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Abstract

The knowledge available to be exploited by text classification and information retrieval systems
has significantly changed, both in nature and quantity, in the last years. Nowadays, there are
several sources of information that can potentially improve the classification process, and systems
should be able to adapt to incorporate multiple sources of available data in different formats.
This fact is specially important in environments where the required information changes rapidly,
and its utility may be contingent on timely implementation. For these reasons, the importance
of adaptability and flexibility in information systems is rapidly growing. Current systems are
usually developed for specific scenarios. As a result, significant engineering effort is needed to
adapt them when new knowledge appears or there are changes in the information needs.

This research investigates the usage of knowledge within text classification from two different
perspectives. On one hand, the application of descriptive approaches for the seamless modelling
of text classification, focusing on knowledge integration and complex data representation. The
main goal is to achieve a scalable and efficient approach for rapid prototyping for Text Classi-
fication that can incorporate different sources and types of knowledge, and to minimise the gap
between the mathematical definition and the modelling of a solution.

On the other hand, the improvement of different steps of the classification process where knowl-
edge exploitation has traditionally not been applied. In particular, this thesis introduces two
classification sub-tasks, namely Semi-Automatic Text Classification (SATC) and Document Per-
formance Prediction (DPP), and several methods to address them. SATC focuses on selecting
the documents that are more likely to be wrongly assigned by the system to be manually clas-
sified, while automatically labelling the rest. Document performance prediction estimates the
classification quality that will be achieved for a document, given a classifier. In addition, we also
propose a family of evaluation metrics to measure degrees of misclassification, and an adaptive
variation of k-NN.
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Chapter 1

Introduction

1.1 Motivation

Available data has importantly changed in the last years, both in quantity and quality. Its amount

and velocity (i.e., how quickly new data is created) have significantly increased, both in the Web

and business environments. As a result, there has been an explosion of new possibilities of how

this information can be exploited. At the same time, such data, or at least our representation

of it, has become more complex and richer. This includes new types of information such as

entities with fields or attributes and relationships, instead of just individual textual elements.

This approach adds more complexity to the processing of information, but it represents better the

original data.

Several models have been proposed to exploit knowledge for classification, mainly for data

augmentation [Gabrilovich and Markovitch, 2006]. However, “even if some algorithms have

achieved improvements, a consistent and significant quality increasing has not been obtained”

[Wang et al., 2007]. Moreover, we claim that a common framework to explain and integrate such

techniques is also missing. In addition, the vast majority of knowledge-enhanced techniques in

text classification focus on data representation, while other steps such as evaluation have not been

explored in detail.

Exploiting complex entities and relational data presents a challenge for current classification

systems, especially if multiple types of data are allowed. It is also becoming clearer that dif-
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ferent tasks can be applied together in order to improve each other (e.g., Learning to rank

[Liu, 2009]), and that there is a large overlap between their foundations [Belkin and Croft, 1992]

[Bellogı́n et al., 2012]. Despite the possibilities of exploiting this richer information, represen-

tations based on a bag of words, where each document is represented as the set of terms that it

contains, are still the most common approach for data representation in text classification and in-

formation retrieval. Another factor is that if the assumption that all the data has the same nature

(e.g., textual documents) is not applied (i.e., heterogeneous environments), most of the tradi-

tional techniques for information retrieval and machine learning cannot be directly applied, or

they achieve poor results [Lu and Getoor, 2003]. One of the main strategies to address this chal-

lenge is to transform the different types of objects into a common representation, for instance

using a textual description for each element. However, quality will probably decrease because

information is lost in the process. The consideration of these types of complex information nar-

rows the gap between different fields: Textual data has traditionally been exploited in information

retrieval and text classification, while relations and linked data are mainly analysed using data

mining and database techniques.

A “perfect” information system, as defined by [Abrol et al., 2001], should solve ”the need to

seamlessly and scalably combine structured (e.g., relational) as well as unstructured information

in a document for search, as well as for organisational purposes (clustering, classification, etc.)

and for personalisation”. Nowadays, the integration or adaptation of methods between tasks is

difficult to achieve given the current design of information systems. The main reason for this

challenge is that information systems are usually developed for specific cases, therefore, leading

to rewrite large portions of the original code for other purposes. The majority of these systems

commonly involve complicated knowledge transfer and maintainability processes. Moreover,

large amounts of code are produced, that are usually difficult to understand, use and adapt for

new developers or researchers. This situation can be compared to what happened in the software

industry, when software engineering evolved from programs focused on one specific context, to

the development of frameworks for general tasks that could be adapted for specific ones. Further-

more, due to their particular nature, information systems can be seen as prototype-based environ-

ments, where new models or data need to be quickly tested. The reason for this is that decisions

have to be made according to the analysis of dynamic data and requirements, where different

sources of ambiguous or even contradictory information need to be combined. Therefore, pro-
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ductivity and fast changeability are important characteristics. All these factors support the claim

that the importance of flexibility in information retrieval systems is rapidly growing, and that tra-

ditional architectures are too rigid to allow quick modifications [Cornacchia and de Vries, 2007].

In addition, too much engineering effort is needed to adapt them when new knowledge appears,

or there are changes in the requirements [Hiemstra and Mihajlovic, 2010].

1.2 Research Questions

The research questions this thesis addresses are shown below. All of them are related to the two

main concepts of this research: How to improve the modelling of classifiers using descriptive

approaches, and how to exploit knowledge throughout the classification process.

1. To what degree is the expressiveness of descriptive approaches, represented by probabilis-

tic Datalog, enough to model and customise traditional classifiers?

2. To what degree can models expressed in a descriptive approach be automatically translated

to a mathematical formulation to observe and verify its semantics?

3. Can a formal framework generalise and integrate the main knowledge exploitation tech-

niques for data augmentation and score modification in text classification?

4. To what degree descriptive approaches can seamlessly integrate textual and relational clas-

sifiers with heterogeneous data?

5. Is a descriptive approach abstract enough to apply flexible task integration and adaptation?

6. Given a set of documents to be classified and a limited amount of human resources. What

quality can be achieved if those resources are optimised to focus only on the documents

that the automatic system is more likely to misclassify?, and, are the category thresholds

and classification scores useful for this task?

7. With what confidence can a set of documents be ranked according to their expected classi-

fication quality?, and, are the category thresholds and classification scores useful to solve

this task?

8. Given a set of classifiers and their quality evaluation, will their relative quality or their

ranking change using an evaluation metric that includes degrees of misclassification?
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9. How can the number of neighbours in a k-NN classifier be automatically optimised per cat-

egory without dividing it into multiple binary classifiers?, and, what quality improvement

will be achieved compared to traditional k-NN?

1.3 Contributions

The main contributions of this thesis are: Firstly, the seamless modelling of text classification us-

ing a descriptive approach, leading to a high-level abstraction that allows a flexible and adaptable

environment for prototyping and knowledge exploitation in complex environments. Secondly,

several tasks and methods to improve usually neglected aspects of the classification process us-

ing diverse knowledge. The specific contributions, listed by chapter, are summarised as follows:

• Chapter 4: DESCRIPTIVE MODELLING OF TEXT CLASSIFICATION

Modelling of the Classification Process A seamless modelling of the text classification

process using a descriptive approach. This abstraction includes the definition of a

generic data schema and the modelling of different families of classifiers using prob-

abilistic Datalog, namely Naive Bayes and k-Nearest Neighbours.

Declarative Text Classification Customisation Abstraction for flexible task customisa-

tion, using a global predicate dictionary.

Mathematical Translation of Classifiers Modelling The capability to translate the mod-

elling of a solution, in probabilistic Datalog, to its mathematical definition in order

to improve maintainability and model verification.

Evaluation Empirical confirmation of the quality of the classifiers modelled with proba-

bilistic Datalog. Furthermore, an efficiency study investigates the applicability of the

approach.

• Chapter 5: DESCRIPTIVE MODELLING OF KNOWLEDGE-ENHANCED TEXT

CLASSIFICATION

Knowledge Exploitation Framework A conceptual definition of the types of knowledge

that can be used, and a knowledge exploitation framework for text classification. This

also includes the modelling of the framework using probabilistic Datalog.
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Combination of Textual and Relational Classifiers The ability to model and combine

relational and textual classifiers within heterogeneous environments.

High-level Task Integration High level integration capability between information re-

trieval tasks and text classification.

Relational and Hybrid Classification Evaluation Quality values for relational and hy-

brid (relational and content-based) classifiers using descriptive approaches to com-

bine both approaches.

• Chapter 6: NEW APPROACHES OF KNOWLEDGE EXPLOITATION FOR THE

CLASSIFICATION PROCESS

Semi-Automatic Text Classification The introduction of the task of Semi-Automatic Text

Classification (SATC), where the goal is to optimise the available human resources

and the predictions made by an automatic system. This also includes several methods

to address it, based on the category thresholds and the classification scores.

Document Performance Prediction The introduction and definition of Document Per-

formance Prediction (DPP) and different methods to address it. DPP main focus is to

predict the classification performance of a document.

Misclassification Degrees in Classification Evaluation A family of metrics that consider

levels of misclassification for classification, based on category dependencies.

Dynamic k-NN An adaptive variation of k-NN that optimises the number of neighbours

per category, instead of globally, without creating multiple binary classifiers.

1.4 Thesis Structure

Chapter 2: General knowledge related to the classification process.

Chapter 3: Literature review of content representation, classification and descriptive approaches.

Chapter 4: Seamless modelling, using a descriptive approach, of the text classification process.

It illustrates the high level customisation and the automatic translation from probabilistic Datalog

programs to their mathematical formulation.

Chapter 5: Modelling of Knowledge-Enhanced and relational classifiers in probabilistic Data-

log. It includes a framework for knowledge exploitation in text classification, the combination of
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relational and textual classification in heterogeneous environments, and the high level integration

of information retrieval tasks.

Chapter 6: Strategies and tasks to exploit knowledge in different steps of the classification

process. The tasks of Semi-Automatic Text Classification (SATC) and Document Performance

Prediction (DPP) are presented, and several algorithms are introduced to address them. An eval-

uation framework using class dependency measures to capture near-misses is introduced. Also, a

variation of k-NN that adapts the number of neighbours per class is used to improve the scoring

step.

Chapter 7: The conclusions and findings, as well as the main limitations and research outlook.
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Chapter 2

Text Classification Background

This chapter introduces the general background for text classification, explaining the steps in the

classification process and defining its different subtypes. Text classification, also known as text

categorisation, is the process of assigning classes, from a preselected set, to a specific document.

These decisions are based on the concepts represented by each of the classes and the documents.

The set of classes is given, as well as a sample of previously labelled documents to learn from.

Text classification is a pivotal task for information systems that is usually applied to organise

the massive amount of data that users deal with in a daily basis. It has been applied in a variety

of applications such as news categorisation or spam detection [Sebastiani, 2002]. In addition, it

has been proven to be helpful in conjunction with other information retrieval tasks such as Web

search via Learning to Rank [Liu, 2009].

The classification process starts with a document collection of manually labelled documents.

After this, the collection is divided in three disjoint subsets, namely train, validation and test

sets. The training set is used by the system to learn the patterns that will be used to infer the

classes for new, unseen documents. The validation test is needed to optimise the parameters of

a classifier (e.g., the number of neighbours in k-NN) with a set of documents that have not been

used to train the model, nor are used to evaluate their performance. In some cases, this validation

set is not explicitly specified and the tuning of parameters is done via cross-validation using the

training set. This approach can be seen as implicitly creating different validation sets (one per

fold). Finally, the testing set is used to evaluate the quality of any given model by comparing its
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decisions to the human judgements. There are different strategies to split the collection in these

sets. Some collections provide specific split information in order to ensure replicability and to

allow direct comparisons. If no split strategy is specified, a random approach is usually applied,

where the ratios for each subset have to be decided.

Once the split of the collection is defined, the next step is to decide what documents are going to

be considered by the algorithm to learn from. The trivial (and most common) option is to select

all the training documents. The main rationale behind this option is that the more data available

for the classifier, the higher quality can be achieved. However, the labelling of documents is

costly, and in some cases, the class assignments are known to be unreliable [Voorhees, 2000]

[Webber and Pickens, 2013]. For these reasons, a subset of the training documents might be

used instead. The field addressing the problem of selecting which documents should be selected

is known as Active Learning [Lewis and Gale, 1994].

The next step in the process is to represent the content of the documents. Similarly to information

retrieval, two techniques are usually applied: Stop-words removal and stemming. Stop-words

removal [Luhn, 1960] eliminates words that are considered without a meaning (e.g., “the”, “a”,

“until”, ...). It is usually done by comparing every term in the document against a list of stop-

words, that are language dependent. The (english) stop-words list that has been traditionally used

in information retrieval and text processing is the one presented in [Salton, 1971]. The results of

this thesis use the same list of stop-words. Nonetheless, other word lists are used by different

systems and domains. Stemming refers to the process of obtaining the syntactic root of a word

by, usually, removing prefixes and suffixes. This helps to minimise the matching problem by

mapping words with the same root. This approach assumes that words with the same root are

semantically related. For instance, “play”, “playing” and “played” will be represented by the

token “play”. Different algorithms apply different stem rules. The most commonly used is the

Porter stemmer [Porter, 1980].

After stop-words removal and stemming are applied, each document is represented as a bag of

tokens. The next step is to transform it to a vectors of weights, where each component measures

the importance of a specific term for the document, for instance, using the term frequency values.

Other non-textual features can be used (e.g., the number of nouns in the document or the number

of terms) depending on the specific classification task. One of the main challenges of the vector

representation is that its dimensionality can be in the order of tens of thousands. However, most
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of those features have almost no discriminative power, this is, they do not carry any information

on how to classify new documents into the classes. Therefore, they can be treated as noise. This

situation appears, for terms that occur almost uniformly distributed over the different classes.

Furthermore, high dimensionality can be an issue for some of the models, related to efficiency

and/or effectiveness. For these reasons, feature selection is usually applied. A subset with the

most informative features is selected as the representation for the documents, while the others

are ignored [Yang and Pedersen, 1997].

The classification step, referred to as scoring to differentiate it from the whole classification

process, is applied after all documents have been represented. The scoring has two independent

sub-steps, the model learning and the class prediction for unseen documents. The former learns

how to perform the classification based on the training data, whereas a score for each class

is provided in the prediction phase. Some methods, such as traditional SVM [Joachims, 1998],

compute a binary decision value, indicating if the document belongs to the class or not, instead of

a numeric score. In general, there are variations for this type of classifiers to provide a confidence

score for each assignment [Platt, 1999].

The final goal of the classification process is to decide which classes a document belongs to,

based on the document-class scores produced by the classifier. The transformation from scores

to binary decisions is performed in the thresholding step [Yang, 2001].

The last step of the process is the quality evaluation, where the decisions made by the sys-

tem are compared to the ground truth. These judgements are assumed to be correct and com-

plete. Nonetheless, research have shown that this is not true, as the disagreement between as-

sessors for both text classification and document retrieval is relatively high [Voorhees, 2000]

[Webber and Pickens, 2013].

The concepts previously explained summarise a general classification processes. Nonetheless,

there are several sub-types of classification problems with specific characteristics that can alter

the general data flow. The types of classification problems and the methods for each step of the

classification process are illustrated in the next sections.
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2.1 Types of Classification Problems

Different types of classification problems can be defined with respect to different dimensions

such as the structure of the data or the output of the system, altering the flow of the general

classification process. The main classification types are summarised in the following sections.

Most of the details of this section are based on the survey presented by [Sebastiani, 2002].

2.1.1 Single-Class vs Binary vs Multi-Class vs Multi-Label

A classification task can be required to decide if a document belongs or not to a unique class. For

instance, in the case of email spam detection, where an email has to be classified as being spam or

not. This scenario is known as a binary classification. If the training set only contains documents

labeled in one class, it becomes a single-class problem. This challenge is closely related to the

fields of outlier detection and novelty detection [Moya et al., 1993] [Khan and Madden, 2010].

On the other hand, if each document is required to be labelled just in one class, but there are

multiple classes to choose from, the problem is referred to as multi-class classification. Language

detection is a good example of a multi-class problem, where the (unique) language of a document

has to be detected from a set of languages.

If the tasks allows a document to belong to multiple classes simultaneously, it becomes a multi-

label problem. One example is news categorisation, where a document can be focused on mul-

tiple topics simultaneously (e.g., sports and finance for an article about the purchase of a

football team).

2.1.2 Soft vs Hard

A classification system can be used by itself, being completely automatic and independent, or it

can be used to support a decision process. In the former case, a decision if a document belongs

to each class is expected, whereas a numeric confidence value is provided for the latter. These

two cases are referred to as hard and soft classification respectively.

Examples for soft classification include systems that use the confidence in further inference steps

such as support systems, where the classification output is interpreted by an human expert (e.g.,

medical diagnostics), and systems that expect a ranking of categories.
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2.1.3 Flat vs Hierarchical

The class taxonomy is the set of considered classes and their structure. Based on it, two dif-

ferent sub-types of classification are defined: Flat (or traditional) classification if there are no

relationships between classes, and hierarchical if the taxonomy has a structure with some classes

being sub-topics of other classes. Hierarchical classification presents interesting challenges for

classification because the relationships between classes should be taken into account, both in the

class prediction and the evaluation steps [Sun and Lim, 2001].

2.1.4 Preferential Classification

In multi-label classification, each category assignment is usually treated equally, meaning that

all labels for a document have the same importance. However, in some environments this might

not be the case. For instance, given a document related to company acquisitions, where one of

the companies is a football team: Although, the document is labelled in the classes finance and

sports, it could be argued that the topic finance is much more relevant than sports.

Preferential Classification, also known as Preferential Learning, addresses the situation where

there is a explicit preference of some classes over others. Preferential classification has been

formally defined as follows [Aiolli et al., 2009]:

Definition 1. The attribution to a textual document di not of a subset Ci ✓ C of the set of cat-

egories C (as in standard multi-label aka n-of-m text categorisation), but of a partial ordering

among the set of categories C; this partial ordering specifies which category applies more than

(or is preferred to) which other category to the document.

The specific characteristics of preferential learning imply that new evaluation measures tak-

ing into account the order of the assignments are needed, and that only collections with non-

binary assessments can be used. Aioli et al. proposed a new evaluation metric for preferen-

tial learning that exploits a weighted combination of different F1 measures, where the weights

represent the effect of considering erroneous swapping between different priorities of classes

[Aiolli et al., 2009].
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2.1.5 Cost-Sensitive Learning

One main assumption that is usually applied in classification problems is that all errors have the

same cost. However, this is not true in most real problems. For instance, in advertisement, the

cost of sending an email to a non-respondent is very small, but the cost of not mailing someone

who would respond is the entire profit lost [Domingos, 1999]. Cost-Sensitive Learning assumes

that some misclassifications are more “costly” than others. For this reason, a cost matrix C is

developed, where a specific entry Ci, j represents the cost of predicting class i when the true class

is j. If i = j the prediction is correct, and it is incorrect otherwise.

Table 2.1: Misclassification Costs.
Expert Judgements
NO YES

Judgements NO C(0, 0) = c00 C(0, 1) = c01
Classifier YES C(1, 0) = c10 C(1, 1) = c11

The optimal prediction (in binary classification) for a document d is the class i that minimises the

following equation, where P( j|x) is the probability of class j given the document d [Elkan, 2001]:

L(d, i) = Â
j

P( j|d) ·C(i, j) (2.1)

Conceptually, the cost of labelling a true positive has to be lower (potentially zero) than the cost

of labelling it incorrectly. More specifically, following the notation presented in Table 2.1. it

should be always the case that c10 � c11 and c01 > c00. Most of the methods that address this

problem follow the principle that, for the binary case, the optimal prediction is class C1 if and

only if the cost of its prediction is less than or equal to the expected cost of predict class C0, as

the following equation illustrates:

P( j = 0|x) · c10 +P( j = 1|x) · c11  P( j = 0|x) · c00 +P( j = 1|x) · c01 (2.2)

Given p = P( j = 1|x), this is equivalent to:

(1� p) · c10 + p · c11  (1� p) · c00 + p · c01 (2.3)

Cost-Sensitive learning has been addressed extensively in the literature, mainly for two-class
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problems, but very little research is focused on multi-label environments [Zhou and Liu, 2010].

2.2 Document Selection

The standard strategy for classification is to use all available (labelled) documents, following the

intuition that better quality will be achieved with more data. However, human labelling is a costly

and time consuming process. Moreover, in some cases, a collection could be known to contain

inconsistent or noisy data. For these reasons, different techniques have been proposed to optimise

the labelling process. Active learning addresses the selection of documents to be labelled and

used as training examples [Lewis and Gale, 1994], where the main goal is to achieve, at least,

comparable performance with respect to supervised learners, while requiring fewer documents

to be labelled, therefore reducing the cost. There are four main approaches for active learning,

depending on the specific assumptions applied:

• Uncertainty Sampling [Lewis and Gale, 1994]. The documents with higher uncertainty are

selected first as it is assumed that they are more informative.

• Relevance Sampling [Lewis and Gale, 1994]. The most relevant documents are selected.

The rationale is that they carry more relevant information and less noise about the topic.

• Expected-error reduction [Yan et al., 2003]. This technique minimises the expected error

on the unlabelled data. Its main challenge is that it is computationally expensive.

• Committee-based [Liere and Tadepalli, 1997] [Tong and Koller, 2001]. Conceptually sim-

ilar to uncertainty sampling using a committee of classifiers. The selected documents are

those with higher uncertainty, based on the degree of disagreement between the classifiers

(more disagreement implies more uncertainty).

If the principles of active learning are applied over time, as new data arrives, the task is referred to

as Incremental Learning [Lewis and Gale, 1994]. The main goal in this situation is to iteratively

select documents to be manually labelled, trying to optimise the quality gain by using them

as training examples in the future. Extensive research has been done related to single-label

environments [Lewis and Gale, 1994] [Tong and Koller, 2001], where it is assumed that every

document belongs to only one class. However, very limited research has tried to address the
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same problem in a multi-label environment [Esuli and Sebastiani, 2009] [Yang et al., 2009], even

though the majority of classification problems (especially in text classification) have a multi-label

nature.

2.3 Feature Selection

Feature selection filters the features that are more discriminative between the categories within

a collection. In other words, those features that best differentiate between classes. This step is

applied to eliminate the noise created by features that appear uniformly distributed over different

classes, as well as to increase the efficiency of the system. Three of the most commonly used

methods, namely document frequency, information gain and c

2 are presented in this section.

These methods achieve similar performance over different text classification collections, and

there is a strong correlation between them [Yang and Pedersen, 1997]. The optimum number of

features has to be observed empirically for each collection, classification method and feature se-

lection model. The removal of the terms that appear in fewer documents than a specific threshold

(document frequency feature selection) can be seen as a over-simplistic measure that has been tra-

ditionally used in order to increase efficiency rather than effectiveness. However, its performance

has been reported to be comparable to more advance methods [Yang and Pedersen, 1997]. The

assumption is that rare terms are not informative for category prediction, nor influential enough

to affect global performance. The definition of document frequency (d f ) for a given term is de-

fined as follows, where Tr is the set of training documents and nD(t) is the number of documents

a term appears in:

df(t) = nD(t) = |{d 2 Tr : t 2 d}| (2.4)

Information Gain is a common technique that has been used in machine learning to measure the

discriminative power of a feature [Quinlan, 1986] [Mitchell, 1997]. Although it was originally

developed within the context of decision trees, Information Gain has also been applied for feature

selection in text classification [Sebastiani, 2002]. It measures the numbers of bit of information

obtained for category prediction by knowing the presence or absence of a term in a document.

Following the same formalism presented by Sebastiani, tk and tk represent the event that the term

tk appears or not in a document. Similarly, ci and ci represent that a document belongs or not to



2.3. Feature Selection 37

the class ci. Using this formulation, probabilities are interpreted on an event space of documents.

For instance, P(tk,ci) measures the probability that, given a random document, tk appears in the

document and the document does not belong to ci. Information gain is then defined as follows:

IG(tk,ci) = Â
[c2{ci,ci}]

Â
[t2{tk,tk}]

P(t,c) · log
P(t,c)

P(t) ·P(c) (2.5)

[Yang and Pedersen, 1997] proposed a different formalism for multi-class problems, where the

goodness of each term is measured globally with respect to all categories on average. The infor-

mation gain for a term t is defined as follows, where C is the set of classes:

IG(t) = � Â
ci2C

P(ci) · logP(ci)

+P(t) Â
ci2C

P(ci|t) · logP(ci|t) (2.6)

+P(t) Â
ci2C

P(ci|t) · logP(ci|t)

The c

2 statistic measures the lack of independence between two events. In the case of text

classification, the events are, for a document space, the occurrence of a term t and the labelling

in a class c. Following the same notation previously explained, where |Tr| is the set of training

documents, c

2 is defined as follows:

c

2(tk,ci) =
|Tr|[P(tk,ci) ·P(tk,ci)�P(tk,ci) ·P(tk,ci)]2

P(tk) ·P(tk) ·P(ci) ·P(ci)
(2.7)

All the strategies, with the exception of the reformulation of information gain introduced by Yang

et al., compute a value that measures the discriminativeness of a term for each category. Nonethe-

less, a unique value per term is required in order to select the more meaningful features globally.

For this reason, an aggregation operation should be applied. Three different functions have been

proposed in the literature [Sebastiani, 2002] [Yang and Pedersen, 1997]. Adding the values for

each class, applying a weighed sum (usually based on the relative number of documents being

labelled in each class), and using the maximum value. These methods are formalised below,

where f (t,c) measures the discriminative power of a term t for class c:

fsum(t) = Â
ci2C

f (t,ci) (2.8)
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fwsum(t) = Â
ci2C

w(ci) · f (t,ci) (2.9)

fmax(t) = max
ci2C

f (t,ci) (2.10)

Research suggest that feature selection can reduce the number of features by 90% for text classi-

fication while, at least, maintaining the same levels of quality [Yang and Pedersen, 1997].

2.4 Content Representation

The most common document representation method in information retrieval and text classifica-

tion is to analyse every document as a bag of words, and to observe the importance of its terms

as a vector of feature weights. The term weights are usually based on two factors: A frequency

factor that measures how common the term is in the document, and an informativeness factor that

represents how relevant the term is in the collection. The most representative terms are common

in the document, while being rare in the collection. This concept is one of the foundations of

information retrieval and it has been applied for more than four decades [Sparck-Jones, 1972]

[Salton, 1988] [Buckley et al., 1994].

Several algorithms following these principles have been presented in the literature, where the two

most commonly used in text classification are tfc (term frequency count) and ltc (logarithmic

term frequency count) [Joachims, 1998] [Yang and Liu, 1999] [Lewis et al., 2004]. The former

exploits the total term count for the frequency factor, while the inverse document frequency (idf)

[Sparck-Jones, 1972] is used to compute the term informativeness. The mathematical definition

of tfc is shown below, where nL(t,d) represents the number of occurrences (locations) for a

term t in document d, nD(t) is the number of documents t appears in, and Tr is the set of train

documents:

tfc(t,d) = nL(t,d) · log
|Tr|

nD(t)
(2.11)

ltc applies a logarithm normalisation to the term count to decrease the relative importance of

every new occurrence of a term. The ltc definition is shown below, following the same notation
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as the one shown for tfc:

ltc(t,d) = (1+ log(nL(t,d))) · log
|Tr|

nD(t)
(2.12)

In addition to the document and collection dimensions, some authors have proposed to use cate-

gory information to represent documents specifically for text classification tasks. These weight-

ing approaches, known as supervised weighting strategies, use metrics traditionally used in fea-

ture selection, mainly measuring the terms discriminative power [Batal and Hauskrecht, 2009].

2.5 Traditional Classification Methods

Classifiers produce a score for each category and document to be classified. However, the mech-

anisms to compute such value is dependent on the specific classifier. This section introduces

three of the most commonly used and well-known families of algorithms for text classification,

namely Bayesian, k-NN and Support Vector Machines.

2.5.1 Bayesian Classifiers

Bayesian classifiers use the Bayes Theorem to infer the categories for a document. In particular,

they calculate the probability of a class given a document as follows, where d is a document and

c one of the classes:

P(c|d) = P(d|c) ·P(c)
P(d)

(2.13)

This equation could be extended by reformulating P(d|c) and P(d) based on the terms inside

document d:

P(c|d) = P(d|c) ·P(c)
P(d)

=
P(t1, t2, ..., tn|c) ·P(c)

P(t1, t2, ..., tn)
(2.14)

In text classification, independence between features is usually assumed, given the context of

a class. Under this assumption, the joint probability from the general equation for Bayesian

classifiers is modified as follows:
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P(t1, t2, ..., tn|c) = P(t1|c) ·P(t2|c)... ·P(tn|c) (2.15)

Then, we can define the probability of a document being labelled in a class as follows, where

nL(t,d) is the number of times that the term t appears in document d:

P(c|d) = P(c)
P(d)

·’
t2d

P(t|c)nL(t,d) (2.16)

Classifiers that make these assumptions are usually referred as Naive-Bayes, even if there are

differences between them. Two variations of this family, based on different distributions, are il-

lustrated in the next sections: a multi-variate Bernoulli and a multinomial Naive-Bayes classifiers

[McCallum and Nigam, 1998]. Furthermore, the concept of of the zero-probability problem and

different smoothing techniques are also explained.

2.5.1.1 Multi-variate Bernoulli

A multi-variate Bernoulli distribution represents different features using a binary vector that in-

dicates the occurrence or not of terms in a document. This model computes the class prior prob-

ability by the maximum likelihood estimate as follows, where Tr is the set of train documents:

P(c) =
Â

d2Tr
P(c|d)

|Tr| (2.17)

Assuming P(d) = 1
|Tr| , the document prior is then formalised as shown below:

P(d) = Â
c2C

P(c) ·P(d|c) (2.18)

P(d|c) and P(t|c) are specified as follows, where Bd,t is the binary value indicating if term t

appears in document d:

P(d|c) = ’
t2d

(Bd,t ·P(t|c)+(1�Bd,t) · (1�P(t|c))) (2.19)

P(t|c) =
Â

d2D
Bd,t ·P(c|d)

Â
d2D

P(c|d) (2.20)
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This model applies the independence assumption and it explicitly takes into account the non-

occurrence probability of features that are not in the document.

2.5.1.2 Multinomial

Multinomial Bayes uses a non-binary vector for representing different features, exploiting the

frequency of the terms in each document. Then, the probability of a document given a class is

defined as follows, where nL(t,d) represents the number of times a term t occurs in document d.

P(d|c) = P(|d|) · |d|!’
t2d

P(t|c)nL(t,d)

nL(t,d)!
(2.21)

The probability of each term given a class, is shown below:

P(t|c) =
1+ Â

[d2D]
nL(t,d) ·P(c|d)

|T |+ Â
[t2d]

Â
[d2D]

nL(t,d) ·P(c|d)
(2.22)

Class and document priors are computed as they were in the Bernoulli model. The multinomial

naive-based classifier has shown better performance for the specific task of text classification

compared to the multi-variate Bernouilli [McCallum and Nigam, 1998].

2.5.1.3 Smoothing

One challenge for the Bayesian classifiers is that, based on the available information, the prob-

ability of a term given a class might be zero. As a result, no document containing such term

can be assigned to the class. To avoid this case, known as zero probability problem, an esti-

mate of within-class term probability P(t|c) is defined. Two options are commonly applied: A

Laplace-based smoothing that virtually adds once occurrence of each term to each class, and a

mixture-based approach that combines the probability based on training documents (foreground

model) and a background model based on the collection.

2.5.2 k-Nearest Neighbours (k-NN)

k-NN is a lazy learning instance-based method that categorises documents taking into account

what training examples are the “nearest”, based on a similarity measure [Dasarathy, 1991]. There

are several strategies to compute the score for each class. The two most common are voting,
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where each of the top neighbours is considered equally; and a weighting approach, where each

neighbour contribution to the final score is weighted by its similarity with respect to the document

to be classified. In both cases, the score of each class is computed as the sum of scores for each

neighbour labelled in the class, observing only the k most similar documents.

A similarity function has to be defined in order to compare and rank the training documents with

respect to the document to be classified. The cosine similarity is the usual method for this task.

