
ARCADE 3D-audio codec: an implementation for the web

François BECKER
Coronal Encoding

Lyon, France
francois@coronal.audio

Benjamin BERNARD
Coronal Encoding

Lyon, France
benjamin@coronal.audio

Clément CARRON
Coronal Encoding

Lyon, France
clement@coronal.audio

ABSTRACT
This poster introduces the implementation of the ARCADE 3D-
audio codec for web browsers.

ARCADE can embed a full 3D audio scene in a simple stereo-
compatible audio stream that can be further compressed with
standard lossy compression schemes, aired to analog or digital
radio receivers or even stored on analog supports. An ARCADE-
encoded stream can be decoded to any 2D or 3D-audio rendering
format, for instance using Vector-Based Amplitude Panning
(VBAP), Higher Order Ambisonics (HOA), or personalized
binaural with headtracking.

ARCADE adapts seamlessly to the audio industry needs, from
storage to production, distribution/delivery, and rendering. It finds
uses in Virtual or Augmented Reality (VR/AR), movies, gaming,
music, telepresence & teleconferencing.

We present a JavaScript (JS) and Web Audio API implementation
of the ARCADE decoder, which was originally written in C++11,
along with technical details of the porting operations. Live demos
of 3D-audio content transmission, decoding and dynamic binaural
rendering will be given during the poster session.

1. INTRODUCTION
1.1 Overview of the ARCADE codec
The codec [1] allows transporting a 3D audio scene through two
raw audio channels without metadata. Any 3D audio format such
as Ambisonics or channel-based audio (Auro-3D, Atmos, standard
5.1 or 7.1 surround…) can be encoded and transported within
standard stereo streams.

Figure 1. ARCADE general workflow

The encoding stage analyses the scene-based audio in a perceptual
manner and in the frequency domain. The encoded signal,

converted back to the time domain, is stereo-compatible, allowing
it to be listened to through a stereo speaker setup. It can be
distributed through analog or digital channels as it is robust to
signal degradation and data compression (Advanced Audio Coding
[AAC], MPEG Layer-3 [MP3], Ogg Vorbis and Opus…).

The decoding stage restores the audio scene in the frequency
domain, then renders it. Virtually any rendering technique can be
used to distribute the signal to various audio listening systems:
headphones (e.g. binaural, for VR/AR), surround (2D) or
periphonic (3D) speaker layouts (e.g. VBAP or Spherical
Harmonics, for home cinema, car audio systems), etc. A binaural
renderer, outside the scope of the present work, is used for the
decoded scene-based or multichannel content demonstrations.

Figure 2. Decoding to binaural

1.2 Codec DSP operations
The ARCADE codec notably works in the frequency domain by
analyzing the magnitude and phase relationships between the input
signal components and using the extracted information to encode
(resp. reconstruct) the original scene-based soundfield, which
mandates frequent use of a real-to-complex Fast Fourier Transform
(FFT) (resp. its complex-to-real inverse counterpart). One of the
major challenges encountered during the present work was to
achieve a good performance for said transforms, which is detailed
in section 2.3.
Other DSP operations are quite standard ones and don’t need
specific libraries.

1.3 Porting options and scope
The codec library was originally developed in C++11 [2], a
standard for audio processing algorithms. The codec being able to
convert a full 3D soundfield to a (optionally further compressed)
two-channel stereo stream, it finds uses in web content distribution
and its availability in web browsers is an important feature. We had
three options to port the codec to the web:

• rewrite the codec codebase as JS code, using the native
Web Audio API primitives whenever possible;

• compile the ARCADE C++11 codebase as a binary blob
to be embedded within a web browser plugin;

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.
© 2017 Copyright held by the owner/author(s).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159076966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• use a source-to-source compiler such as Emscripten [3],
PNaCl [4] or cheerp [5] to generate JS code from the
ARCADE C++11 codebase.

While the encoder could also be rewritten in JS and run in the
browser or on a server (using for example Node.js), the scope of
work was, mainly for the reasons exposed in section 2.4, restricted
to the decoder.

