View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Queen Mary Research Online

HTML Web Audio Elements: Easy Interaction with Web
Audio API Through HTML

Stephanus Volke
Jade Hochschule
Wilhelmshaven/Oldenburg/

Bastian Bechtold
Jade Hochschule
Wilhelmshaven/Oldenburg/

Joerg Bitzer
Jade Hochschule
Wilhelmshaven/Oldenburg/

Elsfleth _ Elsfleth _ _ . Elsfleth
stephanus.volke@jade- bastian.bechtold@jade- joerg.bitzer@jade-hs.de
hs.de hs.de

ABSTRACT

The JavaScript Web Audio API has a powerful but low-level
and complicated structure. Therefore, many JavaScript-
based wrapper libraries exist, which are intended to simplify
its usage. This paper presents a completely new approach,
which translates the API into HTML Custom Elements and
allows definition, usage and control of complex audio scenar-
ios using only normal HTML elements.

CCS Concepts

e Software and its engineering — Data flow architec-
tures; Frameworks;

1. INTRODUCTION

JavaScript has a foundational influence on modern web
application development. This is in particular due to the
many new features and APIs which were added to the lan-
guage over the last years [4,9]. One of these features is the
Web Audio API that enables production, playback, editing
and analyses of audio files in a web browser [1]. Because of
its low level and partially complicated interface, there are al-
ready several libraries that provide simplified wrappers [5,7].
However, one crucial obstacle remains: the interaction of
user interaction layer written in HTML and the processing
layer written in JavaScript. In order to simplify this in-
teraction, a relatively new approach is to represent impera-
tive JavaScript objects as interactive, declarative HTML ele-
ments. With HTML Custom Elements, which are currently
being standardized, new and valid HTML elements can be
defined that allow description and controlling of functional-
ity through attributes with normal HTML syntax [2]. By
using this concept, our new HTML Web Audio Elements en-
ables purely declarative generation and control of complex
audio processing within pure HTML markup and without
additional JavaScript interaction.

2. HTML WEB AUDIO ELEMENTS

The main idea of HTML Web Audio Elements is to sim-
plify the interaction between the Web Audio API-driven,

Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2017, August 21-23, 2017, London, UK.

© 2017 Copyright held by the owner/author(s).

JavaScript-controlled audio processing layer and the cor-
responding HTML-based user interaction layer in an easy
and clean way. To achieve this, the HTML Web Audio
Elements are divided into two main groups: non-visual el-
ements, which define the functional behaviour and visual
elements that expose this functionality to the user. Source
code and working usage examples are available at the project
homepage www.pub.tgm.io/webaudio-elements.

2.1 Non-Visible Elements

The non-visible elements are intended to translate the
Web Audio API core nodes into HTML DOM nodes, which
keep the general API’s audio graph structure unchanged.
JavaScript properties are represented as HTML attributes
and methods as attribute changes. This structure allows
communication between different elements by listening for
attribute changes via mutation observers [8]. A usage exam-
ple is given in Figure 1.

Loading Audio Data

The most basic element is the <webaudio-context>. Using
this element automatically instantiates a Web Audio API
AudioContext, which all other audio-elements rely on. It
should be used as the parent for all associated elements.

Audio data can be loaded and decoded by specifying a
<webaudio-buffer> element. Its read-only state attribute
reflects the current status: waiting, downloading, decoding,
ready or error. Once audio data has been loaded, it can
not be changed anymore. Instead, a new element must be
created.

Playback

Playback is managed by the <webaudio-source> el-
ement, which holds a reference to the correspond-
ing <webaudio-buffer> through its buffer-id attribute.
Changing the state attribute to one of playing, paused or
stopped controls playback. At the same time, the current au-
dio position is available in the pos attribute. Creating more
than one source element referencing the same buffer is pos-
sible and provides features such as simultaneously playing
the same audio material at different positions.

Audio Processing and Routing

The elements discussed so far only provide functionality for
handling, but not for processing audio data. For filtering,
gain control etc., processing elements exist, which can be
used either in a global context or local source mode. The

https://core.ac.uk/display/159076977?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
www.pub.tgm.io/webaudio-elements

<body>
<webaudio-context id="ctx">
<webaudio-buffer id="buffer1"
context-id="ctx"
src="/url/to/file.wav"
state="ready">
</webaudio-buffer>
<webaudio-buffer id="buffer2"
context-id="ctx"
src="/url/to/another/file.wav"
state="decoding'">
</webaudio-buffer>
<webaudio-source id="srcl"
buffer-id="buffer1"
state="playing"
pos="23.24">
<webaudio-biquad freq="2000"
value="12"
type="1lowpass"
disabled>
</webaudio-biquad>
</webaudio-source>
<webaudio-source id="src2"
buffer-id="buffer2"
state="waiting">
<webaudio-gain src-id="src"
scale="11in"
value="0.8">
</webaudio-gain>
</webaudio-source>
<webaudio-gain src-id="src"
scale="1in"
value="0.8">
</webaudio-gain>
</webaudio-context>
<button class="is-blaybtn" data-source="srcl"
data-state="playing">Pause</button>
<button class="is-playbtn" data-source="src2"
data-state="waiting" disabled>Play</button>
</body>

