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ABSTRACT
This is work in progress where we outline a design process
for a computationally creative musical performance system
using the Creative Systems Framework (CSF). The proposed
system is intended to produce virtuosic interpretations, and
subsequent synthesized renderings of these interpretations
with a physical model of a bass guitar, using case-based
reasoning and reflection. We introduce our interpretations
of virtuosity and musical performance, outline the suitability
of case-based reasoning in computationally creative systems
and introduce notions of computational creativity and the
CSF. We design our system by formalising the components
of the CSF and briefly outline a potential implementation.
In doing so, we demonstrate how the CSF can be used as
a tool to aid in designing computationally creative musical
performance systems.

CCS CONCEPTS
• Computing methodologies → Instance-based learn-
ing; •Applied computing→ Sound andmusic comput-
ing;

KEYWORDS
computational creativity, expressive music performance, vir-
tuosity, case-based reasoning
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1 INTRODUCTION
Musical Metacreation (MuMe) [18], a recently formed sub-
field of Computational Creativity, seeks to bring together all
research into the automation of creative musical tasks. In
doing so it has re-categorized many areas of work which did
not have a specifically creative focus into a field which does.
This includes work into Computer Systems for Expressive
Musical Performance (CSEMP), which may now be interro-
gated on issues which they were not intended or sufficiently
equipped to answer - specifically related to their creativity
and creative behaviors.
Within Computational Creativity (CC) systems deemed

to display creative behavior are capable of reflection.1 With-
out this element of reflection, a point raised by Agres et al.
[4], Bundy [9] and others, systems are only generative. As, in
general, CSEMPs do not employ a full reflection loop or self-
reasoning of their output, they are not considered to be cre-
ative systems from a CC standpoint.2 Developing a creative
CSEMP, that can reflect allows for research directly into the
creative processes within musical performance. For example,
investigating virtuosity in bass guitar3 performances. How
though, does one go about developing a creative CSEMP?
We propose using the the Creative Systems Framework

(CSF) by Wiggins [30, 31], as a design tool to frame and de-
scribe both new or even existing CSEMPs (if their authors
wished to turn them to creative systems). At a basic level the
CSF can act as a checklist of requirements for a creative sys-
tem. However, it also allows for direct comparison between
different creative systems which can aid in evaluating both
the systems creative behavior and its output [4, 30–32].

The CSF has been used to describe a live coding scenario,
and through doing so highlights how, and where, the com-
puter can be given more creative control/responsibility over
1Reflection is the ability for an agent (or in the context of this paper, com-
putational system) to evaluate or reason about its creative output, and in
light of this evaluation adapt or alter its behaviour.
2This is not intended as a criticism of, or to diminish, the value of the
previous work into expressive musical performance, only as to draw a
distinction between general approaches to CSEMPs and that of creative
systems.
3The bass guitar, could be any musical instrument, however we have chosen
this due to our own experience and expertise with the instrument.
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the produced performance [32]. By using this framework to
design a creative musical performance system, we demon-
strate the design capability of the CSF, in addition to its
descriptive and analytical usefulness.
In Section 2 we introduce the context and scenario as

that of virtuosity within the computational performances
with a physical model of a bass guitar, and outline our in-
terpretations of virtuosity and how we relate it to musical
performance. From here, in Section 3, we explain the ideas
of computational creativity and then introduce and explain
the basics of the CSF. In Section 4 we then use the CSF to
design a creative musical performance system and provide
an example implementation. We hope that by providing a
working example of the CSF others will embrace, use and
apply the CSF in the design of their own creative musical
performance systems.

2 INVESTIGATING VIRTUOSITY IN MUSICAL
PERFORMANCES

Our work is motivated by the question:

“To what extent a computer, as judged by a hu-
man audience, can demonstrate virtuosity in
computational performanceswith a physicalmodel
of a bass guitar?”

To aid in answering this question we have developed a
theory, using case-based reasoning and reflection, of how
virtuosic performances can be created. The system designed
using the CSF in Section 4 is the realization of this theory.
First, we clarify our interpretations of virtuosity, music per-
formance and the applicability of case-based reasoning to
music performance creation.