Given two documents di and d j, represented as vectors of term weights, their cosine similarity is

defined as follows:

sim(di,d j) =
di ·d j

||di|| · ||d j||
(2.23)

Once the similarity function if specified, the mathematical definition of k-NN can be formalised

as follows, where NNk(d) represents the set of k nearest neighbours of d and y models the class

association between a document and a class:

scorek-NN(c,d) = Â
d02NNk(d)

simk(d,d0) · y(d0,c) (2.24)

In addition to the similarity function, the number of neighbours (k) has to be tuned. This is

usually done based on a validation set, optimising k with respect to a quality measure.

A probabilistic formulation of k-NN based on the total probability theorem, computed over the

set of nearest neighbour documents, has also been proposed in the literature [Gövert et al., 1999].

P(c|d) = Â
d02NNk(d)

P(d0|NNk(d)) ·P(c|d0) ·P(d0|d) (2.25)

P(d0|d) = Â
t

P(d0|t) ·P(t|d)⇡ sim(d,d0) (2.26)

P(d0|NNk(d)), the normalisation factor, is required since the documents are not viewed as disjoint

events.
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2.5.3 Support Vector Machines (SVM)

Support Vector Machines (SVM) [Cortes and Vapnik, 1995] is a relatively recent machine learn-

ing technique that is based on the structural risk minimisation principle [Vapnik, 1995]. Its main

principle is to find a hypothesis h for which we can guarantee the lowest error for an unseen and

randomly selected test example. SVM was suggested to be a good candidate for text classifica-

tion problems [Joachims, 1998]. The main reason for this assumption is that text classification

represents a high dimensional problem that cannot be easily reduced to a small set of relevant fea-

tures because there are few truly irrelevant features (i.e., terms that have no impact whatsoever

in the category decision). SVM suits this type of environment because it provides over-fitting

protection that does not necessarily depend on the number of features. In other words, SVM can

deal automatically with very large number of features without over-fitting to the specific set of

training examples. Furthermore, SVMs are also well suited to problems with sparse document

vectors (i.e., where most of the features are zero) such as text classification. In addition to the

theoretical arguments, SVMs have been empirically proven to be very effective for document cat-

egorisation and other tasks [Joachims, 1998]. SVM maximises the distances between categories

by finding the hyperplane that better divide them. In its basic form, it represents a binary linear

classifier. Extensions of the original model allow non-perfect matching with training data (to

avoid outliers) and non-linear functions. Moreover, methods have also been proposed to apply it

to multi-label collections using “one-vs-rest” approaches.

2.5.4 Classifiers Committee

Classifiers committee, also known as ensemble classifiers, are learning algorithms that base their

decision on a set of classifiers. The main assumption is that such combination can achieve better

and more consistent quality than any of them being applied separately. It has been suggested that,

the more different the theoretical foundations of the models are, the better the quality is expected

to be [Larkey and Croft, 1996]. On the other hand, classifiers with too different quality levels do

not achieve significant improvements [Tumer and Ghosh, 1999]. Therefore, the optimum config-

uration is to use multiple classifiers based on different theoretical grounds but with comparable

quality. Other research has shown that “A necessary and sufficient condition for an ensemble of

classifiers to be more accurate than any of its individual members is if the classifiers are accurate

and diverse” [Dietterich, 2000].
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Two characteristics have to be specified for traditional ensemble methods: The classifiers to be

used, and the combination function [Sebastiani, 2002]. For the latter, there are four traditional

algorithms:

• Majority Voting [Li and Jain, 1998]. Decisions agreed by the majority are applied.

• Weighted Linear Combination [Larkey and Croft, 1996] according to the expected quality

of each classifier.

• Dynamic Classifier Selection [Li and Jain, 1998] only taking into account the best classi-

fier for the m most similar examples based on validation data.

• Adaptive Classifier Combination [Li and Jain, 1998] where the weight of each classifier is

the quality achieved for the m most similar examples.

Other ensemble methods manipulate data, while the same classifier is used, iteratively modifying

the training document set [Dietterich, 2000]. For instance, Bagging uses several samples of the

same dataset to train a classifier. Boosting is a variation of this type of ensembles, where the

weights of each training example change every iteration. The weights for the documents that

were misclassified in the previous step is increased to place more importance on them. This type

of learning is represented by the AdaBoost method [Schapire et al., 1998]. A slightly different

technique to combine classifiers, known as stacking, is to use the output of a set of classifiers as

input for a “second-level” meta-classifier [Wolpert, 1992] [Ting and Witten, 1999].

All these techniques are document-independent learning methods, in the sense that they perform

the same steps independently of the documents to be classified. A meta-classifier that includes

global (e.g., output of classifiers in the first level) and document specific features (e.g., document

length) was presented by [Bennett et al., 2005]. The authors proposed to use reliability indicators

and included four types of data: the amount of information present in the original document (e.g.,

document length or number of unique terms), the information loss with a specific representation

(e.g., percentage of terms removed in feature selection), the sensitivity of the decision to evidence

shift, and voting statistics.
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2.6 Thresholding Strategies

After the classification (or scoring) step is performed, a score for each class and document to be

classified is available. Then, a decision for each pair document-class has to be made to assign

the document to the category or not. Different thresholding strategies have been presented in

the literature to address this challenge. This section summarises the most common techniques, as

presented by [Yang, 2001]. A cross-validation process based on a validation set should be applied

for all the thresholding methods that require parameter tuning to optimise a quality measure.

2.6.1 RCut

Given a document, RCut sorts the classification scores for each category, and it decides that

the document should be classified in the top r of them. The value of r ranges from one to m

(the number of categories). The special case of r = 1 has been extensively used in the machine

learning community for single-label problems [Joachims, 1998].

2.6.2 PCut

PCut uses a category-based approach. Given a specific class ci, it sorts the scores for each

document, where the top-ki documents are assigned to the category. The calculation of ki is

shown below, where x is the average number of documents assigned to a class, and C is the set

of classes. x is optimised based on a global quality metric.

ki = P(ci) · x · |C| (2.27)

When x is the number of documents in the class, the system behaves like “Mr.YES”, where all

documents are assigned to all classes. On the other hand, x = 0 implies that no documents are

assigned to any class [Yang, 2001], also known as a “Mr. NO” behaviour.

2.6.3 SCut

SCut is similar to PCut, being also a category-based approach. Given a category, the scores for

each document are sorted. Then, a numerical threshold is optimised, with respect to a quality

measure, for each class. As a result, a different threshold per class is obtained, therefore, this
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method does not guarantee a global optimum.

2.6.4 SCutFBR

When a class has very few examples, SCut can produce a threshold that is too high, or too

low based on the validation set. In the first case, relevant documents for the class will not be

classified, lowering the macro-averaged1 quality. On the other hand, if the threshold is too low,

several documents will be incorrectly classified in the class, therefore, decreasing both micro and

macro-averaged quality values1 [Yang, 2001]. A variation of SCut addresses these challenges

by treating differently the classes with quality lower than a specific value known as fbr. This

modification, coined SCutFBR [Yang, 2001], has two sub-variations: SCutFBR0.0 sets the class

threshold to infinite for those classes with a lower quality than the fbr value, and SCutFBR1.0

that sets it to the score of the top ranked document.

2.7 Quality Evaluation Measures

The most common metrics to evaluate the quality of text classification systems are precision,

recall and F1 [van Rijsbergen, 1979]. All these measures are based on a contingency table (see

Table 2.2) that compares the ground truth and the decisions made by a classification system for a

category Ci [Sebastiani, 2002].

Table 2.2: Contingency Table for Class Ci.
Expert Judgements
YES NO

Classifier YES TPi FPi
Judgements NO FNi TNi

A contingency table illustrates four possible scenarios for each document that has been classified

(either as positive or negative) with respect to a category. True Positive (TP) when the system and

the assessment agree that the document belongs to the class; False Positive (FP) when the system

incorrectly assigns the document to the class; False Negative (FN) for the case of not assigning

a document that should be in the class and; finally, True Negative (TN), if the system and the

judgement specify that the document do not belong to the class. The number of assignments of

each type are aggregated over the set of classified documents to provide the number of TP, FP, FN

1Micro and macro-averaged quality measures are explained in Chapter 2.7
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and TN per class. Precision, Recall and F1 are based on such definitions, and their formulation

for a specific class (Ci) is shown below:

Pri =
T Pi

T Pi +FPi
(2.28)

Rei =
T Pi

T Pi +FNi
(2.29)

F1i =
2 ·Pri ·Rei

Pri +Rei
(2.30)

All measures can be computed across a set of classes using two different strategies: micro-

averaging, if each class influences the final score depending on its number of documents; and

macro-averaging, where each class has the same importance. The definition of precision, recall

and F1 using both micro (µ) and macro (M) averaging strategies are formulated below, where C

represents the set of classes.

Prµ =

Â
ci2C

T Pi

Â
ci2C

(T Pi +FPi)
(2.31)

Reµ =

Â
ci2C

T Pi

Â
ci2C

(T Pi +FNi)
(2.32)

Fµ

1 =
2 ·Prµ ·Reµ

Prµ +Reµ

(2.33)

PrM =
1
|C| Â

ci2C
Pri (2.34)

ReM =
1
|C| Â

ci2C
Rei (2.35)

FM
1 =

1
|C| Â

ci2C
F1i (2.36)
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For the specific case of F1, some authors have incorrectly computed its macro-averaged value, by

multiplying the macro-averaged recall and precision, instead of averaging the F1 values for each

class. As a result, a different, usually higher, quality is computed [Yang, 2001].

Other evaluation metrics have been proposed but their use is minimal in text classification. Sev-

eral of these measures such as Break-Even point, accuracy or fallout are explained in detail in

[Sebastiani, 2002].

2.8 Collections

Different collections are used in this thesis to evaluate tasks, models and approaches from differ-

ent perspectives. Such collections are explained in this section, and Table 2.3 summarises their

main characteristics.

Table 2.3: Collections Statistics.
Collection #Docs(train/test) avg. class/doc #Classes
20-newsgroups 9840/6871 1 20
Reuters-21578 7770/3019 1.24 90
Reuters-21578-115 9603/3299 1.06 115

2.8.1 20-newsgroups

20-newsgroups, also known as 20news or 20-newstories, is a collection of approximately

20,000 newsgroup documents related to 20 categories with almost uniform distribution of docu-

ments over categories. Cross-posting emails have not been considered. As a result, it is a single-

label collection, where each document belongs to one, and only one, category. The train/test split

is based on time, as it is suggested2.

2.8.2 Reuters-21578

Reuters-21578 contains structured information about newswire articles that can be assigned

to several classes3. It has a a highly skewed distribution of documents over categories. This is

arguably the most commonly used multi-label collection for text classification. Two variations

of the “ModApte” split are used: Reuters-21578 and Reuters-21578-115: Reuters-21578

2Obtained from http://people.csail.mit.edu/jrennie/20Newsgroups
3Available at http://www.daviddlewis.com/resources/testcollections/reuters21578



2.8. Collections 49

uses only documents that belong to classes with at least one training and one test document.

As a result, there are 7770 documents for training, 3019 for testing, and 90 categories. This is

the same configuration used by [Yang, 2001]. Reuters-21578-115 uses documents belonging to

classes with at least one training or testing document. This configuration has 9603 documents for

training, 3299 for testing, and 115 classes. It is the same collection used by [Berardi et al., 2012].

2.8.3 DBLP

A subset of the DBLP (http://www.informatik.uni-trier.de/ ley/db/) repository of scientific pub-

lications was introduced by [Cai et al., 2005] to investigate relational classification. This col-

lection4 contains 14376 articles, 14475 authors and 20 conferences belonging to four different

topics, namely database (DB), data mining (DM), information retrieval (IR) and artificial intel-

ligence (AI). The collection contains textual information (i.e., the title) for research papers and

relational information representing who are the authors of each publication and what venue it

was publish in. In addition, a small percentage of entities were manually labelled to be used for

testing and evaluation. In particular, the test set has 4057 authors, 100 papers and all 20 confer-

ences. The split is done by randomly selecting 50% of the documents for training and the rest for

testing.

4Downloaded from http://web.engr. illinois.edu/ mingji1/DBLP four area.zip
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Chapter 3

Literature Review

This chapter introduces the literature review for several fields that are directly related to the

contents of this thesis, namely descriptive modelling, knowledge exploitation and performance

prediction.

3.1 Descriptive Approaches

Descriptive approaches, also referred to as declarative, define the solution to a specific problem,

or the conditions for such solution, rather than the steps to solve it. As a result, a higher degree

of abstraction is obtained, compared to other approaches. This abstraction has been reported to

increase productivity, because the modelling is clearer and it implies that less time is spent under-

standing, debugging and upgrading code [Lloyd, 1994]. A definition of descriptive approaches,

as proposed by Lloyd, is shown below:

Definition 2. Programming paradigm that involves stating what is to be computed, but not

necessary how it is to be computed.

Descriptive approaches have significant improvements over algebraic methods, specially when

flexibility and changeability over short periods of time are required, and when the data or the

information needs are ambiguous or dynamic. Abstraction provides an open and flexible envi-

ronment where models and tasks can be easily integrated.
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Descriptive approaches can be used to address some of the main challenges of enterprise search.

Some of these challenges are “the enormous scale, fluid collection definition, great heterogene-

ity, unfettered interlinking, democratic publishing, the presence of adversaries and most of all

the diversity of purposes for which Web search may be used” [Hawking, 2004]. The same author

claims that the reason for the poor performance of enterprise search systems in real-environments

is the extensive engineering effort that is needed in order to adapt methods developed in the lab-

oratory. Furthermore, a “perfect” enterprise search is required ’to seamlessly and scalably com-

bine structured (e.g., relational) as well as unstructured information in a document for search,

as well as for organisational purposes (clustering, classification, etc.) and for personalisation”

[Abrol et al., 2001].

There has been a continuous line of research regarding abstraction layers using descriptive tech-

nologies for different information tasks. For instance, a declarative specification language (Dyna)

has been used to model Natural Language Processing (NLP) algorithms [Eisner et al., 2005]. The

authors claim that a declarative specification is helpful, even if it is slower than hand-crafted

code. Other example is the description of a framework that synthesises and extends deductive

and semi-ring parsing, adapting them for translation [Lopez, 2009]. This work shows that logic

make “an attractive shorthand for description, analysis and construction of decoding algorithms

for translation”, and that such technology is beneficial when implementing large-scale transla-

tion systems, identified by the authors as a major engineering challenge. In addition, they also

claim that the logical description helped them to understand and compare different models.

The concept of abstraction in information retrieval has been addressed in the literature, usu-

ally applying concepts from the database community or proposing mathematical abstractions to

define information retrieval problems. One of the first approaches of this type integrates struc-

tured data and text using the relational model [Grossman et al., 1997], concluding that the re-

lational model offers scalable performance, with the ability to integrate text and relations in a

portable fashion. Another example is a parameterised search system that allows flexibility in

user queries and provide an easy mechanism for system engineers to customise search strategies

[Cornacchia and de Vries, 2007]. This is possible using a declarative language that is based on a

mathematical abstraction known as the Matrix Framework [Roelleke et al., 2006] that describes

information retrieval concepts as matrix spaces and operations. The authors also claim that the

algorithms should be modelled as similar as possible to the problem definition, abstracting away
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any other details.

The idea of decoupling search strategies from algorithms and data structures is known in the

database community as data independence. The same concept was proposed in Information Re-

trieval almost twenty years ago [Fuhr, 1996]. Furthermore, DeVries also included the notion

of content independence to measure the lack of dependency between search strategies and data

representation [de Vries, 2001]. Similar arguments are used to propose a database approach with

a relational model that allows rapidly developing of applications that are “easy to understand,

document and teach” [Hiemstra and Mihajlovic, 2010]. The same research also suggests that

information retrieval is still in an early stage that can be compared to the 1960’s for database sys-

tems, where there was no general application program interfaces, nor standard query languages.

Among descriptive approaches, Logic and Probabilistic Logics have been applied for modelling

and reasoning with knowledge in different environments [Hunter and Liu, 2010]. For instance

Problog [Raedt et al., 2007] and P-Log [Gelfond et al., 2006]. The language that is used in this

thesis, Probabilistic Datalog (explained in Section 3.1.1), is one of its representatives.

Most descriptive approaches share two main challenges that have to be balanced: Expressiveness

and scalability. Abstraction causes a lack of control over the program flow (i.e., how to compute

the solution) that implies that these solutions are usually slower. One of the strategies to partially

address this challenge is to simplify or limit their expressiveness. As a result, not all models can

be defined.

The next subsection illustrates the characteristics of Datalog and probabilistic Datalog (the lan-

guage used in this thesis) in detail. After that, the descriptive approaches that have been applied

for classification-related tasks, and those that are based on probabilistic Datalog are explained.

3.1.1 Probabilistic Datalog

Datalog is a variation of predicate logic based on function-free Horn clauses that has been ex-

tensively used as a query language for deductive databases [Ullman, 1989]. Rules have the form

“head body”, where body has a set of subgoals (b1,b2, ...bn) that denote literals with variables

and constants as arguments.

The original version of probabilistic Datalog [Fuhr, 1995] [Fuhr and Roelleke, 1997], referred to

as 1st generation Datalog from now on, extends these concepts by attaching probabilistic weights
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Traditional Datalog
fact ::= NAME ’(’ constants ’)’
rule ::= head ’:-’ body
head ::= goal
body ::= subgoals
goal ::= NAME ’(’ arguments ’)’
subgoal ::= pos subgoal | neg subgoal
pos subgoal ::= atom
neg subgoal ::= ’!’ atom
atom ::= NAME ’(’ arguments ’)’
argument ::= constant | variable
constant ::= NAME | STRING | NUMBER
variable ::= VAR NAME
arguments ::= | argument ’,’ arguments
constants ::= | constant ’,’ constants
subgoals ::= | subgoal ’,’ subgoals

1st Generation Probabilistic Datalog
prob fact ::= prob fact
prob rule ::= prob rule

Figure 3.1: 1st Generation probabilistic Datalog.

to facts and rules. Figure 3.1 describes the syntax of Datalog and 1st generation probabilistic

Datalog. Roelleke et al. extended PRA (Probabilistic Relational Algebra), the language proba-

bilistic Datalog is built upon, improving its expressiveness and scalability to model information

retrieval ranking functions [Roelleke et al., 2008] [Roelleke et al., 2013b]. Syntactically, it ex-

tends the syntax of 1st generation (see Figure 3.1) by providing Bayesian atoms and assumptions

and probability estimation, including score aggregation (SUM, PROD). A simplified version (for

improving readability) of the syntax specification for the 2nd generation probabilistic Datalog is

outlined in Figure 3.2.

The assumption between predicate name and argument list is the so-called aggregation assump-

tion (aggAssump). For example, for disjoint events, the sum of probabilities is the resulting

tuple probability. In this case, the assumptions ‘DISJOINT’ and ‘SUM’ are synonyms, and so

are ‘INDEPENDENT’ and ‘PROD’. The assumption in a conditional is the so-called estima-

tion assumption (estAssump). For example, for disjoint events, the subgoal “term(Term, Doc) |

DISJOINT(Doc)” expresses the conditional probability P(Term|Doc) derived from the statistics

in the relation called “term”. Complex assumptions such as DF (for document frequency) and

MAX IDF (max inverse document frequency) can be specified to describe probabilistic param-

eters commonly used in information retrieval. Expressions with complex assumptions can be
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goal ::= tradGoal | aggGoal
atom ::= tradAtom | bayesAtom
subgoal ::= tradSubgoal | aggGoal
tradGoal ::= see 1st Generation
tradSubgoal ::= see 1st Generation
bayesAtom ::= tradAtom ‘|’ {estAssump} evidenceKey
evidenceKey ::= ‘(’ variables ‘)’
aggGoal ::= NAME {aggAssump} ’(’ arguments ’)’
aggSuboal ::= NAME {aggAssump} ’(’ arguments ’)’
tradAssump ::= ‘DISJOINT’ | ‘INDEPENDENT’

::= | ‘SUBSUMED’
irAssump ::= ‘SEMI SUBSUMED’ | ‘DF’

::= | ‘MAX IDF’ | ...
probAssump ::= tradAssump | irAssump
algAssump ::= ‘SUM’ | ‘PROD’
aggAssump ::= probAssump
estAssump ::= probAssump | complexAssump

Figure 3.2: 2nd Generation probabilistic Datalog: Bayesian goals.

decomposed in probabilistic Datalog programs with traditional assumptions only. However, for

improving the readability and processing (optimisation), complex assumptions can be specified.

The decomposition of complex assumptions is shown in [Roelleke et al., 2008]. The language

also incorporates “special predicates” to specify how the engine should treat some tuples. For

instance, “ sort” indicates the engine that the tuples of a given predicate (e.g., score) should be

sorted according to their probabilities. Moreover, other information retrieval predicates such as

id f were also presented by the same authors.

Table 3.3 shows the normalised term frequency and the category labels of a set of documents in a

tabular format. On the other hand, Figure 3.4 uses a logical format to represent exactly the same

information, where the value is added as a probability for each fact.

tf sum
Value Term Document
0.23 economy d40
0.52 expectation d23
0.12 provider d23
0.16 reuters d1

part of
Value Document Class

1 d1 cocoa
1 d5 grain
1 d5 wheat
1 d5 oil

Figure 3.3: Tabular Data Representation.

In both cases, t f sum and part o f become predicates whereas, “(term, document)” and “(docu-

ment, class)” are their contexts respectively. A more advanced example is shown in Figure 3.5,
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where the probability of a student obtaining a specific grade, P(grade|student), is computed,

based on probabilities of grades given subjects from the previous year. The example uses proba-

bility estimation and an aggregation assumption (SUM) which is needed for the score calculation.

Figure 3.6 illustrates the input data and output values based on this modelling.

1 # Normalised Term Frecuency for terms and documents
2 0.23 tf sum(economy, d40);
3 0.52 tf sum( expectation , d23);
4 0.12 tf sum( provider , d23);
5 0.16 tf sum( reuters , d1);

7 # Categories Labelled for documents
8 part of (d40, cocoa) ;
9 part of (d23, grain ) ;

10 part of (d23, wheat);
11 part of (d1, oil ) ;

Figure 3.4: Probabilistic Logical Data Representation.

1 #P(grade|degree) : Learned from knowledge base.
2 p grade degree SUM(Grade, Degree) :� grade(Student, Grade, Degree) |(Degree);

4 #P(grade|person) : Inferred using P(grade|degree)
5 p grade person (Grade, Person) :�
6 p grade degree (Grade, Degree) & register (Person, Degree);

Figure 3.5: Student grade prediction based on historic average grades per subject modelled using
probabilistic Datalog.

1 # Input data about past year student grades
2 grade(John, B, Art) ;
3 grade(Mary, B, Maths);
4 grade(Anna, A, Art) ;

6 # Input data for new enrolled students
7 register (Matt, Art) ;
8 register (Mike, Maths);

10 # Probabilities of grades for each of the new students
11 0.5 p grade person (A, Matt) ;
12 0.5 p grade person (B, Matt) ;
13 1.0 p grade degree (B, Mike);

Figure 3.6: Example data and results for the student grade prediction based on historic average
grades per subject modelled using probabilistic Datalog.

3.1.2 Descriptive Approaches for Classification

Probabilistic Datalog has been used to model rules for information classification and transfor-

mation [Nottelmann and Fuhr, 2001]. This work focuses on extracting probabilistic rules for
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information classification and matching, and they also propose different methods to adapt their

approach to problems with higher dimensions such as text classification.

Logic programming and domain ontologies have been combined for text classification, where

logic is used as the categorisation rule language, and the ontologies are applied as the formal rep-

resentation of the domain knowledge [Cumbo et al., 2004]. The authors use Datalog f , a variation

of Datalog that includes aggregate functions [Dell’Armi et al., 2003]. This work shows how the

expressive power of descriptive approaches can capture the semantics of the taxonomy and de-

scribe complex patterns that should be present in the documents. In addition, they illustrate that

the modelling of such solutions (referred to as encoding in their work) is very concise, simple

and elegant because of the abstraction based on logic.

Outside the textual domain, the exploitation of first-order logic rules, obtained using Inductive

Logic Programming (ILP) [Muggleton, 1991], has been explored to define musical genres based

on harmony [Anglade et al., 2009]. The same authors successfully applied such rules for genre

classification using rules that are “transparent, human-readable and more meaningful than pre-

vious representations” [Anglade and Dixon, 2008]. A continuation of this research suggests that

“this [abstraction and first-order logic rules] approach bring us one step closer to modelling

music in the way it is conceptualised by musicians” [Dixon et al., 2011].

In addition to using descriptive approaches for classification, there are other similarities between

these approaches and the work presented in this thesis. For instance, [Nottelmann and Fuhr, 2001]

apply the same language (although not the same “generation” as we shall see in the next sec-

tion) and engine (HySpirit [Fuhr and Rölleke, 1998]) as we do. The strategies presented in

[Cumbo et al., 2004] such as exploiting a synonym predicate can be seen as knowledge-enhanced

expert rules. This is related to the modelling of knowledge-enhanced classification (see Sec-

tion 5). These investigations also support the applicability of descriptive approaches in order

to provide abstraction and high-level definitions. In this sense, the most similar research com-

pared to this thesis are [Anglade et al., 2009] [Dixon et al., 2011]. Nonetheless, this thesis is also

focused on flexibility and adaptability.

The main differentiation with respect to our work is that the methods presented on this section are

focused on rule-based classification, specialising either on how to learn the rules, or on how to

apply them for classification. Whereas, we address the challenge of model traditional classifiers

and knowledge.
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3.1.3 Descriptive Approaches based on Datalog and Probabilistic Datalog

Probabilistic Datalog has been used as a probabilistic logical retrieval framework [Fuhr, 2000].

In addition, probabilistic Datalog was extended (Probabilistic Datalog++) to create a extensible

information retrieval engine [Nottelmann, 2005]. As this research shows, one of the major ad-

vantages of logical frameworks in information retrieval is that external knowledge such as term

associations, hyperlinks, annotations or contextual information can be easily incorporated into

the retrieval process. The reason to incorporate a new variation of the language was the lack of

features such as aggregation operators and the possibility of specifying probabilistic assumptions

between events (e.g., independence). Similar modifications, among others, were added in the

2nd generation of probabilistic Datalog [Roelleke et al., 2008] (explained in Section 3.1.1).

Another information retrieval task where this approach has proven to be beneficial is annotated

document retrieval. The main goal of this task is to exploit the knowledge from annotations

to improve document retrieval. To address this challenge, a Probabilistic Object-oriented Log-

ics for Annotation-based Retrieval (POLAR) was introduced [Frommholz, 2007]. POLAR is

based on four-valued (true, false, inconsistent and unknown information) probabilistic Datalog

[Fuhr and Rölleke, 1998]. Further development of this research allowed to apply these concepts,

in combination with machine learning techniques, to the task of polarity detection in discussion

search [Frommholz and Lechtenfeld, 2008].

Summarisation has also been addressed using an abstraction based on probabilistic Datalog, re-

ferred to as POLIS [Forst et al., 2007b]. One of the main conclusions of this work are that POLIS

shows the advantages of abstraction such as robustness, flexibility and re-usability. In addition, it

allows experienced users to express how a summary should be generated, rather than implement

the summarisation models.

The applicability of probabilistic Datalog for expert search was also investigated, concluding that

it is possible to express strategies for such task in a simple, straightforward way, without making

any changes to the underlying system [Forst et al., 2007a].

Logical abstractions have also been used to model semantic search, where a knowledge-oriented

approach was presented to facilitate the transformation of term-based retrieval models into semantic-

awared ones [Azzam and Roelleke., 2010]. Their approach consists of semantic propositions

such as relationships and classification of objects. The authors illustrate how their framework
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acts as a logical layer that decouples the retrieval models from the physical representation of the

data, therefore, achieving data independence.

Patent retrieval presents a complex environment, where traceability, abstraction and descriptive

power are useful. Logic-based retrieval (based on probabilistic Datalog) has been used to address

this task, showing that the open-box, high-level abstraction provided by logical retrieval is su-

perior in such environments [Klampanos et al., 2010]. Patent retrieval requires reasoning about

objects and modelling retrieval strategies in such way that users (patent searcher) can understand

and modify the ranking and the reasoning process. This research illustrates that probabilistic

Datalog has such abstraction and a similar nature to the query languages used by Intellectual

Property professionals. Klampanos et al.also address the scalability challenge by applying dis-

tributed information retrieval approaches, showing how to seamlessly apply data source selection

and result fusion within a logical retrieval system.

Traditional Datalog has also been applied for information extraction to provide a cleaner and

more powerful way to “compose small extraction modules into larger programs that are easy to

understand, debug and modify” [Shen et al., 2007]. In particular, Datalog is extended to include

embedded extraction predicates. The authors also show how to apply query optimisation tech-

niques to the definitions of information extraction solutions in order to improve the scalability of

their solution.

3.2 Knowledge-Enhanced Text Classification

Knowledge has been applied in text classification in numerous occasions, mainly for the doc-

ument representation and scoring steps. This section introduces different knowledge-enhanced

strategies that have been proposed in the literature. The term knowledge-enhanced classifiers is

used throughout this thesis to refer to any model that considers more than just the words in the

documents in the classification process.

3.2.1 Exploiting Term Dependencies

The traditional document representation based on a bag of words implies that learning algorithms

are “restricted to detect patterns in the used terminology only, while conceptual patterns remain

ignored” [Bloehdorn and Hotho, 2004]. Term dependencies have been proven to be beneficial
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both to change the weights of terms present in the document, and to augment such representation

with relevant, yet not present, terms. Both strategies are explained bellow.

3.2.1.1 Boosted Term Weights

One strategy to incorporate knowledge is to modify the importance of certain terms, for instance,

based on the structure of the document. Following this approach, the weight of terms that appear

in parts of the document that are considered more important are boosted. The title of a docu-

ment, or the first paragraph are common cases where information is assumed to be more impor-

tant [Robertson et al., 2004]. In addition, richer document representations allows more detailed

strategies. For example, exploiting emails headers (e.g., From and Subject) for spam detection

[Klimt and Yang, 2004]. There are two main techniques to boost the importance of a term. On

one hand, the number of occurrences of the term can be artificially increased, as suggested by

[Robertson et al., 2004]. On the other hand, the feature weight can be modified to reflect more

importance [Ogilvie and Callan, 2003].

3.2.1.2 Augmented Representation

The goal of augmented representation is to better capture the meaning of a document, instead

of being limited by the terms that it contains. To achieve this objective, knowledge can be used

to incorporate new terms into a document representation, usually exploiting term dependencies

or similarities based on different measures such as co-occurrences or synonyms. Furthermore,

these metrics can be based on external datasets. For example, the Open Directory Project (ODP)

[Gabrilovich and Markovitch, 2006] or Wikipedia [Wang et al., 2007]. WordNet [Miller, 1995]

is usually applied for synonym exploitation [Bloehdorn and Hotho, 2004]. Other steps such as

feature selection can also be improved by exploiting such data. For instance, using data as from

ODP [Gabrilovich and Markovitch, 2005] or Wikipedia [Gabrilovich and Markovitch, 2006] as

background knowledge.

3.2.2 Exploiting Relationships

3.2.2.1 Link-Based and Relational Classification

Most real-world data such as the Web, bibliometric data, or social networks are heterogeneous

and interconnected in nature. However, most learning methods assume “flat” data representa-

tions, therefore much of its information is lost [Getoor et al., 2003]. Link-based (and relational)
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learning exploits relationships between different elements for classification. It represents an in-

tersection between the fields of link analysis, hypertext mining, relational learning and inductive

logic programming and graph mining [Lu and Getoor, 2003]. Furthermore, according to some

authors “A key challenge for machine learning is to tackle the problem of mining more richly

structured datasets” [Lu and Getoor, 2003].

The foundational difference with respect to traditional content-based learning methods implies

that different approaches are applied. While information retrieval and machine learning tech-

niques are used to solve content-based classification, the methods for relational classification

have their foundation in fields such as databases, data mining and artificial intelligence. The ex-

ploitation of these relations has proven to be very beneficial in domain specific scenarios. For in-

stance web similarity search using exclusively relational information [Dean and Henzinger, 1999].

Another research illustrates how traditional classifiers perform well with collections containing

independent documents such as Reuters-21578 (explained in Section 2.8), whereas they under-

perform with collections where there are underlying relationships between the elements (i.e.,

patents and web pages) [Chakrabarti et al., 1998]. One common approach is to apply Statistical

Relational Learning (SRL), an approach that combines logic and probability to learn a probabilis-

tic logical model. SRL is usually seen as an intersection of the machine learning and inductive

logic programming (ILP) communities [Getoor and Mihalkova, 2011].

