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Abstract

State-of-the-art models for the perception of grouping structure in music do not attempt

to account for disagreements among listeners. But understanding these disagreements,

sometimes regarded as noise in psychological studies, may be essential to fully under-

standing how listeners perceive grouping structure. Over the course of four studies in

different disciplines, this thesis develops and presents evidence to support the hypothesis

that attention is a key factor in accounting for listeners’ perceptions of boundaries and

groupings, and hence a key to explaining their disagreements.

First, we conduct a case study of the disagreements between two listeners. By studying

the justifications each listener gave for their analyses, we argue that the disagreements

arose directly from differences in attention, and indirectly from differences in information,

expectation, and ontological commitments made in the opening moments. Second, in a

large-scale corpus study, we study the extent to which acoustic novelty can account for

the boundary perceptions of listeners. The results indicate that novelty is correlated with

boundary salience, but that novelty is a necessary but not sufficient condition for being

perceived as a boundary. Third, we develop an algorithm that optimally reconstructs

a listener’s analysis in terms of the patterns of similarity within a piece of music. We

demonstrate how the output can identify good justifications for an analysis and account

for disagreements between two analyses.

Finally, having introduced and developed the hypothesis that disagreements between

listeners may be attributable to differences in attention, we test the hypothesis in a

sequence of experiments. We find that by manipulating the attention of participants,

we are able to influence the groupings and boundaries they find most salient. From the

sum of this research, we conclude that a listener’s attention is a crucial factor affecting

how listeners perceive the grouping structure of music.
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Chapter 1

Introduction

In this chapter, we introduce the subject of music structure analysis, we describe the

problem posed by disagreements between listeners, and we suggest that attention may

have an important role in explaining them. This chapter outlines the aims and objectives

of the rest of the thesis, and summarizes how the other chapters advance its overall goals.

Since this work is very interdisciplinary, we take the time to explain the contrasts between

each chapter.

1.1 Grouping structure and listener disagreements

The perception of grouping structure in music is one of the most fundamental and yet

poorly understood aspects of listening. Grouping structure refers to how a listener

divides a sequence of sounds into segments, and groups these segments together. At

the shortest timescales, this process is automatic: a listener does not need to think

consciously in order to perceive the beginning and end of each note in a piano piece. But

these notes may be grouped into distinct gestures or motives, and these assembled into

longer phrases, sections and so forth. Explaining how the mind accomplishes this feat

of musical analysis is a formidable challenge, but could lead to a better understanding

1



Chapter 1. Introduction 2

of how humans detect patterns of arbitrary kinds, or help us to endow computers with

the same abilities.

A listener’s perception of structure is partly based on sensory information, as when

a change in some musical feature, such as timbre, melody, or rhythmic pattern, signals

a section boundary, and it is partly reliant on short-term memory, which allows one to

notice when a sequence of musical events repeats. To the extent that these abilities

are shared by most listeners, the perception of musical structure can be quite similar

across listeners. However, it is also clear that individual factors—such as one’s past

musical training, one’s familiarity with the given piece, and what one chooses to pay

attention to—play a role. How significant are these factors, and how do they shape

one’s structural understanding of a piece? When, if ever, does their influence dominate

over directly perceived features of the music, such as vivid timbre changes or proximate

repetitions? Answering these questions is the original impetus for this thesis.

The act of perceiving groupings is sometimes referred to as chunking. Godøy, Jense-

nius and Nymoen [GJN10] encourage the terms exogenous and endogenous to refer to

two contrasting influences on how a listener chunks what they hear: exogenous chunking

is based on information outside the listener—namely, obvious changes in the music that

imply boundaries between chunks; endogenous chunking originates from the listener’s

own knowledge and expectations, such as the expectation that a metrical pattern will

continue. Crucially, each listener has some control over endogenous chunking, in that

they may choose to focus on one aspect of the music or another. This terminology is

synonymous with the dichotomy between passive, perceptual processes and active, ana-

lytical processes. Although exogenous influences are of primary importance at short

timescales (less than 5 seconds), the longer the timescale, the more endogenous influ-

ences begin to dominate. Endogenous chunking is the less well understood kind, the

kind more likely to lead to disagreements between listeners, and the kind that this thesis

aims to investigate. In particular, we will study the importance of the intentional focus

of the listener.
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1.2 Thesis scope

The importance of music’s structure is reflected in how its study spans many disciplines.

In music theory, of course, form has been studied for centuries, and music theorists have

developed many specialized ways of describing how music is composed and how it is

heard—and, in some cases, prescribing how it ought to be heard to be best understood.

The field of music psychology (encompassing, for our purposes, music perception and

cognition and even some neuroscience), on the other hand, is concerned mainly with the

hearing part, and seeks to explain how the brain makes sense of musical ideas. Whereas

music theory mainly focuses on the hearings of educated listeners, music psychology often

seeks to understand how music is understood by regular people, and how musical training

and enculturation affect perception. Recently, engineers in music information retrieval

(MIR) have taken up music structure analysis as an algorithmic challenge: the goal is

to process an audio recording and estimate the structure that a human would perceive.

Towards this end, some have developed new methods of transcribing structure—methods

that resemble, in some ways, an extension of the original work by music theorists.

Although these fields all have separate aims, the concepts in each are related and

illuminate each other. This thesis will therefore engage with all these fields to pursue

the same central question: given a piece of music, how will a listener divide it into

segments and group these segments into categories? And, in particular, how can we

account for the differing perceptions of different listeners?

The four main chapters of this thesis (3–6) vary widely in scope (from case studies to

moderate-sized experiments to large-scale corpus analyses), and each chapter investigates

listener disagreements and attention in different ways. They also contribute to three

different fields: music theory, music psychology and music information retrieval. The

objective of each chapter, and their main contributions, are summarized below.



Chapter 1. Introduction 4

1.3 Thesis outline

Chapter 2: Structure in music theory, psychology, and information

retrieval

Chapter 2 is a literature review that describes the kinds of models of grouping structure

that have been developed and studied in three fields: music theory, music perception and

cognition, and music information retrieval. It discusses the similar issues faced in each

field, and shows the importance of listener disagreements in understanding these issues.

Chapter 3: Causes of variation among listeners in boundary and group-

ing decisions

How do listeners come to disagree about structural analyses? Chapter 3 presents a case

study of the structural analyses of two listeners. The disagreements between them were

studied to produce hypotheses about how the disagreements originated. The study’s

small scale allows an unusually deep analysis of the justifications each listener gave for

their analyses. One of the main conclusions is that the focus of the listeners accounted

most directly for the disagreements; as a result, much of the rest of the thesis deals with

the focus of listeners. A version of the chapter was published in Music Theory Online

[SSC14].

The contributions of this chapter include:

• The study generates a set of hypotheses about how listener disagreements originate.

• The psychological depth of the study is unique in the literature; other studies do

not probe the reasoning behind the segmentation decisions as carefully.
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Chapter 4: An analysis of boundary perception and musical features

Does acoustic novelty determine boundary salience? Chapter 4 presents a corpus analysis

of the acoustic properties of points interpreted as boundaries by listeners. This study’s

larger scale enables us to draw confident conclusions about how acoustic novelty relates to

boundary salience. The chapter tests a hypothesis incorporated into many segmentation

algorithms that the moments of greatest novelty cause the perception of boundaries. Our

results are especially pertinent since the corpus in question, SALAMI, is used primarily

for validating such algorithms. A version of the chapter was published in a special issue

of IEEE Transactions on Multimedia on Music Data Mining [SCC14].

The contributions of this chapter include:

• It is the largest corpus analysis to date on the subject of structure analysis.

• Confirms and qualifies previous findings (that novelty is a prime motivator for

boundary placement) on a much larger corpus than before, using recorded audio

from many genres rather than monophonic music within a single genre.

• Finds that degree of novelty is correlated to the likelihood of being perceived as a

boundary.

• Demonstrates a new methodology: taking data sets intended for evaluation and

repurposing them as the subject of an analysis of perception.

Chapter 5: Relating grouping structure to musical features

Can we deduce what a listener paid attention to based on their analysis? Chapter

5 poses a new MIR problem intended to address the needs of music psychologists: is

it possible to estimate what a listener paid attention to in a piece of music based on

their annotation? If so, it would be possible to understand the cause of disagreements

between listeners. We describe an algorithm that addresses this problem by minimizing
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the distance between an annotation and several decomposed self-similarity matrices.

Although a large-scale validation of the algorithm is not possible, we demonstrate its

ability to analyze differences between annotations on a small set of songs. A version of

this chapter was published in the proceedings of ACM Multimedia [SC13b].

The contributions of this chapter include:

• Poses a new problem for MIR: music structure analysis explanation.

• Introduces an algorithm to solve this problem using Quadratic Programming.

• Demonstrates usefulness of the algorithm for visualizing and explaining listener

disagreements.

Chapter 6: The effect of attention on grouping decisions

Can attention affect the analytical decisions of a listener? Chapter 6 describes a psy-

chology experiment that tests the hypothesis developed throughout the preceding three

chapters: that when a listener directs their attention, whether consciously or uncon-

sciously, towards a particular aspect of the music, this affects their perception of group-

ing structure. While the correlation between these factors is supported by previous work,

this experiment tests the causal relationship. We also test whether this effect depends on

factors within the music (e.g., the musical features being attended to and manipulated)

or individual factors (e.g., level of musical training). A version of this chapter is being

prepared for submission to a journal of music psychology.

The contributions of this chapter include:

• Creates a set of artificial but realistic stimuli for use in this and other studies of

the perception of structure.

• Reaffirms that listeners perceive music in a multi-dimensional way.
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• Discovers that drawing a listener’s attention to one feature of the music influences

them to analyze the music according to that feature.

• Confirms that listeners are able to accurately continue the analysis of another

listener.



Chapter 2

Structure in music theory,

psychology, and information

retrieval

This chapter presents an overview of previous approaches to structural analysis in three

relevant fields: music theory (or musicology), music perception and cognition, and music

information retrieval (MIR). We examine how each field has posed and answered these

two questions: “How do listeners divide pieces of music into categorized segments?” and

“How can we explain disagreements among listeners?”

We first compare these three fields and their approaches to understanding and model-

ing grouping structure. In Section 2.2, we review landmark and state-of-the-art models

of the perception of structure that have been developed in music theory, the cogni-

tive reality of which has been tested by music psychologists. Next, in Section 2.3, we

describe how these models have been implemented as algorithms in MIR, and how MIR

researchers have sought to manage disagreements among listeners. In Section 2.4, we

discuss some ways in which the models have all struggled with similar problems, and

finally in Section 2.5 the ways listener disagreements have been addressed.

8
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2.1 Music theory, music psychology and MIR

Musicology is a branch of the humanities; music psychology, of science; and MIR, of

engineering. While comparing these fields, we must keep in mind their different aims.

In an essay on the gap between musicology and music psychology, Clarke [Cla89] offers

a succinct definition of each:

Broadly speaking, the aim of musicologists and composers in tackling issues of

musical structure can be characterized as the attempt to formulate theories of

the structural relations within and between musical works, and their origins,

development and effectiveness as formal devices. A correspondingly brief

summary of the aim of psychologists of music is the development of theories

of the mental processing of musical events, or the relationship between the

listener, performer or composer and the musical environment.

Twenty five years later, it is necessary to add a brief summary of the aim of MIR research:

the development of algorithms that deduce structural analyses from audio recordings,

simulating how listeners interpret the structure of pieces of music.

Within music theory, we recognize a division between composer- or text-based appro-

aches and listener-based approaches. The former category includes Schenkerian analysis

and set theory, both of which are most concerned with musical relationships that may be

apparent in the score but may be very difficult to discern—much less perceive sponta-

neously—in a performance.1 This thesis focuses instead on the latter category, listener-

based theories of grouping, which includes Lerdahl and Jackendoff’s Generative Theory of

Tonal Music (GTTM) [LJ83] and Narmour’s Implication-Realization (IR) theory [Nar90].

These seek to account for the listener’s experience of music, and hence are closely related

to music psychology.

1Take, for example, Tymoczko: “I am primarily interested in the idealized composer’s point of view:
my goal is to describe conceptual structures that can be used to create musical works, rather than those
involved in perceiving music.” [Tym11] (22)
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One primary way that these fields differ is in how they regard the importance of

individuals and populations, and of specific genres or multiple genres of music. First, in

music theory, it is common to compare the hearings of individuals (often, the hearings of

the authors themselves) and to debate their merits with respect to individual pieces. The

merit of a particular grouping could be how well it explains or reflects the compositional

principles of the piece in question. Pieces are almost always discussed in the strict context

of a genre or style.

In contrast, as a science, music psychology investigates general principles that can

explain the way populations of listeners perceive groupings. Towards this end, it is much

more common to experimentally test how groups of listeners respond to stimuli. An

individual’s response is not of special interest, since it is the trend observable in the

group that is pertinent. For practical reasons, it is most common to run experiments

using either a very limited set of pieces or using artificial stimuli, short music excerpts

composed specially for the experiment. Hence, music psychologists are interested in

general principles that apply across listeners and across genres, but due to operational

constraints usually test these principles in carefully constrained scenarios.

Finally, structural analysis is treated as an engineering problem in MIR, in which and

any and all pieces of music are relevant; individual algorithms may target specific genres

of music, but only as specific as “classical” or “popular.” The goal is not necessarily to

understand how humans analyze music, but to replicate this ability algorithmically. (Of

course, an understanding of how humans do this seems essential in practice.) MIR is only

concerned with specific listeners and pieces at the stage where algorithms are evaluated.

To evaluate an algorithm’s success, it is executed on a large number of pieces, and its

output is compared to structural annotations created by human listeners. Although

individual listeners are needed to create the annotations, these annotations are treated

as absolutely correct “ground truth” for the purposes of evaluation. Individual pieces

may be examined in order to characterize an algorithm’s shortcomings.
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Table 2-A: The scope of different disciplines studying music structure

Despite these broad differences, there has been significant overlap between the fields,

and it can be difficult to place individual contributions firmly in one field or another.

Music theories inform and are sometimes directly implemented as MIR algorithms (e.g.,

[Cam01] is inspired by GTTM, and [HHT06] implements GTTM); music psychology

seeks to confirm or disprove the mental reality of music theoretic models of grouping

(e.g., [CK90], [FC04]); and, most recently, some developments in MIR regarding grouping

annotation procedures could inspire new theories of music (e.g., [BDSV12b]).

The typical scope of each discipline is summarized in Table 2-A. Since this thesis

includes contributions to each of these fields, this table illustrates the broad scope of

the thesis. In our effort to better understand how listeners perceive structure, we will:

compare the hearings of pairs of listeners (Chapters 3 and 5), examine a small group of

listeners (Chapter 4) and eventually look at a very large number of listeners (Chapter

6). We will look at disagreements among listeners for individual pieces (Chapters 3 and

5), for large collections of pieces (Chapter 4), and for artificial stimuli (Chapter 6).

With this preamble, we now turn to the central question: how has the perception of

structure been modeled in these fields?
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2.2 Models of the perception of grouping structure

2.2.1 Rule-based generative models

The problem of modeling grouping structure has often been approached in a constructive,

ground-up manner: a theory seeks to explain how the tiniest sonic units (e.g., notes2)

are identified by a listener, how these are chunked into larger units (e.g., triplets), and

how this chunking procedure continues at higher hierarchical levels (to melodic motives,

phrases, and sections).

For example, in Tenney and Polansky [TP80] and later in Lerdahl and Jackendoff’s

[LJ83] Generative Theory of Tonal Music (GTTM), simple gestalt rules are proposed

to describe how listeners perceive and group sounds. GTTM’s grouping rules include,

among others: the proximity rule (a boundary is likelier to be heard when a longer note,

or a rest, sits between two shorter notes) and the change rule (a boundary is likelier to

be heard when some parameter of the musical surface—register, loudness, duration—

changes).

GTTM’s grouping rules are explained with simple stimuli and short melodies, and

the full theory (including rules for describing metrical and hierarchical structure) is

demonstrated on pieces of moderate size and complexity [LJ83] (250–278). Subsequent

studies have confirmed the perceptual validity of some of the rules postulated in GTTM.

In an experiment by Clarke and Krumhansl, participants listened to entire pieces and

indicated where they heard boundaries between segments, and afterward freely explained

their choices for each boundary; most of the reasons offered related to the grouping

preference rules of GTTM (i.e., they pertained to changes and to parallelism) [CK90].

Frankland and Cohen showed that quantified versions of the rules of GTTM could be

used to predict how listeners segmented short melodies, although not all of the preference

2We are strictly concerned with horizontal groupings, rather than vertical groupings; that is, we set
aside the listener’s task of segregating simultaneous but independent streams in the music. This subject
is reviewed well by Deutsch [Deu99].
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rules tested were shown to be equally effective [FC04].

The success of GTTM has inspired similar theories: Cambouropoulos’ Linear Bound-

ary Detection Model (LBDM) simplifies the rule structure of GTTM considerably by

measuring changes in all musical factors relative to their own scale [Cam01]. Temper-

ley’s Grouper algorithm combines GTTM’s proximity and parallelism preference rules

with an a priori preference for segments of roughly 10 notes [Tem01].

However, the aforementioned works all engage primarily with the first two grouping

rules of GTTM: the proximity rule and the change rule. GTTM also specifies more com-

plex preference rules which have been much harder to implement in practice: an intensi-

fication rule states that simultaneous changes lead to higher-level grouping boundaries,

and rules for parallelism and symmetry state that similar and similar-sized segments

tend to be grouped at higher levels. The application of these rules is not made precise

in [LJ83], and the rules have been implemented algorithmically more rarely. When they

have, they have required refinements to the model (e.g., [HHT04] defined weights for the

relative importance of the more complex rules) or strict limits on its application (e.g.,

[Cam06] is designed to handle only a limited range of parallel situations).

2.2.2 Models of expectation

According to Narmour’s Implication-Realization (IR) theory, groupings derive not from

psychological gestalts but from the dynamic way expectations are established and then

realized or denied. The two most basic expectations are that a repetition will beget

another repetition, and that a change will beget another change; from these, Narmour

derives a taxonomy of melodic types. The connection to grouping structure is that

Narmour posits that groupings are bounded by points of greater closure, with the per-

ception of closure being induced by a set of melodic conditions. Closure is most emphatic

when a large interval is followed by a small interval in the opposite direction, but other

conditions, such as resolution to a consonance and note lengthening play a role.
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Like GTTM, IR theory was explicated mostly using short melodies, and has since been

tested in listener studies. For example, Krumhansl had participants listen to melodic

fragments whose last tones varied systematically [Kru96]. Participants’ ratings of how

well the tone continued the fragment were able to be fit to a linear model based on the

IR criteria. However, Schellenberg et al. performed a similar experiment and found that

a more parsimonious model of expectation could model listener responses better; they

also found that expectations changed as a function of age, which was significant because

Narmour had posited that his rules of expectation were universal [SAPM02].

Also like GTTM, the IR model has been criticized for giving “short shrift” to the top-

down influences on expectation, such as expectations generated by stylistic knowledge or

prior listenings of a piece, compared to the bottom-up influences [Roy95]. Pearce’s Infor-

mation Dynamics of Music (IDyOM) model is a descendant of IR that seeks to remedy

this [Pea05, PW06, PMW10b]. Like IR, IDyOM is, at its core, a model of expectation,

with groupings predicted as the result of changes in expectation. Unlike IR, expected-

ness in IDyOM is not computed from a set of rules; rather, it models the information

theoretic properties of the melody (the expectedness of each note and the certainty with

which the next note is predicted) with unsupervised learning. IDyOM draws on compa-

rable models of how infants learn to segment speech, but is improved in two important

ways: first, it has the ability to incorporate many different melodic attributes at once;

for example, the model can consider the surprisingness (and relative informativeness)

of a pitch sequence along with its pitch-class sequence, interval sequence, sequence of

durations, and many other viewpoints. Second, the model combines expectations from

both a short-term model (which learns expectancies based on the local piece only) and

a long-term model (trained on a corpus of previously-heard melodies). In this way, the

model successfully integrates bottom-up and top-down influences.

For both the gestalt-based and expectation-based theories of grouping structure, we

have seen that the most persuasive evidence comes from studies of listening-based seg-

mentation of modest-length sequences, usually monophonic melodies [MOG00, HTS02,
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Kru96, FC04, PMW08], although some have used full-length and full-textured pieces of

music [CK90, BMK06]. At a short enough timescale (e.g., the size of a phrase or shorter),

where listeners’ responses are most consistent, these models may offer an adequate expla-

nation of grouping judgements. But groupings at larger scales seems to involve either a

complex combination of preference rules based on parallelism, tonal stability/instability,

caesuras, and countless other sonic features summing together, or a complex combination

of expectations based on a similarly wide array of attributes.

2.3 Structural analysis in MIR

In the wake of GTTM, with the advent of more powerful computers in the 1990s, there

was great interest in implementing it and other theories of music as algorithms. Stam-

men and Pennycook adapted the preference rules of GTTM for a real-time segmentation

system [SP94], and an algorithmic implementation of GTTM has been developed by

Hamanaka et al. [HHT04] and Hirata et al. [HTH07]. GTTM’s successors, LBDM and

Grouper, were conceived as algorithms, and the IDyOM model has also been imple-

mented as an algorithm [PMW10a].

Earlier grouping structure algorithms operated on symbolic representations of music,

such as MIDI (e.g., [SP94]), MusicXML (e.g., [HHT04]), or some other abstract rep-

resentation (e.g., [Cam01]). Since 1999, grouping structure research in MIR has come

to focus much more on audio representations. Instead of dealing directly with abstract

musical parameters such as notes and instrument parts, researchers extract musical fea-

tures from audio, such as chroma (a vector expressing the relative strength of each pitch

or pitch class) or Mel-frequency cepstral coefficients (MFCCs, a vector that characterizes

the shape of the sound’s frequency spectrum, and hence timbre). These features are then

processed to estimate the grouping structure of the music.

Much of the work in this area draws on Foote’s seminal paper on the use of self-

similarity matrices (SSMs) to visualize repeated patterns in music [Foo99]. An SSM
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displays the computed similarity between all points in a recording, and is useful for

discovering homogenous passages of music (which appear as blocks on the main diagonal),

strong discontinuities (which appear as sharp corners between blocks), and repetitions

(which appear as strong diagonal lines off the main diagonal). Since Foote, SSMs have

been refined and used by countless others for structural analysis. (A formal description

of SSMs and a more extensive review of SSM techniques developed in MIR appear in

Section 5.1.)

Using the SSM, bottom-up and top-down factors may be taken into account. A

bottom-up algorithm begins with a search for local discontinuities: Foote proposed con-

volving the diagonal of an SSM with a checkerboard kernel for discovering the sharp

corners between blocks [Foo00], and this approach has been used many times since (e.g.,

[PK08b]. [Pei07]). On the other hand, one may begin by searching for the longest rep-

etitions and deducing a finer-scale segmentation using several such observations, as in

[Got06] or [MK07]. Such approaches are top-down in the sense that they prioritize a

search for parallelism over a search for local discontinuities. Seen this way, we may con-

sider all block-based structural analysis approaches to be bottom-up, and all sequence-

based approaches to be top-down, in the sense that they define structure primarily with

regard to discontinuities or to parallelism, respectively. The differences between these

types of approaches were articulated by Peeters [Pee04], and since then some have aimed

to combine the insights of both approaches (e.g., [PK09] and [GCJM13]).

Another way to incorporate a top-down view of structure is to build in stylistic

expectations; for example, Shiu, Jeong and Kuo’s algorithm filters the SSM to reinforce

repeated four-measure sequences [SJK06]. Another class of algorithms uses clustering

or Hidden Markov Models (HMMs) to obtain a description of a piece as a sequence

of states. For example, Abdallah et al.’s algorithm [ASRC06] first computes an HMM

with many states to obtain a very fragmented representation of the audio, in a manner

comparable to both [LC00] and [AS01]. Next, they cluster histograms of HMM states to

estimate large-scale structure. The approach is bottom-up in the sense that it builds a
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representation of a piece’s structure iteratively from the frame level to the segment level,

but it is top-down in the sense that the frame-level judgements are based on comparisons

between frames across the entire piece, not on local comparisons.

2.3.1 Listener disagreements in MIR

The previous section illustrated the range of approaches pursued in MIR for structural

analysis, but the state-of-the-art in this field is not the focus of this review. (Technical

advances have been made the past five years, but the methods of the field are reviewed

in [PMK10] and [Smi10].) We are most interested in two questions: first, how have

researchers sought to account for differences among listeners in their algorithms; and

second, how do they account for different modes of attending—for example, a focus on

local discontinuities or on large-scale groupings?

The answer to the first question is simple: they have not. The algorithms all take a

single input (an audio recording) and produce a single output (a structural analysis), and

the possibility of multiple interpretations is generally considered irrelevant. Even those

models that take advantage of complex top-down factors are deterministic. Discovering

multiple plausible structural descriptions of a piece is simply not part of the problem

definition.

Regarding the second question, the field has effectively addressed different modes of

attending by dividing the broadly-defined “structural analysis” task into subtasks. For

example, segmentation (boundary detection) and segment labeling (grouping analysis)

are considered separate but related tasks, and are usually evaluated separately. Some

researchers narrow the problem further, focusing only on recognizing choruses or the

most repeated part (e.g., [BW01], [Ero07], [MGJ11]) or motive recognition, sometimes

called intra-opus pattern discovery (e.g., [CAFW13]).
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2.3.2 Evaluation and annotation

Ignoring the possibility of different interpretations and different modes of listening is

perfectly reasonable, given how algorithms are evaluated. Evaluation consists of execut-

ing an algorithm on a large collection of recordings, and comparing their output to a

matching collection of ground-truth annotations. The similarity between the output and

the ground-truth is appraised using a variety of metrics (see [Luk08] and [SC13a] for a

review). Crucially, most corpora of annotations have a single annotation for each song,

reflecting the operational assumption in this field that there is a single, best analysis of

each song’s structure—which, since there is no agreed-upon way to define the “average”

analysis, is just one person’s single hearing.

Although musical analyses are often hierarchical—each segment has subsegments and

is part of a supersegment—in MIR evaluations, only one timescale is used. There is an

informal understanding in the community of which timescale is most relevant—in pop

music, the length of verses and choruses is roughly the unit size—but this timescale

is not defined precisely. An analysis of several algorithms’ performance at the Music

Information Retrieval Evaluation eXchange (MIREX) suggests that algorithms often fail

to target the level of detail encoded in the annotation [SC13a].

This status quo has been criticized, and newer corpora have pursued two remedies:

first, clarifying the type of structure the annotations describe; and second, including

several annotations per song.

In 2009, Peeters and Deruty observed that existing annotations conflate many aspects

of structure—namely, musical function, similarity, and instrumentation [PD09]. Their

critique was incorporated into the SALAMI dataset, which has a different annotation

for each of these three aspects of structure; additionally, musical similarity is described

separately at both a short and long timescale [SBF+11]. Another attempt to refine the

definition of structure has been pursued by Bimbot et al. [BLBSV10]. They defined a

method for obtaining a segmentation that, in addition to setting an optimal segment size,
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defines criteria for considering a span a segment, such as interchangeability and similarity.

They also proposed a “System and Contrast” model which describes the typical ways that

segments are composed and related to each other [BDSV12a], and proposed a system of

labeling segments based on this model [BDSV12b]. The model resembles descriptions of

Classical formal structures (such as Caplin’s account of sentences and periods [Cap98])

and represents an important contribution of the theory of popular music—a unique

contribution to music theory from MIR. A taxonomy of common transformations of

segment lengths is presented in [BLBSV10], and a taxonomy of typical deviations and

hybrids of segments in [BDSV12b].

The approaches of Peeters and Deruty and of Bimbot et al. both aim to minimize

inter-annotator disagreement by being more precise about how the annotations should

be written. However, as reported in [BLBSV10] and [SBF+11], inter-annotator disagree-

ment persists despite clearer instructions and is significant. Although these approaches

clarify what structure is, they still rely on annotators deciding for themselves and for each

piece what patterns in the music are most relevant for the analysis, and what patterns

are part of the uninteresting background.

One way to respond to this is to include several annotations per song. To consider

such listener disagreements, the SALAMI corpus includes two annotations for most songs.

Considering each annotation and both timescales, there are up to four different ground-

truths per song—four different ways of hearing the structure. The recently published

JAMS specification is designed to manage several independent annotations per song, and

additionally preserves information about the origin of each analysis, such as the rules

followed by the annotator and the annotator’s musical background [HSN+14].

Yet another possibility, still speculative, is to build annotations in a probabilistic

manner. Bruderer et al. devised a method of merging the boundary indications of

multiple listeners by convolving each listeners’ sequence of boundaries with a Gaussian

kernel, and summing the results across listeners [BMK09]. (The size of the kernel had

been optimized for maximum separation of boundary indications within each response.)



Chapter 2. Structure in music theory, psychology, and information retrieval 20

Although it may be impractical to collect the quantity of data they used on a larger

scale, a collection of such annotations would be highly valuable. Bruderer’s approach is

a good system for annotating boundaries in a fuzzy way, but no one has yet devised a

comparable approach for assigning fuzzy labels to segments, which are themselves fuzzily

bounded.

2.4 Bottom-up versus top-down

In the previous two sections, we have witnessed a common struggle in all three disciplines

to develop a theory or model of analysis that balances the influence of bottom-up and top-

down factors. This pair of terms has been shared among the disciplines, but sometimes

with different meanings. The proximity and change rules of GTTM are bottom-up in

the sense that local discontinuities have an effect on higher-level groupings, while the

parallelism rule is top-down in the sense that long-term similarity has an influence on

shorter timescales. In the IR model and in IDyOM, expectations may either be bottom-

up (i.e., originating within the local context of the piece), or top-down (originating

from knowledge beyond the piece). In MIR, a focus on blocks in an SSM, which is a

focus on homogenous states in music, is related to the bottom-up approach in GTTM,

while a focus on stripes in an SSM, or on repeated sequences in music, is like the top-

down approach. Algorithms can base their estimates entirely on knowledge derived

from the acoustic signal, or can apply top-down constraints based on prior expectations:

constraints on the size of segments, the number of unique segments, and so forth.

“Bottom-up” and “top-down” are similar to the terms “exogenous” and “endoge-

nous,” used by Godøy, et al. to describe, respectively, influences that originate outside

and inside the listener [GJN10]. The music exerts exogenous influence over the listener,

in the form of sharp local changes or clear, verbatim repetitions that are automatically

perceived; the listener exerts endogenous influence over the music, in the form of expec-

tations and knowledge (as in IR and IDyOM), but also in the form of conscious and
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perhaps deliberate efforts to pay attention to particular aspects of the music. For exam-

ple, depending on the listening situation, one may pay more attention to the melody

(perhaps while listening in a car) or to the beat (while exercising).

Clarifying the different goals that a listener may have in analyzing a piece of music

is central to Hanninen’s theory of analysis [Han12]. Hanninen writes that a listener may

adopt one of three fundamental orientations: a focus on discontinuities in the acoustic

signal (sonic orientation), a focus on associations between passages (associative orien-

tation), and a focus on how a particular theory of music applies to the piece at hand

(theoretical orientation). The sonic and associative orientations are further synonyms

for the bottom-up and top-down approaches of GTTM-like approaches, respectively,

while the difference between the theoretical orientation and the others is similar to the

difference between endogenous and exogenous influences. (With the growing set of syn-

onyms, the analogies get muddied; depending on the context, the associative orientation

could be seen as bottom-up or as endogenous—that is, top-down.) However, Hanni-

nen further points out that the orientations are interdependent: sonic and associative

attending nearly always happen simultaneously to some extent, and observations made

from one perspective form the basis of new observations in the other. Jones and Boltz

also argued that there are two contrasting modes of listening: an analytic mode that is

focused on tracking local events (bottom-up), and a future-oriented mode that is more

expectation-driven, in which attention is drawn to longer timescales [JB89].