The Terrain of Virtuosity
Virtuosity has many connotations and interpretations that
can be both positive and negative and the exact interpreta-
tion or understanding of virtuosity will vary from person
to person [15]. To allow for this range of differing views
we treat virtuosity as a property of a performance that can
only be assigned by those that witnessed it (a.k.a audience
members). Not all audience members may think the perfor-
mance demonstrates virtuosity, and those that do might not
have the same reasons. These reasons will be informed by
each individual’s understanding of the domain the music and
performance is in, the performer, as well as their own indi-
vidual expertise, knowledge and sensibilities [15]. All these
factors don’t define what virtuosity is, but instead form a
terrain [15] that is navigated when a judgment on virtuosity
is made. It is also generally accepted that experts/institutions
opinions are given a greater weighting of importance when
compared to those of the general public.

Whilst we do not wish to exclude serendipitous occur-
rences of performances which demonstrate virtuosity, how-
ever, generally performances demonstrating virtuosity are
more likely to be performed by a virtuoso. We consider a vir-
tuoso to be someonewho has demonstrated the ability to con-
sistently produces virtuosic performances, which requires
they will have both highly developed technical proficiency
on their instrument and musical sensibilities.

Using Case-base Reasoning
All performing musicians, not just virtuosos, use their own
previous experiences, knowledge and ability to develop a
musical performance. Based on this idea we have decided to
use case-based reasoning as the foundation for our theory
for musical performance.
Case-based reasoning solves new problems by reusing

and adapting the solutions of similar problems. In the case of
musical performance, this is producing a performance for a
new previously unseen musical piece, by drawing upon the
experience and knowledge gained through previous perfor-
mances of similar musical pieces. It has been used to great
effect in CSEMPs, such as SaxEx by [5, 11] which produced
expressive saxophone performances of jazz standards and
in work by Tobudic and Widmer [21, 22, 23] which learns
and applies expressive rules for piano performance. Case-
based reasoning has also been used within more explicitly
creative systems such as poetry generation systems [12] and
in melody creation systems [19].

Formalising Musical Performance
Finally we wish to formalise the production of a musical
performance as the result of a process, in which a set of
musical instrument techniques, {t1, t2, ....}, are applied to
a sequence of musical notes, ⟨n1,n2, ...⟩, by the player of
the instrument. We represent the actions of the Player of
the musical instrument as a function which applies a set of
techniques to a sequence of notes. This is summarized by
Equation 1.

Per f ormance = Player ({t1, t2, ....}, ⟨n1,n2, ...⟩) (1)

How and what techniques are applied to each note shall
be left implicit within the Player function for the moment as
it can be done through many different methods. For example
using rules such as the KTH rules [8, 13] or more sophisti-
cated machine learning methods [24–29] as well a case-based
reasoning [5, 11, 21–23]. This is also where any reflection
or reasoning about the production of the performance may
happen.
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3 COMPUTATIONAL CREATIVITY AND CREATIVE
SYSTEMS

Types of Creative Behaviour
We take Computational creativity to be:

“The philosophy, science and engineering of
computational systems which, by taking on par-
ticular responsibilities, exhibit behaviours that
unbiased observers would deem to be creative.” -
Colton and Wiggins [10]

Creative behaviours can be differentiated into exploratory
creativity and transformational creativity. Both methods of
creativity rely upon the notion of a conceptual space. This
notion, from the perspective of Boden [6, 7], is a space that
contains a set of artefacts (or creative products), referred
to as concepts. A conceptual space has a set of rules which
determine the types of artefacts it contains. Exploratory cre-
ativity is the process of producing artefacts that are known
to be possible within the conceptual space, yet might not
have previously been produced. As there are many different
types of artefacts, there are also many different conceptual
spaces.
Within our proposed system we will only be addressing

the ideas of exploratory creativity. However, for complete-
ness transformational creativity can occur by creating arte-
facts which contain properties from two or more different
conceptual spaces (combinatorial creativity), through chang-
ing how a conceptual space is explored, or through changing
the language used to describe the conceptual space and its
artefacts [30, 31].