The combination of relational and textual classification (in hypertext domains) was suggested

in [Slattery and Craven, 1998], where the authors claim that such approach will make a more

informed and accurate decision. Their results support their claims, however, their work present

a combination of two different techniques rather than their integration. Furthermore, they argue

that their approach is also well suited for other domains that involve both relational and large

feature spaces. The combination of textual and relational features has also been investigated

in the literature, where a combination of object features (i.e., based on term frequencies) and

link features are used to classify new documents [Lu and Getoor, 2003]. The authors study the

exploitation of link features that describe the categories of the link type based on relational infor-

mation, rather than explicitly representing the much more dense link incidence matrix (i.e., the

relational information between all the nodes).

In addition to the nature of data being mainly relational, another relatively recently recognised

challenge is the fact that information is heterogeneous in the “real world” [Ji et al., 2010]. Both
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the relations and the “entities” to be classified are usually assumed to be homogeneous (i.e., the

same type or nature). However, as different authors have shown, this is not the case and both rela-

tions [Cai et al., 2005] and elements in the network [Ji et al., 2010] [Deng et al., 2011] can have

different types. The combination of relational and textual data in heterogeneous environments

presents several challenges [Ji et al., 2010]:

• The complexity of the network structure by itself, where some authors transform it into

a homogeneous network and apply traditional classification methods. However, this sim-

plification necessarily ignores type-specific information (i.e., co-citation of papers in a

bibliographical collection) by assuming a “general type” of entities.

• The transformation of link information into features requires very high dimensional and

sparse data.

• The features for different types of objects will be in different event spaces.

• In heterogeneous environments labels for some elements might be easier to obtain than

others, with the extreme case of some types being completely unlabelled.

3.2.3 Exploiting Class Dependencies

The knowledge derived from the relationships between classes can be very useful in classifica-

tion. Although multi-label environments are the main focus of these metrics, multi-class prob-

lems can also benefit from observing and analysing the category dependencies. This section

introduces the approaches that exploit this type of information in two different steps of the clas-

sification process, the scoring and the evaluation.

3.2.3.1 Class Dependency-Aware Classification

Multi-label classification problems are usually solved by transforming them into a number of

independent binary classifications, where the results are aggregated to provide the set of assigned

categories for each document. This strategy requires lower computational power, and it allows

the application of traditional classification techniques. However, it does not exploit the relations

and interactions between classes. The main strategies to incorporate the relations between classes

into the classification step that have been proposed in the literature are presented below:
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Label power-set reformulates the problem as a binary class problem where the new set of classes

are defined as all possible combinations of the original set [Tsoumakas and Katakis, 2007]. Al-

though effective for collections with few classes, its computational complexity impairs its appli-

cability for collections with large number of classes.

Chain classifiers use conditional dependencies between classes to build a classifier chain that uses

one binary classifier per class, linked in a chain that includes the prediction of other classifiers

for the document [Read et al., 2009] [Zaragoza et al., 2011]. The mathematical formulation for

this approach is shown below, where d is the document to be classified, pa defines the parents

(classes on which Ci depends), and |C| is the number of classes:

P(Ci|d) =
|C|

’
i=1

P(Ci|pa(Ci),d) (3.1)

Other approaches include Multidimensional Bayesian Networks Classifiers [Waal and Gaag, 2007].

The main limitation of this type of classifiers is that they require much more computational power

than other strategies, therefore affecting their scalability and applicability.

3.2.3.2 Evaluation with Degrees of Misclassification

Degrees of misclassification allow to assign different penalisations for different mistakes in the

classification. This strategy has been applied in hierarchical and preferential classification, where

explicit differences between mistakes are defined.

Hierarchical classification presents structural relations between different classes (e.g., sub-classes).

Therefore, it is critical to apply some notion of partially correct assignments. In particular, mea-

sures based on category similarities and distances are used [Sun and Lim, 2001]. For instance,

a lower penalisation (if any at all) will be applied if the incorrect category is the parent of the

correct one.

In preferential learning, multiple degrees of relevance are specified. As a result, different mis-

takes should be penalised accordingly. Therefore, it requires an evaluation metrics that take into

account the multi-graded relevance. While degrees of misclassification have been exploited in

these two subfields, it has been almost completely neglected in traditional classification. One

research has tried to answer the question of “Can the evaluation of a multi-label classifier be im-

proved when taking the semantic relatedness of concepts into account?” [Deloo and Hauff, 2013]
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by calculating the degree of relatedness of the set of categories assigned by the system and the set

labelled by the human annotators (i.e., ground truth). The authors apply the same strategy pre-

sented in [Nowak et al., 2010], where every label of both sets (assigned by the system vs labelled

by humans) is matched with the label of the other set that maximises relatedness. Furthermore,

they also present the results of a human study, where the correlation between the expert ratings

(given by three new human experts) and two evaluation metrics (their “semantically-enhanced”

method and F1). Although the experimental setting is quite limited, mainly due to its scale (25

documents and three expert users), it supports the claim that degrees of misclassification repre-

sent better the user satisfaction.

3.2.4 Adaptive k-NN

The number of neighbours in k-NN is arguably the most important factor in the performance

of the classifier. Traditionally, its value is optimised via cross-validation. Although k-NN has

proven to achieve good results in several applications, including text classification [Joachims, 1998]

[Yang, 2001], it has two main issues: Firstly, assuming that the same k is optimum for different

classes is counter-intuitive. Secondly, if the problem involves biased class distributions, as it is

common in text classification, the optimisation of the number of neighbours is dominated by the

large classes [Baoli et al., 2004]. Adaptive k-NN methods address the challenges of choosing

different k values depending on different parameters, instead of using a global value. For in-

stance, a model that assigns different number of neighbours based on the number of categories

[Baoli et al., 2004]. This research assumes that large categories are more influential over the es-

timation of k and that the category size information is enough to specify the best k per class.

They present different models to estimate the best k per category. In addition, they also show two

variations of k-NN for the score computation, where NNk(c) represents the set of k most similar

documents for the category and y(d,c) represents the assignment function for training examples

(i.e., one if d belongs to the category c, and zero otherwise). These methods apply the traditional

k-NN score formulation presented in Section 2.5.2 with a normalisation factor.

scorek-NN(c,d) =
Â

d2NNk(c)
y(dt ,c)

k
(3.2)



3.3. Query Performance Prediction 64

scorek-NN(c,d) =
Â

d2NNk(d)
simk(d,dt) · y(dt ,c)

Â
d2c

simk(d,dt)
(3.3)

The number of neighbours are decided as shown in Equation 3.4, where a is a non-negative in-

teger to maintain a minimum reasonable number of neighbours, without which the performance

can be unstable due to the very few neighbours being considered, nD(c) represents the number

of documents labelled in class c, and k is the number of neighbours [Baoli et al., 2004]. A similar

method to minimise the penalisation of small categories was also presented by [Yang et al., 2000].

NNk(c) = min(a +
k ·nD(c)

maxci2C(nD(c j))
,k,nD(c)) (3.4)

A different approach focuses on the locality of the elements to be classified (i.e., the space sur-

rounding a document) in order to select the best number of neighbours for each specific document

[Wettschereck and Dietterich, 1994]. Their main assumption is that different points in the feature

space account for different characteristics of the collection (e.g., noise or irrelevant features). The

authors present a variation of k-NN that stores, for each training example, the k values that would

classify it correctly if it was a new, unseen document (i.e., virtually moving the example from the

training set to a test set). In order to classify a new document, the M nearest neighbours are se-

lected, and the k value that would have correctly assigned most of them is assumed to be the best

number of neighbours for the current document. Two variations of this algorithm are proposed

to filter the documents based on the locality to those assigned to the considered category; or to

those that belong to a common cluster (after clustering the collection).

3.3 Query Performance Prediction

Query Performance Prediction (QPP) refers to the estimation of the quality that will be achieved

by a retrieval system in response to a specific query [Cronen-Townsend et al., 2002]. It also

relates to the appropriateness of a query as an expression for a user information need. Prediction

methods have been classified into two groups depending on the data used for prediction: pre-

retrieval approaches, which make the prediction before the retrieval stage, and post-retrieval,

which use the rankings and scores produced by the retrieval engine [Carmel and Yom-Tov, 2010].

The prediction methods researched in the literature use a variety of available data, such as the
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query, its properties with respect to the retrieval space [Cronen-Townsend et al., 2002], the output

of the retrieval system [Carmel et al., 2006], or the output of other systems [Aslam and Pavlu, 2007].

Pre-retrieval approaches have the advantage that the prediction can be taken into account to

improve the retrieval process itself. Nonetheless, they have the potential handicap, with regards

to their accuracy, that the extra retrieval effectiveness cues available after the system response are

not exploited. These predictors are typically based on query or collection statistics such as the

inverse document frequency [He and Ounis, 2006] or linguistic properties.

Post-retrieval predictors use the retrieved results by means of the output scores or the ranked

documents. Although techniques in this category provide better prediction accuracy, computa-

tional efficiency is usually a challenge for them. Furthermore, the predictions cannot be used to

improve the retrieval strategies unless some kind of iteration is applied, as the output from the

retrieval system is needed to compute the predictions [Amati et al., 2004] [Yom-Tov et al., 2005].

QPP techniques can be used in many applications by placing the problem from different perspec-

tives [Amati et al., 2004] [Yom-Tov et al., 2005] [Balasubramanian and Allan, 2010] such as:

• Provide feedback to the user in order to direct the search, so that query expansion or rele-

vance feedback techniques could then be used.

• Allow to address the problem of retrieval consistency by distinguishing poorly performing

queries, where different ranking functions could be exploited based on the output from the

performance predictors.

• Decide which search engine should be used, or how much weight to give it when its results

are combined for distributed information retrieval systems.

The specific nature and algorithms of pre and post-retrieval QPP predictors are analysed in the

next sections.

3.3.1 Pre-retrieval Predictors

Pre-retrieval query performance has been studied from two main perspectives: based on proba-

bilistic methods (and more generally, on collection statistics), and based on linguistic approaches.

Most research on the topic has followed the former approach.
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Some researchers have explored inverse document frequency (IDF) and related features as pre-

dictors, along with other collection statistics. IDF can be used as a measure of the specificity

of terms and thus as an indicator of their discriminatory power, displaying moderate correla-

tion with query performance [He and Ounis, 2006]. Other authors have taken the similarity of

the query into account [He et al., 2008], and the inter-similarity of documents containing query

terms as a measure of coherence [Hauff et al., 2008]. Other research based on morphological,

syntactic, and semantic query features have found that the only feature positively correlated with

performance was the number of proper nouns [Mothe and Tanguy, 2005].

3.3.2 Post-retrieval Predictors

Some of the most effective predictors are based on language models and the clarity score, which

captures the lack of ambiguity in a query with respect to a result set. These methods com-

pute the Kullback-Leibler divergence between the query and the collection language model

[Cronen-Townsend et al., 2002]. The concept of query clarity has inspired a number of sim-

ilar techniques, such as comparing the divergence of query-term frequencies before and af-

ter the retrieval is exploited [Amati et al., 2004]. Other predictors are the query perturbation,

that is, the difference in ranking between the original input and after the query is processed

[Vinay et al., 2006]; and the Jensen-Shannon divergence [Carmel et al., 2006].

Besides query clarity, other post-retrieval predictors exploit the score distribution of the results

for each query [Zhou and Croft, 2007], or the standard deviation for a subset of retrieved doc-

uments [Pérez-Iglesias and Araujo, 2009] [Cummins et al., 2011]. Similar research proposed an

utility estimation framework that relies on the standard deviation of the scores (normalised query

commitment) [Kurland et al., 2011].

3.3.3 Predictors Combination

Performance prediction techniques aim to model a continuous variable y (usually, the average

precision of a query). In addition, linear regression models obtain the (linear) relationship be-

tween the quality metric and the predictor estimations [Hauff et al., 2009]. This concept can be

formalised as follows, where~x denotes the vector of quality predictions, such that the i-th element

xi is paired with the quality of the i-th query yi, and b is the weight learnt by the model:
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~y =~xb + e (3.5)

In this context, it is straightforward to combine several predictors by using multiple linear re-

gression. This implies that the model becomes~y = ~X~b + e , where ~b is a vector of weights, and

the j-th row indicates the weight corresponding to the predictor in the j-th row of the matrix

~X , evidencing, thus, the importance of each function in the final combination. This method has

successfully obtained strong performance predictors with respect to the average precision metric

[Jones and Diaz, 2007] [Hauff et al., 2009].

3.3.4 Predictors Evaluation

Once the retrieval quality and the value of the performance prediction have been assessed for

each query, the predictor quality is computed using an assessment function that measures the

agreement between the true value of performance and the quality estimation. There are several

methods to measure the quality of a performance prediction function. For instance, capturing

linear relations, comparing the importance implied by the scores or the ordering given for each

variable (true and estimated performance), and exploiting the implicit partitions derived from the

method. The most commonly used quality function is correlation, which is traditionally measured

using three well-known metrics: Pearson’s, Spearman’s and Kendall’s correlation coefficients.

Pearson’s r correlation captures monotonic linear dependencies between the variables. Whereas,

Spearman’s r and Kendall’s t evaluate non-linear monotonic relationships.
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Chapter 4

Descriptive Modelling of Text Classification

Available data has importantly changed in the last years, both in quantity and quality. Its amount

and velocity (i.e., how quickly new data is created) has significantly increased, both in the Web

and business environments. As a result, there has been an explosion of new possibilities of how

this information can be exploited.

It can be argued that custom-build text classification systems do not provide methodologies to

allow rapid and understandable prototyping. There are open systems/frameworks (e.g., Weka

[Hall et al., 2009] or RapidMiner [Mierswa et al., 2006]) that are well suited if standard algo-

rithms, evaluation, and collections are used. However, deeper changes of the core algorithms and

the incorporation of new dimensions of knowledge are challenging because new applications and

information usually require “reimplementing or introducing new APIs, new query languages,

and even new indexing and storage structures” [Hiemstra and Mihajlovic, 2010]. In general, the

majority of information systems commonly involve complicated knowledge transfer and main-

tainability processes. Moreover, significant engineering effort is needed to adapt them when new

knowledge appears, or there are changes in the requirements [Hiemstra and Mihajlovic, 2010].

In addition, information systems can be seen as prototype-based environments, where new mod-

els or data need to be quickly tested. Therefore, productivity and fast changeability are important

characteristics. These factors support the claim that the importance of flexibility in information

retrieval systems is rapidly growing, and that traditional architectures are too rigid to allow quick

modifications [Cornacchia and de Vries, 2007].
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This chapter investigates the modelling of the text classification process using a descriptive ap-

proach. Probabilistic Logics allows to model more compact and shorter definitions than other

approaches, and, at the same time, it minimises the gap between the mathematical concept and

its modelling. The main challenges are the efficiency and the expressiveness. This research

illustrates the following benefits of using a descriptive approach to model text classification:

• High-level modelling that produces models as compact as their mathematical definitions.

• High-level customisation based on a predicate dictionary, where minimum (or none) engi-

neering effort is needed.

• Translation of models to their mathematical definition for checking and correctness vali-

dation.

We start by defining the data representation. After this, the modelling of the classification steps

in Probabilistic Datalog are shown. Finally, a section illustrates how this approach can be applied

for model verification and translation to mathematical definitions.

4.1 Data Representation

This research uses the knowledge representation model proposed by [Fuhr et al., 1998], and ex-

tended by [Azzam and Roelleke, 2011] [Azzam et al., 2012]. Figure 4.1 shows the main relations

of this schema.

Relation Attributes
term (Term, DocId)
type (TypeName, Object, Context)
class (CName, Object, Context)
relationship (RName, Subject, Object, Context)
attribute (AName, Object, Value, Context)
part of (SubObject, SuperObject)

Figure 4.1: Generic, Object-Oriented Knowledge Representation Schema.

The knowledge representation schema shows the standard information retrieval representation,

“term (Term, DocId)” to capture occurrences of a term in a document. Also, there are relations

regarding the object-oriented content modelling. This includes relations to model object classi-

fication (defining types of entities), relationships, attributes, and aggregation. The classification-
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Relation Attributes
test term orig (Term, DocId)
rep term (Term)
test term (Term, DocId)
train term (Term, DocId)
score (Class, DocId)

Figure 4.2: Classification-Oriented Knowledge Representation Schema.

1 # Document space
2 is document FIRST(Doc) :� part of(Doc, Class) ;

4 # Class space
5 is class FIRST(Class) :� part of (Doc, Class) ;

7 # Term space
8 is term FIRST(Term) :� term(Term, Doc);

Figure 4.3: Modelling of Common Data Representation.

oriented representation schema extends the concepts previously explained with predicates that

are specific for the problem of classification (see Figure 4.2).

The main predicates for the classification process are term (term and train term refer to the same

information, the terms occurrences in train documents) and part of. They represent the terms

that appear in documents and the document-category assignment. Furthermore, other commonly

used predicates represent the document, class and term spaces as shown in Figure 4.3. Other

common predicates used by several models such as the terms contained in a document or the

document frequency for each term are illustrated in Figure 4.4.

Figure 4.5 illustrates a document example that belongs to the categories Finance and Tourism.

Figure 4.6 shows the same information represented using probabilistic Datalog.

1 ## Commonly used predicates
2 # Binary occurrence of a term in a document
3 bin term FIRST(Term, Doc) :� term(Term, Doc);

5 # Terms contained in a document
6 contains (Doc, Term) :� bin term(Term, Doc);

8 # Document Frequency
9 df SUM(Term) :� bin term(Term, Doc) & is document(Doc) | () ;

11 # IDF
12 inv df INV(Term) :� df(Term);
13 idf LOG(Term) :� inv df(Term);

Figure 4.4: Modelling of Commonly Used Predicates.
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1 ## Example of content for document ”d1”
2 UK tourism hits record 12 months after Olympics
3 Britain welcomed more than one visitor every single second in June, as the reputation built up
4 during last years Olympics games helped to attract record numbers of tourists , official figures show.

Figure 4.5: Document Example.

1 ## Data representation for sample document ”d1”
2 # Term representation
3 term(uk, d1)
4 term(tourism , d1)
5 term( hits , d1)
6 term(record , d1)
7 term(months, d1)
8 term(olympics, d1)
9 ...

10 term(olympics, d1)
11 ...

13 # Assignment representation
14 part of (d1, finance )
15 part of (d1, tourism)

Figure 4.6: Data Representation Example.

In the rest of the section we will discuss the rules and usage of relations such as test term origin,

the original terms in test documents and rep term to model the representative terms (i.e., se-

lected features). Both predicated lead to test term, that represents the filtered features for the

test documents. Moreover, there are relations regarding training documents and scores.

4.2 Feature Selection

Feature selection reduces the number of features that are considered in the classification, accord-

ing to a representativity measure (e.g., document frequency). After such subset is selected, all

information referring to other parameters is ignored by the algorithms. Figure 4.7 shows the

probabilistic Datalog model for feature selection using 3000 features, where the metric to mea-

sure the term representativity is left unspecified to be parameterised using a configuration model.

An example of a configuration file that defines the representativity as the document frequency

(i.e., terms with higher values are preferred) is shown in Figure 4.8.

One of the benefits of the descriptive approach is that it is seamless to specify what specific

metric should be used.
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1 ## Feature Selection
2 # 1. Select the 3000 terms with higher representative values .
3 sort ( representativity ) ;
4 filtered representativity (Term) :� representativity (Term):3000;

6 # 2. For each tuple , rep term(Term) is 1.0 for the selected terms , there are no other tuples .
7 rep term(Term) :� filtered representativity (Term)|(Term);

9 #3. Modify the term occurrence information
10 term(Term, Doc) :� rep term(Term) & term orig (Term, Doc);
11 test term (Term, Doc) :� rep term(Term) & test term orig (Term, Doc);

Figure 4.7: Generic Modelling of Feature Selection based on probabilistic Datalog.

1 # Define representativeness ( this rule would usually be defined in a customisation model)
2 representativity (Term) :� df(Term);

Figure 4.8: Customisation of Feature Selection based on Document Frequency in probabilistic
Datalog.

4.3 Term Weighting

Term weighting computes a value for each term to represent its importance within the context of

a document. Most of the methods for term weighting are based on a combination of a within doc-

ument importance (e.g., term frequency), and a value given the collection (e.g., inverse document

frequency). Figure 4.9 illustrates the modelling of this approach.

1 # The within document and within collection weights are combined.
2 weight SUM (Term, Doc) :� document weight(Term, Doc) & collection weight(Term);

Figure 4.9: Generic Modelling Term Weighting Strategy in probabilistic Datalog.

Once the generic modelling is produced, specific algorithms can be used for document weighting.

For instance, Figures 4.10 and 4.11 show how to parameterise the generic weighting schema

using tfc and ltc strategies respectively (explained in Section 2.4). It can be seen how the

modelling of tfc is almost trivial, while ltc requires additional steps to change the term space

to include the additional occurrence required by the model.

One of the main benefits of this abstraction is that the rules are easy to adapt if a new model

requires a different approach. For instance, Figure 4.12 illustrates how to apply a new weighting

strategy that includes a category-based weighting factor. The great flexibility of Logics is under-

lined in this example, where the model is dynamically parameterised with new knowledge for

which the original model was not designed.
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1 ## Term Frequency Count Weighting ( tfc )
2 # Within Doc weight applies term frequency
3 document weight(Term, Doc) :� term SUM(Term, Doc);

5 # IDF is applied as the collection weight
6 collection weight (Term, Doc) :� idf (Term);

Figure 4.10: Modelling of tfc Weighting Strategy in probabilistic Datalog.

1 ## Log Term Frequency Count Weighting ( ltc )
2 # One additional element has to be included for each term in a document
3 # to apply the log over the number of times a term appears in the document plus one
4 term plus (Term, Doc) :� term(Term, Doc);
5 term plus (Term, Doc) :� term SUM(Term, Doc) | (Term, Doc);

7 # Within Document weight applies log term frequency
8 log tf LOG(Term, Doc) :� term plus SUM(Term, Doc);
9 document weight(Term, Doc) :� log tf (Term, Doc);

11 # IDF is applied as the collection weight
12 collection weight (Term, Doc) :� idf (Term);

Figure 4.11: Modelling of ltc Weighting Strategy in probabilistic Datalog.

1 ## Extension of term�document weighting that includes term�category information
2 # Weighting strategy is overridden to include category information
3 weight(Term, Doc) :� document weight(Term, Doc) & collection weight (Term, Doc) & category weight (Term)

5 # Within document weight applies term frequency
6 document weight(Term, Doc) :� term SUM(Term, Doc);

8 # IDF is applied as the collection weight
9 collection weight (Term, Doc) :� idf (Term);

11 # The category weight is based on chi square statistic
12 category weight (Term) :� chi square (Term);

Figure 4.12: Modelling of Weighting Strategies that include Category Information in probabilis-
tic Datalog.
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4.4 Traditional Classifiers

Traditional classifiers use a broad range of concepts and techniques for their score computation.

As a result, some classifiers are easier to model than others using probabilistic Datalog. This sec-

tion shows the modelling of two traditional families of classifiers, namely Naive-Bayes classifiers

and kNN. In addition, the modelling of polynomial kernel functions is also shown.

4.4.1 Naive Bayes

Figure 4.13 shows the general modelling of a Naive-Bayes classifier. The definition assumes

that the probabilities of terms given classes (p t c) has been defined. This allows the seamless

parameterisation of the classifier using different probability estimations or different smoothing

techniques.

1 ## Bayesian Classifier in PDatalog
2 # Likelihood : P(d| class ) = prod {t in d} P(t | class )
3 p likelihood PROD(Doc, Class) :� test term(Term, Doc) & p t c (Term, Class) ;

5 # Evidence prior : P(doc)
6 p doc(Doc) :� is doc (Doc) | () ; # P(doc) = 1/N Docs

8 # Hypothesis prior : P(class )
9 p class SUM(Class) :� part of(Doc, Class) & p doc(Doc);

11 # score = prior ⇤ likelihood = P(class ) ⇤ P(d| class )
12 score bayes (Class , Doc) :� p class (Class) & p likelihood (Doc, Class) ;

14 # Normalisation: score / sum i P( class i | d)
15 norm score bayes(Class , Doc) :� score bayes (Class , Doc) | (Doc);

Figure 4.13: Generic Modelling of Naive-Bayes classifier in probabilistic Datalog.

Figure 4.14 presents an example of how the probability of terms given classes can be estimated.

The model represents location based probabilities with Laplace smoothing. It contains the rules

that define the within-class term probability P(t|c). Furthermore, it also configures the document

prior, and the aggregation of the term probabilities to obtain P(d|c). This example illustrates one

of the main limitations when using Datalog in particular, and logic based systems in general. A

straight forward mathematical operation such as add one “virtual” occurrence of each term in

every class has to be modelled as a combination of the original occurrences with a joint between

all the terms and classes known in the system.

These examples illustrate the level of abstraction that can be obtained by our approach, and its
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1 ## Modelling of Laplace smoothing in PDatalog
2 term class (Term, Class) :� term(Term, Doc) & part of (Doc, Class) ;

4 # One tuple for each term�class pair .
5 all term class (Term, Class) :� is term (Term) & is class (Class) ;

7 # term class event space with laplace correction
8 term class laplace (Term, Class) :� term class (Term, Class) ;
9 term class laplace (Term, Class) :� all term class (Term, Class) ;

11 # P(t | c) . Probability computation based on the Laplace space of terms in documents
12 p t c (Term, Class) :� term class laplace SUM(Term, Class) | (Class) ;

Figure 4.14: Modelling of Laplace correction in probabilistic Datalog.

similarity with the original mathematical formulations (see Equations 4.5- 4.7).

4.4.2 k-NN

Figure 4.15 shows the Probabilistic Datalog modelling of a generic k-NN classifier that uses

45 neighbours based on a customisable similarity measure. The score is computed as the sum

of similarity scores of the training documents that belong to the respective class. The cosine

similarity is the most common approach to measure the similarity in k-NN. Figure 4.16 shows its

modelling, where the first two rules describe the Euclidean normalisation for each vector. Then,

there is a rule to model the cosine similarity as the product of the normalised vectors.

1 ## KNN�Classifier in PDatalog
2 # Specification of top�k documents.
3 top similarity (TrainDoc, TestDoc) :� similarity (TrainDoc, TestDoc):45;

5 # Score is the sum of normalised (per document) similarity scores :
6 score knn SUM(Class, TestDoc) :�
7 top similarity (TrainDoc, TestDoc) | (TestDoc) & part of (TrainDoc, Class) ;

Figure 4.15: Modelling of k-NN in probabilistic Datalog.

1 ## Cosine similarity , given two sets of feature weights
2 # Tuple probabilities based on the Euclidean norm 1/ sqrt (vec(Doc)ˆ2).
3 vec train (Term, Doc) :� weight(Term, Doc) | EUCLIDEAN(Doc);
4 vec test (Term, Doc) :� weight(Term, Doc) | EUCLIDEAN(Doc);

6 # Product for the common terms based on the euclidean normalisations to produce the final score
7 cosine SUM(TrainDoc, TestDoc) :� vec test (Term, TestDoc) & vec train (Term, TrainDoc);

Figure 4.16: Modelling of Cosine Similarity in probabilistic Datalog.
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4.4.3 Kernel Methods

Central to SVMs and other Kernel methods such as Kernel PCA is the use of a Mercer Ker-

nel as a non-linear scalar product. Using a Mercer kernel K(~u,~v) implicitly amounts to carry-

ing out a non-linear mapping F of vectors ~u, ~v from the original data space Rn into a higher–

dimensional feature space F, in which the standard scalar product is computed: K(~u,~v) = F(~u) ·

F(~v) [Courant and Hilbert, 1943]. The advantage is that the mapping F never needs to be com-

puted explicitly, which allow handling high-dimensional or infinite-dimensional feature spaces F

efficiently and transparently. Figure 4.4.3 illustrates the implementation in Probabilistic Datalog

of two kernels widely used in SVM classifiers, belonging to the polynomial family K(~u,~v) =

(~u ·~v+c)d . Namely, we implement the homogeneous quadratic kernel KH = (~u ·~v)2 and the non-

homogeneous quadratic kernel KN = (~u ·~v+1)2. In the case of a two–feature data space R2 we

can make the mapping F explicit by expanding the definition of the kernel:

KH = (~u ·~v)2 = (u1v1 +u2v2)
2 (4.1)

= (u2
1v2

1 +2u1u2v1v2 +u2
2v2

2) = FH(~u) ·FH(~v) (4.2)

from which we conclude that the implicit map is:

FH(~u) = (u2
1,
p

2u1u2,u2
2) (4.3)

that transforms vectors in the data space ~R2 into vectors in FH =R3. Similarly, by expanding the

definition of KN it can be seen that FN = R6:

FN(~u) = (u2
1,
p

2u1u2,u2
2,
p

2u1,
p

2u2,1) (4.4)

Polynomial kernels implicitly compute the correlation and higher order moments of the original

features, which arguably explains their effectiveness. In the general case of an n–dimensional

data space Rn we have FH = Rn(n+1)/2 and FN = R(n+1)(n+2)/2.

This line of research represents the first attempt to bring probabilistic Datalog to model kernel

models and SVM. However, the lack of iteration in the language itself makes it unfeasible without

deeper changes in the language and the engine.
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1 ## Polynomial kernel
2 # 1. Modelling the dot product between U and V and a constant (1)
3 kernel match( Feature , U, V) :� value( Feature , U) & value(Feature ,V);

5 # If the next line is ignored /commented the homogeneus kernel will be computed
6 kernel match SUM (Feature, U, V) :� constant ( Feature , U, V);

8 # 2. Aggregate of product and constant (UV + 1)
9 sum kernel match(Feature , U, V) :� kernel match SUM (Feature, U, V);

11 # 3. Quadratic polynomy (UV + 1)ˆ2 or (UV)ˆ2
12 K quad polyn(U, V) :� sum kernel match(Feature , U, V) & sum kernel match(Feature , U, V);

Figure 4.17: Modelling of quadratic Mercer kernel in probabilistic Datalog.

1 ## Modelling of evaluation measures
2 # Precision : correctly classified / total classified
3 precision (Class) :� classified (Doc, Class) | (Class) & part of (Doc, Class) ;

5 # Recall : correctly classified / total labelled
6 recall (Class) :� classified (Doc, Class) & part of (Doc, Class) |( Class) ;

8 # F1 computation
9 2.0 constant () ;

10 f1 norm(Class) :� recall (Class) ;
11 f1 norm(Class) :� precision (Class) ;
12 inv f1 norm INV(Class) :� f1 norm SUM(Class);

14 f1(Class) :� constant () & precision (Class) & recall (Class) & inv f1 norm(Class) ;

Figure 4.18: Modelling of Evaluation Measures in probabilistic Datalog.

4.5 Modelling of Evaluation

The evaluation of classifiers are usually based on ratios between correctly classified documents.

For instance, the precision of a class is the probability of a random document being correctly

classified, given that the system has assigned it to the category. On the other hand, recall can be

seen as the probability of being correctly classified, given a labelled document.

Figure 4.18 illustrates how these type of metrics, based on ratios, can be easily modelled and

combined using probabilistic Datalog.

4.6 Task Customisation

A dictionary is used to store all the available predicates and their input/output information and

requirements. For instance, given a weight modelling, this dictionary can specify that the rela-

tions weight document(Term, Doc) and weight collection(Term) are needed, and that they should
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Figure 4.19: Dictionary-Based Architecture.

be mapped to the specific methods configured by expert users. Figure 4.19 illustrates a dictionary

architecture with different predicates being obtained from specific models for classification and

other related tasks. Figure 4.20 illustrates a dictionary that represents part of the predicates that

exist in the system. Each one of them can be overwritten. Furthermore, each one of them can

potentially be used to define new rules.

1 term(Term, Doc): Occurrences of terms in documents

3 part of (Doc, Class) : Document�class labels

5 p c d bayes (Class , Doc): Score for class�document using NB classifier
6 p t c (Term, Doc) has to be specified for the estimation of P(t |c)

8 cosine (Doc1, Doc2): Similarity score based on cosine distance
9 final test weight (Term, Doc) is needed for measuring the importance of terms in test

documents
10 final weight (Term, Doc) is needed for computing the importance of terms in train

documents

12 score knn(Class , Doc): Score for class�document using k�NN classifier
13 top similarity (Doc1, Doc2) is needed modelling the k most similar documents.

