reichweite der regelmäßigen Atomanordnung in Mischkristallen. Zeitschrift für Physik 118 473-488.

Mile End Road, London E1 4NS, United Kingdom.
E-MAIL: h.guo@qmul.ac.uk; m.jerrum@qmul.ac.uk

[^0]: *This work was partially supported by the EPSRC grant EP/N004221/1, and was done (in part) while the authors were visiting the Simons Institute for the Theory of Computing. During the visit HG was also supported by a Google research fellowship.

 MSC 2010 subject classifications: Primary 68W20; secondary 68Q87
 Keywords and phrases: Random cluster, Markov chains, Ising model, Swendsen-Wang dynamics

[^1]: ${ }^{1}$ For a treatment of holographic transformations, see e.g. (Cai, Guo and Williams, 2016).

