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Abstract: The paper reports an experimental investigation of a newly proposed solar collector that 9 

integrates a closed-end pulsating heat pipe (PHP) and a compound parabolic concentrator (CPC). 10 

The PHP is used as an absorber due to its simple structure and high heat transfer capacity. The CPC 11 

has a concentration ratio of 3.4 and can be readily manufactured by three-dimensional printing. The 12 

CPC can significantly increase the incident solar irradiation intensity to the PHP absorber and also 13 

reduce the heat loss due to the decrease in the area of the hot surface. A prototype of the solar 14 

collector has been built, consisting of a PHP absorber bent by 4 mm diameter copper tube, CPC 15 

arrayed by 10×2 CPC units with the collection area of 300×427.6 mm2, a hot water tank and a glass 16 

cover. HFE7100 was utilized as the working fluid at a filling ratio of 40%. The operating 17 

characteristics and thermal efficiency of the solar collector were experimentally studied. The steady 18 

and periodic temperature fluctuations of the evaporation and condensation sections of the PHP 19 

absorber indicate that the absorber works well with a thermal resistance of about 0.26 ℃/W. It is 20 

also found that, as the main factor, the thermal performance of the collector decreases with 21 

increasing evaporation temperature. The collector apparently shows start-up, operational and 22 

shutdown stages at the starting and ending temperatures of 75 °C. When the direct normal 23 

irradiance is 800 W/m2, the instantaneous thermal efficiency of the solar collector can reach up to 24 

50%. 25 
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1  Introduction 27 

Solar energy is one among the most abundant, inexpensive, environment-friendly energies 28 

that can potentially meet the world’s growing energy demand. The efficient mean to utilize solar 29 

energy is to convert solar energy into heat stored in water by solar thermal collectors [1]. Evacuated 30 

tube collectors and flat-plate solar collectors are the most commonly and widely used stationary 31 

solar collectors [2]. High-efficient heat transfer absorber and solar radiation concentration are the 32 

main methods to improve the performance of the solar thermal collector. Pandey and Chaurasiya [3] 33 

presented an overview on the different techniques to enhance the efficiency of flat plate collectors. 34 

The application of nanofluids as heat transfer fluid can improve the thermal efficiency of the 35 

collectors. Verma et al [4]. experimentally investigated the effect of a wide variety of nanofluids on 36 

the performance of flat plate solar collector. The thermal efficiency was improved by 23.5% using 37 

multiwalled carbon nanotubes/water instead of water up to 72.5%. In vacuum tube collectors, the 38 

efficiency was improved by 71.8% up to 93.4% due to the improved thermal properties of single 39 

walled carbon nanotubes nanofluid [5]. The combination of heat pipe and evacuated tube is an 40 

efficient way of solar collector due to its high heat transfer capacity. However, the thermal 41 

resistance between the absorber face of the vacuumed tube and the heat pipe determined the 42 

efficiency of the collector. The desalination efficiency was improved from 21.7% to 65.2% by using 43 

oil as the added fluid to the space between heat pipe and evacuated tube collector in a new 44 

desalination system, a combination of heat pipe and parabolic trough collector [6].  45 

Pulsating heat pipe (PHP), which was proposed by Akachi [7] in the early 1990s as a new 46 

member of heat pipe, is one of the highly efficient absorber with simple structure and low-cost. At a 47 

steady state working stage, a self-sustained thermal-driven oscillating flow inside the tube is 48 

achieved, leading to higher heat transfer rate. Different from a traditional heat pipe, the sensible 49 

heat of the working fluid plays a major role in heat transfer [8]. Furthermore, complicated 50 

two-phase heat transfer occurs at a capillary scale. Previous efforts have mainly been focused on 51 
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explaining the working principle of PHPs. Heat flux has a significant effect on the thermal 52 

performance of PHP[9]. There are three working states of PHP, start-up, steady state and dry-out as 53 

the heat input increases. There exists a threshold heat flux at which PHPs start to operate. The 54 

thermal resistance of the PHPs decreases as the heat flux increases at steady state [10]. The 55 

operational regimes, including the start-up and dry-out under different heat inputs, were discussed 56 

in detail [11]. Kim and Lee [12] experimentally investigated the effect of channel geometry on the 57 

operating limit of microchannel pulsating heat pipes. The results showed that the square 58 

microchannel PHP can offer approximately 70% higher maximum allowable heat flux than the 59 

circular microchannel PHP at the same hydraulic diameter. Asymmetric channels decreased the 60 

thermal resistance of PHP under certain heat inputs[13]. 61 

Over the last decades, an increasing attention has been paid to the applications of PHPs, 62 

especially in the field of space, electronic cooling, heat recovery and solar thermal applications. A 63 