Bottom-up and top-down; states and sequences; sonic and associative orientations;

novelty and repetition; exogenous and endogenous; automatic and conscious; analytic

and future-oriented. That we have accrued such a wealth of synonymous dichotomies

hints that, regarding grouping analysis, the difference between bottom-up and top-down

is difficult to define precisely, incredibly complex, and yet crucial for understanding how

groupings are made. Each of these binaries refers to a competing set of influences in the

mind of the listener. And yet, the listener does mediate between them; bottom-up and

top-down processes coexist.
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Perhaps this is the nugget of the problem: grouping structure seems to be, at once,

a passive perception, something that a given listener is compelled to do, and an active

analysis, a willful interpretation of the listener. The fact that a listener exerts some

conscious control over their perception of structure may be the main cause of the listener

disagreements noted in the previous section.

The ability of listeners to control their perception is apparent in the case of ambiguous

musical stimuli that resemble, in some ways, optical illusions. There is a famous optical

illusion where a drawing appears to be both a rabbit and a duck. A viewer will at first

perceive the “dubbit” to be one animal, but then their perception may spontaneously

switch to the other animal, and at this point, the viewer can deliberately choose to see

the dubbit however they please. The lines of the drawing constrain, in a bottom-up way,

what interpretations are most stable—it is not equally a duck, a rabbit, or a horse—but

the imagination of the viewer allows them to control their perception.

Comparable situations in music are plentiful, especially with regard to meter and

rhythm. The hemiola pattern, in which a single unit can be stably subdivided into two

or three sub-units, can be used as an occasional device or as a meter; both uses appear

in musics across the globe. In a discussion of ambiguity in music, Karpinski cites several

examples where the downbeat, as indicated by the barlines, does not match how it is

likely to be initially perceived; however, with effort, a listener can choose to hear each

passage one way or the other [Kar12]. A vivid example that is a personal favourite: Paul

Simon’s song “Gumboots” has a bistable meter nearly throughout, with two possible

downbeats a beat apart. Each of these examples is like the dubbit in that multiple

interpretations are possible, but the range of interpretations is still constrained by the

music. Musical dubbits thus lie at the centre of the tension between bottom-up and

top-down factors: a listener can choose how they perceive notes to be grouped, but their

choices are limited by options permitted by bottom-up considerations.
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2.5 Listener disagreements

Such ambiguous situations might reasonably be identified as a main source of listener

disagreements, although Agawu has argued that, given a theoretical context, ambiguities

should never be irresolvable and analyses ought not diverge [Aga94], and Francès found

that listeners who were given clear expectations about the music to come agreed with

each other’s analyses much more than did listeners who were not guided [Fra58]. Lewin

attributed differences in listeners’ interpretations to a deficiency in analytic discourse that

fails to account for the fact that listeners are in fact analyzing many phenomena at once.

But as annotators in MIR can attest, clarifying an analytical procedure does not make it

perfectly repeatable. One issue is that many musical situations are not merely ambiguous

in the sense that they support bistable percepts; if this were so, listener disagreements

could be reduced to a set of conscious, “duck-or-rabbit”-type decisions. In fact, listeners

often disagree without necessarily being aware of the alternative hearings; disagreements

can arise without listeners believing that they’ve made any conscious “decisions” at all.

It is difficult to identify all the decisions one has made and top-down factors one has felt

with mere introspection.

Listener disagreements are noted in all studies on listening-based segmentation. For

example, for every song studied by Frankland and Cohen, while the average agree-

ment between listeners’ boundary segmentations was high, and in some cases perfect,

there were always pairs of negatively correlated analyses [FC04]. Bruderer, Martin, and

Kohlrausch had listeners segment full pieces, and found that of all the boundaries indi-

cated by participants, only a few were agreed upon by all listeners [BMK09]; similar

results were observed in [MOG00]. What’s more, listeners may even disagree with them-

selves: in [FC04] and [BMK09] within-subject agreement across trials was sometimes

low, and Margulis found that after hearing a piece multiple times, a listener indicates

different boundaries, in a way that suggests their attention has been drawn to repetitions

of greater length [Mar12].
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These studies attest to the fact that listener disagreements are real and often sub-

stantive, and that focusing on the nature of these disagreements can lead to insight.

As another example of this: by studying the rate of agreement in perceiving bound-

aries, [BMK09] showed that boundary salience is correlated with the likelihood of being

perceived as a boundary.

While such disagreements seem natural and commonplace, music theories such as

GTTM and IR do not necessarily account for them. Narmour argued that the fun-

damental expectations in IR were universal, which was disputed by [SAPM02]. And

consider the simplifying assumption made by GTTM’s authors: the first sentence of the

book limits its scope to “a listener who is experienced in a musical idiom” (1). In a

world of identically experienced listeners, differences in interpretation would not exist.

The authors recognize this but point out that while “the ‘experienced listener’ is an

idealization, [....] there is normally considerable agreement on what are the most natu-

ral ways to hear a piece” (3). This assumption aids in their project of deducing a set

of gestalt rules for generating analyses of tonal music that resemble the perceptions of

humans. Several of the research studies cited so far certainly do corroborate the obser-

vation that considerable agreement among listeners exists as far as musical structure is

concerned. That evidence may even extend to the neuroscientific literature: Abrams et

al. found brain activity to be synchronized across listeners of the same piece of music

[ARC+13]. But confidence that agreement among listeners is “considerable” does not

explain the origin of the disagreements. One aim of this thesis is to investigate precisely

that.

2.5.1 Accounting for listener disagreements

We are not the first to observe that listeners can disagree, and other research has sug-

gested refinements to existing theories that could account for such differences. For exam-

ple, regarding GTTM, Deliège suggested that listeners might apply the same gestalt rules

as one another, but with slightly varying weights depending on their musical experience
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[Del87]. Her evidence was that musicians in her study produced segmentations more

often concurrent with GTTM’s Grouping Preference Rules than non-musicians. On

the other hand, [FC04] found that listeners with varying musical backgrounds parsed

melodies quite similarly to one another.

A second refinement could be to model how listening-based segmentation is affected

by a listener’s familiarity with the piece. As noted briefly earlier, Margulis found that an

individual’s attention was drawn to longer repetitions after hearing a piece multiple times

[Mar12], and Frankland and Cohen found that a listener’s second and third hearings of a

piece agreed more closely with one another than their first hearing did to the second or

third [FC04]. Palmer and Krumhansl found that the more familiar a listener was with a

piece, the closer the agreement was between how they segmented two different simplified

versions of the piece, each retaining only the rhythm or the melody [PK87]. The evidence

collectively suggests that listeners refine and crystallize their interpretations of a piece

as it becomes more familiar.

The problem of explaining listener disagreements is hypothetically sidestepped (or at

least reduced) when prior probabilities are used to train the model. For example, Grouper

and IDyOM are both segmentation models whose parameters may be set according to

the statistical properties of a corpus of music; by feeding them a variety of corpora to

represent different listeners’ experiences, these models could output a range of grouping

predictions for different listeners. Hansen, Vuust and Pearce have shown that providing

IDyOM with corpora of jazz or general melodies, one can predict the different expectancy

ratings of jazz and classical musicians [HVP13]. In another (also probabilistic) view, lis-

tener disagreements could arise due to perception being a stochastic process: for example,

individuals may perceive boundaries with a probability proportional to the boundary’s

intrinsic salience. This view aligns with the findings of [BMK09], who found that of

all the boundaries indicated by participants in a segmentation task, the few that were

agreed upon by all listeners happened to be those with the highest rated salience, and

even those who did not indicate a popular point as a boundary tended to agree it was
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salient. All of these probabilistic interpretations of human perception allow differences

among listeners to be explained as the variance in the input and output of a perceptual

mechanism that is common to everyone.

While a probabilistic interpretation of listening is appealing, it might not be a sat-

isfying description of the conscious experience a listener has when they interpret the

structure of a piece of music. This brings us to a second simplification admitted by

Lerdahl and Jackendoff: they are concerned only with the “final state of the [listener’s]

understanding,” and not the “mental processing” that precedes it [LJ83] (4). While it is

true that the structural description provided by a listener is the most concrete evidence

that can be examined, in order to understand how these descriptions deviate from one

another, we must interrogate the listeners about their mental processing. The study

presented in Chapter 3 seeks to do exactly that.



Chapter 3

Causes of variation among

listeners in boundary and

grouping decisions

In chapter 2, we saw how differences among listeners were not well accounted for by

models and algorithms for determining grouping structure. Important theories of music

cognition, such as the Generative Theory of Tonal Music, posit an archetypal listener

with an ideal interpretation of musical structure, and many studies of the perception of

this structure focus on what different listeners have in common. However, we also saw

that previous experiments have revealed interesting differences in how listeners perceive

structure, showing a dependence on a listener’s familiarity with the piece, and on their

musical background. The impact of these and other endogenous factors (that is, factors

that depend on the listener) is not understood in detail. Determining their impact, and

determining which other factors are important, may be essential to developing more

advanced models of music perception.

In this chapter, we embark on a case study of the structural analyses of two listeners

with very different perspectives on the music: one is the performer, the other only

27
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a listener. Our study has two goals: to identify the differences between the listeners’

analyses and to explain why these differences arose. For this study, the listeners analyzed

the structure of three improvised duets, which were performed by one of the listeners and

Mimi (Multimodal Interaction for Musical Improvisation), a software system for human-

machine improvisation. The ambiguous structure of the human-machine improvisations,

as well as the distinct perspectives of the listeners ensured a rich set of differences for

the basis of our study.

We compare the structural analyses and argue that most of the disagreements between

them are attributable to the listeners paying attention to different musical features.

Following the chain of causation backwards, we identify three more ultimate sources

of disagreement: different commitments made at the outset of a piece regarding what

constitutes a fundamental structural unit, differences in the information each listener had

about the performances, and differences in the analytical expectations of the listeners.

A case study similar to ours was reported by Bamberger [Bam06]. She conducted

interviews of three listeners with different musical backgrounds, and their hearings of a

Beethoven minuet were compared in an effort to understand musical development and

how people learn to have more complex hearings of pieces of music. Although the focus

of her study differs from ours, she touched on issues relevant to us here. For instance,

she discussed how the differences between hearings of a piece could be understood as

what she terms “ontological differences” (a musical ontology being a determination of

what musical ideas count as genuine abstract entities or units). She also suggested that

a listener’s musical knowledge can influence which musical features and relationships

they deem relevant. We will see in Section 3.3 how these factors—listeners’ differing

musical knowledge, beliefs, and ways of attending—led, in our case, to diverging musical

ontologies and differing interpretations of musical structure.

The justification for our choice of material and the method for collecting the annota-

tions are described in Section 3.1. Referring both to the annotations and to the listeners’

written accounts of why they analyzed the music as they did, the differences between the
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analyses for each piece are studied in Section 3.2. The results of these comparisons are

summarized and discussed in Section 3.3, and our conclusions are presented in Section

3.4.

3.1 Procedure

Our goal in this study is to develop a better understanding of how and why listener

disagreements occur. To do so, we compare the different listeners’ analyses of pieces of

music. In this section, we describe the compromise we struck between the size of our

experiment and the level of detail of the responses gathered, and justify our choice of

materials, procedures, and participants.

Most significantly, we have opted to limit the “participants” of our study to two listen-

ers: myself and Isaac Schankler, the composer/performer of the music in question. While

this precludes the possibility of drawing unbiased or statistically powerful conclusions

from our observations, our approach facilitates a deeper examination of the differences

between our analyses. As will be explained in this section, our choice of methodology is

intended to maximize the number and diversity of listener disagreements observed, while

allowing as deep an investigation as possible into the causes of these disagreements.

Studies of listeners’ analyses usually tout their large size as an advantage: with

increased size comes increased statistical power and greater generalizability. Indeed, with

many participants (e.g., [BMK09]) or many pieces of music (e.g., the corpus analysis in

Chapter 4), it is possible to observe broad patterns in how listeners perform chunking, or

in how chunking decisions relate to the music that was heard. However, when studying

listener disagreements, increased size can be a liability. Firstly, the information we are

most interested in—the listeners’ justifications for their responses—is information that

is difficult to quantify or categorize, and hence difficult to interpret in large quantities.

Secondly, we would like to have the participants reflect on each other’s analyses and

explain why they did not respond in the same manner, and this information can only
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be collected after the first part of the analysis takes place. By using only ourselves as

participants, we simplify this process.

Still, it cannot be denied that including the responses of more participants could

improve this case study. However, this study was originally conceived and published

(see [SSC14]) as a contribution to the field of music theory, in which it is common to

reflect on the implications of just a single listener’s analysis, and where single-author

articles are the norm. In this context, our use of two listeners, while the bare minimum

required to make comparisons across listeners, may be less unsatisfying.

3.1.1 Choice of materials

The choice of music to study was guided in part by my experience collecting the dataset

for the Structural Analysis of Large Amounts of Music Information (SALAMI) project

[SBF+11]. The SALAMI dataset consists of over 2,400 annotations of nearly 1,400

recordings in a wide variety of musical styles, ranging from Renaissance motets to Dix-

ieland jazz to electronica. It was observed that some categories of music, such as song-

form popular music, inspired far fewer disagreements than others, such as avant-garde

jazz. Through-composed and improvised works in particular seemed to demand more

willful interpretation from the listener.

Since we wanted the music in our case study to elicit as many and as diverse a set of

listener disagreements as possible, we chose to focus on a human-machine improvisation

scenario, described below, that presents unique challenges for grouping and segmentation.

Mimi (Multi-modal Interaction for Musical Improvisation) is a software system de-

signed for human–machine improvisation [FCT07, Fra09]. Using a MIDI keyboard, an

improviser’s performance is recorded into a buffer (called the “oracle”) and modeled

by Mimi. Mimi then walks through the oracle, recombining parts of the improviser’s

performance into new musical material; in this manner, Mimi and the musician are

able to perform concurrently in an overlapping, improvised duet. The performer retains
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control over some aspects of Mimi’s behavior, including the content of the oracle (which

can be added to or deleted altogether), the recombination rate (which controls how likely

Mimi is to juxtapose fragments of the oracle), and whether Mimi is generating music

or not (naturally, this control must be used in order to end a piece). A visualization

accompanying the performance gives the performer information about what Mimi is

about to play and has just played, as well as a display of all the musical material currently

in Mimi’s memory.

Performances with Mimi provide interesting challenges for the listener seeking to

understand musical structure; first of all, there is the improvised nature of the perfor-

mance, which is, in the words of George Lewis, characterized by a “refreshing absence

of the moral imperative concerning structure” [Lew09]. Put simply, improvisation is not

necessarily bound to formal structures traditional in popular, classical, or other music.1

A second and perhaps more intriguing challenge is interpreting the actions of Mimi:

Mimi has no knowledge of how, nor the ability, to intentionally create an ending of

a phrase, a section, or the entire piece. Any perceived structure could be said to be

partly derived from the creativity of the human improviser, whose performance provides

the basis for Mimi’s material and whose decisions in response to Mimi may reinforce

previous patterns or introduce new material. It may also be partly and serendipitously

due to the probabilistic connections Mimi makes between similar note material of disjoint

sections. But in the absence of these chance connections or the improviser’s interventions

(as when the improviser clears the oracle or tells Mimi to stop generating music), the

material Mimi generates tends to be structurally amorphous, especially at larger scales.

The third and final challenge is that of integrating the improviser’s musical ideas and

Mimi’s concurrent, perhaps not compatible, layers of musical material. For instance,

at any given moment, the listener must decide who is in the foreground, Mimi or the

improviser. But, as in an Escher drawing, there may be more than one interpretation

1And yet, whether through the latent tendencies of the performer or by the constraints of Mimi’s pro-
gramming, traditional formal structures may still emerge from performances with Mimi. This is discussed
in other articles related to these same three performances and some others; see [SCF14, SSFC11].
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of the same lines. The focus of the listener’s attention—whether they are concentrating

on the improviser, on Mimi, or on both—may thus have a significant impact on the

perception of structure. This task is further complicated by the fact that, depending

on the instrument patches chosen for the improviser and Mimi, the two voices may not

always be distinguishable.

Over the course of three weeks, Schankler produced three separate improvisations

(hereafter referred to as Performance no. 1, no. 2, and no. 3) with Mimi, all on

a Yamaha P90 weighted-action keyboard (see 3.1) in a laboratory setting. The three

performances were recorded as MIDI files, from which audio tracks equivalent to the

original performances could be made. These were the recordings consulted during the

annotation stage.

Figure 3.1: Isaac Schankler performing on a Yamaha Disklavier with Mimi at
the People Inside Electronics concert at the Boston Court Per-
forming Arts Center in Pasadena, California, in June 2010.
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3.1.2 Annotation procedure

The annotation procedure was inspired by previous work with the SALAMI project.

The formal structure of each piece was independently annotated by Isaac Schankler

(the improviser, hereafter referred to as Annotator 1) and by me (an independent lis-

tener, hereafter referred to as Annotator 2). Using different software tools with similar

functionality—Annotator 1 used the Variations Audio Timeliner2 and Annotator 2 used

Sonic Visualiser3—the listeners analyzed each piece at two hierarchical levels. In accor-

dance with common practice in formal musical analysis, the large-scale level was anno-

tated with uppercase letters, and the small-scale level with lowercase letters, to indicate

which portions of the piece were judged to contain similar musical material. In keeping

with Lerdahl and Jackendoff’s well-formedness rules for structural grouping, overlapping

sections were disallowed, all portions of a piece were labeled, and boundaries at a given

hierarchical level were respected at smaller-scale levels.

Each analysis was produced in a single session, each lasting roughly a half hour,

although this time was not prescribed beforehand; indeed, aside from producing anno-

tations in the same format, the annotators had total freedom: they were free to listen

to the pieces as often as they liked, and to return to particular spots or repeat short

excerpts.

In a departure from the procedure used by SALAMI, both listeners also wrote brief

notes explaining their choice of boundaries and groupings in a separate session after

annotating each piece. The responses were worded freely, but at a minimum the listeners

were expected to justify, with reference to the recording, each boundary and the similarity

of sections labeled with the same letter.

These justifications did not generate explanations from both participants for every

moment where the interpretations diverged. Consider the case in which listener no. 1

2http://variations.sourceforge.net/vat
3http://www.sonicvisualiser.org

http://variations.sourceforge.net/vat
http://www.sonicvisualiser.org
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perceived a boundary where listener no. 2 did not. We may refer to the first listener’s

explicit justification for this perception, but listener no. 2’s remarks may not include an

explanation for not experiencing this perception. The process of identifying and explain-

ing differences thus required more than just collating responses. So, after enumerating

all the significant differences between our analyses, we (the two listeners) discussed each

one, reflecting on our listening experiences and elaborating on our interpretations of the

pieces. The next three sections recount the outcome of these conversations for the three

pieces.

3.2 Differences between annotations

In this section, we consider the three performances separately. For each, we list the

differences between our annotations and offer reasons to account for these differences.

We will collect our observations and attempt to generalize from them in Section 3.3.

The pair of annotations for each performance are shown in Figures 3.2, 3.5 and 3.8; in

each, the upper part is from Annotator 1 (the improviser) and the lower part is from

Annotator 2 (the independent listener). Recordings of each performance, set to animated

versions of these figures, are available online.4

3.2.1 Performance no. 1

In Performance no. 1, Annotator 2 roughly agreed with all of Annotator 1’s small-scale

boundaries (the smaller bubbles in Figure 3.2), but Annotator 2’s version has more

small-scale boundaries, and it also differentiates subsections within each main section

(e.g., A1 includes a, b, c, and d subsections). This leads to two compelling divergences in

the large-scale segmentation. Setting aside the small deviations in timing (e.g., the few

seconds difference in the boundary between Annotator 1’s a2/a3 and a3/b1 transitions,

4Performance no. 1: https://vimeo.com/96662176

Performance no. 2: https://vimeo.com/96662177

Performance no. 3: https://vimeo.com/96662178

https://vimeo.com/96662176
https://vimeo.com/96662177
https://vimeo.com/96662178
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Figure 3.2: Analyses of Performance no. 1 by Annotator 1 (top), and Anno-
tator 2 (bottom).

and the disagreement about when the piano stopped ringing at the end of the piece),

the differences that require explanation are:

(1) Why is Annotator 2’s A1 section much more segmented than Annotator 1’s?

Both annotators identified the same initial sequence as a single musical idea a1, but

they conceptualized this passage differently because they focused on different musical

parameters. To Annotator 1, the idea was defined by its mood—an amorphous, ethe-

real melody with pedal—and the segments a2 and a3 were distinguished by the melody

moving to a different voice (Mimi) or to a new register. On the other hand, Annotator

2’s hearing was marked by a strong sense of rhythmic phrasing, established when the

four-part opening phrase a1 is answered by Mimi with a similar phrase a2. This pace is

only followed roughly for the rest of the A section, but because the material is very open,

containing relatively short gestures with long pauses in between, it is easy to imprint a

loose pace of phrases onto the music.

(2) Why does Annotator 2 hear the transition section B as beginning earlier than

does Annotator 1?

Both annotators agreed that the material beginning at 2’54” (i.e., at the beginning of

Annotator 1’s b1 and Annotator 2’s f1) was wholly different from the material in section

A1. Indeed, Mimi is silent during this section, and it is melodically and rhythmically

distinct from all of section A1. (See Figure 3.3.) However, Annotator 2 perceived a “pre-

transition function” in segment e1, leading him to place the beginning of the section
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Figure 3.3: Notation Example 1. Performance no. 1, large section boundary
(A1–B1) for Annotator 1.

earlier than Annotator 1. While the material in e1 is similar to the rest of section A1,

there are a few cues that arguably distinguish it: a new descending theme from the

improviser with a repeated rhythm, and a rising, fading motive that follows, both of

which feel like ending material and anticipate the change at 2’54”. (See Figure 3.4.)

(3) Why do Annotator 1 and Annotator 2 disagree about the differentiation of musical

ideas in section C1?

While Annotator 2 differentiated between subsegments throughout the piece, Anno-

tator 1 did not; he posits that this is because that option did not occur to him at the

time. It is hard to say whether the labeling differences of these subsections of C1 (or

the subsections of A1) are very meaningful, since Annotator 1 and Annotator 2 also
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Figure 3.4: Notation Example 2. Performance no. 1, large section boundary
(A1–B1) for Annotator 2.

initially employed slightly different naming conventions: Annotator 1 used letters and

prime notations (e.g. A,A′, A′′), and Annotator 2 used a combination of letters, sub-

script numbers and prime notations (e.g. A1, A2, A
′
2). The analyses shown in Figure

3.2 are adaptations of the original analyses, meant to enable comparison; for the later

performances, the annotators used the same format as each other. In the diagrams in

this chapter, subscripts are only used to indicate repetitions of musical ideas.

(4) Why do Annotator 1 and Annotator 2 disagree about the labeling of the final

section (C vs. CD)?
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Figure 3.5: Analyses of Performance no. 2 by Annotator 1 (top), and Anno-
tator 2 (bottom).

The improviser’s part does change dramatically at Annotator 2’s D1, while Mimi

continues in the same vein. Annotator 2 separated D1 from C1 because the figure played

by the improviser in D1 was not only musically distinct but, with its descending triads

and relatively thin texture, seemed to have a strong sense of ending function, whereas

Annotator 1 attended to the continuity in the melodic material in Mimi’s voice.

3.2.2 Performance no. 2

The most striking differences between the annotations (see Figure 3.5) are in the group-

ing and labeling of the first five minutes: Annotator 2’s A1 is subdivided further than

Annotator 1’s a1; the placement of the boundaries near 3’11” and 4’17” are disputed; and

the larger section that encompasses Annotator 1’s b1 and Annotator 2’s c1 is disputed.

There are also some subtle differences in the labeling of the subsections in the last two

minutes.

(1) Why does Annotator 2 subdivide Annotator 1’s a1 further?

Annotator 1 attuned to the textural similarities that joined his a sections (their

atmospheric quality) and their contrast with the b sections (louder and rhythmic, i.e.,

with a strong and regular pulse). Annotator 2 identified the same contrast between the

material designated a1 and b1 by Annotator 1, but, as with Performance no. 1, he made

further subdivisions and associations based on recurring melodic motifs: if treating a1

as the opening theme, both a2 and a3 begin with the first part of the opening theme,
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and a2 ends with the ending of the opening theme.

(2) Why does Annotator 1 hear the first five minutes as a series of binary groups (A1,

A2, A3), whereas Annotator 2 hears a duo of ternary groups (A1, B1) with an additional

section (C1)?

The annotators agree that Annotator 1’s b1 presents a contrast to all that precedes it,

but disagree about the larger structural interpretation of b1. To Annotator 1, section a1

was internally self-similar, and so the change at 2’25” (at the beginning of his b1) struck

him as the midpoint of a larger grouping. This hearing was reinforced by the subsequent

alternation of atmospheric a1 material and rhythmic b1 material as repetitions of this

binary structure. In contrast, Annotator 2 had already heard a ternary-like structure in

the material preceding 2’25” (aaba) and so was inclined to hear the material in section

B, with the entrance of a new quarter-note triplet motive, as beginning a new section,

also ternary (cdc). In hearing things this way, he overlooked the similarity of d1 to the

opening material, instead focusing on the broad textural self-similarity of his B1. (See

3.6.)

(3) Why does Annotator 2 not identify either of sections d1 or e1 as being a repetition

of previous material?

Annotators 1 and 2 characterized section a1 differently: Annotator 1 heard a long

self-similar span with a particular texture, and hence easily associated the return of this

material in his a2. To Annotator 2, a1 was a melody, which recurred in varied form in a2

and a3. With this in mind, he heard the return of the theme in d1 as a severe truncation

of the theme, a kind of quotation in an otherwise distinct passage.

(4) Why do the annotators disagree about the placement of the boundaries near 3’11”

and 4’17”?

In a2, Annotator 1 heard a return to the opening material, and hence his section

begins at the onset of restatement of the theme (see 3.7); in d1, Annotator 2 heard a



Chapter 3. Causes of variation among listeners in boundary and grouping decisions 40

Figure 3.6: Notation Example 3. Performance no. 2, large section boundary
(A1–B1) for Annotator 2.

brief reprieve between statements of the c1 material, and hence identified the moment

where we deviate from the material of c1 as the boundary. Both annotators recognized

the introduction of new material by the improviser at 4’17”, and Annotator 1 placed his

boundary (the beginning of c1) in line with this. Annotator 2 placed the boundary (e1)

earlier, at the onset of a stark register shift at 4’10”.

(5) Why do Annotator 1’s d4 and Annotator 2’s g1 overlap (6’04” to 6’13”)?

Both listeners perceived that this final section (Annotator 1’s B1) begins with the

improviser and Mimi engaging in an approximate canon with a period of about 15 seconds

between voices. This pattern breaks down shortly after the 6’00” mark. Here, Annotator
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Figure 3.7: Notation Example 4. Performance no. 2, boundary discrepancy
at 3’11”–3’16.”

1 heard a prolongation of the last phrase (d4), followed by a new section in which the

improviser introduces a new musical idea in the lower register while Mimi continues with

the canon material. Annotator 2 did not focus on the new theme, and instead heard at

g1 an accelerated continuation of the canon between the voices. This canon has a much

shorter period of a few seconds, the improviser and Mimi now trading gestures rather

than phrases.

(6) Why is the span from 7’05” to 7’17” (Annotator 1’s f1) grouped with the sub-

sequent material (f2) by Annotator 1, and with the preceding material by Annotator 2

(h1/h2)? And why is Annotator 1’s f2 given its own large-scale section by Annotator 2?

From 7’05”, the improviser introduces two contrasting ideas: a loud, downward-
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Figure 3.8: Analyses of Performance no. 3 by Annotator 1 (top), and Anno-
tator 2 (bottom).

leading progression (Annotator 1’s e1), and an ethereal theme played sparsely in a high

register (Annotator 1’s f1). These are repeated by Mimi in canon in Annotator 1’s f1 and

f2; in the latter of these, the improviser also provides sparse accompaniment. Since he

marked e1 and f1 as distinct, it can be seen that Annotator 1 focused on the difference

between the themes introduced by the improviser. On the other hand, Annotator 2

focused on the repetition of the louder, more prominent musical idea in sections h1 and

h2. This meant that he heard a greater degree of discontinuity between h2 and i1 than

did Annotator 1. This abrupt change to a sparse texture, suggestive of a concluding

function, also led Annotator 2 to indicate a higher-level boundary between large-scale

sections.

3.2.3 Performance no. 3

In contrast to Performances no. 1 and no. 2, Annotator 1’s and Annotator 2’s analyses of

Performance no. 3 (which were created before the listeners had conferred on Performance

no. 2) are largely in agreement, especially with regard to the larger sections (i.e., the

uppercase letters). Most of the differences can be understood in terms of attending

strategies: Annotator 1 paid the most attention to motivic recurrence, while Annotator

2 paid the most attention to surface qualities (e.g., register and texture). However,

thematic segmentation also played a role in differentiating the interpretations: Annotator

1 segmented the opening theme into individual motives, while Annotator 2 did not

segment the theme. This had implications for the final section of the performance, when
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this thematic material returns.

(1) Why does Annotator 1 subdivide Annotator 2’s opening section a1 into two

subsections? (This also applies to the subdivision of the last section, Annotator 2’s f2.)

Further, why does Annotator 1 further subdivide Annotator 2’s A1?

Annotator 1 heard the opening 10 seconds (from 0’05” to 0’16”) as ab and Annotator 2

heard it as simply a. The difference may hinge on a matter of metrical interpretation, and

since there is no “ground truth” set of intended note lengths, the preferred interpretation

is a creative choice. In Figure 3.9, the notes at the boundary between a1 and b1 are

notated as triplets, suggesting rhythmic continuity. However, if the notes are instead

heard as quarter notes, as shown in Figure 3.10, Annotator 1’s boundary now falls

between gestures (instead of in the middle of a triplet), emphasizing the shift in register

at the proposed boundary. (In both of these examples, barlines are chosen to emphasize

certain patterns and divisions; no particular meter is implied.) This is a vivid example

of how a structural analysis can depend on how the listener has made sense of the

fundamental units of the piece, an issue discussed by [Bam06] to which we will return in

Section 3.3.

Figure 3.9: Notation Example 5. Opening of Performance no. 3, notated as
triplets.

Figure 3.10: Notation Example 6. Opening of Performance no. 3, notated as
straight eighth notes.
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Figure 3.11: Notation Example 7. Large section boundary (A1–A2) for Anno-
tator 1.

This initial discrepancy meant that Annotator 1 was more focused on segmenting the

rest of the opening A section according to the recurrence of these separate a and b ideas.

For instance, after the end of the initial idea, Annotator 1 placed his next boundary at

b2, where Mimi repeats the material of his b1 section and the improviser introduces a

new gesture (see Figure 3.11). Annotator 2 placed his next boundary earlier, at his b1,

citing a significant change in register and accompaniment; his b1 section is united by

Mimi’s use of a1 material and the improviser’s presentation of contrasting, non-thematic

material. Annotator 2’s conflation of the two parts of the first idea also led to his fusing

the two last segments in Annotator 1’s analysis (b4 and a4) into one (f2).

