
Freesound Explorer:

Make Music While Discovering Freesound!

Frederic Font

Music Technology Group

Universitat Pompeu Fabra

frederic.font@upf.edu

Giuseppe Bandiera

Music Technology Group

Universitat Pompeu Fabra

giuseppe.bandiera@live.com

ABSTRACT
Freesound Explorer is a visual interface for exploring
Freesound content in a two-dimensional space and creating
music by linking content in that space. Freesound Explorer
is implemented as a web application which takes advantage
of modern web technologies including the Web Audio API
and the Web MIDI API. This extended abstract describes
Freesound Explorer’s features and provides some technical
details about its implementation.

1. SYSTEM DESCRIPTION
Freesound Explorer1 is a web application for exploring

Freesound2 content and making music at the same time. The
core idea behind the Freesound Explorer is the projection
of sounds as points in a two-dimensional space (or map).
Sounds in that space are organised by similarity, i.e., similar-
sounding sounds are closer in the map than non-similar-
sounding ones. This idea was originally introduced in the
CataRT system by Schwarz et al. [5] and has already been
explored in a number of projects such as the SoundTorch [2],
the SongExplorer [3], and others, including previous works
by the authors [1]. Similar ideas have also been recently
explored in projects such as the Infinite Drum Machine3

and Bird Sounds4.
In Freesound Explorer, users start by entering some query

terms which are then used to retrieve sounds from Freesound
and project them as points in a map. As in previous work
by the authors [1], points are given a colour which sum-
marises their timbral properties as per the tristimulus5 au-
dio descriptor (see Fig. 1). Sounds can be played on mouse
over. This allows users to quickly have an idea of what

1http://labs.freesound.org/fse/. The code is released under
a MIT open source license and can be found at https://
github.com/↵ont/freesound-explorer.
2http://freesound.org
3https://aiexperiments.withgoogle.com/drum-machine
4https://aiexperiments.withgoogle.com/bird-sounds
5https://en.wikipedia.org/wiki/Timbre#Tristimulus
timbre model

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

c� 2017 Copyright held by the owner/author(s).

Figure 1: Screenshot of the Paths creation interface

kinds of sounds are projected at each part of the map. Fur-
ther queries can be performed by entering new query terms,
and the results are also projected in the map, grouping the
results of each query in di↵erent Spaces. In this way, the
results of several queries can be simultaneously represented
in a single map (see Fig. 2).

Music making in the Freesound Explorer is done by the
creation of what we call Paths (see Fig. 1). Paths consist of
lists of sounds (chosen from the sounds in the map) which
are played in sequence and (optionally) synchronised to a
global metronome. This idea is inspired by the graph gram-
mar for music creation described by Roma and Herrera [4].
Several paths can be played simultaneously, allowing users
to create multiple sound streams (e.g. bass line, drum se-
quence, sound fx) which together conform what we call a
Session.

Besides paths, Freesound Explorer also allows to create
mappings between sounds in the map and specific MIDI note
events. The mapping is created by a standard MIDI learn
mechanism in which a sound is set to learn mode and linked
with a MIDI key once pressed. Playback speed of the sounds
triggered by MIDI events is modified according to the dis-
tance to the closest learnt note. In this way users can easily
play melodies and harmonies with ready made instruments
based on arbitrary Freesound samples.

Sessions, along with MIDI mappings and the content
of the Spaces, can be saved in a remote server and later
reloaded (see Sec. 2 for more details). Furthermore, audio
output can be recorded and downloaded as 16bit PCM WAV
file.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159076971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 2: Screenshot of the list of Spaces and their

arrangement on map

2. IMPLEMENTATION DETAILS
Freesound Explorer is implemented as a single page appli-

cation built around two communicating modules:

• A front-end core written in Javascript and React6

which does all UI and audio operations.

• A back-end server written in Python and powered by
Flask7, connected to a SQLite8 database which stores
sessions.