PHP air-preheater was designed and tested in a dryer and played a role of energy recovery and 64 

dehumidification [14]. PHP was also applied in a wire-on-tube heat exchanger as an extended 65 

surface and the heat transfer rate of the heat exchanger increased under different conditions [15, 16]. 66 

An unlooped PHP has been developed and tested in an electronic thermal management field with 67 

hybrid vehicle applications and the PHP functioned with high reliability and reproducibility and 68 

without any failure during the start-up or working stage [17]. A simplified theoretical model of PHP 69 

employed as the condenser in a vapor compression refrigeration system has been developed. The 70 

performance of the system was improved [18]. PHP had also been used as heat sink of a high power 71 

LED street light [19] and defrosting plate [20]. 72 

In the field of solar energy collection, the use of PHP as the heat receiver has presented an 73 

efficient performance that is comparable to that of the traditional heat pipe receiver. PHPs possess 74 

the advantages of simple structure, low cost, and high efficiency. Rittidech and Wannapakne [21] 75 

built a PHP flat-plate solar collector in 2007. The collector was placed on a sheet of black zinc and 76 

had a collection area of 2.00×0.97 m2. An efficiency of approximately 62% was achieved. Choi et al. 77 
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[22] investigated the effect of the working fluid filling ratio and the cooling water flow rate on the 78 

top heat loss and performance of a PHP flat-plate solar collector. The radiation intensity was 79 

realized by using a halogen lamp solar simulator. The effect of evaporator length on the efficiency 80 

of a PHP flat-plate solar collector has also been investigated [23] and a multilayer perceptron neural 81 

network was trained and used to predict the behavior of the solar collector [24]. The maximum 82 

predicted thermal efficiency of the collector is 61.4%. An extra-long PHP was designed, constructed, 83 

and installed in a thermosiphon solar water heater, and the operating characteristic was investigated. 84 

Several sets of PHPs were placed in glass tubes to create a solar collector, another form of PHP 85 

receiver [25, 26]. An efficiency of approximately 76% was achieved [25], and the heat loss was 86 

reduced by the addition of the glass tube.   87 

The PHP exhibits a great potential for use as a heat collector because of its high heat transfer 88 

capacity. However, the heat flux of the evaporation section of PHP should be sufficiently high to 89 

meet the demand of its steady and high-efficient work, which has a significant effect on the thermal 90 

performance of PHP [9]. Several experimental studies of PHP with similar structure to the PHP 91 

collector are listed and compared in Table 1. We can find in the application of PHP as solar heat 92 

collector or absorber the heat flux of the evaporation section is much lower than those in the 93 

experimental studies, which can be increased to improve the thermal performance of PHP. To this 94 

end, a solar concentrator is necessary. Compound parabolic concentrator (CPC), which is frequently 95 

utilized in low-temperature applications as a concentrating non-imaging concentrator [27], is 96 

introduced to concentrate solar radiation to the PHP absorber. Therefor, a novel solar collector 97 

integrated with a PHP and a CPC is proposed. The introduction of CPC with a proper concentration 98 

ratio can increase the heat flux of the PHP absorber so that the efficient heat transfer capacity of 99 

PHP is fully utilized. In the new collector, solar energy is concentrated by CPC instead of the absorb 100 

plate of the plate solar collector. The heat loss of the new collector will be reduced by decreasing 101 

the hot surface area. From another point of view, the disadvantage of CPC is the size, which 102 

depends on the size of the absorber, affecting the combination of the CPC collector and buildings. 103 
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The diameter of PHP is usually not more than 4mm that is much smaller than the traditional heat 104 

pipe absorber. When PHP is used as absorber, the size of CPC can be the same as that of the plate 105 

solar collector. This makes it easy to combine the new collector to buildings.  106 

In this work, the detailed design of the collector is presented. The operating characteristics and 107 

thermal performance of the collector are tested under different weather conditions, and the features 108 

of the collector are also discussed. 109 

Table 1 Summary of dimensions, working fluid and heat flux of PHPs in literature 110 

Authors 
Parameters of evaporation 

section 
Q 

(W) 
qrad 

(W/cm2) 
Working 

fluid 
Solar 

collector
ID(mm) OD(mm) n Arad(cm2)

Rittidech et al. [21] 3 4 14 7033.60 300~900 0.082~0.248 R-134a Y 
Rittidech et al. [25] 3 4 20 7536 600~1350 0.046~0.115 R-134a Y 

