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RANDOM CLUSTER DYNAMICS FOR THE ISING
MODEL IS RAPIDLY MIXING∗

By Heng Guo and Mark Jerrum

School of Mathematical Sciences
Queen Mary, University of London

We show that the mixing time of Glauber (single edge update)
dynamics for the random cluster model at q = 2 on an arbitrary n-
vertex graph is bounded by a polynomial in n. As a consequence, the
Swendsen-Wang algorithm for the ferromagnetic Ising model at any
temperature also has a polynomial mixing time bound.

1. Introduction. The Ising model is perhaps the best known model in
statistical physics, and it has also been widely studied from an algorithmic
perspective. An instance of the model is an undirected graph G, together
with a parameter β > 0. A configuration of the model is an assignment σ ∈
{0, 1}V of “spins” to the vertices of G. The weight w(σ) of configuration σ is
βm(σ) where m(σ) is the number of monochromatic edges (edges {i, j} with
σ(i) = σ(j)) in G. It is of importance to compute the partition function
of the system, which is the sum of weights w(σ) over all configurations
σ ∈ {0, 1}V .

If β < 1 then the system is antiferromagnetic, and the partition function is
computationally hard, even to approximate. However, in the ferromagnetic
case (β > 1), Jerrum and Sinclair (1993) gave a fully polynomial-time ran-
domized approximation scheme (FPRAS) for the partition function, which
is efficient and achieves any specified relative error. A direct approach using
Markov chain Monte Carlo (MCMC) on the spin configurations described
above fails, as the spin model exhibits multiple phases for sufficiently large β
on, say, a complete graph. On the other hand, the “even subgraphs” model
has the same partition function as that of the Ising model, and it does form
the basis for a successful application of MCMC, as was shown by Jerrum
and Sinclair (1993). (See Sections 2 and 3 for details of the various models
referred to in this introduction.)
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There is a third model which is equivalent to the Ising model in the
sense of having the same partition function up to an easily computable fac-
tor, namely the random cluster model introduced by Fortuin and Kasteleyn
(1972). Similarly to the even subgraphs model, the configurations of the ran-
dom cluster model are subsets of the edge set of G. However, the random
cluster model is more tightly related to the Ising model; in fact a random
Ising configuration can be obtained by colouring the connected components
(clusters) of a random cluster configuration independently and uniformly
at random by 0 and 1. Although we already have a polynomial-time algo-
rithm for estimating the partition function of the Ising model, it is natural
to wonder about the mixing time of the Gibbs sampler for random cluster
configurations, which makes single edge-flip moves with Metropolis rejection
probabilities. Indeed, it is conceivable that this dynamics mixes faster than
the standard dynamics for the even subgraphs model.

Another reason for focusing on the random cluster model is that it extends
the other two models in the following sense. There is a generalisation of the
Ising model to q ≥ 2 spins, known as the q-state Potts model, of which the
Ising model is the special case q = 2. Although the even subgraphs and spin
formulations are defined only for integer q, the random cluster model makes
sense for arbitrary positive real q. Thus, by studying the dynamics of the
random cluster model at q = 2, we may gain insight into the complexity
of computing the partition function of the random cluster model at other
values of q, particularly (for reasons that will be explained presently) in the
range 0 ≤ q < 2. Stated in other terms, we would hope to gain information
about the complexity of approximating the Tutte polynomial T (G;x, y) in
the region 0 ≤ (x − 1)(y − 1) < 2, and x, y ≥ 1, about which nothing is
currently known except for the point x = y = 1 and the (trivial) hyperbola
(x− 1)(y − 1) = 1 (Goldberg and Jerrum, 2008, 2014).

In this paper we prove that the Gibbs sampler (single edge-flip dynamics)
for the random cluster model on an arbitrary graph mixes in time polynomial
in n = |V (G)|, the number of vertices of G. (See Theorem 2.) One main tool
is the well-known canonical paths technique for bounding mixing times via
a parameter known as congestion (in the form presented by Sinclair (1992),
see also (Diaconis and Stroock, 1991)). Another tool is a coupling between
random cluster and even subgraph configurations discovered by Grimmett
and Janson (2009). The existence of this coupling invites us to bound the
congestion of the edge-flip dynamics on random cluster configurations in
terms of the known bounds on congestion for the edge-flip dynamics on
(augmented) even subgraph configurations, established by Jerrum and Sin-
clair (1993). Unfortunately, this translation between the models cannot be
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handled by existing comparison techniques (Diaconis and Saloff-Coste, 1993;
Dyer et al., 2006), and an extension of comparison methods to the current
situation is a contribution of the paper, and one that may find applications
elsewhere.

Swendsen and Wang (1987) proposed a Markov chain that is widely con-
sidered to be an efficient method for sampling random cluster configura-
tions (and Ising spin configurations) in practice. (Refer to Section 2.2 for
a description of this Markov chain.) Prior to this work, the study of the
Swendsen-Wang algorithm and related cluster dynamics was focused on spe-
cial graphs, such as the complete graph (the “mean-field” situation) or the
two-dimensional lattice Z2. For complete graphs, the mixing time is very
well understood for all q ≥ 1 (Long et al., 2014; Blanca and Sinclair, 2015;
Galanis, Štefankovič and Vigoda, 2015). For Z2, for all q ≥ 1, the dynamics
is fast mixing at all temperatures other than the critical one (Ullrich, 2013,
2014a; Blanca and Sinclair, 2016). When q = 2, a polynomial upper bound
was known in the critical case on Z2 (Lubetzky and Sly, 2012; Ullrich, 2013,
2014a), whereas on Z3 this was unknown. Recently, exponential mixing time
lower bounds were established at the critical temperature on Z2 when q > 4,
and for other q, the mixing time is at most subexponential (Gheissari and
Lubetzky, 2016; Duminil-Copin et al., 2016), improving upon previous slow
mixing results (Borgs et al., 1999).

