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Abstract 

To maximize asset reliability cost-effectively, maintenance should be scheduled based on the 

likely deterioration of an asset. Various statistical models have been proposed for predicting 

this but they have important practical limitations. We present a Bayesian network model that 

can be used for maintenance decision support to overcome these limitations. The model 

extends an existing statistical model of asset deterioration, but shows how i) data on the 

condition of assets available from their periodic inspection can be used ii) failure data from 

related groups of asset can be combined using judgement from experts iii) expert knowledge 

of the causes deterioration can be combined with statistical data to adjust predictions. A case 

study of bridges on the GB rail network is presented, showing how the model could be used 

for the maintenance decision problem, given typical data likely to be available in practice. 

 

Keywords 

Bayesian network, Available data, Expert knowledge, Maintenance modelling, Deterioration, 

GB rail bridges 
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1 Introduction 

Maintenance consists of a set of activities required to ensure assets are in a reliable operating 

condition. According to Dhillon,1 maintenance strategies can be of three types: i) corrective 

maintenance, where maintenance follows failure ii) preventive maintenance, where 

inspections and maintenance follow a fixed schedule and iii) predictive maintenance, where 

the schedule depends on the condition of assets. Predictive maintenance requires a way to 

predict the future condition of an asset by estimating how fast it will deteriorate from its 

current condition.  

A range of different modelling techniques has been proposed to implement predictive 

maintenance strategy. However, in many situations these do not provide practical decision 

tools as the assumed data is unavailable and relevant knowledge that could be used to 

distinguish between different individuals in the same asset class is unused: 

 We may only have data such as a history of repairs, from which the condition of assets 

has to be inferred with considerable uncertainty.  

 Conventionally, separate deterioration models are created from failure data of each 

different type of asset, which is a difficulty for an organisation with many different asset 

types but only little failure data for each. We would therefore like to be able to pool 

failure data where we have evidence that different but related asset types have related 

deterioration processes. 

 Decisions about maintenance can be made for specific structure, whereas deterioration 

models cover all asset of the same type. It should be possible to use experience (e.g. 

among maintainers) about the effect of factors such as environmental conditions, loading 

and design differences on the rates of deterioration in combination with models derived 

from failure data in a population where these factors vary.  
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This paper proposes an asset deterioration model building on an existing statistical model that 

can be adapted to pool related data and incorporate expert knowledge about factors that affect 

the likely deterioration rates. Section 2 describes the typical modelling techniques for 

maintenance problems, and discusses the advantages of Bayesian networks (BNs) to meet the 

challenges of unused data and expert knowledge. Section 3 introduces the way generic BN 

models can be built to learn from available data and expert knowledge in asset maintenance 

problems. We assemble the models and show how to use the model for practical decision-

making for GB rail bridges maintenance planning in Section 4. The paper ends with 

conclusions in Section 5.  

 

2  Background 

Markov models, Petri nets and Bayesian networks are three commonly used modelling 

techniques that have been developed to predict asset performance for maintenance purpose. 

Section 2.1 reviews the work on Markov models and Petri nets, and their limitations for 

reliability modelling. Section 2.2 gives a brief introduction to BNs. The application of BNs to 

reliability modelling is described in Section 2.3. 

 

2.1 Modelling using Markov models and Petri nets  

In a Markov model, deterioration is modelled by a sequence of states representing the 

condition of an asset system over time (e.g. condition rating from 0 to 7 in Agrawal et al.2). 

Simple models have a fixed transition probability from one state to the next; typically these 

probabilities have to be estimated from data. Jiang et al.3 and Cesare et al.4 apply Markov 

models to predict future state of bridges, and Shafahi and Hakhamaneshi5 used it for track 

maintenance prediction.  
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Deterioration models that combine several repair states with non-fixed transition probabilities 

have been implemented using Petri nets and Monte-Carlo simulation. Audley and Andrews6 

used this approach to model the degradation of track, developing an optimum inspection and 

maintenance policy. A hierarchical Petri net model for rail track maintenance is presented by 

Rama and Andrews7, but the data needed to parameterise the model is not described in detail. 

Though Markov models and Petri nets are popular in reliability modelling, they require 

sufficient failure data, which is impractical in many maintenance problems since assets may 

have little failure data. Also, an easy way to integrate expert knowledge in these models is 

still uncommon.  

 

2.2 Bayesian networks overview 

A Bayesian network is a flexible modelling technique. A BN represents the joint probability 

of a set of random variables; causal or influential relationships between variables are 

specified by a directed graph with the variables as nodes. The joint probability distributions 

are calculated using the following equation: 

 






n
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Here, p(X) is the joint probability of the variables in the model, given by the product of the 

conditional probability of each variable Xi given its parents. The example Bayesian network 

in Figure 1 models the dependencies among four random variables X=[X1, … , X4]. X2 is 

depends on X1 and X4 depends on variables X2 and X3 so that we say X1 is the parent of X2, 

while X2 and X3 are the parents of X4,; X1 and X3 have no parents and X4 has no children. The 

joint distribution of this example is p(X1, X2, X3, X4) = p(X4 | X2, X3) p(X2 | X1) p(X1) p(X3). 
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[insert Figure 1.] 

 

The BN therefore has two components: the first is the graph of the chosen variables and their 

dependency; the second is the conditional probability distribution of each variable, given the 

states of its parents, which form the parameters of the BN. When some variables have a 

known state, an inference algorithm can update the probability distribution of the remaining 

variables, using Bayes’ theorem. Many early BN inference algorithms worked primarily with 

discrete variables, allowing continuous variables only by discretisation. This was a barrier for 

the use of BNs in reliability analysis where both discrete and continuous variables are 

needed. 

 

2.2.1 Hybrid BN 

A BN that contains both discrete and continuous variables is called a hybrid BN. Local exact 

inference in hybrid BN can be executed only under the assumption of conditional Gaussian 

distributions.8 However, it is impractical for models with mixture of discrete variables and 

non-standard distributions. Static discretisation allows approximate inference in a hybrid BN 

but states of a continuous variable are mapped into pre-defined finite set of discrete states, 

with a trade-off between accuracy and efficiency.9 Although many other approaches to 

inference have been proposed, it remains challenging to support various types of distributions 

in hybrid BNs. 

Inspired by the work on using non-uniform discretisation in a hybrid BN from Kozlov and 

Koller,10 Marquez et al.11 use dynamic discretisation in an exact inference algorithm. 

