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Abstract

Device-to-device (D2D) communications underlaying a cellular infrastructure takes advan-

tage of the physical proximity of communicating devices and increasing resource utili-

sation. However, adopting D2D communications in complex scenarios poses substantial

challenges for the resource allocation design. Meanwhile, matching theory has emerged

as a promising framework for wireless resource allocation which can overcome some lim-

itations of game theory and optimisation. This thesis focuses on the resource allocation

optimisation for D2D communications based on matching theory.

First, resource allocation policy is designed for D2D communications underlaying cellu-

lar networks. A novel spectrum allocation algorithm based on many-to-many matching

is proposed to improve system sum rate. Additionally, considering the quality-of-service

(QoS) requirements and priorities of different applications, a context-aware resource allo-

cation algorithm based on many-to-one matching is proposed, which is capable of pro-

viding remarkable performance enhancement in terms of improved data rate, decreased

packet error rate (PER) and reduced delay.

Second, to improve resource utilisation, joint subchannel and power allocation problem

for D2D communications with non-orthogonal multiple access (NOMA) is studied. For

the subchannel allocation, a novel algorithm based on the many-to-one matching is

proposed for obtaining a suboptimal solution. Since the power allocation problem is

non-convex, sequential convex programming is adopted to transform the original power

allocation problem to a convex one. The proposed algorithm is shown to enhance the

network sum rate and number of accessed users.

Third, driven by the trend of heterogeneity of cells, the resource allocation problem for

NOMA-enhanced D2D communications in heterogeneous networks (HetNets) is investi-
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gated. In such a scenario, the proposed resource allocation algorithm is able to closely

approach the optimal solution within a limited number of iterations and achieves higher

sum rate compared to traditional HetNets schemes.

Thorough theoretical analysis is conducted in the development of all proposed algorithms,

and performance of proposed algorithm is evaluated via comprehensive simulations.

This thesis concludes that matching theory based resource allocation for D2D commu-

nications achieves near-optimal performance with acceptable complexity. In addition,

the application of D2D communications in NOMA and HetNets can improve system

performance in terms of sum rate and users connectivity.
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Chapter 1

Introduction

1.1 Background

This section summarises the research motivation and research challenges in D2D com-

munications.

1.1.1 Research Motivation

The fifth generation (5G) mobile network has evolved into a full-fledged topic around

the world thus far, which is envisioned to be deployed beyond 2020. Driven by the

penetration of smart devices, compelling services, and the better user interface design,

the amount of overall mobile data traffic is foreseen to increase by a factor of 100: from

under 3 exabytes in 2010 to over 190 exabytes by 2018 [ABC+14]. In addition, the

number of devices is increasing at a brisk pace, which will reach the tens or hundreds

of billions compared to that in the fourth generation (4G) system. The sheer volume of

data and the deluge of devices provide the preliminary 5G with the impetus to address

six challenges, including higher capacity, higher data rate, lower end-to-end latency,

massive device connectivity, reduced cost, and consistent Quality of Experience (QoE)

provisioning [MET13, Hor13], to provide a seamless user experience.

Based on the current trend, the spectrum crisis and users’ desire for anywhere,

1



Chapter 1. Introduction 2

Figure 1.1: General 5G cellular network architecture [LWC+16].

anytime high-speed connectivity that can not be properly accommodated even by 4G,

necessitate a new 5G network architecture. The primary technologies and approaches

identified by E. Hossain et al. [HH15b] for 5G networks are dense heterogeneous net-

works (HetNets), device-to-device communication, full-duplex communication, massive

multiple-input multiple-output massive (MIMO) and millimeter wave (mmWave) com-

munications technologies, energy-aware communication and energy harvesting, cloud-

based radio access network (C-RAN) and visualisation of wireless resources. Figure 1.1

illustrates the enabling technologies and expected goals for 5G networks.

D2D communications in cellular networks is defined as direct communication between

two mobile users without traversing the evolved NodeB (eNB) or core network, as shown

in Figure 1.2. In a traditional cellular network, all communications must go through the

eNB even if both communicating parties are in range for D2D communications. This

architecture suits the conventional low data rate mobile services such as voice call and

text message in which users are not usually close enough to have direct communication.

However, mobile users in today’s cellular networks use high data rate services (e.g., video

sharing, gaming, proximity-aware social networking) in which they could potentially be

in range for direct communications (i.e., D2D). Hence, D2D communications in such
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eNB

UE1

UE2

UE3

UE4

UE5

UE6

UE9

UE8

UE7

Cellular uplink D2D link Interference link

Figure 1.2: The concept of D2D communications underlaying cellular net-
works.

scenarios can highly increase the spectrum efficiency of the network [DRW+09a].