On the other hand, little is known for the Swendsen-Wang algorithm
on arbitrary graphs. Ullrich (2014b) has shown that the relaxation time of
the Swendsen-Wang dynamics is always no more than that of the edge-flip
dynamics, so our result provides the first polynomial upper bound on the
mixing time of the Swendsen-Wang algorithm for the ferromagnetic Ising
model on arbitrary graphs (see Theorem 9). This confirms a conjecture raised
by Sokal in the 90s. However, the exponent in the bound we derive here
is likely to be well above the true answer. Indeed, Peres has made and
circulated (Peres, 2017) the following conjecture.

Conjecture 1 (Peres). The mixing time of the Swendsen-Wang algo-
rithm for the ferromagnetic Ising model is O(n1/4) on an arbitrary graph.

The conjectured bound O(n1/4) comes from the mixing time at the critical
temperature in a complete graph (Long et al., 2014), which is believed to be
the worst case. In contrast, the bound we show is O(n4m3) (see Theorem 9).
Hopefully, the result presented here may be the first step on the road towards
settling this conjecture.

Since the random cluster model is defined for all positive real q, it is
natural to speculate on the mixing time of the Glauber dynamics when
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q ̸= 2. For q > 2, the mixing time cannot be polynomial in general, owing to
a first-order phase transition of the model on the complete graph identified
by Bollobás, Grimmett and Janson (1996). This phase transition is a barrier
to rapid mixing when q > 2, as shown by Gore and Jerrum (1999) when
q is an integer, and by Blanca and Sinclair (2015) for general q > 2. In
fact, there is no polynomial-time algorithm of any sort for evaluating the
partition function of the random cluster model on general graphs when q >
2, unless there is an FPRAS for counting independent sets in a bipartite
graph (Goldberg and Jerrum, 2012). In contrast, in the range 0 ≤ q ≤ 2
there is no known barrier to rapid mixing, and there is cause to be optimistic,
particularly in the range 1 < q < 2, in which the random cluster model is
monotonic.

2. Definitions and the main results. For a graph G = (V,E), we
will use n = |V | and m = |E| throughout the paper. The ferromagnetic
Ising model on a graph G = (V,E) with parameter β > 1 is defined by the
following: for any σ ∈ {0, 1}V , the probability of being in configuration σ is

π(σ) =
βm(σ)

ZIsing(β)
,(1)

where m(σ) is the number of mono-chromatic edges in σ, and its normalizing
factor, the so-called partition function, is defined as

ZIsing(β) =
∑

σ∈{0,1}V
βm(σ).

The random cluster model with parameters (p, q) is defined on subsets of
edges S ⊆ E such that

πRC(S) ∝ p|S|(1− p)|E\S|qκ(S),(2)

where κ(S) is the number of connected components in the subgraph (V, S).
The partition function is

ZRC(p, q) =
∑
S⊆E

p|S|(1− p)|E\S|qκ(S).

Denote this measure by πRC;p,q(·) or simply πRC(·) when there is no confu-
sion. We use Ω throughout this article to denote the state space of random
cluster models, namely {0, 1}E . It is well known that, for q = 2 and p = 1− 1

β ,
the random cluster model is equivalent to the Ising model in the sense that
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their partition functions are equal up to some easily computable factor (see
(10)). The random cluster model was introduced by Fortuin and Kasteleyn
(1972), who also showed the equivalence between partition functions of the
random cluster and the Ising model. Edwards and Sokal (1988) further eluci-
dated the connection: for general integer q > 0, there is a coupling between
the random cluster and the Potts model with q spins (where Ising is the
special case of q = 2).

The (lazy) single bond flip dynamics PRC is defined as follows based on
the Metropolis filter.

PRC(x, y) =


1
2m min

{
1, πRC(y)

πRC(x)

}
if |x⊕ y| = 1;

1− 1
2m

∑
e∈E min

{
1, πRC(x⊕{e})

πRC(x)

}
if x = y;

0 otherwise,

(3)

where x, y ∈ Ω. It is not hard to see, for example, by checking the detailed
balance condition, that πRC(·) is the stationary distribution of PRC . Note
that the Markov chain is lazy, i.e., it remains at its current state with prob-
ability at least 1

2 . This eliminates the possibility of the transition matrix P
having negative eigenvalues, and simplifies the analysis later.

For a Markov chain with transition matrix P and stationary distribution
π, we are interested in its mixing time, that is, how fast it converges to the
stationary distribution, defined as follows:

τε(P ) := min

{
t : max

x∈Ω
||P t(x, ·)− π|| ≤ ε

}
,(4)

where || · || is the total variation distance, namely

||π − π′|| = 1

2

∑
x∈Ω

|π(x)− π′(x)|.

Our main result is a mixing time upper bound of the single bond flip
dynamics PRC that is polynomial in the number of vertices.

Theorem 2. For the random cluster model with parameters 0 < p < 1
and q = 2, we have that

τε(PRC) ≤ 8n4m2(m ln(1− p)−1 + ln ε−1).

2.1. Preliminaries on Markov chains. If a Markov chain is lazy, then the
second-largest eigenvalue (in absolute value) of the transition matrix P is
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just the second eigenvalue, denoted by λ2. The relaxation time is defined as

Trel(P ) :=
1

1− λ2
.(5)

The relaxation time is closely related to the mixing time, as shown by the
following proposition (see for example (Diaconis and Stroock, 1991, Propo-
sition 3)).

Proposition 3. For a lazy, ergodic, reversible Markov chain P and any
initial state x0 ∈ Ω,

τε(P ) ≤ Trel(lnπ(x0)
−1 + ln ε−1).