Continuous variables are dynamically discretised, with narrower intervals where the 

probability distributions are changing most. This algorithm is implemented in the BN tool 

AgenaRisk,12 which is used in our paper for its flexibility and efficiency.  
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2.2.2 Hyper parameters in a hierarchical BN model 

A hierarchical BN model is a standard BN model extended with additional variables; the 

variables are called hyper-parameters as they represent statistical parameters (such as mean 

and variance in a Normal distribution) used elsewhere in the model; the result is that we can 

model the uncertainty about the parameters themselves. To construct a hierarchical BN 

model, prior probability distributions of hyper-parameters, need to be assigned. When hyper-

parameters have conjugate priors, choosing a prior from that list can simplify posterior 

distribution calculation, so these distributions are often used (Fink13 contains a list of 

conjugate priors); however, any distribution can be used in the numerical approach we are 

using. When no additional information about the hyper-parameters is available, 

uninformative prior distributions can be assigned.9 Another way is to elicit priors from past 

information, such as past experiments or expert knowledge.14 Experts play an important role 

when less data is available. An example of how to explicit knowledge from experts are 

presented in Cooke.15 The process of knowledge elicitation is further discussed in Section 5.2.     

 

2.3 Applications of BN to reliability 

In system reliability, a range of studies has shown the benefits of BNs over conventional 

approaches for reliability modelling and analysis. In particular, modelling features of BNs, 

such as flexibility in modelling common cause11 and sequential failures and multi-state 

variables,16 capability in modelling an extensive ranges of failure distributions,17 and 

diagnostic reasoning18 are valuable in reliability problems. 

 

 

2.3.1 Discrete BN 
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Early work of the applications of BN to reliability modelling mostly used discrete BN. Kang 

and Golay19 estimated the state of a system after a selected maintenance action using a 

discrete BN model. A discrete BN model that allows diagnosis and prognosis for 

manufacturing processes is developed in Weber et al.,18 including a maintenance model. 

Celeux et al.20 proposed a BN for preventive maintenance using experts, with a set of rules 

for choosing the most reliable of different probabilities elicited from experts. Its reliability is 

secured by a feedback procedure to eliminate inconsistent probabilities of the parameters. 

Factors, such as maintenance complexity, expertise of professionals, that could induce 

uncertainty during the maintenance process are considered in de Melo and Sanchez.21 They 

present a discrete BN model to predict delays of a software maintenance project based on 

project features and experts experience. However, in system reliability, asset deterioration 

should be modelled using continuous variables22 and statistical distributions, with parameters 

fitted from data.  

 

2.3.2 Hybrid BNs and models with hyper-parameters 

With the development of inference algorithms for hybrid BN as discussed in Section 2.2.1, 

applications of hybrid BN to reliability have been given more attention recently. Langseth 

and Portinale23 discuss the properties of the modelling framework for hybrid BN and its 

applicability for reliability analysis. Some applications have been proposed. For example, 

failure distribution of system components are fitted by continuous-time variables in the BN 

model proposed in Boudali and Dugan,17 and an electrical power system is modelled by 

Mengshoel et al.24 using a hybrid BN for its sensor validation and diagnosis.  

Some applications using BN models with hyper parameters are proposed, such as Kuo and 

Yang25 applied a hierarchical BN in software reliability, but all the hyper-parameters are 
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assumed known. Coolen26 presented a Bayesian reliability analysis with informative priors 

extracting from experts. 

Marquez et al.11 presented a hierarchical BN to model continuous failure times of 

components and overall system reliability. In its parameter learning BN model for a system 

supervision component, failure data followed a Weibull distribution with parameters 

governed by hyper-parameters shape and scale. Each hyper-parameter has a prior modelled 

by a triangular distribution given by experts. The posterior distributions on the hyper-

parameters are updated from data on actual failures and the model can then predict reliability 

using the learned parameters. 

Given the situation that failure data is insufficient and expert knowledge is unused in 

practical maintenance problems discussed in Section 1, BNs are attractive for reliability 

modelling because they can combine expert knowledge with data and can therefore be 

applied in situations when there is insufficient failure data for a purely statistical approach. 

Furthermore, with more recent inference algorithms, BNs models can use both discrete and 

continuous variables. The parameter learning BN model proposed in Marquez et al.11 

provides a flexible framework combining these features and is adopted as the basis of our 

study. This model is introduced in more detail in Section 3.1. 

 

3 Generic Bayesian networks models of asset condition 

In this section we present several generic hybrid BN models to support maintenance decision 

making, where assets deteriorate through multiple states, with each failure time (after which 

it move to the next state) following a Weibull distribution. Section 3.1 presents the basic 

hyper-parameter learning BN model, following Marquez et al.11. Section 3.2 extends this with 

multiple states, each representing a further state of deterioration, and Section 3.3 shows how 



10 

 

to pool data from different asset types with similar deterioration rate. Section 3.4 

demonstrates the capability of the model to use more realistic types of failure data. Section 

3.5 extends the fragment to include expert knowledge to customize the prediction for a 

particular asset. Section 3.6 shows how future condition can be predicted and a summary is 

presented in Section 3.7. 

 

 

3.1 A simple hyper-parameter BN model of asset deterioration 

The expected lifetime of an asset is derived from its likely time to failure. The time to failure 

follows a statistical model, with parameters determined by gathering a set of failure time data 

and fitting it to the chosen distribution. In a hierarchical model, the parameters (or hyper-

parameters) become part of the model; data on known failure times is entered, updating the 

distribution over the parameters. We introduce these features of a hyper-parameter model in 

the following sections.   

 

3.1.1 Selecting a time-to-failure distribution 

Any distribution can be used in a hyper-parameter model – which is best? He et al.27 use 

exponential distributions to estimate degradation of railway track while the gamma 

distribution, in the form of gamma processes, is used by Edirisinghe et al.28 to study the 

deterioration of building components. Studies of bridges2 and railways29 provide two 

examples showing the use of Weibull distributions to model a range of asset deterioration 

behaviours.   

In Le30, lifetime data of bridge components from the same type and material are grouped 

together to fit with a series of distributions. The closeness of fit of Normal, Exponential, 

Lognormal and Weibull distributions is compared using their probability plots and Anderson-

Darling tests. Weibull distributions have the closets fit in most cases. Given this results and 
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its versatility in describing a range of deterioration behaviours, we selected the Weibull 

distribution, with probability density over time t shown in Equation (2), for our study. The 

two parameters of the distribution are shape β and scale η. 
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3.1.2 Prior probabilities for the Weibull’s shape and scale 

To construct the hierarchical failure model, prior probability distributions of hyper-

parameters, such as the Weibull’s shape and scale, need to be assigned. It is difficult for non-

statisticians to evaluate the values of shape and scale but can be made easier by 

understanding the characteristics of the distribution. In Weibull distribution, the effect of the 

shape parameter on the failure rate is shown in Figure 2, with shape < 1 describing early 

degradation leading to decreasing failure rate and shape > 1 describing wear-out failure, 

giving an increasing failure rate. Also, for a given shape, increasing the scale increases the 

mean failure time. 

 

[insert Figure 2.] 