Yang et al. [26] 3 5 12 3015.93
20~90 
50~350 

0.0067~0.030 
0.017~0.117 

water Y 

Nguyen et al. [22] 2 4 8 492.35 

66.766 
79.013 
87.955 
101.063 

0.1356 
0.1605 
0.1786 
0.2053 

 Y 

Kargarsharifabad et al.
[23] 

2 4 21
10857 
8218 
5579 

860~1440
645~1080
430~720

0.092~0.133 
0.079~0.131 
0.077~0.129 

water Y 

Yoon et al. [28] 2 3.2 19 267.28 100~600 0.374~2.245 water N 

Zhang et al. [29] 1.18 2 3 20.99 
8~30 
10~30 
20~50 

0.381~1.429 
0.476~1.429 
0.953~2.382 

FC72 
ethanol 
water 

N 

Borgmeyer et al. [30] 1.59 2.69* 28 46.78 50~160 1.069~3.420 
water 

ethanol 
flutec PP2 

N 

Dmitrin et al. [31] 2 4* 8 180.86 30~100 0.166~0.553 water N 

Yang et al. [32] 
1 
2 

2 
3 

40
12.38 
22.79 

50~380 
4.038~30.687 
2.194~16.675 

R123 N 

Sarangi et al. [33] 1 2 16 200.96 
20~56 

12.5~96 
0.10~0.28 

0.062~0.478 
water 

ethanol 
N 

Naik et al. [34] 1.95 3 1 17.44 9~15 0.516~0.860 
acetone 

methanol 
ethanol 

N 

Mameli et al. [35] 2 4 2 15.42 
0~30 

40~100 
1.945 

2.593~6.484 
ethanol N 

Cui et al. [36] 2 4 5 285.36 5~15 0.018~0.053 water N 
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20 
35~50 
65~100 

0.07 
0.122~0.175 
0.228~0.350 

methanol 
ethanol 
acetone 

Karthikeyan et al. [37] 2.3 3.3 5 41.47 
50~180 
50~240 
50~240 

1.206~4.341 
1.206~5.875 
1.206~5.875 

water 
Ag 

colloidal 
Cu 

nanofluids

N 

Hao et al. [38] 2 4* 
4 
6 

13.44 
20.16 

30~105 
30~280 

2.232~7.813 
1.488~13.889 

water N 

Mohammadi et al. [39] 2.2 3.2 4 65.95 25~85 0.379~1.289 water N 
Karthikeyan et al. [40] 2 3 8 90.48 30~500 0.332~5.526 water N 

Tseng et al. [41] 2.4 3 4 72.38 20~140 0.276~1.934 
water 

methanol 
HFE-7100

N 

Mohammadi et al. [42] 1.75 3 5 74.85 20~140 0.267~1.870 
water 

nanofluid 
N 

Mameli et al. [43] 1.1 2 16 15.51 10~100 0.645~6.449 FC-72 N 
Xian [44] 2 6 5 118.20 40~110 0.338~0.931 water N 

Pachghare et al. [45] 2 3.6 2 21.57 8~80 0.371~3.709 
water 

ethanol 
methanol 

N 

Xian et al. [46] 2 6 5 118.20 
30~40 
40~100 
100~110

0.254~0.338 
0.338~0.846 
0.846~0.931 

water N 

* The thickness of the tube was not given and is taken to be 0.5 mm here. 111 

 112 

2  Design of the PHP solar collector with CPC 113 

2.1  Solar collector and PHP absorber 114 

Figure 1 shows the configuration and dimensions of the solar collector which consists of a PHP 115 

absorber, CPC, a hot water tank and a glass cover. The PHP absorber is made of copper tubes 116 

having an outer diameter of 4 mm and an inside diameter of 2 mm. The bending radius depends on 117 

the capture width of the CPC (see section below). The evaporation section is 300 mm long and is 118 

painted black with absorption rate of 0.85. The evaporation section of the PHP absorber is fixed at 119 

the focus of the CPC and the outer diameter of the absorber is the original cycle of the CPC so that 120 

all solar radiation can be reflected to the PHP. The condensation section is 200 mm long and is 121 

sealed inside the hot water tank. The hot water tank is made of stainless steel plate with dimensions 122 
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of 500 mm × 250 mm × 25 mm and 1 mm wall thickness. The outer surface is insulated by 123 

polyurethane. No adiabatic section exists between the evaporator and condenser sections. The PHP 124 

absorber, CPC, and hot water tank are fixed on a wood plate. The solar collector is insulated by 125 

polymethyl methacrylate to minimize heat loss to ambient. 126 

       127 

(a)  128 

 129 

 (b) 130 

Fig. 1. Schematic of solar collector integrated with CPC and PHP. (a) top view; (b) model 131 