2. PRELIMINARY EXPLORATIONS
2.1 Porting options review
A total rewriting of the codec codebase was out of question, due to
the limited time allocated to this project on the one hand, and on
the other due to the fact that the Web Audio API didn’t offer the
needed native nodes, especially for complex-valued FFT.
Additionally, sharing the same codebase between desktop and web
version had substantial advantages over a code split, especially
regarding maintenance and future evolutions.

The blob option was also deemed impractical because of the large
number of platforms and browsers to be supported, and because it
needed manual installation on the client side. Moreover, mobile
browsers, for instance Safari Mobile, don’t support binary plug-ins.

The only remaining approach was the source-to-source option,
which we detail in this presentation. We chose to use Emscripten
over NaCl or Cheerp, mainly for its performance and proven track
record in porting audio-related code.

2.2 Emscripten
Emscripten allows compiling LLVM (Low Level Virtual Machine)
bytecode to JS, relying on asm.js, a strict subset of JS where all
operations are clearly statically typed. It can translate C/C++ code,
but also any LLVM-supported language such as Python or Ruby,
to bytecode that web browsers can understand.

Emscripten seemed to be an interesting choice for porting the
decoder, as it had already been used for similar tasks, especially
during the Faust port [10] or for using DAW plugins in browsers
[11].

2.3 Choice of a FFT library
The ARCADE codebase originally used the Intel Integrated
Performance Primitives (IPP) [6], a software library for multimedia
and data processing applications, especially for its FFT operations.
The IPP library being closed-source and using CPU-dependent
instructions, its processing with a source-to-source compiler such
as Emscripten was impossible.

We hence had to remap all calls to the IPP FFT routines to another
library. Emscripten allowing to call either a C/C++ or a native JS
function, the panel of choice included both native JS FFT libraries
(Nokert fft.js, dntj jsfft, Project Nayuki’s fft) and C-based libraries
(KissFFT, FFTW) compiled with Emscripten.
Performance tests for all these libraries were readily available
online [7], theoretically allowing us to test them within different
web browsers (Firefox, Safari, Safari Mobile, Microsoft Edge,
Google Chrome), while using different platforms (desktops, mobile
phones or tablets) and operating systems (macOS, iOS, Windows
and Android).

However, we decided to modify the scripts from [7] so that the
testing conditions exactly replicated the ARCADE prototype use
case: either double precision floating point inputs and outputs (the
native JS format) or 32-bit floats, fixed 2048 sample block-size,
real-to-complex (forward) and complex-to-real (inverse)
transforms. The performance test metric was chosen to be the mean

iteration rate per second, when running 8000 iterations of the
forward and inverse transforms.

Special attention was given to these tests in order to get as
comparable as possible results across libraries:

- as some FFT implementations include initialization
routines, such as look-up tables precomputations, whose
overhead can bias the initial results, the performance for
the first half of iterations was discarded and only the
remaining 4000 iterations were retained;

- when libraries only offered complex-complex forward
(resp. inverse) transforms, they were used as a fallback
solution by zeroing (resp. ignoring) the imaginary part of
the input (resp. output);

- adequate scaling was applied to the forward and inverse
transforms when needed by some libraries, so that the
forward-inverse transform round-trip yielded a unitary
gain.

- when optimized real-to-complex forward transforms
(FFTW, KissFFT…) were available, they were used
although they only returned the positive frequency bins.

We are aware this comparison isn’t balanced for some libraries, due
to the difference in input types (as mentioned above, native JS
libraries use double precision, while some C libraries can use single
precision floats). Our goal was to “blackbox-benchmark” the
current offerings and find, on average, the best performing library
on all target platforms.

Results details, as found in Table 1 and summarized in Figure 3 and
Figure 4, show interesting behaviors:

- using a single precision inputs and processes instead of
the native double precision has a slight impact on
performance: the 32-bit Nayuki C++ implementation was
13% less performant than the native, 64-bit one. This was
expected as Emscriptem-compiled code stores floats as
float32, but uses float64 arithmetic, causing a small CPU
overhead [8].

- the Nayuki JS implementation is the best performing JS
library on all platforms and hardware.