 

By observing the plots of the hyper-parameters, experts can justify whether a type of asset 

has a decreasing, constant or increasing failure rate, leading to a range of possible values for 

the shape parameter. Similarly, it is also possible to evaluate the range of the scale parameter 

from the typical age of asset failure. Different distributions, such as normal distribution or 

uniform distribution, could be used to express uncertainty over the range of each parameter. 

Some experts find it easier not to specify their opinion with absolute precision but providing 

value intervals.31 Following Marquez et al.,11 triangular distributions (Equation (3)) are used 
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in our model for its advantage in extracting value ranges from experts based on past 

experience:  
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where P(x) is the probability function of triangular distribution, a is its lower limit, b is its 

median and c is its upper limit. Experts assign values of a, b and c for each parameter, based 

on their pass experience.  

 

3.1.3 The hyper-parameter BN 

Figure 3 presents a BN model constructed on these principles, and Table 1 lists its NPTs. The 

time each asset transits from a normal to a failed state follows a Weibull distribution, which 

can be inferred when data on the past transition of the assets of the same class are entered as 

evidence. Take Asset 1 as an example, the entered data 15 representing it takes 15 months for 

Asset 1 to transit from a normal state to a failed state. Because we consider assets 1 to 6 to be 

of the same type, we assume that they deteriorate following the same Weibull distribution, 

meaning that they share the same shape and scale. The posterior distribution of transition 

time from one state to another state, which predicts future failure for the asset in the same 

class, is shown for the variable Transition Distribution, derived from the hyper-parameters 

learnt from data.  

[insert Figure 3.] 

 

[insert Table 1.] 
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We only show failure data for six assets in this example. However, increasing the size of the 

dataset causes the parameters of the Weibull distribution to start to converge and with 

sufficient failure data, it is possible to overcome the prior probabilities estimated by experts.  

 

3.2 Assets with multiple states 

Statistical models can model the different aging processes of assets but directly distinguish 

only working from (hard) failure; this is not sufficient for using inspection data and making 

decisions about a variety of maintenance actions, for which models with multiple states of 

repair are more suited. One way to combine statistical models with this requirement is using a 

Markov model based condition rating system (see Section 2.1).  

To model the deterioration of assets through several states of repair, we can extend the model 

in Section 3.1 with multiple states (Figure 4). 

 

[insert Figure 4.] 

 

To illustrate the idea, three states are modelled., with transition time from State 1 to State 2 

(Transition 1), State 2 to State 3 (Transition 2). Each transition is modelled by a separate 

parameters learning model. In this example, Transition 1 follows a Weibull distribution with 

parameters shape 1 and scale 1, while Transition 2 with parameters shape 2 and scale 2.  

When decision makers enter the operating time (time interval between a specified time and 

the time of its last repair), the asset condition will be calculated using the following Boolean 

logic expression (this expression is supported in AgenaRisk): 

 

if (Operating time < Transition 1, "State 1", 

    if (Operating time < Transition 2, "State 2", "State 3"))
                 (4)    

In Figure 4, a 15-months operating time was entered as an example data, representing that it 

has been 15 months since the last repair of an asset. Learnt from the past data of assets in the 
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same class, we can capture the condition distribution of the asset for this operating time: the 

probability that the asset stays in its original state (State 1) is around 48%, transits to State 2 

is around 39% and State 3 is 13%. A maintenance planner can use this prediction to evaluate 

if an inspection needs to be carried out. 

 

3.3 Assets with similar deterioration rate  

In practice, we may have several groups of assets of different types, which we believe 

deteriorate with similar behaviour. We propose to extend the model in Section 3.2 for the 

situation where there is a lot of failure data for some types of assets in the group, but much 

less for others. In this case, since the failure times are determined by hyper-parameters shapes 

and scales, we assume the distribution hyper-parameters learnt for one type of asset 

approximate those of the other similar type, with uncertainty. 

 

[insert Figure 5.] 

 

Assume assets in Group A (assets 1 to 6 in this example) and Group B (asset 7 and 8) have 

similar deterioration rates resulting from some shared characteristics (such as similar designs 

with different materials). Group A has more failure data than Group B. Figure 5 shows a 

parameters learning model for these two groups of assets. Shapes (node Group A: shape and 

Group B: shape) and scales (node Group A: scale and Group B: scale) of these assets were 

governed by the typical shape (node Typical shape) and scale (node Typical scale) variables, 

whose prior probability distributions are using triangular distributions as in Section 3.1.  

Experienced experts are possible to have knowledge about how similar two groups of assets 

are. For example, experts know about the deterioration of a stone-based structure is more 

similar to a concrete-based structure compares to a timber-based structure, which leads to a 

higher similarity degree (lower variance) between stone-based and concrete-based structure. 

Hence, a truncated normal (TNormal) distribution (its expression can be found in Fenton and 
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Neil9), a normal distribution bounded by lower and upper limits, is used to model the 

relationship between the related shape and scale of each asset type and the typical ones. The 

mean μ of this distribution is the typical shape or scale, and variance σ2 representing the 

degree of similarity of the two assets, which is given by experts. The lower bound L and 

upper bound U of the distributions are also evaluated by experts about their knowledge of 

extreme values. In the TNormal distribution, the normal distribution is used to group singular 

parameters to approximate the overall parameters, while the bounds are used to prevent 

extreme values. Also, since their hyper-parameters shape and scale are bounded by triangular 

distributions, if we use an unbounded distribution, like normal distribution, on a node with a 

bounded range, the model may throw away values that outside the range.9 

Take node Group A: shape as an example: it may have a conditional probability distribution 

given by TNormal (typical shape, 0.5, 1, 3). Its mean is given by the distribution of node 

typical shape, which inherits the typical behaviour of the shape between these two groups of 

assets.  Its variance is 0.5 – a smaller variance means a higher similarity, representing a high 

degree of similarity between these two groups. The distribution is restricted to the region 

between 1 and 3, indicating it has an increasing failure rate (because the shape value is higher 

than 1 as discussed in Section 3.1) with values between 1 and 3. By extracting information 

from experienced experts about the degree of similarity of different assets and possible 

trending of the plots, the model can reason the transition time of an asset for which there is 

only a little data (group B) using data from other group of assets (group A) that are judged to 

share a similar deterioration rate. 

 

3.4 Modelling of available data types 

Often, the ideal data on the failure times of assets is not available. This section explores 

various limitations on the data likely to be available, showing how it can be used. 
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The transition time is the time, since the previous transition, when an asset transitions from 

one state to another state. However, it is often hard to obtain this data: in practice, we are 

more likely to have data from periodic examinations (and perhaps repairs) rather than data on 

the exact transition time. To exploit the examination history data, four types of transition time 

data can be inferred with uncertainty as follows (for convenience, we assume inspection 

interval is 12 months, and the transition are between State 1 to State 2, that is Transition 1): 

 

 Left-censored data: the asset failed at some point before we started to inspect. For 

example, an asset failed in its first inspection after it was built, that means the transition 

time is less than 12 months: Transition 1 < 12. 

