
Strategies for Per-Sample Processing of Audio Graphs in

the Browser

Charles Roberts

School of Interactive Games and Media

Rochester Institute of Technology

charlie@charlie-roberts.com

ABSTRACT
Due to current browser limitations, most synthesis in the
browser is currently performed using the block-rate nodes
included in the WebAudio API. However, block-rate pro-
cessing of audio graphs precludes many types of synthesis
in addition to limiting both the accuracy and flexibility of
scheduling. We describe alternative strategies for perform-
ing e�cient, per-sample processing of audio graphs in the
browser using the ScriptProcessor node, a↵ording synthesis
techniques that are not commonly found in existing Java-
Script audio libraries. We introduce a new library, Gen-
ish.js, that provides unit generators for common low-level
synthesis tasks and acts as a compiler for signal processing
functions; this library is a loose port of the Gen framework
for Max/MSP. We used Genish.js to update a higher-level
library for audio programming, Gibberish.js, realizing im-
provements to both e�ciency and audio quality. Prelimi-
nary benchmarks comparing the performance of Genish.js
audio graphs to equivalent graphs made with the WebAudio
API show promising results.

1. INTRODUCTION
Constraints in current browser implementations of the Web
Audio API (WAAPI) have limited the adoption of per-sample
processing techniques, which in turns constrains the synthe-
sis algorithms available to musicians and sound designers in
the browser. We use the term per-sample to describe audio
graph processing algorithms where each node (aka unit gen-
erator) outputs one sample at a time, as opposed to blocks of
multiple samples. Currently, the only option for authoring
audio graphs using per-sample processing in the browser is
to create the entire graph in a ScriptProcessor node, which
a↵ords authoring sample-level DSP in JavaScript. However,
the ScriptProcessor node imposes many penalties in com-
parison to the other WAAPI nodes, including typical higher
CPU usage, increased latency, and the potential for inter-
rupts by other processes running in the main thread of the
JavaScript runtime; we further discuss these constraints in
Section 2.3. For these reasons, most existing JavaScript au-
dio libraries avoid the ScriptProcessor node, and in doing

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

© 2017 Copyright held by the owner/author(s).

so discard a wide variety of synthesis techniques that are
specific to per-sample processing, as discussed in Section 2.
Even libraries that make extensive use of the ScriptProcessor
node, such as Flocking.js [1], typically use block-rate pro-
cessing for e�ciency reasons and are unable to run at a block
size of 1.

Our previous research in this area included creating a li-
brary, Gibberish, that compiled optimized callbacks calculat-
ing the output of an audio graph one sample at a time [9].
The library was designed for use in ScriptProcessor nodes
and is a critical component of the live-coding environment
Gibber[7], as well as a number of other projects [10, 2]. We
felt that there was room for significant improvement in Gib-
berish, which did not e↵ectively reuse code when authoring
unit generators (ugens) or provide easy paths for optimiza-
tion. In this paper we present a new library, Genish.js, that
provides low-level DSP components that lend themselves
well to unit testing, benchmarks, and optimization. Gen-
ish was in turn used to create a new version of Gibberish,
providing it with a unified system for assembling high-level
synthesis and filtering algorithms.

This paper will describe some of the benefits and draw-
backs of per-sample processing in the browser and our rea-
sons for continuing to use the ScriptProcessor node, describe
Genish.js in detail, and then briefly describe changes to Gib-
berish and the performance gains achieved using Genish.

2. AFFORDANCES AND CONSTRAINTS OF
SINGLE SAMPLE PROCESSING IN THE
BROWSER

Per-sample processing a↵ords possibilities for synthesis and
scheduling that cannot be realized with block-based signal
processing. However, these a↵ordances come with signifi-
cant drawbacks in e�ciency, latency, and potential audio
interruptions when working within the browser. Here we
describe some of the benefits and constraints of per-sample
techniques in the context of current browser technologies.