1.1.2 Research Challenge

Despite the potential gains of D2D communications, it may also cause interference to

the cellular network as a result of spectrum sharing. To guarantee the quality-of-service

(QoS) requirements of primary cellular users, interference constraints need to be taken

into consideration, which inevitably makes the resource allocation rules complicated.

Therefore, new challenges and issues arise. How to maximise system capacity while

guaranteeing service quality for both cellular users and D2D users stays as a big chal-

lenge, especially when dense D2D users are supported in an underlay mode. In order to

understand the problems and develop various mechanisms to support desirable D2D com-

munications in cellular networks, this is a need to be empowered with effective analytical

and simulation tools. Matching theory has recently received a great deal of attentions

in wireless communications and been considered as an effective tool for this purpose.

Most existing works are restricted to very limited aspects of resource allocation adopting
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matching theory, which is mainly due to the sparsity of tutorials that tackle match-

ing theory from an engineering perspective. Hence, novel resource allocation policies

adopting matching theory should be investigated with respect to D2D communications.

Furthermore, inspired by the potential benefits of D2D communications, it is natural

to investigate the promising application of D2D communications in some existing tech-

nologies, such as non-orthogonal multiple access (NOMA) and HetNets. Note that the

co-consideration of these technologies poses additional challenges in terms of interference

management since it brings additional co-channel interference to the existing network.

As such, how well the application of D2D communications in NOMA and HetNets could

improve the network performance, i.e., sum rate and users connectivity, still remains

unknown. Investigating novel resource allocation design for intelligently managing and

coordinating various types of interference is more than desired.

In this thesis, a great emphasis is given to the resource allocation design for D2D

communications based on matching theory.

1.2 Research Contributions

The contributions of the thesis are summarised as follows:

• An extensive and in-depth overview of the state-of-the-art resource allocation for

D2D communications and matching theory is carried out. Furthermore, the current

challenges are highlighted, which sheds lights on the research directions.

• A novel resource allocation approach for D2D communications based on the many-

to-many matching is proposed to improve resource utilisation. Subsequently, a

novel context-aware resource allocation algorithm is proposed to address QoS

requirements of different applications as well as priorities of applications in dif-

ferent hardware devices. Therefore, D2D users’ sum rate is improved and delay

and packet error rate (PER) are decreased.
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• A novel NOMA enhanced D2D scheme is proposed to improve resource utilisa-

tion. With the aid of matching theory, an effective resource allocation algorithm

is proposed for maximising the system sum rate. It is demonstrated that the pro-

posed algorithm can achieve the near-optimal system sum rate, and outperform

the OMA-based D2D framework.

• A novel system of D2D communications in HetNets with NOMA is proposed, and a

joint spectrum allocation and power control problem is formulated with the aim of

maximising the sum rate of small cell users (SCUs) and D2D users while considering

fairness issues. A distributed resource allocation algorithm is proposed based on

the matching theory to maximise the sum rate of SCUs and D2D users. More

importantly, a novel concept of “experimentation” is introduced to the matching

algorithm to further improve the performance by exploring the space of matching

states.

• Thorough theoretical analysis is conducted in the development of all the proposed

algorithms, which are evaluated via the comprehensive MATLAB simulations.

1.3 Author’s Publication

• Journal Papers

1. J. Zhao, Y. Liu, K. K. Chai, A. Nallanathan, Y. Chen, and Z. Han. “Spec-

trum Allocation and Power Control for Non-Orthogonal Multiple Access in

HetNets”, IEEE Transactions on Wireless Communications; accepted to appear.

2. J. Zhao, Y. Liu, K. K. Chai, Y. Chen, and M. Elkashlan. “Joint Subchannel

and Power Allocation for NOMA Enhanced D2D Communications”, IEEE

Transactions on Communications; (minor revision).

3. J. Zhao, Y. Liu, K. K. Chai, M. Elkashlan, and Y. Chen. “Matching
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with Peer Effects for Context-Aware Resource Allocation in D2D Commu-

nications”, IEEE Communications Letters; vol. 21, no. 4, pp. 837–840,

Apr. 2017.