Our goal is to bound τε(PRC). We can choose the initial state to be the
empty set of edges, which has weight π(∅) = (1−p)|E|2|V |

ZRC
. Also for β = 1

1−p

we have ZRC(p, 2) = β−|E|ZIsing(β) ≤ 2|V |, and therefore π(∅) ≥ (1− p)|E|.
Hence, lnπ(x0)−1 ≤ m ln(1− p)−1.

Canonical paths are a useful technique to bound the relaxation time of
Markov chains, introduced by Sinclair and Jerrum (1989); Jerrum and Sin-
clair (1989). Let Γ = {γxy : x, y ∈ Ω} be a collection of paths, where
γxy = {z0, . . . , zℓ} is a “canonical” path from x = z0 to y = zℓ of length ℓ
where each step (zi, zi+1) is a valid transition of the Markov chain, namely
P (zi, zi+1) > 0. The congestion ϱ(Γ) associated with these paths is

ϱ(Γ) := max
(z,z′)∈Ω2,P (z,z′)>0

L

π(z)P (z, z′)

∑
x,y∈Ω2

γxy∋(z,z′)

π(x)π(y),(6)

where L = L(Γ) denotes the maximum length of paths in Γ.
A more general technique is provided by the flow formulation for con-

gestion. A (valid) flow Γ is a collection of paths, where each path γ ∈ Γ is
assigned a weight wt(γ), such that∑

γ is from x to y

wt(γ) = π(x)π(y).(7)

The congestion of Γ is defined as

ϱ(Γ) := max
(z,z′)∈Ω2,P (z,z′)>0

L

π(z)P (z, z′)

∑
γ∈Γ, (z,z′)∈γ

wt(γ).(8)

The canonical paths are just a flow where for each pair (x, y) there is only
one path with positive weight.

Sinclair (1992) showed that the relaxation time can be bounded by the
congestion of any flow Γ.
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Proposition 4. For a lazy, ergodic, reversible Markov chain P and any
flow Γ,

Trel(P ) ≤ ϱ(Γ).

The main task is to design a good flow ΓRC so that ϱ(ΓRC) is bounded
by a polynomial in n.

Theorem 5. There is a collection ΓRC of paths for the random cluster
dynamics such that its congestion ϱ(ΓRC) ≤ 8m2n4.

Theorem 5 will be proved in Section 4. In particular, it implies a bound
on the relaxation time of PRC .

Corollary 6. For the Markov chain PRC , Trel(PRC) ≤ 8m2n4.

Theorem 2 follows from Proposition 3 and Corollary 6.

2.2. The Swendsen-Wang algorithm. Swendsen and Wang (1987) pro-
posed the following algorithm to sample Ising configurations with parameter
β. For an Ising configuration σ = σt ∈ {0, 1}V at time t,

• Let M be the set of monochromatic edges under σ, that is, (u, v) ∈ M
if σ(u) = σ(v).

• For each edge e ∈ M , delete it with probability β−1. Let M ′ denote
the set of monochromatic edges that were not deleted.

• In the subgraph (V,M ′), for each connected component, choose uni-
formly at random and independently from {0, 1}, and assign the chosen
spin to all vertices in that component.

The resulting spin configuration is σt+1 at time t+ 1.
Ullrich (2014b) showed that the relaxation time of the Swendsen-Wang

algorithm is no larger than that of the single bond flip dynamics. In fact,
the result of (Ullrich, 2014b) holds for any integer q > 0, but here we only
need it for q = 2.

Proposition 7 (Ullrich 2014b, Theorem 5). Let PSW be the transition
matrix of the Swendsen-Wang algorithm to sample Ising configurations with a
parameter β > 1. Let PRC be the transition matrix of the corresponding single
bond flip dynamics for the random cluster model with p = 1 − β−1 ∈ (0, 1)
and q = 2. Then for any graph G, Trel(PSW ) ≤ Trel(PRC).

Combining Corollary 6 and Proposition 7 we have the following.
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Corollary 8. For the Swendsen-Wang algorithm, Trel(PSW ) ≤ 8m2n4.

Again, we use Corollary 8 together with Proposition 3, implying a poly-
nomial mixing time upper bound for the Swendsen-Wang algorithm.

Theorem 9. Let PSW be the transition matrix of the Swendsen-Wang
algorithm to sample Ising configurations with a parameter β > 1. we have
that

τε(PSW ) ≤ 8n4m2(m lnβ + ln ε−1).

3. Random even subgraphs. There is yet another formalism of the
Ising model, that is, the so-called “high-temperature expansion” or even
subgraphs model. We still pick a subset of edges S ⊆ E but with the further
restriction that every vertex in the induced subgraph (V, S) has even degree.
Denote by Ωeven(G) the state space of all such even subgraphs of G. We
usually simply write Ωeven when there is no confusion. In this even subgraphs
model we want to sample from Ωeven with parameter p ≤ 1/2, so that edges
are more inclined to be “out” than “in”. That is, for any S ∈ Ωeven,

π(S) ∝ p|S|(1− p)|E\S|(9)

and

Zeven(p) =
∑

S∈Ωeven

p|S|(1− p)|E\S|.

Distributions (1), (2), and (9) have in fact the same partition function, up
to certain scaling factors:

ZIsing(β) = β|E|ZRC

(
1− 1

β
, 2

)
= 2|V |β|E|Zeven

(
1

2

(
1− 1

β

))
.(10)

The first equivalence was discovered by Fortuin and Kasteleyn (1972), (see
also (Grimmett, 2006)). The second one is also a classical result, known
as early as in (van der Waerden, 1941). More detailed explanations can be
found in Appendix A.

Grimmett and Janson (2009) discovered the following coupling between
even subgraphs and random cluster configurations.