(2) Why do the annotators disagree about the grouping of the material from 0’27”

to 0’37”?

Annotator 2 perceived a strong change at 0’27” (b1) as the improviser introduced

new accompanying material. In contrast, Annotator 1 heard a continuation of the a1

material in Mimi’s voice, and Mimi eventually returns to the b1 material at 0’37”.
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(3) Why does Annotator 2 mark boundaries at 0’27” (b1) and 1’13” (d1), when

Annotator 1 does not?

As stated before, Annotator 2 heard a discontinuity at 0’27” in the improviser’s

material. But Annotator 2 partly attributes both boundaries to the pauses that precede

them. In both cases, the thematic continuity of the section led Annotator 1 to forego an

additional boundary.

(4) Why does Annotator 2 recognize a return of material from the opening section

at his b2 when Annotator 1 does not?

To Annotator 2, b1 was characterized by Mimi’s playing fragments of the original

motive, with the improviser adding novel accompaniment. Thus b2 represented a return

to this configuration. In contrast, Annotator 1 felt that this section continued the chaotic,

fragmented feel of section B1.

(5) Why does Annotator 2 further subdivide Annotator 1’s B1?

Given that Annotator 1 did not identify c3 as a return to material from the previous

section A1, his choice of the large-scale grouping (AB) is no surprise. Annotator 2 did

identify a return to the previous section at b2, and the significance of this return led him

to hear a larger-scale ternary grouping, ABA.

(6) Why does Annotator 2 not recognize a return of material from A at his f1?

At Annotator 1’s b3, Mimi repeats the pattern played at b1 by the improviser, who

then responds with a melodic inversion of the material. The counterpoint is repeated at

Annotator 1’s b4, with the parts swapped: the improviser plays the original ascending

b1 motif, and Mimi repeats the inverted theme from b3. As the improviser, Annotator

1 recalls these imitations being deliberate, and hence was aware of their relationship to

the earlier material at the time of performance. However, Annotator 2 was not aware of

the repetition until it was pointed out to him! This oversight can possibly be explained

by Annotator 1’s b idea having less primacy in Annotator 2’s analysis. Since Annotator
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2 did not hear it as a “head” of any section, he was less apt to hear just the “tail” of the

opening theme return, either at 2’33” or 3’37” (Annotator 1’s b3 and b4)—even though

he heard these as repetitions of each other.

3.3 Discussion

The questions we ask in this chapter are: in what ways may two listeners disagree about

the structure of a piece of music, and what factors cause or explain these differences?

In the previous section, we presented the analyses produced by two listeners of three

improvised pieces, and enumerated the differences between them. We also sought to

explain how each difference arose by referring to the listeners’ introspective notes on

why they made the decisions they did. We are now interested in following the chain

of causation backward, first considering the proximate causes of the disagreements—

the circumstances that explain the disagreements most immediately—and extrapolating

from these possible ultimate causes. In this section, we discuss these causes in a loose

progression from most to least proximate. As the causes get deeper, they become more

speculative but also, we suggest, more important and illuminating.

3.3.1 Factor 1: Attention to musical features

The simplest and most expected explanation for why the two listeners disagreed is that

they paid attention to different musical features. For example, in Performance no. 1,

the annotators segmented A1 differently because Annotator 1 found the shifts in register

more salient, while Annotator 2 paid attention to the pauses and melodic gestures that

supported a regular phrase rhythm. They also gave these subsections different labels

because the former focused on the textural similarity between them, and the latter on

the slightly different motives in each.

Both annotators reported attending to a similar set of musical parameters at various
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times: melodic themes and their repetition; rhythm, texture, and register; and whether

Mimi or the improviser were playing a particular part (recall that these two voices had

different timbres). Still, sometimes annotators attributed their decisions to parameters

not mentioned by the other; for example, Annotator 2 invoked the perceived function

of a section to justify some of his decisions, but Annotator 1 never indicated that this

was an important attribute. (This occurs with the concluding sections that Annotator 2

heard at the end of Performance no. 1 and no. 2, and in the preparatory e1 section that

he heard in Performance no. 1.) On the other hand, in Performance no. 3, Annotator 1

identified a melodic inversion at b3, which Annotator 2 did not attend to.

The annotators did not seem to consistently prefer one musical attribute over another:

in the disagreement over the labeling of the final three subsections of Performance no.

2 (eff vs. hhi), it was Annotator 2 who found the overall texture salient, whereas

Annotator 1 paid attention to the different themes being played by the performer. But

in their analysis of section A1 in Performance no. 1, the annotators focused on the

opposite features.

The instances where the function of a part was cited as a reason to segment or

differentiate it recalls the observation of Peeters and Deruty that music structure is

multi-dimensional, consisting of attributes that can be independent, such as musical

function, similarity, and instrumentation [PD09]. In this view, some disagreements

could be attributed to listeners focusing on different dimensions of structure, although it

remains to be explained why some people focus on different dimensions to begin with. As

explained in Chapter 2, Peeters and Deruty proposed an annotation format that would

separate these dimensions, a scheme that was adopted for SALAMI. If musical simi-

larity were similarly decomposed, attention to different musical features could explain

disagreements between listeners; this notion is explored in Chapter 5.
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3.3.2 Factor 2: Opening moments

While most of the differences seem well explained by referring to the listeners’ attention

to different musical features, it is more concise to attribute later differences between

two annotations to earlier differences. That is, how the listener happens to perceive

the opening moments of a piece—what they initially perceive as the basic units in their

chunking, or what they initially call A and B—appears to greatly determine how the

rest of the analysis will proceed.

For example, in Performance no. 2, Annotator 2 heard an opening section A1 as

having a basically ternary structure; this may have encouraged him to perceive the

following material (B1) as a ternary grouping as well. Similarly, Annotator 1 heard

a binary contrast within the opening section (A1), which would reinforce the binary

interpretation of the next two sections (A2, A3).

It makes sense that the opening moments would lay the framework for the rest of

the piece, since they would strongly affect one’s expectations. In Performance no. 1,

Annotator 2 identified a regular four-phrase structure in the first section a1; this seemed

to lead him to expect a similar phrase rhythm in subsequent material, resulting in more

regular section lengths. The opening moments establish for the listener what design

principles the composer or improviser is using: what contrasts are relevant and what

units can be repeated.

The opening moments were clearly crucial in Performance no. 3. Here, the opening

10 seconds crystallized in the mind of Annotator 1 as two distinct themes (a1 and b1),

but as a single theme to Annotator 2 (a1). The fact that the material Annotator 1 calls

b1 did not strike Annotator 2 as a distinct theme likely explains why Annotator 2 did

not recognize the return of this b material later on as b2, b3, and b4, even though he did

recognize that b3 and b4 were similar to each other.
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3.3.3 Factor 3: Difference in information

Assuming that the perception of the opening moments is crucial in forming an analysis,

how is it that listeners differ in how they perceive these opening moments? A deeper

explanation ought to include differences between the listeners that are present before

the listening begins. Generally speaking, differences in information are anticipated as an

important factor in psychological studies; for example, participants are classified as musi-

cians and non-musicians (i.e., people with and without specialized musical knowledge).

Here, we consider a more specific difference: a difference in the type and thoroughness

of the knowledge each listener has about the piece.

Annotator 1, as the improviser in the performances, had a more intimate understand-

ing of how the piece was constructed than Annotator 2 before each later listened to and

analyzed the performances. This difference had an impact on the slightly different pro-

cedure used by the listeners: Annotator 1 tended to analyze pieces section by section,

nearly finalizing his analysis of the first half before listening to the second half, for exam-

ple. The ability of Annotator 1 to work through the large sections in series suggests that

the large-scale analysis (or at least the large-scale segmentation) may have already been

decided at the beginning of the annotation process. In contrast, Annotator 2 tended to

work in parallel: he annotated boundaries in real time while listening through the whole

piece several times, and in between auditions he re-listened to specific parts to adjust

his annotations. This contrast between the listeners suggests an important difference in

the initial information each had about the performance. To Annotator 1, the lay of the

land was already well known; Annotator 2 had to do more scattered scouting before he

could finalize his understanding of the large-scale patterns. While this observation may

seem particular to the scenario at hand, comparable situations arise frequently among

listeners: some analyze a piece only after becoming familiar with it as a performer or in

casual listening, while others do so as new listeners.

Elizabeth Margulis has found that listeners who are less familiar with a piece of
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music are more likely to focus on shorter repetitions, while those who are more familiar

are likely to focus on longer repetitions [Mar12]. Extrapolating from repetition (which

never occurs exactly in the three performances studied here) to similarity, we see the

same pattern reflected in the differences between our annotations: in Performance no. 1,

Annotator 2, the newer listener, subdivides A1 more than Annotator 1 on the basis of a

perceived phrase rhythm and on local changes in texture, whereas Annotator 1 focuses

on the self-similarity of the entire passage. Similarly, in Performance no. 2, Annotator 1

points out what unites sections A1, A2, and A3 at a large timescale, whereas Annotator 2

does not recognize these similarities. Finally, in Performance no. 3, although Annotator

1’s conception of the opening moments at first appears more fine-grained than Annotator

2’s, it leads to an analysis that recognizes more repetitions and returns globally, requiring

only four distinct section types (a to d) compared to Annotator 2’s six types (a to f).

The different levels of familiarity with the pieces also seemed to influence the musical

features to which the listeners paid attention. Annotator 2 (whose annotations are

generally more segmented than Annotator 1’s) attributed more of his boundaries to

surface features, such as long silences, sudden note clusters, and changes in register,

than did Annotator 1. For example, Annotator 2’s large-scale boundary in Performance

no. 3 between B1 and A2 is attributed to a long pause. In the same performance,

Annotator 2 starts his section C1 where Mimi plays some disruptive clusters, whereas

Annotator 1 begins C1 a few moments later, when the improviser takes up the new

theme.

One final difference in information is quite specific to the present circumstances but

nonetheless bears mentioning: the fact that Annotator 1 was the improvising performer

and hence had memories of creating the music. Annotator 1, being thus more aware of

details such as what part of the oracle Mimi had access to and when Mimi was active and

inactive, may have been less willing to give an analysis that did not reflect these events.

For example, in Performance no. 1, his section B1 exactly aligns with when Mimi was

turned off; Annotator 2, however, heard parts of the previous section as being a part
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of this transition section. In Performance no. 2, the oracle is cleared and reset only at

the boundary between Annotator 1’s A3 and B1; perhaps Annotator 1, knowing this,

was less inclined to differentiate the large-scale subsections of each half with different

letters, as Annotator 2 did. Memories of the performance may also have helped ensure

that intentional but subtle repetitions, such as the return and inversion of an earlier

motif in Performance no. 3 (at b3), were reflected in Annotator 1’s analysis. While

the difference in information between the listeners in our case was extreme by design,

listeners certainly differ along similar lines: access to the score may radically affect how a

listener perceives the structure of a piece, and listeners may differ in their insight into the

relevant instrumental practice (e.g., pianists and non-pianists analyzing a piano sonata)

or prior knowledge of the specific piece being performed.

3.3.4 Factor 4: Difference in analytical expectations

Beyond the information the listeners had about this specific piece, we consider the role

of information about music in general, involved here as analytical expectations. Some of

our results suggest that the listeners may have had different a priori expectations about

what the analyses would look like. Since the two listeners have different backgrounds

and experience in music theory, analysis, and musical taste, it is difficult to speculate

as to where these expectations would arise. However, the two sets of annotations differ

strikingly in one property: the small-scale segments perceived by Annotator 2 tend to

have more equal size than those of Annotator 1. For example, in Performance no. 2,

Annotator 2’s A1 has 4 subsegments, each roughly one quarter the duration of A1.

Annotator 1’s A1, on the other hand, is subdivided highly asymmetrically. The trend

appears to be somewhat consistent across the three performances, although a larger

study would be needed to confirm this difference. If it were found to be a consistent

trend, it may reflect a strong expectation on the part of Annotator 2 that subsegments

will be of equal size. This is not an unreasonable expectation, given that composed music

often includes repeating or contrasting sections with similar lengths, and may be shared
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by many listeners. It would be interesting to determine whether this expectation affects

how music is analyzed.

3.3.5 Factor 5: Analysis method

Finally, we acknowledge that some of the differences between the annotations arose from

non-identical analysis methods. This is most important for Performance no. 1, in which

Annotator 2 differentiated the subsections by letter, but Annotator 1 did not, saying it

did not occur to him as an option. This was noticed immediately after the first analysis,

and the issue was corrected before the next pieces were annotated.

However, even for these later analyses, the listeners used different annotation tools—

Variations Audio Timeliner (VAT) for Annotator 1 and Sonic Visualiser (SV) for Anno-

tator 2—and this may have affected the analyses more subtly. Both tools allow one to

divide a timeline into segments and to label these segments. However, the bubbles in

the visual interface of VAT may have emphasized the groupings and hierarchical rela-

tionships (see Figure 3.12), while the vertical segment lines in SV may have emphasized

the segmentation (see Figure 3.13). SV also displays the audio waveform, showing how

loudness varies throughout the piece, and this may have made the changes in loudness

more salient. This difference in tools is consistent with one main difference in how the

two annotators generally approached the pieces: Annotator 1 more often attended to

groupings and to qualities that unified sections, while Annotator 2 attended more to

local discontinuities and heard more boundaries.

3.4 Conclusion and future work

We examined two listeners’ analyses of three improvised performances and found the

differences between these analyses to reveal several insights.

Attention. First, we observed that these differences were often due to the fact
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Figure 3.12: Screenshot of Annotator 1’s analysis of Performance no. 1 in
Variations Audio Timeliner

Figure 3.13: Screenshot of Annotator 2’s analysis of Performance no. 1 in
Sonic Visualiser

that the listeners paid attention to different musical features. Attention itself is already

widely studied, but usually only as a global concept: researchers are interested in how

much the listener is paying attention to the music, not what the listener attending to
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in the music. For example, [AP09] showed that a model of attention and surprise can

bear a striking resemblance, in practice, to a theory of musical structure, and attention

is a key concept in existing theories of music such as Farbood’s model of musical tension

[Far12]. Jones and Boltz [JB89] have shown that paying attention to short and long

timescales can affect one’s perception of time, but it remains to be studied how this

can in turn affect one’s interpretation of musical structure. Since listeners are able to

focus their attention on (or have their attention unwittingly drawn to) particular aspects

of a piece of music—patterns in a vocal line, recurrences of a motif, shorter or longer

timescales—we recommend following up this research in a way that treats music, the

object of attention, as multi-dimensional. The way the attention of the listener wanders

between these aspects could become the subject of a new theory of analysis.

Opening moments. We next noted that differences in how two listeners heard

the opening moments prefigured most of the remaining differences. It appears to be

in these opening moments that listeners decide what will comprise their basic units of

analysis and what types of abstraction—melodic, textural, rhythmic—will serve them

best. The mental representation formed here serves as a template, allowing the listener

to form expectations about how the material will develop in the rest of the piece. One

conclusion from this—that knowing how a listener understands the beginning of a piece

allows one to predict how the rest will be understood—is a readily testable hypothesis

that would form the basis of exciting future work.

Information. On a deeper level, we speculated that access to information could

affect the area of attention or focus. In our case, Annotator 1 had more information than

Annotator 2 in several ways: he had created and performed the piece, his memory helped

him to better disentangle his own and Mimi’s contributions, and he had simply heard the

piece much earlier than Annotator 2. Several differences in the annotations seemed well

explained by these differences in information. While these differences in information

may appear to be circumstantial, comparable differences arise between listeners who

have access to a score and those who do not, or among listeners who have listened to
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a piece different numbers of times and whose familiarity with it varies—a factor whose

importance has already been demonstrated in previous studies (e.g., [Bam06, Mar12]).

Analytical expectations. Finally, we found that listeners may bring a priori global

expectations to the analysis. In the analyses studied here, this was suggested by the

conspicuously regular phrase length indications of Annotator 2, which contrasted with

the more asymmetric groupings in Annotator 1’s analyses. These global assumptions

are formed over the entirety of a person’s listening history; they are based on familiarity

with the style of music at hand, instrumental experience, and exposure, if any, to music

theory, or to the piece in question. These analytical expectations may also influence how

a listener initially understands the opening moments of a piece.

These four insights resonate with Bamberger’s [Bam06] argument that perceptual

disagreements among listeners can be ascribed to differences in ontology, which are in

turn affected by a listener’s values and belief system (which are shaped by the information

they have, and reflected in their expectations) and preferences (which influence the

features and relations to which they pay attention). Of course, while this system of

beliefs appears to be the source of listener disagreements, a listener’s analysis of a piece

is still predicated on external cues present in the music: for example, prosodic cues

(stresses, pauses, and shaping of tempo and loudness as communicated by the performer)

or repetitions that guide a listener’s attention or expectations.

The last observation, that the analysis method (meaning the annotation format

and the tools used) will affect the outcome, is interesting but was not the objective of

this research. As explained in Section 3.1, the choice of annotators—two listeners with

very different prior relationships to the piece—and the choice of musical materials—

improvised pieces that lack exact repetitions—were made to elicit a rich set of disagree-

ments. These were deliberate choices, but the difference in software was happenstantial;

each listener simply used the software that each was more comfortable with. And since

we planned to work with the same analytical constraints (e.g., use Lerdahl and Jackend-

off’s well-formedness rules; describe the structure at two timescales), we did not think
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much of the different tools. As has been observed in the MIR research on annotation

methodologies, it can be deceptively hard to constrain the analysis task for listeners to

ensure that, notwithstanding all their differences in attention, knowledge and expecta-

tions, they are doing the same thing.

Although the conclusions of this case study have been carefully reasoned from our

annotations and our accounts of why we heard what we heard, two of our choices in design

remain shortcomings. First, the small size of this study means we cannot confidently

extrapolate our conclusions to all listeners and all disagreements. It remains a task for

future work to demonstrate whether the rough chain of causality that we have proposed—

which proceeds from a priori expectations, to knowledge about the particular piece, to

how the opening moments are heard, down to how one’s attention is directed throughout

a piece—is in fact a good general description of how listener disagreements arise. Second,

the objectivity of our results could be questioned, since we two listeners doubled as the

two meta-analysts. This arrangement certainly made it easier to discuss the musical

analyses in minute detail and to understand the subtle influences at play (detail which

would have been difficult to match by interviewing others), but we cannot say how two

observers of our discussion would have made different conclusions.

Thus, future work could take the form of very similar studies with more listeners in

which the differences between the listeners are narrower, and the sources of disagreements

fewer in number. For example, in a study with two non-performing listeners, neither of

whom had heard the music before, the importance of prior information should be reduced.

Moreover, if both listeners were explicitly coached to hear the opening moments in the

same manner, and then asked to complete the analysis, subsequent disagreements should

not have depended on this factor. (The fourth experiment reported in Chapter 6 presents

a comparable scenario.) Although the present study was devised as a contribution to

music theory, these proposed extensions would be contributions to music psychology.

Notwithstanding concerns about how the present study was conceived, the outcome is

a rich set of new questions to explore. For example, how do people’s musical backgrounds
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affect their perception of structure? This question could potentially be addressed with

experiments comparable to Margulis’s [Mar12] (in which listeners were asked to identify

repetitions), but where listeners’ musical background were catalogued in detail.

One question inspired by this study is pursued later in this thesis: what musical

features do listeners pay attention to, and does this directly impact their perception of a

piece’s structure, as we have suggested here? At first glance, it seems that answering this

question directly would require an auditory attention-tracking system, some analogue to

the eye-tracking systems used to study visual attention. Since none exists, a carefully

constructed set of artificial stimuli will be necessary to study this question, and this is

the main project undertaken in Chapter 6.

We would also like to know how quickly listeners decide on a set of basic musical

ideas when they begin to listen to a piece of music, and how definitively this guides

their interpretation of the piece. Supposing a listener devises a running hypothesis of

the piece’s structure while listening to it, how easily or how frequently is this hypothesis

revised? What kinds of musical events are capable of causing this? If listeners are

permanently beholden to any aspect of their first impressions, this has wide-reaching

implications for those who make music. Although the experiments in Chapter 6 do not

address this broader question, Experiment no. 4 begins this work by establishing the

plausibility that listeners are able to continue an analysis in the face of new changes after

having committed to an initial decision.



Chapter 4

An analysis of boundary

perception and musical features

The previous chapter’s case study re-demonstrated one fact that was known from the

literature: that a listener is likely to attribute their perception of a boundary to a stark

change in the music. This assumption has been incorporated into a majority of segmenta-

tion algorithms in the fields of computational musicology and music information retrieval.

However, it is not clear whether the perception of a boundary is actually attributable

to a stark change in the music, or whether listeners merely make this attribution post

hoc when asked to explain themselves. In a study on the visual cues people used to esti-

mate whether people were intensely happy or sad, [ATT12] found that people tend to

attribute their judgements to facial expressions, even when these were non-informative

(in their examples, emotion was in fact indicated by body language). They called this

the “illusory facial effect.” It could be that there is an “illusory novelty effect” in music:

a tendency to attribute boundaries to novelty when in fact novelty is uninformative. We

approach this question by looking at how acoustic novelty relates to the perception of

boundaries in a large and varied corpus.

Our study asks two questions. The first is relevant to MIR: is the connection between

58
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novelty and boundaries a general one that holds over all genres, musical features, and

timescales? The second is relevant to music psychology: does the connection between

novelty and boundaries hold in full audio contexts, in diverse corpora? Together, these

questions are relevant to our study of listener disagreements, since so far we have relied on

listeners’ own justifications for their analyses to understand their differences. We would

like to know if there is a gap between listeners’ analyses and the standard explanation of

novelty, and whether this depends, for example, on the genre or type of acoustic change

being considered.

Towards this end, we present in this chapter a statistical analysis of a large corpus

of recordings whose formal structure was annotated by expert listeners. From each

recording, we compute several novelty functions, which measure the rate of change of

acoustic properties at different timescales. Our findings corroborate those of previous

perceptual experiments: nearly all boundaries correspond to peaks in novelty functions.

Moreover, most of these boundaries match peaks in novelty for several features at several

timescales. We observe that the boundary-novelty relationship can vary with listener,

timescale, genre, and musical feature. Finally, we show that a boundary profile derived

from a collection of novelty functions correlates with the estimated salience of boundaries

indicated by listeners.

4.1 Introduction

4.1.1 Background

In Chapter 2 we noted some drawbacks among existing musicological models of musi-

cal structure. Chief among them was that most algorithmic implementations of these

theories, such as GTTM (e.g., [HHT06, FC04]), LBDM [Cam01], Grouper [Tem01] and

IDyOM [PMW10a], target the simplest musical context: monophonic melody. This is

because as the musical context expands from monophony to polyphony, or from monotim-
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bral to multitimbral music, the estimates of the bottom-up models become less reliable as

top-down influences, such as stylistic expectations or the recognition of repetitions, guide

the perception of boundaries more strongly. The same happens as the musical context

expands from short phrases to full pieces: at longer timescales, it is more likely that the

rules governing the analysis may conflict, and the predictions will be muddied by factors

that are hard to model, such as parallelism. Models that do deal with parallelism, such

as [Cam06], use only short, immediate repetitions. A second drawback is that while the

models can all claim some degree of generality, the focus on melodic segmentation hints

that they mainly apply to Western tonal music, even though IDyOM, for example, uses

unsupervised learning and has succeeded in a variety of contexts, from chorale melodies

to folk music [PW06].

Hence there is a need for general models of the perception of structure in full-textured,

polyphonic music. Since gathering listener responses to full pieces of music is expensive

and impractical for a reasonable-sized experiment, we propose to take advantage of

comparable resources that the MIR community has created: ground truth collections of

structural annotations. A ground truth annotation is a description provided by a listener

that is assumed to be the sole correct formal analysis. Of course, no such absolute truth

exists, as the copious evidence of listener disagreements presented in Chapter 2 attests.

However, even those studies that found listeners marking boundaries at different times

(e.g., [CK90], [BMK09]), it was mainly observed that despite this variation, listeners will

agree on many boundaries, and especially on the most important ones. Thus, we may

hope that ground truth provided by one listener represents how many listeners might

hear a piece of music.

Collections of annotations are mainly used to measure the effectiveness of algorithms.

What if we treated these annotations not as tools, but as objects of study in themselves?

Since each annotation reflects a listener’s perception of a piece of music, we can analyze

the annotation to test basic assumptions about how music is heard. Thinking of anno-

tations as objects of study rather than tools for studying algorithms, we may actually
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derive some interesting conclusions about music cognition from the existing MIR liter-

ature. For example, [TLPG07] used machine learning to classify points in a recording

as either boundaries or non-boundaries, and found that of over 800 feature dimensions

considered, all three timescales and all four feature classes (harmony, melody, timbre and

rhythm) were represented among the 20 most informative. This suggests that listeners

are likely to integrate information from many musical parameters at many timescales

when judging the location of boundaries. Paulus and Klapuri [PK08a] found that, when

searching for similar sequences in music, it was optimal to calculate audio features over

short time windows, but when searching for similar homogenous sections, a longer win-

dow was preferable. This may be evidence that when listeners judge two sections to be

similar based on repeated sequences, the sequences they attend to are relatively short,

whereas when listeners judge two sections based on their having an overall similar sound,

this has been determined over a longer timescale.

One drawback of using ground truth collections to investigate perception is that col-

lections of annotations tend to include just one listener’s analysis per piece. In listening

studies in music psychology, it is more common to collect twenty or more responses per

piece. This drawback is offset by the opportunity to study far more pieces: compared to

the six songs heard by 21 listeners in [BMK09], the corpus studied in this chapter has

two listeners per piece, but 746 pieces.

An important question about the perception of boundaries is why listeners make the

boundary indications they do. Both [CK90], who studied 20th-century and Classical

music, and [BMK09], who studied popular music, collected free responses from partic-

ipants about what cues they were attending to when they indicated a boundary. In

both cases, listeners mostly indicated that a change in a particular parameter, such as

timbre, rhythm, melody, register, articulation or harmony, motivated the response, while

several indications were also attributed to parallelism or to a pause or break. Deliège

[Del87], in testing the applicability of GTTM’s grouping rules to perception, found that

the salience of the rules differed with regards to implying boundaries. Sanden, Befus
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and Zhang [SBZ12] asked listeners to indicate boundaries while paying attention only

to a single musical feature, such as timbre or harmony, and found that the resulting

segmentations varied in how well they related to the overall perceived structure of the

songs, and hence that the features were of varying importance to the listeners.

The cumulative evidence points to novelty being important to every genre. However,

none of these studies looked at genre effects systematically. (Sanden et al. [SBZ12] did

study differences in genre but only used one exemplar song per genre.) Second, although

common sense tells us that novelty certainly plays a large role in the perception of

boundaries, it could still be that there is an “illusory novelty effect” in music: a tendency

to exaggerate the importance of novelty in accounting for boundaries. A third concern

is that the studies cited above are limited in the number of pieces considered. Their

evidence is supported by hand-picked, often very short stimuli that present exactly the

musical contrasts being investigated. This is a result of the unfeasibility of collecting

listener’s responses to large numbers of long stimuli.

These three concerns are addressed in the present study. By using corpora of struc-

tural annotations created by the MIR community, we test the conclusions of previous

research on a much larger scale than previous work, with many more pieces and more

pieces per genre. Also, by comparing annotations not to the output of algorithms but to

the acoustic novelty of the songs, we test how well the presumed explanation of listeners

accounts for actual analyses of music.

4.1.2 Proposed experiment

We conduct a series of analyses of the relationship between structural annotations—

records of how structure was perceived by listeners—and features of the recordings, a

record of what they heard. We first test the hypothesis that boundaries correspond to

moments in the recording at which relevant musical features change greatly. This is

done by computing novelty functions with respect to many features for a large corpus,
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and evaluating the match between the most novel points and the annotated boundaries.

Second, we investigate how the outcome of this comparison depends on the listener,

the genre of the piece, and the musical features considered. Finally, we examine how

the consensus novelty among musical features correlates with the consensus boundary

indications of listeners. Our approach is similar to [SBZ12], in which listeners were asked

to segment eight pieces while paying attention to a single musical feature. In their case,

the responses were compared to the perceived structure of the pieces; in our case, we

compare the separate acoustic properties of the signal to the perceived structure.

The present work stands out from previous research in some important respects.

First, our musical stimuli are complete, full-textured recordings, rather than short excerpts

or simplified stimuli such as melodies or MIDI renditions. Second, our study does not

focus on a narrow genre of music; since the present investigation spans a wide range of

genres, our observations may be more generalizable. Both of these differences lend our

analysis an ecological validity that can be difficult to achieve in an experiment using few

or artificial stimuli. Finally, our methodology is notable since, rather than collect data

from an experiment, we mine insight from a large dataset developed for other applica-

tions.

The rest of the chapter proceeds as follows. Section 4.2 describes the corpus of

annotations used as if it were an experiment in music psychology rather than a study

in MIR. Section 4.3 describes how the features and novelty functions were computed

from the recordings. The experiments are described in Section 4.4, with the results and

discussion of each presented in turn in Sections 4.4.1 through 4.4.3. The implications of

the results are discussion in the conclusion, Section 4.5.

4.2 Materials and methods: the SALAMI dataset

The data analyzed were originally created for the Structural Analysis of Large Amounts

of Music Information (SALAMI) project. The SALAMI project’s goal is to use automatic
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structural analysis algorithms to analyze several hundred thousand musical recordings,

which would allow musicologists interested in form to pursue research on a scale that

was previously impossible. The project funded the creation of the largest ever corpus

of human-generated structural annotations in order to demonstrate the effectiveness of

these algorithms [SBF+11]. This corpus contains descriptions of nearly 1400 recordings,

nearly 1000 of which were each analyzed by two independent listeners. Annotations for

half of the total collection have been released to the public domain; the private half, which

was not used in this study, will be released after serving for a few years as a benchmark

dataset for evaluations at the Music Information Retrieval Evaluation Exchange. The

SALAMI data are described briefly in this section; a complete account of its design and

its properties can be found in [SBF+11], and the “Annotator’s Guide” used as a reference

by the participants is available on the SALAMI website.1

4.2.1 Participants and apparatus

The nine annotators (four men, five women) hired to provide annotations were all in

their 20s and pursuing an advanced degree (Master’s or PhD) in either music theory

or composition. They were trained to use Sonic Visualiser, a powerful software package

that allows quick data entry and navigation of the recording, and they could use any

means to listen to the music.

4.2.2 Stimuli

The SALAMI collection contains roughly one quarter each of popular, jazz, classical,

and world music. An additional portion was drawn from the Live Music Archive (LMA),

consisting mostly of popular and jazz recordings. Of the public half of SALAMI, 761

recordings were considered: 498 were annotated by two listeners and 263 by one listener.

A breakdown of the number of annotations within each genre is given in Table 4-A.