 Interval-censored data: failures happened sometime between two inspection times. For 

example, in the first inspection, the asset didn't show any signs of deterioration, but we 

found out it failed in the second inspection. Therefore, we can conclude that the asset 

transitioned between 12 and 24 months: 12 < Transition 1 ≤ 24. 

 Right-censored data: for those cases where the asset survived longer than the time 

available for observation. Suppose an asset has been inspected twice and has survived for 

more than 24 months, hence Transition 1 > 24. 

 Exact-time data: this type of data may be available when an issue is reported. For 

example, at 8 months, the asset failed suddenly and inspection confirms this transition: 

Transition 1 = 8. 

 

To use these data, we introduce a Boolean variable to express a constraint on an asset’s 

transition time. To represent left censored data, the variable is true when Transition < tinspection, 

and the true state is observed. Similar constraints are used for interval and right censored data.  

Furthermore, there is a possibility that a component deteriorates faster than our inspection 

intervals. For example, suppose that at the 12-month inspection, a component remained at 
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State 1, while in the 24-month inspection, the component was found in the State 3. To use 

this type of information, we can enter observations for right censored data that its first 

transition time is greater than 12 months, and left censored data that its second is smaller than 

24 months, as well as an additional constraint that the first transition time is smaller than the 

second one, as following:   

 

)2 Transition1 Transition()242 Transition()121 Transition(                  (5) 

 

3.5 Introducing experts to distinguish individual asset deterioration 

In practice, the deterioration rate may be affected by heavy use and aggressive environment 

conditions (see for example Yianni et al.32). Ideally, the maintainers’ knowledge of these 

effects could be combined with statistical failure data gathered from a population where use 

and environment vary. From a decision support perspective, this will allow specific assets to 

be distinguished. For example, Marsh et al.33 outline a BN architecture to integrate multiple 

factors, such as loading and environmental stress, to support maintenance decision but do not 

show failure data could be included.  

To distinguish individual members of a group of assets, we model the effect of environmental 

conditions and loading on deterioration by adjusting the scale parameter of the BN developed 

in previous sections. A known shape parameter is often assumed due to its relatively stable 

value.34  

 

[insert Figure 6.] 

 

As shown in Figure 6, we use two ranked nodes to express the degree of influence of factors 

(here, for example, loading and environment). Each factor has three states: low, medium and 

high. An example of how to estimate their states can be adopted from Yianni et al.32 Take 

loading of railways bridges as an example, track data of Equivalent Million Gross Tonnes Per 



18 

 

Annum (EMGTPA) passes over the bridge can be used to estimate the level of loadings. For 

loadings less than 3.5 EMGTPA, they are grouped as low, between 3.5 and 12 EMGTPA are 

classified as medium, and over 12 EMGTPA are defined as high. In Figure 6, a medium 

loading is observed because the EMGTPA of the line passes over asset 1 is between 3.5 

EMGTPA and 12 EMGTPA.  

Different factors may have different degrees in influencing the deterioration of assets, such as 

a well-designed metal bridge may deteriorate faster affected by its environmental stress than 

its loading. Experts could have knowledge about the weights of these influence factors. The 

degree of influence factors (node Asset 1: Influence degree) is modelled by a TNormal 

distribution combined using a weighted mean (wmean, equivalent to a linear model) of the 

influence factors (node Loading and node Environmental stress), and variances are given by 

experts regarding to their certainty of the weights: Influence degree ~ TNormal (wmean, σ2, 0, 

1). 

In Figure 6 shows an example, assuming the weight of loading is 0.3 and environmental 

stress is 0.7, so that the combined influence of these factors is slightly closer to the high 

environmental stress than the medium loading. 

While the parameter scale (variable Typical scale) is modelled by three TNormal 

distributions (since there are three states in this example: Low, Medium, High, each state is 

modelled by a TNormal distribution), with mean adjusted from the typical scale hyper-

parameter (see Section 3.3), and the bounds are given by experts (same as Section 3.3). The 

only differences are the variances based on the states of Influence degree: a low influence 

degree has a lower variance, while a high influence degree has a higher variance. The 

evaluation of variances is given by experts regarding to how easy the assets can be influenced 

by external factors.    

 



19 

 

3.6 Condition prediction 

The BN models of the previous sections cover the distributions of transition time between 

different conditions and can therefore evaluate the current condition of an asset based on its 

operating time, allowing decisions about, for example, the interval to the next inspection.  We 

now extend the model further to predict its future condition, supporting a wider range of 

decisions. The extended model shown in Figure 7, provides the following predictions: 

 

[insert Figure 7.] 
 

 Current condition: the asset’s condition based on its operating time (see section 3.2); 

 Future condition: the future condition of the asset, taking into account both current 

condition and further deterioration. 

 

The prediction of future condition works with the following logic:  

))3" State" ,2" State" 2, Transition timeinspection scheduledNext  time(Operating if     

 ,1" State" 1, Transition timeinspection scheduledNext  time(Operating if




              (6)    

 
Consequently, this node predicts an asset’s condition distribution within different periods. In 

the example in Figure 7, since the last effective repair, the operating time is 5 months, 

therefore, the current condition has a probability of around 86% in state 1. While the next 

scheduled inspection time is 7 months later, and the predicted result is quite optimistic with a 

probability of 62% in state 1. We might therefore suggest that a longer inspection interval 

could be used for this asset to reduce costs. 

 

3.7 Summary 

This section has presented generic BN models to learn assets deterioration behaviour and 

then use this to predict the future condition of a particular asset. Each model represents a 
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situation that may exist in real-life maintenance problems. The models combine the use of the 

available data with expert knowledge; we summarise this below: 

 

1. Available data: 

 Section 3.3: some assets (e.g. new asset types) may have only a little failure data. 

Therefore, we pool failure data with related asset types that are different but have 

related aging processes (e.g. an older version of the new components). 

 Section 3.4: the exact time an asset transitions from one state to another state is not 

always available. We introduce censored data in our models so that data from periodic 

examinations can be used in place of exact transition times.    

 

2. Expert knowledge:  

 Section 3.1 and Section 3.3: it is possible for experts to propose priors for the 

parameters of the Weibull distribution by understanding the characteristics of each 

parameter. Triangular and TNormal distributions are used in our models to estimate 

ranges for the Weibull’s shapes and scales.  

 Section 3.3: knowledge that, for example, a concrete structure deteriorates more 

slowly than a timber structure is well-known by experts. An experienced engineer can 

estimate the degree to which two groups of assets will have similar deterioration. 

 Section 3.5: experts may know that assets deteriorate faster when near the coast or 

more heavily loaded. This type of knowledge can be used to distinguish individual 

assets by modelling the influence of these factors in the deterioration rate. 