Theorem 10 (Grimmett and Janson 2009, Thm 3.5). Take a random
even subgraph S from distribution (9) with parameter p ≤ 1/2, and add each
edge e ̸∈ S independently with probability p

1−p to get a random subgraph
R. Then R is a random cluster configuration, that is, it satisfies (2) with
parameters (2p, 2).
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For completeness we give a proof of Theorem 10.

Proof. The number of even subgraphs of a (not necessarily simple)
graph G = (V,E) is well known to be

|Ωeven(G)| = 2|E|−|V |+κ(G),(11)

where κ(G) is the number of connected components of G.
For each r ⊆ E,

Pr(R = r) ∝
∑

s⊆r,s even

(
p

1− p

)|s|( p

1− p

)|r\s|(1− 2p

1− p

)|E\r|

∝ p|r|(1− 2p)|E\r|N(r),

where N(r) is the number of even subgraphs of (V, r). By (11), N(r) =
2|r|−|V |+κ(r). Hence,

Pr(R = r) ∝ (2p)|r|(1− 2p)|E\r|2κ(r).

However, it is not clear how to sample from Ωeven with edge weights
directly in an efficient way, partly because of the rigid structure of the all
even requirement. On the other hand, Jerrum and Sinclair (1993) designed
a Markov chain to do so by moving among all subgraphs, but with each odd
degree vertex incurring a penalty. Note that the Jerrum-Sinclair Markov
chain together with the Grimmett-Janson coupling (Theorem 10) yields an
efficient sampler for random cluster models and Ising configurations. It is
more straightforward and efficient than the one given by Randall and Wilson
(1999), which also uses the Jerrum-Sinclair chain.

An alternative (but similar) Markov chain is to move between even sub-
graphs and near-even subgraphs, for which we allow exactly two odd de-
gree vertices (or “holes”). This is the so-called “worm” process, introduced
by Prokof’ev and Svistunov (2001).

Let Ωk be the collection of subgraphs where k many vertices have odd
degrees. Then Ω0 = Ωeven and the state space Ωworm of the “worm” process
is Ωworm := Ω0 ∪Ω2. For each pair of vertices (u, v) such that u ̸= v, denote
by Ω(u, v) the set of subgraphs of G in which u and v have odd degrees and
all other vertices are even. Then

Ω2 =
∪

u,v∈V
Ω(u, v).
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For a subset of edges S ⊆ E, let wp(S) := p|S|(1−p)|E\S|. We give a penalty
of n−2 to each near-even subgraph:

wworm(S) :=


wp(S) if S ∈ Ω0;

n−2wp(S) if S ∈ Ω2;

0 otherwise.
(12)

The “worm” measure is defined as the following:

πworm(S) :=

{
wworm(S)
Zworm(p) if S ∈ Ωworm;

0 otherwise,
(13)

where Zworm(p) =
∑

S∈Ωworm
wworm(S).

The winding idea of (Jerrum and Sinclair, 1993) provides a way to design
canonical paths between states in Ωworm with low congestion. We will not
need to analyze it in full detail for the worm process. Instead, we only care
about paths from one even subgraph to another.

Theorem 11. There is a collection of paths

Γworm = {γxy |x, y ∈ Ω0}

equipped with a weight function wt(·) such that the following holds:

1. For any path γ ∈ Γworm and any state w ∈ γ, w ∈ Ωworm;
2. wt(γxy) = πeven(x)πeven(y);
3. Each state w appears at most once in γ and L(Γworm) ≤ m;
4. for any transition (w,w′) where w′ = w ⊕ {e},∑

γ∈Γworm and γ∋(w,w′)

wt(γ) ≤ n4πworm(w).

Moreover, in the special case w′ = w ∪ {e} for some e ̸∈ w, we have the
additional bound ∑

γ∈Γworm and γ∋(w,w′)

wt(γ) ≤ n4πworm(w)
p

1− p
.

Note that Γworm is not a complete collection of canonical paths for πworm(·).
The proof of Theorem 11 is an adaptation of (Jerrum and Sinclair, 1993)
and is given in Appendix B. Note that Collevecchio et al. (2016) give an
analysis of a complete set of canonical paths for the worm process, but their
result does not quite fit our situation.
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Since paths in Γworm go through Ωworm instead of Ωeven, we need to
extend Theorem 10 to Ωworm. It will no longer be exact.

Take a random subgraph S from πworm (13) with parameter p ≤ 1/2.
Again we add each edge e ̸∈ S independently with probability p

1−p to get R.
Denote by π̂(·) the law of R .

Lemma 12. For any R ⊆ E,

π̂(R)

πRC;2p,2(R)
≤ 3

2
.

Proof. Similarly to the proof of Theorem 10, it is not hard to see that

π̂(R) ∝ p|R|(1− 2p)|E\R|(N(R) + n−2N ′(R)),

where N(R), as before, is the number of even subgraphs of (V,R), and N ′(R)
is the number of subgraphs of R that belong to Ω2. Note that for each near-
even subgraph there is a penalty of n−2 for its weight (see (12)). We use
(11) to count the number of even subgraphs of R, which is 2|R|−|V |+κ(R).

Let ΩR(u, v) be the set of near-even subgraphs of R with holes u and
v. If u, v are in different connected components of (V,R), then there is no
possible such subgraph and |ΩR(u, v)| = 0. Otherwise u, v are in the same
component of (V,R), and we can add an extra edge (u, v) to R to get a
graph R′. Applying (11) to R′ we get that

N(R′) = 2|R|+1−|V |+κ(R) = N(R) + |ΩR(u, v)|.