1http://salami.music.mcgill.ca/,
http://www.music.mcgill.ca/~jordan/salami/SALAMI-Annotator-Guide.pdf

http://salami.music.mcgill.ca/
http://www.music.mcgill.ca/~jordan/salami/SALAMI-Annotator-Guide.pdf
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Genre One annotator Two annotators

Popular 51 101
Jazz 10 112
Classical 44 65
World 30 78
Live Music Archive 113 143

Table 4-A: Number of recordings analyzed according to genre and number of
annotators

All recordings were mp3s with 44.1 kHz sampling rates. The sound quality varied

somewhat between files—while most mp3s had a bit rate between 128 and 192 kbps,

some had variable bit rates and others had bit rates as low as 96 kbps—but none of

these differences were expected to affect listeners’ perceptions of structure, and this is

not investigated here. Indeed, the poor sound quality of the original recordings was often

a greater concern: the LMA includes some audience recordings of live concerts, which

may include background noise or clipping. SALAMI’s annotations do not record the

listeners’ familiarity with the music. It is unlikely that any annotator had heard much

of the corpus before given the extreme breadth of the corpus, but it is also unlikely that

the occasional hits in the collection, such as Michael Jackson’s “Thriller,” were unknown

to the annotators.

4.2.3 Procedure

The annotators’ descriptions were multi-dimensional in that three kinds of information

were indicated separately: musical similarity (which was annotated at short and long

timescales), formal function (e.g., “chorus” or “transition” labels), and lead instrumen-

tation. Only the long timescale of the musical similarity layer was considered in the

present research. In this layer, annotators indicated boundaries and provided uppercase

letter labels (“A”, “B”, etc.) to indicate which sections were similar or shared the same

fundamental musical idea. Annotators decided for themselves whether the unifying idea

was primarily harmonic or melodic, or due to some other musical attribute. Labels

could be inflected with a prime symbol to indicate substantial variation. Annotators
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were encouraged to indicate on average five distinct uppercase letters per song, and to

align their analyses with the metrical grid of the piece, if applicable, so a section begin-

ning with a pickup would be annotated as beginning on the down beat. An example pair

of annotations is shown in Figure 4.1.

A A A

AAA A A ABB

B

BB

BBB

B B

C D

0:00 0:30 1:00 1:30 2:302:00 3:00

Figure 4.1: Two annotations for the song “Ain’t Too Proud To Beg” by The
Lost (salami id: 1420). The shading of the segments emphasizes
the labels within each annotation separately.

It should be noted that the annotators did not indicate any written justifications

for the perceptions, such as “this point is a boundary because it marks a change in

harmony.” Thus, we are taking it for granted that the SALAMI annotators, like the

participants in previous studies (including [CK90] and [BMK09]), would have justified

many of the boundaries with a change in some musical attribute. Certainly, it seems

that something ought to have changed when a boundary lies between two sections with

different labels, and hence with different fundamental musical ideas.

Annotators used Sonic Visualiser according to the following workflow: first, listen

through the full piece and indicate section boundaries in real time by pressing a key. On

a second listening, pause to correct or adjust the position of boundaries as necessary.

Next, provide labels for each section in each of the three layers—similarity, function, lead

instrument. Finally, after skipping around to make corrections or resolve ambiguities as

necessary, listen through the song a final time to confirm. The number of times each

recording was fully heard is not known, but was requested to be at least three.
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4.3 Data analysis

Structural analysis algorithms are commonly evaluated by executing the algorithm on

a recording and grading the result against a ground truth annotation. This grade is

difficult to interpret in isolation, so to fairly assess the significance of the result, a baseline

approach, such as an algorithm that outputs random analyses or that makes predictions

according to some näıve approach, should be executed on the same corpus.

In contrast to a typical evaluation, our goal is to study the annotations themselves,

and not the effectiveness of an algorithm. Thus our analysis proceeds in an inverted man-

ner: instead of comparing how well a given algorithm and a näıve baseline approach can

predict the boundaries in an annotation, we compare how well the annotated boundaries

and a random baseline set of points (non-boundaries) can predict the output of an anal-

ysis algorithm. In our case, this algorithm is based only on the rate of change of selected

musical features. Our approach will effectively measure the amount of information that

the annotations contain regarding these changes.

The following subsections describe the audio features used to characterize the music,

the steps used to estimate the points of greatest musical change, the manner in which

random non-boundaries were selected, and the comparison metrics used in the evalua-

tion. The outcome of the experiment depends upon all of these choices: different changes

in the music might be captured by different features and novelty-detection algorithms,

and different evaluation metrics could tilt the results in different ways. These choices

limit the scope of the experiment and should be kept in mind as the results are inter-

preted. However, at the core of the experiment is a fair and straightforward comparison

between how well the true boundaries and the random non-boundaries each match a set

of changepoints.
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4.3.1 Audio processing

Five audio features were used to encapsulate information from the following musical

parameters: timbre, harmony, key, rhythm, and tempo. The object was to select fea-

tures that would differ when these musical parameters differed, and be stable when the

parameters did not differ. None of the audio features chosen are totally independent of

each other, but each was designed to efficiently encapsulate information about a par-

ticular parameter while minimizing input from other information. Designing effective

audio features is an area of ongoing research, and we do not attempt to contribute to

this endeavour here. Instead, we have selected well-known features with readily avail-

able implementations, and in most cases used reasonable default values for the feature

parameters.

None of these features is alleged to represent how the listener processes these musi-

cal attributes; the listener certainly perceives the music more holistically, basing their

analysis on the properties not of frequency bands but of notes and other discrete events.

The novelty-seeking approach tested here could be applied to more abstract represen-

tations using automatic beat tracking, transcription and source separation. However,

these remain areas of active research: we lack robust tools with known error rates for

these tasks that have been tested on a corpus as varied as the SALAMI data used here.

Rather than employ intermediate and imperfect transcription efforts, we choose to esti-

mate features directly from the audio. Assuming that changes in musical parameters are

in fact reflected by changes in our audio features, our study will test how these musical

changes relate to the perception of boundaries.

For timbre we chose Mel-frequency cepstral coefficients (MFCCs), widely regarded

as an acceptable representation of the timbre of a short audio snippet [APS05]. The

values in an MFCC vector indicate the strength of different periodicities in the Mel-

scaled spectrum and hence characterize the shape of the spectrum with a minimum of

harmonic information. MFCCs were calculated using windows of 0.19 seconds and a
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hop size of half that. The lowest coefficient was discarded, since it relates specifically to

overall loudness, and the next 12 coefficients were used.

For harmony we used the chromagram, which gives the strength in the signal of each

pitch class from A to G]. The method used takes the constant-Q transform of the signal,

which scales the spectrum so that each bin corresponds to a single pitch, and then sums

the contributions of each pitch class. Our window size was 0.1 seconds with a hop size

of half that. Both MFCCs and chromagrams were calculated using Queen Mary’s Vamp

Plugin set [LGC+11].

The center of effect (CE), which refers to a music segment’s estimated tonal center

within Chew’s Spiral Array model of tonality [Che00], was used to provide information

on the key. While the center of effect generator (CEG) algorithm finds the key itself, we

use only the CE as a proxy for the key, which facilitates rate of change computations.

The CE was calculated using the audio key-finding system from [CC07], which uses

a fuzzy analysis scheme to extract the pitches sounded from the spectrum, maps the

pitches to their letter names, then calculates the CE, i.e. the geometric mean of their

representations in the Spiral Array. Window size was 0.37 seconds with a hop size of one

quarter of that.

The remaining two features are derived from a sonogram, which applies a model of

the ear to estimate the perceived loudness in each of the twenty Bark-scale frequency

bands. A fluctuation pattern (FP), also called a rhythmogram, measures the strength

of loudness fluctuations between 0 and 10 Hz in each frequency band [PRM02]. A

1200-element vector, giving the strength of 60 modulation frequencies in each of the

20 Bark-scale frequency bands used, describes each window of the FP. The periodicity

histogram gives the estimated strength of periodicities over the tempo range of 40 to

240 beats per minute (0.6 to 4 Hz) in a version of the signal that has been filtered to

emphasize sharp attacks [PDW03]. The strength of a period is the number of times

its amplitude (estimated using a comb filter approach) exceeds a given threshold over a

short series of windows. FPs and periodicity histograms were calculated with the MA
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Toolbox [Pam04] using a window size of 3 seconds and a hop size of 0.37 seconds.

4.3.2 Generating novelty functions and picking peaks

From each feature, we calculate a novelty function. Novelty functions were first proposed

for segmenting audio by Foote [BM08], who estimated the amount of novelty at a point as

the sum of the self-similarity of the passages that preceded and followed that point, and

the dissimilarity between the two. Our novelty function ignores the internal similarity

of the windows and focuses on the dissimilarity distance: we calculated at each point

the Euclidean distance between the average feature vector before and after that point.

It is essentially the same as the function used by the Argus algorithm for segmentation

by tonal center [Che05], and can be seen as a continuous-time version of the difference

features successfully employed by [TLPG07].

Varying the window size over which to take this average allows one to look at how

the musical parameters evolve at different timescales; we used values starting at 0 (i.e.,

the first derivative of the feature vectors) and up to 30 seconds at 5 second intervals,

meaning 7 different timescales altogether. Given that listeners have indicated that they

usually perceive boundaries in response to a changing musical feature, difference features

are a natural physical measure to use. In both [Che05] and [TLPG07], using difference

functions at multiple timescales has been shown to be effective at predicting boundaries.

Peaks in the novelty function are hypothesized to indicate likely positions for bound-

aries. Of course, if the novelty function is sufficiently noisy, then there will be peaks

throughout, and all boundaries and non-boundaries will be found to lie near peaks. We

thus want to select only the tallest peaks. Our chosen peak-picking method first applies

a smoothing filter to the novelty function that averages each value with the 10 previous

and subsequent values (hence, a window of 20 times the hop size of that feature, or less

than 2 seconds for MFCCs, chroma and CE, and roughly 7 seconds for the rhythm and

tempo features). Then we pick the top 10 peaks with the following heuristic: once a peak
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was added, any other peaks within 6.5 seconds were made ineligible. These choices were

made to match the properties of our collection of annotations: the median number of

segments per recording was 10 (the number of peaks we selected), and the smallest aver-

age segment length for a recording was greater than 6.5 seconds (the buffer we imposed

around selected peaks).

4.3.3 Random baseline

To properly assess the audio properties of the boundaries, it is necessary to compare

them to a set of non-boundaries. We selected random non-boundaries with the following

constraints: first, for each recording, there should be an equal number of non-boundaries

and boundaries. This ensures that the mean segment lengths are identical. Second, the

boundaries should lie a minimum distance from all true boundaries. We set a buffer of

1.5 seconds, ensuring that even in the annotation with the shortest mean segment length,

non-boundaries could be drawn from at least half of the recording. (Note that the mean

segment length across the entire corpus was over 25 seconds, so this problem was rare.)

With these two constraints, non-boundaries were drawn with uniform probability over

the eligible portions of the recording.

4.3.4 Analysis metric

The chosen peaks in the many novelty functions now constitute our “ground truth,” and

we have two sets of points to compare it to: one the annotated boundaries, the other a

random set of non-boundaries. We can now calculate how well each set of points predicts

the peaks. Although two annotations were available for some recordings, we evaluated

each separately.

The evaluation metrics we use are precision, recall, and f -measure. If we designate

the set of annotated boundaries as A and the set of novelty function peaks as P , then

the set of boundaries in A that ‘hit’ or are nearer to some peak in P than some given
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threshold (we use values of 3.0 and 0.5 seconds) is expressed as A ∩ P . We can then

express precision as the fraction of attempts that are successful (|A ∩ P |)/ |A| and recall

as the fraction of peaks that are found (|A ∩ P |)/ |P |. We are most interested in the

f -measure, their harmonic mean. Note that we did not include in our evaluation any

trivial boundaries, such as those that indicate the start or end of the recording, or any

boundaries occurring in the first or final 1.5 seconds of the piece.

The values for the thresholds, 3.0 and 0.5 seconds, are those standardly used in the

literature, and the f -measure is itself the most widely-used metric for boundary evalua-

tion. Nevertheless, one shortcoming to using fixed thresholds is that, since song lengths

vary substantially, one value may actually be applying proportionally different standards

to different songs. Also, the f -measure has very recently attracted criticism for weighting

recall and precision equally, when there is evidence that precision is perceptually more

important to listeners [NFJB14]. Despite this, we carry on using it here not only because

it is standard but because it is intuitive and well-understood.

4.4 Results and statistical analysis

4.4.1 Are boundaries points of novelty?

We first ask: are boundaries points of novelty? For each of the 761 recordings, we calcu-

lated 35 novelty functions, one for each combination of five features and seven timescales,

and extracted sets of peaks as described previously. For each set of 35, we calculated

the average f -measure between these novelty functions and the boundaries and non-

boundaries. We then compared these average scores for each of the 1,253 annotations,

resulting in 1,253 paired trials. Of these mean f -measures, the median value for bound-

aries (0.328) was nearly twice that for non-boundaries (0.178) using a boundary match

threshold of 3 seconds (see Figure 4.2). A paired Wilcoxon Signed Rank test confirmed

that the difference in medians was significant (U = 771,373.5, p-value < 10−15), with
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a large effect size (r = 0.59). This indicates that boundaries are a better indicator of

novelty peaks than non-boundaries. Indeed, the mean f -measure for boundaries was

larger than that of non-boundaries in 93.9% of the annotations.

0.0 0.2 0.4 0.6 0.8

F−measure

Boundaries

3.0 seconds

Non−boundaries

3.0 seconds

Boundaries

0.5 seconds

Non−boundaries

0.5 seconds

Figure 4.2: Distribution of f -measure scores for boundaries and for random
sets of non-boundaries, given a grading threshold of 3.0 or 0.5
seconds. Outliers in a modified box plot are those that lie more
than 1.5 times the interquartile range outside the second and third
quartiles.

When the boundary match threshold is reduced to 0.5 seconds, the likelihood of being

near a boundary shrinks for both sets of points, but the contrast between them grows: the

median f -measure for boundaries (0.078) was more than twice that for non-boundaries

(0.028). A Wilcoxon test again confirmed that the distributions have a different median

(U = 744,216.5, p < 10−15). The mean f -measure was greater for boundaries for 90.3%

of the annotations. Despite the poorer overall performance, the effect size (r = 0.58)

still indicates a large practical significance.

Since the boundaries surpassed the non-boundaries at predicting points of novelty,

we can conclude that boundaries indeed tend to be more novel than other points in a
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piece. But what do the numbers mean qualitatively? The maximum f -measure possible

is 1, indicating perfect recall and precision, but in practice, even two similar listeners

are unlikely to replicate each other’s analyses with such accuracy. Since we would not

expect any algorithm to predict boundaries as well as another listener, we can use inter-

annotator agreement as a performance ceiling. Using the subset of 492 pieces in our

corpus that were annotated twice, and a threshold of 3.0 seconds, the median f -measure

of inter-annotator agreement was 0.769. This is more than twice the median agreement

between the novelty functions and the boundaries, which was 0.326 for this subset.

This large difference was of course significant according to a Wilcoxon test (U = 18.9,

p < 10−15), and the effect size (r = 0.60) reflects that the factor by which points of

novelty predict boundaries better than non-boundaries is almost the same as the factor

by which boundaries are better predicted by another listener’s annotated boundaries

than by points of novelty.

On a scale from 0 to 1, we have found the two f -measures we wish to compare

(0.178 for non-boundaries-to-novelty and 0.326 for boundaries-to-novelty), as well as a

performance ceiling (0.769 for boundaries-to-boundaries) that is less than 1. Is there a

comparable performance floor, and is it greater than 0? Although the f -measure between

one listener’s set of annotated boundaries and the associated set of non-boundaries is 0

by design, it might be greater than 0 if we compare one set of boundaries to the non-

boundaries estimated from the other listener’s annotation. The median of this measure

was 0.118, which differed from the above medians with approximately the same signif-

icance and effect size. Hence, using boundaries instead of non-boundaries to predict

points of novelty led f -measure to increase from 0.178 to 0.326; a listener attempting to

identify instead of to avoid the boundaries indicated by another listener led f -measure

to increase from 0.118 to 0.769. This larger increase suggests that although the bound-

aries relate more to novelty than do the non-boundaries, qualitatively, this is much less

significant than the perceptual difference between boundaries and non-boundaries.

If we were to compare our novelty functions to state-of-the-art structural analysis sys-
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tems, we would likely find that they surpass our performance. At the 2012 MIREX evalu-

ation, using a corpus of annotations comparable to ours, the mean f -measure achieved by

nine algorithms varied between 0.42 and 0.49 using a 3.0-second threshold, and between

0.16 and 0.29 with a 0.5-second threshold. While all of these means far exceed the mean

f -measures achieved in this study, this comparison is not fair: the algorithms submitted

to MIREX use far more information than novelty (e.g., sequential repetitions, multimodal

feature distributions), to estimate structure, and so it is expected that they would fare

better. The purpose of this experiment is to investigate how well measures of novelty

explain the information contained in the annotations; hence the relevant comparison is

between the annotated boundaries and the random sets of non-boundaries.

However the results are parsed, we have observed that boundaries annotated by

listeners are more likely than chance to be associated with a peak in novelty, suggesting

that annotators do attend to novelty in the signal—and that the annotations, in turn,

contain information about acoustic novelty. Does the size of this effect vary according

to the listener, to the genre, or to the type of novelty function calculated? In the next

four subsections, we address these questions by examining the effect of these factors on

f -measure contrast, which we define as the amount by which the boundary f -measure

exceeds the non-boundary f -measure for each novelty function, using a threshold of 3

seconds.

Differences among listeners

Among 1,253 annotations, a Kruskal-Wallis test indicated a significant effect of anno-

tator (χ2 = 15.577, df = 8, p = 0.049) on the f -measure contrast, suggesting that the

annotator’s responses correlated with boundaries to varying degrees. However, a mul-

tiple comparison test (using a Bonferroni correction) found no pairs of annotators for

which f -measure contrast differed significantly. The distributions shown in Figure 4.3

show that differences between the annotators are minimal, suggesting that altogether

the annotators were similar in the way their annotations reflected musical changes.
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Figure 4.3: Distribution of f -measure contrast (the absolute improvement in
f -measure achieved by sets of boundaries over non-boundaries)
among different annotators. All results found using a grading
threshold of 3.0 seconds.

Differences among genres

The effect of genre (see Figure 4.4) was also significant according to a Kruskal-Wallis

test (χ2 = 63.631, df = 4, p < 10−12). A multiple comparison test found a difference in

the f -measure contrast between five of the ten pairs of genres: four of these indicated

that f -measure contrast was smaller in classical than in other genres, with a small to

moderate effect size (0.19 ≤ r ≤ 0.33); the fifth indicated a small difference between

popular and jazz (r = 0.17). This could indicate that when annotating classical music,

listeners paid more attention to criteria other than novelty, such as parallelism; or, that

the transitions between sections in a classical piece tend to be less sudden—that is, there

are more elided boundaries than in other kinds of music.
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Figure 4.4: Distribution of f -measure contrast among different genres.

Differences among timescales

To evaluate the effect of window size, we averaged the f -measure contrast across fea-

tures for each of the seven window sizes and for each annotation. A Friedman test found

a significant effect of window size (χ2 = 844.94, df = 6, p < 10−15), and many pairs

of timescales differed. All comparisons between the 0-second window size and another

showed a small to moderate effect size (0.20 ≤ r ≤ 0.32). As seen in Figure 4.5, the

immediate derivative (timescale 0) did not improve very much on the baseline at all,

suggesting that novelty at this timescale was of little relevance to the annotators. Addi-

tional comparisons yielded a small difference between the 30-second window size and

window sizes between 5 and 20 seconds (0.11 ≤ r ≤ 0.19), and between the 25-second

window size and window sizes between 5 and 15 seconds (0.10 ≤ r ≤ 0.16). This sug-

gests that these longer timescales are also less relevant in terms of acoustic novelty.

The 10-second timescale improved the f -measure the most, suggesting that it was the

most perceptually relevant timescale for establishing section boundaries. It is interesting

that although the mean segment length across all pieces was roughly 25 seconds, the
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Figure 4.5: Distribution of f -measure contrast among different timescales.

25-second window offered less contrast to the baseline than the 10-second window. This

could simply be explained by the fact that the boundaries of short sections risk being

obscured by a large window, but a section larger than a shorter window size is less likely

to be obscured.

Differences among features

A Friedman test found differences in f -measure contrast among features averaged across

timescales to be significant (χ2 = 529.71, df = 4, p < 10−15). A multiple comparison

test followed by calculation of effect size yielded small differences between timbre and

key (r = 0.27), timbre and tempo (r = 0.21), as well as rhythm and key (r = 0.25)

and rhythm and tempo (r = 0.21), suggesting that timbre and rhythm were both more

reliable indicators of boundaries than tempo or key (see Figure 4.6). The effectiveness

of harmony lay somewhere in between: it was found to differ from timbre, tempo and

rhythm with a small effect size (0.10 ≤ r ≤ 0.12) and to differ from key with a slightly

larger effect size (r = 0.19). That tempo should be a less reliable predictor of boundaries
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Figure 4.6: Distribution of f -measure contrast among different features.

is a reasonable result, since in most popular and jazz music, which comprise at least

half the data studied, tempo does not commonly vary across sections. However, it is a

surprise for key. The features for key (center of effect) and harmony (chroma) provide

similar information, but while chroma merely provide the raw pitch content, center of

effect condenses this information into a single estimate of the tonal center. Our results

suggest that for the purpose of locating boundaries, this process filters out more signal

than noise.

4.4.2 Do any boundaries not match a novelty peak at all?

The mean f -measure indicates how well the annotated boundaries predict the set of

peaks given by a particular novelty function. But we would not expect every boundary

to be suggested by every musical feature at every timescale. A further question to ask

is if there are any boundaries that do not match any peak at all; this would indicate

the minimum extent to which boundaries are not associated with changes in musical

parameters.
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To answer this question, we produce a histogram showing the number of novelty

function peaks associated with each boundary, using a threshold of 3 seconds (Figure

4.7). The comparable histogram for non-boundaries is given below the x-axis. It shows

that 7.1% of annotated boundaries do not match a peak in any novelty function, meaning

92.9% match at least one—and most match many more. The median number of novelty

functions matched is eleven; since there are five features and seven timescales, the median

indicates that half of the boundaries matched at least two distinct features at three

distinct timescales, showing boundary perception to be a function of multiple features at

multiple timescales. The non-boundary histogram is more heavily skewed to low values

than the boundary histogram, and they are about equal when the number of novelty

peaks matched is nine. Hence, if exactly nine novelty peaks match a particular point,

then that point is about equally likely to be perceived as a boundary as not; the odds of

the point being a boundary steadily increase as more novelty peaks match that point.

The light gray regions in Figure 4.7 indicate the subset of boundaries that are “sym-

metric,” i.e., those where the labels of the sections before and after the boundary are

the same (prime symbols attached to segment labels were disregarded here, so the labels

A and A′ were treated as equal). Symmetric boundaries are hypothesized to indicate

less novelty than non-symmetric boundaries, and this is borne out modestly by the

data. Of the boundaries that match no novelty function, 34.3% are symmetric, whereas

only 26.7% of all boundaries were symmetric. The median number of matching novelty

functions for non-symmetric boundaries is eleven; for symmetric boundaries, it is nine.

A Wilcox rank-sum test showed that this was a significant effect (U = 11,406,306, p

< 10−15), with a small effect size (r = 0.10). The effect here is slight, but the measure of

“symmetry” used is very rough, and does not take into account the annotated changes

in lead instrumentation. In many of the jazz pieces, for instance, nearly every section is

given the same label, and the most salient structural information lies with the changing

soloists. Still, this result provides some support for the hypothesis that the perception

of symmetric boundaries owes less to novelty and perhaps owes more to factors such as
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Figure 4.7: Comparison of histograms for boundaries (gray) and non-
boundaries (white) according to number of novelty functions with
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sections with the same letter label, are distinguished from non-
symmetric boundaries.

parallelism.

4.4.3 Can boundary salience be estimated by annotation concurrence?

We have observed that boundaries vary in the number of novelty functions they match:

nearly all boundaries match a few novel points, and a minority match several. This is

curiously analogous to the finding in [BMK09] that, in each piece studied, a few bound-

aries stood out as salient to all listeners, while the majority of boundaries were indicated

by only a handful of listeners. They further found that the perceptual salience of a

boundary correlated strongly with the number of people who indicated that boundary.

Bruderer et al. [BMK09] assembled the boundary indications of many listeners to pro-
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duce a continuous boundary profile, indicating at each moment the potential salience

of a boundary in that position. We conjecture that we could obtain a similar result

by collecting information from a set of automated listeners (i.e., novelty functions), each

indicating boundaries according to the parameter (i.e., a given musical feature at a given

timescale) to which they are attending.

We do not have the boundary salience data to test this claim, but we may approx-

imate salience by combining the annotations of two listeners and giving more weight

to non-symmetric boundaries. We combined annotations with the technique proposed

by [BMK09]: all the boundary indications were collected (non-symmetric ones counted

twice), and the result was convolved with a Gaussian function (we used a full-width

half-maximum of 1.5 seconds instead of 1.25 seconds given by [BMK09]).

Figure 4.8(a) shows the result of applying this procedure to the two annotations for

the song “I Close My Eyes” by the band Shivaree. The dashed line gives the boundary

function as estimated from the two annotations; the solid line gives the boundary function

estimated from the 35 novelty functions. There is very close agreement with the largest

peaks in the novelty functions, and less agreement among the less significant peaks. The

Pearson correlation between the two time series is 0.60, a close overall fit. When we

performed this procedure on all 492 pieces for which two annotations were available,

we found the mean Pearson correlation to be 0.33 (sd = 0.18), suggesting a moderate

relationship throughout the corpus. An example of a pair of boundaries that matched the

novelty functions poorly is given in Figure 4.8(b). These are the annotation- and novelty-

derived boundary functions for Precious Bryant’s “Morning Train,” and the Pearson

correlation between them is -0.03. Even so, the fit is qualitatively good for the second

half of the song.

This result shows that the simple measure of novelty defined in this chapter, versions

of which are already used regularly in the MIR community, actually does seem to converge

on the same information contained in the annotations. Moreover, this information, when

collected from a variety of features at different timescales, can be combined into an overall
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novelty function that seems to reflect the same patterns of salience that listeners display.

4.5 Conclusion and future work

We have investigated a large corpus of recordings and annotations to show that acoustic

novelty, as estimated by features reflecting timbre, harmony, key, rhythm and tempo,

relates strongly to the position of boundaries indicated by listeners. The strength of this

relationship was shown to be moderately affected by the feature used to estimate the

novelty—specifically, the novelty of tempo and key were found to be less informative than

the others. However, the range of features used was small; if other features and other

parameter settings for the features were used, the results could be different. The high

performance of structural analysis algorithms at MIREX relative to ours suggests that

there is plenty of room for more sophisticated features to reveal the greater relevance

of novelty cues. By repeating these experiments with different features, future research

could pin down the extent to which these findings are feature-dependent.

We also saw that the relevance of novelty for explaining boundaries depended on the

timescale and genre. In contrast to the situation with musical features, the range of

timescales used here seems wide enough to make a general claim that novelty at the

10-second timescale is most relevant to listeners. And given the breadth of the SALAMI

corpus with respect to genre, the conclusion that the boundaries in classical music were

less consistently novel than those in other genres seems robust as well. However, both

conclusions again come with the caveat that the experiment used a limited set of features;

other features may have interacted with timescale and genre differently.

Finally, we saw that a boundary profile derived from novelty functions correlated mod-

estly with a boundary profile estimated from the annotations. Since [BMK09] found that

the fraction of listeners who indicated a boundary correlated with the judged salience of

that boundary, our findings extend this result to suggest that the salience of a boundary

is correlated to its acoustic novelty.
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All of these findings support the use of combinations of novelty functions as a major

estimator of perceived boundaries. At the same time, our results show the limitations of

predicting boundaries solely based on points of novelty: although nearly all boundaries

corresponded to a peak in novelty, not all peaks in novelty indicated a boundary. (Indeed,

according to Figure 4.7, peaks in more than nine novelty functions—or at least two

features and two timescales—need to coincide before a point is more likely to be a

boundary than not.) This indicates that as a predictor of boundaries, acoustic novelty

has high recall but low precision. Thus, while novelty is important to listeners, it is

not the final word: listeners reject many novel points as false positives. This is almost

certainly due to the influence of top-down factors: metrical structure, parallelism, and

other considerations lead listeners to perceive seemingly novel moments as moments of

continuation. The success of state-of-the-art structural analysis algorithms which usually

apply such constraints, whether by identifying long repetitions or by detecting a metrical

grid, suggests this is indeed the case (see Section 4.4.1).

Bruderer and McKinney [BM08] demonstrated the perceptual validity of segmen-

tation models that used score-based representations. The present study may help to

ground comparable audio-based models that could be applied to any recorded music,

whether or not a score exists—or whether the music even could be transcribed using

Western music notation (as much electronic music cannot be).

An important caveat to our findings is that there is no proof of causality: boundaries

do tend to occur at novel moments, but this novelty is not necessarily what motivates

the listener to perceive a boundary. An alternative explanation would be that listeners

identify repeated sequences and infer boundaries between them, and that the novelty of

the boundaries arises from the fact that these sequences tend to differ acoustically. This

alternative is perhaps supported by the observation that symmetric boundaries (those

between repetitions) are less well explained by novelty than the other boundaries. While

this experiment cannot settle the question of causation, the studies conducted in [CK90]

and [BMK09] confirm that listeners often find the changes that occur at boundaries
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their most salient aspect. Still, as illustrated in Figure 4.7, many boundaries remain

unexplained by any kind of acoustic novelty. Further studies should test how well these

boundaries are explained by parallelism, pauses, and changes in other musical parameters

not tested here.

Further study could also focus on interactions between the factors considered here for

a more complete picture of the importance of novelty. Although we did not investigate

interaction effects systematically here, the results did show that: the usefulness of the

tempo feature was higher at longer timescales; the timbre feature was less useful on the

LMA database, perhaps because many of these recordings were noisier; and the best

timescale on the classical music was 25 seconds (even though this was among the worst

timescales for the other genres), perhaps indicating that boundaries in classical music

tend to reflect long-term changes, or that the most significant short-term changes are

often misleading with respect to finding boundaries in classical music.

Returning to the broader themes of this thesis, we recall that in Chapter 2, we

argued that bottom-up approaches to structural analysis focusing on discontinuities fail

to capture the variability in analyses found among listeners. The results of this chapter

show why this may be the case: there is an important gap between acoustic novelty (the

justification cited most often by listeners for perceiving points as boundaries) and the

boundaries that were in fact indicated in the SALAMI annotations. In a piece of music,

there may be many points that are acoustically novel but not perceived as boundaries,

and many points perceived as boundaries that are not acoustically novel. If listeners

perceive some boundaries where no changes occur, and perceive some big changes as

points of continuation, this may be a result of top-down factors, and as noted in Chapter

2, top-down factors are more likely to be influenced by listener differences.

In Section 4.2.3, we pointed out that this experiment tests novelty because it is

the standard justification for boundaries, and not the justification actually given by

the SALAMI annotators—such justifications are not available for SALAMI nor for any

other large collection of analyses. Thus, any experiments using annotations must make
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assumptions, based on other studies, about what the annotators were likely to be think-

ing. Is it possible to estimate more rigourously what an analyst was thinking post-hoc?

This is the project undertaken in the next chapter.