 

4 Case study: strength assessment of GB railway bridges  
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In this section, we present a case study based on the processes used to maintain overbridges 

(a bridge crossing over the railway) on the GB rail network. Section 4.1 introduces the 

activities to plan maintenance work for GB railway bridges, and Section 4.2 summaries its 

challenges. Section 4.3 applies models from Section 3 to estimate the strength of bridges 

from their condition. Section 4.4 shows two examples of the use of the model. 

 

4.1 Maintenance in the GB railway bridges 

There are 23981 bridges owned by Network Rail, brick and masonry bridge takes up around 

47% of the number, while stone bridge only takes up 0.15%.35 Given the number and variety 

of bridges, the burden of maintenance on railway bridges is high.  

Bridges can be decomposed into major elements, such as deck, superstructure, substructure, 

and be further subdivided the major elements into minor elements, such as abutment, wing 

walls. Table 2 shows an example of elements of a masonry arch bridge presented in Rafiq et 

al.,36 which is later used in our case study. Different types of bridges have different major and 

minor elements, and even when two bridges are of the same type the number of elements may 

vary. 

[insert Table 2.] 

 

Two types of activity are carried out to understand the state of GB rail bridges and prioritise 

maintenance works. Bridge examination is used to evaluate the condition of bridges. Bridge 

assessment is used to evaluate the bridge strength. 

 

4.1.1 Bridge examination 
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The condition of bridges is periodically examined: the focus of examination is to determine 

the maintenance work needed to maintain the condition of the bridges. Two examination 

regimes are applied in the GB: 

 

1) Visual examination is carried out every year to look for changes in the condition of the 

structure as a whole since the last examination. The condition of the structure is rated as 

Good, Fair or Poor. The examination also makes recommendations for maintenance work. 

2) Detailed examination is carried out every 6 years and looks at all parts of the structure to 

determine their conditions and the extent of deterioration. This examination recommends 

remedial works and also the need for any additional examination of the structure. 

Additional examination is normally performed for hidden critical element (HCE, a 

structural member that cannot be observed during the examination), using a range of 

intrusive and non-intrusive examination methods. The condition of each part is recorded 

using a marking index called Structures Condition Marking Index (SCMI)37 (recently 

named as Bridge Condition Marking Index (BCMI)). A BCMI score ranges from 0 to 

100, where ‘0’ represents an element in extremely poor condition and ‘100’ shows the 

element in perfect condition. 

 

The uncertainty of the examination – caused by the difference between actual condition and 

the condition reported by an examination – varies for different types of structures and 

different examination regimes. Visual examination is conducted from a position of safety to 

report any major defects or to verify that defects already seen have been repaired. Though 

there is more available data from visual examination compared to detailed examination, as 

the former are more frequent, a visual examination determines the true condition with less 

certainty: 
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1) Defects may not be visible as it may take some time for a defect to reach a size that is 

observable. Another situation is some elements, such as HCE, which may have developed 

defects, but the visual examination did not reveal it because these elements are 

unobservable. The uncertainty depends on the defect types and examination quality for 

defects (e.g. examination procedures and engineers training).38 

2) Bridge elements may have a shorter life than the overall bridge. For example, a concrete 

bridge may have a life of 120 years while its bearing may only have a life of 20 years as 

discussed in Arshad and Cook.39 Therefore, in a visual examination, it is possible that the 

bridge is marked as good condition even though some elements of the bridge are in poor 

condition when these elements do not make a visible contribution to the condition of the 

bridge as a whole. 

 

4.1.2 Bridge assessment 

Every 18 years, following a structural inspection, an assessment of the safe load capacity 

(strength) of bridges is required. Three levels of structural assessment exist with increasing 

complexity and accuracy: 

 

1) Level 0 reviews historical drawings of the structure and examination reports to produce 

an estimate of the load capability. Level 0 assessments are required to have a higher 

safety threshold than other levels as the assessment is the least accurate.  

2) Level 1 uses static analysis to identify the load capacity of a structure, which can be used 

to prioritise the next assessment.  



24 

 

3) Level 2, as the most complex and accurate assessment, is an advanced structural analysis, 

uses finite element analysis based on design information and onsite inspections, 

estimating both static and dynamic load capacity.  

 

4.1.3 Connecting bridge condition to strength 

The condition of a bridge is an indication of its strength, but with uncertainty that varies for 

different types of structure. Since there is data about the condition of bridges, it could be 

attractive to be able to use condition data to estimate strength, for example, to know when a 

full strength assessment was needed. 

Previous studies have been proposed to estimated strength from condition. AASHTO40 used a 

reliability-based, load and resistance factor rating method for evaluating the strength limit 

states and service limit states of bridges based on condition of the bridges, bridge types and 

other factors. Tapan and Aboutaha41 proposed a bridge condition-rating method, which 

provides a good estimate of the bridge pier column strength that cannot be obtained by 

normal visual examination. Additionally, Wang et al.42 analysed the load-carrying capacity of 

a girder based on the deterioration levels of its cracks depending on the structure type and 

their effects on the structural integrity. 

Rafiq et al.,36 show that a bridge level strength can also be inferred from information about its 

major elements and minor elements. Experts give each minor element a factor using the 

BCMI system to indicate its contribution to the strength of the related major element. Then 

the condition of major element can be generated based on its corresponding weighted minor 

elements’ condition. Factors are assigned in the same way to major elements for their 

contribution to the overall bridge strength.  

 

4.2 Challenges of GB railway bridges maintenance 
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We have summarised the data available to plan maintenance: every year there is a visual 

inspection; every 6 years a detailed examination and every 18 years an assessment. How can 

the different types of data be combined?  

1) The number of bridges of each type varies widely: as a result, some groups of assets may 

have lots of data, while the other have much less. The first challenge is therefore to pool 

data between bridges of different types.  

2) The visual examination is more frequent but less accurate: the visual examination looks 

only at the bridge as a whole while the less frequent detailed examination looks at 

individual elements. The second challenge is therefore how to combine the element-level 

condition data with the whole structure condition data.  

Condition does not inform the strength assessment: when a detailed structural assessment is 

available, it is clear that this provides the most accurate assessment of the structure's strength 

but an estimate of deterioration in strength from the condition data might allow assessment 

work to be prioritised. The third challenge is therefore to estimate the strength of the structure 

from the condition of its elements. 

 

4.3 Applying BN models to estimate bridge strength from condition 

Facing these challenges, we propose a BN model framework as showed in Figure 8, 

assembled from the generic models from Section 3, to estimate the loss of strength of a 

bridge from its condition seen at examination. In the figure, the oval-shaped nodes represent 

variables in the BN models, the square-shaped nodes are labels: solid square labels show 

what type of data the nodes are using, dashed square labels indicate which section is referring 

to. The framework is developed with the following steps:  

 

[insert Figure 8.] 
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1) Section 4.3.1: The future condition of each element of the bridge is predicted by 

modelling element deterioration rates, as transitions between from Good condition to Fair 

condition and from Fair to Poor. The data is inferred from the detail examination, 

grouping data for bridges of the same class. The transition probabilities are assumed to 

follows a Weibull distribution. Models from Section 3.1, 3.2, 3.4 and 3.6 are used.  