Figure 4.20: Predicate Dictionary Example showing the Description and Requirements of Dif-
ferent Predicates.

As a result, both the customisation of strategies and their applicability to address new problems

is possible with minimum engineering effort, and without any modification of the core models.

The main difference with other systems is that this is true at every level of the system, instead of

at specific configuration points.
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4.7 Correctness of Probabilistic Datalog Programs

One challenge of software development is to be able to check and verify the models represented

in a program. A logical abstraction, and in particular Probabilistic Datalog, allows a translation

between the implementation and a mathematical formula. Therefore, increasing the possibilities

of software verification. The translation process is based on different operators such as rela-

tionships interaction (joins), probability aggregation (sum and product), probabilistic estimation

(relational Bayes) or order-based (sort, first). In order to compare and translate the logical mod-

elling and its translation, each operator should be able to be independently translated. As a result

of the high level definition and the possibility to translate each operator, an iterative automatic

translation process could be build, based on these definitions, in order to obtain the mathematical

definition of a specific solution. The common notation that is followed throughout this section is

presented in Table 4.1.

Symbol Explanation Example
x atom term(Term, Doc)
r(x) relationship term
A(x) parameters for atom x [Term, Doc]
T (x) set of tuples of atom x [term(car, d1),

term(race, d1)...]
ta value for attribute a in tuple t car
w(t) probability of tuple t 0.9

Table 4.1: Notation Summary for the Translation from probabilistic Datalog to Mathematical
Formulation.

For each of the operators, two translation decisions have to be made: which tuples to keep or

generate, and their probability computation. For instance, the rule term(Term, Doc) &

part of(Doc, Class) will keep all tuples that have a common document, while computing

the new probability as the product of each pair of tuples, one from each relationship, that fol-

lows that pattern (e.g., term(car, d1) and part of(d1, sports)). Therefore, a rule

following the pattern r1(A(x1) & r2(A(x2)) implies that any tuples from r1 and r2 that share

the same values for the attributes that the rule required will be selected, while their probabilities

will be multiplied. A similar set of rules for each of the main operators is shown in Table 4.2.

For instance, Equations 4.5- 4.7 illustrate one formulation of Naive Bayes, where Laplace smooth-

ing is applied. Firstly, the probability of a term given the class is obtained, applying maximum

likelihood in the term space, where nL(t,c) represents the number of times a term appears in a
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Operator Operations Condition
Join tn = t1

t1 2 T (x1),t2 2 T (x2)|8a 2 A(r1)\A(r2)^ (t1a = t2a)w(tn) = w(t1) ·w(t2)
Sum tn = t

0
T 0 ⇢ T (x)|8a 2 A(x)^8t 0 2 T 0^ (t 0

1a
= t

0
2a
= ...= t

0
na)w(tn) = Â

t

02T w(t 0)
Prod tn = t

0
T 0 ⇢ T (x)|8a 2 A(x)^8t 0 2 T 0^ (t 0

1a
= t

0
2a
= ...= t

0
na)w(tn) = ’

t

02T w(t 0)
Log tn = t -w(tn) = lnw(t)
First tn = t

0
argmaxw(t)w(tn) = w(t)

Top (k) tn = t

0
t

0 2 T 0 ⇢ t(r)|8t1 2 T 0,t2 /2 t1a � t2a ^ |T 0|= kw(tn) = w(t 0)

Table 4.2: Translation for the main operators of 2nd generation probabilistic Datalog, tn is a new
tuple.

class and T represents the set of unique terms. After this probability distribution is estimated,

P(d|c) and P(c|d) are computed using the traditional definitions, assuming term independence

and applying the Bayes rule. On the other hand, Figure 4.21 shows the modelling of the same

mathematical model in probabilistic Datalog. It can be seen that the translation between both

representations is almost perfect. The main differences are the modelling of the smoothing strat-

egy and the space selection of aggregation functions. In the probabilistic Datalog modelling, the

Laplace-smoothing is applied by adding one tuple for each term and class to the space that mod-

els the terms in classes (term class). Then, the term space for the document (t 2 d) used in the

product aggregation in Equation 4.6 is translated (in the line 4) as an intersection with respect to

the predicate t in doc. Both expressions are semantically equivalent, and an automatic trans-

lation will infer that the product iterates over the attribute T , but the condition would be specified

as t 2 t in doc^ t 2 p t d, because these are the two predicates involved in the operation.

This translation is also equivalent to t 2 t in doc because the second condition (which implies

having previously seen the term in the collection) is implicit in the mathematical definition. The

predicate p t c is based on the relational Bayes operator, where the probability of each tuple is

divided by the sum of probabilities of all tuples following the condition that they belong to the

same class.

PLaplace(t|c) =
1+n(t,c)

|T |+Âti2T nL(ti,c)
(4.5)
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P(d|c) = ’
t2d

P(t|c) := ’
t2d

PLaplace(t|c) (4.6)

P(c|d) = P(d|c) ·P(c)
P(d)

(4.7)

1 ## Compact modelling of Naive�Bayes with Laplace smoothing
2 # P( t | c ) using Laplace correction
3 term class laplace (Term, Class):� term class (Term,Class) ;
4 term class laplace (Term, Class) :� is term (Term) & is class (Class) ;
5 p laplace t c SUM(Term, Class) :� term class laplace (Term, Class) | (Class) ;

7 # P( c | d )
8 p d c PROD(Doc, Class) :� t in doc(Term, Doc) & p laplace t c (Term, Class) ;
9 p c d(Class , Doc) :� p c(Class) & p d c(Doc, Class) & p d INV(Doc);

Figure 4.21: Stand-Alone Modelling of Naive Bayes in Probabilistic Datalog with Laplace
Smoothing.

4.8 Evaluation

This section evaluates the descriptive modelling of traditional text classification from two differ-

ent perspectives: Firstly, a quality evaluation is performed to confirm that it achieves the same

quality as other approaches. Secondly, efficiency and scalability values are reported to show that

real-scale collections can be processed in a reasonable amount of time.

4.8.1 Set-up

The experiments use the 20-newsgroups and Reuters-21578 collections. A (shared) server

running CentOS 5.7 with two quad-core X5570 CPU at 2.93GHz and 48 GB of RAM, and the

engine HySpirit 1 [Rolleke et al., 2001] have been used for the executions. All the experiments

have been run using a single thread. In all cases SCutFBR.1 has been used as the thresholding

strategy [Yang, 2001], based on micro-averaged F1. Documents are represented using either tfc

or ltc.

The experiments show several candidates based on different parameters and classifiers (k-NN

or NB). For the case of k-NN, the weighting algorithm (ltc or tfc) and the number of neigh-

bours are indicated. The Naive Bayes naming convention includes the assumptions of proba-

1version 2.9.8
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Table 4.3: Reuters-21578 Micro and Macro-averaged F1 quality values for different models,
optimised using SCutFBR.

Model MicroF1 MacroF1
bayes prod laplace norm 0.7843 0.3340
bayes prod laplace uniform norm 0.7839 0.3336
bayes sum log laplace norm 0.7311 0.3177
knn 45 ltc cosine 0.8514 0.5576
knn 45 tfc cosine 0.8334 0.5344
baseline knn 0.8495 0.6245
baseline bayes 0.7250 0.3547

Table 4.4: 20-newsgroups Micro and Macro-averaged F1 quality values for different models,
optimised using SCutFBR.

Model MicroF1 MacroF1
bayes prod laplace norm 0.7526 0.7655
bayes prod laplace uniform norm 0.7526 0.7656
bayes sum log laplace norm 0.6800 0.6982
knn 45 ltc cosine 0.7455 0.7590
knn 45 tfc cosine 0.6902 0.7039
baseline knn 0.7644 0.7586
baseline bayes 0.7968 0.7907

bility estimation, smoothing, probability priors, and normalisation (in that order). For instance,

bayes prod laplace uniform norm represents a Naive Bayes classifier which applies a nor-

malised value per document computed as the product over the values of P(t|c) with Laplace

smoothing and uniform class probability (P(c) = 1
|C| ).

4.8.2 Quality Evaluation

Tables 4.3 and 4.4 illustrate the quality evaluation for different configurations using k-NN and

NB classifiers. The results are provided to show that descriptive approaches can achieve the

same results that have been reported in the literature. The baselines reported in the table are

obtained by our own implementation of k-NN and the Weka implementation of Naive Bayes

[Hall et al., 2009].

This provides empirical confirmation for the model correctness. As expected, the difference be-

tween micro and macro-averaged F1 in Reuters-21578 is significant, due to the large difference

between the number of documents per class. On the other hand, such difference is minimal in

20-newsgroups.
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Table 4.5: Efficiency Comparison between probabilistic Datalog and a Java-based Engine for
Text Classification.

Probabilistic Datalog Engine Java/Weka Engine
Collection Classifier train(min) test(s/doc) train(sec) tests(s/doc)

Reuters-21578 NB 3000 15m 25s 0.32s 03.6s 0.001s
kNN 60 3000 15m 46s 0.80s 02.5s 0.009s

20 newsgroups NB 3000 33m 52s 0.16s 10.34s 0.001s
kNN 60 3000 39m 04s 1.17s 04.49s 0.013s

4.8.3 Efficiency and Scalability Study

To compare the execution of probabilistic Datalog programs against another system, a Java-based

engine (using Weka libraries, [Hall et al., 2009]) was built. The probabilistic Datalog engine can

be described as a light-weight DB system,[Rolleke et al., 2001] being based on persistent data

like a traditional DB management system, but with special index support and processing tech-

niques, regarding probabilistic reasoning. The purpose-built Java-based engine is main-memory

based. It loads all training and test data to memory and executes the classification of all test doc-

uments in one go. Differently, the probabilistic Datalog engine executes document by document,

and retrieves probabilities and tuples from a persistent knowledge base. From this point of view,

the comparison of processing times does not really tell a detailed story, since an I/O-intensive

system is compared with a main-memory-based solution. Only one representative per model is

represented in the table due to the minimal changes between the specific configurations within

a classification family. Table 4.5 shows the processing times for indexing (including all the

knowledge representation) and classification. The efficiency results show for the two data sets,

and for the two classifiers. Our purpose-built Java-based classification engine is able to process

documents in milliseconds.The probabilistic Datalog engine is started in a batch document-by-

document, and the average time is around or less than one second per document. Although this is

significantly slower than the purpose-built system, it is acceptable for a prototyping environment.

Whereas in early Probabilistic Datalog implementation, the creation of the knowledge base and

indexing phase took several hours, and the classification took minutes, the indexing phase now

takes 15-40 minutes, and the classification is in most cases sub-second. In classification, the

real-time requirements are usually less critical than in ad-hoc retrieval. However, it is essen-

tial to achieve a reasonable throughput, even though the classification of different documents is

independent, and it can be processed in parallel.
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4.9 Summary

This chapter has shown the benefits of modelling classifiers using a descriptive approach. The

compact high-level definitions and customisation lead to a flexible framework where expert users

can model specific strategies with minimum engineering effort. In addition, it allows to verify

the correctness of the models by translating them to a mathematical formulation.

One of the main limitations of this approach is the impossibility of model iteration within the

framework. As a result, some optimisation methods cannot be addressed. The main two implica-

tions are that the thresholding process has to be partially externalised (i.e., to iterate over the set

of scores) and that the modelling of SVM is not feasible at the moment. In addition, some opera-

tions such as the Laplace smoothing require a non-intuitive modelling. These factors support the

idea of representing some of these operations as special functions within the language itself.

The experiments support the claim that descriptive approaches are suited for the modelling of

traditional Text Classification. The results illustrate how the high level, and highly customisable

approach can be applied to perform classification in a reasonable amount of time, while obtaining

comparable quality values as the algebraic counterparts. The efficiency and scalability challenges

are still present. Nonetheless, the current system is suited for prototyping environments. In

addition, these experiments should be considered as a maximum boundary of the required time.

Any improvement made to the underlying system will potentially increase its efficiency.
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Chapter 5

Descriptive Modelling of Knowledge-Enhanced

Text Classification

Nowadays, there is a vast amount of knowledge that can be exploited to increase the performance

of classification. For instance, statistical data such as co-occurrence between terms, synonyms

augmentation, or relational information (e.g., citations between scientific articles). Several mod-

els have been proposed to exploit different types of knowledge for classification, mainly for repre-

sentation augmentation [Gabrilovich and Markovitch, 2006] or classification scores modification

[Zelikovitz and Hirsh, 2002]. However, “even if some algorithms have achieved improvements, a

consistent and significant quality increasing has not been obtained” [Wang et al., 2007]. More-

over, we claim that a common framework to explain and integrate such techniques is also missing.

In addition, exploiting complex entities and relational data presents additional challenges that are

even greater in heterogeneous environments.

These concepts are related to the Semantic Web [Berners-Lee et al., 2001] where the main goal

is to interlink and communicate data from several sources and integrate it in a common knowl-

edge base that could then be queried with specific information needs. In fact, some technolo-

gies such as RDF, OWL and RuleML are similar or even alternatives to some methods pro-

posed in this research. A similar parallelism is studied in detail in [Hunter and Liu, 2010],

where the authors investigate formalisms for representing and reasoning with scientific knowl-

edge. Another similar research has shown how to exploit RDF ontologies in order to improve
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text classification by producing a ”bag of concepts” instead of the traditional ”bag of words”

[Xiaoyue and Rujiang, 2009]. A deeper comparison between the semantic web technologies (i.e.,

RDF, OWL and SPARQL) and Datalog can be found in [Polleres, 2007].

This chapter focuses on the descriptive modelling of knowledge exploitation within the context

of text classification. The first part defines a conceptual framework that generalises the methods

proposed in the literature. This includes the discussion and categorisation of knowledge for

augmented representation and scoring text classification. This approach leads to easier adaptation

of new information needs or data sources. It divides the main two objectives of using knowledge

as augmented representation and score modification. After that, this research underlines how

such framework can be modelled using a descriptive approach, while keeping the same level of

abstraction as the original mathematical definition and allowing flexible modifications.

The second goal is to investigate the classification of complex objects with relational data. Al-

though this scenario is becoming more common, its modelling and exploitation still involve sig-

nificant challenges due to its complexity and variability. Probabilistic Datalog uses the flexibility

of Logics to be able to represent these type of “entities” and to apply decisions about their cat-

egory assignments. Furthermore, following the same approach, the combination of textual and

relational classifiers in heterogeneous networks is illustrated, considering different types of ob-

jects with or without textual components and relational information.

In addition to these goals, this chapter also shows the seamless combination of different informa-

tion retrieval tasks within a prototyping environment.

5.1 A Framework for Knowledge-Enhanced Text Classification

Several approaches that exploit knowledge to improve classification have been proposed in the

literature, mainly for the document representation or the scoring step. Most of them follow sim-

ilar strategies, nonetheless, to the best of our knowledge, no common framework generalises

the knowledge exploitation within the text classification task. This section introduces a con-

ceptual framework for knowledge-enhanced classifiers. A definition and division of knowledge

dimensions are explained to be used as a foundation for the framework. The main objective is to

improve flexibility and adaptability when including new sources of information, and to integrate

the different methods that exploit knowledge within a common framework.
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Table 5.1: Examples of Knowledge-Enhanced Classifiers.
Representation Scoring

Term Term Relationships using WordNet Boosting based on classes names
Document Term Boosting based on structured

fields
Background Knowledge for indirect
similarity between documents

Class Class-based Weighting Schemes Boosting based on classes names
Collection Importance based on domain knowl-

edge
Classifier committee based on quality

5.1.1 Knowledge Dimensions

Knowledge, from the classification perspective, is categorised in three dimensions to organise

and to understand how it can be used to enhance classifiers: the source (internal vs external), the

objective (representation vs scoring function), and the entity type (e.g., term, document, class).

Table 5.1 illustrates, from the objective and the entity type dimensions, how different knowledge-

enhanced strategies that have been proposed in the literature can fit into this structure.

5.1.1.1 Source: Internal or External

The source dimension defines knowledge as internal if it is based on information gathered from

the collection, whereas it is external from any other source (e.g., dictionaries, WordNet or Wikipedia).

The main difference between these two classes of sources is the pre-processing of the informa-

tion and its nature, where external sources often provide more complex and diverse information

than the collection.

5.1.1.2 Objective: Representation or Scoring

This dimension categorises approaches with respect to the objective for what the knowledge is

exploited for. The two considered objectives are augmenting the documents representation, or

modifying the scores produced by a classifier. These goals are referred to representation and

scoring, respectively.

5.1.1.3 Entity: Term, Document, Class and Collection

Each strategy that uses knowledge focuses on one or more entity types. The main types for text

classification are term, document, class and collection. However, other entity types such as user,

paragraph or phrase could be used. The reason for this dimension is to investigate and generalise

how knowledge is exploited in each case.
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Term: As explained in Section 3.2, terms relationships have been commonly used as a source

of knowledge in the literature, mainly for document augmented representation. The specific

strategy to compute the similarity or dependency between terms can be based on co-occurrences

[Gabrilovich and Markovitch, 2006] [Wang et al., 2007] [Shen et al., 2009] , or synonym exploita-

tion [Bloehdorn and Hotho, 2004], among others.

Document: Documents have four main types of information: content, structure, metadata and

relationships. A traditional assumption in text classification is that all the content of a document

is equally important. However, its structured can also be exploited. For example, using the mail

headers for email classification [Klimt and Yang, 2004]. Metadata includes knowledge such as

authorship information, language, and characteristics such as length and creation date. Relation-

ships between documents can be based on different information such as bibliographic coupling,

co-citation or similarity.

Class: Knowledge obtained from classes includes the class name or the number of elements.

Class relationships can also be exploited computing their dependencies or similarities using dif-

ferent approaches.

Collection: This includes any domain knowledge which is general to the collection such as

classifier quality expectations and knowledge based on the category taxonomy.

5.1.2 Knowledge Augmentation

Based on the concepts previously explained, the knowledge augmentation can be used for two

main goals: Improve the representation of documents, or modify the classification scores.

5.1.2.1 Augmented Representation

Each document is represented by a feature vector that specifies the weight of each term. Knowledge-

enhanced methods can be used to modify the importance of each term for a document, and hence,

the document representation. The first approach is to boost elements with specific characteris-

tics. For instance, specific terms (e.g., those that are category names) or specific documents (e.g.,

those written by a specific author) can be treated differently if we assume that they are more

meaningful.

The definition of “special” instances can be as flexible as needed. Following these principles,

the weight augmentation based on special instances is defined as follows, where s is a function
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measuring how “special” an element is, and w0(t,d) represents the initial weight of term t for

document d.

w(t,d) = s(t) ·w0(t,d) (5.1)

An example of the special element function s(t) is shown in Equation 5.2, where terms are

considered special if they appear in any of the classes names. Alternatively the same strategy can

be applied for the document dimension.

s(t) =

8
><

>:

1 if t 2 name(ci) : ci 2C

0 otherwise
(5.2)

Another strategy is to apply dependencies between different instances of the same type. This

approach can modify the feature space, as unseen terms in a document can now be part of its

representation. Knowledge-augmentation based on term, and document dependencies are shown

below, where w(t,d) represents the original weight of term t in document d and the computation

of dependencies - P(t|t 0) and P(d0|d) - remains completely flexible.

w(t,d) = Â
t2T

P(t|t 0) ·w(t 0,d) (5.3)

w(t,d) = Â
d02D

w(t,d0) ·P(d0|d) (5.4)

The term dependencies can be computed based on synonyms, co-occurrence ratios or semantic

closeness, among others. In the case of documents, co-citation or annotations can be used to

measure their dependencies. All these different augmentation techniques can be combined using

a linear weighted combination as follows, where M represents the set of models considered for

combination and P(m) the weight for each model:

w(t,d) = Â
m2M

P(m) ·wm(t,d) (5.5)

This is the usual application of the total probability theorem, and regarding terms, this approach

is also known as “translation model”.
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Table 5.2: Term importance augmentation based on different dimensions.
Origin Equation
Term Pt(t|d) = Â

t02T
P(t|t 0) ·P(t 0|d)

Document Pd(t|d) = Â
d02D

P(t|d0) ·P(d0|d)

Collection Pc(t|d) = Â
f2F

P(t|c) ·P(c|d)

Field Pf (t|d) = Â
f2F

P(t| f ) ·P( f |d)

5.1.2.2 Augmented Score

The score obtained by any given classifier can be modified, based on specific knowledge. For this

approach, similar techniques to the ones explained for augmented representation can be applied

to enhance the scores computed by a classifier. The formulations for such augmentation based on

the document and category dimensions are illustrated below, where c is a category, d a document

and w(t,d) the importance of term t in document d.

score(c,d) = Â
d02D

score(c,d0) ·P(d0|d) (5.6)

score(c,d) = Â
c02T

P(c|c0) · score(c0,d) (5.7)

Similarly to the representation strategies, all the methods for score augmentation can be com-

bined using a weighting linear combination:

score(c,d) = Â
m2M

P(m) · scorem(c,d) (5.8)

Table 5.2 summarises four different definitions of term importance applying conditional probabil-

ities and the theorem of total probability. These concepts can be generalised into more abstract

concepts. The general formulation for augmented representation and score modification for a

model m are shown in Equations 5.9 and 5.10 respectively, where E is the set of considered

entities (i.e., term, document, collection and field) and Ei represents the set of specific elements

of a given type (i.e., E0 represents the term space).
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wm,i(t,d) = Â
[x2Ei]

P(t|x) ·P(x|d) (5.9)

scorem,i(c,d) = Â
[x2Ei]

P(c|x) ·P(x|d) (5.10)

As a results, it is possible to model any knowledge exploitation strategy that is formulated via

the theorem of total probability. Each perspective provides additional information about the rel-

evance of the term for a document, or the score for a document-category pair that can be aggre-

gated based on the probability of the knowledge source to be relevant. The main benefit of this

approach is that these complementary approaches can provide a more complete representation

than any of them independently, while describing them in a common framework.

5.2 Modelling of the Knowledge Integration Framework

Classifiers should be able to evolve when new information is available or new knowledge can be

exploited. Several methods have been proposed for the exploitation of knowledge. However, the

challenge is to provide a general framework to describe and integrate them. This section intro-

duces the modelling of the Knowledge Integration Framework for Text Classification that was

proposed in the previous section, where knowledge-enhanced classifiers are divided according to

their objective into augmented representation and scoring. They are modelled separately, while

the source dimension is ignored due to the fact that after representing the knowledge, its source

becomes irrelevant and they are similarly treated.

Figure 5.1 shows the rule-based modelling of the augmented representation. Each line, with

the exception of the last one, shows a model to represent the weight for a term and a document

following the framework for knowledge integration. It shows how to exploit the knowledge in

the term, document and category spaces. In addition, the last line illustrates the weighted linear

combination of the selected models (i.e., specified in a customisation step) for an aggregated

final representation. As with the mathematical definition of the framework, a clear pattern can

be observed for all dimensions, showing two types of rules: A boosting based on some ”type”

of the entity (e.g., the term is a class name), and a boosting based on the relationship between

entities at the same level. For example, in the class dimension a type could be defined as “having
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1 # weight combination: Augmented weight is added using a prior
2 # Term Space��
3 weight(Term, Doc, ’ termSpecial ’ , Type) :� weight(Term, Doc) & special (Term, Type);
4 weight(Term, Doc, ’termDep’, Name2) :� weight(Term, Doc) & rel term(Term, Term2, Name2);

6 # Doc Space��
7 weight(Term, Doc, ’docSpecial ’ , Type) :� weight(Term, Doc) & special (Doc, Type);
8 weight(Term, Doc, ’docDep’, Name2) :� weight(Term, Doc) & rel doc(Doc, Doc2, Name2);

10 # Class Space��
11 weight(Term, Doc, ’ classSpecial ’ , Type) :� weight(Term, Doc) & special (Class , Type);
12 weight(Term, Doc, ’classDep’) :� weight(Term, Doc) & rel class (Class , Class2 , Name2);

14 # Final aggregation with a weight for each model ��
15 final weight SUM(Term, Doc) :� prior (Name) & selected weight(Term, Doc, Name);

Figure 5.1: Knowledge-Enhanced Representation.

1 # Score combination: Augmented score is added using a prior
2 # Term Space��
3 score (Doc, Class , ’ termSpecial ’ , Type) :� score (Doc, Class) & term(Term, Doc) & special (Term, Type);
4 score (Doc, Class , ’termDep’, Name2) :�
5 score (Doc, Class) & term(Term, Doc) & rel term (Term, Term2, Name2);

7 # Doc Space��
8 score (Doc, Class , ’docSpecial ’ , Type) :� score (Doc, Class) & special (Doc, Type);
9 score (Doc, Class , ’docDep’, Name2) :� score(Doc, Class) & rel doc (Doc, Doc2, Name2);

11 # Class Space��
12 score (Doc, Class , ’ classSpecial ’ , Type) :� score (Doc, Class , Name) & special(Class , Type);
13 score (Doc, Class , ’classDep’ , Name2) :� score(Doc, Class) & rel class (Class , Class2 , Name2);

15 # Final aggregation with a weight for each model ��
16 final score SUM(Doc, Class) :� prior (Name) & selected score (Doc, Class , Name);

Figure 5.2: Knowledge-Enhanced Scoring.

few training examples” with a certain probability. As a result, that rule will assign more score

to classes with less training examples. In the same case, the relationship pattern, for multi-

class collections, could be defined as being the overlap between classes. The abstraction in the

modelling for representation and ranking helps to show and understand some patterns in the

use of knowledge for text classification. Figure 5.2 shows a similar approach for the scoring

objective.

Based on these models, a high level of customisation as it can be applied by specifying the rela-

tionships that should be exploited and their respective weights. Figure 5.3 illustrates how such

customisation can be done for the knowledge representation. The first rule assigns a standard

weighting function (i.e., TF-IDF) to be the basis of the augmented representation. This is fol-

lowed by an augmentation based on the relationship between two terms. Then, there is a rule
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1 ## Knowledge�Enhanced Representation Modelling
2 # Exploitation of term statistics :
3 weight(Term, Doc, ’ tf�idf’) :� tf idf (Term, Doc);

5 # Exploitation of relationships between synonyms:
6 rel terms (Term, Term2, ’synonyms’) :� synonym(Term, Term2)

8 # Exploitation of structure ( structured fields ) .
9 0.7 p field ( ’ title ’ ) ;

10 0.3 p field ( ’body’) ;
11 weight(Term, Doc, ’ fields ’ , Field ) :�
12 term field (Term, Field , Doc) & weight(Term, Doc) & p field ( Field ) ;

14 # Boosting of terms that are class names
15 weight(Term, Doc, ’specialTerm’ , ’className’) :� weight(Term, Doc) & is class name (Term);

17 # Strategy weighting (can be learned from training data) :
18 0.4 prior ( ’synonyms’);
19 0.4 prior ( ’ fields ’ ) ;
20 0.2 prior ( ’className’);

22 # Selected strategies
23 selected weight (Term Doc, Name) :� weight(Term, Doc, ’ fields ’ ) ;
24 selected weight (Term Doc, Name) :� weight(Term, Doc, ’synonyms’);
25 selected weight (Term Doc, Name) :� weight(Term, Doc, ’className’);

Figure 5.3: Knowledge-Enhanced Representation Customisation.

to describe the augmentation as derived from fields or attributes, where the prior “p fields” is

higher for important fields than less important fields. In this specific example, the title is consid-

ered more important than the body. The next rule exploits the fact that the occurrence of the class

name as a word in a document is a strong indication for the classification. The last set of rules

selects the weighting algorithms that will be applied.

5.3 Modelling of Object and Relational Classification

Heterogeneous networks are becoming more important as the result of the explosion of available

semantic and relational data which provides complex and relational information between differ-

ent types of objects. From a classification point of view, all data available should be exploited to

try to improve the quality. Therefore, content, relationships and structure of different elements

should be considered. However, dealing with these types of structures and information is still a

challenge.

Figure 5.4 illustrates the evolution of the data, or at least our interpretation of it, from the per-

spective of text classification in a bibliographical collection of scientific documents. The first

representation observes the collection as a set of documents with terms that have one or more as-
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signed topics (e.g., Information Retrieval, Mathematics, Physics, ...). This representation allows

topic classification of new documents uniquely based on their content. The mismatch vocabu-

lary problem is ignored, as well as the fact that academic articles, and other documents such as

patents, present a clear and defined structure, where some parts of the document are more repre-

sentative (e.g., title and abstract). These limitations are addressed by the second interpretation,

where the fields of the documents are considered as a source of information. Furthermore, exter-

nal knowledge can also be exploited. This representation ignores any entity that is not a document

and all the relationships between entities. The last perspective represents the complete data struc-

ture, for the specific case of scientific publications, where researchers write papers (using certain

terms) and publish them in conferences. Moreover, all the three types of entities belong to one or

more categories. Therefore, it is possible that a researcher that “belongs” to the machine learning

community (i.e., his/her main topic is machine learning) publishes a paper related to information

retrieval in a database conference. This approach allows to exploit all available information, and

to classify any type of entity.

Figure 5.4: Evolution of Data Representation for Text Classification using Bibliographical Data.

Several link-based or relational classifiers have been proposed for homogeneous, non-attributed

(without content) data. In addition, statistical relational learning provides the tools to classify

heterogeneous and attributed data [Getoor et al., 2003]. However, “very little research has been

conducted on modelling the topics of documents as well as their associated objects simultane-

ously in heterogeneous networks” [Deng et al., 2011]. The abstraction and inference capabilities

from Logics allows to represent and intelligently combine the decisions obtained from both rela-

tional and content classifiers.

Figure 5.5 presents the modelling of a relational classifier that exploits the direct links with

any other entity in the heterogeneous network based on conditional probability. Following this
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1 ## Relational Classification based on Direct Links .
2 # Category scores based on independent relationships
3 rel author (Doc, Class) :� paper author (Doc, Author) |( Doc) & author label (Author, Class) ;
4 rel conf (Doc, Class) :� paper conf (Doc, Conf) | (Doc) & conf label (Conf, Class) ;

Figure 5.5: Relational Classification using Direct link Exploitation in Probabilistic Datalog.

1 ## Relational Classification Customisation
2 # Only category information from the conference information is used.
3 score rel (Doc, Class) :� relConf(Class , Doc);

Figure 5.6: Customisation of the Direct Link Exploitation.

approach, any relationship can be customised to be exploited. For instance, Figure 5.6 illustrates

how to exploit only the venue information (i.e., only observing what conference each paper was

published in) to perform the classification.

Content-based and relational information are complementary sources of information that are usu-

ally independently exploited. However, their combination could increase the classification capa-

bilities by using all the available information. The main challenge is, as previously explained,

the modelling of such knowledge and the integration of classifiers based on different foundations.

We show how the abstraction based on Logics allows to seamlessly combine this two concepts.

1 ## Hybrid approach to combine content�based and relational classifiers
2 score aux hybrid (Class , Doc) :� score rel (Class , Doc);
3 score aux hybrid (Class , Doc) :� score text (Class , Doc);

5 score hybrid (Class , Doc) :� score aux hybrid SUM(Class, Doc);

Figure 5.7: Hybrid Model Combining Relational and Content-Based Classification in Probabilis-
tic Datalog.

Figure 5.7 shows a hybrid classifier that combines the scores of a generic content-based (scoretext)

and a relational classifier (scorerel). This example illustrates how relational and textual data

can be seamlessly combined within a unique system. Such system can be easily adapted to new

knowledge and information. As a result, much more advanced techniques can be applied, and

what is equally important, knowledge engineers are able to create the classification strategies

with minimum effort. The nature of this approach allows not only to combine a textual model

with a relational one, but to use relational and content-based concepts in any method.
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1 ## Customisation for Hybrid approach
2 score rel (Class , Doc) :� rel conf (Class , Doc);
3 score text (Class , Doc) :� p c d knn 45(Class , Doc);

5 score hybrid (Class , Doc) :� score aux hybrid SUM(Class, Doc) | (Doc);

Figure 5.8: Customisation of Hybrid Model.

5.4 Declarative Task Adaptation and Integration

Several strategies from different tasks in Information Retrieval (e.g., ad-hoc retrieval and text

classification) share mathematical foundations or even similar objectives, and they can be applied

together to solve complex information needs. The challenge is to provide a framework flexible

enough to define models for different tasks with the ability to quickly combine them if needed.