2.1 Synthesis Using Per-Sample Techniques
Although per-sample processing is often more expensive than
block-rate processing, it expands the possibilities of both
synthesis and scheduling. For example, one of the most suc-
cessful digital synthesizers of all times, the Yamaha DX7,
featured thirty-two synthesis“algorithms”(modulation paths);
every one employed a feedback path that requires ugen out-
put to be processed sample by sample1. The FM instrument

1For an excellent browser port of the DX7 (via

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159076957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in Gibberish features a feedback parameter that approxi-
mates this behavior.

Similarly, the di↵erence equations of most filter models
also require the ability use feedback loops, which means their
creation in the browser depends on using ScriptProcessor
nodes to write custom sample processing routines in Java-
Script. Our update to Gibberish contains “virtual analog”
filter models that depend on per-sample processing.

2.2 Sample-Accurate Scheduling with Tempo-
ral Modulation

Per-sample processing also enables interesting possibilities
for scheduling. By driving sequencers at audio rate we af-
ford forms of temporal modulation similar to those found
in analog modular synthesis systems. Individual sequencers
can be driven by separate signals, or can all use a global
rate signal as a base for generating other modulated tem-
poral controls (this is the strategy used in Gibber). As one
browser-based example, in a composition written for Gibber
the band 65daysofstatic ends the piece by taking the global
clock signal and modulating it with a sine oscillator, creating
a cascade of rhythms gradually fluctuating in time.

Intra-block scheduling is also only possible using per-sample
techniques. To clarify, we are referring to scheduling a new
event within the current block being rendered (in this case,
the block being generated by a ScriptProcessor node). This
enables a sequencer firing on sample n to schedule a new
event on the next sample processed (n+1), a↵ording sample-
accurate scheduling even when using stochastic functions;
in the case of Gibberish these functions can modify a single
node or the entire topology of the running audio graph from
one sample to the next. In comparison, while many exem-
plary audio libraries for the browser can schedule events with
sample-accurate precision using methods of the WAAPI such
as setValueAtTime [5, 11], this requires some lookahead to
be e↵ective.

2.3 Browser Constraints on Per-sample Pro-
cessing

While per-sample processing a↵ords unique synthesis and
temporal possibilities, the constraints of using the Script-
Processor node, currently the only vehicle for per-sample
processing in the browser, have been well documented [13].
Although implementations of theWAAPI provide block sizes
as low as 256 samples, the ScriptProcessor node imposes an
extra bu↵er of latency, resulting in a minimum latency of
512 sample between interaction events and hearing their ef-
fects in the output audio signal. This is more than 10ms
of latency at a 44.1kHz sampling rate, although using an
audio interface that provides higher sampling rates can mit-
igate this e↵ect. For many applications a more significant
problem is that the ScriptProcessorNode performs all signal
processing in the JavaScript’s main thread, which means
that other events using this thread (such as network and
user interaction events) have the potential to block audio
processing and create interrupts. This is especially prob-
lematic for applications with rigorous graphical demands in
addition to audio signal processing needs.
These concerns will potentially be removed with the in-

troduction of the AudioWorklet node, an upcoming addi-
tion to the WAAPI whose specification has been standard-

the ScriptProcessorNode) see http://mmontag.github.io/
dx7-synth-js/

ized2. The AudioWorklet node will operate in its own thread
and remove the latency penalties associated with the Script-
Processor node. However, there are still e�ciency gains from
using the various C++ ugens included with the WAAPI in-
stead of ugens created in a dynamic language like JavaScript,
in addition to performance improvements from rendering the
output of each ugen block by block instead of sample by
sample. As devices become increasingly powerful develop-
ers must consider whether or not the performance penalties
incurred by the ScriptProcessor and AudioWorklet nodes are
too heavy a cost for the expanded synthesis and scheduling
capabilities per-sample processing provides.