2) Section 4.3.2: This section examines how smaller groups of bridge, for which less data 

will be available, could be handled by using detailed examination data from related 

situations. Models from Section 3.3 and 3.5 are used.  

3) Section 4.3.3: Visual examination data is added in this section: the overall condition is 

assumed to be indicative of the condition the elements but with varying uncertainty. 

Models developed from Section 3.3 and 3.6 are used.  

4) Section 4.3.4: A bridge condition can be estimated by combining by the conditions of its 

elements, with weights representing each element’s contribution on the bridge strength. 

Strength changes of a bridge can be inferred from its condition. 

 

Since we are describing a model framework, the actual model will depend on the type of 

bridges and their elements. As an example, we consider a masonry arch bridges, for which 

little failure data is available. 

 

4.3.1 Condition of bridge elements 

Generally, a BCMI score above 80 is considered to be in good state, below 45 is in a poor 

condition. Hence, we can model each element condition as a three-state variable, namely: 

Poor (BCMI range from 0 to 45), Fair (BCMI range from 46 to 80), and Good (BCMI range 

from 81 to 100).36 
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Two failure transitions, from Good to Fair, Fair to Poor, are modelled with an assumption 

that the time to failure of each transition follows a Weibull distribution. The parameters of the 

distribution are learnt from data, using the modelling approaches described in Section 3.1 and 

3.2. 

An example of the condition of one element – a wing wall – is shown in Figure 9, based the 

model in Section 3.6. Here wing walls asset 1, 2, 3 and the target wing walls are from 

different bridges that have similar designs and are constructed from the same materials, they 

are grouped in the same class that share the same deterioration rate. In this example, it took 

62, 48 and 72 months for asset 1, 2 and 3 respectively to transit from Good to Fair and 110, 

130 and 70 months more from Fair to Poor. The last examination shows this wing wall was in 

Good condition. Here, the variable Examination type is similar to the variable Next scheduled 

inspection time in Figure 7, and variable Condition of Wing Wall corresponds to the Future 

condition variable. In our example, the predicted probability that this wing wall stays in Good 

condition in its next detailed examination will be 31%. 

 

[insert Figure 9.] 

 

4.3.2 Learning from different groups of assets 

Element of the same type but of different materials may share similar deterioration rate. 

Another situation is where the same element exposed to different environmental condition 

may deteriorate differently. Hence, we propose to use our models to learn deterioration rates 

from different groups of assets that are judged to share similar deterioration. 

 

[insert Figure 10.] 

 

By combining the models proposed in Section 3.3 and 3.5, for illustration purpose, two 

groups of assets with two types of learning for transition time from Good to Fair are 

presented in Figure 10. In practice, the number of group pooled may be more than 2. The 
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model contains typical shape and scale parameters shared between the groups and separate 

parameters for each group. The parameters for a group are related to the shared parameters 

using a TNormal distribution, allowing both changes in means and variances to be modelled.  

Group A and Group B, represent the same element built with different materials under the 

same external environment. Group A (built with masonry) has a more stable deterioration rate, 

while Group B (e.g. built with timber) has a more variable deterioration rate. We model this 

with a TNormal distribution with different variances – Group A has a smaller variance than 

Group B. We can also apply the same principle for their environment condition: if the bridge 

located in a more critical environment, it has a faster deterioration rate.   

 

 

4.3.3 Updating from visual examination failure data 

In this section, we propose to use visual examination data as an additional data source to 

update the condition of each minor element that was learnt from detailed examination. As 

discussed in Section 4.1.2 and 4.1.3, failure data from visual examination contain more 

uncertainty than detailed examination, but there is more data available. To use this, we must 

elicit information on how accurately the visual examination result reflects the condition of 

each minor element using expert knowledge.  

Figure 11 shows the model we use to update the condition of each element from the visual 

examination data. The variable Condition of bridge from visual examination is modelled 

using the same method we used in Section 4.2 for bridge element condition. It is learnt from 

visual examination data, and used to update the condition of the elements of the bridge using 

probability tables given by experts considering the uncertainty of visual examination and the 

relationship between the condition of bridge as a whole and each element. Examples of minor 

elements abutment and parapets are also showed in the figure, with a fragment of the 
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probability table in Table 3, showing how the element condition is adjusted when it is 

originally good.  

  

[insert Figure 11.] 

 

Since during the visual examination, examiners pay more attention to abutments than to 

parapets, so the condition of the bridge from visual examination has more influence on the 

abutment condition than the parapets condition. For example, when the condition of bridge 

from visual examination is Poor condition, the probability of abutment in Good condition will 

be updated from 100% to 70%, while Parapets will be updated from 100% to 90% only. 

These are example values, which we plan to refine by interviewing examiners and reviewing 

the examination guideline to assess the confidence they have that the visual examination 

reflects the condition of each element. 

[insert Table 3.] 

 

4.3.4 Strength of a bridge 

A typical masonry arch bridge based on Table 2 is presented in Figure 12. Element factors 

(see Section 4.1.3) and their relative weighting are gathered from Rafiq et al.36 One of the 

major elements is ‘condition of support’, with minor elements abutment and wing walls. 

Their element factors are 10 and 5 respectively, giving relative weighting of 0.67 and 0.33. 

They are combined using a weighted mean as discussed in Section 3.5, and the ‘condition of 

support’ is modelled by a truncated normal distribution with the weighted mean of abutment 

and wing walls, and a variance given by the experts regarding to the certainty about the 

element factors. 

  

[insert Figure 12.] 

 

The bridge strength is then calculated based on a weighted combination of its major elements 

and its bridge type. The conditional probability table reflects the experts’ understanding of 
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the contribution of each element to the overall strength. By using this model, we can provide 

a preliminary evaluation of the bridge strength to prioritise assessment. 

 

4.3.5 Assembling the models 

For our case study, a complete BN model is assembled from six minor elements, learnt from 

two groups of assets; the resulting model has 126 variables in total. To build such a model in 

general, we first need to determine the elements of the bridge type (e.g. information from 

Table 2) and model each as described in Section 4.3.1. Then, if the target group lacks 

sufficient failure data, we can look for similar groups and pool the failure data using the 

model of Section 4.3.2. Visual examination data is used using model from Section 4.3.3 if the 

detailed examination is not sufficient on its own. Finally, the model from Section 4.3.5 is 

applied to assemble the element condition models to assess the strength of the target bridge.  

 

4.4 Examples of scenario analyses   

We have shown how models built using BNs allow a variety of data to be combined. Here, 

we have combined BCMI data from detailed examination with overall condition data from 

visual examination. We can use this to estimate the future strength of the bridge and so 

provide practical decision support for decision makers to evaluate the effect of different 

examination intervals. 