4. J. Zhao, Y. Liu, K. K. Chai, Y. Chen, and M. Elkashlan. “Many-to-Many

Matching with Externalities for Device-to-Device Communications”, IEEE

Wireless Communications Letters; vol. 6, no. 1, pp. 138–141, Feb. 2017 .

5. J. Zhao, K. K. Chai, Y. Chen, J. Schormans, and J. Alonso-Zarate. “Joint

Mode Selection and Resource Allocation for Machine-Type D2D Links”, Trans-

actions on Emerging Telecommunications Technologies, DOI: 10.1002/ett.3000,

Nov. 2015

• Conference Papers

1. J. Zhao, Y. Liu, Z. Han, K. K. Chai, Y.Chen, and A. Nallanathan. “Resource

Allocation in Cache-Enabled CRAN with Non-Orthogonal Multiple Access”,

in IEEE Global Communications Conference (GLOBECOM’17); (under review).

2. J. Zhao, Y. Liu, K. K. Chai, A. Nallanathan, Y. Chen, and Z. Han. “Resource

Allocation for Non-Orthogonal Multiple Access in Heterogeneous Networks”,

in Proc. IEEE International Conference on Communications (ICC’17), Paris,

France, May 2017.

3. J. Zhao, Y. Liu, K. K. Chai, Y. Chen, M. Elkashlan, and J. Alonso-Zarate.

“NOMA-based D2D Communications: Towards 5G”, in Proc. IEEE Global

Communications Conference (GLOBECOM’16), Washington, DC, USA, Decem-

ber 2016.

4. J. Zhao, K. K. Chai, Y. Chen, J. Schormans, and J. Alonso-Zarate. “Two-

Level Game for Relay-Based Throughput Enhancement via D2D Commu-

nications in LTE Networks”, in Proc. IEEE International Conference on

Communications (ICC’16), Kuala Lumper, Malaysia, May 2016.
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5. J. Zhao, K. K. Chai, Y. Chen, J. Schormans, and J. Alonso-Zarate. “Joint

Mode Selection and Radio Resource Allocation for D2D Communications

Based on Dynamic Coalition Formation Game”, in Proc. European Wireless

(EW’15), Budapest, Hungary, May 2015. (invited paper)

1.4 Thesis organisation

Chapter 2 gives an overview of D2D communications and matching theory, and sum-

marises the state of the art on the resource allocation for D2D communications, MOMA

and HetNets, as well as the application of matching theory in wireless communications.

Chapter 3 investigates the resource allocation for D2D communications based on

matching theory. It begins with the proposed many-to-many matching algorithm to

improve resource utilisation. Subsequently, it presents the work about context-aware

optimisation on resource allocation to improve data rates as well as decrease delay and

PER. The theoretical analysis and performance evaluation are carried out for these

proposed algorithms.

Chapter 4 presents the resource allocation policy in NOMA-enhanced D2D commu-

nications, where efficient joint spectrum allocation and power control algorithm is devel-

oped. The theoretical analysis and performance evaluation of the proposed algorithm

provide guidelines on how well the application of NOMA could improve the performance

of D2D communications.

Chapter 5 investigates the emerging paradigm of D2D communications in HetNets

with NOMA, where both SBSs and D2D transmitters communicate with receivers via

the NOMA protocol. A novel matching algorithm is proposed to improve sum rate while

taking account of the fairness issue. The theoretical analysis and performance evaluation

are conducted during the development of the proposed algorithm.

Chapter 6 generates insights into the conclusions and future work.



Chapter 2

Fundamental Concepts and
State-of-the-Art

This chapter first introduces the fundamental concepts about D2D resource allocation

and matching theory, and then summarises related state-of-the-art.

2.1 Fundamentals of Resource Allocation in D2D Commu-

nications

Generally, D2D communications can be classified into two categories based on the spec-

trum in which D2D communications occur, which are shown in the following:

• Outband D2D: Here, the D2D links exploit unlicensed spectrum, i.e., industrial,

scientific and medical (ISM) spectrum. The motivation behind using outband

D2D communications is to eliminate the interference issue between D2D and cel-

lular links. However, outband D2D may suffer from the uncontrolled nature of

unlicensed spectrum. Besides, using unlicensed spectrum requires an extra inter-

face and usually adopts other wireless technologies such as WiFi Direct [All10] or

Bluetooth [Blu01]. It should be noted that only cellular devices with two wireless

interfaces (e.g., LTE and WiFi) can use outband D2D.