The main impact of defining different models using descriptive approaches is the capability to

compose multi-task solutions and to adapt models from different tasks.

This section illustrates how our approach can be used to apply high level integration between

different information retrieval tasks, and that such abstraction can be used by “knowledge engi-

neers” to compose solutions tailored to their needs. The long term goal is to develop an infor-

mation retrieval framework that supports high level integration for the main tasks in the field (Ad

hoc retrieval, classification, summarisation, semantic search,...), while allowing the definition of

multitask customisation.

As an example, and first step for such goal, the steps required to exploit text classification meth-

ods for document retrieval and vice versa are presented.

Information retrieval and text classification are two highly overlapped areas that share conceptual

foundations [Belkin and Croft, 1992]. They have been applied together several times [Lam et al., 1999,

Guo et al., 2004]. However, research is usually focused on each of them separately. In addition,

there are techniques that have been used in both fields such as term weighting strategies.

All retrieval models rank documents with respect to a query, sorting them according to their

potential relevance for the user’s information need. This implies that, from a general point of

view, the retrieval process can be seen as a binary classification of elements (documents) into a

category (relevant or not with respect a query), if a threshold is defined. On the other hand, we

can understand text classification as an ad hoc retrieval task where the query is the document to

classify and the categories are the documents that will be retrieved. Using this strategy, we could
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Classification Ad-hoc retrieval
Number (docs) Length (words) Number (docs) Length (words)

Input Thousands Few
Retrieve Thousands Hundreds Hundreds of Thousands Hundreds

Table 5.3: Dimensionality comparison between Ad-hoc Retrieval and Text Classification.

have, for each document to classify, a ranking of the best classes for it. Despite these similarities,

viewing both tasks as a retrieval process, there are differences such as the length and nature of

the queries (shorter for retrieval), the structure and representation of the documents (it needs to

be defined in classification) and the number of documents (smaller in classification). Table 5.3

summarises this duality. Following this comparison, the system would rank the classes according

to its relevance with respect to a given test document.

1 ## TF�ICF retrieval of classes
2 # Term documents are modelled as queries
3 qterm(Term, Doc) :� test term (Term, Doc);

5 # TermF based on term�class occurrences
6 tf d (Term, Class) :� tf class sum (Term, Class) ;

8 # PIDF based on PIEF for class space
9 pidf (Term) :� pief (Term);

11 # Score normalisation
12 score (Class , Doc) :� tf pidf retrieve (Class , Doc) | (Doc);

Figure 5.9: TF-IDF Retrieval of Classes Modelling in probabilistic Datalog.

1 ## LM�based class retrieval
2 # Test documents are modelled as queries
3 qterm(Term, Doc) :� test term (Term, Doc);

5 # P(t |d) modelled as P(t |c)
6 p t d (Term, Class) :� tf class sum (Term, Class) ;

8 # P(t ) computation
9 p TF t c (Term) | TF() :� term class (Term, Class) ; # Tuple�Frequency�based

10 coll model (Term) :� p TF t c (Term);

12 # Normalised score
13 score (Class , Doc) :� log lm2 retrieve (Class , Doc) | (Doc);

Figure 5.10: LM Retrieval of Classes Modelling in probabilistic Datalog.

The application of retrieval models for text classification is presented as a test case to show the

benefits of our approach for task adaptation. The following examples are based on already de-

fined models of Language Modelling (LM) using Jelinek-Mercer smoothing and TF-IDF. Both

models were represented using an abstraction language [Roelleke et al., 2008] that can be param-
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eterised and used from our approach following the instructions shown in the predicate dictionary.

Figure 5.9 shows the retrieval of classes based on TF-IDF (modified as TF-ICF, for inverse cate-

gory frequency). To compute tf pidf retrieve, tf d and pidf need to be represented. They

model the normalised term frequency and a probabilistic version of IDF, respectively. All the

changes that need to be done to adapt this strategy to category retrieval are to specify tf d as

the weight of a term for a class, and pidf as pief (probabilistic inverse element frequency),

to compute pidf treating the classes as the documents. The final category-document score is

normalised with respect to the test document. The customisation of Language Modelling (Fig-

ure 5.10) requires the specification of P(t|d) and P(t) given the collection. These values are

mapped into the normalised importance of terms for classes and the probability of a term given

the term-class occurrences.

5.5 Evaluation

This section illustrates the exploitation of relational information, either independently or in com-

bination with content based classifiers, using probabilistic Datalog. The descriptive modelling

for each one of the algorithms are presented in Section 5.3.

5.5.1 Set-up

The experiments use the DBLP collection. In all cases RCut has been used as the thresholding

strategy [Yang, 2001], selecting the topic with the highest score for each element. The documents

for which categorical information is available were randomly divided in two sets (50%-50%) for

testing and training. The results show the average quality over five runs.

Three approaches are tested in the experiment: A relational classifier that follows the models in

Figures 5.5 and 5.6; a content-based classifier based on k-NN; and a hybrid model combining

their scores based on Figures 5.7 and 5.8. For the first and third cases, three variations are tested

depending on the relational information to be exploited: Using the authorship links (author), the

conference publication information (venue), or both of them (all).
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Table 5.4: DBLP Micro and Macro-averaged F1 quality values for different models, optimised
using RCut.

Model MicroF1 MacroF1
Relational (All) 86.63 84.57
Relational (Author) 63.92 58.61
Relational (Venue) 86.63 84.57
Hybrid (All) 88.66 86.60
Hybrid (Author) 76.30 75.17
Hybrid (Venue) 87.44 85.23
kNN 45 47.57 46.13

5.5.2 Quality Evaluation

Table 5.4 shows the quality levels achieved by different models for the classification of scientific

papers. A relational and a content-based (k-NN) classifiers are compared, as well as their score

combination. The results show how even a simple combination based on a score combination

can outperform both the relational and the content-based strategies. The content-based classifier

performs very poorly probably because of the very limited amount of training examples and con-

tent (only the title is present in the collection). The best source of information is the conference

where each scientific article is published, rather than the authors of such paper. In addition, the

low quality obtained by the content-based classifier is probably due to the limited textual content

in the data, where only the title of the articles was used.

5.6 Summary

There are several approaches to augment the representation and/or the scoring for text classifiers,

based on different types of knowledge. A structure and division of knowledge for text classifica-

tion and a conceptual framework based on such structure have been presented to unify, integrate

and combine different strategies for knowledge exploitation. It allows the flexible integration

of multiple strategies for augmented representation and score modification and it encapsulates

multiple methods that have been previously proposed in the literature. In addition, this approach

also allows to exploit deeper knowledge connections between different entities.

Descriptive approaches have proven to be able to easily model such framework, as well as re-

lational classification methods and its integration with content based classifiers within a unique

system. Finally, we have shown how to combine document retrieval models to text classification
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with minimum changes as a test-case for flexible task customisation.

The experiments confirm the applicability of the descriptive modelling of hybrid methods ex-

ploiting both relational and content-based data, and they suggest that such models can improve

the quality of any of the other approaches. Further experiments with more complex models

should be address in future research. In addition, providing more textual data (i.e., including

the abstracts and/or adding more training examples) might further improve the combination of

relational and content-based classifiers.

This chapter tries to move traditional Information Retrieval towards an “engineering discipline”

to work on improving the ability of teams to prototype and then efficiently deliver systems, and

respond to customer requests.
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Chapter 6

New Approaches of Knowledge Exploitation

for the Classification Process

Knowledge has been applied several times to improve text classification, mainly to augment the

document representation or to modify the classification scores. We argued that the potential of

methods exploiting knowledge is beyond these two traditional goals. For this reason, we illustrate

how knowledge and, more generally, different evidence generated by the classification process

itself, can benefit different classification steps. This includes the introduction of two novel tasks:

Semi-Automatic Text Classification (SATC) and Document Performance Prediction (DPP). The

former focuses on rank documents and combine manual and automatic classification, maximis-

ing the quality, while minimising the cost. DPP addresses the challenge of predict the quality

of a given document in a classification problem and how to exploit such information to increase

the classification performance. Moreover, a new evaluation method that takes into account near

misses using class dependencies, and an adaptive variation of k-NN are also presented. These ap-

proaches illustrate how knowledge can enhance not only the data representation, nor the scoring

of the classification algorithms, but the classification process as a whole.
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6.1 Semi-Automatic Text Classification

6.1.1 Preliminaries

Automatic text classification provide much faster and cheaper classification than human experts.

However, even though there have been large improvements in the last decades, human experts

achieve higher quality. Since the introduction of automatic classifiers, two alternative options

can be applied. A full-automatic classification system, where every document is classified ac-

cording to the decisions made by the classifier; or a completely manual classification if human

experts classify all documents. The main drawbacks of the manual approach are its huge cost

and potential infeasibility for large collections. Nonetheless, the quality achieved will be higher.

A full automatic approach is preferred if large datasets are used (i.e., webpage classification) or

when lower quality is not as important as the required human effort. In general, the time saved by

using an automatic system is leveraged with the possible quality loss with respect to the manual

classification.

This section focuses on an intermediate solution that combines the best of both approaches using

Semi-Automatic Text Classification (SATC). This idea was independently, and almost simultane-

ously, introduced by ourselves [Martinez-Alvarez et al., 2012] and [Berardi et al., 2012] 1. The

main goal of SATC is to achieve high quality with minimum human effort or, more specifically,

to use human experts only for the documents that the automatic system is more likely to misclas-

sify. Therefore, maximising the quality, while minimising the cost. Given a set of documents

to be classified, and a specific classifier, a SATC algorithm ranks the documents according to

their likelihood of being correctly classified. The ranking allows experts to inspect documents

iteratively, starting with the most uncertain ones, until a specific point, where the rest of the doc-

uments are automatically assigned. As a result, the quality levels can be kept high, while the

human effort, and thus the cost, is minimised.

The Document Difficulty Framework (DDF), a family of document certainty algorithms to

address SATC, is also introduced. DDF exploits the document-category confidence scores com-

puted by a classifier and the category thresholds given by a class-based thresholding strategy

to calculate the certainty of each document. This implies that the category scores for all docu-

ments have to be computed. The framework defines an array of different metrics, depending on

1[Berardi et al., 2012] refers to it as Semi-Automated Text Classification, instead of Semi Automatic
Text Classification
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three different dimensions: how the document-class evidence is computed, which classes will be

considered, and how to aggregate the document-based certainty.

6.1.2 Task Definition

SATC assumes that neither manual, nor automatic classification is the optimum solution. This

situation appears when full automatic classification achieves lower than required quality, and

manual classification is either too expensive or unfeasible due to lack of resources (e.g., mil-

lions of documents to be classified in 24 hours). The foundation of SATC is that if we are able

to separate the documents with high probability to be correctly classified, and the ones that are

probably wrong, the latter can be inspected by human experts while the former will be auto-

matically classified. As a result, the resources (i.e., the human experts) are optimised, while the

quality remains high. To address this task, SATC ranks the documents to be classified according

to their uncertainty. SATC assumes that the documents with higher certainty are probably bet-

ter classified, whereas the documents with higher uncertainty are more likely to be incorrectly

classified. Therefore, the quality is maximised if the human annotators inspect the documents

starting from the ones with higher uncertainty.

The possibility of combining human and automatic classification has been suggested before

[Larkey and Croft, 1996] [Yang and Liu, 1999] [Sebastiani, 2002]. However, to the best of our

knowledge, only one approach has been proposed in the literature: Utility-Theoretic Ranking

[Berardi et al., 2012] optimises the global quality of the system, exploiting the potential bene-

fit of manually inspecting each document, using the confidence scores of a classifier, and the

quality gain that can be achieved if that label is actually correct. The main conceptual differ-

ence with our approach is that the utility-theoretic ranking exploits the collection information,

trying to directly optimise the global quality, whereas DDF focuses on each document indepen-

dently. Furthermore, DDF exploits threshold information, and class filtering for the aggregated

document certainty.

Similar to SATC, active learning (explained in detail in Section 2.2) ranks documents according

to their benefit in the learning process, selecting which unlabelled documents should be manually

labelled and included as training examples. SATC focuses on the classification step, while active

learning operates in the training phase, selecting the documents from which the classifier can

learn the most.
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6.1.3 Evaluation

Semi automatic text classification is evaluated using traditional classification quality measures

once the human and the automatic decisions have been combined. This approach provides quality

values for different proportions of the collection being automatically classified, where the most

uncertain documents are manually classified [Berardi et al., 2012]. It is also important to analyse

how quality varies depending on the ratio of documents being manually inspected. For this

reason, quality variations with respect to the full automatic quality with the same classifier are

also computed. The main challenge is that the relative quality increase depends on the base

quality, when all the documents are automatically classified. For instance, in some cases, a 100%

quality increase is impossible (i.e., full automatic classification achieving 95% quality), while

more than 100% is possible for others, making comparisons over different classifiers unfeasible.

To address this challenge, two alternatives based on the error reduction with respect to the full

automatic system (instead of its quality increase), were introduced [Berardi et al., 2012]: Error

Reduction at rank (ER) and Normalised Error Reduction at rank (NER).

ER measures the error reduction with a specific number of documents being automatically clas-

sified, where Ep(n) models the error (defined as “1-quality”) achieved by a classifier p with n

documents being manually classified. Therefore, Ep(0) represents the error for a fully automatic

system. The definition of ER is as follows:

ERp(n) =
Ep(0)�EP(n)

Ep(0)
(6.1)

NER subtracts the error reduction at rank n achieved by a random ranker ( n
|Te| , where |Te| is

the size of the documents to be classified) from ER in order to obtain more meaningful quality

values:

NERp(n) = ERp(n)�
n

|Te| (6.2)

A third metric includes the specific position of each document into the evaluation: Expected

Normalised Error Reduction (ENER) exploits the probability of a human expert inspecting n

documents (Ps(n)), where Ps(n) can follow different probability distributions.
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ENERp =
|Te|

Â
n=1

Ps(n) ·NERp(n) (6.3)

One possibly is to model Ps(n) based on the general probability of inspecting one more document.

This technique is shown below, where p models the probability of the next document to be

inspected [Berardi et al., 2012]:

Ps(n) =

8
><

>:

pn�1 · (1� p) if n 2 {1, ..., |Te�1|}

pn�1 if n = |Te|
(6.4)

The value of p can be defined as a function of the expected ratio (x ) of documents being manually

classified as follows:

p =
1

x · |Te| (6.5)

Therefore, p is computed for different expected ratios of manually classified documents.

6.1.4 Document Difficulty Framework

The Document Difficulty Framework (DDF) is a family of document certainty metrics within the

context of classification. DDF exploits the classification scores and the threshold values within

a classifier-independent framework to compute the certainty of a document. This computation is

divided into three different levels, inspired by the comparison of multi-label Active Learning met-

rics [Esuli and Sebastiani, 2009]: evidence, class and aggregation: The evidence level computes

the confidence value for each document and category, using their classification score and the class

threshold. The class level specifies which classes are to be considered in the final aggregation.

The aggregation level combines the filtered confidence levels, producing a document-based cer-

tainty. Following these principles, DDF is defined as the composition of three transformation

functions as shown below, one for each level, where e represents the evidence, g the class, and a

the aggregation level:

certainty(d) = a ({g(e(d, ·))}) (6.6)
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Table 6.1: DDF Levels. ci represents a class, d a document, and s the classifier’s score for each
document-class pair. t(ci) is the threshold for ci, and q(ci) is the estimated quality for ci. Finally,
G(g,e,d) represents the set of g(e,d,ci) values for each ci 2C.

Evidence Class Aggregation
e; given d,ci, t(ci) g; given d,ci, t(ci),e a; given g(e,d, ·)

S s(d,ci) A e(d,ci) M max
ci2C

(g(e,d,ci))

A ln(1+ |s(d,ci)� t(ci)|) P
⇢

e(d,ci) if s(d,ci)� t(ci)
0 otherwise

A avg
ci2C

(g(e,d,ci))

R ln(1+ |s(d,ci)�t(ci)|
t(ci)

) W Â
ci2C

(q(ci) · g(e,d,ci))

Table 6.1 summarises the different candidates analysed herein for each DDF levels. Each method

is represented as the concatenation of three letters, representing the strategy followed in each

level. For instance, APA computes the evidence by Absolute difference, only for the Positive

classes Averaging over the classes:

certaintyAPA(d) = avg
ci2C:s(d,ci)�t(ci)

ln(1+ |s(d,ci)� t(ci)|) (6.7)

The three levels considered in DDF and their respective candidates are explained below.

6.1.4.1 Evidence Level

The evidence level computes a confidence value for a document-topic pair. Its domain is defined

as follows, where D denotes the set of documents, and C the classes:

e 2 E : D⇥C! [0,1] (6.8)

Three candidates are considered for this level: score (S), absolute difference (A) and relative

difference (R). The first strategy (S) exploits the score obtained by the classifier, assuming that

the higher the value, the more relevant the label is. Therefore, classes with higher scores are the

ones with more certainty. This is a similar to relevance sampling [Lewis and Gale, 1994], The

second method (A) exploits the score and the threshold. It assumes that larger distances imply

lower uncertainty and higher chance that the document is correctly classified. A logarithmic

function is applied to smooth the effect of large differences. The last method (R) applies the same

principles as the absolute difference approach. However, it uses a relative difference, instead of



6.1. Semi-Automatic Text Classification 107

the absolute value. The rationale is that the absolute distances can be misleading. For instance, a

distance of 0.2 would be much more important if the threshold is 0.05 than if it is 0.6.

6.1.4.2 Class Level

The class level behaves as a filter, selecting whether to exploit the certainty of a specific label,

and hence, if it will be available at the next aggregation step or not. It is defined as follows, where

a composition with an element e 2 E would be applied:

g 2 G : E⇥D⇥C! [0,1] (6.9)

This definition would require to follow the notation g(e(d,c),d,c), which is quite cumbersome.

Thus, when not ambiguous, we would simply denote it as g(e(d,c)) or just g . Two candidates

are considered for this level: all (A) and positive (P). The first strategy (A) considers all the

confidence scores for a specific document. Therefore, no filtering is applied. The second method

(P) selects the categories for which the classification score is higher or equal than the threshold.

These are the classes that will be assigned to the document if automatic classification is applied.

This strategy focuses on the positive labels, assuming that they are more representative that the

negative ones due to the fact that, at least in text classification, the number of positive classes for

a specific document is usually much smaller than the number of negative ones. For example, the

average number of classes per document in Reuters-21578 is 1.24, while the number of classes

is 90 (See Section 2.8). This approach assumes that if all classes are observed, the document

certainties are somehow diluted because most of the documents will obtain a high confidence

that do not belong to a large subset of the classes.

6.1.4.3 Aggregation Level

When multi-label data is used, a certainty value per document, instead of per label, has to be

provided, since the ranking of the labels cannot be used to select nor to rank documents. For

example, even if 90% of the most certain labels are selected, it is impossible to decide which

documents should be automatically classified (i.e., a document can have a very high certainty

with respect to one category, while being very uncertain about all the rest). For this reason, the

filtered evidence per class should be combined into a single certainty metric for each document.

This level is defined as follows:
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a 2A : G⇥D! [0,1] (6.10)

Typically, it will be applied to the set of possible functions g 2 G, one for each class ci 2 C.

This is equivalent, taken a document d and an evidence level function e as inputs, to the set

G(g,e,d) = {g(e,d,ci) : ci 2C}. It should be noted that a one-to-one relation exists between the

set of classes used in the definition of G and g itself, and thus, this notation could be simplified

as in Table 6.1. Instead of applying the function to every element of G, we could simply apply

the function g to each class in C.

Three candidates are considered for this level: maximum (M), average (A) and weighted (W ).

The first method (M) selects the most certain class for each document. The goal is to rank higher

documents with at least one class correctly classified. This strategy is defined for collections with

a low number of classes per document. The second method (A) averages the confidence values

for the filtered classes, providing a general estimation of how certain the class labels are. The

third method (W ) uses an averaged weighted linear combination (WLC), based on the estimated

quality per class, where categories with low expected quality are weighted less. The main reason

is that the implication between high certainty and high quality depends on the performance of the

classifier. In other words, even if the certainty for a document-category is very high, the potential

quality of such assignment depends on the quality of the classification itself.

6.1.5 Evaluation

Document Difficulty Framework (DDF) represents a family of methods to compute the certainty

of a document from a text classification perspective (see Section 6.1.4). To achieve this goal, this

approach relies on the classification scores and category thresholds. This section evaluates DDF

for the task of Semi-Automatic Text Classification (SATC) , where neither manual, nor automatic

classification is the optimum solution (explained in Section 6.1). SATC ranks the documents to be

classified according to their uncertainty, and it assumes that the documents with higher certainty

are probably better classified, whereas the documents with higher uncertainty are more likely to

be incorrectly classified. Based on this ranking, the overall quality is maximised with respect to

the available resources if the human annotators inspect a subset of the documents, starting from

the ones with higher uncertainty.
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6.1.5.1 Set-Up

Reuters-21578, Reuters-21578-115 and 20-newsgroups are used as datasets. Three different

families of classifiers have been used, namely Naive Bayes (Weka [Hall et al., 2009]), k-NN (our

own implementation) and SVM using LibSVM [Chang and Lin, 2011]. All documents have been

weighted using ltc and feature selection based on c

2 has been applied. Different parameters

have been tested for each model and the configuration that achieves better micro-averaged F1

quality has been selected. The number of features considered is 3000 for k-NN and NB and

10,000 for SVM; and the number of neighbours for k-NN is 60. In all cases the SCutFBR.1

thresholding strategy has been used, applying a 5-fold cross-validation process. For SVM, the

scored output is obtained by running LibSVM [Chang and Lin, 2011]. The DDF candidates are

evaluated using the quality metrics ER and ENER (see Section 6.1.3).

6.1.5.2 Results

The SATC results compare the global quality of a system with respect to the amount of human

intervention. Figure 6.1 shows the micro-averaged F1 and ER evaluation for the best DDF met-

rics for each collection, depending on the percentage of manually classified documents (Similar

graphs for other DDF variations are shown in Appendix A). It illustrates how the best DDF

metrics achieve high quality levels, while manually assigning a small subset of the collections.

For instance, for Reuters-21578, micro-average F1 of more than 95% can be achieved with

as few as 20% of the documents manually classified. Furthermore, it also shows that per-

fect quality is achieved with approximately 50% and 60% of documents manually classified

for Reuters-21578 and Reuters-21578-115 respectively. 20-newsgroups appears to be a

more challenging collection for SATC, or at least for our approach, where perfect quality is only

achieved after 80% of documents are inspected by experts. The reasons can be the uniformed

distribution of documents over classes and the high similarity between some of the classes. The

best performing model for full automatic classification is SVM. k-NN achieves almost the same

quality as SVM for Reuters-21578 and Reuters-21578-115, while being the worst classifier

for 20-newsgroups. The ER graphs suggest that SVM is also the best candidate using DDF for

SATC. However, the ER curves are almost completely overlapped for all the different classifiers,

especially using Reuters-21578-115. This result strongly supports the generalisation of DDF

metrics, and it opens the possibility to predict the absolute quality achieved by a new classifier
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Table 6.2: 20-newsgroups ENER with respect to the expected ratio of manually classified docs
(x ). Best results per model in bold, best overall is underlined. Improvement (%) with respect to
RPA between brackets.

NB kNN SVM
x 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
RPA .097 .164 .230 .073 .127 .185 .121 .194 .251
SAA -.014 (-114) -.021 (-113) -.030 (-113) .038 (-48) .058 (-55) .074 (-60) .044 (-64) .046 (-77) .037 (-85)
SAM .090 (-6) .151 (-8) .211 (-9) .070 (-5) .116 (-9) .161 (-13) .119 (-1) .195 (1) .265 (6)
SAW .012 (-88) .030 (-82) .061 (-74) .041 (-45) .062 (-51) .081 (-56) .012 (-90) .033 (-83) .069 (-72)
SPA .097 (0) .164 (0) .228 (-1) .073 (-1) .123 (-3) .175 (-6) .120 (-0) .197 (2) .267 (6)
SPM .096 (-0) .160 (-3) .218 (-5) .072 (-2) .119 (-6) .165 (-11) .120 (-1) .196 (1) .266 (6)
SPW .097 (1) .166 (1) .231 (0) .073 (-1) .125 (-2) .180 (-3) .121 (1) .198 (2) .268 (7)
DAA .094 (-3) .158 (-4) .219 (-5) .069 (-6) .116 (-9) .170 (-8) .119 (-2) .194 (0) .260 (4)
DAM .050 (-48) .077 (-53) .112 (-51) .048 (-34) .081 (-37) .119 (-35) .079 (-35) .136 (-30) .200 (-20)
DAW .091 (-6) .155 (-6) .216 (-6) .064 (-12) .107 (-16) .156 (-16) .117 (-3) .193 (-1) .259 (3)
DPA .097 (1) .166 (1) .234 (2) .073 (0) .127 (0) .186 (0) .121 (0) .197 (2) .262 (4)
DPM .096 (-0) .163 (-1) .226 (-2) .073 (-1) .124 (-3) .174 (-6) .121 (-0) .196 (1) .261 (4)
DPW .097 (1) .167 (2) .235 (2) .073 (0) .128 (1) .188 (1) .121 (0) .198 (2) .265 (6)
RAA .089 (-8) .153 (-7) .215 (-6) .068 (-8) .116 (-9) .171 (-7) .119 (-1) .195 (1) .260 (4)
RAM .066 (-31) .113 (-31) .172 (-25) .053 (-28) .095 (-25) .145 (-22) .092 (-24) .156 (-20) .216 (-14)
RAW .086 (-11) .150 (-8) .213 (-7) .064 (-13) .107 (-16) .159 (-14) .118 (-3) .193 (-0) .260 (3)
RPM .096 (-1) .160 (-3) .221 (-4) .073 (-0) .124 (-2) .176 (-5) .120 (-0) .193 (-0) .250 (-0)
RPW .097 (0) .165 (1) .232 (1) .073 (0) .128 (0) .187 (1) .121 (0) .195 (1) .256 (2)

for a given ratio of manually classified documents.

Tables 6.2-6.4 show the ENER quality evaluation for all the DDF candidates, with different per-

centages of the documents expected to be manually classified (x ). The results reported using the

Utility-Theoretic method (UT ) [Berardi et al., 2012] are used as baseline for Reuters-21578-115.

For the other collections, to the best of our knowledge, no results have been reported with any

model in the literature. For this reason, one of our candidates (RPA), is used as the baseline. RPA

has been chosen because it is the first method that has ever been applied to address the SATC

task [Martinez-Alvarez et al., 2012]. In all cases, the performance of DDF is higher when SVM

is used, instead of NB or k-NN. For Reuters-21578-115, one DDF metric (SVM with a RAW

configuration) outperforms both baselines, as well as any other DDF candidates. The improve-

ments are as high as 14% and 50% with respect to UT and RPA, respectively. In addition, DPA

and DPW also outperform UT when x = 0.2.

Tables 6.5-6.7 summarise the average quality for different candidates that share similar char-

acteristics, depending on the percentage of the collection being inspected by human annotators

(x ). For instance, S** averages the error reduction for every variation using positive labels. It

encapsulates information about SAA, SAM, SAW, SPA, SPM, and SPW. This analysis provides

information about which strategies are better for each level in different conditions, and it helps

to understand some the results from a general perspective.
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(a) Reuters-21578 SPW (b) Reuters-21578 SPW

(c) Reuters-21578-115 RAW (d) Reuters-21578-115 RAW

(e) 20-newsgroups SPW (f) 20-newsgroups SPW

Figure 6.1: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of man-
ually classified documents using the best Document Difficulty Framework candidate for
Reuters-21578, Reuters-21578-115, and 20-newsgroups.
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Table 6.3: Reuters-21578 ENER with respect to the expected ratio of manually classified docs
(x ). Best results per model in bold, best overall is underlined. Increment (%) with respect to
RPA between brackets.

NB kNN SVM
x 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
RPA .101 .178 .245 .139 .233 .317 .156 .250 .321
SAA .027 (-73) .032 (-82) .026 (-89) .091 (-35) .155 (-33) .226 (-29) .050 (-68) .052 (-79) .042 (-87)
SAM .089 (-12) .162 (-9) .244 (-0) .102 (-27) .176 (-25) .251 (-21) .171 (10) .269 (8) .349 (9)
SAW .140 (38) .210 (19) .283 (16) .095 (-32) .162 (-30) .235 (-26) .157 (0) .246 (-1) .321 (0)
SPA .103 (2) .184 (4) .267 (9) .135 (-3) .221 (-5) .304 (-4) .193 (24) .297 (19) .376 (17)
SPM .094 (-8) .166 (-6) .248 (1) .120 (-14) .189 (-19) .260 (-18) .171 (9) .270 (8) .351 (9)
SPW .104 (2) .185 (4) .269 (10) .137 (-2) .225 (-3) .309 (-2) .192 (23) .297 (19) .376 (17)
DAA .105 (4) .183 (3) .265 (8) .163 (17) .234 (1) .300 (-5) .175 (12) .262 (5) .337 (5)
DAM .055 (-45) .093 (-48) .130 (-47) .064 (-54) .122 (-48) .196 (-38) .041 (-74) .074 (-71) .135 (-58)
DAW .081 (-20) .157 (-11) .242 (-1) .167 (20) .240 (3) .308 (-3) .157 (0) .248 (-1) .326 (2)
DPA .105 (4) .192 (8) .277 (13) .143 (2) .238 (2) .323 (2) .187 (19) .293 (17) .372 (16)
DPM .096 (-5) .174 (-2) .257 (5) .126 (-10) .197 (-16) .266 (-16) .164 (5) .262 (5) .342 (7)
DPW .105 (4) .193 (8) .280 (14) .144 (3) .241 (4) .329 (4) .187 (20) .294 (18) .374 (16)
RAA .115 (14) .189 (6) .267 (9) .138 (-1) .229 (-2) .310 (-2) .171 (9) .260 (4) .334 (4)
RAM .082 (-20) .135 (-24) .178 (-27) .064 (-54) .131 (-44) .209 (-34) .119 (-24) .192 (-23) .250 (-22)
RAW .126 (24) .205 (16) .285 (17) .158 (13) .245 (5) .323 (2) .211 (35) .295 (18) .361 (13)
RPM .093 (-8) .150 (-16) .193 (-21) .126 (-10) .195 (-16) .258 (-18) .136 (-13) .203 (-19) .254 (-21)
RPW .106 (5) .190 (7) .267 (9) .142 (2) .239 (3) .325 (3) .170 (9) .270 (8) .344 (7)

Table 6.4: Reuters-21578-115 ENER with respect to the expected ratio of manually classified
docs (x ). Best results per model in bold, best overall is underlined. Improvement (%) with
respect to Utility-Theoretic (UT) Ranking between brackets.