Chapter 5

Relating grouping structure to

musical features

In Chapter 3 we noted, as in previous literature, that listeners attributed the perception

of a boundary to stark changes in the music, and in Chapter 4 we tested the extent

to which this explained the boundaries in a large corpus of annotations. In Chapter 3

we also noted that paying attention to a feature of the music was a common way to

justify a given grouping decision. We would now like to test in a large corpus whether

attention is a good explanation for grouping decisions. Unfortunately, we cannot conduct

a study comparable to that in Chapter 4 for attention, since there is no way to compute

or estimate the focus of the listener’s attention from the audio the same way we could

estimate novelty with common audio processing techniques.

However, MIR techniques for visualizing structure may offer a way to gain some

insight into the minds of annotators. In this chapter we will attempt to solve the inverse

of the problem usually posed in MIR: rather than process the audio to attempt to

replicate a listener’s analysis, we will use the analysis to discover those features in the

audio that best support the listener’s analysis. The goal is to have a tool to investigate

the potential reasoning behind the grouping decisions of listeners.

88
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We introduce a method that uses self-similarity matrices (SSMs) generated by musi-

cally-motivated audio features at various timescales. Since a listener’s attention can

shift among musical features throughout a piece, we further break down the SSMs into

section-wise components and use quadratic programming (QP) to minimize the distance

between a linear sum of these components and the annotated description. We posit that

the optimal section-wise weights on the feature components may indicate the features to

which a listener attended when annotating a piece, and thus may help us to understand

why two listeners disagreed about a piece’s structure. We discuss some examples that

substantiate the claim that feature relevance varies throughout a piece, and use our

method to study the differences between listeners’ interpretations.

In the introduction that follows, we summarize the development and use of SSMs in

MIR, and recap how the reasoning behind listeners’ grouping decisions has been studied

in the past.

5.1 Introduction

5.1.1 Previous methods in SSM calculation

One of the most important aspects of music is that it is repetitive: individual sounds,

notes and chords, dynamic gestures, rhythmic patterns, instrumentations, and so forth

are all elements liable to repeat, whether identically or with some variation. Discov-

ering repetitions is important in MIR, since many MIR tasks can be performed or

improved upon using information about music structure: for example, cover song detec-

tion [GSMA12] and chord transcription [MND09].

Recurrence plots, proposed by [EKR87] for analyzing the motion of dynamical sys-

tems, can reveal repetitions in sequential data. A self-similarity matrix (SSM), orig-

inally proposed by [Foo99], is a variation on such plots that moves beyond the usual

feature-based methods of visualizing music, such as pitch rolls and other time-frequency
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representations. Unlike these, SSMs do not represent the musical content itself, but only

the pattern of repetitions and recurrences that it contains. The features themselves are

of course still important in any given application: an SSM based on pitch content may

be effective for tracking melodic repetitions but not repetitions of percussive sounds.

Whereas earlier experiments with extracting structure based on SSMs focused on

one feature at a time (e.g., [Foo99] made SSMs derived only from Mel-frequency cepstral

coefficients (MFCCs), and [BW01] used only chroma for chorus detection), it was soon

realized that using multiple features could improve results. Eronen [Ero07] calculated

SSMs from MFCCs and chroma and summed the result, while [Mar06] obtained three

SSMs from chroma vectors, each calculated to reflect repetitions at different timescales,

and took the element-wise product of the trio to reduce noise. Paulus and Klapuri’s

[PK06] optimization-based approach used information from separate SSMs reflecting

timbral, harmonic and rhythmic similarity. In order to find transposed repetitions,

[Got03] searched for maxima across multiple chroma-based SSMs. Rather than generate

separate SSMs for separate features, [HKS12] concatenated the feature vectors for each

frame and calculated a single SSM from the result.

5.1.2 Limitations of combining SSMs

However, simple combinations of SSMs rarely result in the exact structure that the

experimenter hopes to extract. The features used to compute the SSMs may be too

simple, failing to isolate the relevant musical parameters, and the patterns contained in

the SSM may be hidden by noise, due to perceived repetitions actually being inexact

or greatly varied. For example, the chroma feature may miss an important melodic

repetition that has been obscured by a change in harmony. Successful methods of auto-

matic music analysis based on SSMs invariably employ complex post-processing steps to

mitigate these shortcomings: examples include low- and high-pass filtering [Got03], ero-

sion/dilation operations [Ong07], dynamic programming [SJK06], non-negative matrix

factorization (NMF) [KS10], re-emphasis of transitive relationships [Pee07], and so on.
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We may conclude that a simple sum of SSMs does not reflect the similarity judgements

that a listener may make across an entire piece.

What information could the sum of SSMs be missing? One straightforward suggestion

is a weight for each feature or timescale. Perceptual evidence supports this strategy: for

example, in investigating the relative importance of different laws in a Generative Theory

of Tonal Music, [FC04] found that laws relating to some features are more important

than others. The idea to tune feature weights before analyzing structure has appeared

before in the MIR literature: to improve a structural segmentation algorithm, [PE04]

chose feature weights to maximize the separability of vectors according to the Fisher

criterion. In [KP12], the size of the window for calculating features was adapted to the

estimated rate of change, improving the clarity of block patterns in SSMs. A hierarchical

SSM proposed by [Jeh05] used different features and techniques at each timescale in a

musicologically-informed manner.

Another aspect of listening that may be missed when SSMs are combined is that

the focus of a listener’s attention may shift at various points throughout a piece. For

example, the self-similarity of a chorus of a given song may be very well accounted for

by an SSM based on harmony, whereas the self-similarity of the guitar solo that follows

may not be. Again, listener studies such as [BMK09] and [CK90], as well as our own

findings in Chapter 3, demonstrate that listeners justify their section boundaries with

various musical features throughout a piece. The timescale that is most pertinent to the

listener may also vary: [JB89] hypothesized that listeners either focus their attention on

short or long timescales, and that their focus may shift while listening, either willfully

or as a result of changing attunement to the music.

In the study of vision, eye-tracking technology has enabled the direct study of visual

attention for over 50 years, Unfortunately, no comparable research technique exists for

studying musical attention. While a listener is certainly able to fixate on single aspects

of music, this fixation is not expressed physiologically by the ear. Instead, researchers

interested in what people are paying attention to in music must either perform the
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laborious task of asking the listeners themselves (as in [CK90] and [Del87]), or manipulate

the stimuli or experimental conditions. For example, in their study of change deafness,

[AK08] manipulated the strength of listeners’ attention by varying the metrical strength

or the tonality of the tone that was changed in pairs of melodies. They found that

changes in metrically weak tones, which are less likely to be focused on by listeners,

were more likely to go unnoticed. By playing listeners the exact same pieces repeatedly,

[Mar12] could deduce from their responses that with greater exposure, their attention

had focused on longer timescales.

In this chapter, we present a method of combining SSMs that aims to model which

features and which timescales a listener could have been paying attention to. The method

does not manipulate the listening conditions or attention of the listener; rather, it is a

post hoc approach that accounts for a given structural annotation produced by a listener.

The method exploits the fact that listeners may focus on some features more strongly

than others, and that their focus may change throughout a piece.

5.2 Proposed method

We first review how to calculate an SSM from acoustic data or from an annotation.

In Section 5.2.2 we motivate our approach and define the algorithm using a simple

example. In Section 5.2.3, we demonstrate its use on an audio recording of the song

“Yellow Submarine” by The Beatles.

5.2.1 Self-similarity matrix calculation

A self-similarity matrix can be thought of as a real-valued recurrence plot where element

eij indicates the similarity between frame i and frame j of a sequence of frames. It

is typical to use Euclidean or cosine distance [PMK10] as a distance metric; here, we

use cosine distance for its natural scaling between −1 and 1. Repeated sequences in
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recurrence plots are revealed as diagonal lines. In SSMs based on music, it is also common

to see off-diagonal blocks, revealing the repetition of sections that are homogenous with

respect to a given feature.

5.2.1.1 SSMs from annotations

Binary SSMs are commonly generated from structural annotations as diagrams (e.g.,

[PMK10]) or to illustrate examples of song structure. Using cosine similarity, we set

eij = 1 if frames i and j belong to sections with the same label, and -1 otherwise (see

example in Figure 5.1, left). This section describes some variations on the usual approach

that is relevant for our data.

Figure 5.1: Left: SSM derived from annotation of “Yellow Submarine.” Time
progresses from left to right and from top to bottom. The large-
scale annotation below it is from the SALAMI database (salami id:
1634). Right: An alternative SSM derived using an additional
layer of the annotation, where α, the relative weight of the large-
scale labels, is set at 0.625 and β, the fractional similarity implied
by primes, is 0.35.

The annotation in Figure 5.1, like all the examples in this chapter, are drawn from

the Structural Analysis of Large Amounts of Music Information (SALAMI) dataset

[SBF+11]. In the SALAMI annotation format, information about repeating sections
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is given at large and small timescales, and sections may be distinguished with prime

symbols (e.g., A vs. A′), which fuzzily indicates similarity with variation.

We include some of the richness of this description in the SSM by generating a

separate SSM for each timescale and summing the results (see Figure 5.1, right). To

emphasize one timescale over another, we can choose a weighting parameter 0 < α <

1, and multiply the large- and small-scale SSMs by α and 1 − α, respectively, before

summing. A similar approach can act on prime symbols: when two frames have the

same label but differ by a prime, instead of setting eij = 1, we can set it to some other

value −1 < β < 1. Setting β = 1 would imply that A and A′ are identical; β = −1

would imply they are completely distinct; and β = 0 would ignore the symbol.

5.2.1.2 SSMs from audio

The five different SSMs in Figure 5.2 were all calculated from a recording of “Yellow

Submarine”. Each one uses a different audio feature to represent a different musical

parameter: MFCCs for timbre, chroma for pitch, fluctuation patterns (FPs) for rhythm,

periodicity histograms for tempo, and RMS for loudness. These are the same audio

features that were used in Chapter 4, with the addition of RMS and the subtraction

of center of effect. A full description of the features is found in Section 4.3.1, but are

summarized here.

MFCCs derive from the shape of a rescaled spectrum and can characterize a sound’s

timbre; chroma vectors estimate the power of each pitch class and characterize the har-

monic content of the audio; fluctuation patterns estimate the strength of low-frequency

periodicities within Bark-scale frequency bands over windows that are several seconds

long and hence characterize the rhythmic content [PRM02]; periodicity histograms reflect

the relative strength of different tempi by looking at sharp attacks in the audio and mea-

suring the strength of periodicities in the tempo range of 40 to 240 beats per minute (0.6

to 4 Hz) [PDW03]; and finally, the root mean square (RMS) of the waveform and the
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Figure 5.2: Five SSMs calculated from a recording of “Yellow Submarine.”
Highly similar frames produce white pixels, dissimilar frames pro-
duce black, and independent frames gray. From left to right, the
SSMs represent (top row) MFCCs, chroma, FPs, and (bottom
row) RMS, and periodicity histograms. The black lines indicate
the boundaries of the structural annotation seen in Figure 5.1.

derivative of RMS estimate loudness and dynamic variations.

MFCCs and chroma were calculated using 0.19- and 0.10-second windows, respec-

tively, with 50% overlap, using Queen Mary’s Vamp Plugin set [LGC+11]. The twelve

lowest MFCCs were kept, aside from the first, which correlates with loudness. FPs and

periodicity histograms were calculated using 3-second windows and 0.37-second hops

with the MA Toolbox [Pam04]. FP vectors have 1200 elements, measuring 60 modu-

lation frequencies in 20 Bark-scale frequency bands, while periodicity histograms have

2000 elements, indicating whenever any of 40 tempo ranges is activated beyond 50 fixed

thresholds. While it is common to use dimensional reduction techniques to reduce the

large size of the feature vectors, the relative differences between the raw vectors are still

well captured in the SSMs in Figure 5.2. Lastly, RMS was calculated using 0.1-second

windows and 50% overlap.
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Each of the above features gives, for every frame, a vector of some length. We trans-

formed the values in two ways: first, each vector dimension was standardized over the

length of the piece to have zero mean and unit variance. Since no frame-wise normal-

ization was used for any feature, this ensures the variance in each dimension is weighed

equally, ensuring that repetitions in low-magnitude signals are detected, albeit at the

cost of some additional noise. The features were then smoothed in time; for the SSMs in

Figure 5.2, a 10-second moving-average filter was used. Finally, the SSMs were calculated

using cosine similarity.

These features and processing steps are not integral to the algorithm. The algorithm

merely requires that some set of feature representations be chosen, but the choice is

arbitrary. In this chapter, the choice was made based on convenience (software for

computing the features was readily available) and a desire for a set of varied, easily-

interpreted features.

5.2.2 Combining SSMs

Suppose we have an annotation for a song’s structure, expressed as an SSM like in

Figure 5.1, and want to find how best to explain it in terms of SSMs generated from the

song’s acoustic features, like those in Figure 5.2. We know that summing the feature

matrices is a useful technique, and since we have the annotation we could try to calculate

the optimal linear combination of feature matrices to reconstruct the annotation. This

would provide a relative weight to each feature corresponding to its salience with respect

to the entire song. However, knowing that the salience of different features can vary

throughout the piece, we may wish to explain the annotation section by section.

Previous approaches to decomposing SSMs focused on discovering the structure of

recordings, and hence used estimation techniques such as singular value decomposition

[FC03] or NMF [KS10]. However, since our goal is to learn about the relationship

between the known structure and the recording, we can use straightforward optimization
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techniques. We propose to use a quadratic program (QP), a generic formulation of

an optimization problem, to find the optimal combination of feature-derived SSMs to

reconstruct the annotation-derived SSM in a piecewise fashion.

To illustrate the approach, we use a very simple example: suppose we have a piece

with structure ABC, where the last section is twice as long as the previous sections (in

general we may have s sections). The annotation matrix N could be:

N =



1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 1

−1 −1 1 1


(5.1)

Recall that −1 indicates a contrasting pair of frames and +1 indicates an identical

pair. We would like to explain the reason behind each section using two features: a

harmony-based feature and a timbre-based feature. (Again, in general we may have f

features.) Suppose the pitch content of the song is identical for sections A and B, and

the timbre is identical for sections B and C. For example, A, B and C could be the

introduction, verse and chorus of a pop song, where the instrumentation changes after

the introduction but stays constant thereafter, and where the pattern of chords only

changes at the chorus. The two matrices F1 and F2, derived from the harmonic and

timbral audio features, respectively, would be:

F1 =



1 1 −1 −1

1 1 −1 −1

−1 −1 1 1

−1 −1 1 1


F2 =



1 −1 −1 −1

−1 1 1 1

−1 1 1 1

−1 1 1 1


(5.2)

Neither matrix equals the true underlying structure N , but we would like to recon-

struct the annotation matrix using subsets of the feature matrices that correspond to
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the annotated sections. Since there are three sections and two feature matrices, there

are six available components, shown below. We can generate these by applying three

“masks,” one for each section, to each feature. Mi,j , the element-wise product of the jth

mask with Fi, will show how the jth section relates to the other sections with respect to

the ith feature.

M1,1 =



1 .5 −.5 −.5

.5 0 0 0

−.5 0 0 0

−.5 0 0 0


M2,1 =



1 −.5 −.5 −.5

−.5 0 0 0

−.5 0 0 0

−.5 0 0 0



M1,2 =



0 .5 0 0

.5 1 −.5 −.5

0 −.5 0 0

0 −.5 0 0


M2,2 =



0 −.5 0 0

−.5 1 .5 .5

0 .5 0 0

0 .5 0 0



M1,3 =



0 0 −.5 −.5

0 0 −.5 −.5

−.5 −.5 1 1

−.5 −.5 1 1


M2,3 =



0 0 −.5 −.5

0 0 .5 .5

−.5 .5 1 1

−.5 .5 1 1


The M1,i matrices correspond to how the sections interrelate with respect to harmony,

and the M2,i matrices show the same with respect to timbre. The masks halve all of the

elements in the off-diagonal sections so that the feature matrices can be reconstructed

by summing the components (i.e.,
∑s

j=1Mi,j = Fi). We would like to find a linear

combination of the component matrices Mi,j that will approximate the annotation N as

closely as possible. That is, we want the vector of coefficients x = {x1,1, x1,2, ..., xf,s}

that minimizes the following expression for the squared distance between the annotation

and the reconstruction:
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 s∑
j=1

f∑
i=1

xi,jMi,j

−N
2

(5.3)

This problem is solvable as a quadratic program (QP) if we imagine each component

matrix Mi,j to be a single row in a larger array M. If each Mi,j is an n × n matrix,

then letting k = (i − 1) · f + j we can let Mk, the kth row of M, be the horizontal

concatenation of the n rows of Mi,j :

M =



M1,1(1,1) M1,1(2,1) · · · M1,1(1,2) · · · M1,1(n,n)

M1,2(1,1) M1,2(2,1) · · · M1,2(1,2) · · · M1,2(n,n)

...
...

. . .
...

. . .
...

Mf,s(1,1) Mf,s(2,1) · · · Mf,s(1,2) · · · Mf,s(n,n)


(5.4)

(In our example, M would have 6 rows and 16 columns, since there are 16 values in each

of the 6 components Mi,j .)

If we similarly reshape N into a single row vector, and treat x as a column vector,

then we may rewrite expression (1) as (xTM−N)2. Expanding, we obtain the following

expression for c, the reconstruction cost:

c(x) = xTMMTx− 2NMTx+NNT (5.5)

Here, MMT is a square matrix with f rows and columns, and NNT is a constant term

which can be ignored in the QP. Our goal is to minimize c(x) subject to any constraints

we may place on x. We set x ≥ 0 and interpret each coefficient xi,j as the relevance

of feature i in explaining the similarity of section j to the entire piece. The final QP

formulation is:
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minimize
x

xTM2x− 2NMTx

subject to xi,j ≥ 0,∀ i = 1, . . . , f, ∀j = 1, . . . , s

This is the standard form for QPs, and is quickly solvable on commercial software.

All the QPs in this article were solved using the quadprog function in MATLAB’s opti-

mization package. The inequality is the only constraint placed on the solution; we do

not enforce the common constraint
∑
xi,j = 1 as its interpretation is unclear and we

never encountered any problems with degenerate solutions. (In linear and quadratic

programming, programs with insufficient constraints may lead to degenerate solutions:

ones where any point on a given line or surface satisfy the constraints.)

Solving this quadratic program for our example gives x = {0, 0.6875, 1.0625, 1.25,

0.3125, 0}. The reconstruction of the annotation using these coefficients is:

MTx =



1.25 −.44 −1.16 −1.16

−.44 1.00 −.72 −.72

−1.16 −.72 1.06 1.06

−1.16 −.72 1.06 1.06


(5.6)

(MTx is actually a column vector, but here we have reshaped the result into the recon-

structed matrix it represents.) The largest components are x1,3 and x2,1; indeed, the

most explanatory components are M1,3, which perfectly shows how section C is distin-

guished from A and B on the basis of its harmony, and M2,1, which shows how A differs

from the others on the basis of its timbre. The coefficient x1,1 is 0, which properly reflects

that the harmony of section A is meaningless for distinguishing it from the rest of the

piece, and vice versa for x3,2. The intermediate values of x1,2 and x2,2 reflect that it is

relatively difficult to explain the middle section with these features. Component M1,2

distinguishes section C at the expense of conflating A and B, while M2,2 distinguishes

A and conflates B and C. Since there is a greater cost for mischaracterizing the longer
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section, x1,2 is larger than x2,2.

The reconstruction cost c(x) for the above solution is 1.125, compared to the max-

imum cost of 16.0 which is reached when every xi,j = 0. If instead of this section-wise

approach we had used a matrix-wise approach with two components, F1 and F2, we would

have found the optimal coefficients 0.67 and 0.33, which gives a reconstruction cost of

5.33. Hence the section-wise approach gets over four times closer to the annotation than

the matrix-wise approach in this artificial example. More importantly, the coefficients

xi,j reveal when in the piece the different features are most relevant for determining its

structure: in this case, harmony is an unimportant feature near the beginning of the

piece, but becomes important later on, and vice versa for timbre.

The section-wise QP contains all solutions to the matrix-wise QP as a subset. The

solution to the section-wise QP is thus guaranteed to be at least as good, and the reduc-

tion in reconstruction cost is no surprise. Although this prevents us from quantitatively

evaluating the effectiveness of the section-wise QP, we may use the matrix-wise QP as a

performance ceiling and evaluate the result qualitatively.

5.2.3 Reconstructing an annotation SSM from audio SSMs

Using SSM derived from features and the annotation for a song as described in Section

5.2.1, we can formulate a QP using the method in Section 5.2.2. We demonstrate this

procedure for the song “Yellow Submarine.” Figure 5.3 illustrates how the five feature-

derived SSMs and seven section masks produce 35 components. Labeling the component

matrices M1,1 through M5,7, our goal is to find the coefficients x = {x1,1, . . . , x5,7} that

minimize c(x). We solve the QP and illustrate the weights x in Figure 5.4.

The results suggest that the first verse, A1, is best explained by a combination of its

chroma and fluctuation pattern vectors, that the first chorus, B1, is explained almost

wholly by its chroma vectors, and so forth. The prominence of FPs in the first and

last sections reflects the fact that the FPs were very robust to the changes that occur
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Figure 5.3: Illustration of matrix components. The feature matrices are given
in the top row (left to right: MFCCs, chroma, FPs, RMS, and
periodicity histograms); the masks in the left column represent
each section in the annotation. Each component matrix is the
element-wise product of a feature matrix and a mask. The fea-
ture matrices and the products are scaled from −1 (black) to +1
(white), while the masks are scaled from 0 (black) to +1 (white).
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Figure 5.4: The optimal reconstruction coefficients for five different features
for all sections of the song Yellow Submarine. The height of each
block is the value of the reconstruction coefficient for the section
indicated on the x-axis. The annotation is given below the graph.

partway through each section: midway through A1, a number of nautical sound effects

intrude and affect the MFCCs and chroma, and the fadeout in B3 affects the similarity

of other features. Referring to the top and bottom rows of components in Figure 5.3, it

is clear that FPs best represent the homogeneity of the first and last sections.

Section C1 stands out from the piece as being best explained with a combination of

timbre and tempo features. Indeed the most distinguishing feature of this section is its

timbre, since it is an instrumental portion that contains many unusual sound effects like

splashes and bells. Perhaps the arrhythmic nature of these sounds led the periodicity

histograms to detect a strong dissimilarity with the rest of the piece.

Our method estimates connections between an analysis and the features, and our

analysis of this example suggests that the connection plausibly relates to the listener’s

experience. However, whether the feature weights obtained by the QP actually correlate

to the listener’s justifications for their analysis remains a matter of conjecture. Settling

this question would require paired data—annotations coupled with listener’s self-reported

justifications—that is not presently available, though we do plan to collect such data in
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the future.

5.2.3.1 Reconstruction cost

Subjectively, the x-values found by the QP are reasonable, but we would like to obtain

some quantitative estimate of how well this method works compared to others. One

measure of the quality of the output is the reconstruction cost c, which is the average

squared deviation between the reconstructed matrix and the target annotation. (This

is also the value of the objective function (2) at the solution found by the QP.) The

maximum allowable reconstruction cost cannot exceed N2, since this can be obtained

trivially by setting x = 0. We can thus express the fractional reconstruction cost c/c0,

where c0 is the cost at x = 0.

With this metric, we can compare the quality of different quadratic programs. To

fairly estimate how much analyzing the song section by section instead of all at once

improves the reconstruction, we need to run a second quadratic program: this one simply

finds the coefficients x = {x1, x2, . . . , xf} that makes the sum of the feature matrices as

close to the annotation as possible. This method gives a fractional reconstruction cost

of 0.81, whereas the section-wise method garnered a fractional cost of 0.68. This result

is expected, since (as noted in Section 2.2) the coarse matrix-wise solution can never be

better than the finer-grained solution. Still, by examining how this improvement tapers

off with finer-grained formulations of the QP, as done in the next section, we can assess

the limit of this method’s effectiveness.

The matrices reconstructed using these two methods are pictured in Figure 5.5, along

with a plot of the mean squared deviation from the annotation, which highlights those

regions that are poorly reconstructed. The latter plots show that both approaches have

trouble reconstructing the edges of the SSM (the parts that describe how the very begin-

ning and end of the song relate to the rest). The matrix-wise approach also has particular

trouble reconstructing the third verse (section A3)
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Figure 5.5: Optimal reconstruction of the annotation (see Figure 5.1) using
the section-wise approach (top left) and the matrix-wise approach
(top right). The mean squared deviation between each recon-
structed matrix and the annotation is shown below the recon-
struction. (Here, black pixels indicate where the reconstruction is
most accurate.)

5.2.3.2 Reconstruction using smaller sections

The section-wise approach was mathematically guaranteed to result in at least as good an

approximate of the annotation as a linear combination of full matrices. We may expect

even better approximations if we divide the matrix into smaller sections. However, if

further segmentation is structurally irrelevant, the reductions in reconstruction cost will

taper off. We repeated the previous QP using the finer segmentation of the small-scale

sections as well as a “finest-scale” segmentation with segments every 2.5 seconds—shorter

than the longest feature windows.

Looking at finer timescales reveals new insights: for example, it is very noticeable

that section c1 is poorly explained by all the features (Figure 5.6(a)). Indeed, this small

section contains a novel tune played on a brass instrument and sounds nothing like

the rest of the piece. It doesn’t even sound like the later sections c2 and c3, although
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their relatedness could be argued by their both containing sound effects and by their

being some kind of variation of the usual A section. Also, whereas in the previous

analysis (Figure 5.4) we saw that section C1 was explained both by its distinct timbre

and potentially confusing tempo, we can see now that each half of the section is better

explained by one of these features. The first half, c2, has less percussion than the second

half and is arguably the more confusing.

Drilling down further to 2.5-second segments (Figure 5.6(b)), the result is more

detailed but not necessarily more informative: the sum of the coefficients leaves a similar

“skyline”, indicating that approximately the same amount of information is explained

in each. However, a few parts are better explained at this smaller scale: the best expla-

nation for a5 and a′ switches from FPs to chroma, bringing A2 in line with the other A

sections. Also, the coefficients in b7 are higher at this scale.

As stated earlier, finer-grained segmentations are guaranteed to lead to better recon-

structions. In the above example, the fractional cost for the small-scale segmentation

was 0.67 (compared to 0.68 for the large-scale segmentation), and for the short-window

analysis it was 0.61. An analysis of reconstruction costs over a larger corpus shows that,

as expected, improvement tapers off at finer timescales. The QP algorithm was executed

on annotations for 704 recordings in the SALAMI dataset at the four levels of granu-

larity: matrix-wise, large-scale, small-scale, and finest-scale. The reconstruction costs

were computed for each and are plotted in Figure 5.7. We see that while large reduc-

tions in reconstruction cost are typical when moving from matrix-wise to large-scale QP

formulations, there is less improvement moving from small-scale to short window, indi-

cating diminishing returns when the segmentation proceeds beyond what the annotation

contains.
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Figure 5.7: Box plot of QP reconstruction costs obtained for QPs using no seg-
mentation (matrix-wise sum) and the piece-wise decomposition at
three timescales. The data cover 704 recordings from the SALAMI
corpus.

5.3 Visualizing structural differences

The previous examples show that the relationship between the structure of a piece of

music and its feature-derived SSMs can vary over time: repetitions in a feature that are

irrelevant at one point in a piece may be foregrounded at another. Just as [KP12] and

[PE04] argued that dynamic feature weighting could improve structural analysis, our

examples show that dynamic feature interpretation could aid in applications based on

structural information. Here, we focus on its use as a visualization tool.

The data obtained by our approach may provide interesting visualizations for projects

like SALAMI, which plans to execute several algorithms to annotate the musical structure

for a large library [SBF+11]. To facilitate browsing in it they have developed a system

to visualize each structural description with a diagram, like the annotation in the lower

part of Figure 5.6(b) [EBD+11]. Providing the section-wise estimates of which features

are estimated to be most salient could enrich these diagrams.
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Our method of decomposing annotations is also suited to comparing annotations pre-

pared by different listeners. We illustrate this with two examples. The first shows how

a single large difference between two annotations is reflected in the reconstruction coef-

ficients, and the second demonstrates the power of the approach to reconstruct greatly

divergent analyses from the same set of components.

5.3.1 Investigating a single difference

As noted in the introduction, it is common for two listeners to analyze the same piece

of music differently, and this may be because they are paying attention to different

acoustic features. Our analysis method allows one to investigate the differences between

two analyses, showing how each may have arisen by emphasizing certain features over

others at certain times.

We illustrate this potential by reconstructing two different annotations of the piece

“Garrotin”, a solo flamenco guitar piece recorded by Chago Rodrigo. Two SALAMI

annotators gave analyses that were similar overall (Figure 5.8): the piece begins and

ends with many repetitions of the same main melodic gesture, and the middle of the

song (0:15 to 1:25) consists of a number of different melodic episodes separated by short

reprises of the main theme.

Figure 5.8: Annotation-derived SSMs by two listeners for “Garrotin”
(salami id: 842).

The analyses differ mainly in their treatment of the middle episode (roughly 0:40
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to 1:00): the first listener interprets it as a single episode, while the second listener

analyzes it as two distinct episodes. (The region from 0:30 to 1:00 is outlined in a yellow

dotted line in Figure 5.8.) The feature SSMs (Figure 5.9) show that this portion of the

piece is quite self-similar with respect to MFCCs and chroma, but an internal contrast

to the section is revealed in the FP-derived SSM at the shorter timescale (5 seconds).

This difference is reflected in the solutions to the QP (Figure 5.10): the middle section

of the piece is reconstructed best by chroma features when kept as one section, but

reconstructed better by FPs when divided in two. And, crucially, this contrast is borne

out by the music: both halves of the section mainly consist of an alternation between

tonic and dominant chords, leading to similar overall pitch content; but while the meter

of the first half is expressed relatively evenly, a 3 + 3 + 2 rhythm is strongly emphasized

in the second half.

Figure 5.9: Feature matrices for the reconstruction of “Garrotin.” In this
example, three features are used: MFCCs (top row), chroma (mid-
dle row), and FPs (bottom row), as well as three smoothing win-
dow sizes: 5, 10 and 15 seconds (left, middle and right columns,
respectively). The yellow dotted boxes outline the region between
0:30 and 1:00 to enable comparison with Figure 5.10.
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Figure 5.10: The optimal reconstruction coefficients for two different anno-
tations of the song “Garrotin.” Three features and large-scale
decomposition were used. The coefficients shown here are the
average of the coefficients for the three different timescales. The
yellow dotted boxes outline the region between 0:30 and 1:00 to
enable comparison with Figure 5.9.

5.3.2 Reconstructing dissimilar analyses

In the previous example, a small disagreement was investigated. What if listeners have

vastly different interpretations—is it still possible to find QP solutions that justify each

interpretation equally well?

In the song “As the Bell Rings the Maypole Spins” by the World music band Dead

Can Dance, a singer and bagpiper play a series of reels, and the pattern of reels repeats

a few times before a long repetitive coda section ends the piece. The stark difference

between the two annotations is apparent from the SSMs (Figure 5.11, top row). The

first listener has identified a sequence of three reels as a self-contained repeating group,

leading to large off-diagonal blocks in the middle of the SSM. The second listener has not
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identified these larger groupings, but does indicate that many of the reels are identical

or similar to the coda section (from 3:40 onward), resulting in a series of thin bars in the

SSM.

Despite the differences in the annotations, a QP using five features and three timescales

has reconstructed both annotations qualitatively well (Figure 5.11, middle row). The

fractional reconstruction costs for the first and second annotations, when using the large-

scale segmentation, are .63 and .57, compared to .74 and .76 when using no segmentation.