• Inband D2D: The literature under this category proposed to use the cellular spec-

8
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Inband

Outband

Cellular Spectrum Cellular Spectrum

D2D

Cellular

D2D

Cellular

Underlay

D2D
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Cellular Comm. D2D Comm.

Cellular Spectrum ISM Spectrum

Figure 2.1: Schematic representation of overlay inband, underlay inband, and
outband D2D.

trum for both D2D and cellular links. The motivation for choosing inband commu-

nication is usually the high control over cellular (i.e., licensed) spectrum. Inband

communication can be further divided into underlay and overlay categories. In

underlay D2D communications, cellular and D2D communications share the same

radio resources. In contrast, D2D links in overlay communication are given dedi-

cated cellular resources. Inband underlay D2D can improve the spectrum efficiency

of cellular networks by reusing spectrum resources. However, it may also brings in

co-channel interference between D2D and cellular links. This interference can be

mitigated by introducing efficient resource allocation policies.

Figure 2.1 graphically depicts the differences among underlay inband, overlay inband,

and outband communications.

To provide controllable interference as well as high spectrum efficiency, this thesis

focuses on the D2D communications underlaying inband cellular spectrum, which holds
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the promise of three types of gains [FDM+12]: 1) The proximity gain refers to the achieve-

ment of extremely high bit rates, low delays and low power consumption thanks to the

reduced transmission range bypassing the eNB; 2) The spectrum reusing between D2D

and traditional cellular user equipments (UEs) could improve the spectrum efficiency,

which is regarded as the reuse gain; and 3) The hop gain implies the single hop in the

D2D mode instead of the two hops, i.e., uplink (UL) and downlink (DL) transmissions,

in the traditional cellular mode.

Apart from the aforementioned gains, D2D communications could also bring the

benefits in cellular coverage improvement, and enabling new peer-to-peer and location-

based applications and services.

However, D2D communications reusing the spectrum of cellular networks poses the

intra-cell interference which is no longer negligible, and subsequently the cellular com-

munication system needs to cope with new interference situations. Some efficient inter-

ference coordination schemes have been formulated to guarantee the target performance

level of the cellular communication [DRW+09a, YTDR09a, YTDR09b, XH10]. In order

to further improve the gain brought by the intra-cell spectrum reusing, effectively pair-

ing the cellular and D2D UEs for sharing the same resources is needed. All the afore-

mentioned aspects mirror the inherent nature which imposes substantial challenges to

the resource allocation for D2D communications. This thesis focuses attention on the

resource allocation for D2D communications based on matching theory.

2.2 Fundamentals of Matching Theory

Matching theory, a Nobel-prize winning framework, is a power tool to study the for-

mation of dynamic and mutually beneficial relations among different types of rational

and selfish agents [RS92, M+14]. It has been widely used to develop high performance,

low complexity and decentralised protocols. Recent research progresses has introduced

matching theory to wireless communications to address major technical opportunities
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and challenges. In particular, the advantages of matching theory for wireless resource

management include:

• It is suitable for characterising interactions between heterogeneous nodes, each of

which has its own type, objective, and information;

• It has the ability to define general “preferences” related to heterogeneous and

complex QoS requirements for UEs in wireless network;

• The solution of matching-theory based algorithms always convergences to a stable

state;

• The efficient algorithmic implementations are inherently self-organising and amenable

to fast implementation.

Recently, there has been significant progress in intensive research work that uses

matching theory to handle resource allocation problems in wireless networks, such as

in cognitive radio (CR) networks [YLZ10, BLVL13], heterogeneous cellular networks

[BLH+14], physical layer security systems [BLH+13], distributed orthogonal frequency-

division multiple access (OFDMA) networks [Jor11], routing, and queuing systems [LZ03,

SSD07].

2.2.1 Basic Definitions

2.2.1.1 Utility function

In matching theory, utility is a measure of motivation of a player over a set of actions.

To evaluate the overall satisfaction of a player in matching games, the utility function,

denoted by U , is considered. It combines all the multiple related parameters to a single

variable to represent the net gains [HNH09]. These parameters can be of different types.

Utility functions have been widely used in wireless literature to model various radio

resource management problems [LBH06, JGL05].
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2.2.1.2 Preference list

The main goal of matching is to optimally match two sets of agents together, given their

individual utilities. If there are two finite and disjoint sets of agents, A = {a1, ..., an, ..., aN}

and B = {b1, ..., bm, ...., bM}, then each agent an ∈ A ranks the agents of the opposite

set B, using a preference relation �an that is a complete and transitive binary relation

between the set of agents of the opposite set. The notation bm′ �an bm implies that

agent an prefers agent bm′ to bm, and similarly, an′ �bm an implies that agent bm prefers

agent an′ to an. To put it simply, the preference of an agent over other agents can be

shown by the utility value that quantifies the performance of each agent in relation with

other agents.