Valuing a Creative Artefact
Artefacts in our scenario are musical performances, deter-
mining whether the performance displays virtuosity or not
is a way of assigning value to these performances. In gen-
erally though artefacts may not all be created equally, and
thus have different values. Precisely what contributes to an
artefact being valued is summarized by Wiggins et al. [33]
as:

“... a relation between an artefact, its creator and
its observers and the context in which creation
and observation takes place.” [33]

There is also a distinction to be made between value an
novelty. It is possible to have arefacts be valued that are not
novel, and artefacts to only be valued because they are novel.

The Creative Systems Framework
Wiggins, proposes a clarification and formalised abstract
representation of exploratory creative systems, as described
by Boden [7], called the Creative Systems Framework (CSF)

Table 1: Creative System Framework Symbols

U : A Universe, of all possible concepts (artefacts) which can
be both partial and complete, real or abstract, and also
includes the notion of an empty concept (⊤).

C : Conceptual Spaces which are non-strict subsets of U
which include c and ⊤.

cx : Concepts, where ∀c1, c2 ∈ U.c1 , c2
⊤ : An empty concept.
R : Set of rules that constrain a single C from U.
T : A set of rules for traversing a U, this includes search

heuristics.
E : A set of evaluation rules to evaluate or assign value to

any concept inU.
L : A language, which contains an alphabet that is used

to express concepts (cx ), and the rule sets: R, T and E.
Where R ∈ L, T ∈ L, E ∈ L. L is required to be suffi-
ciently expressive to allow for metalevel modification of
R, Tand E.

[[.]] : A function generator which maps a subset of L to a
function that associates concepts inU with real numbers
[0,1].

⟨⟨., ., .⟩⟩ : A further function generator that maps three subsets
of L to a function that generates a new sequence of
concepts, from an existing one.

[30, 31]. The purpose of which is to help to describe creative
systems.

The creative systems framework is based upon the follow-
ing septuple:

⟨U,L, [[.]], ⟨⟨., ., .⟩⟩,R,T, E⟩ (2)

the symbols of which, and related symbols that fully ex-
press the framework are as provided in Table 1.

The ruleset R defines a kind of artefact and forms the rules
that define the conceptual space in which all artefacts of that
kind can be found. A conceptual space for a given R can
be created through the following formalisation of Boden’s
conceptual space by Wiggins and Forth [32]:

{c | c ∈ U ∧ [[R]](c) ≥ 0.5} (3)

Concepts are deemed part of a conceptual space if the
results of applying functions generated by the function gen-
erator [[.]] to R, when compared to U, is greater than a real
valued comparator. In the Equation 3 this is a value of 0.5.

New artefacts are discoverable through traversing the con-
ceptual space. T is a set of rules which define how this traver-
sal occurs. To perform the traversal of the conceptual space
requires that T be interpreted by ⟨⟨., ., .⟩⟩. Equation 4 shows
the usage of ⟨⟨., ., .⟩⟩ as a function acting upon a sequence of
known concepts/artefacts, cin, to produce a sequence of new
concepts, cout. R and E are included in the interpretation
function to allow for reasoning over the type and value of
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artefacts that are being traversed by T. However, they are
not a requirement of ⟨⟨., ., .⟩⟩, by removing R from the inter-
pretation it is possible to generate artefacts not bound by
the rules of R, and removing E allows for the generation of
artefacts which is not guided by any evaluation.

cout = ⟨⟨R,T, E⟩⟩(cin) (4)
The final unexplained symbol in Equation 2 is E. This

is a set of rules which define, appropriately contextualized,
the evaluation of generated artefacts or concepts. Value is
determined from a set of functions generated by interpreting
E with [[]]. By effectively utilizing the results of E, reflection
upon the artefacts being produced by the creative system is
possible. Following from this a further useful mechanism is
the function ⋄, defined such that:

F⋄(X ) =
∞⋃
n=0

Fn(X ) (5)

With F being a set-valued function of sets. Using this
equations with suitable substitutions, such as those provided
in Equation 6, it is possible to generate all valued artefacts
that are possible given a specific R and T.