NB kNN SVM
x 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
UT .145 .221 .285 .145 .221 .285 .145 .221 .285
SAA .015 (-90) .019 (-91) .014 (-95) .060 (-58) .109 (-51) .172 (-40) .032 (-78) .035 (-84) .032 (-89)
SAM .111 (-23) .165 (-25) .230 (-19) .058 (-60) .113 (-49) .186 (-35) .127 (-12) .206 (-7) .282 (-1)
SAW .133 (-9) .187 (-16) .248 (-13) .065 (-55) .116 (-48) .180 (-37) .127 (-12) .200 (-10) .267 (-6)
SPA .068 (-53) .142 (-36) .224 (-21) .063 (-56) .132 (-40) .216 (-24) .103 (-29) .196 (-11) .283 (-1)
SPM .054 (-63) .119 (-46) .200 (-30) .056 (-61) .112 (-49) .185 (-35) .092 (-37) .179 (-19) .265 (-7)
SPW .067 (-53) .142 (-36) .224 (-21) .064 (-56) .134 (-39) .220 (-23) .102 (-30) .196 (-11) .283 (-1)
DAA .097 (-33) .153 (-31) .221 (-23) .139 (-4) .199 (-10) .260 (-9) .114 (-21) .194 (-12) .274 (-4)
DAM .032 (-78) .047 (-79) .063 (-78) .070 (-52) .121 (-45) .184 (-35) .055 (-62) .100 (-55) .170 (-40)
DAW .039 (-73) .101 (-54) .181 (-36) .141 (-3) .202 (-8) .265 (-7) .089 (-39) .173 (-22) .260 (-9)
DPA .069 (-52) .147 (-33) .230 (-19) .067 (-54) .144 (-35) .234 (-18) .101 (-30) .200 (-9) .292 (2)
DPM .055 (-62) .121 (-45) .201 (-29) .059 (-59) .120 (-46) .195 (-31) .091 (-37) .182 (-18) .271 (-5)
DPW .069 (-52) .148 (-33) .232 (-19) .067 (-54) .146 (-34) .237 (-17) .102 (-30) .201 (-9) .293 (3)
RAA .136 (-6) .186 (-16) .243 (-15) .121 (-16) .199 (-10) .273 (-4) .129 (-11) .201 (-9) .269 (-5)
RAM .077 (-47) .113 (-49) .143 (-50) .062 (-57) .125 (-43) .199 (-30) .104 (-28) .170 (-23) .235 (-18)
RAW .147 (2) .204 (-8) .264 (-7) .133 (-8) .209 (-6) .280 (-2) .167 (15) .240 (9) .306 (7)
RPA .055 (-62) .124 (-44) .195 (-32) .065 (-55) .141 (-36) .231 (-19) .087 (-40) .178 (-19) .266 (-7)
RPM .041 (-72) .081 (-64) .118 (-58) .060 (-59) .120 (-46) .194 (-32) .073 (-49) .148 (-33) .221 (-22)
RPW .067 (-54) .143 (-36) .220 (-23) .066 (-54) .144 (-35) .236 (-17) .097 (-33) .193 (-13) .282 (-1)

6.1.5.3 Analysis

For 20-newsgroups, there is almost no difference between the performance of candidates ap-

plying average aggregation and those applying weighted aggregation (e.g., DPA vs DPW). The

main reason for this is that the quality achieved for different classes is very similar. Further-

more, although no one of the best candidates includes the aggregation based on the maximum

confidence, this strategy achieves high quality (i.e. SPM is virtually as good as the best candi-
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Table 6.5: Average ENER evaluation for DDF patterns and x = 0.05
Collection Model S** D** R** *A* *P* **A **M **W

20newsgroups
NB .063 .088 .088 .063 .097 .077 .082 .080
kNN .061 .067 .067 .057 .073 .066 .065 .065
SVM .090 .113 .115 .091 .121 .107 .108 .102

Reuters21578 115
NB .075 .060 .087 .087 .061 .073 .062 .087
kNN .061 .090 .085 .094 .063 .086 .061 .089
SVM .097 .092 .109 .105 .094 .094 .090 .114

Reuters21578
NB .093 .091 .104 .091 .101 .093 .085 .110
kNN .113 .134 .128 .116 .135 .135 .100 .140
SVM .156 .152 .160 .139 .173 .155 .134 .179

Table 6.6: Average ENER evaluation for DDF patterns and x = 0.1
Collection Model S** D** R** *A* *P* **A **M **W

20newsgroups
NB .108 .148 .151 .107 .164 .131 .137 .139
kNN .100 .114 .116 .095 .125 .111 .110 .109
SVM .144 .186 .188 .149 .196 .170 .179 .168

Reuters21578 115
NB .129 .119 .142 .131 .130 .129 .108 .154
kNN .119 .155 .156 .155 .132 .154 .118 .158
SVM .169 .175 .188 .169 .186 .167 .164 .201

Reuters21578
NB .157 .165 .174 .152 .179 .160 .147 .190
kNN .188 .212 .212 .188 .220 .218 .168 .225
SVM .238 .239 .245 .211 .271 .236 .211 .275

Table 6.7: Average ENER evaluation for DDF patterns and x = 0.2
Collection Model S** D** R** *A* *P* **A **M **W

20newsgroups
NB .153 .207 .214 .154 .228 .183 .193 .198
kNN .139 .165 .170 .137 .179 .160 .157 .158
SVM .195 .251 .249 .203 .261 .223 .243 .230

Reuters21578 115
NB .190 .188 .197 .179 .205 .188 .159 .228
kNN .193 .229 .235 .222 .216 .231 .191 .236
SVM .235 .260 .263 .233 .273 .236 .241 .282

Reuters21578
NB .223 .242 .239 .213 .256 .224 .208 .271
kNN .264 .287 .290 .262 .299 .297 .240 .305
SVM .302 .315 .311 .273 .346 .297 .280 .350

date for SVM). On the other hand, maximum aggregations perform poorly with the multi-label

collections, as expected. The models that consider positive classes lose their competitiveness

against selecting all classes, for Reuters-21578-115. The reason is that this strategy was con-

ceived for collections where test documents have at least one correct class, as documents with

no classes are assigned a large uncertainty. Another difference is that, while there is a clear

winner for Reuters-21578-115 (RAW), there is none for Reuters-21578. Furthermore, the
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qualities achieved by the best model in Reuters-21578 are significantly higher than those for

Reuters-21578-115. This means that the addition of documents without correct classes makes

the SATC problem more complex to solve, or at least that DDF metrics are less suited for this

type of datasets. Results also show that SAA (and SAW for 20-newsgroups because of the

similar qualities per class) is only suited for classifiers that do not normalise the scores per docu-

ment. If the classification scores are normalised per document ( Â
ci2C

s(d,ci) = 1), SAA produces

the same difficulty, independently of the document. As a result, it performs as a random ranker

for this type of classifiers, which include the versions of NB and SVM used in this thesis. Other

poor metric is DAM, because the highest confidence based on difference is usually based on a

very low (or even zero) score. Therefore, the certainty computation will be uniquely based on

this information. Any method following the pattern {A,R}AM is likely to perform very poorly

because any class with a zero score can be considered as the label with higher confidence, and

therefore, the document confidence will be based on it. For the evidence level, the best strategy

is the relative difference. The class level illustrates that the selection of positive classes achieves

good quality, as long as the assumption that all the documents have at least one correct class is

correct. Otherwise (i.e., like Reuters-21578-115), all classes should be considered. The ag-

gregation level shows that the exploitation of category quality estimation outperforms the other

strategies for Reuters-21578 and Reuters-21578-115.

6.1.6 Discussion

Semi Automatic Text Classification represents a largely unexplored task within text classifica-

tion that is critical in environments where high quality classification is needed, but resources are

limited. Its main goal is to achieve high quality with minimum human effort. This research has

introduced SATC and the document difficulty framework (DDF) to address it. DDF generalises

several methods by abstracting three different levels, specifying how to manipulate the scores

and thresholds to obtain a document certainty measure. Results show that DDF metrics achieve

virtually perfect classification with as low as 50% of documents being classified with some col-

lections. One of the main limitations of SATC is that, even with this high error reduction, the

amount of documents to be manually classified would be too large in some cases (e.g., where the

collection has millions of documents).

SVM is the best classifier for DDF and RAW is its best overall variation, with the exception of
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Reuters-21578-115, where NB with the SAW strategy is the best alternative. DDF outperforms

all the previously proposed methods in the literature for SATC. The strategy analysis shows that

the best models should include a relative difference of scores, and the exploitation of estimated

class quality. In addition, observing only the positive classes for a document achieves better av-

erage quality, but only if all documents belong to at least one class. Nonetheless, the results from

the pattern analysis can be biased towards the extreme cases and be less reliable. For instance,

given the fact that SAA performs as a random ranker for Naive Bayes and SVM significantly

decreases the average quality of the patterns S**, *A* and **A.

6.2 Document Performance Prediction

6.2.1 Preliminaries

The main goal of performance prediction is to estimate the effectiveness of a specific approach

to solve a task. In Information Retrieval, Query Performance Prediction (QPP) estimates the

performance of a search engine for a query. QPP allows to apply specific processing techniques

to difficult queries, such as query expansion or knowledge augmentation [Amati et al., 2004], and

the aggregation of search results [Aslam and Pavlu, 2007]. In classification, performance metrics

have been defined for a specific collection or classifier. We argue that a quality estimation at the

document level provides a much deeper analysis and understanding of the classification process.

It enables classification ensembles in a document level, as well as specialised processing of the

most difficult documents. Furthermore, the observation of difficult documents with respect to

the models will provide insights about what type of documents each algorithm classifies the best.

This section introduces and defines the concept of document performance prediction (DPP) for

classification.

Document performance prediction shares the principles of QPP (explained in Section 3.3), but it

is focused on documents instead of queries. A comparison of the duality between DPP and QPP is

presented, underlying their similarities and differences. Furthermore, this section also introduces

the Threshold-based Document Performance (TDP) prediction framework, a family of document

performance prediction algorithms that exploits the document-class confidence scores computed

by a classifier and the class thresholds given by any class-based thresholding strategy to estimate

the performance of each document. Besides, this framework defines an array of different metrics
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that estimate the quality of documents depending on three dimensions: how the document-class

evidence is computed, what normalisation is applied, and the estimated quality for a given

label. This approach is conceptually similar to the Document Difficulty Framework that was

introduced in Section 6.1.4.

6.2.2 Task Definition

Before explaining the rationale behind document performance prediction, each of the compo-

nents involved in such process are mathematically described. Table 6.8 illustrates the common

notation for all equations presented in this section.

Symbol Explanation
C the set of classes
c class
Tr the set of training documents
Te the set of testing documents
Tv the set of validation documents
s classification scoring function
t threshold function

f decision function which determines if a
document will be labelled in a class

q quality function for a collection
qd quality function for a document
q̂d estimated document quality
a performance predictor
r correlation function

Table 6.8: Notation Summary for Document Performance Prediction.

Given a set of training documents to learn from, and a test document d, a classifier provides one

score per each class c:

sc(Tr,d) 2 R (6.11)

Given a set of scores for each document (from a validation set) and class, the thresholding strategy

provides the optimum threshold with respect to a quality measure q. This step is usually applied

as a cross-validation process:

tq({sc(Tr,d) : d 2 Tv}) 2 R (6.12)
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From now on, the set of training documents is assumed to be the same, therefore, for the sake of

readability, it is omitted in the equations. As a result, sc(d) and t(c) represent the score and the

threshold for the class c, using document d. Given a score for a document and a class, and the

class threshold, the decision function ( f ) determines if the document belongs to the class or not:

fc(d,sc(d),t(c)) 2 {0,1} (6.13)

Given a set of decisions and a quality metric based on the test set, is computed as follows:

q({ f (d,sc(d),t(c)) : d 2 Te^ c 2C}) 2 R (6.14)

The performance prediction functions produce a score, which depends on the class thresholds,

and classification scores for the methods exploiting post-classification information. Methods that

do not use it (i.e pre-classification metrics) depend only on the specific document:

a({t(c),sc(d),d : c 2C}) 2 R (6.15)

For simplicity, a(d) denotes the performance of document d. Finally, a predictor quality function

r assesses the predictive quality of the certainty function compared to the real quality value.

The standard methodology to measure the effectiveness of performance prediction techniques

consists of comparing the rankings of several elements (documents in the case of DPP) based on

their performance prediction and quality values. This is measured by correlation functions such

as Pearson’s, Spearman’s, or Kendall’s coefficients, implying that r 2 [�1,1].

r({a(d)},{qd(d)}) 2 R (6.16)

Quality evaluation in text classification is traditionally computed globally, based on a set of

documents. However, the correlation metrics require a document-based quality evaluation (qd).

Therefore, such evaluation should be defined similarly to the global quality, but limiting the space

to a specific document as shown below:

qd({ f (sc(d),t(c) : c 2C}) 2 R (6.17)



6.2. Document Performance Prediction 118

We propose a document-level F1 quality evaluation measure that follows the same principles of

traditional F1, but it focuses only on one document:

PrD(d) =
T PD(d)

T PD(d)+FPD(d)
(6.18)

ReD(d) =
T PD(d)

T PD(d)+FND(d)
(6.19)

F1D(d) =
2 ·PrD(d) ·ReD(d)
PrD(d)+ReD(d)

(6.20)

These document-specific quality metrics can now be compared to any performance predictor for

evaluation purposes.

6.2.3 Applications

The capability of predict the quality (or performance) of a document can be exploited in sev-

eral situations in the context of classification. For instance, it allows a document-level classifier

combination, where the best classifier for each document is applied. Other examples are the

adaptive document augmentation methods that can use different strategies depending on the ex-

pected quality of a document (e.g., apply augmented representation just for the documents with

low performance prediction). In addition, the ranking based on performance prediction for a

set of documents can be applied to solve the Semi Automatic Text Classification task (see Sec-

tion 6.1). The main opportunities and challenges for each one of this applications are illustrated

in the next sections.

6.2.3.1 Document-Level Classifier Combination

The combination of classifiers is usually applied on a collection level. For example, the results

or rankings from different classifiers are aggregated using quality estimations for each classi-

fier [Larkey and Croft, 1996]. This approach has the drawback that it does not consider the situa-

tion that one classifier performs badly for the collection, while it achieves high quality for specific

documents. A document-based classifier combination should be able to address this problem.

Document performance prediction is a well suited candidate for this task and it has the main
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benefit that it incorporates a new granularity dimension (i.e., the document context). This is

similar to the use of reliability indicators to combine classifier and document-based features in a

meta-classifier [Bennett et al., 2005].

One of the challenges of using performance prediction is that the performance values are not

sufficient to be applied for combination. Quality estimation should be computed, instead of

performance prediction. The reason is that, even though the performance values are suited to rank

different documents given the same classifier, they are not applicable over different classifiers:

Given two documents (di and d j), and a classifier (w), higher prediction value implies higher

expected quality (q̂
w

) for a document. On the other hand, for a given document d, there is no

implication between its prediction values over different classifiers (w and w

0). These concepts

are mathematically formulated as follows:

a

w

(di)� a

w

(d j)! q̂
w

(di)� q̂
w

(d j) (6.21)

a

w

(d)� a

w

0(d)9 q̂
w

(d)� q̂
w

0(d) (6.22)

The conceptual difference between predicted values and quality estimations has been pointed

out in the context of QPP [Hauff et al., 2009]. QPP algorithms are useful to estimate the query

performance among a predefined set of target queries, where the query with the highest score is

considered to perform the best in that set. In that context, such algorithms can produce a ranking

of queries, but do not directly estimate their quality (i.e., the Average Precision in information

retrieval or F1 in text classification), which is required for the combination of classifiers and,

as mentioned in [Hauff et al., 2009], to compare the performance of queries among different

collections. The authors propose to apply linear regression to obtain normalised versions of the

predicted scores.

Regression is not suited for document performance prediction because the quality for any given

document is limited to a finite (and small) set of values. The reason for this limited range is

that the F1 quality (among other measures) depends on the number of true positives (TP), false

positives (FP) and false negatives (FN). Their range, for a given document, is based on the total

number of classes and the number of labelled documents, as shown below, where R(d) is the set
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of correctly labelled classes for d and C is the set of classes in the collection.

T P 2 {0...|R(d)|}
FP 2 {0...|C|� |R(d)|} (6.23)
FN 2 {0...|R(d)|}

For any given document, FN = |R(d)|�T P. Therefore, the maximum number of quality values

is defined as |R(d)| · (|C|� |R(d)|). In addition, a maximum boundary for the overall number of

quality values for a set of documents can be computed using the maximum number of correct

classes for any document, and the maximum number of classes assigned by the system. These

ranges are shown below, where A models the assigned categories by the system to a specific

document:

T P 2 {0...max(|R(di)|)}
FP 2 {0...max(|A(di))|} (6.24)
FN 2 {0...max(|R(di)|)}

This implies that the maximum number of quality values, for any given document is defined as:

max(|R(di)|) ·max(|A(d j)|). For instance, for Reuters-21578, the maximum number of correct

classes is 14. As a result, if the maximum number of assigned classes by the system is, for

example, 10, there are 140 possible quality values to be computed. However, the average number

of correct classes per document is 1.24, and most documents are assigned to one or two classes

by the system. Therefore, the majority of the documents only have two to four different quality

values (always including zero and one).

6.2.3.2 Document Augmentation

Performance prediction allows to apply additional, or more advanced, processing to the most

uncertain documents. This technique is referred to as document augmentation or reformulation

(similarly to query reformulation in Query Performance Prediction). Alternatively, multiple rep-

resentations can be computed, selecting the one the highest performance prediction. However,

as previously explained for classifier combination, a performance prediction cannot be directly

applied, instead, a quality estimation should be obtained. For instance, if the number of tokens is

used as a predictor, and two different representations, with 1000 and 5000 features are compared,
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the latter will always have more tokens, and thus a higher performance value. Given a classifier

w , a quality estimation q̂, and a representation r, these concepts can be formalised as follows:

a

w,r(di)� a

w,r(d j)9 q̂
w,r(di)� q̂

w,r(d j) (6.25)

If the performance prediction values are successfully mapped to quality estimations, the best

representation, for a given classifier w and document d, can be selected as follows:

argmax
r

q̂
w,r(d) (6.26)

Any document augmentation technique can be applied to provide an alternative representation of

the document.

6.2.3.3 Semi-Automatic Text Classification (SATC)

Semi-automatic text classification (explained in detail in Section 6.1) assumes that neither man-

ual, nor full automatic classification is the optimum solution. This situation appears when full

automatic classification achieves lower than required quality, and a full manual classification is

either too expensive or unfeasible due to lack of resources. The foundation of SATC is that if we

are able to separate the documents with high probability to be correctly classified, and the ones

that are probably wrong, the latter can be inspected by human experts while the former will be

automatically classified. To solve this task, SATC methods rank the documents to be classified

by their uncertainty.

Document performance prediction seems to be well suited to solve SATC problems, as it can be

used to rank documents according to their expected quality. However, SATC ranking is optimum

when the documents are sorted according to their capacity to achieve maximum quality improve-

ment. This characteristic implies that, even though a DPP-based and a collection-based ranking

are related, the best SATC ranking is not necessary the ranking obtained by an optimum DPP

method. The reason for this is that, from a SATC perspective, the number of correct labels is

irrelevant, while the number of incorrect ones (either false positive or false negative) are critical

for the selection of the best documents to be inspected. For instance, given two documents (d1

and d2) and their assigned classes A(d1) = {c1,c2,c3,c4,c5}, A(d2) = {c1,c2}. If all classes but

one are correctly assigned and there is one class missing for each document, the first case will
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have one false positive (FP), 4 true positives (TP) and one false negative (FN), whereas d2 has

1 FP, 1 TP, and 1 FN. The increase in quality achieved if a human inspects either document is

the same, as the number of TP should have no impact on this increment. In both cases, a man-

ual inspection will change each false positive into a true positive, and each false negative into a

true negative, while keeping the rest of assignments because they were correct. Therefore, both

documents should have the same position in the ranking, even though d1 is “better” from a DPP

perspective.

6.2.4 Duality between DPP and QPP

The basis of the prediction for QPP and DPP are essentially different; whereas in QPP the el-

ement upon which the predictions are made is a query, in DPP the basis of predictions is a

document, for which more and richer information is usually available. In addition to the fact that

documents are longer than queries, they can present structural data or other complex information

(e.g., authorship, citations, ...). Furthermore, there are also more documents than queries in the

collections used for evaluation, and thus, the predictor has to be efficient with respect to a larger

number of elements. This aspect also motivates further ways of estimating the predictive power

of a document performance predictor when only a subset of the documents are considered (e.g.,

only the top most difficult). In addition, an important difference of DPP with respect to QPP

is that in classification, a document could be assigned to multiple classes, and hence, relevance

becomes a multidimensional variable, in contrast to relevance in classical information retrieval,

where a document is either relevant or not for a query. Both tasks consider a quality metric based

on the comparison of human assessments and the system predictions. In QPP, this metric is usu-

ally the average precision. In classification, quality metrics are not usually based on a specific

document but a set of them, and thus we have to define document-based evaluation metrics for

classification. Another significant difference is that the elements of the prediction (i.e., queries

or documents) are issued to different components of the system. In QPP a retrieval engine re-

ceives the query and return a list of likely relevant documents for that query, whereas in DPP

documents are classified into the more relevant classes. This differences lead to different defi-

nitions of performance predictors, along with alternative information sources available in each

situation. While query performance predictors may use the output of a retrieval engine to pro-

duce predictions, DPP metrics can be based on classification scores and category thresholds as



6.2. Document Performance Prediction 123

Table 6.9: Performance prediction concepts in QPP vs DPP.
QPP DPP

Elements Query Document
Quality Average precision Document-based F1

Relevance levels Binary Multidimensional
Elements are issued to Retrieval engine Document classifier

Table 6.10: Performance prediction applications for QPP vs DPP.
QPP DPP

Query selection SATC
Query expansion Document augmentation
Rank aggregation Ensemble classifier

their main input. We have to emphasise that, despite their differences, summarised in Table 6.9,

QPP and DPP are inherently and intrinsically the same. Both aim to estimate the performance of

an element (either a query or a document) using a quality metric. Furthermore, they can also use

the output of the system where the elements have been issued to for the prediction.

Table 6.10 shows a comparison between them from the task perspective. It underlines the sim-

ilarity of their application in two different contexts (i.e., queries vs documents). There is an

almost perfect parallelism for knowledge expansion. The queries that are expected to perform

badly are expanded or reformulated, while some type of knowledge augmentation or a different

document representation will be applied for under performing documents. The possibility of us-

ing performance predictions for model combinations is also very similar, where rank aggregation

and (document-level) ensemble classification share the same philosophy and steps. SATC (see

Section 6.2.3.3) is similar to the expansion of the available relevance judgements by properly

selecting queries [Hosseini et al., 2011]. Providing feedback to the system administrator was

considered from the beginning as a potential advantage of using QPP [Yom-Tov et al., 2005]. In

this way, future queries (or documents, in our case) are better answered by taking into account

the amount of estimated poorly performing queries.

6.2.5 Threshold-based Document Performance Prediction

The Threshold-based Document Performance (TDP) prediction framework models different DPP

metrics, within the context of text classification. The two main foundations of this framework

are the uncertainty of any document-class assignment, and the estimation of this assignment to
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be correct. In other words, the former computes how confident the system is in the labelling of a

document to a class, while the latter computes the estimated quality that such assignation would

achieve. In addition to these, a third dimension is included, whose main goal is to normalise

the label confidence to obtain a value within the range [0,1]. This formulation represents the

core of this framework. Different estimations for uncertainty labelling and quality will define

the different metrics to be applied. Therefore, TDP is divided in three different levels: quality,

evidence, and normalisation.

The quality level estimates the expected performance of an assignment to the class. The evidence

level computes the confidence value for each document and category, using their classification

score and the class threshold. The normalisation level maps the evidence values into a [0,1]

range. TDP is based on the composition of three transformation functions, one for each level,

where q measures the quality, e the evidence, and w the normalisation level.

Exploiting these three dimensions, the framework estimates the F1 quality for a document, based

on the estimation of TP, FP, TN and FN

T̂P(d) = Â
c2C;s(d,c)�t(c)

q(d,c) ·w(e(d,c)) (6.27)

F̂P(d) = Â
c2C;s(d,c)�t(c)

1�q(d,c) ·w(e(d,c)) (6.28)

T̂N(d) = Â
c2C;s(d,c)<t(c)

q(d,c) ·w(e(d,c)) (6.29)

F̂N(d) = Â
c2C;s(d,c)<t(c)

1�q(d,c) ·w(e(d,c)) (6.30)

a(d) = F̂1(d) =
2 · P̂r(d) · R̂e(d)
P̂r(d)+ R̂e(d)

(6.31)

A predictor based on the TDP framework consists in the combination (or composition) of a

specific strategy for each level. Table 6.11 summarises the different candidate strategies analysed

herein. Each DPP metric is then referred to as the concatenation of three letters, representing the
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Table 6.11: TDP Levels. ci represents a class, d a document, and s the classifier’s score for each
document-class pair. t(ci) is the threshold for ci, and q(ci) is the estimated quality for ci.

Quality Evidence Normalisation
q ; given d,ci e; given d,ci, t(ci) w; given d,ci, t(ci),e

B 1.0 B 1.0 L ee

ee+1
F F̂1(ci) A |s(d,ci)� t(ci)| F e

e+1
R |s(d,ci)�t(ci)|

t(ci)
S ep

e

2+1

strategy followed in each one of the levels.

6.2.5.1 Quality Level

Two candidates are considered to compute the quality of a specific assignation: binary (B), and

F1-based (F). The first method (B) does not exploit any quality estimation. Therefore, for this

level, the value computed for each label is always one, assuming that the class quality is not

relevant. As a result, the evidence and normalisation dimensions will have all the prediction

power. The second method (F) assumes that the quality of every label for a given class is the

same as the estimated F1 quality for the class, obtained via cross-validation.

6.2.5.2 Evidence Level

Three candidates are considered for this level: binary (B), absolute difference (A) and relative

difference (R). The first method(B) assumes that the certainty of all the decisions is the same

(1.0), independently of the thresholds and scores. The second method (A) exploits the score and

the threshold, assuming that larger distances imply lower uncertainty and higher chance that the

document is correctly classified. This assumption is similar to uncertainty sampling in the case

of active learning [Lewis and Gale, 1994]. The last method (R) applies the same principles as

the previous approach. However, it uses a relative difference instead of the absolute value. The

rationale is that the absolute distances can be misleading. For instance, a distance of 0.2 would

be more important if the threshold is 0.05 than if it is 0.6. This strategy is based on the SATC

method presented in Section 6.1.4

6.2.5.3 Normalisation Level

The normalisation level is responsible for mapping the evidence score to a range between zero

and one. Three candidates are considered for this level: logit (L), fraction (F) and squared

fraction (S). The first strategy (L) applies a logit normalisation. The second method (F) applies
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a fractional normalisation. The third method (S) uses a normalisation based on the squared root

of the squared value to be normalised. Other methods can be considered for this strategy, as long

as they normalise the evidence within the range [0,1].

6.2.6 Evaluation

Document Performance Prediction (DPP) estimates the quality performance of a classifier on a

document basis. Several applications for DPP were illustrated in Section 6.2. However, all of

them rely on high levels of correlation being achieved between the performance predictors values

and the achieved quality for each document. The main goal of this section is to evaluate such

correlation.

Table 6.12: Pre-classification DPP metrics. Weight refers to any feature weighting strategy (e.g.,
idf, c

2, ltc, ...).
Name Definition
No. words a(d) = |t 2 d|
Avg. Weight a(d) = avgt2dweight(t)
Max. Weight a(d) = maxt2d weight(t)
Std. Weight a(d) = stdt2dweight(t)
Nouns a(d) = |t 2 d : is noun(t)|
Prepositions a(d) = |t 2 d : is prep(t)|
Pronouns a(d) = |t 2 d : is pronoun(t)|

Table 6.12 summarises several pre-retrieval query performance predictors that are directly ap-

plied in order to analyse their effectiveness. The linguistic features have been obtained using

nltk [Bird et al., 2009]. A trivial pre-classification predictor would be the document length,

analogous to those predictors defined for query performance prediction based on the query length.

Other statistics based on term frequency (TF) and inverse document frequency (IDF) are also

computed. More importantly, other metrics, specific to the classification can be exploited. This

includes observing the weights for different strategies such as ltc or tfc [Buckley et al., 1994]

and category information (e.g., c

2). Besides, linguistic features are also computed for each

document, such as those defined in [Mothe and Tanguy, 2005], (e.g., number of nouns or pro-

nouns). In addition to the pre-classification metrics, the threshold-based document performance

prediction (TDP) metrics, presented in detail in Section 6.2, are also evaluated. TDP exploits the

uncertainty of a document-class assignment, and the estimation of this assignment to be correct.
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Figure 6.2: Quality vs Prediction using std.idf for Reuters-21578 with a k-NN classifier.

6.2.6.1 Set-Up

The datasets used for this experiment are Reuters-21578 and 20-newsgroups. Three different

families of classifiers have been used, namely Naive Bayes (Weka [Hall et al., 2009]), k-NN (our

own implementation) and SVM using LibSVM [Chang and Lin, 2011]. All documents have been

weighted using ltc and feature selection based on c

2 has been applied. Different parameters

have been tested for each model and the configuration that achieves better micro-averaged F1

quality (for traditional text classification) has been selected. The number of features considered

is 3000 for k-NN and NB and 10,000 for SVM; and the number of neighbours for k-NN is 60. In

all cases the SCutFBR.1 thresholding strategy has been used, applying a 5-fold cross-validation

process. In the case of SVM the scored output is obtained, instead of the binary decision.

6.2.6.2 Results

Before showing the quality results for the different predictors, Figure 6.2 illustrates the compar-

ison between a predictor based on the standard deviation of IDF (std.idf), and the documents

quality achieved by a k-NN classifier for Reuters-21578. This example empirically supports

the claim made in Section 6.2, that a small number of discrete quality values are attainable for

each document. In this case, such values are mainly restricted to the set {0,0.4,0.5,0.66,0.8,1},

in contrast with the continuous range of the predictor.
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Table 6.13: Pearson correlation: Pre-Classification Predictors.
20newsgroups Reuters21578

NB kNN SVM NB kNN SVM
vocab.size 14.26 15.54 9.42 -25.22 -20.22 -25.13
pronouns 3.99 5.46 3.67 -15.69 -11.19 -15.51
prepos. 5.84 6.79 5.65 -27.48 -21.53 -24.78
nouns 1.41 1.98 1.38 -21.49 -17.61 -21.14
max.c2 21.00 21.36 14.08 -34.22 -28.65 -25.01
avg.c2 23.59 23.20 19.40 -34.31 -28.55 -27.53
std.c2 16.72 16.61 11.34 -33.19 -28.27 -19.68
max.tf 5.55 6.70 5.32 -7.32 -2.96 -8.36
avg.tf 8.66 9.62 7.09 5.82 8.32 6.49
std.tf 7.72 8.49 7.15 -0.03 2.65 -0.71
max.tfc -10.62 -9.17 -7.26 2.83 7.78 8.42
avg.tfc -22.07 -19.95 -16.89 17.69 19.38 19.44
std.tfc -18.32 -16.85 -15.95 6.83 8.74 21.52
max.ltc -20.06 -18.21 -15.34 6.86 9.65 16.59
avg.ltc -22.23 -20.05 -17.20 17.90 20.15 19.98
std.ltc -19.97 -18.31 -16.89 3.60 5.07 20.91
max.idf 28.12 26.21 15.86 -31.00 -26.73 -21.31
avg.idf 26.56 25.23 22.16 -34.78 -29.24 -28.20
std.idf 14.13 12.66 6.23 -24.60 -21.95 -11.43

Table 6.14: Spearman correlation: Pre-Classification Predictors.
20newsgroups Reuters21578

NB kNN SVM NB kNN SVM
vocab.size 20.86 21.30 16.36 -23.42 -24.68 -27.46
pronouns 9.04 9.72 8.12 -20.05 -19.32 -20.18
prepos. 13.72 14.19 12.66 -32.63 -31.23 -30.01
nouns 15.17 15.61 12.83 -26.09 -26.68 -25.18
max.c2 20.59 19.65 14.60 -38.77 -34.87 -29.32
avg.c2 23.01 20.95 20.62 -44.77 -39.45 -36.77
std.c2 16.78 14.92 11.89 -38.80 -33.70 -24.83
max.tf 14.82 14.26 12.75 -6.82 -6.70 -10.28
avg.tf 11.35 10.69 8.69 1.54 2.02 2.97
std.tf 11.95 11.48 10.51 -2.56 -1.82 -1.58
max.tfc -9.12 -8.95 -6.89 -0.01 4.67 9.15
avg.tfc -19.79 -20.15 -15.95 29.52 30.14 28.54
std.tfc -15.06 -16.06 -14.12 6.50 10.54 25.41
max.ltc -17.06 -16.64 -13.88 5.42 10.10 19.78
avg.ltc -20.30 -20.92 -16.24 29.72 30.74 29.04
std.ltc -16.59 -17.43 -14.99 3.89 8.38 25.91
max.idf 26.36 25.34 15.54 -37.14 -33.41 -28.69
avg.idf 24.66 22.69 22.17 -47.04 -41.35 -37.50
std.idf 15.16 12.72 6.91 -32.43 -28.30 -16.32
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Table 6.15: Pearson correlation: TDP predictors.
20newsgroups Reuters21578

NB kNN SVM NB kNN SVM
FBL 47.92 47.01 55.36 26.72 51.35 1.11
FBF 44.91 40.07 53.95 26.22 47.18 0.59
FBS 47.51 46.20 55.17 26.66 50.85 1.05
FAL 54.85 59.19 61.33 38.33 58.82 15.33
FAF 58.71 51.89 61.35 66.87 54.56 56.21
FAS 57.03 59.10 60.26 65.88 58.68 54.69
FAM 10.87 38.27 7.06 -0.33 2.25 19.77
FRL 61.46 48.57 63.08 38.22 51.70 24.12
FRF 61.44 42.75 60.59 50.52 47.95 42.82
FRS 62.23 48.57 61.65 54.66 51.93 44.08
FRM 10.08 36.40 7.10 -0.26 0.33 14.14
BBL 46.66 52.58 54.02 10.33 55.05 -12.40
BBF 41.41 42.19 51.92 5.88 48.20 -13.68
BBS 45.89 51.31 53.73 9.66 54.09 -12.63
BAL 52.89 70.64 60.35 14.08 70.47 -2.34
BAF 59.62 59.04 61.51 65.92 59.45 56.63
BAS 57.94 69.61 60.46 65.14 68.54 55.27
BAM 10.87 39.53 6.93 -0.32 2.48 19.77
BRL 61.52 54.56 62.88 24.43 55.30 12.69
BRF 61.52 45.68 60.71 38.32 49.40 35.56
BRS 62.42 53.36 61.55 48.36 54.83 40.91
BRM 9.87 38.26 7.03 -0.23 4.23 14.13

Tables 6.13 and 6.14 show the Pearson’s and Spearman’s correlation values (where the ratio has

been scaled to [�100,+100] for clarity reasons) for the pre-classification performance prediction

methods. The best predictors are those based on idf, being avg.idf the best overall metric. The

results illustrate that pre-classification predictors achieve correlations values up to 34% and 47%,

applying Pearson and Spearman measures respectively in Reuters-21578, and up to 28% and

26% for 20-newsgroups.

