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ABSTRACT 
This poster introduces the implementation of the ARCADE 3D-
audio codec for web browsers. 

ARCADE can embed a full 3D audio scene in a simple stereo-
compatible audio stream that can be further compressed with 
standard lossy compression schemes, aired to analog or digital 
radio receivers or even stored on analog supports. An ARCADE-
encoded stream can be decoded to any 2D or 3D-audio rendering 
format, for instance using Vector-Based Amplitude Panning 
(VBAP), Higher Order Ambisonics (HOA), or personalized 
binaural with headtracking. 

ARCADE adapts seamlessly to the audio industry needs, from 
storage to production, distribution/delivery, and rendering. It finds 
uses in Virtual or Augmented Reality (VR/AR), movies, gaming, 
music, telepresence & teleconferencing. 

We present a JavaScript (JS) and Web Audio API implementation 
of the ARCADE decoder, which was originally written in C++11, 
along with technical details of the porting operations. Live demos 
of 3D-audio content transmission, decoding and dynamic binaural 
rendering will be given during the poster session. 

1. INTRODUCTION 
1.1 Overview of the ARCADE codec 
The codec [1] allows transporting a 3D audio scene through two 
raw audio channels without metadata. Any 3D audio format such 
as Ambisonics or channel-based audio (Auro-3D, Atmos, standard 
5.1 or 7.1 surround…) can be encoded and transported within 
standard stereo streams. 

 

 
Figure 1. ARCADE general workflow 

The encoding stage analyses the scene-based audio in a perceptual 
manner and in the frequency domain. The encoded signal, 

converted back to the time domain, is stereo-compatible, allowing 
it to be listened to through a stereo speaker setup. It can be 
distributed through analog or digital channels as it is robust to 
signal degradation and data compression (Advanced Audio Coding 
[AAC], MPEG Layer-3 [MP3], Ogg Vorbis and Opus…). 

The decoding stage restores the audio scene in the frequency 
domain, then renders it. Virtually any rendering technique can be 
used to distribute the signal to various audio listening systems: 
headphones (e.g. binaural, for VR/AR), surround (2D) or 
periphonic (3D) speaker layouts (e.g. VBAP or Spherical 
Harmonics, for home cinema, car audio systems), etc. A binaural 
renderer, outside the scope of the present work, is used for the 
decoded scene-based or multichannel content demonstrations. 
 

 
Figure 2. Decoding to binaural 

1.2 Codec DSP operations 
The ARCADE codec notably works in the frequency domain by 
analyzing the magnitude and phase relationships between the input 
signal components and using the extracted information to encode 
(resp. reconstruct) the original scene-based soundfield, which 
mandates frequent use of a real-to-complex Fast Fourier Transform 
(FFT) (resp. its complex-to-real inverse counterpart). One of the 
major challenges encountered during the present work was to 
achieve a good performance for said transforms, which is detailed 
in section 2.3. 
Other DSP operations are quite standard ones and don’t need 
specific libraries.  

1.3 Porting options and scope 
The codec library was originally developed in C++11 [2], a 
standard for audio processing algorithms. The codec being able to 
convert a full 3D soundfield to a (optionally further compressed) 
two-channel stereo stream, it finds uses in web content distribution 
and its availability in web browsers is an important feature. We had 
three options to port the codec to the web: 

• rewrite the codec codebase as JS code, using the native 
Web Audio API primitives whenever possible; 

• compile the ARCADE C++11 codebase as a binary blob 
to be embedded within a web browser plugin; 
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• use a source-to-source compiler such as Emscripten [3], 
PNaCl [4] or cheerp [5] to generate JS code from the 
ARCADE C++11 codebase. 

While the encoder could also be rewritten in JS and run in the 
browser or on a server (using for example Node.js), the scope of 
work was, mainly for the reasons exposed in section 2.4, restricted 
to the decoder. 

2. PRELIMINARY EXPLORATIONS 
2.1 Porting options review 
A total rewriting of the codec codebase was out of question, due to 
the limited time allocated to this project on the one hand, and on 
the other due to the fact that the Web Audio API didn’t offer the 
needed native nodes, especially for complex-valued FFT. 
Additionally, sharing the same codebase between desktop and web 
version had substantial advantages over a code split, especially 
regarding maintenance and future evolutions. 