2.2.1.3 Externalities/Peer effects

In regular matching models, the preferences of agents over each other is fixed over time.

In such a model of two-sided matchings, the preference of each agent only depends on

with whom the agent is being matched. It means that the agents do not care about

whom the other agents are going to matching with. However, there are scenarios where

it is important for an agent to know who is matched to other agents because they

may share the same resources. This matching is called matching with externalities. For

example, if a user subchannel matching is considered in a traditional D2D network, where

subchannels can be accessed by multiple D2D pairs. At the beginning D2D pair A may

choose subchannel C as its most preferred subchannel. However, when the network gets

congested with more D2D pairs allocated to subchannel C, the interference level in this

subchannel increases, and D2D pair A may change its most preferred subchannel. In

other words, the preference of D2D pair A over subchannel C depends on the choices of

other D2D pairs. In another example, in a college admission problem, a student may

not only care about the quality of the college that he/she is going to apply for but also

who else is applying for the same college.
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A matching game with externalities is defined as [Gal84]:

Definition 1. A matching game with externalities is represented as a tuple G = (A,B,U),

where (A,B) is the set of agents and U is a real valued function such that U (an, bm|Ω)

is the utility of agent pair (an, bm) when matching Ω forms.

In the matching without externalities, the actions chose by other agents do not have

any effect on other agents because their utility depends only on whom the agent is

matched with. Therefore, U (an, bm) denotes the utility value of an when an and bm are

matched. Now with externalities, the amount U (an, bm|Ω) denotes the utility of (an, bm)

at Ω, where the utility of each agent depends on the underlaying matching state.

2.2.2 Classifications

The simplest matching model is the marriage problem, i.e., one-to-one matching, which

was first introduced by Gale and Shapley in [GS62]. It is an interesting and highly

practical framework that discusses the matching among men and women. In the marriage

problem, men have preferences over women, and women have preferences over men. The

outcome of the marriage problem needs to be a set of marriages such that there are no

two people of opposite sex who would both prefer each other over their current partners.

In other words, the marriages need to be stable.

In addition to the classical one-to-one matching, in reality there are many practical

scenarios in which the agents in one side of the matching are allowed to be matched

with a number of other agents from the other side of the matching, i.e., many-to-one

matching, such as college admission where the students are admitted to a college. Finally,

if the number of the allowable matches for both sides of the matching is unrestricted,

then it becomes a many-to-many matching problem. A general matching structure that

demonstrates three types of matching configurations is shown in Figure 2.2.



Chapter 2. Fundamental Concepts and State-of-the-Art 14

Set of agents A Set of agents B

a1
b1

One-to-one matching

Many-to-one matching

Many-to-many matching

Preference {ai}={bk, bj, bl, ...}
 Preference {bj}={am, ai, an, ...}

b2

b3 b4

b5

b6 b7

b8

a2

a3

a4

a5

a6

a7

a8

a9

Figure 2.2: Classification of matching game.

2.2.2.1 One-to-one matching

In the classical marriage problem, there are two sets of agents, M = {mi}Mi=1 and

W = {wj}Nj=1, which are called men and women, respectively, where each agent has

ranked all members of the other set by a unique preference number. The outcome of the

marriage problem is a one-to-one matching of men and women. The one-to-one matching

is denoted by[RS92]

Definition 2. Given two disjoint sets M and W, a one-to-one matching, Ω, is defined

as an allocation from M∪W to M∪W such that if Ω(m) 6= m, then Ω(m) ∈ W and if

Ω(w) 6= w, then Ω(w) ∈M. The partner of w is referred to as Ω(w) if Ω(w) = m.

Note that Ω(m) = m implies that man m is matched to itself, which means that it is

not matched with any women. An obvious question in the matching process is that at

which step the agents realise that they can not match with better partners and achieve

higher utility anymore. In other words, how stable will a matching behave? The stability

for a one-to-one matching problem is defined as the following:

Definition 3. If there is not any couple comprising one man and one woman who both
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prefer each other over their current partners, all the marriages are called stable.