⟦E⟧⋄⟨⟨R,T, E⟩⟩(⊤) (6)
The final part of the CSF is the allowance for Transfor-

mational Creativity. This is enabled by allowing for R, T
and potentially E to be redefined by the system whilst it is
operating. This can be done by defining meta-level operators,
RL , TL , and EL which act upon and can change the rules
defined in R, T and E, and using in place of R, T and E in
the septuple of Equation 2. The meta-level operators require
that L be sufficiently expressive to allow for the modifcation
of R, T and E. For a more thorough discussion please refer
to works of Wiggins [30, 31].

4 FORMALISING OUR PROPOSED
COMPUTATIONALLY CREATIVE MUSICAL
PERFORMANCE SYSTEM

Based upon the formalisation from Section 3, we now utilize
the CSF as part of the design process of our exploratory cre-
ative system for the computational creation of virtuosic bass
guitar performances. More specifically, the computational
creation of a virtuosic interpretation of a musical piece that
will then be used to produce a subsequent performance using
a physical model of an electric bass.

Interpretation of a Musical Piece
We refer back to Equation 1, where we formalised a perfor-
mance to be the application of a set of performance tech-
niques, to a sequence of notes (the musical piece). We see
an interpretation of a piece as being the result of a decision

making process related to what instrument or musical perfor-
mance techniques4 should be applied to each note in musical
piece. We shall call the process of assigning a performance
technique to a musical note, adorning the note. We will al-
low notes to be adorned with multiple different techniques,
assuming they do not pose a contradiction in they way they
should be performed.

To allow for an adorned musical sequence to be performed,
we require that all adornments (performance techniques)
have an explicit, singular fixed interpretation. Here we draw
a deliberate distinction between the interpretation of a se-
quence of musical notes, and the interpretation of the adorn-
ments, with the latter not being considered by our system.
We do not wish to exclude expressive, or other such inter-
pretations that are traditionally made through a realization
of a performers intention and an personal interpretations of
how adornments are performed. Thus, we require our adorn-
ments to be capable of describing expressive performance
intentions, and that all adornments have precise definitions
of how any expressive intention is to be performed.
By decoupling the performer’s intentions and interpre-

tations from their technical execution we can create a firm
distinction between the musical interpretation, and technical
execution without preventing their correlation. By having
this distinction between interpretation and technical execu-
tion, we can treat the physical model part of our performance
system as a technically excellent musical performer who is
capable of directly and precisely following our adornment
scheme when producing a musical performance. Any per-
ceived errors within the performance will therefore be down
to how the musical piece was adorned and not due to how it
was performed. This provides a level of traceability to the
performance. It also allows for some implementation bene-
fits, by allowing us to treat the physical model purely as a
rendering process.
We now have a clearer picture of what our performance

system is going to do (adorn musical note sequences with
performance indicators), and the starting points of a speci-
fication along with some constraints over what is required.
These can now be used to begin to formulate the components
of the CSF septuple given in Equation 2.

Defining the Language (L)
First the language, L, that will be used to describe the other
components of the CSF is required to be defined. L would
ideally be sufficiently expressive to allow for meta-level al-
terations over R, T and E. However, as we have imposed a
restriction on our system to confine it only to exploratory

4For completeness we consider the application of expressive, contextual,
situational and historic intentions and conventions to fall under the category
performance techniques.
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⟨concept ⟩ ::= ⟨⟩
| ⟨adorned-note⟩ {‘,’ ⟨concept ⟩}

⟨adorned-note⟩ ::= ‘(’⟨adornment ⟩ ‘;’⟨note⟩‘)’

⟨adornment ⟩ ::= ⟨⟩
| ⟨adornment ⟩{‘,’⟨adornment ⟩}
| ‘[’⟨adornment-type⟩ {‘,’⟨parameter ⟩}’]’

⟨adornment-type⟩ ::= ⟨adornment-type-group⟩‘,’⟨adornment-id ⟩

⟨adornment-id ⟩ ::= a1 | a2 | ... | an

⟨adornment-type-group⟩ ::= д1 | д2 | ... | дn

⟨parameter ⟩ ::= ‘[’⟨parameter-type⟩{‘,’⟨parameter-value⟩}+‘]’