The blob option was also deemed impractical because of the large 
number of platforms and browsers to be supported, and because it 
needed manual installation on the client side. Moreover, mobile 
browsers, for instance Safari Mobile, don’t support binary plug-ins. 

The only remaining approach was the source-to-source option, 
which we detail in this presentation. We chose to use Emscripten 
over NaCl or Cheerp, mainly for its performance and proven track 
record in porting audio-related code. 

2.2 Emscripten 
Emscripten allows compiling LLVM (Low Level Virtual Machine) 
bytecode to JS, relying on asm.js, a strict subset of JS where all 
operations are clearly statically typed. It can translate C/C++ code, 
but also any LLVM-supported language such as Python or Ruby, 
to bytecode that web browsers can understand. 

Emscripten seemed to be an interesting choice for porting the 
decoder, as it had already been used for similar tasks, especially 
during the Faust port [10] or for using DAW plugins in browsers 
[11].  

2.3 Choice of a FFT library 
The ARCADE codebase originally used the Intel Integrated 
Performance Primitives (IPP) [6], a software library for multimedia 
and data processing applications, especially for its FFT operations. 
The IPP library being closed-source and using CPU-dependent 
instructions, its processing with a source-to-source compiler such 
as Emscripten was impossible.  

We hence had to remap all calls to the IPP FFT routines to another 
library. Emscripten allowing to call either a C/C++ or a native JS 
function, the panel of choice included both native JS FFT libraries 
(Nokert fft.js, dntj jsfft, Project Nayuki’s fft) and C-based libraries 
(KissFFT, FFTW) compiled with Emscripten.  
Performance tests for all these libraries were readily available 
online [7], theoretically allowing us to test them within different 
web browsers (Firefox, Safari, Safari Mobile, Microsoft Edge, 
Google Chrome), while using different platforms (desktops, mobile 
phones or tablets) and operating systems (macOS, iOS, Windows 
and Android). 

However, we decided to modify the scripts from [7] so that the 
testing conditions exactly replicated the ARCADE prototype use 
case: either double precision floating point inputs and outputs (the 
native JS format) or 32-bit floats, fixed 2048 sample block-size, 
real-to-complex (forward) and complex-to-real (inverse) 
transforms. The performance test metric was chosen to be the mean 

iteration rate per second, when running 8000 iterations of the 
forward and inverse transforms. 

Special attention was given to these tests in order to get as 
comparable as possible results across libraries:  

- as some FFT implementations include initialization 
routines, such as look-up tables precomputations, whose 
overhead can bias the initial results, the performance for 
the first half of iterations was discarded and only the 
remaining 4000 iterations were retained; 

- when libraries only offered complex-complex forward 
(resp. inverse) transforms, they were used as a fallback 
solution by zeroing (resp. ignoring) the imaginary part of 
the input (resp. output);   

- adequate scaling was applied to the forward and inverse 
transforms when needed by some libraries, so that the 
forward-inverse transform round-trip yielded a unitary 
gain.  

- when optimized real-to-complex forward transforms 
(FFTW, KissFFT…) were available, they were used 
although they only returned the positive frequency bins. 

We are aware this comparison isn’t balanced for some libraries, due 
to the difference in input types (as mentioned above, native JS 
libraries use double precision, while some C libraries can use single 
precision floats). Our goal was to “blackbox-benchmark” the 
current offerings and find, on average, the best performing library 
on all target platforms. 

Results details, as found in Table 1 and summarized in Figure 3 and 
Figure 4, show interesting behaviors:  

- using a single precision inputs and processes instead of 
the native double precision has a slight impact on 
performance: the 32-bit Nayuki C++ implementation was 
13% less performant than the native, 64-bit one. This was 
expected as Emscriptem-compiled code stores floats as 
float32, but uses float64 arithmetic, causing a small CPU 
overhead [8].   

- the Nayuki JS implementation is the best performing JS 
library on all platforms and hardware. 

- the well-known FFTW library shows very inconsistent 
results across browsers and platforms: while it gets the 
best results on Mozilla browsers, it also has a very poor 
performance on Blink/Webkit-based ones, such as Safari 
and Safari Mobile. Limiting factors might be the size of 
the Emscriptem-compiled FFTW (around 3 MB, while 
other C/C++ implementations average at 62 KB), or the 
call stack size limits of the various JS engines, but we 
couldn’t find a definitive answer as to these significant 
discrepancies. 