Figure 5.11: SSMs, reconstructions, and errors for “As the Bell Rings the May-
pole Spins,” by Dead Can Dance (salami id: 860). Top row:
Annotation-derived SSMs from two annotations. Middle row:
reconstructed matrices for each annotation Bottom row: mean
squared reconstruction error.

Examining the reconstruction coefficients (Figure 5.12), we can observe that the two
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solutions depend on fairly distinct sets of features. The first annotation (Figure 5.12(a))

is explained best by FPs in the first section (up to 1:00), and thereafter mainly by

MFCCs. By contrast, much of the second annotation is explained best by RMS. Both

solutions involve a mixture of features between 1:00 and 2:30, but the mixtures are

distinct.

Listening to the song, the different solutions match the different interpretations of the

piece. In the second analysis, the coda is given the same label as several earlier sections.

What these sections have in common, musically, is that the two main voices, the singer

and the bagpipes, play together. Since they play separately in most of the other sections,

this gives these sections a unique timbre and makes them among the loudest sections.

Hence, RMS and to a lesser extent MFCCs are a good explanation for these sections.

In contrast, the first analysis indicates no relationship between the coda and earlier

sections, and identifies larger groupings of reels as single sections. Hence, these sections

vary internally with respect to loudness, and RMS is not an important part of the

reconstruction. On the other hand, the larger groupings exclude the sections that do not

contain bagpipes, so MFCCs remain as the main part of the explanation. In addition,

FPs and periodicity histograms, which reflect rhythmic patterns, are important to both

the earlier sections and the coda. A subtle change in meter can be noted between the

coda and the earlier sections: the piece, which is in 6/8 time, is mostly played as 3 + 3,

but in the coda, the percussion presents a hemiolic 2 + 2 + 2 rhythm.

5.4 Conclusion and future work

We have introduced the problem of estimating the relevance of different acoustic features

to different sections of a structural analysis, and proposed a method of solving the

problem based on quadratic programming. The approach is founded on the intuition

that while acoustically-derived SSMs may not always reflect the perceived structure of a

piece, components of SSMs for specific features may explain the perception of structure
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in a piece-wise fashion.

The method presented is a general one and several aspects could be changed. Many

more (and more sophisticated) features could be used than the ones tested here, leading

to more detailed reconstructions at the cost of a larger QP. One could also use many

of the same SSM transformations used in the literature (see Section 5.1), filtering the

SSMs to emphasize the desired types of patterns.

Separately from the choice of features, the parameters of the QP, such as the mask

shape, could be modified to suit different problems. For example, if the masks (as in

Figure 5.4) were altered to only include the upper left portion of the SSM, a future-

agnostic analysis would result. This might be useful for modeling how a listener’s first

hearing of a piece compares with a later one in which the listener is more familiar with

it. The annotations considered here were all produced after the music had been heard

and briefly studied, so such an approach did not make sense here, but response data

that reflected one’s real-time perception of structure would perhaps best be analyzed

with such a future-agnostic framework.

Similarly, a QP using masks that emphasized or de-emphasized the main diagonal

would alter the importance of long-term memory in listening. A reconstruction that

emphasized the main diagonal would provide a solution that explained only local simi-

larities, modeling how a listener might account for their small-scale decision about struc-

ture. This version would be useful if, for instance, one considered the acoustic similarity

between the very beginning and end of a piece to be unimportant. (The more narrowly

one focuses on the diagonal axis, the more this method resembles the novelty function

calculation proposed by [Foo00]—except, instead of correlating the diagonal axis with a

checkerboard kernel, we would be correlating it with the ground truth annotation.) On

the other hand, emphasizing the off-diagonal would relax the need to explain the precise

segmentation given in the annotation, and focus on finding a justification for grouping

distant parts of the piece.
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One important caveat with our approach is that it is crucial that the annotation used

properly reflect the information that one seeks to explain. The algorithm, as presented,

will work only so far as the “states” hypothesis applies to the annotation rather than the

“sequences” hypothesis. That is, our method assumes that a section with a given label

is homogenous, and uniformly distinct from any differently-labeled section. It would

be useful to extend this work to account for “sequences” interpretation of annotations,

in which a section B is presumed to be a heterogeneous sequence of events that recurs

exactly whenever B repeats. The use of structural information at multiple timescales,

described in Section 5.2.1.1, is intended to mitigate this shortcoming, since in practice

the short-timescale annotation often charts a “sequence”-like path through the blocks of

the large-scale annotation.

A simple adaptation of our method to account for sequences would be to alter the

block-based masks so that diagonal stripes appeared in those locations where a repe-

tition was annotated. However, this is not as straightforward as it sounds, since two

annotated sections with the same label may have different lengths, and thus the stripe

locations cannot be predicted. The method would have to be redesigned to incorporate

an automatic alignment algorithm such as [MA08].

The annotations investigated here are the products of listeners, and it is possible

that our method reveals insights into how listeners analyzed the pieces: what features

they found most salient, and what groupings they paid the most attention to. However,

the findings of this chapter are strongly limited by the fact that we have relied on close

examination of a few songs as anecdotes. To establish a general correlation between the

SSMs and the listeners’ salience and grouping judgements would require new experimen-

tal data. The next chapter will describe an experiment, whose data could be used for

such purposes in the future.



Chapter 6

The effect of attention on

grouping decisions

Chapters 3–5 have built up and supported the hypothesis that listeners may pay attention

to different musical features, and that this can cause them to differ in their interpretations

of grouping structure in music. However, in each chapter, it was not clear whether there

was a causal link between the attention of the listener and their analysis. In this chapter,

we test this hypothesis in an experiment with listeners.

We study the influence of attention to musical features (including harmony, melody,

rhythm and timbre) on grouping decisions. The experiments use composed musical

stimuli exhibiting changes in particular features by design; some stimuli exhibit a single

change, while others exhibit changes in different features at different times, leading to

ambiguous segment boundaries and groupings.

The parts of the experiment address four questions: first, are listeners able to attend

to different features within a piece of music? Second, does the salience of a change in

music increase when one is focusing on the feature that changes, rather than listening

normally? Third, does focusing on a feature make a listener more likely to group sections

117
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in accordance with how that feature changes? And finally, are listeners able to correctly

extend an analysis based on an arbitrary feature? Our findings suggest that all of these

questions may be answered in the affirmative.

6.1 Introduction

6.1.1 The role of attention

Jones and Boltz [JB89] proposed that listeners can adopt one of two listening strategies:

future-oriented attending and analytic attending. In future-oriented attending, listeners

use the structure of the music to anticipate what will happen; in analytic attending, lis-

teners are focused on a shorter timescale and are only tracking events, not anticipating

them. The authors develop a formalism to describe how hierarchical levels are related

and how listeners attune to them. Most music involves deviations from an ideal hierarchy,

which can lead to more complex structures. This model is comparable to the proposal by

Hanninen that listeners may adopt either a sonic or associate orientation when analyzing

music [Han12]. The sonic orientation searches for local discontinuities and is thus aimed

at the shortest timescale, whereas the associative orientation builds on this and projects

backwards and forwards across the music in order to establish similarity relationships. In

a chapter about the relationship between repetition and attention, Margulis pointed out

that with repetition can come either ritualization or routinization [Mar14]. In ritualiza-

tion, the focus narrows to consider the subtleties of individual gestures; in routinization,

the focus broadens to grasp the scope of the narrative.

In each of these accounts of how listeners’ attention can shift, it is uncertain how much

control the listener has over how their attention shifts, and how much their attention

is guided by the music. In Margulis’ case, repetition enables both routinization and

ritualization, but how or whether one’s focus actually changes is up to the goals or

whims of the listener. In Jones and Boltz’s model, a listener chooses a mode of attending,
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but attuning to events at larger timescales may become too difficult if the information

content of the music is too high, and listeners fail to attune to the correct pulse (i.e., fail

to generate proper expectations about the music). And although sonic and associative

orientations are distinct in Hanninen’s view, she explains that as modes of attending,

they are interdependent: detecting boundaries requires identifying coherent groupings,

and vice versa.

As an example, consider Steve Reich’s “Clapping Music.” Its overall structure is very

simple to articulate: two performers clap the same rhythm repeatedly, with one performer

skipping ahead in the pattern every eighth measure. But this simple description results

in a complex musical surface, and a listener’s attention may be divided: one is partly

aware of the piece’s overall structure and one’s place in it (i.e., how many different-

sounding sections have been traversed), and yet the extreme repetition and occasional

small or stark change can draw one’s attention to the smallest timescale.

In the works above, Jones and Boltz and Margulis mainly discuss the various timescales

at which a piece of music may be regarded. But unlike “Clapping Music,” most music

is multi-dimensional, in the sense that several parameters—timing, loudness, melody,

harmony—are usually changing at once or independently. A listener’s attention may be

divided among all of these dimensions: one can pay attention primarily to the melody

of a piece, or to the changes in key centre. The musical feature being attended to, like

the timescale, can shift throughout a piece. This might happen as a matter of course:

if one is focused on the singer of a rock song but the singing stops, attention shifts to

what remains. But a shift in attention may be inspired by subtler musical changes; if the

melody ceases to evolve and begins to repeat a single gesture, attention may change to

a different timescale (as described by Margulis) or shift to the other parts of the music,

which may be continuing the evolution. Finally, attention can shift as a result of the

listener’s goals: a listener may lose interest in the lyrics and choose to focus on the other

parts.

In Chapter 3, we argued that disagreements in grouping structure arise when listeners
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pay attention to different features of a piece of music, and sought to follow the chain of

causation backwards from there. However, we could not be certain that attention was

what caused the listeners to prefer the groupings they did, or if this attention was merely

a post-hoc attribution. This is much like the question of whether novelty causes listeners

to perceive boundaries or if this is merely decided post-hoc, which was addressed in

Chapter 4. The main goal of this chapter is to determine whether paying attention to a

particular feature in music actually does cause listeners to perceive groupings according

to that feature.

6.1.2 Proposed experiments

Does paying attention to a feature lead one to prefer a grouping analysis that matches

that feature? The first and second experiments described in this chapter build further

support for this hypothesis, which is tested directly in Experiment no. 3. Experiment

no. 4 addresses a question that arose earlier in this thesis. In Chapter 3, we hypothesized

that after listeners have interpreted the beginning of a piece of music, this interpretation

colours the rest of their listening. Although this is a complex hypothesis and is not

tested completely in this thesis, we begin to answer it by assessing how plausible it is

that listeners internalize an analysis from initial excerpt and apply that understanding

to a longer excerpt.

We start with a very basic claim: that all listeners, musicians and non-musicians

alike, are capable of multi-dimensional listening. That is, listeners can discern changes

in musical patterns that are only expressed by a single feature (such as melody or timbre),

and furthermore are able to identify the feature that expressed the change. While we

may wish to take this claim for granted, it is important to test here for two reasons:

first, to establish that the patterns in the artificial stimuli we designed for all of the

experiments are in fact discernible by our participants; and second, to establish what

the importance of musical training is in developing this listening skill.
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This hypothesis is tested in Experiment no. 1: Change identification, which

has a very straightforward design. Participants listen to short excerpts which are static

with respect to all musical parameters save one. Listeners are tasked with identifying

the parameter that changed.

Assuming that participants can identify which feature expressed a change in the

music, it follows that they can pay attention to this feature and track it over time. This

leads to our second hypothesis: when listeners are paying attention to a feature, changes

expressed by that feature become more salient than they normally are.

The test for this is also straightforward. In Experiment no. 2: Salience judge-

ments, participants are asked to focus on a single feature in a short excerpt that, like

the stimuli in Experiment no. 1, exhibits a change in only one feature. The feature

they pay attention to may match the changing feature or not. Listeners rate the salience

of the change, and are expected to find the changes more salient when they have paid

attention to it.

Bruderer et al. showed that the salience of change points correlates to the probability

that listeners will perceive them as boundaries [BMK09]. Therefore, if focusing on a

feature increases the salience of changes in that feature, it should follow that listeners who

pay attention to a feature are more likely to segment a piece according to that feature.

Our third hypothesis extends this claim, suggesting that the influence of attention goes

beyond boundary detection and also affects grouping analysis. We propose that paying

attention to a feature leads one to perceive a grouping structure that accords with that

feature.

In Experiment no. 3: Pattern detection and Grouping preference, we

present listeners with an ambiguous three-part excerpt, which has structure AAB accord-

ing to one feature and ABB according to another, and ask them which grouping they

prefer. For each trial, the listener’s attention is directed toward a single feature, that

may match either of the two structures. Instead of overtly asking listeners to pay atten-
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tion to a given feature, we aim here to manipulate their attention covertly. To do so, we

ask listeners to detect whether a given pattern occurs in the excerpt; in this way, their

attention is directed to the feature that expressed the pattern.

If confirmed, this hypothesis supports the notion that attention is a mechanism that

can explain listener disagreements among otherwise similar listeners. In our examination

of listener disagreements in Chapter 3, after arguing that attention was the proximate

cause of listener disagreements, we argued that one cause of differences in attention is

how the opening moments of a piece are perceived. When a piece begins, a listener’s

ears are a blank slate and they can pay attention to whatever they happen to find most

salient. If the beginning of a piece is especially ambiguous, then how a listener perceives

these moments may have an impact on how the rest is heard.

In Experiment no. 4: Analysis continuation, we test the hypothesis that listen-

ers are able to extend an analysis to the remainder of a piece. Participants are played two

very brief samples with sparse texture, identified as A and B. We then present them with

a longer, full-textured excerpt whose structure is very ambiguous—it has form AABB,

ABAB and ABBA with respect to three different features. If participants are able to

continue the analysis correctly, this will demonstrate that it is possible for listeners to

stick with an analysis conceived in the opening moments of a piece.

Section 6.2 describes the participants, the musical materials developed for the exper-

iments, and details of the procedure. The results are presented in Section 6.3, and

discussed in Section 6.4.
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1. I have never been complimented for my talents as a musical performer.

2. I can’t read a musical score.

3. I would not consider myself a musician.

Answers for questions 1–3: (1) Completely disagree, (2) Strongly disagree, (3)
Disagree, (4) Neither agree nor disagree, (5) Agree, (6) Strongly agree, (7)
Completely agree.

4. I engage in regular, daily practice of a musical instrument for hours.

5. At the peak of my interest, I practiced hours per day on my primary
instrument.

6. I have played or sung in a group, band, choir, or orchestra for years.

7. I have had formal training in music theory for years.

8. I have had years of formal training on a musical instrument.

9. I can play musical instruments.

Answers for questions 4–9: 0, 1, 2, 3, 4–5, 6–9, 10 or more.

Table 6-A: Musical training survey questions

6.2 Method

6.2.1 Participants

Participants were recruited via emails to academic and social lists at universities in the

UK and in Canada, and on international academic lists. Aside from a stipulation that

participants be at least 18 years old, no participant was refused.

A total of 87 participants completed all four parts of the experiment, including 50

men and 35 women (2 did not report their gender). Participants ranged in age from 20

to 71 years with a median of 30 (M = 34.26, SD = 12.55).

The level of musical training of the participants was assessed at the end of the exper-

iment using a set of nine questions from the Goldsmiths Musical Sophistication Index

[MGMS14], shown in Table 6-A. Each answer was scored on a scale of 0 to 6 and the

scores were summed to produce an overall ability score. The scores fell mostly between

20 to 50 with a median of 36 (M = 34.28, SD = 7.11).

Since the balance of these characteristics was not controlled, we tested for spurious
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correlations. Gender was well decorrelated from age (d.f. = 84, r = .03, p = .78) and

ability (d.f. = 82, r = .06, p = .57). There was a slight negative correlation between age

and ability, although this trend only approached significance (d.f. = 82, r = −.18, p =

.11) and is probably due to a few outlying participants with higher age and lower reported

ability. These outliers were not removed, leading to some spurious age-related effects

among the results, as will be seen later.

We also tested for whether any of these characteristics correlated with the main

blocking variables in the experiment: these were the musical environment and the stim-

ulus set used in each part (described below). Without applying any correction for the

multiple comparisons required (which would have increased all p-values beyond 0.05),

we did discover some slight anomalies: those who received the second (out of four) sets

of stimuli skewed male, as did those who heard the “HT-MR” music (explained in the

following section) on Experiment no. 4. But overall, a fair cross-section of participants

completed each version of the experiment.

6.2.2 Material

Musical environments were created in which four musical attributes could be system-

atically manipulated: chord progression, melody, rhythm, and timbre. A great many

other attributes could have been chosen (e.g., loudness, tempo, dynamics, register), and

subtler aspects of these attributes could have been manipulated systematically (e.g.,

degree of syncopation in rhythm, level of dissonance in a melody). However, the more

attributes involved, the greater the experiment size. We chose the four attributes based

on their ability to be manipulated independently, their importance (among other fea-

tures) in communicating form (as reported, e.g., in [CK90]), and their use in previous

work [BMK09].

For each musical environment, two parts were composed that expressed these four

attributes. The environments differed in how the attributes were varied in the voices;
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in other words, which voices were “convolved” (in the sense of “entwined,” not the

mathematical sense). In the “HR-MT” environment, harmony is convolved with rhythm,

and melody with timbre: that is, one voice plays two different chord progressions with

two different rhythms (a total of four possible chord parts), while the other voice plays

two different melodies with different timbres (four possible melody parts). In the “HM-

RT” environment, harmony is convolved with melody, and rhythm with timbre; in the

“HT-MR” environment, harmony is convolved with timbre, melody with rhythm. Given

an environment, a measure of music can be created by choosing one of the four possible

parts for one voice, and one for the other, for a total of 16 “stems.” The eight parts

composed for the “HT-MR” environment are shown in Figure 6.1.

Figure 6.1: Voice parts for the HT/MR environment. Above: four combina-
tions of melody and rhythm. Below: four combinations of harmony
and timbre.

Using these two-voice stems, we can compose brief passages of music that express

whatever form, with respect to whatever musical attributes, we like. The most basic

passages, used in experiments 1 and 2, present listeners with examples that have an AB

structure by having a single feature change its pattern in the middle. An example is

shown in Figure 6.2 in which the harmony, melody and timbre are constant throughout,

but the rhythm changes halfway through. Experiment 3 included three-part stimuli in

which two features varied, each expressing pattern AAB or ABB (Figure 6.3), and in

Experiment 4, each stimulus had form AABB, ABAB and ABBA with respect to three

different features (Figure 6.4). (To keep the length of the four-part stimuli manageable,



Chapter 6. The effect of attention on grouping decisions 126

the stems were not repeated.)

Figure 6.2: Example two-part stimulus with pattern AB with respect to
rhythm. This particular pattern has codename HB-MA-RAB-TB.

Figure 6.3: Example three-part stimulus with pattern AAB with respect to
chord progression and ABB to melody. This particular pattern
has codename HBBA-MB-RA-TABB.

Figure 6.4: Example four-part stimulus with pattern ABBA with respect to
chord progression, AABB to melody, and ABAB to rhythm. This
particular pattern has codename HBAAB-MAABB-RABAB-TB.

The music was composed using Digital Audio Workstation software with standard

available instrument sounds. All features other than the four being manipulated were

held approximately constant across the sets of stimuli and within each set. Specifically,

all the clips had the same exact tempo (140 beats per minute), and no dynamic patterns

(e.g., crescendos or diminuendos) were used. Although the software was not capable of

precisely equalizing loudnesses, each voice and each set of music were set to have roughly
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equal loudness. Finally, when a voice was not meant to express a feature, that feature

was held constant across all versions of the voice. For example, in the set where rhythm

was convolved with harmony, the melody voice still had a rhythm, but this rhythm was

held constant for this set of stimuli.

6.2.3 Procedure

The sequence of the experiment was as follows. Screen captures of each portion of the

experiment are reproduced in Appendix A.

Explanation of music analysis. The experiment began with a very broad definition

of music analysis as “a compact description of the patterns in the music”, and

explained how strings such as ABAB can be used to record an analysis, in a

manner similar to rhyme schemes in poetry.

Experiment no. 4: Analysis continuation. This experiment contained 12 trials, pre-

ceded by an introductory set of 4 trials.

Definition of musical terms. This page defined the terms melody, chord, rhythm and

timbre. The page included a rendition of “Twinkle Twinkle, Little Star”, and

following each definition, participants could hear an example taken from this tune.

Participants then had to say how confident they were that they understood the

definition on a scale from 1 (“not at all confident”) to 5 (“totally confident”).

Experiment no. 3: Pattern detection & grouping preference. This experiment

contained 12 trials, preceded by an introductory set of 3 trials.

Experiment no. 2: Salience judgements. This experiment contained 12 trials.

Experiment no. 1: Change identification. This experiment contained 12 trials.

Additional information. This section contained the musical training survey questions

described in Table 6-A, and a text box for participants to leave any comments they
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wished.

The sequence of the experiments is summarized in Table 6-B. Note that participants

completed the parts in the order opposite to their presentation here: participants began

with Experiment no. 4, the least directed task, and progressed to Experiment no. 1,

the most directed task. This scheme was used so that the more specific instructions of

experiments no. 3 and no. 4 were not used by listeners to guide their listening in no. 1

and no. 2.

Table 6-B also indicates how the musical environments varied across trials: although

randomized across participants, every participant heard the same musical environment

for the first and final parts. The table also summarizes the form the stimuli took in each

part, and the anticipated time to complete each part told to each participant. We gave

participants this time estimate to prevent participants from overthinking; during testing

we found that participants could become indecisive and spend too long on each trial.

The prompt had the desired effect: the mean time taken to solve the four main parts of

the experiment was at most 10, 15, 5 and 5 minutes, compared to a projected 8, 12, 6

and 6, respectively.

In every experiment below, two independent variables changed across participants:

(1) the musical environment assigned to each task, and (2) the stimuli sequence. Four

unique stimuli sequences were constructed for each task, although not every sequence

contained 12 unique sounds (details below).

6.2.3.1 Experiment no. 1: Change identification

Hypothesis: Listeners (musicians and non-musicians alike) are able to consciously seg-

ment a piece of music according to changes in a specified feature when asked. That is,

their understanding of these stimuli is multi-dimensional. To test this, ask listeners to

identify what changed in a stimulus and expect them to answer correctly.
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Task: Participants were presented a stimulus with a single change in the middle

(structure AB) and asked to listen. The question posed was: “Please indicate the

musical feature that changed during this excerpt.” The possible answers were “Chord

progression”, “Melody”, “Rhythm”, “Timbre”, or “No change.”

Variables: Each participant’s 12 stimuli included 8 different sound samples, with

each of the four features changing in two different examples. The last four stimuli were

repetitions of 4 earlier stimuli, one for each feature. Thus, two independent variables

were varied within participant: the feature that changed, and whether the stimulus had

been heard before.

The response variable was whether the change was correctly identified.

6.2.3.2 Experiment no. 2: Salience judgements

Hypothesis: Paying attention to a feature causes a change in that feature to be more

salient than a change in another feature. Since change salience correlates with bound-

ary placement [BMK06], our hypothesis implies that focusing on a feature leads to the

perception of boundaries when that feature changes. To test this, we ask listeners to

concentrate on a given feature and expect the rated salience to be greater when they are

concentrating on the feature that changed.

Task: Participants were presented a stimulus with a single change in the middle

(structure AB) and told to pay attention to a specific feature (either chords, melody,

rhythm or timbre). The question posed was: “How strong is the change at the midpoint

of the excerpt?”, with answer ranging from “1. Not strong at all” to “5. Extremely

strong.”

Variables: The independent variables varied within each participant were the focal

feature (the feature they were told to pay attention to) and the changing feature. The

combination of focal and changing feature was varied, with three possible outcomes:
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“match” (the focal and changing features were the same), “convolved” (the focal feature

was expressed by the same voice as the changing feature), and “wrong” (the focal and

changing features were carried by different voices). Each participant’s 12 stimuli included

only 4 unique sound stimuli—each containing a different changing feature—and the focal

feature was varied across the three presentations per stimulus. Participants never heard

the same stimulus twice in a row.

The response variable was the salience of the boundary, rescaled from −2 to +2.

6.2.3.3 Experiment no. 3: Pattern detection & grouping preference

Hypothesis: Paying attention to a feature (even when this attention is not completely

conscious) makes one more likely to analyze a piece according to that feature. To test

this, we direct participants’ attention to a feature in an ambiguous stimulus and expect

them to prefer the analysis that matches this feature.

Task: Each trial had two subtasks. First, participants were shown a target musical

pattern (labelled as either a melody, chord progression, rhythmic pattern or timbre) and

had to answer whether the pattern occurred in a longer three-part stimulus; the possible

answers were “yes”, “yes, but only a variation”, “no” and “I don’t know.” Second,

participants were asked to re-listen to the three-part stimulus and indicate the analysis

that they thought fit best: AAB or ABB. They then indicated their confidence on a

5-point Likert scale from “not at all certain” to “totally certain.”

We further hypothesized that confidence in one’s answer would be greater when the

target pattern was present and when the target feature was relevant to the analysis.

A short introduction to this experiment was used to establish a baseline of preference

for each stimulus. Participants heard three different three-part stimuli and were asked

only to indicate which analysis they preferred, AAB or ABB. No target pattern was

given.
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Variables: Each participant heard 12 unique stimuli, each of which was defined by

two variables: the feature expressing AAB and the feature expressing ABB. All six

combinations of two changing features appeared twice. The choice of target pattern

defined three more variables: the focal feature (the type of pattern being focused on),

the presence of the target (in half of the trials, the target pattern was absent from the

stimulus; in half, it was present), and the relevance of the target (in half of the trials,

the focal feature matched one of the two changing features of the stimulus; in half, it did

not match either).

The response variables for each trial were whether the target’s presence was deter-

mined correctly or not, whether the suggested analysis matched the implied analysis,

and the participant’s confidence in their choice of analysis.

Note that the target pattern was always somewhat abstracted from the musical envi-

ronment. The harmony and melody parts were always played on piano; the rhythmic

patterns were played with a single drum sound; and a single note was played for the

timbre examples. Also, “fake” targets that were comparable to the composed patterns

were written for those cases when a target was required to be absent. For example, a

target chord progression was created that matched the spacing and rhythm of the actual

chord progressions, but which did not appear; see Figure 6.5.

(a) (b)

Figure 6.5: Example targets for Experiment no. 3. (a) A target chord pro-
gression that is present in the stimulus in Figure 6.3 (implying
analysis AAB). (b) A “fake” target chord progression that is not
present but which matches other properties of the voice.
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6.2.3.4 Experiment no. 4: Analysis continuation

Hypothesis: Listeners who interpret the beginning of a piece in one way can use this

to guide their continued analysis. To test this, we present listeners the beginning of an

analysis, ask them to continue it, and expect them to do so correctly. (Note: we are

here only testing whether listeners can do this, not whether they do do this in general

listening.)

Task: Participants were asked to “imagine someone has listened to a piece and

analyzed its structure”, and in doing so labelled two short clips as A and B. These

prompts only contained one voice of the musical environment; for example, in the “HR-

MT” environment, only the harmony-rhythm voice might be used (see Figure 6.6). After

being presented with the prompts, participants heard a four-part clip and were asked

to guess how the hypothetical listener would have analyzed it: as AABB, ABAB or

ABBA. They then indicated their confidence on a 5-point Likert scale from “not at all

certain” to “totally certain.”

A short introduction to this experiment was used to establish a baseline of preference

for each stimulus. Participants heard four different four-part stimuli and were asked only

to indicate which analysis they preferred, AABB, ABAB or ABBA. No prior analysis

was given.

(a) (b)

Figure 6.6: Example prompt for Experiment no. 4. The patterns labelled “A”
and “B”. This would be followed by the presentation of a stimulus
like that in Figure 6.4.

Variables: Each stimulus was defined by three variables: the features expressing

forms AABB, ABAB and ABBA. Participants heard four unique stimuli presented

three times each, though the same stimulus was never heard twice in a row. The focal
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feature was the feature that varied across the two prompts. The three presentations of

each stimulus used a different focal feature each time, and the focal feature was always

one of the three changing features.

The two response variables were whether the participant guessed the correct form or

not, and the confidence of their answer.

6.3 Results

6.3.1 Experiment no. 1: Change identification

Participants were shown 12 stimuli and asked which feature changed in the middle of

each one. The likelihood of guessing the correct answer by chance is 25%, since there

were four features. (There was a fifth answer option, “No change,” which was given 6%

of the time, but something did change each time.) The variables in the experiment are

summarized in Table 6-C.

How varied
among partici-
pants

Feature Codename levels

Within Changing feature change feat harmony, melody,
rhythm, timbre

Within Whether stimulus
was heard before

heard before no, yes

Between Musical environ-
ment

music HR-MT, HT-MR,
HM-RT

Between Stimulus
sequence

stimset 1, 2, 3, 4

Uncontrolled Musical training
score

ability 15–48 points

Uncontrolled Age age 20–71 years

Uncontrolled Gender gender female, male

Dependent Answer value correct 1, 0

Table 6-C: Summary of variables in Experiment no. 1
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Among 87 participants, there were 886 correct answers out of 1044, an accuracy of

85.87%. A binomial test, whose null hypothesis is that the chance of success on each trial

was 0.25, confirmed the obvious: success was significantly better than chance (p < 10−16),

and we may conclude that overall, listeners were capable of multi-dimensional listening,

or of abstracting individual musical features from the whole. Still, there were a number

of people who fared poorly. For an individual’s 12 trials, 7 successes were necessary for

the binomial test to show that the individual performed better than chance. Out of 87

participants, 6 did not surpass this threshold.

This gives an overall picture, but the factorial experiment design allows us to look

deeper. Since the output variable, correct, was binary, we used binomial logistic regres-

sion to model participants’ response as a function of the independent variables: change -

feat, heard before, music, ability, age and gender. We treated each individual and each

stimulus sequence as a random block, since each of these were drawn from a larger popu-

lation to which we wish to extrapolate the results. All the other factors were fixed effects

and we looked for first- and second-order interactions between them. The model was

computed in R (like all the models in this chapter) and the full table of fitted coefficients

(like all the tables of effects in this chapter) may be seen in Appendix B. For brevity, we

show only the significant effects in Table 6-D.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.67 0.96 3.84 0.00

ability 1.25 0.57 2.20 0.03
ability:musicHTMR -1.22 0.58 -2.08 0.04

change featTimbre:musicHMRT -2.25 0.81 -2.80 0.01
change featMelody:age -0.63 0.27 -2.34 0.02

musicHMRT:heardbefore 1.29 0.58 2.21 0.03

Table 6-D: Significant effects in linear model for Experiment no. 1

The single significant main effect was the self-reported musical training of the partic-

ipants (p = 0.028). A scatter plot of participant’s average scores against their training

reveals a strong positive correlation (see Figure 6.7).

The strongest interaction effect was a negative one between “Timbre” and “HM-RT”
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Figure 6.7: Experiment no. 1: Scatter plot showing main effect of musical
training on identification accuracy, with line of best fit. Jitter has
been applied to the training scores to help distinguish points.

(p = 0.005), indicating that many participants failed to correctly identify timbre changes

in this environment (see Figure 6.8).
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Figure 6.8: Experiment no. 1: Interaction plot of changing feature and musi-
cal environment on identification accuracy.

Whether the stimulus had been heard before or not did not have a main effect, but

there was a significant interaction between it and the environment. Listeners in the “HR-

MT” environment more often changed their answer for the worse (see Figure 6.9), while

in the “HM-RT” environment, they often corrected their mistakes, and the difference

between these changes was significant.