The second equality is because each even subgraph of R′ either uses the new
edge (u, v) or not. If it does not use (u, v), then it is an even subgraph of R.
Otherwise it is (after removing the edge (u, v)) a near-even subgraph of R
with holes u and v. Hence,

|ΩR(u, v)| = 2|R|−|V |+κ(R),

as N(R) = 2|R|−|V |+κ(R).
Let c(R) be the number of pairs of vertices from every component of

(V,R). That is,

c(R) :=

κ(R)∑
i=1

(
ni

2

)
,(14)
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where ni is the size of the ith component of (V,R) with the convention that(
1
2

)
= 0. Then we have that

N ′(R) = 2|R|−|V |+κ(R)c(R),

and

π̂(R) ∝ (2p)|R|(1− 2p)|E\R|2κ(R)

(
1 +

c(R)

n2

)
.

The lemma follows by noticing that 0 ≤ c(R) ≤ n(n−1)
2 .

4. Lifting canonical paths. Let p ≤ 1/2 be the parameter of the even
subgraph and the worm measure. Let Γworm be the collection of paths as in
Theorem 11. We will use Lemma 12 to lift Γworm to a flow ΓRC for PRC , the
single edge-flip Markov chain for the random cluster model with parameter
2p. This flow ΓRC will be the one used in the proof of Theorem 5.

We first construct a flow Γ′
RC from Γworm. Let γ = {w0, w1, · · · , wℓ} be

a path in Γworm where w0, wℓ ∈ Ω0, and ℓ ≤ L(Γworm). We lift γ to a flow
(random path) as follows. First we add each edge e ̸∈ w0 with probability
p′ = p

1−p independently as in Lemma 12, to obtain the starting state Z0 of
the path. In other words, letting

δ(w, z) := (p′)|z\w|(1− p′)|E\z|,

for subsets of edges w ⊆ z ⊆ E, we draw a superset Z0 of w0 such that
Pr(Z0 = z) = δ(w0, z) for any z ⊇ w0. Note that

πRC(z) =
∑

w⊆z,w∈Ω0

πeven(w)δ(w, z)

by Theorem 10, and

π̂(z) =
∑

w⊆z,w∈Ωworm

πworm(w)δ(w, z)

by definition.
We construct Z1, · · · , Zℓ inductively. Given Zk−1 for 1 ≤ k ≤ ℓ, we con-

struct Zk by mimicking the transition from wk−1 to wk while ensuring that

Prγ(Zk = z) = δ(wk, z),

for any z ⊇ wk at the same time. Here the subscript γ emphasises that
probabilities are with respect to a fixed path γ. By the induction hypothesis,
Prγ(Zk−1 = z) = δ(wk−1, z) for any z ⊇ wk−1. For Zk, there are two cases:
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• If wk = wk−1 ∪ {e} for some edge e ̸∈ wk−1, then let Zk = Zk−1 ∪ {e}.
We have that

Prγ(Zk = z) = Prγ(Zk−1 = z) + Prγ(Zk−1 = z \ {e})
= δ(wk−1, z) + δ(wk−1, z \ {e})
= δ(wk, z)p

′ + δ(wk, z)(1− p′) = δ(wk, z),

for any z ⊇ wk.
• If wk = wk−1 \ {e} for some edge e ∈ wk−1, then let Zk = Zk−1 with

probability p′ and Zk = Zk−1 \ {e} with probability 1 − p′. For any
z ⊇ wk such that e ∈ z,

Prγ(Zk = z) = Prγ(Zk−1 = z)p′ = δ(wk−1, z)p
′ = δ(wk, z),

and for any z ⊇ wk such that e ̸∈ z,

Prγ(Zk = z) = Prγ(Zk−1 = z ∪ {e})(1− p′)

= δ(wk−1, z ∪ {e})(1− p′) = δ(wk, z).

Given γ, the lifted path Z = {Z0, Z1, · · · , Zℓ} is constructed as above. A
particular flow path ζ = {z0, z1, · · · , zℓ} in the random cluster world may
be lifted from multiple paths from Γworm, and its weight is assigned to be
the aggregation:

wt(ζ) =
∑

γ∈Γworm

wt(γ)Prγ(Z = ζ).

This finishes the construction of Γ′
RC .

However, Γ′
RC is not a valid flow for πRC(·). Recall that the valid flow

should satisfy (7). An equivalent view of (7) is that if we draw a random path
according to the weight function wt(·), the initial and final states should be
independently distributed according to πRC(·). Under this view, the prob-
lem with Γ′

RC is that Z0 and Zℓ are correlated, even though the marginal
distribution of each is πRC(·).

We resolve this issue next by constructing ΓRC . Given γ ∈ Γworm with
length ℓ, we construct Z0, · · · , Zℓ the same as in Γ′

RC . To repair the distri-
bution of Zℓ, we append further transitions to re-randomize edges that are
not in wℓ. More precisely, let {e1, e2, · · · , ek} be the edges that are not in
wℓ where k = |E \ wℓ|. Given Zℓ+i−1 for 1 ≤ i ≤ k, let Zℓ+i = Zℓ+i−1 \ {ei}
with probability 1 − p′ and Zℓ+i = Zℓ+i−1 ∪ {ei} with probability p′. As in
Γ′
RC , for a random cluster path ζ = {z0, z1, · · · , zℓ+k}, its weight is defined
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to be

wt(ζ) =
∑

γ∈Γworm

wt(γ)Prγ(Z = ζ).

This finishes the construction of ΓRC . The longest path in ΓRC has length
at most L(Γworm) +m, that is, L(ΓRC) ≤ L(Γworm) +m ≤ 2m.

Fix a path γ = {w0, w1, · · · , wℓ}. For any 0 ≤ i ≤ ℓ and z ⊇ wi, we have
Prγ(Zi = z) = δ(wi, z), because of the construction of Γ′

RC . Moreover, for
any 1 ≤ i ≤ |E \ wℓ| and z ⊇ wℓ, we have Prγ(Zℓ+i = z) = δ(wℓ, z). This
can be shown by inductively going through the construction above. The re-
randomization does not change the marginal distribution but removes the
correlation between Z0 and Zℓ′ , where ℓ′ = ℓ+ |E \ wℓ| (conditional on γ).