- the well-known FFTW library shows very inconsistent
results across browsers and platforms: while it gets the
best results on Mozilla browsers, it also has a very poor
performance on Blink/Webkit-based ones, such as Safari
and Safari Mobile. Limiting factors might be the size of
the Emscriptem-compiled FFTW (around 3 MB, while
other C/C++ implementations average at 62 KB), or the
call stack size limits of the various JS engines, but we
couldn’t find a definitive answer as to these significant
discrepancies.

- the optimized real KissFFT performance is also quite
low, mainly due to the performance of its inverse
transform.

- the library that consistently showed the most
performance across desktop and mobile platforms, and
browsers, was the C-based KissFFT complex transform
[9], which we selected for the rest of this work.

Figure 3. Relative performance on desktop systems. Average
performance is 6098 iterations/s

Figure 4. Relative performance on mobile platforms. Average
performance is 2451 iterations/s

2.4 Intellectual property concerns
Intellectual property (IP) protection is a major concern in web-
based software: as web technologies mostly rely on open standards,
client-side code can be easily accessed and read. That’s the reason
why service took precedence over bare code, a paradigm shift that
got momentum with web-based applications.

If ARCADE were to be ported to native JS, an easy option to
prevent reverse-engineering would be to obfuscate JS code, but
many tools exist that allow the user to remove this protection layer.
This fact, to which one can add time-to-market and performance
concerns, led us to go the Emscripten way. However, while reverse-
engineering Emscripten-generated code would probably be a
serious challenge, the final code is still embeddable as a whole and
can hence be used in non-authorized manners.

In the absence of valuable protection offerings, another option
would be to port as little IP as possible to the client side, where it
could be ill-intentionally reused. However, the principal use case
for ARCADE being the decoding and consumption of immersive
audio content, be it within a web browser or in other scenarios, the
decoder was the priority porting task, which technically limited IP
dissemination.

3. IMPLEMENTATION
3.1 Integration details
The decoder has been integrated into a web player that allows
playing audio content available on the web, and decode the stereo
content using the ARCADE decoder. A binaural rendering is done
at the rendering stage of the decoder, that allows an immersive
experience. The accepted formats (MP3, Vorbis…) depend on the
browser, as it is responsible for decoding the audio streams.

The running Web Audio node graph is a simple three nodes chain,
with an AudioBufferSource node providing the raw PCM audio
data, followed by a ScriptProcessor node running the ARCADE
decoder including its binaural rendering stage, and finally an
AudioDestination node provided by the AudioContext.

Device orientation tracking through the adequate browser
primitives allows a user experience that mimicks that of
headtracking, substantially improving the localization by the
listener of the sources in the content: the user is then able to pan
into the soundfield by moving the mobile device around.
The Spheroscope, a visual representation of the decoded soundfield
whose code was originally in C++, has been implemented in JS via
Emscripten, allowing the user to visualize the spatial audio content
as it is decoded and played back. Figure 5 shows the Spheroscope
displaying spatial audio content using a Lambert azimuthal equal-
area projection of the sphere. A simple continuous color scheme
has been used to ease the visualization of the spatial audio spectrum
(lowest frequencies are displayed as red points, highest frequencies
appear as blue points, while all color nuances are used for in-
between frequency bands). The pixel intensity is directly linked to
the content magnitude of the frequency band.

89%
123%

107%
72%

157%
116%

174%
26%

36%

0% 50% 100% 150% 200%

Nayuki	(JS,	64-bit	Complex)	(8	KB)

Nayuki	(C/C++,	64-bit	Complex)	(61	KB)

Nayuki	(C/C++,	32-bit	Complex)	(61	KB)

KissFFT	(C/C++,	32-bit	Real)	(64	KB)
KissFFT	(C/C++,	32-bit	Complex)	(64	KB)

Cross	(C/C++,	64-bit	Real)	(60	KB)
FFTW	(C/C++,	32-bit	Real)	(3.3	MB)

Nockert	(JS,	64-bit	Real)	(41	KB)

dntj	(JS,	64-bit	Complex)	(10	KB)

96%
115%

105%
256%

148%
106%

34%
14%

26%

0% 50% 100% 150% 200% 250% 300%
Nayuki	(JS,	64-bit	Complex)	(8	KB)

Nayuki	(C/C++,	64-bit	Complex)	(61	KB)
Nayuki	(C/C++,	32-bit	Complex)	(61	KB)