⟨parameter-type⟩ ::= p1 | p2 | ... | pn

⟨parameter-value⟩ ::= numeric

⟨note⟩ ::= ⟨pitch⟩‘,’⟨inter-onset-interval⟩‘,’⟨duration⟩

⟨pitch⟩ ::= pitch-class

⟨inter-onset-interval⟩ ::= metrical-time

⟨duration⟩ ::= metrical-time

Figure 1: Backus-Naur form definition for L, not including
the subsets R, Tor E.

creative processes we can be stricter in our formulation of
L. L is required to describe the universe, U, which is de-
scribed by the concepts, c, it contains. To begin formulating
L we first need to formalise what a concept is, which for
our system is a sequence of adorned notes. From this we
then formalise what an adorned note is, then adornments
and notes etc. A full formalisation of the basic syntax that
forms L is given in Figure 1.

We can see that ⟨concepts⟩ can be empty, indicated by ⟨⟩, or
can be a comma separated list of one ormore ⟨adorned-notes⟩.
Adorned notes pairs of ⟨adornment⟩ and the ⟨note⟩ that they
adorn. Adornments can be empty; a singular adornment,
which will belong to an adornment group, have an identifier
and its own parameters; or a list of multiple adornments.
Notes are tuples of pitch, inter-onset-interval and duration.
Pitch is represented via pitch-class value, for example the
class of midi pitches. Inter-onset-interval, and duration are
specified in rhythm notation and will be related to the start
and end times of the piece. Adornment groups, id and param-
eters have their own vocabularies, with an , дn and pn being
elements of these respected vocabularies. These vocabularies
specify the type of adornments and the types of parameters
that adornments can have. The value of the parameters is
confined to numeric type for simplicity.

Defining the Universe (U)
U, is a universe of concepts defined by ⟨concept⟩ in Figure 1.
TheU which we have formed can be considered to be a uni-
verse of all possible musical note sequences and all possible
adornment interpretations of these musical note sequences,
including sequences which do not contain any notes.

Defining the Ruleset, R, and Conceptual Space (C)
Within bass playing there are certain techniques which can-
not be applied simultaneously.5 Within our current formali-
sation there is no restrictions on what, and how many adorn-
ments can be applied to a note. This can result in contra-
dictory adornments being applied to a note, making an ill-
formed interpretation. The ⟨adornment-group⟩ was included
in L so that it is possible to form groups where all adorn-
ments will be mutually exclusive in relation to all other
adornments in the same group. To check that a particular
note does not have an ill-formed adornment set, we can
check that only one adornment from a group has been ap-
plied to the note. This however, requires additional syntactic
rules to check the the ⟨adornment⟩ of notes. Also, ignoring
John Cage’s 4’33”, a performance of a musical piece also re-
quires at least one note in its sequence. Thus, to produce
interpretations that can be performed, requires that we only
allow well-formed interpretations of note sequences which
are greater than zero in length. These two restrictions form
the ruleset R, which is formalised in Figure 2.
We now have enough components of the CSF defined

to use Equation 3 to produce a conceptual space of all per-
formable interpretations, of all performable note sequences.
The last issue we need to address is that of what constitutes
an empty concept within our newly defined C. As we require
at least one musical note for a performance to be played, the
notion of an empty concept in U is not valid within our
conceptual space C. Thus, we need to define a new notion
of an empty concept, ⊤ ∈ C. We shall set ⊤ ∈ C to be a
non-zero length sequence of notes where the adornments
for each note is empty. Notes need to be included within our
empty concept as we do not wish to exclude performances
that might be judged virtuosic based upon only the notes
contained within a piece. With this formulation there will
be multiple empty concepts within C, one for every unique
sequence of notes (or musical piece). We will also refer to
(⊤i ) as a creatively empty concept, as no creative processes
have been applied to it.