3. GENISH.JS
genish.js is a “low-level” collection of unit generators that
can be combined to form audio graphs; these graphs are then
compiled into optimized JavaScript functions outputting ei-
ther a mono sample or a stereo pair. We describe the in-
cluded unit generators as low-level because each is respon-
sible for a single small task, for example, incrementing a
number (accum) or determining the equality of two values
(eq). For audio processing the compiled functions that Gen-
ish.js creates are typically used inside an instance of a Script-
Processor node, but the functions can also be used to calcu-
late the output of a wide variety of non-musical, physically
informed systems where feedback is an important considera-
tion. Genish.js is based on the Gen framework for Max/MSP
[12], which provides a low-level DSP environment generating
output one sample at a time; this runs alongside the block-
based audio processing system that MSP provides. We drew
inspiration from Gen for two reasons: first, to take advan-
tage of a design that has been well-used and tested for over
five years (and much longer if you consider that Gen was
itself derived from MSP), and second, to potentially attract
existing users of Gen to Genish.js.

The Genish.js website contains a variety of materials to
help start using the library. First, a code playground pro-
vides a number of examples detailing how to write ugens,
including using the jsdsp syntax discussed in Section 3.5.
Many of the examples document signal processing techniques
that are only possible in the browser with ugens that operate
on a per-sample basis, like the design of dynamic IIR filters,
FM feedback, and feedback delay networks. Second, an in-
troductory long-form tutorial starts with the basics of how
accumulators, phasors, and oscillators work and advances
to creating a two-operator, enveloped, FM synthesis ugen.
Finally, an API reference provides documentation for each
individual ugen and examples of use. Examples are also
provided showing how to use a Genish.js callback function
within a ScriptProcessor node.

3.1 Compilation
The accum ugen, which increments a number every time it
is called, is one of the most frequently ugens in Genish.js.
An example using it to create a sawtooth oscillator3, along
with the corresponding compiled callback function, is shown
in Listing 1.

Output functions are generated by calling the createCallback

2http://tinyurl.com/audio-worklet
3An export function enables ugens to be easily placed in the
global namespace for experimentation; all code examples in
this paper will assume use of the global namespace.

function and passing it a graph. If an array is passed the
graph is assumed to be multi-channel, with each array mem-
ber representing one channel of the graph; channels can
share nodes freely. Once createCallback has generated a
function it can be used without any arguments to produce
output data (input ugens enable passing arguments to the
compiled function). Note that in the Genish.js callbacks all
unit generators share a single block of memory that is deref-
erenced at the top of the callback; shared memory usage
provides a large performance boost to the library, discussed
further in Section 3.3. The [0,1] indices in the memory
block are reserved for writing the final output of the func-
tion.

Although complex audio graphs can compile to functions
that are hundreds of lines of code in length, many other
algorithms can be expressed quite succintly. For example,
the generated output code for a biquad filter, assuming that
coe�cients are calculated ahead of time, is provided in the
appendix; the compiled code is quite terse.

// the following is Genish .js end�user code ...
const graph = accum (

440 / samplerate ,
0,
{ min:�1, max :1 }

)

// ... and compiles into the following function :
function gen(){

"use strict "
var memory = gen. memory

var accum123_value = memory [2]
memory [2] += 0.009977324263038548
if(memory [2] >= 1) memory [2] �= 2

memory [0] = accum123_value

return memory [0]
}

Listing 1: A sawtooth oscillator in Genish.js

3.2 Unit generators
Table 3.2 shows most of the unit generators that Genish.js
provides. Although many ugens are shared between Gen
and Genish.js, Genish.js does contain a few notable di↵er-
ences. These typically account for di↵erences between the
patching environment that Gen is embedded in and the tex-
tual environment that Genish.js code is written in. Genish.js
also contains both two-stage and four-stage envelopes that
are not found in Gen; we considered these useful enough to
include despite being at a higher level of abstraction than
typical library ugens.

3.3 Memory management
Genish.js allocates a single heap containing all memory used
in a generated output function; the size of the heap is user-
adjustable but defaults to a Float32Array of length 4096.
Using a single heap substantially improves lookup speed of
phase, wavetables, delay lines, and other stored information;
it is also part of what makes asm.js (see Section 3.4) e�cient.