 132 

2.2  Design of the CPC 133 

CPC is introduced to increase the solar irradiation intensity to the PHP absorber and hence its 134 

heat flux. The CPC consists of two parabolas with compound rotation, and most of the beam and 135 
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diffuse radiation can be collected and reflected on the absorber surface without a complicated solar 136 

tracking system (see Fig. 2).  137 

A A

PHP-absorber

Parabola A

Involute A

CPC axis

Parabola B

Involute B

Photo of the 
CPC unit

X

Y

Solar radiation

 138 

Fig. 2. Geometry and dimension of CPC and PHP absorber and coordinator 139 

The CPC involute is defined by Eq. (1) as 140 
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  is the angle between the incident ray and the X-axis. A  is the aperture angle of the CPC given 148 
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by Eq. (4) 149 

A

1
= arcsin( )

CR


 .                                        (4) 
150 

The concentration ratio (CR) is defined by Eq. (5) as 151 

D
CR

d



 ,                                          (5)

 152 

where D is the aperture width and d is the outer diameter of the PHP absorber. The average heat flux 153 

of evaporation section of the PHP absorber can be calculated by Eq. (6) 154 

=
D I

q CR I
d


 


.                                              (6) 155 

where I is the solar irradiation intensity measured using a pyranometer. 156 

Two key aspects are considered in the design of the CPC. One is to ensure the existence of 157 

sufficient heat flux of the evaporation section of the PHP, and the other is to check that the ratio of 158 

height to width is not too large. The geometric shape of the CPC depends on the outer diameter of 159 

the PHP absorber, and the size of the CPC depends on the concentration ratio CR or opening width 160 

D. In the present work, the outer diameter of the PHP absorber is 4 mm. According to the values of 161 

heat flux in literature [36, 40, 42, 44, 46] which is 0.166W/cm2~5.526 W/cm2, a preliminary CR = 5 162 

was selected, and the interception ratio of the CPC is 4/5. Thus, the actual CR is 3.40 and the 163 

aperture width D is 42.76 mm. The newly designed solar collector can reach an average heat flux of 164 

0.17~0.34 W/cm2 under the solar irradiation density of 500~1000 W/m2. This level of heat flux 165 

ensures that the PHP can work steadily as in literature [36, 40, 42, 44, 46]. The introduction of CPC 166 

to the PHP solar collector is thus reasonable and necessary.  167 

Once the CPC size was finally determined, the model line was drawn using Eqs. (1) to (5) in 168 

Malab and then exported into Solidworks to build a 3D model. To attach a reflective sheet with 169 

0.1 mm thickness onto the inner surface of the CPC, the inner surface was cut off by 0.1 mm depth. 170 

A fastener was designed to fix the pipe of the PHP. The CPC was manufactured using a 171 

three-dimensional printer with an accuracy of 0.02 mm. The limitation of the three-dimensional 172 
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printer in terms of size required the utilization of CPC units to assemble the entire CPC (see Fig. 2). 173 

The length of one CPC unit is 150 mm. Two units are lined for one pipe of the PHP evaporation 174 

section, and 10 × 2 array CPC units are arranged for the entire PHP absorber. The total area of the 175 

CPC is 0.12828 m2 for solar energy collection. The aluminum reflective sheet with a reflective ratio 176 

of 0.80–0.90 was attached to the inside surface of the CPC. 177 

 178 

3  Experimental setup and procedures 179 

3.1  Experimental setup  180 

Figure 3 shows the apparatus which consists of the solar PHP absorber, a hot water loop and 181 

data acquisition system. The hot water loop was built to maintain a proper heat-collecting 182 

temperature of the solar collector. The hot water loop includes a hot water tank, pump, fin-tube heat 183 

exchanger and flow meter. The pump drives the circulation of the hot water. The hot water is cooled 184 

in the air-cooled heat exchanger, then circulated back to the hot water tank through the flow meter 185 

with a reduced temperature and finally heated through the condensation section.  186 

Figure 3 also shows the data acquisition system and the temperatures, total solar radiation 187 

intensity, and flow rate of the hot water are measured. Ten T-type thermocouples (Omega®, bead 188 

dimension of 0.8 mm, accuracy ±0.1 K after calibration), numbered T1 to T10, were soldered on the 189 

external tube wall of the PHP absorber (see Fig.1). The PHP absorber has five turns and two 190 

thermocouples are used for each turn. One thermocouple is located at the beginning of the 191 

evaporation section and another thermocouple is located at the end where the condensation section 192 

begins. Two thermocouples, T11 and T12, were used to measure the hot water temperatures at the 193 

inlet and outlet of the hot water tank. The air temperature inside the cover at the center of the 194 

evaporation section of the PHP absorber was also measured using thermocouple T14 and for the 195 

ambient air temperature was measured by thermocouple T13. A data logger (Agilent34972A Data 196 