Tables 6.15 and 6.16 show the correlation scores for the TDP metrics, achieving consistently

higher correlation than the pre-classification metrics, with values as high as 70% and 60% for

Pearson and Spearman respectively.

6.2.6.3 Analysis

For both collections, the highest correlations based on pre-classification predictors were obtained

using the Naive-Bayes classifier. A relevant insight is that, although the predictors based on lin-

guistic features, and those based on classification specific information perform relatively well,
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Table 6.16: Spearman correlation: TDP predictors.
20newsgroups Reuters21578

NB kNN SVM NB kNN SVM
FBL 22.64 34.29 33.35 20.61 47.85 -06.49
FBF 22.64 33.92 33.35 20.61 47.15 -6.46
FBS 22.64 34.24 33.35 20.61 47.78 -6.46
FAL 29.08 44.02 42.93 24.41 51.65 -1.14
FAF 56.28 46.46 51.85 62.04 52.45 52.52
FAS 56.96 46.76 51.85 62.13 52.50 53.07
FAM 11.98 50.45 7.17 0.08 46.53 23.95
FRL 35.10 42.57 42.42 22.17 50.53 0.07
FRF 51.00 49.18 49.08 37.17 53.32 26.79
FRS 51.25 50.78 49.75 39.07 54.11 26.09
FRM 11.98 51.09 7.17 -0.56 48.58 19.35
BBL 19.66 31.70 43.81 0.21 44.49 -35.94
BBF 19.66 31.61 43.81 0.21 44.36 -35.94
BBS 19.66 31.61 43.81 0.21 44.34 -35.94
BAL 29.97 54.27 42.64 20.77 53.56 -7.69
BAF 55.80 47.61 50.77 59.58 52.34 51.16
BAS 56.60 55.26 50.83 60.16 54.30 52.16
BAM 11.98 49.90 7.17 0.08 43.43 23.95
BRL 32.40 42.33 40.20 17.09 49.33 -8.60
BRF 49.07 48.72 47.32 28.51 52.65 18.60
BRS 50.11 51.30 48.40 33.02 53.78 22.89
BRM 11.98 50.61 7.17 -0.56 47.63 19.35

they are inferior to idf-based predictors. This is similar to the results reported for QPP, where

idf-based metrics are among the best pre-retrieval predictors. Both collections show similar

absolute correlation values for different predictors, which is the main evaluation approach for

performance prediction. However, the sign of the correlation changes in several cases and the

underlying reasons for this difference should be investigated in future research. The different

characteristics and structure of the collections could be causing this effect, specially the class

distribution and the range of document length. The very poor performance of linguistic features

in 20-newsgroups is probably caused by the large differences in the number of tokens per doc-

ument. k-NN is the best performer applying Pearson correlation, while NB shows larger values

for Spearman.

Within the TDP framework, FAS with NB and SVM, and BAS for k-NN are consistently the

best candidates for both collections, according to Spearman correlation, and some of the best

performers according to Pearson. An unexpected results is that several metrics that do not con-

sider the quality estimation perform well (i.e., BRS, BDS and BDL). This result suggests that the
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evidence and normalisation levels are the most representative factors to estimate the performance

of the classifiers. The reason for the very low correlation for some predictors (i.e., BDM with

k-NN for Reuters-21578) is that the normalisation process should be tuned for each classifier

in order to optimise the process. For instance, tuning x
x+y per model instead of using x

x+1 . .

6.2.7 Discussion

Performance prediction has been applied to information retrieval, mainly for query performance

prediction (QPP). We have presented and defined the concept of document performance predic-

tion (DPP), and its challenges and opportunities have been analysed. Moreover, we have explored

the differences and similarities between QPP and DPP, being the multidimensionality of the rele-

vance, and the discrete number of possible quality values for a given document the most notable

differences. Furthermore, the Threshold-based Document Performance (TDP) prediction frame-

work has been introduced.

Document Performance Prediction has the potential to be applied to several applications, in or-

der to improve different classification-related tasks. However, it presents two main challenges:

Firstly, DPP should obtain high correlation with respect to the document quality. Otherwise,

it might not be suitable for any of its potential applications. Secondly, performance prediction

values are not applicable when multiple classifiers or representations are exploited. As a result,

these values should be mapped to quality estimation values. Furthermore, any approach address-

ing this challenge should take into account the fact that each document has a finite (and usually

small) number of possible quality values. Therefore, value discretisation should be applied as

part of the mapping process from performance to quality values.

The experiments presented in this section show how traditional query performance prediction

techniques can be applied for document performance prediction. The results show that relatively

high levels of correlation (i.e., up to almost 50%) can be achieved. This supports the claim that

document performance prediction is applicable. For the case of TDP metrics, the correlation

significantly increases, to 70%. This result is critical, as the applicability of DPP require good

predictive capabilities. The experiments also confirm that, similarly to QPP, post-classification

methods are superior to pre-classification ones, and that for the latter, idf-based are the best

performing methods, even outperforming the algorithms that rely on classification specific infor-

mation
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6.3 Near-Misses Evaluation

6.3.1 Preliminaries

The quality evaluation of classification results has been traditionally based on the ratio of mis-

classifications. This practice is based on the binary judgement that either a topic is relevant for a

document or not. This strategy penalises misclassifications regardless of the closeness between

the classified and the labelled topics. However, from a user perspective, some misclassifications

are plausible (or at least understandable) mistakes, while others are extremely wrong. In other

words, some misclassifications are more harmful, because the selected labels are very distant

from the correct topics. For instance, the classification of a Banking document related to “San-

tander Bank Policies” as Finance is more desirable than assigning it to Tourism. However, both

categories are incorrect and the traditional classification metrics penalise both decisions equally.

This example is representative due to the fact that Santander is also a touristic town in northern

Spain. Therefore, even if the semantic content of the document is clear, an automatic system

might classify it in Tourism.

The final objective of an evaluation metric in classification is to measure the human satisfac-

tion regarding the results produced by the system. Therefore, it is reasonable to penalise more

the misclassifications that are less desirable. This implies that if a misclassification is per-

ceived by the user to be further from the truth compared to another incorrect decision, an eval-

uation metric should take into account this difference. A similar argument was defended by

[Deloo and Hauff, 2013]. Misclassification degrees has another benefit: consider a case where a

document is correctly classified under a class by an automatic system, but it has not been cor-

rectly labelled by the human judges. A method that considers relationships between categories

and their closeness can tackle the issues arisen from the inaccurate assessments. Of course,

this situation is only possible if the assumption that human judgements are always correct is ig-

nored. Nonetheless, research have shown that this assumption is not true, as the disagreement

between assessors for both text classification and document retrieval obtain relatively high val-

ues [Voorhees, 2000] [Webber and Pickens, 2013]. Traditional evaluation measures are based on

the inaccurate assumption that all mistakes are equally undesirable. This approach shares some

similarities with cost sensitive learning (see Section 2.1.5), where the cost matrix would be based

on multiple classes and their dependencies.
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This section proposes two families of evaluation metrics that consider the degrees of misclassifi-

cation. It also investigates how different classifiers perform according to such metrics, compared

to traditional evaluation measures.

6.3.2 Degrees of Misclassification

The notion of misclassification degrees rely on the dependency or closeness between the wrongly

assigned classes by the system and the correct one/s. The main principle is to decrease the pe-

nalisation for those mistakes with higher dependency with respect to the correct class/es. Fig-

ure 6.3 illustrates an example of document overlap for the set of classes {Banking, Finance,

Tourism}. It shows the high correlation between Finance and Banking and that they are

almost disjoint sets with respect to Tourism. In addition, it provides an understandable ex-

ample to the fact that the dependency does not have to follow the symmetric property. Al-

most all documents belonging to Banking are labelled as Finance, while only around half of

the Finance documents are in Banking. As a result, to classify a Banking document in

Finance is perceived to be a less important mistake than to misclassify a Finance one in

Banking. Similar challenges are present in several collections. For instance, 20-newsgroups

(see Section 2.8) has groups that would be difficult to differentiate even for a human judge (e.g.

talk.religion.misc vs soc.religion.christian). Furthermore, the fact that this collection

is single-labelled implies that if a document is classified in talk.religion.misc when it was

labelled as soc.religion.christian, it would be penalised as a false positive for one class,

and as a false negative for the other. Other example is the classification of a document which

talks about guns in the middle east, because there are two very relevant labels for the document:

talk.politics.guns or talk.politics.mideast.

Degrees of misclassification evaluation is more suited when the chaotic and the “no-perfect-

judgements” nature of collections are taken into account, and when single-label collections are

considered. The approaches presented in this section exploit a dependency matrix D, which

measures the dependency between the classes assigned by the system and the correct labels. The

main evaluation goal is that the higher similarity between them, the lower penalisation in terms

of quality should be applied for the misclassification. If the class dependencies are computed

based on the document overlapped shown in Figure 6.3, it will generate the matrix shown below,

where Di, j represents the dependency between the classification of class j by the system with
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Figure 6.3: Example of Documents Overlap between different Classes.

respect to the correct labelled class i.

D =

0

BBBB@

1 0.5 0

0.8 1 0.05

0 0.01 1

1

CCCCA
(6.32)

For instance, given the set of categories C = {Banking,Finance,Tourism}, D2,1 represents the

probability that Finance is a near-miss assignation for a document assigned to Banking. This

can be seen as a conditional probability between categories where Di, j = P(i| j). This setting

assumes that all similarity values in D are in the range [0, 1]. Different strategies to compute cat-

egory similarities based on document sets, textual content and semantic relations, are discussed

in the next sections. The correct labels, as assessed by human experts, are represented by matrix

H, while the automatic classification decisions are specified by M. Both are m⇥ n matrices (m

being he number of classes and n the number of documents to be classified). In H, each position

i, j has a value of one, if the i-th class is assigned to the j-th document, or a zero otherwise. If

degrees of misclassifications are included, H is transformed into HD. For the correct labels, HD

is defined as the original correctness value, and for the incorrect labels, it assigns the maximum

dependency of the assigned class with respect to a correct label.

HD
i, j =

8
><

>:

1 if i = j

maxx({Dx, j ·Hx,i) otherwise
(6.33)

One of the main priorities is that any correct assignment obtains the same quality as it would

without considering near-misses. All the strategies focus on minimising the penalisation for
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Symbol Explanation
C Set of classes
Di, j Dependency between the classification

of class j with respect to the class i
Mi, j System assignment for the i-th class

and j-th document
Hi, j Human assessment for the i-th class

and j-th document
Li, j Correct system assignment for the i-th

class and j-th document
HD

i, j Near-misses assessment for the i-th
class and j-th document

LD
i, j Near-misses degree of correct assign-

ment for the i-th class and j-th docu-
ment

t Threshold to assume a near misses is a
correct assignation for F1U

Table 6.17: Notation Summary for Near Misses Evaluation.

wrong assignations, while the correct classifications are evaluated normally. As a result, it can

be asserted that any metric following this principles will compute a quality value which is higher

or equal to its equivalent without considering dependencies. The next sections focus on the eval-

uation metrics and the class similarity estimation. Table 6.17 summarises the common notation.

6.3.3 Dependency-Aware Evaluation Measures

Two algorithms are designed to analyse degrees or misclassification and incorporate category

dependencies in the evaluation. The first method is a variation of F1 that applies a threshold to

“interpret” that a classification is correct if a certain similarity with a labelled (assessed) topic is

achieved. The second algorithm is based on a probabilistic interpretation of F1 and it incorporates

the probability of a mistake being correct in the calculations. The design of the methods implies

that, for the same set of classified documents, they achieve equal or higher absolute quality than

traditional metrics. The reason for this is the fact that they are based on the minimisation of

“punishment” of misclassified documents.
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6.3.3.1 Class-Dependency Aware F1 (F1U )

F1U modifies the definition of false positives in F1 to include class similarity information. Tra-

ditionally, false positives count the number of labels incorrectly classified in a class (see Sec-

tion 2.7). In our approach, FP is reformulated 2 using an array formulation as Equation 6.35

shows, where L models the specific pairs class-document that were correctly labelled.

Li, j = Mi, j ·Hi, j (6.34)

FP = Â
i, j
(M�L)i, j (6.35)

The same principle can be applied with the near-misses assessments, providing a measure of

partial correctness (LD) as presented in Equation 6.38. Then, a variation of FP, coined FPU , is

presented in Equation 6.37. FPU subtracts the assignations made by the system by the partial

correct assignations LD, computing the aggregation of partial penalisations

LD
i, j = Mi, j ·HD

i, j (6.36)

FPU = Â
i, j
(M�LD)i, j (6.37)

This solution changes the nature of the contingency table by using real values instead of number

of documents. As a result, it can not be used while maintaining the theoretical foundations of the

method. This issue is addressed by assuming that the topics with high dependency with respect

to correct classes are also correct. A threshold t is used to filter the dependency level needed

to be considered an“indirect” correct class. Therefore, the foundations and mechanisms applied

in the definition of F1 are met. F1U modifies F1 by assuming that the assignments that have a

dependency with a correct class greater than a threshold value t are correct.

LD
i, j =

8
><

>:

1 if Mi, j ·HD
i, j > t

0 otherwise
(6.38)

2The computation remains the same as in traditional FP
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TPU = Â
i, j
(LD)i, j (6.39)

These variations lead to new versions of Precision, Recall and F1, (PrU , ReU and F1U ) which

include misclassification degrees:

PrU =
TPU

TPU +FPU
(6.40)

ReU =
TPU

TP+FN
(6.41)

F1U =
2 ·PrU ·ReU

PrU +ReU
(6.42)

6.3.3.2 Exhaustivity-Specificity (ES)

Exhaustivity and Specificity measures are based on probabilistic interpretations of F1. Exhaustiv-

ity measures, given a class, the probability of a document being correctly classified if it has been

labelled in that class by a human. This directly relates to Recall. On the other hand, Specificity

measures the probability of a document being correctly classified, given that it has been assigned

by the system. This measures are then defined as follows, using the matrix notations previously

introduced.

Ei = P(correct(ci)|assessed(ci))

=
Â j Mi, j ·HD

i, j

Â j Hi, j
=

Â j LD
j

Â j Hi, j
(6.43)

Si = P(correct(ci)|classified(ci))

=
Â j Mi, j ·HD

i, j

Â j Mi, j
=

Â j LD
j

Â j Mi, j
(6.44)

These metrics incorporate the near-misses information by using the matrix HD to report partially

correct classified topics. After this, following the same strategy as F1, the harmonic mean is

computed to give an overall and unique quality measure per class, referred to as ES,
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ESi =
2 ·Ei ·Si

Ei +Si
(6.45)

Both micro and macro-averaged strategies can be applied to any of the measures obtain a general

quality value for a set of classes.

6.3.4 Class Dependency Estimation

F1U and ES rely in the concept of dependency between the classes. This section summarises

different families of metrics that can be applied for this task. The main goal of this section is to

show the flexibility of the evaluation methods and to introduce the metrics that are used in the

experimental section.

6.3.4.1 Set-Based

The similarity between classes can be computed by measuring their documents overlap. The

more documents labelled in both classes, the more similar the classes are. Equation 6.46 provides

one example of this type of method, where the dependency is based on the ratio between the

intersection of documents in both classes and the number of documents in classes. This equation

represents P(Cj|Ci) within the document space and it is a non-symmetric measure.

Doverlapi, j =
|Ci\Cj|
|Ci|

(6.46)

Any other method based on overlap between sets such as Dice or Jaccard coefficients (illustrated

in Equations 6.47 and 6.48 respectively) can be used.

Ddicei, j =
2 · |Ci\Cj|
|Ci|+ |Cj|

(6.47)

D jaccardi, j =
|Ci\Cj|
|Ci[Cj|

(6.48)

The main issue with set-based dependency measures is that the dependency calculations depend

on the taxonomy and indexing policy of a given collection. Therefore, the overlap ratio can be

very small even for similar classes. In addition, they are only applicable for multi-label collec-
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tions because there is no document overlap in single-label or multi-class environments. As a

result, a set-based class similarity applies complete independence between classes if applied to

single-label collections. Therefore, it computes the same quality value as the traditional F1.

6.3.4.2 Content-Based

Content-Based dependency refers to any method that exploits the textual content of documents

within each class. One strategy is to compute the cosine similarity between their “representative”

documents. For this reason, the centroid for each category is obtained, following Equation 6.49,

where w(t,d) represents the weight for the term t in document d and Dci is the set of documents

belonging to the i-th class.

centroid(c) =
1

|Dci |
Â

[t2d;d2ci]

w(t,d) (6.49)

Dcentroidi, j = sim(centroid(ci),centroid(c j)) (6.50)

The main benefit of this family of measures is that the similarity between classes is independent

of indexing policies and types of collections and it more accurately represents semantic closeness.

6.3.4.3 Structural or Relational

Structural or relational information between classes provides a helpful source of information that

can be exploited to analyse their dependencies. For instance, given a hierarchical collection,

specific values of dependency can be specified for sub-topics and “sibling” classes.

Dstructurali, j =

8
>>>>>>>>>>><

>>>>>>>>>>>:

1 if i = j

0.75 if c j ⇢ ci

0.5 if ci ⇢ c j

0.25 if c j ⇢ cx^ ci ⇢ cx

0 otherwise

(6.51)

Equation 6.51 defines a practical example based on hierarchical information. Similarity between

classes is defined as 1.0 for the same class, 0.75 for the parent class given a child, 0.5 in the op-

posite case and 0.25 for sibling topics. The obvious limitation of this method is that it requires a
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hierarchical collection or some type of relational information between different topics. Different

techniques have been presented to evaluate hierarchical classification [Sun and Lim, 2001]. The

main focus of our research is to use degrees of classification in non-hierarchical traditional clas-

sification environments. Moreover, the capability to model hierarchical dependencies is shown

to underline the flexibility of the approach.

6.3.4.4 Human/Expert-Based

The usage of a dependency matrix allows a straight-forward manual specification of these weights

based on domain-specific and/or expert knowledge. Therefore, the matrix can be used to explic-

itly represent the satisfaction degree for some misclassification. From a practical perspective,

any dependency method can be used to obtain a starting dependency matrix which will then be

modified by an expert or a final user, thanks to the understandable definition. Furthermore, a

human-based strategy to modify the dependency matrix allows, even if the values are initially

based on other strategies, different dependency matrix for different users. As a result, a person-

alised near-misses evaluation can be achieved.

6.3.5 Evaluation

The final objective of an evaluation metric in classification is to measure the human satisfaction

based on the decisions made by the system. Therefore, it is reasonable to penalise more the

misclassifications that are less desirable. In other words, if a misclassification is perceived by the

user to be further from the truth, compared to another incorrect decision, an evaluation metric

should take this difference into account. The evaluation of degrees of misclassification was

addressed in Section 6.3. This section analyses how the relative ranking of classifiers changes

when degrees of misclassification are included, with respect to traditional evaluation measures.

6.3.5.1 Set-Up

Two collections have been used for the experiments: 20-newsgroups and Reuters-21578.

Three different families of classifiers have been used: Naive Bayes (Weka [Hall et al., 2009]),

k-NN (our own implementation) and SVM using LibSVM [Chang and Lin, 2011]. All docu-

ments have been weighted using ltc and feature selection based on c

2 has been applied. Dif-

ferent parameters have been tested for each model and the configuration that achieves better

micro-averaged F1 quality has been selected. The number of features considered is 3000 for
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k-NN and NB and 10,000 for SVM; and the number of neighbours for k-NN is 60. In all cases

the SCutFBR.1 thresholding strategy has been used, applying a 5-fold cross-validation process.

In the case of SVM the scored output is obtained by running LibSVM [Chang and Lin, 2011]

with the option “-b 1”. For the centroid metric, the similarity computation is based on the repre-

sentation of documents with 3000 features based on c

2, independently of the specific classifier.

In all the experiments, the value of t has been manually set to 0.4, based on the dependency

matrices. Those dependencies with higher value than t are presented in bold in Tables 6.18-6.21.

Table 6.18: Dependency matrix (%) between the top 10 most common classes of Reuters-21578
using dependency as similarity metric. Values higher than 0.4 are shown in bold.

acq crude earn grain interest moneyfx ship trade corn wheat
acq 100.0 3.6 0.56 0.46 0.0 0.19 2.54 0.82 1.1 0.0
crude 0.85 100.0 0.45 0.46 0.29 0.19 20.3 1.9 0.0 0.94
earn 0.97 3.34 100.0 0.0 0.0 0.0 0.51 0.0 0.0 0.0
grain 0.12 0.51 0.0 100.0 0.0 0.19 14.21 2.17 98.9 98.58
interest 0.0 0.26 0.0 0.0 100.0 26.21 0.0 1.63 0.0 0.0
moneyfx 0.06 0.26 0.0 0.23 40.63 100.0 0.0 8.42 0.55 0.0
ship 0.3 10.28 0.03 6.47 0.0 0.0 100.0 0.54 2.21 3.3
trade 0.18 1.8 0.0 1.85 1.73 5.76 1.02 100.0 0.55 1.89
corn 0.12 0.0 0.0 41.34 0.0 0.19 2.03 0.27 100.0 27.83
wheat 0.0 0.51 0.0 48.27 0.0 0.0 3.55 1.09 32.6 100.0

Table 6.19: Dependency matrix (%) between the top 10 most common classes of Reuters-21578
using centroid as similarity metric. Values higher than 0.4 are shown in bold.

acq crude earn grain interest moneyfx ship trade corn wheat
acq 100.0 35.09 28.39 25.58 28.53 29.68 28.22 32.12 21.75 21.73
crude 35.09 100.0 17.79 28.34 26.91 28.21 39.88 38.84 24.38 23.3
earn 28.39 17.79 100.0 11.48 13.35 13.21 11.17 15.1 9.42 9.48
grain 25.58 28.34 11.48 100.0 21.32 24.24 38.69 37.87 89.83 93.3
interest 28.53 26.91 13.35 21.32 100.0 80.27 19.56 38.02 17.81 17.9
moneyfx 29.68 28.21 13.21 24.24 80.27 100.0 22.48 51.42 20.39 20.24
ship 28.22 39.88 11.17 38.69 19.56 22.48 100.0 32.22 30.53 31.28
trade 32.12 38.84 15.1 37.87 38.02 51.42 32.22 100.0 32.64 31.05
corn 21.75 24.38 9.42 89.83 17.81 20.39 30.53 32.64 100.0 74.46
wheat 21.73 23.3 9.48 93.3 17.9 20.24 31.28 31.05 74.46 100.0

6.3.5.2 Results

The evaluation methods considering degrees of misclassification that were introduced in Sec-

tion 6.3 rely on the calculation of category dependencies. One set-based and one content-based

dependency methods are applied in the experiments: overlap and centroid (see Equations 6.46

and 6.50). The utility matrices for different models and collections are shown in Tables 6.18-

6.21. The table for the overlap-based dependency in 20-newsgroups shows a 0% dependency

between each pair of different topics. The reason for this is that a set-based metric can not be
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Table 6.20: Dependency matrix (%) for a sample of 10 classes in 20-newsgroups using depen-
dency as dependency metric. Values higher than 0.4 are shown in bold.

motorcycles x mideast guns misc autos misc graphics christian misc
rec.motorcycles 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
comp.windows.x 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
talk.politics.mideast 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
talk.politics.guns 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0
talk.religion.misc 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0
rec.autos 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0
talk.politics.misc 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
comp.graphics 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
soc.religion.christian 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
comp.os.ms-windows.misc 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Table 6.21: Dependency matrix (%) for a sample of 10 classes in 20-newsgroups using centroid
as similarity metric. Values higher than 0.4 are shown in bold.

motorcycles x mideast guns misc autos misc graphics christian misc
rec.motorcycles 100.0 29.11 24.88 33.15 30.06 47.41 34.8 31.71 27.15 29.54
comp.windows.x 29.11 100.0 23.1 26.52 28.59 31.5 30.47 55.69 25.84 56.7
talk.politics.mideast 24.88 23.1 100.0 39.47 38.25 28.47 43.31 24.72 35.6 21.65
talk.politics.guns 33.15 26.52 39.47 100.0 43.64 38.68 52.84 28.93 36.31 27.24
talk.religion.misc 30.06 28.59 38.25 43.64 100.0 33.37 45.63 30.8 66.84 27.25
rec.autos 47.41 31.5 28.47 38.68 33.37 100.0 39.81 35.24 30.51 34.18
talk.politics.misc 34.8 30.47 43.31 52.84 45.63 39.81 100.0 32.17 42.52 29.54
comp.graphics 31.71 55.69 24.72 28.93 30.8 35.24 32.17 100.0 28.21 56.86
soc.religion.christian 27.15 25.84 35.6 36.31 66.84 30.51 42.52 28.21 100.0 24.65
comp.os.ms-windows.misc 29.54 56.7 21.65 27.24 27.25 34.18 29.54 56.86 24.65 100.0

applied to single-label collections such as 20-newsgroups. Tables 6.22 and 6.23 illustrate the

micro and macro-averaged quality measure for all the different methods and collections using F1U

and ES respectively. A third dependency model, referred to as “Traditional”, is also introduced.

It represents a similarity matrix with zero in every position except the diagonal. As a result, no

dependencies between different classes are considered and both evaluation metrics F1U and ES

compute the same quality as traditional F1. The tables show the improvement of each model

with respect to the baseline, which is the worst performing classifier using the same evaluation

model in the same collection. For instance, for a k-NN classifier in Reuters-21578 evaluated

using ES with centroid similarity, the baseline is Naive-Bayes, because it is the model with lower

ES quality in that collection. The improvement calculation is shown below, where q represents a

specific evaluation measure, b is the baseline model, and m is the model being evaluated:

improv(q,m) =
q(m)�q(b)

q(b)
(6.52)

The main objective of this section is to investigate how the dependency-aware evaluation models

modify the relative quality and ranking of classifiers. However, the different nature of traditional

and dependency-aware evaluation measures makes it impossible to apply a direct comparison
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between their absolute values. For this reason, the strategy used in this research is to analyse the

changes in the relative improvement with respect to the baseline, for each of the evaluation met-

rics. Therefore, the variation between the improvement of each model with respect to the baseline

and the improvement of the same model using a traditional evaluation are used. Variations greater

than zero imply that that model improves more when using dependency-aware models. There-

fore, its misclassifications are less damaging than those done by the baseline model. The relative

quality results are presented in Tables 6.24 and 6.25, and they are also graphically illustrated in

Figures 6.4 and 6.5. The relative improvement measure is defined below, where q represents a

evaluation metric, e is the dependency metric, t models the traditional dependency matrix and m

specifies the classification model.

improvrel(q,m,e) =
improv(qe,m)� improv(qt ,m)

improv(qt ,m)
(6.53)

For instance, NB and k-NN achieve a quality of 0.81 and 0.76 in 20-newsgroups respectively

when using traditional F1 evaluation. This represents an improvement of 4.6% for NB with re-

spect to the baseline (k-NN). On the other hand, if a centroid dependency evaluation is applied,

the quality of NB and k-NN are 0.90 and 0.87 respectively, and the improvement of NB is reduced

to 2.39%. As a result, the relative difference of improvement for NB when changing from tradi-

tional to centroid-based evaluation is -48.09% (from 4.6% to 2.39%) . This implies that, in case

of a misclassification, k-NN mistakes are less damaging than those made by NB. Nonetheless, it

also shows that NB still performs better than k-NN with both metrics.

6.3.5.3 Analysis

The comparison between the overlap and the cosine dependency matrices for Reuters-21578

illustrates the fact that different dependency measures compute very different dependency ma-

trices. Overlap values range from 0 to around 98%. However, if the overlap between grain,

corn, and wheat are ignored, the maximum dependency drops to 48%. In addition, most of the

dependencies have very low values. The similarity matrix ranges from 9% to 93%, with most

classes having dependencies close to 20%. These suspected differences on the dependency val-

ues imply that any parameter based on them should be tuned specifically for that configuration.

This supports the idea that ES is better suited than F1U , due to the fact that ES is parameter-less,

while F1U requires the tuning of the t parameter. Another important factor for the dependency
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Table 6.22: Quality using F1U measure. Improvements with respect to the baseline (%) are shown
between brackets.

micro macro
centroid overlap traditional centroid overlap traditional

Reuters21578
NB 83.77 81.15 79.94 34.64 33.16 32.38
kNN 89.27 (5.5) 87.26 (6.11) 85.81 (5.87) 63.27 (28.64) 62.28 (29.12) 59.63 (27.26)
SVM 89.41 (5.63) 88.06 (6.91) 86.27 (6.33) 62.81 (28.17) 61.88 (28.72) 58.75 (26.38)

20newsgroups
NB 87.3 (3.73) 80.92 (4.6) 80.92 (4.6) 86.54 (3.8) 80.3 (4.62) 80.3 (4.62)
kNN 83.57 76.32 76.32 82.74 75.69 75.69
SVM 88.87 (5.31) 84.33 (8.01) 84.33 (8.01) 88.25 (5.51) 83.76 (8.07) 83.76 (8.07)

Table 6.23: Quality using ES measure. Improvements with respect to the baseline (%) are shown
between brackets.

micro macro
centroid overlap traditional centroid overlap traditional

Reuters21578
NB 87.93 83.15 79.94 34.16 33.16 32.38
kNN 92.79 (4.87) 89.13 (5.98) 85.81 (5.87) 62.61 (28.45) 62.07 (28.91) 59.63 (27.26)
SVM 92.36 (4.44) 89.89 (6.74) 86.27 (6.33) 61.63 (27.47) 61.12 (27.96) 58.75 (26.38)

20newsgroups
NB 89.77 (2.39) 80.92 (4.6) 80.92 (4.6) 83.89 (3.92) 80.3 (4.62) 80.3 (4.62)
kNN 87.39 76.32 76.32 79.96 75.69 75.69
SVM 90.56 (3.17) 84.33 (8.01) 84.33 (8.01) 86.39 (6.43) 83.76 (8.07) 83.76 (8.07)

measures is to observe how the values of a specific algorithm change depending on the collec-

tion. The tables show a similar distribution of values for both collections when using a cosine

based similarity. 20-newsgroups shows less sparsity in the values with a range from 20-66%,

whereas Reuters-21578 values range from 9% to 93%. The reason for this difference probably

is that this collection’s distribution of classes is almost uniform, whereas Reuters-21578 has

a very skewed distribution. The fact that 20-newsgroups is a single-label collection makes it

impossible to compare it with the overlap metric.

The class-dependency evaluation metrics achieve higher absolute quality values than the tradi-

tional version, as they introduce less penalisation for the mistakes. Tables 6.22 and 6.23 show

how the relative improvements change considerably. Furthermore, in one case the ranking of

classifiers changes. In the Reuters-21578 collection, SVM is the best performing model with

micro-averaged traditional evaluation, while k-NN outperforms it when centroid-based depen-

dency is applied with the ES metric.