When each ugen is instantiated it requests a block of mem-
ory to be allocated. After performing allocation, a memory
manager returns an index into the heap that the ugen should
use for all subsequent read and write operations. Memory

Table 1: genish.js ugens by type

Integrators accum, counter

Bu↵ers data, peek, poke

Waveforms phasor, cycle (sine oscillator),
noise, train (impulse train)

Math / Numeric add, mul, div, sub, sin, asin, cos,
acos, tan, tanh, atan, pow, abs,
sqrt, round, floor, ceil, sign, fold,
wrap, clamp

Logic & Comparison eq, max, min, gt, lt, gtp, ltp, gte,
lte, not, bool, and, ifelse

Feedback & Filters delay, history, dcblock, slide

Enveloping ad, adsr, t60

Miscellaneous switch, selector, gate, pan, in,
param, bang

management is performed using a library named Memory-
Helper4, specifically created to support genish.js. Unlike
other similar JavaScript libraries, MemoryHelper performs
no checks to see if particular indices can be read from or writ-
ten to by a given object; this tradeo↵ increases the speed of
memory access but also creates the possibility that, if im-
properly written, a ugen might overwrite memory used by
another ugen. In our experience the compilation stage of
Genish.js has been e↵ective in preventing such problems.

3.4 Using asm.js as a compilation target
Genish.js can also target asm.js, a subset of JavaScript which
runs more e�ciently in most browsers. The biggest benefits
accompanying asm.js are type information provided to the
compiler along with the use of a single memory heap. As
Genish.js already used a single heap (see 3.3) the primary
implementation task in getting Genish to compile to asm.js
was adding the necessary typing information to each variable
in the compiled code.

The audio programming langauges Faust and Csound also
have the ability to compile to asm.js [4, 3]. Both are richer
audio frameworks than Genish.js, and include a wide variety
of tools for analysis in addition to synthesis. A debatable
advantage of genish.js in comparison is that it is JavaScript
end-to-end, making it potentially easier for developers who
are not experienced with the Faust and Csound languages.
Additionally, using asm.js with Faust requires either that
DSP is compiled ahead of time into JavaScript files that are
then statically included on a page, or that the entire Em-
scripten compiler (which is responsible for converting Faust
to asm.js) is also embedded in a website if dynamic compila-
tion of end-user code is required. Genish.js imposes neither
of these requirements.

3.5 Operator Overloading with JSDSP
Although JavaScript is now e�cient enough to execute low-
level DSP functions at audio rate, the task of writing these
functions can often be somehwat arduous. In particular, the
lack of operator overloading in JavaScript makes DSP func-
tions both more time consuming to write and more di�cult
to read. For example, consider the two functions created

4https://github.com/charlieroberts/MemoryHelper

using genish.js as shown in Listing 2. Both functions gen-
erate the same output graph consisting of tremolo applied
to a sine oscillator. The first example uses arithmetic ugens
while the second takes advantage of operator overloading.

// using arithmetic ugens
const createGraph = (freq , gain) => {

const lfo = mul(cycle (4) , 10)
return mul(cycle (add(freq , lfo)), gain)

}

// with operator overloading
const createGraph = (freq , gain) => {

"use jsdsp "
const lfo = cycle (4) � 10
return cycle (freq + lfo) � gain

}

Listing 2: Comparing arithmetic ugens and operator

overloading in genish.js

We argue that the second example, using operator overload-
ing, is easier to both read and write. For more complex
graphs of ugen nodes, in particular the di↵erential equations
used in most filters, avoiding complex nesting of mathemat-
ical operators brings benefits in terseness, expressiveness,
and readability. In Genish.js we’ve provided many of the
benefits of operator overloading as a plugin for Babel5, a
widely used JavaScript compiler and transpiler. This plu-
gin, named jsdsp, can either be used as part of a build script
(for JavaScript production tools such as gulp or grunt) or, in
the case of in-browser code editors, added as a compilation
stage that is run whenever code is dyanmically executed by
users. In the Genish.js playground we’ve added a button
that toggles use of jsdsp on or o↵, so that end-users can
judge for themselves if the use of the jsdsp plugin is merited
for their particular application. The ‘use jsdsp’ directive
can be placed at the top of any functional scope (similar
to the ‘use strict’ directive) or placed at the top of any
block to enable the extra compilation stage.