Acquisition/Switch Unit, with ±1 K accuracy) was utilized to record the temperatures. Solar 197 

radiation intensity was measured and recorded using a solar pyranometer (TES-1333R) with an 198 
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accuracy of ±10 W/m2. The frequency of the temperature and solar intensity data acquisition is 199 

0.5 Hz. A rotameter (Senlod, LZB-6) with an accuracy of 2.5% at a 60 L/ H flow range was utilized 200 

to measure the flow rate of the hot water. 201 

   202 

(a) 203 

 204 
 (b)  205 

Fig. 3. Experimental set up. (a) Photograph; (b) Schematic and data acquisition 206 

 207 
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3.2  Experimental conditions and procedure 208 

All experiments were conducted on the top of a building in Beijing, China (latitude: 39°48′; 209 

longitude: 116°28′). The daily experiment time was between 9:00 AM and 5:00 PM because 210 

approximately 90% of solar energy is obtained in this period of time. The experiments were 211 

conducted from May 14, 2015 to September 5, 2015.   212 

In the present work, a pressure of 0.1 Pa in the tube can be created using a double-stage rotary 213 

vacuum pump and can be maintained for 24 h without increasing. HFC7100 (C4F9OCH3) was 214 

filled at a volume filling ratio of 40%. The inclination angle of the solar collector was adjusted to 215 

45°. The flow rate of the hot water was fixed to 50 L/h, and the pump of the hot water loop was not 216 

turned on until the temperature of the hot water reached 40 °C that was maintained. 217 

 218 

3.3  Data processing 219 

The temperature fluctuation is another key parameter indicating the operating characteristic of 220 

the solar collector. Apart from the temperature fluctuation, the average temperatures of the 221 

evaporation (Te) and condensation (Tc) sections are also considered. 222 

The thermal resistance of the PHP absorber is determined by 223 

 T e c s e c( ) / ( ) /R T T Q T T IA    .                          (7) 224 

The instantaneous quantity of heat transferred to water can be calculated by the flow rate, 225 

specific heat and temperature rise between the outlet and inlet of water. 226 

w w w out in( )Q c m T T                                   (8) 227 

The instantaneous heat collecting efficiency of the solar collector is defined as the ratio of the 228 

heat absorbed by water to the total solar irradiation reached to the solar collector. 229 

   w s w w out in/ = /Q Q c m T T IA   ,                          (9) 230 

where A is the area of the CPC array.  231 

 232 
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3.4  Uncertainty analysis 233 

The maximum uncertainty of temperature is estimated to be ±1.1 K depending on the accuracy 234 

of the twelve T-type thermocouples ±0.1 K and the accuracy of the data logger ±1.0 K. The 235 

uncertainties of the water flow rate and solar irradiation intensity are 2.5% of the measuring range 236 

(±1.5L/h) and ±10 W/m2, respectively. The uncertainties of thermal resistance of the PHP-absorber 237 

and thermal efficiency of the solar collector are obtained from Eqs. (7) and (9) using Eq. (10) [47].  238 

2

R i
i

R
w w

x

 
   
                                    (10) 239 

where wR is the uncertainty of the dependent variable and wi are the uncertainties of the independent 240 

variables. A summary of the maximum uncertainties of the main parameters are given in Table 2. 241 

Table 2. Uncertainties of the measurements 242 

Quantity Max uncertainty 

Temperature (K) ±1.1 

Water flow rate 2.50% 

Solar irradiation intensity (W/m2) ±10 

Temperatures of evaporation and 

condensation, (K) 
0.64% 

Thermal resistance 5.34% 

Thermal efficiency 11.01% 

 243 

4  Results and discussion 244 

4.1  Operating characteristics of the PHP absorber 245 

In present work, three representative tests were chosen to analyze the system performance. The 246 

first test was conducted on June 12, 2015 named as case I; the second test on June 13, 2015 named 247 
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as case II; and the third test on June 14, 2015 named as case III. The variations of the solar intensity 248 

during tests on the first two days were similar; whereas that on the third day was different.  249 