KissFFT	(C/C++,	32-bit	Real)	(64	KB)
KissFFT	(C/C++,	32-bit	Complex)	(64	KB)

Cross	(C/C++,	64-bit	Real)	(60	KB)
FFTW	(C/C++,	32-bit	Real)	(3.3	MB)

Nockert	(JS,	64-bit	Real)	(41	KB)
dntj	(JS,	64-bit	Complex)	(10	KB)

Nayuki Nayuki Nayuki KissFFT KissFFT Cross FFTW Nockert dntj
JS C/C++ C/C++ C/C++ C/C++ C/C++ C/C++ JS JS
64 64 32 32 32 64 32 64 64

Complex Complex Complex Real Complex Real Real Real Complex
8	KB 61	KB 61	KB 64	KB 64	KB 60	KB 3.3	MB 41	KB 10	KB

Hardware CPU OS Browser
Firefox	54 5863 9569 7944 4613 9213 8427 21132 2957 937
Chrome	59 5107 5885 4597 4387 9672 6504 8237 1599 4721
Safari	10.1.1 8190 8882 7397 4496 11046 9157 928 648 1397
Firefox	54 4172 5790 6295 4129 10731 5562 12775 2120 366
Chrome	59 5742 6501 5633 4719 10360 6294 9059 1553 4817
Edge	38 3459 8299 7249 4016 6592 6333 11426 759 1037

iPhone	5 Apple	A6	1.3	GHz iOS	10.3 Safari	Mobile 539 756 530 1719 1225 727 69 72 204
iPhone	7 Apple	A10	Fusion	2.3	GHz	 iOS	10.3 Safari	Mobile 8558 9558 8917 22896 11034 8511 875 599 1395
iPad	4 Apple	A6X	1.4	GHz iOS	10.3 Safari	Mobile 646 898 705 2002 1341 874 89 88 262

iPad	Air	2 Apple	A8X	1.5	GHz iOS	10.2.1 Safari	Mobile 4174 5489 4733 12266 5738 4439 167 255 756
Ipad	Mini	2 Apple	A7	1.3	GHz iOS	10.3.1 Safari	Mobile 3117 3787 3180 6693 4473 3441 62 196 570

Chrome	58 929 1144 951 589 2083 1264 979 445 935
Firefox	52 961 1320 1190 598 2348 1286 1290 553 79
Firefox	52 897 956 1206 4032 1620 1117 1859 467 0
Chrome	57 1424 1554 1707 5713 2720 1711 2035 378 1534

5422 7488 6519 4393 9602 7046 10593 1606 2213
2361 2829 2569 6279 3620 2597 825 339 637

Iterations	per	second,	2048	block	size

2.3 GHz Intel Core i7

2.3 GHz Intel Core i7

macOS	10.12

Windows	10

Implementation
Language
Precision

Type
Size

MacBookPro11,3

Android	5.0Intel	Atom	Z3745	1.86	GHzAsus	K013

Desktop	average
Mobile	average

Samsung	Galaxy	S6 Samsung	Exynos	7	Octa	2.1	GHz Android	7.0

Table 1. FFT performance comparison, iterations / sec

Figure 5. Spheroscope soundfield visualization

3.2 Browser compatibility issues
The stock Safari and Safari Mobile browsers still use the deprecated
webkitAudioContext, as well as deprecated properties and method
names, instead of following the Web Audio API-compliant
AudioContext specification. We used the monkeypatch JS library
[13] that transparently allows aliasing the deprecated names to the
standard specification, ensuring wide compatibility with most
browsers.

As for the device orientation tracking, we used the gyronorm.js [14]
JS library that unifies browsers’ behaviour regarding gyroscope
data.

4. PERFORMANCE ASSESSMENT
4.1 Denormals
It has been reported in [10] that the absence of denormals
management in JS was prone to cause issues in the Web Audio API,
especially when dealing with feedback loops where denormals
usually occur (e.g. reverbs, recursive filters…). The reason is that
browsers don’t provide an interface for setting to the adequate CPU
flags (DAZ & FTZ). To solve the issue, a manual flush to zero has
been manually implemented in code locations where denormals are
prone to be found, in both the time and frequency domains.