Lemma 13. The flow ΓRC is valid for πRC(·), namely it satisfies (7).

Proof. We verify (7) as follows:∑
ζ is from x to y

wt(ζ)

=
∑

w⊆x, w′⊆y
w,w′∈Ω0

∑
γ is from w to w′

wt(γ)Prγ(Z0 = x,Zℓ′ = y)

=
∑

w⊆x, w′⊆y
w,w′∈Ω0

∑
γ is from w to w′

wt(γ)Prγ(Z0 = x)Prγ(Zℓ′ = y)

=
∑

w⊆x, w′⊆y
w,w′∈Ω0

∑
γ is from w to w′

wt(γ)δ(w, x)δ(w′, y)

=
∑

w⊆x, w′⊆y
w,w′∈Ω0

πeven(w)πeven(w
′)δ(w, x)δ(w′, y)

=

 ∑
w⊆x, w∈Ω0

πeven(w)δ(w, x)

 ∑
w′⊆y, w′∈Ω0

πeven(w
′)δ(w′, y)


= πRC(x)πRC(y),

where in the last step we use Theorem 10.

Lemma 14. Let 2p ≤ 1 be the parameter for the random cluster model.
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1. For a transition (z, z′) where z′ = z ∪ {e} for some e ̸∈ z,∑
ζ∈ΓRC , ζ∋(z,z′)

wt(ζ) ≤ p

1− p
· 2n4πRC(z).

2. For a transition (z, z′) where z′ = z \ {e} for some e ∈ z,∑
ζ∈ΓRC , ζ∋(z,z′)

wt(ζ) ≤ 1− 2p

1− p
· 2n4πRC(z).

3. For a transition (z, z),∑
ζ∈ΓRC , ζ∋(z,z)

wt(ζ) ≤ 2mn4πRC(z).

Proof. Fix γ, let Z be a random path lifted from γ and ℓ be the length
of γ. Thus the path is γ = (w0, . . . , wℓ) and, in particular, the final state of
the path is wℓ. For a state w ∈ γ, let i(γ,w) be index of w in γ and k(w, e)
be the index of e in the set E \ w, following the enumeration mentioned
previously. Any w only appears once in γ ∈ Γworm and hence i(γ,w) is well
defined.

We want to bound the traffic in ΓRC that goes through (z, z′). Let p′ =
p

1−p . Depending on z′, we have three cases.

1. First assume that z′ = z ∪ {e} where e ̸∈ z. The traffic may be from
Γ′
RC transitions or from the part we append at the end of each Γ′

RC

path. Hence we have the following bound:∑
ζ∈ΓRC , ζ∋(z,z′)

wt(ζ)

=
∑
w⊆z

( ∑
γ∋(w,w∪{e})

wt(γ)Prγ
(
Zi(γ,w) = z, Zi(γ,w)+1 = z′

)
+

∑
γ=(w1,...,wℓ), wℓ=w

wt(γ)Prγ
(
Zℓ+k(w,e)−1 = z, Zℓ+k(w,e) = z′

))

=
∑
w⊆z

( ∑
γ∋(w,w∪{e})

wt(γ)Prγ
(
Zi(γ,w) = z

)
+

∑
γ, wℓ=w

wt(γ)Prγ
(
Zℓ+k(w,e)−1 = z

)
p′

)
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=
∑
w⊆z

δ(w, z)

 ∑
γ∋(w,w∪{e})

wt(γ) +
∑

γ, wℓ=w

wt(γ)p′

 .

Hence by Theorem 11,∑
ζ∈ΓRC , ζ∋(z,z′)

wt(ζ)

=
∑
w⊆z

δ(w, z)

 ∑
γ∋(w,w∪{e})

wt(γ) +
∑

γ, wℓ=w

wt(γ)p′


≤
∑
w⊆z

δ(w, z)

(
n4πworm(w)

p

1− p
+ πeven(w)p

′
)

= p′n4
∑
w⊆z

δ(w, z)πworm(w) + p′
∑

w⊆z,w∈Ω0

δ(w, z)πeven(w)

= p′n4π̂(z) + p′πRC(z)

≤ 2p′n4πRC(z),

where we use Lemma 12 in the last line. Also note that πeven(w) = 0
if w ̸∈ Ω0.

2. Next assume that z′ = z \ {e} where e ∈ z. Similarly to the previous
case, we have that∑

ζ∈ΓRC , ζ∋(z,z′)

wt(ζ)

=
∑

w⊆z, w∋e

∑
γ∋(w,w\{e})

wt(γ)Prγ
(
Zi(γ,w) = z, Zi(γ,w)+1 = z′

)
+

∑
w⊆z, w ̸∋e

∑
γ, wℓ=w

wt(γ)Prγ
(
Zℓ+k(w,e)−1 = z, Zℓ+k(w,e) = z′

)
=

∑
w⊆z, w∋e

∑
γ∋(w,w\{e})

wt(γ)Prγ
(
Zi(γ,w) = z

)
(1− p′)

+
∑

w⊆z, w ̸∋e

∑
γ, wℓ=w

wt(γ)Prγ
(
Zℓ+k(w,e)−1 = z

)
(1− p′)

=
∑

w⊆z, w∋e
(1− p′)δ(w, z)

∑
γ∋(w,w\{e})

wt(γ)

+
∑

w⊆z, w ̸∋e
(1− p′)δ(w, z)

∑
γ, wℓ=w

wt(γ).
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Again we use Theorem 11 and Lemma 12:∑
ζ∈ΓRC , ζ∋(z,z′)

wt(ζ)

≤
∑
w⊆z

δ(w, z)(1− p′)
(
n4πworm(w) + πeven(w)

)
≤ (1− p′)n4

∑
w⊆z

δ(w, z)πworm(w) + (1− p′)
∑

w⊆z,w∈Ω0

δ(w, z)πeven(w)

= (1− p′)n4π̂(z) + (1− p′)πRC(z)

≤ 2(1− p′)n4πRC(z).