Evaluation of the pulsating working condition was the first step in the experiments. Two 250 

indicators were adopted to verify whether or not the copper tube functions as a pulsating heat pipe 251 

or not. One indicator is the temperature fluctuation in the evaporation and adiabatic sections, and 252 

the other is the temperature increase in the evaporation section. If the PHP absorber does not work 253 

as a PHP or if dry-out occurs, the temperature of evaporator section will increase rapidly. In other 254 

words, if the temperature of the evaporation section does not increase along with the increase in 255 

solar intensity, the copper tube functions as PHP even without a pulsating temperature. These 256 

conditions are a guide to determine whether or not dry-out occurs, particularly under high solar 257 

intensity conditions. The same approach was used in Nguyen et al. [22].   258 

Figure 4 shows the variations of the measured solar intensity and temperature (T4 and T5) of 259 

the PHP solar collector with local time for case I (a) and case II (b). It can be seen that the 260 

temperature fluctuation for case I and case II are similar under the similar solar intensity. The 261 

pulsating temperature pertains to the pulsation of vapor bubbles or liquid slug inside the tube as a 262 

result of different temperatures they have. For the PHP-absorber, there exists a minimum heat flux 263 

that starts up the pulsating flow [10]. Therefore, the operation of the solar collector appears three 264 

working stages, namely, start-up, steady state, and shutdown corresponding to the level of solar 265 

intensity. At the start-up stage, the temperature of the PHP increases rapidly as the solar intensity 266 

increases. It was observed that vapor bubbles does not generate in all of the tubes at the same time 267 

and instead generating small vapor bubbles in one or two tubes at 65 °C. The bubbles can reach the 268 

condensation section and the temperature exhibits a small fluctuation. When the temperature of the 269 

evaporation section reaches 75 °C, a sharp drop and fluctuation in temperature occur with no further 270 

increase. This marks the startup of the pulsating heat pipe. The startup time of the solar collector is 271 

approximately 11:00 AM, with a solar irradiation intensity of 750 W/m2. In the next working stage, 272 

the temperature variation in the evaporation and condensation sections are violent and nearly 273 
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periodic. At this stage, the solar irradiation intensity reaches its highest value of the day and stable. 274 

With irradiation intensity decreases, the PHP enters the shutdown stage. As the solar irradiation 275 

intensity decreases, both the temperature fluctuation frequency and amplitude decrease until they 276 

disappear. The temperature declines rapidly, especially in the evaporation section. The ending time 277 

of the PHP absorber is approximately 2:00 PM, and the ending temperature of the evaporation 278 

section is about 75 °C (similar to startup). The first rapid drop in temperature was observed at the 279 

start-up stage because of the opening of the glass cover to check the thermocouples. 280 

 281 
(a) 282 

 283 
(b) 284 
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Fig. 4. Variations of solar intensity and measured temperatures at locations in solar collector (see 285 

Fig. 1 (a)) with local time for (a) Case I and (b) Case II.   286 

 287 

The temperature fluctuations of the evaporation and condensation sections at the steady stage 288 

are steady and periodic. The temperature of evaporation and condensation sections are differences 289 

(approximately 30 K). The evaporating temperature is around 85 °C and the condensing 290 

temperature is approximately 55 °C for case I. This temperature difference is slightly larger than 291 

that in Case II because the solar irradiation intensity in Case I is higher. Both evaporation and 292 

condensation temperatures at the steady stage slightly decrease. 293 

Figure 5 shows the variations of the thermal resistance in the PHP solar absorber at the steady 294 

working stage for Case I and Case II. The thermal resistance in Case I is steady and fluctuates 295 

between 0.26 °C/W and 0.29 °C/W. The working state of the PHP absorber is steady under a good 296 

working condition. The thermal resistance value is more reasonable than those found in literature 297 

[36, 40]. The design of the solar collector with PHP and CPC is thus reasonable. 298 

 299 
Fig. 5. Variations of thermal resistance of solar absorber at the steady working stage for Case  and 300 

Case II 301 

 302 

To compare with the working characteristics of the PHP solar thermal collector, the 303 

temperature variation and thermal performance of the solar collector were tested on different days 304 

with different levels of solar irradiation intensity. Three working stages also exist for different solar 305 

irradiation intensities even on a cloudy day (see Fig. 6). The solar collector can still operate 306 

normally even under cloudy weather. The startup temperature is almost the same (approximately 307 
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75 °C) on different days. However, the temperature fluctuation appears larger and varies with the 308 

solar irradiation on cloudy days. The steady working stage is seen to be short, with a lower 309 

evaporation section temperature of approximately 70 °C and condensation section temperature of 310 

approximately 50 °C. The amplitude of temperature pulsation caused by the moving of liquid and 311 

bubble slugs in side PHP is significantly small.  312 

 313 

Fig. 6. Variations of solar intensity and measured temperatures at locations in solar collector (see 314 