Chapter 6. The effect of attention on grouping decisions 137

●●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

1st 2nd
1st or 2nd time hearing of stimulus

M
ea

n 
ch

an
ge

 id
en

tif
ic

at
io

n 
ac

cu
ra

cy

music

●

●

●

HR−MT

HT−MR

HM−RT

Figure 6.9: Experiment no. 1: Interaction plot of exposure (whether the stim-
ulus had been heard once before or not) and musical environment
on identification accuracy.

A negative interaction between ability and the “HT-MR” environment was also found,

reflecting the fact that participants with less musical training still did well in this set of

stimuli. And finally, the interaction effect between age and the melody feature suggests

that younger participants identified melodic changes more accurately than other features,

and older participants worse than others. However, this may be due to undersampling

among older participants.

6.3.1.1 Convolved features

So far, we have only treated the changing feature as the correct answer. However, this

feature was convolved with another feature by being expressed by the same voice, and

providing the “convolved feature” as the answer is arguably also correct.

First, we observe that of the 158 incorrect answers, 63 of them were “No change”

and the other 95 were genuine misattribution errors. Of these 95 misattributions, a large

number were to the convolved feature: 61.1%, rather than the chance level of 33%. A

binomial test confirmed the difference is significant (p < 10−7).

Re-running the model analysis from the previous section, we can obtain a new set
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of significant effects (Table 6-E). Most noticeably, the main effect of ability has been

reduced to marginal significance (p = 0.090); evidently, many of the mistakes made by

less-trained participants were convolved-feature errors.

In addition, the change featTimbre:musicHMRT interaction has disappeared (p =

0.29), since most of the errors in the “HM-RT” environment had been confusion about

what had changed in the percussion voice, which expressed either changes in rhythm or

in timbre. The new interaction effects between age and other factors, as before, seem

spurious and attributable to the undersampling of older participants, as noted in Section

6.2.1.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.03 1.06 3.79 0.00
ability:age 0.57 0.26 2.17 0.03

change featMelody:musicHMRT 3.10 1.34 2.32 0.02
change featMelody:age -0.83 0.36 -2.30 0.02

change featRhythm:age -1.10 0.36 -3.05 0.00
musicHMRT:heardbefore 1.61 0.69 2.34 0.02

Table 6-E: Significant effects in updated linear model for Experiment no. 1,
treating convolved-feature errors as correct.

Summary

Overall, participants were skilled at identifying the feature that changed. As expected,

errors tended to be misattributions of the changing feature to the other feature expressed

by the same voice; for example, if the rhythm of the melody changed, it was common

to respond that the melody had changed. Whether such responses were even errors is

debatable. If treated as errors, there was a significant effect of musical training on answer

correctness; if treated as correct, then the effect of musical training was marginal.
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How varied
among partici-
pants

Feature Codename levels

Within Changing feature change feat harmony, melody,
rhythm, timbre

Within Match between
attention and
change stimulus

match match, convolved,
wrong

Between Musical environ-
ment

music HR-MT, HT-MR,
HM-RT

Between Stimulus
sequence

stimset 1, 2, 3, 4

Uncontrolled Musical training
score

ability 15–48 points

Uncontrolled Age age 20–71 years

Uncontrolled Gender gender female, male

Dependent Salience ans sals −2,−1, 0, 1, 2

Table 6-F: Summary of variables in Experiment no. 2

6.3.2 Experiment no. 2: Salience judgements

The variables in the experiment are summarized in Table 6-F. For each trial, participants

were asked to pay attention to one feature (the focal feature), and then to rate how salient

the change was. In the match condition, the focal feature matched the changing feature;

in the convolved condition, the focal feature and the changing feature were expressed in

the same voice, and in the wrong condition there was a complete mismatch.

As before, we first take a broad look at the data, and then analyze the experiment

with a linear model. We first test the null hypothesis that there is no difference in salience

among the match conditions; a Kruskal-Wallis test easily rejects that (H = 362.7, df =

2, p < 10−15). We then perform a Mann-Whitney U test for each pair of conditions

(with Bonferroni correction applied). The test indicates significant differences between

the match condition and each of the other conditions (W > 98, 851, p < 10−15), as

well as a much smaller but still significant difference between the convolved and wrong

conditions (W = 67, 773, p = 0.0024). Participants in the wrong condition found the
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changes slightly less salient than in the convolved condition and much less than in the

match condition.

We analyzed the experiment with a general linear mixed effects model, which char-

acterized salience as a function of the independent variables and their secondary inter-

actions: change feat, match, music, ability, age and gender. As in Experiment no. 1,

the individuals and stimulus sequences were treated as random blocking effects. The

significant effects appear in Table 6-G.1

Estimate Std..Error t.value p.z

(Intercept) -1.33 0.19 -6.89 0.00
change featRhythm -0.49 0.21 -2.33 0.02

matchMatch 2.43 0.20 12.24 0.00
ability:change featMelody -0.21 0.09 -2.22 0.03

ability:matchMatch 0.29 0.08 3.58 0.00
change featRhythm:matchMatch -0.77 0.22 -3.50 0.00
change featTimbre:matchMatch -0.60 0.22 -2.69 0.01

change featRhythm:matchWrong -0.44 0.22 -1.98 0.05
change featTimbre:matchWrong -0.52 0.22 -2.34 0.02

change featRhythm:musicHT-MR 0.99 0.23 4.34 0.00
change featMelody:musicHM-RT 0.74 0.22 3.41 0.00

change featRhythm:musicHM-RT 0.48 0.22 2.21 0.03
change featTimbre:musicHM-RT 0.43 0.22 1.96 0.05

matchMatch:musicHT-MR -0.48 0.20 -2.42 0.02
matchMatch:musicHM-RT -0.95 0.19 -5.06 0.00
matchWrong:musicHM-RT -0.47 0.19 -2.48 0.01

Table 6-G: Significant effects in linear model for Experiment no. 2.

There were two main effects, with variation observed among match conditions and

features. In addition, there were several significant interactions between these two factors

and the musical environment.

The match condition was the most important factor (p < 10−15). The main effect plot

in Figure 6.10(a) illustrates what the Mann-Whitney U tests showed earlier: matching

one’s focus to the change in the stimulus led to a great increase in salience, and changes

in the convolved condition were slightly more salient than in the wrong condition.

1Significant effects were those whose 95% confidence interval did not span 0. The p-values presented
were estimated from the t-statistic, since the t-distribution converges to the normal distribution when
the degrees of freedom are large, and our second-order model had over 800 unused degrees of freedom.
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The main effect of changing feature shows that changes in rhythm were less salient

than other changes (see Figure 6.10(b)) . This may be a result of how the musical

changes were expressed: while rhythmic changes always required some time to recognize

(at least the time until the next onset), the other changes did not: new timbres were

sounded immediately, new chord progressions always began on a new chord, and two of

the three melody changes involved a change in the first note. Hence, it may be the lack

of suddenness in rhythmic changes that made them less salient.
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Figure 6.10: (a) Main effect of match condition on rated salience of change.
(b) Main effect of changing feature on rated salience of change.

Musical training interacted with both match condition (p = 0.0003) and the melody

changes (p = 0.026). As seen in Figure 6.11(a), with increasing musical training came

and increasing contrast in the salience of the match and wrong conditions. Meanwhile,

the interaction with melody amounts to the trend that those with less musical training

found melodic changes much more salient than average (see Figure 6.11(b)). Perhaps

there is a tendency to focus on changes in melody, and with greater musical training

comes the ability to ignore these changes.

The changing feature, the musical environment and the match condition all had

several significant interactions between them, shown in Figure 6.12. In the “HM-RT”

environment, harmony changes were less salient than the others, and in the “HT-MR”
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environment, rhythm changes were more salient than usual (Figure 6.12(a)). In the latter

case, it seems that changes in rhythm, usually deemed less salient than average, became

more salient thanks to being associated with the melody. However, the opposite was

the case for changes in harmony: they were least salient when convolved with melody in

the “HM-RT” environment. This may be due to the specific nature of this convolution:

although the melody and chord progression in “HM-RT” are played using the same

instrument, they are still functionally independent. Therefore, the convolution in this

environment may be less strong.

The interaction between match condition and musical environment (Figure 6.12(b))

can be summarized as: in the “HR-MT” environment, salience was especially high in

the match condition, while the “HM-RT” environment, salience was higher than average

in the convolved condition. Finally, in Figure 6.12(c), we can see that rhythm and

timbre changes were especially salient in the convolved condition—that is, when they

were expressed by another feature, especially the melody: rhythm and timbre changes

were each strongest in environments in which they were convolved with melody (see

Figure 6.12(a)).

Summary

The judged salience of changes was greatest when listeners were asked to pay attention

to the feature that expressed the change. There was also a slight but significant increase

in salience when attention was directed not to the change but to another aspect of the

voice that did change (this was the convolved condition). The contrast between these

conditions increased with greater musical training. Overall, changes in rhythm were

judged as less salient; rhythm and timbre changes were judged to be especially salient

when convolved with melody. However, the salience of melodic changes lessened with

greater musical training.
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Figure 6.12: Interaction effect on rated salience of change for (a) changing fea-
ture and musical environment, (b) match condition and musical
environment, and (c) changing feature and match condition.
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How varied
among partici-
pants

Feature Codename levels

Within Focal feature focalfeat harmony, melody,
rhythm, timbre

Within Target presence presence absent, present

Within Target relevance relevance irrelevant, rele-
vant

Between Musical environ-
ment

music HR-MT, HT-MR,
HM-RT

Between Stimulus
sequence

stimset 1, 2, 3, 4

Uncontrolled Musical training
score

ability 15–48 points

Uncontrolled Age age 20–71 years

Uncontrolled Gender gender female, male

Dependent Pattern detection correct pres 0, 1

Dependent Form agreement correct form 0, 1

Dependent Analysis confi-
dence

ans cons −2,−1, 0, 1, 2

Table 6-H: Summary of variables in Experiment no. 3

6.3.3 Experiment no. 3: Pattern detection & grouping preference

The variables in the experiment are summarized in Table 6-H. Each of the 12 trials had

two parts: first, participants were shown a target pattern of a particular feature type

(the focal feature), and asked whether the pattern occurred in a longer excerpt (it was

either absent or present). This was essentially a distractor task to get participants to

focus on a particular feature. Second, participants indicated the analysis of the excerpt

they preferred (AAB or ABB) and their confidence in their answer. The focal feature

was either relevant or irrelevant to this grouping; in cases where it was relevant, we

recorded the agreement between their answer and the form implied by the focal feature.

When participants were asked if the target pattern appeared, they had four options:

“yes”, “no”, “I don’t know”, and “yes, but only a variation.” The last option was

intended to allow participants who detected the pattern, but were reluctant to say so



Chapter 6. The effect of attention on grouping decisions 146

because it appeared inexactly, to give a qualified “yes.” Our original intention was thus

to group “yes” and “variation” responses together. However, this answer was given about

as often when the pattern was present and absent (see Table 6-I). Treating “variation”

as “yes,” as intended, the pattern identification rate was 75.3%, which a binomial test

confirms is above the chance level of 50% (p < 10−15). If we disregard “variation”

answers and only consider trials where a clear yes/no/IDK answer was given, success

rises to 81.8%.

Yes No IDK Variation

Present 406 26 15 73
Absent 91 307 27 95

Table 6-I: Answers provided in the pattern-detection task. Bold answers were
treated as correct. Italicized answers could arguably be discarded,
but were retained in the analyses.

Among trials where the target pattern’s feature was relevant to the form of the

excerpt, we are interested in how many chose the form associated with the feature. Out

of 522 trials, the implied form was chosen 341 times, a rate of 65.3%, significantly above

the 50% chance rate (p < 10−11).

Our next hypothesis was that confidence in one’s answer would increase when the

pattern was present, and also when the pattern was relevant. This was indeed the

case: a Mann-Whitney U test found a difference in confidence between the relevant and

irrelevant conditions (W = 125, 407, p = 0.044) and between the present and absent

conditions (W = 123, 813, p = 0.018).

Grouping decision agreement

With the same approach as in Experiment no. 1, we used binomial logistic regression to

model correct form—whether the listener’s grouping decision matched the focal feature

or not—as a function of the independent variables. There were several significant main

effects (see Table 6-J): focal feature, environment, and age.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.41 0.55 2.58 0.01

focalfeatRhythm -2.04 0.63 -3.27 0.00
focalfeatTimbre -1.68 0.63 -2.66 0.01

musicHT-MR -1.70 0.70 -2.43 0.01
age -0.78 0.32 -2.45 0.01

focalfeatMelody:musicHT-MR 2.55 1.10 2.32 0.02
focalfeatRhythm:musicHT-MR 4.28 0.82 5.24 0.00
focalfeatTimbre:musicHT-MR 2.10 0.74 2.85 0.00
focalfeatTimbre:musicHM-RT 1.63 0.72 2.25 0.02

focalfeatRhythm:age 0.63 0.32 1.96 0.05
musicHT-MR:age 0.85 0.33 2.61 0.01

Table 6-J: Significant effects in linear model for Experiment no. 3: Grouping
preference

The focal feature main effects indicate that listeners were less likely to be swayed by

the influence of the target when a rhythmic or timbral target was given. This trend is

evident in Figure 6.13. However, although participants always agreed with target feature

above 50%, it is not necessarily true that the chance level was 50% for each feature. We

saw in Experiment no. 2 that melodic changes were more salient than rhythmic ones,

for example, and it stands to reason that listeners are more likely to analyze a piece

according to melody than rhythm anyway.

To account for this, Experiment no. 3 was preceded by a pre-test. Participants were

asked to provide their preferred analysis for a few stimuli in the absence of any direction.

The average rate at which participants’ preferred analysis matched each feature is plotted

as the baseline in Figure 6.13. Finally, this figure also plots the average rate at which

listeners agreed with each feature despite the distractor task directing their attention

towards a different feature.

Comparing the “direct” condition to the “baseline” condition, we see that although

agreement seemed lower in rhythm, there was a similar boost in salience in rhythm

compared to harmony and melody. The timbre feature is the odd one out: despite being

a more salient feature than harmony and rhythm when attention was free to wander,

the act of focusing on timbre was less influential. (However, binomial testing on the
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difference in agreement between the “direct” and “baseline” conditions still turned up

significant differences: p = 0.006 for timbre, p < 10−7 for the other features.)
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Figure 6.13: Main effect of focal feature on grouping agreement. The “direct”
line gives the rate at which participants’ analyses matched each
feature when attention was directed towards it. The “misdi-
rect” line gives the same rate for when participants’ attention
was directed away from it. The “baseline” gives the same rate
when participants’ attention was no directed either way.

The main effect plots for musical environment and age are unimpressive (see Figure

6.14) and suggest that these factors are not in fact significant on their own. However,

environment interacted strongly with focal feature. The interaction between feature and

music is plotted in Figure 6.15. (We have for each environment a separate baseline of

grouping preferences.) The influence of the target task was less for harmony in the

“HT-MR” environment, and the influence of timbre particularly bad in the “HR-MT”

environment—in fact, this is the only case where the attention task had a negative effect

on agreement.

The remaining interaction effects, between age and both rhythm and “HT-MR”,

suggest that older participants were more swayed by the influence of the distractor task

in these cases. Both effects are very weak and perhaps a result of outliers.
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Figure 6.14: (a) Scatter plot showing main effect of age on grouping agree-
ment, with line of best fit.
(b) Main effect of musical environment on grouping agreement.

Grouping decision confidence

We next examine how the experimental factors affected the confidence with which people

provided the grouping decisions analyzed above. However, we expand our view to include

those trials where the target pattern was not relevant to the grouping. We computed

a general linear mixed effects model to characterize confidence as a function of the
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6.13).

independent variables. However, the second-order model turned out to be a very poor

fit to the data, discovering only one significant main effect (of musical environment).

So, we present instead a much simpler first-order model. The significant factors are

presented in Table 6-K, and include several main effects—although, curiously, not musical

environment.

Estimate Std..Error t.value p.z

(Intercept) 0.54 0.18 3.03 0.00
presencePresent 0.12 0.05 2.64 0.01
focalfeatMelody 0.18 0.06 2.89 0.00

ability 0.17 0.08 2.08 0.04
age -0.23 0.08 -2.87 0.00

relevanceRelevant 0.13 0.04 2.98 0.00

Table 6-K: Significant effects in linear model for Experiment no. 3: Answer
confidence (all trials)

We had hypothesized that when the pattern was present, compared to absent, and

when the pattern was relevant, compared to irrelevant, that listeners would have greater

confidence in their grouping decision. The main effect plots in Figure 6.16 show this was

indeed the case, with both factors having about an equal, if slight effect. An interaction
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plot in the same figure demonstrates their additive effect.

The other main effect plots (Figure 6.17) show that confidence correlated positively

with musical training, and negatively with age, and that participants were more confident

than usual when the target pattern was a melody.

Pattern detection performance

Although it is of secondary interest, we also constructed a linear model using logistic

regression to analyze the effect of each factor on whether the participant correctly deter-

mined the presence of the target pattern. The significant effects are reported in Table

6-L (see Table 2-E for all factor estimates).

Estimate Std. Error z value Pr(>|z|)
ability 0.81 0.30 2.69 0.01

focalfeatRhythm 1.63 0.58 2.83 0.00
musicHM-RT 2.09 0.62 3.36 0.00

presencePresent 2.85 0.54 5.24 0.00
relevanceRelevant 1.07 0.45 2.34 0.02

focalfeatRhythm:musicHM-RT -2.52 0.69 -3.67 0.00
focalfeatMelody:genderf 1.58 0.54 2.91 0.00

focalfeatRhythm:genderf 1.50 0.56 2.65 0.01
musicHM-RT:age -0.64 0.29 -2.22 0.03

musicHM-RT:relevanceRelevant -1.12 0.50 -2.25 0.02
presencePresent:relevanceRelevant -1.26 0.46 -2.77 0.01

Table 6-L: Significant effects in linear model for Experiment no. 3: Pattern
recognition.

There are several main effects, plotted in Figures 6.18 and 6.19. As in Experiment

no. 1, success at the task increased with greater musical training. Participants were

also best at identifying the melodic and rhythmic patterns, and worst at identifying the

chord patterns. The chord patterns, admittedly, were often difficult to discern, since the

chord qualities were very simple (only major or minor). Pattern recognition was best in

the “HM-RT” musical environment.

Whether the pattern was present or not evidently had a large impact (Figure 6.19(b));
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Figure 6.17: (a) Scatter plot showing main effect of musical training on group-
ing confidence.
(b) Scatter plot showing main effect of age on grouping confi-
dence.
(c) Main effect of focal feature on grouping confidence.

the plot suggests that participants were more likely to make Type I errors, claiming the

pattern occurred when it was in fact absent, than to say it did not occur when it was

present (this can be confirmed in Table 6-I).
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Figure 6.18: Scatter plot showing main effect of musical training on pattern
detection accuracy.

The final main effect plot (Figure 6.19(d)) is rather unimpressive: there is a very

small and yet significant increase in accuracy when the pattern was relevant—that is,

when the pattern was present for only part of the time, but changed partway through.

However, turning to the interaction plots in Figure 6.20, we see an interaction between

relevance and presence (Figure 6.20(a)). When the target pattern was present, relevance

decreased accuracy; when the pattern was absent, relevance increased accuracy. In the

absent condition, the change from irrelevance to relevance meant that listeners, who were

paying attention to the focal feature, heard that feature change; this change may have

sharpened their focus and allowed them to realize that the pattern did not occur. In

the present condition, relevance meant that the target pattern occurred for less of the

stimulus; this may have made listeners less certain it had occurred.

Relevance also interacted with the musical environment. While there was, overall, a

clear difference between the identifiability of patterns in the three environments, with

“HM-RT” patterns easier to spot, relevant patterns in the “HR-MT” environment were

especially well-identified (Figure 6.20(b)). The reason seems to lie with the harmonic-

rhythmic pattern. The chord pattern was in fact a single chord, either major or minor,
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Figure 6.19: Main effect on pattern recognition accuracy of (a) focal feature,
(b) presence of pattern, (c) musical environment, and (d) rele-
vance of pattern.

repeated. A target chord quality may have been easier to discern when the chords in the

excerpt changed, explaining the improved performance in the relevant condition.

An interaction effect between focal feature and musical environment, seen in Figure

6.21(a), reveals that the patterns composed for some environments were harder to detect

than others. For example, although detection was poorest for harmonic patterns overall



Chapter 6. The effect of attention on grouping decisions 156

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

Absent Present
Presence

M
ea

n 
pa

tte
rn

 id
en

tif
ic

at
io

n 
ac

cu
ra

cy

relevance

●

●

Irrelevant

Relevant

(a)

● ●

●

●

●

●

0.5

0.6

0.7

0.8

0.9

1.0

HR−MT HT−MR HM−RT
Musical Environment

M
ea

n 
pa

tte
rn

 id
en

tif
ic

at
io

n 
ac

cu
ra

cy

relevance

●

●

Irrelevant

Relevant

(b)

Figure 6.20: Interaction effect on pattern recognition accuracy (a) between
presence and relevance, and (b) between musical environment
and relevance.

(see Figure 6.19(a)), the harmonic patterns in the “HM-RT” environment were detected

much more successfully.

The final interaction is between gender and feature (Figure 6.21(b)). Men’s detection

accuracy was similar across each feature, while women’s accuracy varied substantially,

with poorer performance in recognizing chord progressions and better performance rec-

ognizing melodic progressions. As was the case with age, undersampling may have played

a role here, since there were many more men than women in the study (50 vs. 35); the

greater variance in detection accuracy observed here among women is consistent with

this explanation.

Summary

Listeners were asked to pay attention to a target pattern while listening to an ambiguous

musical excerpt, which had form AAB or ABB. When the target pattern was expressed by

a feature that also implied one of these two forms, listeners were more likely to prefer that
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Figure 6.21: Interaction effect on pattern recognition accuracy (a) between
focal feature and musical environment, and (b) between focal
feature and gender.

form, compared to both the chance level of 50% and compared to the baseline likelihood

of choosing each analysis in the control condition where attention was not manipulated.

This effect did not depend on musical training. When the target pattern was a timbre,

the influence of the target was very weak, and in the “HR-MT” environment, had the

opposite impact than every other feature. There was a strong baseline tendency to prefer
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an analysis according to melody, although tracking a target melody still increased this

preference significantly.

Confidence in one’s analysis was greater both when the target pattern was present and

when it implied an analysis (i.e., when the focal feature varied). Participants with more

musical training and younger participants claimed greater confidence in their grouping

decisions.

Finally, we note that musical training also improved participants’ accuracy in detect-

ing the pattern. Participants were more prone to Type I errors than Type II (when

erring, they were more likely to claim incorrectly that the pattern was present). Accu-

racy in detecting the pattern also varied across the musical environments and features,

with complex interactions between them.

6.3.4 Experiment no. 4: Analysis continuation

In each trial, participants heard two excerpts and were told that another listener had

labelled them as A and B; the feature that defined the difference between these was

the focal feature. Participants were asked to give the analysis they thought that listener

would have given to a longer excerpt. The main independent variables of interest are

the focal feature and the static feature, the sole feature that did not vary over the longer

excerpt. In a given trial, the other two features were the distractor features. The variables

in the experiment are summarized in Table 6-M.

Out of 1026 trials, the correct analysis was chosen 869 times, an accuracy of 84.7%,

above the chance level of 33.3% (binomial test: p < 10−15). This is a similar achievement

on the part of participants as in Experiment no. 1, where changes were identified with

85.9% accuracy, although that was compared to a chance level of 25%. For an individual

to answer beyond the chance level, 8 out of 12 successes were required, and 8 participants

scored lower than this. It seems that even in this highly abstract task, which did not

explain to participants the nature of the musical manipulations to expect, participants
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How varied
among partici-
pants

Feature Codename levels

Within Focal feature focalfeat harmony, melody,
rhythm, timbre

Within Static feature static feat harmony, melody,
rhythm, timbre

Between Musical environ-
ment

music HR-MT, HT-MR,
HM-RT

Between Stimulus
sequence

stimset 1, 2, 3, 4

Uncontrolled Musical training
score

ability 15–48 points

Uncontrolled Age age 20–71 years

Uncontrolled Gender gender female, male

Dependent Answer value correct 1, 0

Table 6-M: Summary of variables in Experiment no. 4

were overall highly qualified.

We once again used binomial logistic regression to model participants’ accuracy as a

function of the independent variables. Due to the poor fit of the second-order model, we

present here the simpler model with only main effects; the significant ones are listed in

Table 6-N.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.86 0.44 4.26 0.00

ability 0.30 0.12 2.42 0.02
focalfeatMelody 2.23 0.37 5.95 0.00
focalfeatTimbre 1.16 0.29 4.07 0.00

music2 -1.01 0.36 -2.77 0.01
music3 -1.51 0.37 -4.04 0.00

age -0.67 0.12 -5.68 0.00
static featTimbre 0.82 0.31 2.66 0.01

Table 6-N: Significant effects in linear model for Experiment no. 4: Grouping
preference

The main effects are shown in Figures 6.22 and 6.23. Again, repeating the findings

from Experiment no. 1, we find that answer accuracy improves with musical training
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(p = 0.015). Probably due to the influence of outliers, we also observed a decrease in per-

formance with age (p < 10−7). Answer accuracy was best in the “HR-MT” environment

(p = 0.005), and when the timbre was constant throughout (p = 0.008). Paradoxically,

accuracy was also better when timbre was the focal feature, along with melody. That

is, when A and B were defined by different timbres or melodies, the analysis was more

accurately continued. This suggests that timbre was especially effective as a distractor:

when it was neither the focus nor static, accuracy decreased.

The final effect plot (Figure 6.23(c)) shows how success in continuing the analysis

varied across different focal features. Included in the plot is the baseline preference for

analyzing the excerpts according to different features. As in Experiment no. 3, these were

established in a pre-test in which similar excerpts were analyzed but with no guidance

given to the listener. The shape of the baseline is similar to that in Figure 6.13, but with

an even more pronounced preference to use melody as the defining grouping principle.

Summary

Participants were able to continue the analysis begun by a hypothetical listener with high

accuracy. Doing so required discerning which feature changed between two short stimuli,

and then tracking this feature in a longer excerpt. Performance in this task increased with

musical training, decreased with age, and varied across the musical environments and

feature combinations. As in Experiment no. 2, we found that listeners were predisposed

to analyze excerpts according to melody, but were still able to complete the task, focusing

on the correct feature.

6.4 Discussion

Each of the experiments supported the hypothesis it was designed to test. We first con-

firmed that listening among our participants was multi-dimensional; second, that bound-
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Figure 6.22: Scatter plot showing main effect on analysis continuation accu-
racy of (a) musical training and (b) age.

ary salience increased when listeners focused on the feature that defined the boundary;

third, that listeners preferred the grouping that matched the feature they paid attention

to; and fourth, that participants were able to interpret the structure of longer pieces

based on a prior decision about grouping.
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Figure 6.23: Main effect on analysis continuation accuracy of (a) musical envi-
ronment, (b) static feature and (c) focal feature. The extra “base-
line” in plot (c) indicates the analysis preferences established in
the pre-test.

Methodology

However, the outcome of Experiment no. 2 (Salience judgements) may be disputed.

Unlike in Experiment nos. 3 and 4, we did not establish a baseline for Experiment no.

2: that is, we did not collect salience judgements from listeners who were not told to pay
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attention to any feature at all. As a result, there may be skepticism about the contrast

between the match and wrong conditions. Participants were told to pay attention to a

given feature, then asked: “How strong is the change at the midpoint of the excerpt?”

This instruction was arguably ambiguous: was it interpreted (as intended) to mean,

“How strong is the change in the music globally at the midpoint”, or instead as, “How

strong is the change in that feature at the midpoint”? If the latter was the interpretation,

then the observed difference in salience is uninteresting.

Although the interpretation of the participants cannot be confirmed now, one obser-

vation may convince us that the question was interpreted as intended: the fact that the

“least salient” and “most salient” ends of the scale were used in both the match and

wrong conditions. That is, there were many occasions where a listener rated a change

as “Not strong at all” even though that change was exactly in the feature being focused

to; conversely, sometimes a change was rated as “Extremely strong” even though that

change was completely unrelated to the musical attribute being focused on. If a partic-

ipant were focusing on timbre, and the timbre did not change but the melody did, and

the change was rated as “extremely strong,” then it seems likely that this participant

was assessing the global salience of the changes. This behaviour was not uncommon; in

fact, 30 out of 87 participants gave one of these answers at some point. This behaviour

suggests participants really were rating the salience of the change globally (a rating that

was influenced by attention), and not the salience only of the feature being focused on.

Still, we acknowledge that the overt instruction of Experiment no. 2—“Please pay

attention to feature X while listening”—is awkward. Attention can be difficult to manage

consciously, as anyone told not to imagine an elephant can attest. This is why attention

was manipulated covertly in Experiment no. 3. This is also why Experiment no. 3

preceded no. 2: we did not want to cue participants to the fact that their attention was

being manipulated too soon. Still, one may wonder whether participants, after being

told to look for different kinds of patterns in the music and then told to analyze the

same passages, began to sense from the experiment that there was a “correct” way to
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interpret each passage based on the target task that accompanied it. To settle this

doubt, we may look at whether the impact of the focal feature was less in the first few

trials of the experiment than in the last. It turns out that exactly the opposite is the

case! Whereas the likelihood of agreeing with the focal feature was reported as 65.33%

overall, the rate of agreement among the first four trials was 80.60%, and in the first

trial, 90.63%. Although the number of samples per trial number is low, there does not

seem to be a basis to believe that it was participants’ awareness of the purpose of the

experiment that led to the positive results.

Feature differences

One trend that was apparent throughout the experiments was that melody was the

most salient feature to listeners, while rhythm was among the least salient. In the pre-

tests for Experiment nos. 3 and 4, listeners overwhelmingly preferred to group melodic

patterns rather than other patterns, while rhythm ranked near the bottom (see Figures

6.13 and 6.23(c)). Rhythmic changes were the least salient ones in Experiment no. 2

(Figure 6.10(b)), and received a significant boost in salience when they were expressed

by the melody (Figure 6.12(a)). Melodic changes were among the easier to identify in

Experiment no. 1 (Figure 6.8).

Next to melody and rhythm, harmony and timbre mostly occupied middle ground.

However, timbre did stand out in Experiment no. 3 as the feature which had the least

influence via attention on grouping preference. In the pretest, we found that participants

were unlikely to prefer a harmony- or rhythm-based grouping (see Figure 6.13). With

their attention focused by the pattern-detection task, the preference for these groupings

increased substantially. However, only a very small rise was observed when participants

had to detect a timbre. The weakness of the influence of timbre may be due to how the

target task was framed. For the other features, the target was a pattern: a melodic,

harmonic, or rhythmic sequence that spanned the length of a measure. For timbre, the

target was just a sound: a single note or chord. Alternatively, the difference may be
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due to timbre’s inherent salience; as Margulis wrote, “timbres and chords aren’t ‘catchy’

in the way a tune can be,” since it is the repetition of something that makes it catchy

[Mar14] (66).

In light of this, we may want to attribute the influence of the pattern-detection

task not to attention per se, but to the crystallization in the listener’s mind of that

pattern as a unit. When the unit was recognized in the excerpt, the rest of the excerpt

was understood in relation to that unit, resulting in a preference for AAB or ABB

depending on the occurrence of the unit. If this were true, then we should expect that

when listeners paid attention to a feature that was relevant, but to a pattern that was

absent, the effect would be diminished. In fact, presence was not found to be a significant

factor in the model, and average agreement with the focal feature was roughly the same

in both conditions (present : 65.90%; absent : 64.75%).