3. At last we handle the case that z = z′. Then we have the following
bound ∑

ζ∈ΓRC , ζ∋(z,z)

wt(ζ)

=
∑
w⊆z

(∑
γ∋w

wt(γ)Prγ
(
Zi(γ,w) = z, Zi(γ,w)+1 = z

)
+

∑
γ, wℓ=w

wt(γ)

|E\w|∑
i=1

Prγ
(
Zℓ(γ)+i−1 = z, Zℓ(γ)+i = z

))

≤
∑
w⊆z

(∑
γ∋w

wt(γ)Prγ
(
Zi(γ,w) = z

)
+

∑
γ, wℓ=w

wt(γ)δ(w, z)|E \ w|

)

=
∑
w⊆z

δ(w, z)

∑
e∈z

∑
γ∋(w,w⊕{e})

wt(γ) + |E \ w|
∑

γ, wℓ=w

wt(γ)

 .

By Theorem 11 and Lemma 12,∑
ζ∈ΓRC , ζ∋(z,z)

wt(ζ) ≤ m
∑
w⊆z

δ(w, z)
(
n4πworm(w) + πeven(w)

)
≤ 2mn4πRC(z).

Note that in Lemma 14 we analyzed self-loop transitions (z, z) as well. We
may remove self-loop transitions from the flow ΓRC without increasing the
congestion. However, doing so would make one transition in ΓRC correspond
to potentially more than one steps before the lifting, making the analysis
more difficult.

Now we are ready to prove Theorem 5.
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Proof of Theorem 5. The flow ΓRC is constructed at the beginning
of this section and is verified in Lemma 13. We analyze its congestion in the
following. There are three cases depending on the transition (z, z′). Note that
the parameter of the random cluster is 2p, where p < 1/2 is the parameter
for the even subgraph model.

For any transition (z, z′) where z′ = z ∪ {e} for some e ̸∈ z,

L(ΓRC)

πRC(z)PRC(z, z′)

∑
ζ∈ΓRC , ζ∋(z,z′)

wt(ζ)

≤ L(ΓRC)

πRC(z)PRC(z, z′)
· p

1− p
· 2n4πRC(z)

≤ 2mn4 · p

1− p
· 2m

min{1, 2p
2(1−2p)}

≤ 4m2n4,

where we use Lemma 14 in the first inequality and p ≤ 1/2 in the last.
Similarly, for a transition (z, z′) where z′ = z \ {e} for some e ∈ z,

L(ΓRC)

πRC(z)PRC(z, z′)

∑
ζ∈ΓRC , ζ∋(z,z′)

wt(ζ)

≤ L(ΓRC)

πRC(z)PRC(z, z′)
· 1− 2p

1− p
· 2n4πRC(z)

≤ 2mn4 · 1− 2p

1− p
· 2m

min{1, 1−2p
2p }

≤ 8m2n4,

where we use Lemma 14 in the first inequality and p ≤ 1/2 in the last.
For any transition (z, z′) where z′ = z, since the chain is lazy, PRC(z, z

′) ≥
1/2 and

L(ΓRC)

πRC(z)PRC(z, z′)

∑
ζ∈ΓRC , ζ∋(z,z′)

wt(ζ) ≤ L(ΓRC)

πRC(z)PRC(z, z′)
· 2mn4πRC(z)

≤ 4m2n4,

where we use Lemma 14 in the first line.

APPENDIX A: EQUIVALENCE OF THE THREE MODELS
The equivalence between the Ising model and the random cluster model

with q = 2 can be found, for example, in (Grimmett, 2006). An alternative
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explanation is as follows. In the Ising model, instead of assigning vertices 0
or 1, we assign “equal” or “independent” to edges. Each “equal” edge has
an weight of β − 1, and “independent” edge has weight 1. This does not
change the partition function of the Ising model, since for each edge, if the
two endpoints are equal, the weight is β − 1 + 1 = β, whereas if the two
endpoints are different, the weight is 1. For a subset S ⊆ E of edges assigned
“equal”, each component of S has two possible assignments. Therefore the
weight of S is (β−1)|S|2κ(S). After rescaling by β|E|, this matches the random
cluster formulation (2) with p = 1− 1

β and q = 2. This gives the first equality
of (10).

The equivalence between the Ising model and even subgraphs model
can be explained via a holographic transformation by Hadamard matrix
H =

[
1 1
1 −1

]
.1 This view will be useful in the next section. In the Ising

model, vertices have functions Equality on their adjacent d many half-
edges, which after the transformation becomes Even function, defined as
follows:

Even(x1, · · · , xd) =
{
2 if

⊕
i xi = 0;

0 otherwise.

On the edges, the function (on the two half-edges) is

Ising(x1, x2) =
{
β if x1 = x2;

1 otherwise,

whereas after the transformation it is a weighted equality function:

WEQ(x1, x2) =


β+1
2 if x1 = x2 = 0;

β−1
2 if x1 = x2 = 1;

0 otherwise.

Therefore, for a subset S of edges (both half-edges are 1), its weight is

wt(S) =

2|V |
(
β−1
2

)|S| (
β+1
2

)|E\S|
if S ∈ Ωeven;

0 otherwise.