Fig. 1 (a)) with local time for Case III. 315 

 316 

Thermal resistance is an important indicator of the operation and performance of solar 317 

collectors. To further investigate the thermal resistance variation and influencing factors, the 318 

thermal resistance was statistically analyzed based on these three-day experimental data at steady 319 

state stage.   320 

Figure 7 (a) shows the effect of solar irradiation intensity on the thermal resistance of the solar 321 

collector. The thermal resistance of the PHP absorber decreases with the increase in heat input, 322 

similar to traditional PHPs. The difference between traditional PHPs and the PHP absorber is in the 323 

heat flux distribution in the evaporation section. The heat flux distribution of the PHP absorber is 324 

uneven due to the reflection of solar radiation of the CPC. The thermal resistance decreases from 325 

0.37 °C/W to 0.25 °C/W with the increase in solar irradiation intensity from 500 W/m2 to 900 W/m2. 326 
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The results demonstrate that the PHP absorber can work well at a proper heat flux under solar 327 

radiation intensity. Figure 7 (b) and (c) show the influence of ambient and evaporation temperatures 328 

on the thermal resistance of the PHP absorber. The thermal resistance decreases with the increase in 329 

ambient temperature. The ambient temperature is the main factor that influences the heat loss of the 330 

solar collector. When the ambient temperature increases, the heat loss decreases leading more heat 331 

transferred by the PHP absorber to the condensation section. It can be seen that the thermal 332 

resistance of the PHP absorber decreases with the increase in evaporation temperature. This result is 333 

encouraging because it shows that the combination of CPC and PHP can be effectively utilized in 334 

high-temperature solar thermal collectors.  335 

     336 
(a)                                          (b) 337 

 338 
(c) 339 

 340 

Fig. 7. Effects on thermal resistance of PHP absorber. (a) solar intensity; (b) ambient temperature; (c) 341 

evaporation temperature 342 

 343 

4.2  Thermal efficiency of the solar collector 344 
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The the performance of the solar collector at the steady working stage is shown in Fig. 8. The 345 

instantaneous heat collecting efficiency is stable. The efficiencies are approximately 50% with a 346 

solar intensity of 800 W/m2, and 40% with a solar intensity of 730 W/m2. Respectively the value of 347 

efficiency is comparable to those in literature [36, 40, 43]. The performance of the solar collector on 348 

a cloudy day is shown in Fig. 8. It can be found that the fluctuation of instantaneous efficiency of 349 

the collector on a cloudy day is larger but it still achieves an overall efficiency of approximately 350 

50%. Although large fluctuations in solar irradiation occur, the collector can still work and achieve 351 

highly satisfactory collection efficiency, thereby indicating the reliability of its operation. 352 

Furthermore, the thermal performance of the collector can be improved by increasing the reflective 353 

ratio of the reflective film and absorption coating efficiency and reducing the heat loss of the glass 354 

cover. 355 

 356 

Fig. 8. Variations of thermal efficiency of solar collector with local time 357 

 358 

The main factors that influence the thermal performance of the collector include solar intensity, 359 

ambient temperature, evaporation temperature, and thermal resistance of the PHP absorber. To 360 

investigate the tendencies among them, several results were analyzed. Figure 9 (a) shows the effect 361 

of solar intensity on the thermal performance of the collector. The thermal performance of the 362 

collector depends on solar intensity. The efficiency increases with the increase in solar intensity; 363 
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however, the rate of the increase is extremely low. The thermal performance of the PHP absorber is 364 

steady for the entire range of the solar intensity. This finding means that the collector has good 365 

stability. The same condition can be found in Fig. 9 (b), which shows the effect of ambient 366 

temperature on the thermal performance of the collector. The ambient temperature is the main 367 

parameter for the heat loss of the collector. Figure 9 (c) shows that the efficiency of the collector 368 

increases with the increase in evaporation temperature because the thermal resistance of the PHP 369 

absorber is lower at a higher evaporation temperature. Furthermore, the water tank obtains 370 

additional heat from the PHP absorber. Conversely, the heat loss of the collector is high when the 371 

evaporation temperature is high. In consideration of the solar energy input, heat loss, and heat 372 

collection, the thermal performance of the collector increases with the increase in evaporation 373 

temperature and the decrease in the thermal resistance of the PHP absorber is the main factor that 374 

influences its thermal performance, as shown in Fig. 9 (d). 375 

     376 
(a)                                      (b) 377 

     378 
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(c)                                       (d) 379 

 380 

Fig. 9. Effects on thermal efficiency of solar collector. (a) solar intensity; (b) ambient temperature; 381 