4. IMPROVING GIBBERISH
The goal of Genish.js is to standardize low-level DSP op-
erations in unit generators that are e�cient, reusable, and
testable. Previous versions of Gibberish lacked this type
of low-level library to work with, leading to a library that
was di�cult to optimize as optimizations were often specific
to a particular synthesis object, rather than shared across
the library. For example, any optimization applied to the
accum ugen will automatically improve every DSP algorithm
involving phase in Genish.js, whereas in older versions Gib-
berish each synthesis ugen handled phase in its own idiosyn-
cratic way.

While many a↵ordances of Gibberish remain the same
(per-sample processing, sample-accurate scheduling, audio-
rate modulation of scheduling, single-sample feedback loops)
in the newest version of Gibberish almost all DSP was writ-
ten using Genish.js. Each synthesis object in Gibberish con-
sists of a compiled Genish.js function along with methods for
connecting these functions together and performing other
miscellaneous initialization tasks. Gibberish then uses these
individual callbacks to generate a master callback function
that returns the output of processing the entire audio graph,
one sample (or stereo pair) at a time. These samples are in

5http://babeljs.io

then used to populate the audio bu↵ers provided by a Script-
Processor node.

Incorporating Genish.js led to a variety of new features in
Gibberish that improve its overall sonic character and ease
of use.

4.1 Filters in Gibberish
Two new “virtual analog” filters have been added to Gib-
berish, using zero-delay algorithms described by Pirkle [6].
The first filter models the 24dB per octave Moog ladder fil-
ter, while the second models the diode filter design found in
the Roland TB-303, a well-known analog monosynth. Com-
bined with the previous ladder filter alogrithm as well as
biquad and state variable filters, there are now five di↵erent
filters that users can apply to instruments (in addition to
utility comb and allpass filters).

In prior versions of Gibberish, there were separate classes
of synths for those that included a filter as opposed to those
that only included an oscillator and an envelope. In the
current version, filters can be enabled at any point in time
and end-users can easily experiment with using di↵erent fil-
ter models. There are a number of possible design patterns
that we could have use to enable this, including swapping
nodes in the audio graph at run time or large branching
control structures to accommodate all filter use cases. How-
ever, in keeping with the theme of code generation found
throughout Gibberish and genish, we instead simply recom-
pile the callback function for the synthesizer (generated by
genish.js) whenever a filter is enabled or a di↵erent model
is selected. A similar strategy is used in select other cases
where providing the ability to change a property would re-
sult in extremely large branching structures. For example,
oscillators can easily be switched between algorithmic ap-
proaches, wavetables, and anti-aliased versions using FM
feedback. When such a change occurs, the oscillators com-
piled function is simply re-compiled.

4.2 Authoring Unit Generators
In addition to improving e�ciency, the incorporation of Gen-
ish.js into Gibberish has also provided a standardized method
of authoring unit generators. Gibberish has a factory()

method that accepts a Genish.js graph and a list of public
properties that are tied to inputs in the graph; this method
returns a Gibberish unit generator that can easily be con-
nected to a Gibberish audio graph. In Listing 3 we provide a
complete example createing a mono gain filter in Gibberish.

MonoGain = function (input =0, gain =1) {
const ugen = Object . create (

Gibberish . prototypes .ugen
)
const __input = genish .in(" input ")
const __gain = genish .in("gain")
const graph = genish .mul(__input , __gain)

// factory method accepts ugen , a genish .js
// graph , a name , and a property dictionary
Gibberish . factory (

ugen ,
graph ,
" monogain ",
{ " input ":input , "gain":gain }

)

return ugen
}

// synth �> monogain �> output
syn = Synth ()
gain = MonoGain (syn , .5). connect ()

Listing 3: Defining and using a Gibberish unit

generator

The Gibberish playground contains a detailed tutorial on
authoring unit generators using genish.js.