4.2 Performance figures
We have run the ARCADE decoder library in the player on multiple
desktop and mobile platforms. Desktop implementations run with
no stuttering whatsoever, as do high-end mobile devices like the
latest iPhones. However, on middle- or low-end mobile platforms
like the iPhone 5, some buffer underruns occasionally occur,
worsened by the activation of the device orientation tracking. The
underlying cause is well known: the threading model behind the
ScriptProcessorNode, which runs asynchronously in the main
thread, and can even be interrupted by DOM manipulations, incited
the Web Audio community to propose the (never implemented)
AudioWorker model, followed by the (long awaited)
AudioWorklet whose implementation is still pending at the time of
writing. Nevertheless, the empirical evaluation that we have at the
time of writing looks promising.

5. CONCLUSIONS AND FUTURE
WORK
This paper has introduced an implementation for the web of the
ARCADE 3D-audio codec decoder. The design decisions were
presented, as well as the challenges encountered during the porting
operations. The code performance was evaluated in terms of
usability on common end-user platforms. The results show that the
ARCADE decoder can be used on both desktop and mobile

platforms in order to decode and render a full-3D soundfield in the
browser, while using limited network bandwidth.

As soon as the AudioWorklet proposal gets implemented in major
browsers, we’ll obviously switch to that model, due to the audio
glitches the ScriptProcessor threading model generates.

Our future work will deal with the switch from Emscripten to
WebAssembly [12] (wasm), a recently proposed intermediate
representation language (IRL) whose support in browsers is yet
partially based on asm.js (and Google’s PNaCl). The wasm
development community plans on delivering close-to-native
performance and improved compacity compared to the current
asm.js IRL. Available as a LLVM backend, it will eventually
become a serious option for real-time signal processing once all
browsers natively support wasm bytecode. At the moment, while
Emscripten already supports wasm, the benefits of using the latter
are not obvious as it still relies on an asm.js intermediate
representation. Nevertheless, we plan on using wasm as the
WebAssembly project matures.

6. REFERENCES
[1] Coronal Encoding SAS. 2016. ARCADE: 3D audio codec

over stereo. http://www.coronal.audio/2016/10/arcade-3d-
audio-codec-stereo/.

[2] ISO. 2012. ISO/IEC 14882:2011 Information technology ---
Programming languages --- C++. International Organization
for Standardization, Geneva, Switzerland.

[3] Zakai, A. 2011. Emscripten: an LLVM-to-JavaScript
compiler. Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion (pp. 301-312), ACM.

[4] Donovan, A., Muth, R., Chen, B., & Sehr, D. 2010. Pnacl:
Portable native client executables. Google White Paper.

[5] Leaning Technologies Limited. 2017. Cheerp - C++ for the
Web. http://leaningtech.com/cheerp/index.html.

[6] Intel Corporation. 2017. Intel® Integrated Performance
Primitives (Intel® IPP) | Intel® Software.
https://software.intel.com/en-us/intel-ipp.

[7] Cannam, C. 2017. Javascript FFT speed test. http://all-day-
breakfast.com/js-dsp-test/fft/.

[8] Bouvier, B. 2013. Efficient float32 arithmetic in JavaScript.
https://blog.mozilla.org/javascript/2013/11/07/efficient-
float32-arithmetic-in-javascript/.

[9] Borgerding, M. 2017. Kiss FFT download | SourceForge.net.
http://kissfft.sourceforge.net.

[10] Borins, M. 2014. From Faust to Web Audio: Compiling
Faust to JavaScript using Emscripten. Linux Audio
Conference, Karlsruhe, Germany.

[11] Kleimola, J. 2015. Daw plugins for web browsers. 1st Web
Audio Conference, IRCAM, Paris.

[12] The WebAssembly Community. 2017. WebAssembly.
http://webassembly.org

[13] Wilson, C. 2015. Monkeypatch to use proper AudioContext
naming on prefixed/deprecated named systems.
https://github.com/cwilso/AudioContext-MonkeyPatch.

[14] Eker, D. 2017. JavaScript project for accessing and
normalizing the accelerometer and gyroscope data on mobile
devices. https://github.com/dorukeker/gyronorm.js