(c) evaporation temperature; (d) thermal resistance of the PHP absorber 382 

 383 

Figure 10 shows the effect of the (Tp-Ta)/I on the thermal efficiency of the collector. The 384 

present results are compared with the performance curves of the solar collectors by heat pipe 385 

systems [37] and pulsating heat pipe system [25]. The (Tp-Ta)/I values of the present work are 386 

higher than those in literatures [25] and [37] due to the solar concentration by CPC. The thermal 387 

efficiency of the present work is slightly lower. The main reason is that no seal exists between the 388 

glass cover and the wood board and also the distance from the glass cover to the wood board. The 389 

thermal efficiency of the new collector increase with the increases of (Tp-Ta)/I and the trend is 390 

different from those in literatures [25] and [48]. The reason is that the thermal resistance of the 391 

PHP-absorber, which is the main factor influencing the thermal efficiency of the collector, decreases 392 

with the increase in solar irradiation intensity and evaporation temperature (see Fig.7(c)).  393 

 394 
Fig. 10. Effect of the (Tp-Ta)/I on the collector efficiency, Tp=(Te+Tc)/2 395 

 396 

 397 

4.3  Discussion on the new solar collector with PHP and CPC 398 

To match the heat transfer capacity of the PHP absorber and solar irradiation intensity, a solar 399 

collector equipped with PHP and CPC has been developed. The evaporation section of the PHP 400 

absorber receives proper heat flux that works steadily due to the introduction of CPC. Furthermore, 401 
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the heat loss to the surrounding air was decreased by reducing the hot surface area of the collector. 402 

From the perspective of the collector of CPC, PHP is a good choice for its small endothermic radius. 403 

In the present work, the total thickness of the collector is less than 50 mm with the CPC at a 404 

concentration ratio of 3.4. Additionally, the new collector also has the advantage of protection from 405 

freezing, which is suitable to the application of low freezing point working fluid. Generally, it 406 

presents a new efficient method of solar thermal collecting at centimeter scale and has great 407 

potential in many applications. 408 

The design of the proposed solar collector still has a drawback of short steady working hours. 409 

The CPC aperture angle causes the late startup and the early shutdown. Fortunately, gravity has 410 

minimal effect on the thermal performance of the PHP [9]. The working hours of the collector can 411 

be prolonged by changing the direction of CPC from vertical to horizontal in order to receive more 412 

solar energy and to work for the entire day.  413 

 414 

5  Conclusions 415 

A novel solar collector that integrates a closed-end PHP and a CPC has been proposed, built 416 

and tested. The effects of operating parameters on the operating characteristics of the PHP absorber 417 

and the thermal performance of the solar collector were investigated under different weather 418 

conditions. The following conclusions can be drawn. 419 

1) The collector apparently shows start-up, operational and shutdown stages at the starting and 420 

ending temperatures of 75 °C. The solar collector can stably operate even in cloudy days.  421 

2) The thermal resistance of the PHP absorber decreases with the increase in ambient temperature, 422 

solar intensity, and evaporation temperature which is found to be the main factor that affects the 423 

thermal efficiency of the collector and can reach nearly 0.26 °C/W.  424 

3) The experimental results suggest that the heat flux of the PHP absorber’s evaporation section 425 

concentrated by CPC with a concentration ratio of 3.4 is appropriate and the use of CPC is 426 

reasonable. 427 
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4) The proposed design offers a promising efficiency of 50% when compared with conventional 428 

solar collectors and PHP solar collectors. 429 
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Nomenclature  

A area (m2) 

CR concentration ratio of CPC 

c specific heat capacity (kJ/kg•K) 

d diameter (m) 

D  aperture width (m) 

H height of CPC (mm) 

m mass flow rate (kg/s) 

n number of PHP turns 

I solar irradiation density (W/ m2) 

ID inner diameter (mm) 

i the number of a thermal couple  

OD outer diameter (mm) 

Q Heat transfer rate (W) 

q heat flux (W/m2) 

T temperature (°C) 

R thermal resistance (°C/W) 

Greek symbols  

η efficiency of the solar collector 

  surface tension of the working fluids (N/m) 

  density of the working fluids (kg/m3) 

  angle between the incident ray and the X-axis (°) 

A  aperture angle of the CPC (°) 

Subscripts  

1-13 location of thermal couples  
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c condensation section 

e evaporation section 

in inlet of the hot water tank 

l liquid 

r/rad radial direction 

out outlet of the hot water tank 

p plate  

s solar energy 

T temperature 

w water 

v vapor 

 436 

 437 
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