4.3 Miscellaneous Changes
Other improvements include a new chorus model based on
the circuitry found in the ARP Solina string model (ported
from a Csound opcode by Steven Yi), selectable waveforms
and a feedback parameter for the two-operator FM synthe-
sizer (which now features an optional filter as well), and
a implementation of the Datorro plate reverb algorithm in
addition to Freeverb. Many of these new features incur in-
creased computational costs, bringing new importance to
the performance improvements gained by using Genish.js.

5. EVALUTION
We briefly consider three criteria when evaluating these li-
braries. The first concerns the reliability of the libraries
themselves. Genish.js features extensive unit tests and also
includes performance benchmarks justifying various com-
piler decisions; these tests extend to its custom memory
manager.

Another evaluation criteria is the ease of using these li-
braries. Although we have not conducted any formal user
studies, we believe having a standard library of ugens to
draw upon (genish.js) simplifies the process of authoring
higher-level synthesis and e↵ects objects in Gibberish. And
in our personal experience, DSP routines authored using the
operator overloading provided by the jsdsp Babel plugin are
much more appealing to both read and write compared to
explictly instantiating unit generators for basic mathemati-
cal and logical operations.

E�ciency is another important criteria; however, it is dif-
ficult to evaluate these libraries in comparison to other Java-
Script audio/music programming systems as each has di↵er-
ent a↵ordances and constraints. For example, while genish.js
a↵ords synthesis techniques not possible in other libraries,
it imposes costs through both its reliance on the Script-
Processor node and its use of per-sample processing. The re-
sults of preliminary benchmarks comparing genish.js to the
native WAAPI nodes in three common synthesis tasks are
displayed in Table 2. Considering that the built-in WAAPI
nodes are written in C++ instead of JavaScript and perform
block-based processing of the graph instead of processing
one sample at a time, we feel the benchmarks for genish.js
are strong — and in some cases are even better than the
benchmarks of the native WAAPI nodes. While these three
preliminary synthesis benchmarks are not enough to make
any type of definitive statements about performance, the re-
sults are promising. All tests were performed on a late 2016
Macbook Pro (2.6 GHz Core i7) running macOS 10.12.36.

Comparing prior versions of Gibberish created without us-
ing genish.js is a more important test for us, is the increase in
improvement from prior versions of Gibberish to the most re-
cent one that employs genish.js, and we are pleased to note a
⇡ 3x performance improvement in many applications. This

6http://tinyurl.com/genish-benchmarks

Table 2: Performance comparison (mean and stan-

dard deviation, n = 100) between genish.js and the

WAAPI.

100 sine oscillators for 1 minute

genish.js (Chrome) 2385ms, � = 76ms
WAAPI (Chrome) 2987ms,� = 71ms
genish.js (FF) 3515ms, � = 181ms
WAAPI (FF) 2680ms,� = 171ms

50 sine oscillators w/ vibrato for 1 minute

genish.js (Chrome) 2568ms,� = 104ms
WAAPI (Chrome) 1670ms, � = 102ms
genish.js (FF) 4171ms,� = 218ms
WAAPI (FF) 5248ms, � = 275ms

50 saw oscillators w/ envelopes for 1 minute

genish.js (Chrome) 2804ms,� = 104ms
WAAPI (Chrome) 2029ms, � = 102ms
genish.js (FF) 11281ms, � = 218ms
WAAPI (FF) 2955ms,� = 275ms

enables the use of more sophisticated filters and e↵ects that
would have been prohibitively expensive in prior versions of
the library.

6. CONCLUSION
There are serious limitations with the current implementa-
tion of the ScriptProcessor node, and web audio develop-
ers need to carefully weigh the benefits of writing sample-
processing routines in JavaScript against its drawbacks. How-
ever, the upcoming AudioWorklet specification should re-
move many of the problems associated with per-sample pro-
cessing in the the browser, and we believe that performing
processing o↵ the main thread and removing the additional
bu↵er of latency that the ScriptProcessor currently imposes
should make writing DSP in JavaScript much more appeal-
ing. The AudioWorklet will make libraries using per-sample
techniques increasingly relevant, and we hope Genish.js will
fill this role for many developers. It comes with an exten-
sive testing suite, documentation, and encouraging perfor-
mance results in preliminary tests comparing it to the native
WAAPI nodes.