We handle audio playback and synchronisation by calling
the Web Audio API9. The Web Audio API clock is used
to provide accurate timing of the metronome following the
popular method described by Chris Wilson10. Metronome
ticks are dispatched as events that contain the AudioCon-
text time of the next tick. These events can be listened from
any component of the application to provide synchronisation
(i.e. in the Paths component, to decide whether any sounds
should be played in text tick and schedule them). Support
for handling MIDI events is implemented using the Web
MIDI API11, with functions included for reloading MIDI
devices and filtering by channel and device.

The code related to the UI has been written using the li-
brary React, providing high code reusability and scalability.
To manage the state of the application, we decided to use the
popular library Redux12, that provides an organised way of
accessing and modifying the state of application, stored as a
plain Javascript object. The novelty in our approach stands
in the usage of Redux not only for portions of the state re-
lated the UI, but most importantly for keeping a centralised
store for audio and MIDI events of the current performance.
This way, the application always has a strictly defined and
predictable way to retrieve and manipulate past, present and
future elements of the current track. Using the library Re-
dux by this approach also facilitates the implementation of
saving and loading functionalities.

6https://facebook.github.io/react/
7http://flask.pocoo.org
8https://www.sqlite.org
9https://www.w3.org/TR/webaudio/

10https://www.html5rocks.com/en/tutorials/audio/
scheduling/

11https://www.w3.org/TR/webmidi/
12https://redux.js.org/

In search mode, when user enters query terms, the system
queries Freesound using the Freesound API13, retrieving a
number of sound results which are added to a Space. The
computation of the position of the sounds in the Space is
done using a Javascript implementation of the t-SNE di-
mensionality reduction method14 and based on MFCC 15

audio features (or, alternatively, HPCP16 for tonality-based
arrangements). Therefore map computation is completely
carried out in the client. The position of each sound in the
space is stored in the Redux store. For each sound, we also
store extra metadata such as the author, title or license (to
provide attribution). When the user clicks on a sound, the
application fetches the audio for it, decodes it and creates a
new element on the Web Audio API pipeline. The decoded
bu↵er is saved on the Redux store to avoid having to refetch
the audio every time the user wants to play the sound.

The backend part of Freesound Explorer is only in charge
of handling user accounts and storing user sessions data.
Authentication is done using the Freesound API, therefore
users can login using their Freesound credentials and do not
need to create a specific account for Freesound Explorer.
Sessions data is stored in JSON files which are linked to
user accounts. This comes naturally as our Redux store in
the front-end can dump all the data as a Javascript object
which can be easily sent to the server and directly saved
into a file. Because storing sessions in the remote server is
not an essential feature, Freesound Explorer can also run
server-less. In that case, sessions can still be stored and
loaded using local storage of the browser, but can not be
synced through the server with other instances of Freesound
Explorer.

Technical requirements for the demo at WAC 2017: We
will need two speakers and a table to put a laptop plus a
small MIDI controller. Connection to the speakers will be
through mini-jack. A power plug will also be needed for
the laptop and for the speakers. The laptop and the MIDI
controller will be provided by the authors.

3. REFERENCES
[1] F. Font. Design and evaluation of a visualization

interface for querying large unstructured sound
databases. Master’s thesis, Universitat Pompeu Fabra,
Music Technology Group, 2010.

[2] S. Heise, M. Hlatky, and J. Loviscach. Soundtorch:
Quick browsing in large audio collections. In Audio
Engineering Society Convention 125, 2008.

[3] C. F. Julià and S. Jorda. Songexplorer: A tabletop
application for exploring large collections of songs. In
International Music Information Retrieval Conference
(ISMIR), pages 675–680, 2009.

[4] G. Roma and P. Herrera. Graph grammar
representation for collaborative sample-based music
creation. In Audio Mostly Conference, 2010.

[5] D. Schwarz, G. Beller, B. Verbrugghe, and S. Britton.
Real-time corpus-based concatenative synthesis with
catart. In International Conference on Digital Audio
E↵ects (DAFx), pages 279–282, 2006.

13https://freesound.org/docs/api/
14https://github.com/karpathy/tsnejs
15https://en.wikipedia.org/wiki/Mel-frequency cepstrum
16https://en.wikipedia.org/wiki/Harmonic pitch class
profiles