Figure 1: Example audio setup with two audio files.
The first buffer element with id="buffer1” is ready
for playback, the second one is currently decod-
ing. Therefore, the source element with id="src2”
is in waiting state and the corresponding play but-
ton disabled. Source element srcl is in playing state
and its playback position gets continuously updated
in the pos attribute. Filtering of source srcl is
bypassed because of the disabled attribute of the
<webaudio-biquad>, but the global gain element is ac-
tive.

latter means that only data of one single source element gets
processed, while the former takes all predefined sources and
uses their sum. Thereby different sources can be processed
independently. This behavior can be defined by appropriate
element arrangement: Children of <webaudio-source> ele-
ments only affect their parents while neighbor elements get
processed in the order they are defined. Additionally, each
element has a disabled attribute which can temporarily re-
move itself or its children from audio processing.

2.2 Visible Elements

In terms of the current W3C HTML Custom Element
working draft, the controlling elements are Extended Built-
in HTML elements [2], which were expanded by the function-
ality required to control the functional elements. Because of
Apple’s announcement to not support this feature [6], the
current implementation relies on a class-based approach, in

which elements with a specific class get additional features.
The <button> elements in Figure 1, for example get extra
data attributes for the playback status of their correspond-
ing <webaudio-source> elements.

3. BROWSER SUPPORT

Even though both the Web Audio API and especially
HTML Custom Elements offer completely new implementa-
tion approaches, their underlying specifications are neither
standardized nor fully implemented in any browsers to date.
Therefore, the current HTML Web Audio Elements imple-
mentation is a trade-off between proposed specifications,
browser vendor announcements and available implementa-
tions. Currently, only Chromium-based browsers meet all
requirements for non-polyfilled, dependency-free execution.
However, only features are used which have nearly passed
the standardization process and whose realization have al-
ready been started by all major browser vendors.

4. CONCLUSIONS

The HTML Web Audio Audio Elements offer a completely
new way of creating audio-related web applications. Be-
cause of their standardized HTML implementation, all nec-
essary steps to load, play and even process audio data can be
performed without writing a single line of JavaScript code.
The declarative and hierarchical structure is easy to read
and to understand, which makes them accessible to less-
experienced programmers. However for widespread usage,
browser support is essential. It is expected that community-
driven development will lead to many more freely available
processing elements.

5. REFERENCES

[1] Paul Adenot and Chris Wilson. Web Audio API. W3C
Working Draft 08 December 2015, W3C, December
2015. https://www.w3.org/TR/webaudio/.

[2] Domenic Denicola. Custom Elements. W3C Workin
Draft, W3C, October 2016.
https://www.w3.org/TR/2016/WD-custom-elements-
20161013/.

[3] Ecma International. ECMAScript 2015 Language
Specification. Standard ECMA-262, Ecma
International, June 2015.
http://www.ecma-international.org/ecma-262/6.0/.

[4] Alejandro Mantecon Guillen. pizzicato.js.
https://alemangui.github.io/pizzicato/, March 2017.
Accessed: 2017-03-28.

[5] Ryosuke Niwa. The is attribute is confusing? Maybe we
should encourage only ES6 class-based extension.
https://github.com/w3c/webcomponents/issues/509#
issuecomment-222860736, June 2016. Accessed:
2017-03-27.

[6] James Simpson. Howler.js. https://howlerjs.com/,
March 2017. Accessed: 2017-03-28.

[7] Anne van Kesteren, Aryeh Gregor, Alex Russell, and

Robin Berjon. W3C DOM4. W3C Recommendation,

W3C, November 2015. https://www.w3.org/TR/dom/.

W3C. JAVASCRIPT APIS CURRENT STATUS.

https://www.w3.org/standards/techs/js, March 2017.

Accessed: 2017-03-27.

8

https://alemangui.github.io/pizzicato/
https://github.com/w3c/webcomponents/issues/509#issuecomment-222860736
https://github.com/w3c/webcomponents/issues/509#issuecomment-222860736
https://howlerjs.com/
https://www.w3.org/standards/techs/js

	Introduction
	HTML Web Audio Elements
	Non-Visible Elements
	Visible Elements

	Browser Support
	Conclusions
	References