Participant differences

Finally, we note that in every task, the level of musical training of the participants

affected the outcome. Those with greater musical training were able to identify chang-

ing patterns with better accuracy (Figure 6.7), recognize patterns with better accuracy

(Figure 6.18), and provide the continuation of an analysis with better accuracy (Figure

6.22(a)). In Experiment no. 2, the contrast in salience between when the correct feature

was attended to or not increased with musical training, perhaps reflecting an increased

ability to focus (Figure 6.11(a)).

However, in Experiment no. 3, although confidence in one’s grouping decision increased

with musical training (Figure 6.17(a)), there was no effect of training on the influence of

the target task. In fact, as can be seen in Figure 6.24, the influence of the target task

appears to be totally independent of training. This suggests that, while musical training

affects the salience of individual musical features, the role of attention in directing one’s

interpretation of a piece does not depend on training. This bolsters the view that atten-
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tion is a fundamental mechanism that guides how listeners interpret grouping structure

in music. While a listener can learn to pay more or less attention to different features,

this training does not seem to affect how attention affects their perception of structure.
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Figure 6.24: Scatter plot showing the main effect of musical training on group-
ing agreement.

6.5 Conclusion and future work

The results of these experiments support the view that attention plays a key role in

determining how listeners arrive at the grouping decisions they do. The sequence of

experiments offers a possible model for how grouping decisions are made: attention is

directed toward a given feature, discontinuities in that feature become more salient to

the listener, and this leads the listener to prefer groupings according to that feature.

This description does not account for what determines the initial focus of the listener,

but the fourth experiment suggests that whatever this initial focus is, it is possible for

listeners to continue in the same vein.

This view also suggests explanations for how listener disagreements arise. When

confronted with an ambiguous passage, two listeners may choose to focus on different

aspects of the music, leading them to two different interpretations. Or, two listeners may
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have different a priori habits of attention, such as a tendency to focus on specific musical

features, perhaps finding metrical changes or nuances in melody especially salient.

As discussed in Chapter 2, when listening to a piece of music, one’s attention is partly

controlled by oneself and partly guided by the music. While the preceding experiments

should convince us that attention is an important factor in determining perception,

it is still difficult to judge, for a given piece of music, the balance between the top-

down influence of attention and the bottom-up influence of the many discontinuities and

associations perceivable in the music.



Chapter 7

Conclusion

The main question asked by this thesis is: why is it that two listeners will often disagree

about the structure of a piece of music? The past four chapters have built up a case

for the importance of a listener’s attention in determining what changes they find most

salient and what groupings they prefer. In this conclusion, we recount how each of the

chapters has contributed to this case. We also remind the reader of the shortcomings

of each chapter, and what could be done to make our case more strongly. Lastly, we

suggest some directions for future research that would build on the work accomplished

here.

7.1 Summary

In Chapter 2, we described how most models of the perception of grouping structure

have worked in a ground-up fashion, predicting groupings based on Gestalt principles

or statistical models of musical patterns—that is, based on musical content. We also

discussed how top-down influences and endogenous factors (those arising from within the

listener rather than the music) affect perception. We argued that understanding these

endogenous factors will be crucial to understanding why similar listeners can disagree.

168
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In Chapter 3, we examined the justifications given by two listeners (myself and Isaac

Schankler) and traced the disagreements back to their original causes. We concluded that

the attention of the listener was the best proximate explanation for the disagreements.

On the basis of our study, we conjectured that one’s initial understanding of a piece, one’s

prior information about a piece and one’s expectations were key factors in explaining

how one’s attention was focused, and thus in accounting for listener disagreements.

In Chapter 4, we determined that acoustic novelty was a necessary but not sufficient

condition for a point to be perceived as a boundary. That is, nearly all boundaries can be

explained by pointing to a significant change, but the fact that many other such changes

are not perceived as boundaries implies that top-down processes help to guide boundary

perception. Nevertheless, the degree of novelty was a good predictor of whether a point

would be considered a boundary.

In Chapter 5, we presented an algorithm that connects a listener’s analysis of a piece

to similarities in audio features, automatically producing a plausible “explanation” of the

piece. We used the algorithm to demonstrate with some examples how a disagreement

between two listeners could result from their having paid attention to different features.

Finally, in Chapter 6, we tested the hypothesis that one’s perception of grouping

in music depends on what feature in the music one is focusing on. This finding was

significant because it supported the view that differences in attention cause listener

disagreements, and do not merely accompany them. The experiments also demonstrated

that musical changes are more salient when one is focusing on the musical parameter

that changes.

Together, these findings support the view that what a listener chooses or is influenced

to focus on is a crucial top-down factor affecting how the listener perceives boundaries

and groupings in the music. Differences in attention were the best explanation for the

listener disagreements in Chapter 3; they may be the factor that best explains the

differences noted among the annotations studied in Chapters 4 and 5; and they were
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certainly the best explanation for the outcome of the experiments in Chapter 6.

7.2 Limitations

On the other hand, the limitations of the present studies leave room for skepticism. The

small size of the case study in Chapter 3 means that its findings should be treated as

a set of new hypotheses to test, rather than firm conclusions. (At least one of these

hypotheses, of course, was supported by the work in Chapter 6.) In addition, the later

chapters all required us to choose a limited set of features to study. The differences

among the features were carefully noted in each case (in Chapter 4, we commented

on the significant variation in f -measure contrast among features, and in Chapter 6,

the combination of feature and musical environment was a significant source of noise),

but it remains an open question whether the subset of features we have studied are

representative of all musical attributes, or merely outliers.

The results of Experiment no. 3 seem unequivocal at first: listeners were more

likely to prefer the grouping (AAB or ABB) implied by the feature they were paying

attention to, which implies that attention guides analysis. But how generalizable is

this result? The participants were in a highly contrived listening situation, so it is

essential to replicate the finding with even more ecological stimuli. Another part of the

experiment’s design that deserves to be varied is how the attention of the listeners was

controlled. As noted in the chapter, the lack of an “ear-tracking” device means we must

control attention as an independent variable. We did so in two ways: directly asking

listeners to focus on a particular feature, and asking listeners to detect a target pattern.

Another possible approach is to prime participants before the trial by having them do a

particular attention-narrowing task, like ranking a set of chords from least dissonant to

most dissonant, to focus their attention on chords. Or, participants’ attention could be

guided by having them detect not measure-length patterns, but isolated fragments (for

example, asking whether a particular word occurs to direct attention to whichever part
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is sung). This variation may be of particular interest since in our experiment the timbre

probe, which was a fragment and not a measure-long excerpt, had the least influence on

listeners.

The main unanswered question of Chapter 5 was whether the algorithm actually did

produce reconstructions of SSMs matching what a listener was focusing on. We could

only surmise that it seemed to, since the SALAMI annotations we studied did not have

any information about the listener’s focus. However, the stimuli we created for Chapter

6, along with the data about what listeners were guided to pay attention to, is exactly

the material we would need to construct a validation experiment of the reconstruction

algorithm. This study is planned for immediate future work.

If that study validates the algorithm from Chapter 5 (or some more advanced version

of the algorithm—several ideas for improvements were mentioned at the end of that

chapter), then we could treat it as a tool to address several questions. Among them:

based on their annotations, are there differences among listeners in what they attend

to? Are people more likely to focus on some features and at some timescales in certain

genres? In short, we could conduct a data-mining study similar to that in Chapter 4,

but using the validated tool to probe a deeper interpretation of the annotations being

studied.

7.3 Future work

Taking a broader view of the work, our conclusion—that attention can influence how

structure is perceived—begs another question: what generates and controls attentional

orientations to begin with? In Chapter 6, we directed participants’ attention in an

experimental setting. In natural listening, it is unknown how attention shifts and drifts,

although we mentioned some ideas in Chapter 6: Margulis explained that repetition

enables one to attend to either shorter or longer timescales, through the processes of

ritualization and routinization [Mar14]. Depending on which features characterize the
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music at which timescale, these processes could direct one’s focus toward or away from

particular features. On the other hand, it seems that novelty (in a way, the oppo-

site of repetition) plays a role in directing attention—after all, “novel” is a synonym

for “attention-getting.” We found in Chapter 4 a positive but imperfect relationship

between novelty and boundary placement, and novel events may alert one’s attention

to particular features; on the other hand, the results from Chapter 6 suggest that once

one’s attention has been directed toward one feature, it makes changes in other features

less salient. All of these conflicting points of view show that without further study, it is

unclear how to interpret the role of attention in natural listening settings. Research in

this area is also needed to investigate another possibility: that although attention can

influence perception in constrained experimental situations, it does not actually rank as

an important factor in natural settings.

In any case, the fact that attention, a factor that listeners can wilfully control, may

have an impact on how listeners perceive musical events, is problematic for those pursuing

bottom-up, content-based models of structural analysis. Previous research has already

shown that top-down factors such as repeated listenings and musical training have an

influence on analysis, but compared to these, attention is a much more idiosyncratic

influence. Attention can be guided by the musical events themselves, as considered

above, but can also be controlled, to some extent, by the listener’s own whims and

desires. The influence of attention also seems to not be restricted to the largest timescale

of analysis: attention can reach deep and affect how low-level structure is perceived (for

example, by changing the salience of local boundaries). Thus the border between bottom-

up perception and top-down interpretation is not simply hard to find, as described in

Chapter 2, but porous. To account for this, newer musicological and perceptual models

should seek to integrate more flexibility into how groupings are predicted based on lower-

level musical events.

One of the central problems for structural analysis work in MIR is the lack of a precise

problem definition, which is related to the ambiguity of the analysis task. The discov-
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ery that disagreements among listeners could be attributable to differences in attention

(among other factors) may help those who are developing new annotation procedures

that are repeatable and well-defined. These procedures should either direct annotators

to focus on particular things (a suggestion raised by Befus, Sanden and Zhang, who had

listeners provide boundary indications while focusing on a given feature [BSZ10]), or

record in some what what the annotator found salient about the music (in the manner of

the case study in Chapter 3, but in some more codified way). Peeters and Deruty argued

that analyses were multi-dimensional, distinguishing layers of similarity, function, and

instrumentation [PD09]. We argue that it is important to recognize that the similarity

layer is itself multi-dimensional with respect to feature. All of these suggestions aim to

either reduce disagreements between listeners or make them more transparent.

This research may set an example for MIR by testing the assumptions of common

models on a ground truth collection. Mining evaluation data for insights and using these

to improve one’s models may seem like cheating, but it is more akin to demonstrating a

proof of concept. For example, before developing a new genre prediction algorithm which

uses instrument identification, based on the hypothesis that genres are distinguished by

their use of different instrumental mixtures, one should first ask, and test, whether this

hypothesis is in fact correct. Doing so can ensure that one’s new algorithm is based on

sound principles, but is also an opportunity to ensure that the test collection is properly

understood.

There is one final lesson to draw from this research: noise can be more interesting,

and more explicable, than it seems. The subject of this thesis was listener disagreements,

and in previous research, such disagreements have often been treated as noise. This is

at least the case in the fields of music psychology and MIR, which are interested in the

behaviour of general listeners more than the idiosyncracies of individuals. So we began

in the field of music theory, in which it is more usual to question how individuals come to

the interpretations they do. We examined disagreements which may at first have seemed

superficial—certainly there were many ways in which the pairs of analyses in Chapter
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3 were congruent—but which we argued had deep causes. We studied these effects in

a more focused way in the fields of music psychology and MIR, using a larger set of

examples and more listeners, and in demonstrating their importance, we cast new light

on our understanding of the original phenomenon that was deemed noisy: the perception

of musical structure.

7.4 Summary of key contributions

In developing the case for the role of attention in explaining disagreements among lis-

teners, each chapter of this thesis produced new pieces of evidence for this claim, and

developed or introduced novel methods and materials. The chapters also span several

disciplines. These contributions are summarized below.

New evidence that attention affects grouping

• A case study indicated that attention was the best proximate explanation for

listener disagreements (Chapter 3)

• A corpus study indicated that on a broad scope of music, acoustic novelty

correlated with boundaries, and hence possibly with the salience of changes

(Chapter 4);

• Distinct annotations provided by listeners were found to be well explained by

distinct sets of features (Chapter 5)

• An experiment presented direct evidence that attention to a particular feature

led listeners to prefer a grouping structure aligned with that feature (Chapter

6)

Novel methods and materials

• The case study was novel in its depth of analysis into the justifications for
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grouping decisions, and in the material used (Chapter 3)

• We mined a corpus, normally used for evaluation, to derive insights into

human perception (Chapter 4)

• Introduction of a novel tool for linking musical analyses to the musical features

that support them (Chapter 5)

• Development of a novel set of stimuli in which grouping structure varies sys-

tematically across different features (Chapter 6)

Interdisciplinarity Contributions included:

• A submission to a music theory journal (Chapter 3) [SSC14]

• Submissions to journals and conferences on multimedia (Chapters 4 and 5)

[SCC14, SC13b]

• A submission (in preparation) to a journal of music perception and cognition

(Chapter 6)
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.67 0.96 3.84 0.00∗∗∗

ability 1.25 0.57 2.20 0.03∗

change featMelody 0.34 0.82 0.41 0.68
change featRhythm 0.19 0.77 0.25 0.80
change featTimbre 1.31 0.85 1.54 0.12

musicHT-MR -1.74 0.99 -1.75 0.08
musicHM-RT -1.34 0.99 -1.35 0.18

age 0.42 0.42 1.02 0.31
genderf -1.52 0.96 -1.58 0.11

heardbefore -0.37 0.68 -0.54 0.59
ability:change featMelody 0.13 0.36 0.36 0.72

ability:change featRhythm -0.26 0.32 -0.82 0.41
ability:change featTimbre 0.37 0.33 1.12 0.26

ability:musicHT-MR -1.22 0.58 -2.08 0.04∗

ability:musicHM-RT -0.34 0.53 -0.63 0.53
ability:age 0.22 0.18 1.18 0.24

ability:genderf 0.10 0.40 0.25 0.80
ability:heardbefore 0.48 0.27 1.80 0.07

change featMelody:musicHT-MR 0.85 0.90 0.94 0.35
change featRhythm:musicHT-MR 1.30 0.88 1.49 0.14
change featTimbre:musicHT-MR 0.09 0.90 0.09 0.92
change featMelody:musicHM-RT 0.63 0.81 0.77 0.44

change featRhythm:musicHM-RT -0.41 0.73 -0.56 0.58
change featTimbre:musicHM-RT -2.25 0.81 -2.80 0.01∗∗

change featMelody:age -0.63 0.27 -2.34 0.02∗

change featRhythm:age -0.29 0.26 -1.13 0.26
change featTimbre:age 0.09 0.27 0.34 0.74

change featMelody:genderf 0.20 0.71 0.29 0.77
change featRhythm:genderf -0.01 0.63 -0.01 0.99
change featTimbre:genderf 0.42 0.64 0.66 0.51

change featMelody:heardbefore 0.08 0.70 0.12 0.91
change featRhythm:heardbefore -0.38 0.62 -0.62 0.54
change featTimbre:heardbefore -0.96 0.61 -1.57 0.12

musicHT-MR:age -0.50 0.40 -1.26 0.21
musicHM-RT:age -0.14 0.40 -0.35 0.72

musicHT-MR:genderf 1.67 1.11 1.51 0.13
musicHM-RT:genderf 0.25 0.99 0.25 0.80

musicHT-MR:heardbefore 0.65 0.67 0.97 0.33
musicHM-RT:heardbefore 1.29 0.58 2.21 0.03∗

age:genderf -0.58 0.36 -1.62 0.11
age:heardbefore 0.29 0.21 1.42 0.16

genderf:heardbefore 0.11 0.50 0.23 0.82

p-values: *** < 0.001, ** < 0.01, * < 0.05

Table 2-A: Full model results from Experiment no. 1. These are the param-
eters for modeling answer correctness, treating convolved-feature
errors as errors.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.03 1.06 3.79 0.00∗∗∗

ability 1.11 0.65 1.70 0.09
change featMelody -0.24 1.02 -0.24 0.81

change featRhythm 0.76 0.97 0.78 0.43
change featTimbre 1.90 1.12 1.70 0.09

musicHT-MR -1.12 1.16 -0.97 0.33
musicHM-RT -1.50 1.08 -1.38 0.17

age 0.94 0.54 1.73 0.08
genderf -1.71 1.05 -1.63 0.10

heardbefore -0.56 0.78 -0.72 0.47
ability:change featMelody -0.13 0.53 -0.25 0.80

ability:change featRhythm -0.48 0.42 -1.14 0.25
ability:change featTimbre 0.97 0.56 1.74 0.08

ability:musicHT-MR -1.35 0.71 -1.90 0.06
ability:musicHM-RT -0.11 0.59 -0.18 0.85

ability:age 0.57 0.26 2.17 0.03∗

ability:genderf 0.16 0.48 0.33 0.74
ability:heardbefore 0.64 0.35 1.82 0.07

change featMelody:musicHT-MR 1.80 1.13 1.60 0.11
change featRhythm:musicHT-MR 18.70 1311.42 0.01 0.99
change featTimbre:musicHT-MR 1.90 1.53 1.24 0.21
change featMelody:musicHM-RT 3.10 1.34 2.32 0.02∗

change featRhythm:musicHM-RT -1.08 0.82 -1.31 0.19
change featTimbre:musicHM-RT -0.94 0.90 -1.05 0.29

change featMelody:age -0.83 0.36 -2.30 0.02∗

change featRhythm:age -1.10 0.36 -3.05 0.00∗∗

change featTimbre:age 0.03 0.37 0.07 0.94
change featMelody:genderf 0.79 0.94 0.84 0.40

change featRhythm:genderf -0.34 0.76 -0.44 0.66
change featTimbre:genderf 0.32 0.81 0.39 0.70

change featMelody:heardbefore -0.32 0.88 -0.36 0.72
change featRhythm:heardbefore -0.97 0.79 -1.23 0.22
change featTimbre:heardbefore -0.71 0.83 -0.86 0.39

musicHT-MR:age -0.79 0.50 -1.59 0.11
musicHM-RT:age -0.37 0.45 -0.83 0.41

musicHT-MR:genderf 2.05 1.38 1.49 0.14
musicHM-RT:genderf 0.77 1.07 0.72 0.47

musicHT-MR:heardbefore -0.23 0.90 -0.26 0.80
musicHM-RT:heardbefore 1.61 0.69 2.34 0.02∗

age:genderf -0.49 0.42 -1.18 0.24
age:heardbefore 0.29 0.26 1.09 0.27

genderf:heardbefore 0.40 0.60 0.67 0.50

p-values: *** < 0.001, ** < 0.01, * < 0.05

Table 2-B: Full model results from Experiment no. 1. These are the param-
eters for modeling answer correctness, treating convolved-feature
errors as correct.
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Estimate Std. Error t value Estimated Pr(>|z|)
(Intercept) -1.33 0.19 -6.89 0.00∗∗∗

ability -0.02 0.12 -0.18 0.85
change featMelody -0.27 0.21 -1.26 0.21

change featRhythm -0.49 0.21 -2.33 0.02∗

change featTimbre 0.29 0.21 1.37 0.17
matchMatch 2.43 0.20 12.24 0.00∗∗∗

matchWrong 0.24 0.20 1.18 0.24
musicHT-MR 0.24 0.25 0.99 0.32
musicHM-RT 0.03 0.24 0.11 0.91

age -0.03 0.14 -0.23 0.81
genderf 0.03 0.24 0.11 0.92

ability:change featMelody -0.21 0.09 -2.22 0.03∗

ability:change featRhythm -0.14 0.09 -1.45 0.15
ability:change featTimbre 0.15 0.09 1.65 0.10

ability:matchMatch 0.29 0.08 3.58 0.00∗

ability:matchWrong -0.03 0.08 -0.35 0.72
ability:musicHT-MR -0.14 0.13 -1.09 0.28
ability:musicHM-RT 0.10 0.13 0.80 0.43

ability:age -0.02 0.05 -0.36 0.72
ability:genderf -0.03 0.11 -0.26 0.80

change featMelody:matchMatch -0.08 0.22 -0.38 0.71
change featRhythm:matchMatch -0.77 0.22 -3.50 0.00∗∗∗

change featTimbre:matchMatch -0.60 0.22 -2.69 0.01∗∗

change featMelody:matchWrong 0.00 0.22 0.02 0.99
change featRhythm:matchWrong -0.44 0.22 -1.98 0.05∗

change featTimbre:matchWrong -0.52 0.22 -2.34 0.02∗

change featMelody:musicHT-MR 0.29 0.23 1.29 0.20
change featRhythm:musicHT-MR 0.99 0.23 4.34 0.00∗∗∗

change featTimbre:musicHT-MR -0.05 0.23 -0.22 0.83
change featMelody:musicHM-RT 0.74 0.22 3.41 0.00∗∗∗

change featRhythm:musicHM-RT 0.48 0.22 2.21 0.03∗

change featTimbre:musicHM-RT 0.43 0.22 1.96 0.05∗

change featMelody:age -0.12 0.09 -1.32 0.19
change featRhythm:age -0.10 0.09 -1.08 0.28
change featTimbre:age -0.03 0.09 -0.30 0.77

change featMelody:genderf -0.17 0.19 -0.92 0.36
change featRhythm:genderf 0.34 0.19 1.80 0.07
change featTimbre:genderf -0.04 0.19 -0.19 0.85
matchMatch:musicHT-MR -0.48 0.20 -2.42 0.02∗

matchWrong:musicHT-MR -0.16 0.20 -0.82 0.41
matchMatch:musicHM-RT -0.95 0.19 -5.06 0.00∗∗∗

matchWrong:musicHM-RT -0.47 0.19 -2.48 0.01∗

matchMatch:age -0.02 0.08 -0.31 0.76
matchWrong:age 0.03 0.08 0.42 0.67

matchMatch:genderf 0.11 0.16 0.70 0.48
matchWrong:genderf -0.09 0.16 -0.53 0.59

musicHT-MR:age 0.00 0.14 0.01 0.99
musicHM-RT:age -0.15 0.14 -1.14 0.26

musicHT-MR:genderf -0.33 0.27 -1.22 0.22
musicHM-RT:genderf 0.01 0.27 0.06 0.95

age:genderf 0.10 0.11 0.89 0.37

p-values: *** < 0.001, ** < 0.01, * < 0.05

Table 2-C: Full model results from Experiment no. 2. These are the parame-
ters for modeling boundary salience.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.41 0.55 2.58 0.01∗∗

ability -0.11 0.36 -0.32 0.75
focalfeatMelody 0.93 0.86 1.08 0.28

focalfeatRhythm -2.04 0.63 -3.27 0.00∗∗

focalfeatTimbre -1.68 0.63 -2.66 0.01∗∗

musicHT-MR -1.70 0.70 -2.43 0.01∗

musicHM-RT -0.70 0.64 -1.10 0.27
age -0.78 0.32 -2.45 0.01∗

genderf 0.02 0.60 0.04 0.97
presencePresent 0.68 0.60 1.14 0.26

ability:focalfeatMelody 0.81 0.47 1.75 0.08
ability:focalfeatRhythm -0.09 0.32 -0.29 0.77
ability:focalfeatTimbre -0.17 0.30 -0.56 0.58

ability:musicHT-MR 0.23 0.31 0.74 0.46
ability:musicHM-RT -0.26 0.33 -0.77 0.44

ability:age 0.07 0.12 0.61 0.54
ability:genderf -0.17 0.28 -0.61 0.54

ability:presencePresent 0.33 0.23 1.41 0.16
focalfeatMelody:musicHT-MR 2.55 1.10 2.32 0.02∗

focalfeatRhythm:musicHT-MR 4.28 0.82 5.24 0.00∗∗∗

focalfeatTimbre:musicHT-MR 2.10 0.74 2.85 0.00∗∗

focalfeatMelody:musicHM-RT 1.41 1.07 1.31 0.19
focalfeatRhythm:musicHM-RT 0.96 0.74 1.31 0.19
focalfeatTimbre:musicHM-RT 1.63 0.72 2.25 0.02∗

focalfeatMelody:age -0.09 0.36 -0.26 0.79
focalfeatRhythm:age 0.63 0.32 1.96 0.05∗

focalfeatTimbre:age 0.34 0.31 1.10 0.27
focalfeatMelody:genderf 0.15 0.88 0.17 0.86

focalfeatRhythm:genderf 0.40 0.64 0.62 0.54
focalfeatTimbre:genderf 0.28 0.62 0.46 0.65

focalfeatMelody:presencePresent -0.62 0.84 -0.73 0.46
focalfeatRhythm:presencePresent -0.57 0.61 -0.93 0.35
focalfeatTimbre:presencePresent -0.49 0.58 -0.85 0.40

musicHT-MR:age 0.85 0.33 2.61 0.01∗∗

musicHM-RT:age 0.43 0.28 1.52 0.13
musicHT-MR:genderf 0.04 0.58 0.06 0.95
musicHM-RT:genderf 0.23 0.67 0.34 0.74

musicHT-MR:presencePresent -0.15 0.57 -0.25 0.80
musicHM-RT:presencePresent -0.54 0.55 -0.98 0.33

age:genderf 0.24 0.25 0.99 0.32
age:presencePresent 0.10 0.23 0.45 0.65

genderf:presencePresent -0.21 0.47 -0.44 0.66

p-values: *** < 0.001, ** < 0.01, * < 0.05

Table 2-D: Full model results from Experiment no. 3. These are the param-
eters for modeling agreement between the given analysis and the
focal feature’s implied analysis, considering only relevant trials.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.65 0.42 -1.54 0.12

ability 0.81 0.30 2.69 0.01∗∗

focalfeatMelody 0.49 0.52 0.96 0.34
focalfeatRhythm 1.63 0.58 2.83 0.00∗∗

focalfeatTimbre 0.18 0.50 0.36 0.72
musicHT-MR 0.32 0.57 0.55 0.58
musicHM-RT 2.09 0.62 3.36 0.00∗∗∗

age 0.16 0.31 0.53 0.60
genderf -1.01 0.52 -1.96 0.05

presencePresent 2.85 0.54 5.24 0.00∗∗∗

relevanceRelevant 1.07 0.45 2.34 0.02∗

ability:focalfeatMelody -0.08 0.27 -0.29 0.77
ability:focalfeatRhythm -0.11 0.27 -0.42 0.68
ability:focalfeatTimbre -0.20 0.26 -0.78 0.44

ability:musicHT-MR -0.39 0.27 -1.43 0.15
ability:musicHM-RT -0.24 0.33 -0.73 0.46

ability:age 0.21 0.12 1.79 0.07
ability:genderf -0.18 0.26 -0.72 0.47

ability:presencePresent 0.00 0.23 0.01 0.99
ability:relevanceRelevant -0.11 0.19 -0.59 0.56

focalfeatMelody:musicHT-MR 0.40 0.60 0.66 0.51
focalfeatRhythm:musicHT-MR -1.05 0.64 -1.64 0.10
focalfeatTimbre:musicHT-MR 0.79 0.56 1.41 0.16
focalfeatMelody:musicHM-RT -0.61 0.68 -0.91 0.37

focalfeatRhythm:musicHM-RT -2.52 0.69 -3.67 0.00∗∗∗

focalfeatTimbre:musicHM-RT 0.83 0.73 1.13 0.26
focalfeatMelody:age 0.31 0.28 1.08 0.28

focalfeatRhythm:age 0.33 0.28 1.18 0.24
focalfeatTimbre:age -0.20 0.26 -0.77 0.44

focalfeatMelody:genderf 1.58 0.54 2.91 0.00∗∗

focalfeatRhythm:genderf 1.50 0.56 2.65 0.01∗∗

focalfeatTimbre:genderf 0.70 0.51 1.37 0.17
focalfeatMelody:presencePresent -0.22 0.59 -0.36 0.72

focalfeatRhythm:presencePresent 1.01 0.87 1.15 0.25
focalfeatTimbre:presencePresent -0.43 0.55 -0.79 0.43

focalfeatMelody:relevanceRelevant -0.39 0.51 -0.76 0.45
focalfeatRhythm:relevanceRelevant -0.30 0.53 -0.57 0.57
focalfeatTimbre:relevanceRelevant -0.50 0.50 -1.01 0.31

musicHT-MR:age -0.38 0.27 -1.39 0.16
musicHM-RT:age -0.64 0.29 -2.22 0.03∗

musicHT-MR:genderf -0.21 0.52 -0.41 0.68
musicHM-RT:genderf -0.69 0.69 -1.01 0.31

musicHT-MR:presencePresent -0.00 0.49 -0.01 1.00
musicHM-RT:presencePresent 1.04 0.76 1.38 0.17

musicHT-MR:relevanceRelevant -0.66 0.43 -1.52 0.13
musicHM-RT:relevanceRelevant -1.12 0.50 -2.25 0.02∗

age:genderf -0.30 0.25 -1.17 0.24
age:presencePresent 0.31 0.24 1.28 0.20

age:relevanceRelevant 0.11 0.19 0.58 0.56
genderf:presencePresent 0.47 0.47 1.00 0.32

genderf:relevanceRelevant 0.19 0.39 0.50 0.62
presencePresent:relevanceRelevant -1.26 0.46 -2.77 0.01∗∗

p-values: *** < 0.001, ** < 0.01, * < 0.05

Table 2-E: Full model results from Experiment no. 3. These are the parame-
ters for modeling pattern detection accuracy, considering all trials,
and considering “variation” as a “yes” answer.
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Estimate Std. Error t value Estimated Pr(>|z|)
(Intercept) 0.54 0.18 3.03 0.00∗∗

presencePresent 0.12 0.05 2.64 0.01∗∗

focalfeatMelody 0.18 0.06 2.89 0.00∗∗

focalfeatRhythm 0.04 0.06 0.61 0.54
focalfeatTimbre 0.04 0.06 0.57 0.57

ability 0.17 0.08 2.08 0.04∗

musicHT-MR -0.15 0.19 -0.81 0.42
musicHM-RT 0.20 0.19 1.03 0.30

age -0.23 0.08 -2.87 0.00∗∗

genderf 0.08 0.17 0.48 0.63
relevanceRelevant 0.13 0.04 2.98 0.00∗

p-values: *** < 0.001, ** < 0.01, * < 0.05

Table 2-F: Full model results from Experiment no. 3. These are the parame-
ters for modeling answer confidence, considering all trials.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.86 0.44 4.26 0.00∗∗∗

ability 0.30 0.12 2.42 0.02∗

focalfeatMelody 2.23 0.37 5.95 0.00∗∗∗

focalfeatRhythm 0.22 0.26 0.83 0.41
focalfeatTimbre 1.16 0.29 4.07 0.00∗∗∗

musicHT-MR -1.01 0.36 -2.77 0.01∗∗

musicHM-RT -1.51 0.37 -4.04 0.00∗∗∗

age -0.67 0.12 -5.68 0.00∗∗∗

genderf 0.10 0.28 0.36 0.72
static featMelody 0.39 0.28 1.38 0.17

static featRhythm 0.26 0.31 0.84 0.40
static featTimbre 0.82 0.31 2.66 0.01∗∗

p-values: *** < 0.001, ** < 0.01, * < 0.05

Table 2-G: Full model results from Experiment no. 4: grouping preference
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