
Usage of Physics Engines for UI Design in NexusUI

Chase Mitchusson

Experimental Music & Digital

Media

Louisiana State University

cmitc79@lsu.edu

Anthony T. Marasco

Experimental Music & Digital

Media

Louisiana State University

amarasco@lsu.edu

Jesse Allison

Experimental Music & Digital

Media

Louisiana State University

jtallison@lsu.edu

ABSTRACT
In preparation to expand the experimental interfaces in
NexusUI widgets, the authors have been evaluating physics
engines and exploring physics-based user interfaces on the
web. Tying physics simulation events, influenced by user
interactions, to web audio encourages exploration of novel
methods of interactivity between users and web-based in-
struments. Object collisions, deformation of a mesh of ob-
jects with elastic connections, and liquid simulation via par-
ticle generation were identified as systems with dynamics
that may provide interesting links to audio synthesis. Two
popular physics engines explored are LiquidFun and Mat-
ter.js, with new prototype widgets taking advantage of Liq-
uidFun’s Elastic Particles and Matter.js’ Cloth and New-
ton’s Cradle composites. One of our goals is to discover
methods of audio synthesis that complement the behaviors
of each physical simulation.

1. BRINGING PHYSICS ENGINES TO
NEXUSUI

The NexusUI library of user interface objects arose from
work in distributed performance systems utilizing web
browsers on a variety of devices.[4][6][8] The library devel-
oped with a standard core set of interfaces such as sliders,
buttons and dials, but also facilitated exploratory interface
design by providing a standard UI design framework and
easily adaptable utility functions. Various experimental in-
terfaces took advantage of recent additions to web browser
interaction such as accelerometer data, gestural touch con-
trols, multi-touch information, as well as simple automa-
tion – animated sliders, 2D position, the game of life sim-
ulation, and gesture recording and playback.[7] To explore
animated user interfaces further required extending the ani-
mation code with physics simulations or pairing the UI with
an existing physics engine.

The development of a series of widgets that play to the
strength of a particular simulation, allowed for exploration
into the benefits and drawbacks of the applications of each
physics engine for mobile music performance.[2] Each en-
gine’s abilities to handle simulated environmental proper-

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

c� 2017 Copyright held by the owner/author(s).

ties such as gravity, weight, elasticity, and collision handling
were tested and mapped to complementary audio engine pa-
rameters and synthesis types.

1.1 Interface 1 - Newton’s Cradle
The Newton’s Cradle widget (built using Matter.js[3]) is

comprised of a series of weighted bodies suspended from
an invisible, static boundary by rigid constraints. Pulling
weights away from their resting position allows them to
swing back and collide with each other upon their release.
After assigning a single pitch to each weight, Matter’s Events
module is used to monitor collision pairs and to compare the
speeds of each swinging weight.

Upon impact between weights, the widget maps the pitch
of the faster weight to a synthesizer built in Tone.js and
triggers its attack.[5] The corresponding weight’s velocity
data is also monitored and mapped to the sustain and release
parameters of the synthesizer’s envelope. This widget has
proven to be useful for performance in AM and FM synthesis
due to the variety of physics data that can obtained and
mapped to a synthesizers modulation parameters; in FM
synthesis for example, the velocity or speed of each weight
can tied to a synthesizer’s harmonicity ratio to produce more
bell-like tone colors for pitches assigned to faster swinging
weights.

Figure 1: Example of the Newton’s cradle widget in

motion.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159076961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1.2 Interface 2 - Cloth Mesh Displacement
A suitable cloth-like structure can be built in Matter.js

through a mesh of soft-body particles with elastic connec-
tions. As rigid bodies are moved into contact with the cloth,
it distorts and the uniform positioning between bodies con-
tracts and expands. The positions can be mapped directly
to additive synthesis parameters such as pitch and volume.
A more general set of inputs can be derived by monitoring
the change in uniformity across the cloth and mapping to
synthesis parameters such as the relative frequency of over-
tones, e↵ectively controlling the harmonicity of the synthe-
sis. These distortions from a resting state can be mapped
to sound in other ways such as playback speed or position
in an audio bu↵er, pitch shifting, and the shifting of FFT
bins.

Figure 2: Example of Cloth being draped over sev-

eral rigid bodies while reacting to simulated wind

and gravity elements

1.3 Interface 3 - Elastic Particles
The Elastic Particle tool contains three particle groups

and a rigid circle body. Dragging the rigid circle body into
the particle groups smashes and squishes the particle groups.
The interactions in Elastic Particles were initially planned
to distort sound based on the change in shape of the parti-
cle groups, however, the particle system for the JavaScript
port of LiquidFun is problematic for detecting collisions.[1]
Since the particle collision data is inaccessible, data useful
for musical mapping has to be found by manipulating posi-
tion and velocity bu↵ers. Synthesizer parameters in Tone.js
are mapped to the delta value of the average velocity of the
particles, which are then interpolated through a preset ar-
ray. The position data is mapped to a vibrato e↵ect, which
intensifies as the particles approach the top of the screen.

2. CONCLUSIONS AND FURTHER DI-
RECTIONS

Following the design and testing of these initial widget
prototypes, both libraries o↵er unique potential for further
usage. The Matter.js physics library provides the most ro-
bust set of data points and event callbacks for mapping to

Figure 3: Example of Elastic Particles reacting to

the force and pressure exerted upon them by a rigid

body

audio synthesis parameters. LiquidFun was intriguing espe-
cially for its particle generation system, however, the most
current release of LiquidFun’s JavaScript port is missing
bindings for gathering particle data that are found in the
C/C++ libraries. For incorporating into NexusUI widgets,
a custom JavaScript port would need to be built and main-
tained severely limiting its usability.

As expected, mapping of the interactions facilitated by
the physics simulations to audio synthesizers varied widely
in terms of usability and e↵ective sonic output. However,
the added layer between interaction and control values -
e.g. interaction with a virtual physical object and having
that object’s influence in the virtual world create control
values, made for a more complex mapping and interaction
in general. Using the interface oftentimes became engaging
whether or not the sonic output was useful. When the two
reinforced each other, interesting interaction with a physics
simulation and interesting sonic output, exploration of the
instrument became quite rewarding.

Avenues for development and exploration are plentiful:
creating composite machines and structures that simulate
di↵erent systems, creating di↵erent synthesis engines that
pair with the salient features of these physics simulations,
and user studies elucidating the dynamics between user and
virtual physical systems in terms of performability, intuitive
interactions, and a↵ordances for performance.

3. REFERENCES
[1] Liquidfun -

http://google.github.io/liquidfun/documentation.
[2] LSU EMDM: nx Physics UI -

https://github.com/lsu-emdm/nx-physicsui.
[3] Matter.js - http://brm.io/matter-js/.
[4] Nexus User Interface - http://nexusosc.com.
[5] Tone.js - https://tonejs.github.io/.
[6] J. Allison, Y. Oh, and B. Taylor. Nexus: Collaborative

performance for the masses, handling instrument
interface distribution through the web. In Proceedings

of the New Interfaces for Musical Expression

conference, 2013.
[7] B. Taylor and J. T. Allison. Gesture capture,

processing, and asynchronous playback within web
audio instruments. In ICMC, 2015.

[8] B. Taylor, J. T. Allison, W. Conlin, Y. Oh, and
D. Holmes. Simplified expressive mobile development
with nexusui, nexusup, and nexusdrop. In NIME, pages
257–262, 2014.