The requirement of S ∈ Ωeven arises because each vertex requires even de-
gree, and when all degree constraints are satisfied, the vertices contribute

1For a treatment of holographic transformations, see e.g. (Cai, Guo and Williams,
2016).
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2|V | in total. We may rewrite the weight of S ∈ Ωeven:

2|V |
(
β − 1

2

)|S|(β + 1

2

)|E\S|
= 2|V |β|E|

(
1

2

(
1− 1

β

))|S|(1

2

(
1 +

1

β

))|E\S|

Hence setting p = 1
2

(
1− 1

β

)
matches (9) and taking out an appropriate

scaling factor yields the second equality of (10).

APPENDIX B: CONGESTION OF THE WORM PROCESS

Throughout this section fix p ≤ 1/2. Recall that Ωk is the collection of
subgraphs where k many vertices have odd degrees. Then Ω0 = Ωeven, and
Ω0 ∪ Ω2 = Ωworm. Define

Zk :=
∑
S∈Ωk

wp(S),

where wp(S) = p|S|(1 − p)|E\S|. Then Z0 = Zeven(p) and Zworm(p) = Z0 +
n−2Z2.

Lemma 15. Z2 ≤
(
n
2

)
Z0.

Proof. We adopt the holographic transformation view of the even sub-
graphs model. A vertex that only allows odd degrees is equivalent to the
following function:

Odd(x1, · · · , xd) =
{
2 if

⊕
i xi = 1;

0 otherwise.

Transforming back to the Ising model, this vertex is still an Equality on all
adjacent half-edges, but with a weight of −1 when all half-edges are assigned
1. Hence for every u, v ∈ V ,

Zu,v :=
∑

S∈Ω(u,v)

wp(S) ≤ Z0,(15)

because the left hand side can be transformed to the original Ising model
with u and v having weights −1. Summing over all possible pairs of vertices
in (15) yields Z2 ≤

(
n
2

)
Z0.

In particular, Lemma 15 implies that Zworm = Z0 + n−2Z2 ≤ Z0 +
n−2

(
n
2

)
Z0 ≤ 3Z0/2. Now we are ready to prove Theorem 11.
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Proof of Theorem 11. Let I and F be two configurations in Ω0, de-
noting the initial and final states. Then I ⊕ F ∈ Ω0. The canonical path
from I to F will be identical to those in (Jerrum and Sinclair, 1993). Fix an
arbitrary ordering of all cycles in G. For each cycle we designate a starting
vertex and a direction around the cycle. Hence each cycle is an ordered tuple
of edges. Since I⊕F is an even subgraph, we can cover I⊕F by a collection
of edge-disjoint cycles. Let {C1, · · · , Cr} be the first such in our ordering.
Let e1, · · · , ek be the edges of {C1, · · · , Cr} taken in order (first order the
edges according to the cycle they occur in, and then by their position within
the cycle, counting from the start vertex). The canonical path γ from I to F
is defined to be Z0 = I, Zi = Zi−1⊕ei, and Zk = F . Intuitively the canonical
path unwinds Ci one by one from i = 1 to i = r. Clearly L = L(Γworm) ≤ m
as it can use every edge at most once.

This path is always in Ω0∪Ω2 because if we start to unwind a cycle, then
the current state is an even subgraph. If we are unwinding a path, then we
always flip an edge that is adjacent to an odd degree vertex.

For any transition (w,w′) where w′ = w ⊕ e for some edge e ∈ E, we
use a combinatorial encoding as in (Jerrum and Sinclair, 1993) for all paths
passing through (w,w′). For any two configurations I, F ∈ Ω0, let φ(I, F ) =
I ⊕ F ⊕w. We claim that φ : Ω2

0 → Ω0 ∪Ω2 is an injection. This is because
given (w,w′) and U = φ(I, F ), we can recover the unique (I, F ). First, since
w⊕U = I ⊕F , all edges not in w⊕U have the same state in both I and F ,
and their states are the same as those in w. Then for edges in w ⊕ U , due
to the construction of the canonical path, there is a unique ordering among
those edges, including e = w⊕w′. For any edge before e, its status in w has
been changed to that in F , and its status in U is still the same as that in I.
For any edge after e (including e itself), its status in w is still the same as
that in I, and in U is the same as in F .

Recall that wp(S) = p|S|(1− p)|E\S| for any subset of edges S ⊂ E. Since
I ⊕ F = w ⊕ U and I ∩ F = w ∩ U , we have that

wp(I)wp(F ) = wp(w)wp(U).

Therefore,∑
γ∋(w,w′)

wt(γ) =
∑

I,F∈Ω2
0

γIF∋(w,w′)

πeven(I)πeven(F ) =
∑

I,F∈Ω2
0

γIF∋(w,w′)

wp(I)wp(F )

Z2
0

=
∑

I,F∈Ω2
0

γIF∋(w,w′)

wp(w)wp(φ(I, F ))

Z2
0
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≤ wp(w)
∑

U∈Ω0∪Ω2

wp(U)

Z2
0

=
Z0 + Z2

Z2
0

· wp(w).

By the definition of πworm (12) and (13), πworm(w) = wworm(w)
Zworm

≥ wp(w)
n2Zworm

.
This implies that∑

γ∋(w,w′)

wt(γ) ≤ Z0 + Z2

Z0
· Zworm

Z0
· n2πworm(w)

≤
(
1 +

(
n

2

))(
1 +

(
n

2

)
n−2

)
n2πworm(w)(by Lemma 15)

≤ n4πworm(w).

For the last claim of the theorem, let w′ = w ∪ {e} for some e ̸∈ w. We
can do the same combinatorial encoding for w′. That is, let U ′ = φ′(I, F ) =
I ⊕ F ⊕ w′. It is easy to verify as above that φ′ is an injection. Then as
above, ∑

γ∋(w,w′)

wt(γ) ≤ Z0 + Z2

Z2
0

· wp(w
′)

=
Z0 + Z2

Z2
0

· wp(w) ·
p

1− p

≤ n4πworm(w)
p

1− p
.
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