For example, suppose that from the latest detailed examination, the BCMI data indicates that 

all the elements of a masonry arch bridge are in good condition, except the parapet which is 

in fair condition. The model predicts with probability of 84% that the bridge will have no loss 

of strength in one year, at the time of the next visual examination. However, a prediction for 

the next detailed examination, after a further 6 years, gives a probability of 22% for good 

strength, and 66% for fair strength. 



31 

 

[insert Figure 13.] 

 

We can use these predictions to evaluate the effects of different examination regime and to 

modify examination intervals. We can also use the model to estimate if an intervention is 

needed in order to ensure the strength of a bridge is maintained above a certain level. Figure 

13 shows an example of strength limit (black line), representing a probability of at least 40% 

that this bridge is in good strength; below this intervention is needed. In this example, we 

would suggest that detailed examination after a 5-year interval is safer than the full 6-year 

interval in order to avoid falling below the threshold probability of good strength. 

Another advantage of using BN models is that we can reason backwards to evaluate 

intervention plans given a target. For example, we can set the bridge’s strength to the limit 

and analyse the element conditions that result. When an element is already close to this 

condition, we can prioritise it for maintenance. 

 

5 Conclusions 

We have proposed generic BN models that can be combined to reason about the deterioration 

of assets from data likely to be available and from and expert knowledge in practical 

maintenance planning. These models can be selected and assembled according to what kind 

of data is available, guided by expert knowledge in a particular case. An example tailored for 

GB railway bridges maintenance is presented to estimate bridge strength from condition. 

 

5.1 Summary  

This paper presents an asset deterioration model for maintenance planning using BN models. 

The core of the model uses a Weibull distribution to model asset deterioration in a 
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hierarchical BN. The transition times between a small number of conditions are assumed to 

be drawn from Weibull distributions, whose parameters are learned using historical data. To 

complete the hierarchical model, prior probabilities need to be assigned to the hyper-

parameters. The shape parameter can model an increasing, constant or decreasing failure rate, 

while the scale parameter stretches out the probability density function. By understanding the 

characteristics of these two parameters, we argue that reasonable priors could be determined 

in discussion with experts.  

We may have a group of related asset types that deteriorate with similar behaviour, with a lot 

of data for some types, while others have little. We extend the model to learn from related 

assets. Further expert judgement of the degree of similarity between the groups is needed at 

this stage. We also extend the model to make the most use of available data, which do not 

necessary include the exact times that each asset transitioned from one state to another. Then, 

to distinguish individual assets within a broad class of similar assets, we allow experts to 

quantify the effect of factors such as loadings and environmental conditions to adjust the 

predicted deterioration of a specific asset. This expert knowledge could be replaced by 

parameters learned from data if it were available.   

Finally, we show how the different generic BN models can be combined and used for GB rail 

bridges maintenance planning. A case study is presented using realistic types of data and 

knowledge that can be exploited from experts. Examples of how to use the proposed models 

for maintenance planning were discussed.  

 

5.2 Future Work   

Further work is needed to validate the approach using real datasets and for real maintenance 

scenarios. We wish to extend the model further to incorporate costs, including disruption, of 
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different maintenance actions, so that we can schedule an optimum hierarchy of maintenance 

actions.   

Though our models provide the feasibility and structures of how to include expert knowledge 

to improve the models, the procedure for knowledge elicitation needs further investigation. 

Process of how to acquire knowledge from experts for decision analysis have been proposed 

by many researchers, such as Cooke’s classical method.15 Another challenge is how to 

incorporate opinions when multiple experts are involved, which could be handled in two 

ways: combine the assessment of each expert into a single one, or hold a workshop for 

experts to come to a consensus.43  

We also plan to study the computational performance of the model, especially for significant 

quantities of data. Experience to date shows that it is adequate and some optimisations to the 

model structure are likely to yield improvements. Fortunately, maintenance decision making 

does not require instant answers and there are a great variety of BN inference algorithms 

offering different trade-offs between speed and accuracy.   

As we have shown in Section 4, the way that the different modelling stages are combined 

reflects the needs of a particular scenario. To make this practical, we plan to develop a 

higher-level interface in which the maintenance-related information (such as the number of 

conditions, the maintenance actions etc.) could be described and from which the necessary 

BN could be generated automatically. 

 

Acknowledgements 

We would like to thank the anonymous reviewers and the editor for their insightful comments. 

This work is supported by the European Research Council (ERC-2013-AdG339182-BAYES-



34 

 

KNOWLEDGE) for funding, and Agena Ltd for software support. The first author is 

supported by China Scholarship Council (CSC)/Queen Mary Joint PhD scholarships. 

 

Reference 

1. Dhillon BS. Engineering maintenance: a modern approach. CRC Press, 2002. 

2. Agrawal AK, Kawaguchi A and Chen Z. Bridge element deterioration rates. New York 

State Department of Transportation; 2009. 

3. Jiang Y, Saito M and Sinha KC. Bridge performance prediction model using the Markov 

chain. Transportation Research Record 1180, Transportation Research 

Board,Washington, D.C.; 1988. 

4. Cesare MA, Santamarina C, Turkstra C, et al. Modelling bridge deterioration with 

Markov chains. Journal of Transportation Engineering 1992; 118: 820-833. 

5. Shafahi Y and Hakhamaneshi R. Application of a maintenance management model for 

Iranian railways based on the Markov chain and probabilistic dynamic programming. 

International Journal of Science and Technology Transaction A: Civil Engineering 2009; 

16: 87-97. 

6. Audley M and Andrews J. A Petri-Net Modelling Approach to Rail Track Geometry 

Maintenance and Inspection. In: Advances in Risk and Reliability Technology 

Symposium, Loughborough, 2013, p.230-243. 

7. Rama D and Andrews J. A System-wide Modelling Approach to Railway Infrastructure 

Asset Management. In: Advances in Risk and Reliability Technology Symposium, 

Loughborough, 2013, p.7-22. 

8. Lauritzen SL and Jensen F. Stable local computation with conditional Gaussian 
distributions. Statistics and Computing 2001; 11: 191-203. 

9. Fenton N and Neil M. Risk assessment and decision analysis with Bayesian networks. 

CRC Press, 2012. 

10. Kozlov AV and Koller D. Nonuniform dynamic discretization in hybrid networks. In: 

Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, 1997, 

p.314-325.  

11. Marquez D, Neil M and Fenton N. A new Bayesian Network approach to Reliability 

modelling. In: Mathematical Methods in Reliability (MMR07), 2007. 

12. Birtles N, Fenton N, Neil M, et al. AgenaRisk manual (Version 6.1) Computer software. 

Cambridge, United Kingdom, 2014. 



35 

 

13. Fink D. A compendium of conjugate priors. Technical report, Montana State University, 

May 1997. 