- the optimized real KissFFT performance is also quite 
low, mainly due to the performance of its inverse 
transform. 

- the library that consistently showed the most 
performance across desktop and mobile platforms, and 
browsers, was the C-based KissFFT complex transform 
[9], which we selected for the rest of this work. 
 



 
Figure 3. Relative performance on desktop systems. Average 
performance is 6098 iterations/s 

 
Figure 4. Relative performance on mobile platforms. Average 
performance is 2451 iterations/s 

2.4 Intellectual property concerns 
Intellectual property (IP) protection is a major concern in web-
based software: as web technologies mostly rely on open standards, 
client-side code can be easily accessed and read. That’s the reason 
why service took precedence over bare code, a paradigm shift that 
got momentum with web-based applications.  

If ARCADE were to be ported to native JS, an easy option to 
prevent reverse-engineering would be to obfuscate JS code, but 
many tools exist that allow the user to remove this protection layer. 
This fact, to which one can add time-to-market and performance 
concerns, led us to go the Emscripten way. However, while reverse-
engineering Emscripten-generated code would probably be a 
serious challenge, the final code is still embeddable as a whole and 
can hence be used in non-authorized manners. 

In the absence of valuable protection offerings, another option 
would be to port as little IP as possible to the client side, where it 
could be ill-intentionally reused. However, the principal use case 
for ARCADE being the decoding and consumption of immersive 
audio content, be it within a web browser or in other scenarios, the 
decoder was the priority porting task, which technically limited IP 
dissemination. 

3. IMPLEMENTATION 
3.1 Integration details 
The decoder has been integrated into a web player that allows 
playing audio content available on the web, and decode the stereo 
content using the ARCADE decoder. A binaural rendering is done 
at the rendering stage of the decoder, that allows an immersive 
experience. The accepted formats (MP3, Vorbis…) depend on the 
browser, as it is responsible for decoding the audio streams. 

The running Web Audio node graph is a simple three nodes chain, 
with an AudioBufferSource node providing the raw PCM audio 
data, followed by a ScriptProcessor node running the ARCADE 
decoder including its binaural rendering stage, and finally an 
AudioDestination node provided by the AudioContext. 

Device orientation tracking through the adequate browser 
primitives allows a user experience that mimicks that of 
headtracking, substantially improving the localization by the 
listener of the sources in the content: the user is then able to pan 
into the soundfield by moving the mobile device around. 
The Spheroscope, a visual representation of the decoded soundfield 
whose code was originally in C++, has been implemented in JS via 
Emscripten, allowing the user to visualize the spatial audio content 
as it is decoded and played back. Figure 5 shows the Spheroscope 
displaying spatial audio content using a Lambert azimuthal equal-
area projection of the sphere. A simple continuous color scheme 
has been used to ease the visualization of the spatial audio spectrum 
(lowest frequencies are displayed as red points, highest frequencies 
appear as blue points, while all color nuances are used for in-
between frequency bands). The pixel intensity is directly linked to 
the content magnitude of the frequency band. 
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Hardware CPU OS Browser
Firefox	54 5863 9569 7944 4613 9213 8427 21132 2957 937
Chrome	59 5107 5885 4597 4387 9672 6504 8237 1599 4721
Safari	10.1.1 8190 8882 7397 4496 11046 9157 928 648 1397
Firefox	54 4172 5790 6295 4129 10731 5562 12775 2120 366
Chrome	59 5742 6501 5633 4719 10360 6294 9059 1553 4817
Edge	38 3459 8299 7249 4016 6592 6333 11426 759 1037

iPhone	5 Apple	A6	1.3	GHz iOS	10.3 Safari	Mobile 539 756 530 1719 1225 727 69 72 204
iPhone	7 Apple	A10	Fusion	2.3	GHz	 iOS	10.3 Safari	Mobile 8558 9558 8917 22896 11034 8511 875 599 1395
iPad	4 Apple	A6X	1.4	GHz iOS	10.3 Safari	Mobile 646 898 705 2002 1341 874 89 88 262

iPad	Air	2 Apple	A8X	1.5	GHz iOS	10.2.1 Safari	Mobile 4174 5489 4733 12266 5738 4439 167 255 756
Ipad	Mini	2 Apple	A7	1.3	GHz iOS	10.3.1 Safari	Mobile 3117 3787 3180 6693 4473 3441 62 196 570