Defining the Traversal Strategy (T)
In exploratory creativity, concepts are found by traversing
the conceptual space, moving from one concept to another,

5We direct the reader to the work of Abeßer [2], Abeßer et al. [3], Kramer
et al. [16] for examples of this in their playing taxonomy.
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⟨check-adorn-compat ⟩ ::=
adornCompat‘(’⟨adornment ⟩‘,’⟨adornment ⟩‘)’

⟨check-seq-length⟩ ::= seqLength‘(’⟨concept ⟩‘)’

⟨performable-concepts⟩ ::=
performable‘(’⟨check-adorn-compat ⟩‘,’⟨check-seq-length⟩‘)’

(a) Formalised ruleset R in Backus-Naur form
where R ∈ L

acr = adornCompat (a1, a2)
{

1 if a1 ∈ дx , a2 ∈ дy, x , y
0 otherwise

slr = seqLenдth(c )
{

0 if empty
1 otherwise

per f ormable(acr, slr )
{

1 if acr = 1 and slr = 1
0 otherwise

(b) Function definitions,where:an are adornments,дn aremutu-
ally exclusive adornment groups, cis a concept, acr is the adorn-
ment compatibility result and slr is sequence length function
result.

Figure 2: Formalised ruleset R in Backus-Naur form where
R ∈ L, and function definitions.

⟨retrieved-case⟩ ::= ⟨adornments⟩‘=’retrieve‘(’⟨notes⟩‘)’

⟨reused-case⟩ ::= reuse‘(’⟨concept ⟩‘,’⟨adornments⟩‘)’

⟨revise⟩ ::= syntax-check‘(’⟨reuse-case⟩‘,’R‘)’
| evaluate ‘(’ ⟨reuse-case⟩‘,’E‘)’

⟨retain⟩ ::= addToDatabase‘(’⟨revise⟩‘)’

(a) Grammar for ruleset T in Backus-Naur form
⟨judgement ⟩ ::= ⟨concept ⟩ ‘ is ’ ⟨likelihood ⟩

‘ of demonstrating virtuosity’.

⟨likelihood ⟩ ::= perceptualModel‘(’⟨concept ⟩‘)’ ‘*’
⟨normalised-playing-complexity⟩

⟨playing-complexity-score⟩ ::= complexity-calc‘(’⟨concept ⟩‘)’

⟨normalised-playing-complexity⟩ ::=
normalised‘(’⟨playing-complexity-score⟩’‘)’

(b) Syntax for ruleset E in Backus-Naur form

Figure 3: Syntax for rulesets T and E in Backus-Naur form
where: T ∈ L and E ∈ L

and so forth. We have chosen to use case-based reasoning as
our traversal method, thus T is formed from the processes
required to do case-based reasoning. The grammar for the
functions that form the ruleset T, are formalised in Figure 3a
and, as we will explain require R and E.

Case-based reasoning has four steps: retrieve, reuse, revise
and retain [1]. When presented with a new problem, a case
which solves a similar problem will be retrieved from the

case database. A case consists of a problem, its solution and
possible annotations that indicate how the solution came
about. The solution of the retrieved case will then be reused
as a solution to the newly presented problem. The retrieved
solution will then be tested, to ensure it does solve the prob-
lem, and be revised to address any failings. Once the revised
solution successfully solves the new problem, a new case
will be created and retained within the case database.

The type of problem we will be solving is the problem
of adorning a sequence of notes to produce a performance.
Cases are sequences of notes which have been adorned (non-
empty concepts in C). To produce an interpretation of a
musical piece, we must retrieve a case that has the most
similar sequence of notes and reuse its adornments. Retrieval
requires a similarity measure that can determine how similar
two or or more different sequences of notes are to each other.
We have chosen to use melodic and rhythmic feature analysis
methods to determine similarity, specifically features from
FANTASTIC by Müllensiefen [17] and the SynPy Tool Kit
by Song et al. [20].
Once the case with the most similar sequence of notes is

found, its adornments are then applied to our new musical
piece.6 To ensure we do not change the sequence of notes, we
are explicitly restricting our reuse function to only operate
on note adornments.7 Once the adornments have been ap-
plied we need to perform a check to ensure well-formedness
and revise any ill-formed adornments. The case can then be
stored in the case database.
However, checking the well-formedness of the adorn-

ments isn’t really reflecting on, or reasoning, over what was
produced, it is just a syntax check. A system needs to be
able reflect upon what it has produced to be considered
creative from a CC standpoint. Thus, once a new case has
been produced we would like the system to evaluate it to
determine how likely the performance of the interpretation
will be judged as being virtuosic by a non-biased human
audience. Performing this step differentiates our work from
previous case-based reasoning CSEMPS. To do this a case
can be evaluated, with respect to E, within the revision step
of our case-based reasoning process.