Tables 6.24 and 6.25 illustrate how the relative difference of improvements of some classifiers

are consistently better than others when near-misses are taken into account. In Reuters-21578,

NB is the worst algorithm in all conditions, with the exception of micro-averaged quality using

centroid dependency. The improvement of NB, if micro-average is used, can be caused by the

low quality achieved by the traditional (without considering near-misses) evaluation. SVM and

k-NN have a similar behaviour for this collection. 20-newsgroups presents a much clearer
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Table 6.24: Relative difference (%) of the improvements using F1U and the improvements using
traditional F1.

micro macro
centroid overlap centroid overlap

Reuters21578
NB 0.0 0.0 0.0 0.0
kNN -6.24 4.14 5.06 6.84
SVM -10.98 9.15 6.8 8.88

20newsgroups
NB -18.87 0.0 -17.71 0.0
kNN 0.0 0.0 0.0 0.0
SVM -33.75 0.0 -31.81 0.0

Table 6.25: Relative difference (%) of the improvements using ES and the improvements using
traditional F1.

micro macro
centroid overlap centroid overlap

Reuters21578
NB 0.0 0.0 0.0 0.0
kNN -17.05 1.99 4.38 6.06
SVM -29.86 6.51 4.13 6.0

20newsgroups
NB -48.06 0.0 -15.0 0.0
kNN 0.0 0.0 0.0 0.0
SVM -60.4 0.0 -20.39 0.0

message. k-NN significantly outperforms all the other models when near-misses are considered.

This means that if a mistake is made by k-NN it is much closer to the real class than it would be

by NB or SVM. Furthermore, this result is consistent with both evaluation methods.

6.3.6 Discussion

The importance of dependencies in text classification is a known fact. In addition, some mistakes

are worse than others from a human perspective, and the final goal of the evaluation process in

classification is to measure the user satisfaction. Therefore, degrees of misclassification is a factor

that should be considered. This section has discussed and proposed complementary evaluation

measures based on class dependency metrics and the notion of degrees of misclassification. Two

evaluation measures (ES and F1U ) have been introduced. Their general behaviour is similar.

However, ES is considered the best metric, as it is parameter-less, it does not involve any tuning

process, and it uses the dependency degree in the final quality computation.

This research has investigated the concept of degrees of misclassification to produce an eval-

uation that represents the user satisfaction better than current approaches. Different methods

to incorporate such knowledge into an evaluation function have been analysed and the quality

ranking of models varies in one case. k-NN outperforms the traditional best model (SVM) in
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(a) Reuters-21578 (b) 20newsgroups

Figure 6.4: Relative difference (%) of the improvements using micro-average F1U and the im-
provements using traditional F1.

(a) Reuters-21578 (b) 20newsgroups

Figure 6.5: Relative difference (%) of the improvements using micro-average ES and the im-
provements using traditional F1.

Reuters-21578, if ES is applied using the centroid similarity between classes as the depen-

dency metric. Moreover, the relative improvement of classifiers change significantly when de-

grees of misclassification are incorporated into the evaluation measures. NB is the model which

decreases its relative improvement the most. On the other hand, k-NN is the most stable one,

as it performs as well as SVM in Reuters-21578, while it improves by up to 20% and 60%

its relative macro and micro-averaged quality for 20-newsgroups. These findings support the
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intuition that the evaluation of classification should consider the notion of near-misses to rep-

resent the human satisfaction more closely, in order to provide a more realistic measurement.

Both evaluation measures, ES and F1U , behave similarly. However, ES is considered the best

metric, as it is parameter-less, and it uses the dependency degree in the final quality computation.

The suitability of these methods for collections with noisy and/or missed judgement assessments

represents a very interesting path, as well as the analysis of individual misclassifications.

6.4 Dynamic k-NN

6.4.1 Preliminaries

k-Nearest Neighbours (k-NN) is a lazy learning method that has been used for classification for

the last 40 years [Sebastiani, 2002] (explained in detail in Section 2.5.2). It exploits the similarity

of a document with respect to each training document to select the k “nearest” examples to

learn from. The number of neighbours considered in the classification process (k) is its most

important parameter. It is traditionally optimised, using cross-validation, in order to maximise

its performance.

Multi-label classification problems can be addressed by generating n binary classifiers, where n

is the number of classes. Strategies such as “one-vs-rest” have been applied. This is a common

strategy for some classifiers such as SVM, which has been reported to achieve better results than

k-NN for text classification [Joachims, 1998]. We argued that a global k optimisation, applied in

traditional k-NN, unfairly weakens k-NN comparison with methods like SVM that optimise each

two-class problem separately. The creation of n binary classifiers has been rarely (if ever) used

with k-NN probably because of its computational cost in the classification phase. This research

is driven by the hypothesis that optimising k globally represents a sub-optimal solution, while

a class-based optimisation achieves better quality. The methods that dynamically modify the

number of neighbours based on different factors are known as adaptive k-NN (see Section 3.2.4).

This section analyses the global optimisation of the number of neighbours in k-NN, and in-

troduces Dynamic k-NN (dk-NN), a variation of k-NN that applies class-based k optimisation.

dk-NN selects the best k for each class, based on the quality estimations for traditional k-NN.

Furthermore, a maximum quality boundary, if all the quality estimations are perfect, is illustrated

and analysed. dk-NN does not involve any added computational cost because it is based on the
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steps normally applied for k-NN.

From a theoretical perspective, k-NN leads to a decision function that approximates the opti-

mal Maximum a Posteriori (MAP) decision rule [Bishop, 1995]. Density estimation is implicitly

carried out by looking for the closest neighbours, and the parameter k controls the amount of reg-

ularisation involved in the estimate. A global k optimisation ignores the fact that different classes

may come from different densities and with variable sample sizes, which may pose conflicting

requirements on the regularisation parameter. For instance, classes with few training documents

and unimodal distributions may benefit from a smoother estimate (larger k), while a well-sampled

multimodal distribution may be better approximated by a smaller k.

Before explaining the process followed by dk-NN, the tuning steps when k-NN is applied to a

new dataset are explained below. The main reason is to illustrate that dk-NN does not involve any

additional computational cost because it exploits the knowledge generated in the tuning phase for

the traditional k-NN.

1. The collection is divided into training, validation and testing subsets.

2. A set of potential k values is selected to be tested (e.g., {5, 10, 15,... 50}).

3. For each preselected k value, the best thresholds (based on the validation set) and quality

values (using the testing documents) per category are computed.

After the general tuning of k-NN, the information about the best threshold and quality per class

is available, for each one of the considered k values.

6.4.2 dk-NN Scoring

To optimise the number of neighbours on a category level can provide better quality for the

k-NN classifier. However, this would imply the creation of n binary k-NN classifiers, which

significantly increases the computational cost in classification time. dk-NN optimises k for each

category without the increased computational cost required if multiple binary classifiers are used.

It selects a different number of neighbours for each class, based on the quality estimation for each

pair (k,class). How this estimation is calculated is the focus of Section 6.4.3. Equation 6.54

shows the definition of dk-NN, where the use of a class c as a parameter for the set of nearest
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neighbours (NN) is the only difference compared to traditional k-NN. Equation 6.55 defines the

set of nearest neighbours, for a specific document and class.

score
d -k-NN(c,d) =

1
|NNk(d,c)| Â

[di2NNk(d,c)]
sim(d,di) · y(di,c) (6.54)

NNk(d,c) = {d0 2 D0 : sim(d,d0)� sim(d,di),

8di 2 D\D0^ |D0|= k(c)} (6.55)

NN depends on a document and a specific category. This strategy can be seen as implicitly

dividing a multi-label k-NN algorithm into n binary k-NN classifiers that will be aggregated

using the “one-vs-rest” approach. If a k-NN classifier is implemented for each class, each binary

classifier will be computed independently and the optimal threshold would be calculated for

the specific category. Furthermore, each one of them will produce a score for any document

measuring its belonging to the class. dk-NN indirectly follows the same principle, without the

drawbacks of having to implement n different classifiers.

As explained before, k-NN implicitly relies on an adaptive density estimation step for class-

conditional densities, given by the following formulation, where nc is the number of documents

of class c contained in the volume element DVk of feature space, Nc is the total number of training

examples for class c and the discretisation volume DVk is chosen to contain exactly k of the

training samples closest to d.

P(d|c) = nc

NcDVk
(6.56)

This can be seen as an adaptive “binning” of feature space, where the size of the bins instead of

being constant (as is the case of histogram estimation) is allowed to vary with sample density.

The bin size cancels out when the class-conditional densities are substituted in the maximum a

posteriori rule to give the k-NN classification decisions. With this in mind, it should be evident

that an adaptive choice of the parameter k = k(c) to suit the different underlying distribution and

sampling sizes of the various classes should lead to better density approximation and therefore

better results.
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6.4.3 Estimating the Optimum k per Class

The estimation of the best number of neighbours for each class is a critical part of dk-NN. After

the tuning of k-NN, the estimated quality and best threshold for each class and k value (qk(c),

tk(c)) are available, as shown in Algorithm 1. Given this information, k-NN and dk-NN select

the k values following different strategies (see Algorithms 2 and 3 respectively).

Algorithm 1 Tuning steps for k-NN.
Input: ~k {set of considered k values}
Input: ~c {set of classes}

1: for all k in~k do
2: ~

tk,~qk crossValidation(k)
3: end for

Algorithm 2 Optimisation of k parameter in k-NN.
Input: ~k {set of considered k values}
Input: ~c {set of classes}
Input: ~

tk {thresholds for each k}
Input: ~qk {quality estimation for each k}

1: k {k 2~k : argmaxkqk}
2: tk {t 2 ~tk,k 2~k : argmaxkqk}

Algorithm 3 Optimisation of k parameters in dk-NN.
Input: ~k {set of considered k values}
Input: ~c {set of classes}
Input: ~

tk {thresholds for each k}
Input: ~qk {quality estimation for each k}

1: for all c in~c do
2: k(c) {k 2~k : argmaxkqk(c)}
3: tk(c) {t 2 ~tk,k 2~k : argmaxkqk(c)}
4: end for

The main difference between k-NN and dk-NN is how to exploit cross-validation information.

k-NN adopts the k value with higher global quality, whereas dk-NN exploits the best k per class

and the specific thresholds with that configuration.
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6.4.4 Maximum Quality Boundary

The dk-NN performance relies on the accuracy of the quality estimations. This section focuses on

the situation where a perfect quality estimation is achieved. This is, if the estimated best number

of neighbours for each topic yield the best performance when applied to the test set. Such model

is referred to as Oracle (in reference to being able to “predict” the future). A modification of

our approach (dk-NNOracle) that uses the best k values based on the test set is introduced. Its

definition implies that its macro-averaged quality always increases or remains the same with the

number of neighbours, independently of the quality metric. The reason being that if the quality

estimations are exact (as they are with an Oracle), the best number of neighbours per class is

always selected. Therefore, for any two number of neighbours, the dk-NNOracle macro-averaged

quality of the highest one is always the best. This concept is explained below, where k and

k0 represent number of neighbours and q(k,c) models the quality achieved for the class c by

dk-NNOracle.

8k,k0 : k � k0! q(k,c)� q(k0,c) (6.57)

The monotonicity characteristic does not apply to dk-NN, nor to dk-NNOracle with micro-averaged

quality metrics. In these cases, the quality could decrease with larger numbers of neighbours.

6.4.5 Evaluation

Dynamic k-NN (dk-NN) is an adaptive version of k-NN where the number of neighbours are

automatically optimised per category, based on a cross validation process (see Section 6.4). This

section analyses the sub-optimality of traditional k-NN, where k is globally set, and it illustrates

the improvement in quality by using dk-NN. Two different experiments are reported: the analysis

on the optimality of different k values, and a quality comparison between k-NN and dk-NN.

6.4.5.1 Set-Up

Reuters-21578 and 20-newsgroups are used for the experiments. Documents are represented

using ltc and c

2 as feature selection measure, with 3000 and 5000 features for Reuters-21578

and 20-newsgroups respectively because it is the configuration that achieves better micro-

averaged F1 quality. The k values that have been tested are {5,10,15, ...200}. Experiments
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are carried out using our own implementation of both k-NN and dk-NN. A 5-fold validation is

applied, maximising micro-averaged F1, using FBRScut.1 as the thresholding strategy.

6.4.5.2 Results

Figures 6.6 and 6.7 illustrate the number of topics that share the same optimal k (i.e., it max-

imises the micro-average F1). For instance, eleven different classes have an optimum k value of

five in Reuters-21578. This data shows that there is a large variation on the value of the best

k per class in both collections. However, the specific histogram distributions are very different.

20-newsgroups shows that almost every class has a different optimum k, while Reuters-21578

has three specific values of k (i.e., 5, 70 and 200) that are optimum for several categories. A

preliminary analysis showed no correlation between the classes size and the optimum k for

Reuters-21578. Nonetheless, deeper analysis on the histogram characteristics might provide

useful information. The broad distribution of best k values per class shows that most of the classes

have an optimum k different than the global. In addition, only two class for Reuters-21578, and

none for 20-newsgroups are optimised by using the best global k (60 and 55, respectively).

These results support that a global optimisation is a sub-optimal solution for k-NN.

Tables 6.26-6.29 show the quality achieved by k-NN, dk-NN and dk-NNOracle for both collec-

tions, applying micro and macro-averaged F1. Significance testing is based on paired t-test.

Improvements with respect to the best performing k-NN (with a maximum k number of neigh-

bours) are shown. Figures 6.8 and 6.9 show similar information in a graphical format. dk-NN

(with a maximum of 200 neighbours) outperforms the best k-NN in all the configurations, with

the exception of Reuters-21578 being evaluated with macro-averaged F1, where both models

achieved almost the same quality. However, none of them are statistically significant. The im-

provements in 20-newsgroups are much larger than the ones in Reuters-21578.

6.4.5.3 Analysis

dk-NN consistently outperforms k-NN. The main reason why such improvement is much larger

in 20-newsgroups than in Reuters-21578 is that the estimations of k for classes with very

few examples, as it happens in Reuters-21578, can be inaccurate. This is supported by the

fact that the improvements of dk-NNOracle are always statistically significant. The estimation of

the best k value for each category is a critical part of dk-NN and better estimators will increase

its performance. dk-NN has another benefit, it optimises micro and macro-averaged quality
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Figure 6.6: Histogram for the best k values per class for the Reuters-21578 collection in terms
of micro-averaged F1, with 3000 features selected using c

2.

(a) 20-newsgroups

Figure 6.7: Histogram for the best k values per class for the 20-newsgroups collection in terms
of micro-averaged F1, with 5000 features selected using c

2.
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Table 6.26: Reuters-21578 micro-averaged F1 quality with different values of k using 3000 fea-
tures selected using c

2. Improvements (%) with respect to the best k-NN in brackets. Statistically
significance improvements with p < 0.01, and p < 0.02 represented with † and ‡ respectively.

K kNN DynamicKnn DynamicKnnOracle
15 84.73 84.98 (0.31) 85.57 †(1.00)
30 85.06 85.31 (0.29) 86.41 †(1.59)
50 85.57 85.76 (0.11) 87.20 †(1.78)
100 85.66 86.21 (0.47) 87.77 †(2.29)
150 85.48 86.12 (0.36) 87.96 †(2.51)
200 85.25 86.14 (0.38) 88.02 †(2.58)

Table 6.27: Reuters-21578 macro-averaged F1 quality with different values of k using 3000 fea-
tures selected using c

2. Improvements (%) with respect to the best k-NN in brackets. Statistically
significance improvements with p < 0.01, and p < 0.02 represented with † and ‡ respectively.

K kNN DynamicKnn DynamicKnnOracle
15 56.90 58.24 (2.35) 60.51 †(6.33)
30 59.62 58.77 (-1.43) 64.56 †(8.29)
50 59.49 60.29 (-0.16) 66.03 †(9.34)
100 60.06 60.97 (0.96) 67.68 †(12.08)
150 61.01 60.92 (-0.97) 69.17 †(12.45)
200 60.99 61.23 (-0.46) 69.41 †(12.84)

Table 6.28: 20-newsgroups micro-averaged F1 quality with different values of k using 5000 fea-
tures selected using c

2. Improvements (%) with respect to the best k-NN in brackets. Statistically
significance improvements with p < 0.01, and p < 0.02 represented with † and ‡ respectively.

K kNN DynamicKnn DynamicKnnOracle
15 76.51 76.20 (-0.61) 77.26 ‡(0.77)
30 76.88 77.26 (0.34) 78.05 †(1.37)
50 77.01 77.57 (0.74) 78.78 †(2.30)
100 76.90 77.81 (0.85) 79.22 †(2.68)
150 76.15 77.79 (0.83) 79.45 †(2.98)
200 75.87 77.85 (0.91) 79.46 †(3.00)

Table 6.29: 20-newsgroups macro-averaged F1 quality with different values of k using 5000 fea-
tures selected using c

2. Improvements (%) with respect to the best k-NN in brackets. Statistically
significance improvements with p < 0.01, and p < 0.02 represented with † and ‡ respectively.

K kNN DynamicKnn DynamicKnnOracle
15 76.21 75.86 (-0.48) 76.93 †(0.92)
30 76.37 76.79 (0.39) 77.66 †(1.52)
50 76.40 77.06 (0.74) 78.35 †(2.42)
100 76.34 77.27 (0.92) 78.76 †(2.86)
150 75.72 77.25 (0.90) 78.98 †(3.16)
200 75.47 77.30 (0.96) 78.99 †(3.17)
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Figure 6.8: Micro (left) and Macro (right)-average F1 quality for Reuters-21578 for different
values of k, using 3000 features based on c

2.

Figure 6.9: Micro (left) and Macro (right)-average F1 quality for 20-newsgroups for different
values of k, using 5000 features based on c

2.

simultaneously with the highest value of k, whereas k-NN requires to tune them independently.

On the other hand, for Reuters-21578, k-NN maximises micro-averaged F1 with 55 neighbours,

while the macro-averaged is the best when k is 135.

6.4.6 Discussion

The global tuning of the number of neighbours for k-NN leads to sub-optimal results. Adaptive

methods should be apply in order to increase the potential of k-NN. This research presents a

category-based k optimisation (dk-NN) that is based on quality estimation, and the tuning process
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that is applied with traditional k-NN.

Experiments show that dk-NN should be preferred over k-NN, as it outperforms traditional

k-NN in almost all cases, without having any drawback. Furthermore, an Oracle variation of

the algorithm illustrates its potential, if perfect quality estimations were available. dk-NNOracle

statistically significantly outperforms all the other models with up to 3% micro and 12% macro-

averaged increase with respect to the best k-NN. Results also suggest that dk-NN is more suited

for non-skewed collections. One relevant finding is that even uniformly distributed collections

show very diverse optimum k values per category. This result collides with one of the main

implicit assumptions in related research, which is that the number of neighbours should be opti-

mised based on the size of a given category [Baoli et al., 2004].

6.5 Summary

Knowledge exploitation have been largely investigated for augmented representation and score

augmentation, while other steps of the classification process have been overlooked. We have pro-

posed novel tasks and methods for some of those steps. These examples underline how knowl-

edge should be more present in the general classification flow.
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Chapter 7

Conclusions and Research Outlook

7.1 Summary

This thesis has investigated the seamless modelling of text classification using a descriptive ap-

proach to improve flexibility and maintainability. We have shown how this approach leads to

a high-level abstraction that provides a flexible and adaptable environment for prototyping and

knowledge exploitation with minimum engineering effort. However, this work has also shown

some of the limitations of the approach in terms of expressiveness and scalability. We have also

illustrated how to model and intelligently combine textual and relational data in heterogeneous

networks. Furthermore, this research have also shown the automatic translation from descriptive

modelling to a mathematical formulation for verification and validation purposes.

The second goal of this research is to investigate how to use knowledge and evidence exploitation

in steps of the classification process where they have not traditionally been applied. Firstly, the

task of Semi-Automatic Text Classification has been proposed to intelligently combine manual

and automatic classification. In addition, different approaches to address this task have also be-

ing proposed. Secondly, Document Performance Prediction has been introduced to estimate the

document performance for a classification system. Thirdly, the possibility of exploiting category

dependencies to improve the classification evaluation mechanisms has been investigated. Finally,

a strategy to locally optimise the number of neighbours for k-NN has been proposed.
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7.2 Conclusions

The main research questions from which this thesis originated are asked in Section 1.2. The

conclusions of this research are outlined based on the answers to such questions.

To what degree is the expressiveness of descriptive approaches, represented by

probabilistic Datalog, enough to model and customise traditional classifiers?

This thesis shows the modelling of different variations of Naive-Bayes and k-NN classification

families. This illustrates that they can be expressed using a descriptive approach. The quality

evaluation also provides empirical evidence that they achieve, as expected, the same quality as

other approaches. The compact high-level definitions and the use of a predicate dictionary lead to

a flexible framework where experts can model specific strategies with minimum engineering ef-

fort. As a result, there is virtually total customisation for any task. The experiments also illustrate

that collections can be indexed in a reasonable amount of time. For instance, 20-newsgroups

requires 33 minutes to index all the information required for a Naive-Bayes classifier, while it

requires 160 ms per document in classification time. This results support the claim that descrip-

tive approaches can be applied in prototypical environments. Furthermore, the efficiency of this

approach relies heavily on engine implementation and optimisations (which are out of the scope

of this thesis). Therefore, these experiments should be considered as a maximum boundary of

the required time. Any improvement made to the underlying system will potentially increase its

efficiency.

To what degree can models expressed in a descriptive approach be automatically

translated to a mathematical formulation to observe and verify its semantics?

The nature of probabilistic Datalog implies that a program can be automatically translated to a

mathematical definition if each operator can be independently translated. Such definition must

specify two aspects: what tuples to keep or generate, and what probability should be computed

for the new tuples. We have shown the translation steps for the main operators of the language.
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Can a formal framework generalise and integrate the main knowledge exploitation

techniques for data augmentation and score modification in text classification?

We have shown a conceptual framework in which several techniques for knowledge exploitation

can be included. Although the specific algorithms use different techniques, all of them rely on

some weight for specific entities and/or the relationships between them as their core mechanism.

This is considered in our approach and, therefore, any method that follows the same principle

can be included within the framework.

To what degree descriptive approaches can seamlessly integrate textual and

relational classifiers with heterogeneous data?

Combining textual and relational classification is a challenge due to the complexity of combining

diverse data. Probabilistic Datalog has proven to be able to model and combine, using a unique

framework, textual and relational classifiers within a heterogeneous network. As a result, the

prototyping capabilities in such complex environments is increased.

Is a descriptive approach abstract enough to apply flexible task

integration and adaptation?

The combination of different information retrieval tasks is becoming more common in order to

improve specific models or to address complex information needs. However, such integration

involves a complex engineering process using the current systems. Abstraction based on Logics

seamless allows to apply multi-task adaptation.

Given a set of documents to be classified and a limited amount of human resources. What

quality can be achieved if those resources are optimised to focus only on the

documents that the automatic system is more likely to misclassify?, and, are the

category thresholds and classification scores useful for this task?

This thesis has proposed the novel task of Semi-Automatic Text Classification to maximise the

overall classification quality in environments with limited human resources. The scores and

category thresholds obtained in a classification process are a very helpful source of information

that can be exploited in different forms. This work has proposed a family of metrics that uses
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this information to rank documents. The results show that micro-averaged F1 values higher than

0.95 can be achieved with only 30-50% of documents being inspected. The main implication of

this is that a large cost reduction can be applied in those cases and that the resources (i.e., human

annotators) can be optimised by relying on the certainty ranking.

With what confidence can a set of documents be ranked according to

their expected classification quality?, and, are the category thresholds

and classification scores useful to solve this task?

This thesis has introduced the Document Performance Prediction task in the context of clas-

sification. Results using approaches from the query performance prediction field indicate that

the pre-classification performance predictors correlate relatively well with the ranking of docu-

ments, with Spearman coefficient values up to 0.25-0.47 depending on the collection. The best

performers are the idf based predictors, similarly to what has been reported for query perfor-

mance prediction. In addition, a Threshold based Document Performance prediction framework

that exploits the classification scores and the category thresholds has been proposed. The results

show that this approach significantly outperform all the pre-classification methods with correla-

tion values of up to 0.7.

Given a set of classifiers and their quality evaluation, will their relative quality or their

ranking change using an evaluation metric that includes degrees of misclassification?

The importance of dependencies in text classification is a known fact that has traditionally been

neglected in the evaluation process. Some mistakes are worse than others from a human perspec-

tive, and the final goal of an evaluation process in classification is to measure the user satisfaction.

Therefore, it is a factor that should be considered. For this reason, we have presented two differ-

ent methods that incorporate this information into the evaluation process (see Section 6.3), and

compare them with traditional evaluation metrics.

This research shows that the quality ranking varies in one case, using these approaches and three

classifiers. However, their relative improvement change significantly in most cases. This supports

the claim that different classifiers tend to misclassified “worse” than others. In particular, the

results suggest that k-NN is the classifier that tends to miss “closer” to the real categories. The

fact that there are almost no changes in the ranking of classifiers can be due to the large difference
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in performances.

How can the number of neighbours in a k-NN classifier be automatically optimised per

category without dividing it into multiple binary classifiers, and, what quality

improvement will be achieved compared to traditional k-NN?

The number of neighbours can be dynamically optimised per category, based on the estimated

quality values that are obtained in the tuning phase of any traditional k-NN classifier. A model

that applies this approach, referred to as dynamic k-NN (dk-NN) was presented in Section 6.4.

dk-NN only considers examples from the top k(c) most similar examples with respect to the

category c, using the number of neighbours that produced the best estimated quality value in the

tuning phase.

The global optimisation of k leads to sub-optimal results. Results show that dk-NN constantly

outperforms the traditional version, without having any disadvantage. These improvements are

not statistically significant. Nonetheless, if the quality estimation would be done perfectly, the

same approach will obtain statistically significant improvements of up to 12% and 3% for macro-

average F1, using Reuters-21578 and 20-newsgroups respectively. This shows the potential of

the approach and the need for better quality estimations.

7.3 Discussion, Limitations and Research Outlook

The descriptive modelling of classification provides a prototypical environment that can easily

incorporate new types of data and tasks for unforeseen information needs with minimum engi-

neering effort. This also includes the possibility of exploit and combine textual and relational

information. The main limitation is the current impossibility of model iteration within the frame-

work. As a result, some models are not feasible to be represented without externalising some of

their steps (e.g., SVM). In addition, the modelling of some strategies such as Laplace correction

result on counterintuitive and somehow confusing representations. One of the main options to

address these challenges is to allow internal functions within the language to support these oper-

ations. Also, although the system can be applied to reasonably sized collections, its scalability

and efficiency is worse than other systems. Further research should be done to address both

challenges in the future.
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On the other hand, this thesis has proven that knowledge can and should be applied to all the

different steps in the classification process. There are multiple possibilities to extend this research

in the future. In particular, the two novel tasks of Semi-Automatic Text Classification (SATC) and

Document Performance Prediction (DPP) can be seen as new research lines for the community.

This thesis has shown the cost reduction that can be achieved, without a loss in quality, by

focusing the human resources on the documents most likely to be misclassified by a classification

system. However, the amount of work done in this field is very limited and other algorithms

to measure the certainty of each document should be proposed. Also, SATC should focus on

very low ratios of documents being manually classified if bigger collections are used due to

the scalability challenges. For DPP, although its potential has been shown in the correlation

experiments, further research should be done to test its real applicability. For instance, using it to

dynamically select the best classifier for a given document. Finally, the discussion of near-misses

evaluation could be used to revisit how quality is evaluated in classification.

This research has contributed to the long goal of a high-level abstraction system for information

retrieval that can integrate knowledge and different tasks to solve complex information needs

represented by “knowledge engineers”. In addition, we have shown the potential of some steps

of the classification process that research has traditionally neglected.
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Appendix A

Document Difficulty Framework quality

graphs for SATC

This section shows the classification quality graphs for the different models presented in the

Document Difficulty Framework (see Section 6.1.4) with different percentages of the collection

being manually classified.
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(a) Reuters-21578 SAM (b) Reuters-21578 SAM

(c) Reuters-21578-115 SAM (d) Reuters-21578-115 SAM

(e) 20-newsgroups SAM (f) 20-newsgroups SAM

Figure A.1: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using SAM for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 SAA (b) Reuters-21578 SAA

(c) Reuters-21578-115 SAA (d) Reuters-21578-115 SAA

(e) 20-newsgroups SAA (f) 20-newsgroups SAA

Figure A.2: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using SAA for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 SAW (b) Reuters-21578 SAW

(c) Reuters-21578-115 SAW (d) Reuters-21578-115 SAW

(e) 20-newsgroups SAW (f) 20-newsgroups SAW

Figure A.3: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using SAW for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 SPM (b) Reuters-21578 SPM

(c) Reuters-21578-115 SPM (d) Reuters-21578-115 SPM

(e) 20-newsgroups SPM (f) 20-newsgroups SPM

Figure A.4: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using SPM for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 SPA (b) Reuters-21578 SPA

(c) Reuters-21578-115 SPA (d) Reuters-21578-115 SPA

(e) 20-newsgroups SPA (f) 20-newsgroups SPA

Figure A.5: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using SPA for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 SPW (b) Reuters-21578 SPW

(c) Reuters-21578-115 SPW (d) Reuters-21578-115 SPW

(e) 20-newsgroups SPW (f) 20-newsgroups SPW

Figure A.6: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using SPW for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 AAM (b) Reuters-21578 AAM

(c) Reuters-21578-115 AAM (d) Reuters-21578-115 AAM

(e) 20-newsgroups AAM (f) 20-newsgroups AAM

Figure A.7: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using AAM for Reuters-21578, Reuters-21578-115, and
20-newsgroups.



171

(a) Reuters-21578 AAA (b) Reuters-21578 AAA

(c) Reuters-21578-115 AAA (d) Reuters-21578-115 AAA

(e) 20-newsgroups AAA (f) 20-newsgroups AAA

Figure A.8: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using AAA for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 AAW (b) Reuters-21578 AAW

(c) Reuters-21578-115 AAW (d) Reuters-21578-115 AAW

(e) 20-newsgroups AAW (f) 20-newsgroups AAW

Figure A.9: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using AAW for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 APM (b) Reuters-21578 APM

(c) Reuters-21578-115 APM (d) Reuters-21578-115 APM

(e) 20-newsgroups APM (f) 20-newsgroups APM

Figure A.10: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using APM for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 APA (b) Reuters-21578 APA

(c) Reuters-21578-115 APA (d) Reuters-21578-115 APA

(e) 20-newsgroups APA (f) 20-newsgroups APA

Figure A.11: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using APA for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 APW (b) Reuters-21578 APW

(c) Reuters-21578-115 APW (d) Reuters-21578-115 APW

(e) 20-newsgroups APW (f) 20-newsgroups APW

Figure A.12: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using APW for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 RAM (b) Reuters-21578 RAM

(c) Reuters-21578-115 RAM (d) Reuters-21578-115 RAM

(e) 20-newsgroups RAM (f) 20-newsgroups RAM

Figure A.13: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using RAM for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 RAA (b) Reuters-21578 RAA

(c) Reuters-21578-115 RAA (d) Reuters-21578-115 RAA

(e) 20-newsgroups RAA (f) 20-newsgroups RAA

Figure A.14: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using RAA for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 RAW (b) Reuters-21578 RAW

(c) Reuters-21578-115 RAW (d) Reuters-21578-115 RAW

(e) 20-newsgroups RAW (f) 20-newsgroups RAW

Figure A.15: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using RAW for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 RPM (b) Reuters-21578 RPM

(c) Reuters-21578-115 RPM (d) Reuters-21578-115 RPM

(e) 20-newsgroups RPM (f) 20-newsgroups RPM

Figure A.16: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using RPM for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 RPA (b) Reuters-21578 RPA

(c) Reuters-21578-115 RPA (d) Reuters-21578-115 RPA

(e) 20-newsgroups RPA (f) 20-newsgroups RPA

Figure A.17: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using RPA for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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(a) Reuters-21578 RPW (b) Reuters-21578 RPW

(c) Reuters-21578-115 RPW (d) Reuters-21578-115 RPW

(e) 20-newsgroups RPW (f) 20-newsgroups RPW

Figure A.18: Micro-averaged F1 (left) and ER (right) evaluation for different ratios of
manually classified documents using RPW for Reuters-21578, Reuters-21578-115, and
20-newsgroups.
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