14. Gyftodimos E and Flach PA. Hierarchical Bayesian networks: A probabilistic reasoning 

model for structured domains. In: Proceedings of the ICML-2002 Workshop on 

Development of Representations, 2002, p.23-30. 

15. Cooke R. Experts in uncertainty: opinion and subjective probability in science. Oxford 

University Press, 1991. 

16. Zhai S and Lin SZ. Bayesian networks application in multi-state system reliability 

analysis. In: Applied Mechanics and Materials, 2013, pp.2590-2595. 

17. Boudali H and Dugan JB. A continuous-time Bayesian network reliability modelling, and 

analysis framework. IEEE transactions on reliability 2006; 55: 86-97. 

18. Weber P, Suhner M-C and Iung B. System approach-based Bayesian Network to aid 
maintenance of manufacturing process. In: 6th IFAC Symposium on Cost Oriented 
Automation, Low Cost Automation, 2001, p.CDROM. 

19. Kang C and Golay M. A Bayesian belief network-based advisory system for operational 
availability focused diagnosis of complex nuclear power systems. Expert Systems with 
Applications 1999; 17: 21-32. 

20. Celeux G, Corset F, Lannoy A, et al. Designing a Bayesian network for preventive 

maintenance from expert opinions in a rapid and reliable way. Reliability Engineering & 

System Safety 2006; 91: 849-856. 

21. de Melo AC and Sanchez AJ. Software maintenance project delays prediction using 

Bayesian Networks. Expert Systems with Applications 2008; 34: 908-919. 

22. Weber P, Medina-Oliva G, Simon C, et al. Overview on Bayesian networks applications 

for dependability, risk analysis and maintenance areas. Engineering Applications of 

Artificial Intelligence 2012; 25: 671-682. 

23. Langseth H and Portinale L. Bayesian networks in reliability. Reliability Engineering & 

System Safety 2007; 92: 92-108. 

24. Mengshoel OJ, Darwiche A and Uckun S. Sensor validation using Bayesian networks. In: 

Proc 9th International Symposium on Artificial Intelligence, Robotics, and Automation in 

Space (iSAIRAS-08), 2008. 

25. Kuo L and Yang T. Bayesian computation of software reliability. Journal of 

Computational and Graphical Statistics 1995; 4: 65-82. 

26. Coolen F. On Bayesian reliability analysis with informative priors and censoring. 

Reliability Engineering & System Safety 1996; 53: 91-98. 

27. He Q, Li H, Bhattacharjya D, et al. Railway track geometry defect modeling: 

deterioration, derailment risk and optimal repair. In: Proceedings of the Transportation 

Research Board 92nd Annual Meeting, 2013. 



36 

 

28. Edirisinghe R, Setunge S and Zhang G. Application of Gamma process for deterioration 

prediction of buildings from discrete condition data. Sri Lankan Journal of Applied 

Statistics 2012; 12. 

29. Andrews J. A modelling approach to railway track asset management. Proceedings of the 

Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 2013; 

227(1): 56-73. 

30. Le B. Modelling railway bridge asset management. PhD thesis, University of 

Nottingham, UK, 2014. 

31. Scholten L, Scheidegger A, Reichert P, et al. Combining expert knowledge and local data 

for improved service life modelling of water supply networks. Environmental Modelling 

& Software 2013; 42: 1-16. 

32. Yianni PC, Neves LC, Rama D, et al. Incorporating local environmental factors into 

railway bridge asset management. Engineering Structures 2016; 128: 362-373. 

33. Marsh DWR, Nur K, Yet B, et al. Using operational data for decision making: a 

feasibility study in rail maintenance. Safety and Reliability 2016; 36(1): 35-47. 

34. Jun C-H, Balamurali S and Lee S-H. Variables sampling plans for Weibull distributed 

lifetimes under sudden death testing. Reliability, IEEE Transactions on 2006; 55: 53-58. 

35. Network Rail. Asset management policy: Justification for civil engineering policy. 2015. 

36. Rafiq MI, Chryssanthopoulos MK and Sathananthan S. Bridge condition modelling and 

prediction using dynamic Bayesian belief networks. Structure and Infrastructure 

Engineering 2015; 11: 38-50. 

37. Network Rail. Management of existing bridges and culverts. Ref: NR/SP/CIV/080, 2004. 

38. McMahon W and Woodward RJ. Development of risk-based examination intervals for 

Network Rail bridges. RSSB. T569, 2006. 

39. Arshad M and Cook J. Bridges and structures. Cost-effective maintenance of railway 

track. Thomas Telford Publishing, 1992, pp.89-103. 

40. AASHTO. The manual for bridge evaluation. American Association of State Highway 

and Transportation Officials 2011. 

41. Tapan M and Aboutaha RS. Strength evaluation of deteriorated RC bridge columns. 

Journal of Bridge Engineering 2008; 13: 226-236. 

42. Wang J, Shi Z and Nakano M. Strength degradation analysis of an aging RC girder 

bridge using FE crack analysis and simple capacity-evaluation equations. Engineering 

Fracture Mechanics 2013; 108: 209-221. 

43. Von Winterfeldt D and Edwards W. Decision Analysis and Behavioral Research. 

Cambridge University Press, 1986. 



37 

 

 
Figure 1. A simple Bayesian network. 
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Figure 2. Failure rate function with different shape values.  
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Figure 3. Parameters learning using Weibull distribution. 
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Figure 4. Prediction of condition distribution.  
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Figure 5. Multiple asset groups with similar deterioration. 
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Figure 6. Expert evaluation on scale parameter based on influence degree. 
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Figure 7. Condition prediction. 
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Figure 8. Bridge BN model framework. 
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Figure 9. Condition of Wing Walls. 

 



46 

 

 
Figure 10. Learning from different groups of assets. 
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Figure 11. Updating from visual examination. 
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Figure 12. Strength of a typical masonry arch bridge. 
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Figure 13. Strength of bridge over time. 
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Table 1. NPTs for the nodes of BN model in Figure 3.  

Node Name NPT 

Asset 1 ~ Asset 6 Weibull (shape, scale) 

shape Triangular (a1, b1, c1) 

scale Triangular (a2, b2, c2) 

Transition Distribution Weibull (shape, scale) 
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Table 2. Elements of a masonry arch bridge. 

Bridge Type Major Element Minor Element 

Masonry Arch 

Bridge 

Support 
Wing Wall 

Abutment 

Deck 

Spandrel Wall 

Face Rings 

Parapets 

Barrel Arch 
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Table 3. Updated condition of Abutment and parapets in Good condition. 

 Abutment Parapets 

Condition of bridge from visual exam Good Fair Poor Good Fair Poor 

Updated condition 

Good 1.00 0.90 0.70 1.00 1.00 0.90 

Fair 0.00 0.10 0.20 0.00 0.00 0.07 

Poor 0.00 0.00 0.10 0.00 0.00 0.03 

 

 