Chrome	58 929 1144 951 589 2083 1264 979 445 935
Firefox	52 961 1320 1190 598 2348 1286 1290 553 79
Firefox	52 897 956 1206 4032 1620 1117 1859 467 0
Chrome	57 1424 1554 1707 5713 2720 1711 2035 378 1534

5422 7488 6519 4393 9602 7046 10593 1606 2213
2361 2829 2569 6279 3620 2597 825 339 637

Iterations	per	second,	2048	block	size

2.3 GHz Intel Core i7

2.3 GHz Intel Core i7

macOS	10.12

Windows	10

Implementation
Language
Precision

Type
Size

MacBookPro11,3

Android	5.0Intel	Atom	Z3745	1.86	GHzAsus	K013

Desktop	average
Mobile	average

Samsung	Galaxy	S6 Samsung	Exynos	7	Octa	2.1	GHz Android	7.0

Table 1. FFT performance comparison, iterations / sec 



 
Figure 5. Spheroscope soundfield visualization 

3.2 Browser compatibility issues 
The stock Safari and Safari Mobile browsers still use the deprecated 
webkitAudioContext, as well as deprecated properties and method 
names, instead of following the Web Audio API-compliant 
AudioContext specification. We used the monkeypatch JS library 
[13] that transparently allows aliasing the deprecated names to the 
standard specification, ensuring wide compatibility with most 
browsers. 

As for the device orientation tracking, we used the gyronorm.js [14] 
JS library that unifies browsers’ behaviour regarding gyroscope 
data. 

4. PERFORMANCE ASSESSMENT 
4.1 Denormals 
It has been reported in [10] that the absence of denormals 
management in JS was prone to cause issues in the Web Audio API, 
especially when dealing with feedback loops where denormals 
usually occur (e.g. reverbs, recursive filters…). The reason is that 
browsers don’t provide an interface for setting to the adequate CPU 
flags (DAZ & FTZ). To solve the issue, a manual flush to zero has 
been manually implemented in code locations where denormals are 
prone to be found, in both the time and frequency domains. 

4.2 Performance figures 
We have run the ARCADE decoder library in the player on multiple 
desktop and mobile platforms. Desktop implementations run with 
no stuttering whatsoever, as do high-end mobile devices like the 
latest iPhones. However, on middle- or low-end mobile platforms 
like the iPhone 5, some buffer underruns occasionally occur, 
worsened by the activation of the device orientation tracking. The 
underlying cause is well known: the threading model behind the 
ScriptProcessorNode, which runs asynchronously in the main 
thread, and can even be interrupted by DOM manipulations, incited 
the Web Audio community to propose the (never implemented) 
AudioWorker model, followed by the (long awaited) 
AudioWorklet whose implementation is still pending at the time of 
writing. Nevertheless, the empirical evaluation that we have at the 
time of writing looks promising. 

5. CONCLUSIONS AND FUTURE 
WORK 
This paper has introduced an implementation for the web of the 
ARCADE 3D-audio codec decoder. The design decisions were 
presented, as well as the challenges encountered during the porting 
operations. The code performance was evaluated in terms of 
usability on common end-user platforms. The results show that the 
ARCADE decoder can be used on both desktop and mobile 

platforms in order to decode and render a full-3D soundfield in the 
browser, while using limited network bandwidth. 

As soon as the AudioWorklet proposal gets implemented in major 
browsers, we’ll obviously switch to that model, due to the audio 
glitches the ScriptProcessor threading model generates. 

Our future work will deal with the switch from Emscripten to 
WebAssembly [12] (wasm), a recently proposed intermediate 
representation language (IRL) whose support in browsers is yet 
partially based on asm.js (and Google’s PNaCl). The wasm 
development community plans on delivering close-to-native 
performance and improved compacity compared to the current 
asm.js IRL. Available as a LLVM backend, it will eventually 
become a serious option for real-time signal processing once all 
browsers natively support wasm bytecode. At the moment, while 
Emscripten already supports wasm, the benefits of using the latter 
are not obvious as it still relies on an asm.js intermediate 
representation. Nevertheless, we plan on using wasm as the 
WebAssembly project matures. 
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