Notably lacking from Genish.js and Gibberish are features
for analysis, re-synthesis, and convolution. When nodes au-
thored with Genish.js are used in conjunction with the native
WAAPI nodes in a graph this is not an issue. But inside of
Gibberish, where the entire graph is processed in a single
ScriptProcessor node, these are significant constraints. We
hope to integrate these features into Genish.js in the near
future, and subsequently continue to expand the synthesis
options available in Gibberish.

In addition to its incorporation in Gibberish, Genish.js is
also used in gibberwocky.midi [8], a live-coding environment
for the browser that uses Genish.js to create modulation
signals transmitted as MIDI Control Change messages. We
looked forward to adopting it in other future projects.

7. ACKNOWLEDGMENTS
We would like to thank Graham Wakefield for answering
general questions regarding the Gen framework, and to ac-

Figure 1: The Gibberish playground, with end-user code on the left and compilation output on the right.

knowledge Cycling ’74 more broadly for the inspiration their
product had on the research presented here. We would also
like to thank Paul Adenot for his (most excellent!) sugges-
tion to use a single block of memory in Genish.js callbacks.

8. REFERENCES
[1] C. Clark and A. R. Tindale. Flocking: A Framework

for Declarative Music-Making on the Web. In
International Computer Music Conference, 2014.

[2] K. L. Kim and W. S. Yeo. Griddy: a drawing based
music composition system with multi-layered
structure. In Proceedings of the International
Computer Music Conference, 2014.

[3] V. Lazzarini, E. Costello, S. Yi, et al. Csound on the
Web. In Proceedings of the 2014 Linux Audio
Conference, pages 77–84. University of Bath, 2014.

[4] S. Letz, S. Denoux, Y. Orlarey, and D. Fober. Faust
audio dsp language in the web. In Proceedings of the
Linux Audio Conference (LAC-15), Mainz, Germany,
2015.

[5] Y. Mann. Interactive Music with Tone.js. In
Proceedings of the 1st annual Web Audio Conference,
2015.

[6] W. Pirkle. Virtual analog (va) filter implementation
and comparisons. 2013.

[7] C. Roberts and J. Kuchera-Morin. Gibber: Live
Coding Audio In The Browser. Proceedings of the
International Computer Music Conference, 2012.

[8] C. Roberts and G. Wakefield. gibberwocky: New
Live-Coding Instruments for Musical Performance. In
Proceedings of the New interfaces for Musical
Expression Conference, 2017.

[9] C. Roberts, G. Wakefield, M. Wright, and
J. Kuchera-Morin. Designing musical instruments for
the browser. Computer Music Journal, 39(1):27–40,
2015.

[10] B. Taylor and J. Allison. BRAID: A web audio
instrument builder with embedded code blocks. In
Proceedings of the 1st international Web Audio
Conference, 2015.

[11] T. Tsuchiya, J. Freeman, and L. W. Lerner.
Data-Driven Live Coding with DataToMusic API. In
Proceedings of the 2nd annual Web Audio Conference.
Georgia Institute of Technology, 2016.

[12] G. Wakefield. Real-Time Meta-Programming for
Interactive Computational Arts. PhD thesis,
University of California Santa Barbara, 2012.

[13] L. Wyse and S. Subramanian. The Viability of the
Web Browser as a Computer Music Platform.
Computer Music Journal, 37(4):10–23, 2013.

APPENDIX
Below is a compiled Genish.js function for a the sample pro-
cessing routine of a biquad filter, as described in Section 3.1:

function gen(input){
"use strict "
var memory = gen. memory

var mul7 = input � memory [3]
var mul9 = memory [2] � memory [5]
var mul10 = memory [4] � memory [6]
var add11 = mul7 + mul9 + mul10
var mul13 = memory [7] � memory [9]
var mul14 = memory [8] � memory [10]
var add15 = mul13 + mul14
var sub16 = add11 � add15
memory [0] = sub16

memory [2] = input
memory [4] = memory [2]
memory [8] = memory [7]
memory [7] = sub16

return memory [0]
}