Evaluation (E)
A formalised syntax for E is presented in Figure 3b. Here
we can chose to combine a measure of how challenging an
interpretation will be to perform with a, as yet still hypothet-
ical, perceptual model of people’s perceptions of bass guitar

6We leave the exact method for this open, as this is a non-trivial problem.
7We are imposing this restriction to formally constrain our performance
system to that of exploratory creativity. Removing this restriction is one
possible way of allowing for our system to be capable of transformational
creativity, which could be another application or potential extension to this
work.
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Table 2: Summary of our proposed system design de-
scribed using the CSF

U A universe of ⟨concepts⟩ as defined in Figure 1
L Is a fully defined by combination of Figures 1, 2, 3a, 3b
[[.]] Generates the functions for Rin Figure 2 and E in 3b and

created mappings onto values [0,1].
⟨⟨., ., .⟩⟩ Generates a new sequence of concepts be performing

case-based reasoning, formalised in T, and using R and
E.

R Formalised in Figure 2
T Formalised in Figure 3a
E Formalised in Figure 3b

performances and music. From these we would then obtain
measure of how likely a performance of an interpretation is
to be considered virtuosic.

Using a a measure for how complex, or challenging a mu-
sical piece is, such as that of musicplectics by Holder et al.
[14] may seem redundant when also utilizing a perceptual
model of performance. However, as a virtuosic performance
is more likely to be produced by a virtuoso, and these will be
technically capable musicians, having a measure of perfor-
mance complexity let us acknoweledge and account for this
within E. By having this complexity value as a weighting
applied to our perceptual model, simple musical pieces can
have the likelihood for virtuosity increase by performing
the piece with more complex techniques, and vice versa. We
also have one manageable process for increasing an interpre-
tations value, by editing and adding musically appropriate
adornments of increased complexity to notes.

Implementation and CSF Design Summary
As our design process has been incremental, we provide a
summary of our proposed system design described using the
CSF in Table 2. For brevity, we indicate the figures where we
formalised each specific component.

A potential implementation of the theory outlined within
this paper is shown in Figure 4a, along with its data and
processes, shown in Figure 4b. This implementation takes a
Guitar Pro file8 as input, and is parsed using PyGuitarPro9 to
convert the musical information into our ⟨concept⟩ represen-
tation, defined by R. This ⟨concept⟩ can then be processed
by our case-based reasoning system, which is the implemen-
tation of T, and ⟨⟨., ., .⟩⟩, and relies upon FANTASTIC and
SynPy for similarity information. E is then implemented

8This is a specialized digital notation program for electric guitar and bass
notation. See http://www.guitar-pro.com.
9http://pyguitarpro.readthedocs.io/

(a) Code Block Diagram. Modules are indicated with dashed
lines.

(b) Data and Process Flow Diagram.

Figure 4: Performance System Implementation Diagrams.

within the evaluation module were we have our own tech-
nique complexity rate calculations, based upon method of in-
ferring playing complexity values statistically form a survey
response of 498 bass players along with virtuosity judgments.
Finally we can synthesize the audio of the performance us-
ing a physical model, such as the one developed by Kramer
et al. [16], which has its own note representation, thus the
melody/note encoding and decoding processes.

5 SUMMARY
Throughout this paper our emphasis has been on designing a
computationally creative musical performance system using
the Creative Systems Framework (CSF). The final system im-
plementation is still theoretical, and has been constructed on
the assumption of certain implementations being available,
likewise within our design. Our briefly proposed implemen-
tation is provided to tie together the full design process and
highlight what the CSF helps to describe. We hope that our

http://www.guitar-pro.com
http://pyguitarpro.readthedocs.io/
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example highlights how the CSF can be used when designing
creative systems.
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