To implement a stable matching between two sets of agents, matching algorithms

that converge to stable outcomes should be used. A well-known algorithm, which leads

to a stable matching in the marriage problem, is the Deferred Acceptance (DA)/Gale-

Shapely (GS) algorithm as shown in Figure 2.3. In this algorithm, players in one set

make proposals to the other set, whose players, in turn, decide to accept or reject these

proposals, respecting their quota. In particular, assuming the persons of gender A send

proposals to persons of gender B. When the persons of gender A are proposing, each

member of gender B may change between engaged and single status. When an available

person of gender B received an offer, he/she will immediately accept it and become

engaged to the first proposer. When an engaged person of gender B receives another

offer, he/she compares the second proposer with his/her current partner and rejects the

less preferred person of gender A. This iteration continues until all the persons or gender

A or B are matched. In the DA/GS algorithm, players make matching decisions based

on their individual preferences (e.g., available information or QoS metric). This process

admits many distributed implementations which do not require the players to know each

others preferences [GS62]. When the preferences are strict (no indifference), the stable

matching is also Pareto optimal for the proposing players [GS62].

2.2.2.2 Many-to-one matching

There are many practical scenarios in which the agents from one side of the matching

are allowed to be matched with a number of other agents from the other sided of the

matching, such as when students are allocated to a college. College admission is a

good model to analyse the many-to-one matching. lets assume that there are two finite

and disjoint sets C = {ci}|C|i=1 and S = {sj}|S|j=1, which represent the set of colleges and

students, respectively. Each student has preferences over each college, and each college

has preferences over each student.
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Initialise:
 Preference list of A, APL 
  Preference list of B, BPL;

The list of all the agents in A that are not matched, UNMATCH;

Propose:
Each agent in A proposes to its most preferred 

agent in B, and delete it from its APL;

Accept/reject:
Each agent in B keeps the most favorite proposals 

regarding its quota and rejects the other proposals;

Check:
UNMATCH is empty;

Check:
APL is empty;

Terminate:
Stable matching

No

Yes Yes

No

Figure 2.3: DA/GS algorithm.

The difference between the college admission and the marriage model is that asso-

ciated with each college ci there is a positive integer, qi ∈ N, called its quota, which

indicates the maximum number of positions the college may fill. An outcome of the

college admission problem is a matching of students to colleges such that each student

is matched to at most one college, and each college is matched to at most its quota of

students. It is notable that matching is bilateral, in the sense that a student is admitted

at a given college if and only if the college admits that student. This matching is defined

as the following:

Definition 4. Given two disjoint finite sets of players, C = {ci}|C|i=1 and S = {sj}|S|j=1,

then a many-to-one matching function Ω is from the set C ∪ S into the set of all subsets

of C ∪ S such that

1) |Ω(sj)| = 1,∀sj ∈ S, and Ω(sj) = sj if Ω(si) 6⊂ C;

2) |Ω(ci)| ≤ qi,∀ci ∈ C, and Ω(ci) = ci if Ω(ci) 6⊂ S;
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3) Ω(sj) = {ci} iff sj ∈ Ω(ci).

Condition 1) implies that each member of S can be matched to at most one member

of C, condition 2) implies that each member of C can be matched to multiple members

of S, and condition 3) implies that if sj is matched with ci, then ci is also matched with

sj .

To formally define a stable matching, let’s first define a blocking pair. A matching

Ω can be improved upon by a pair (sj , ci) if sj and ci are not matched at Ω but would

both prefer if they are matched together, i.e. if Ω(sj) 6= {ci} and if ci �sj Ω(sj) and

sj ∈ Chci(Ω(ci) ∪ {sj}), where Chci denotes ci’s most preferred subset given a set of

students. In this case, (sj , ci) is called a blocking pair. Given the definition of blocking

pair, the stable matching is defined as the following.

Definition 5. A matching Ω is stable if it cannot be improved upon by any individual

player or any pair (sj , ci).

Since the largest coalition it considers is a (sj , ci) pair, this is a definition of pair-

wise stability. It has been proved in [RS92] that, the set of stable matchings is always

nonempty for matching models without externalities. For matching games with exter-

nalities, two-sided exchange stability should be considered, which will be discussed in

details in the rest of this report.

2.2.2.3 Many-to-many matching

If the number of allowable matches for the agents in both sides of the matching is

unrestricted, it is a many-to-many matching problem.

Definition 6. In the many-to-many matching model, a matching Ω is a function from

the set A ∪ B into the set of all subsets of A ∪ B such that 1) |Ω(an)| ≤ qa, ∀an ∈ A,

and Ω(an) = ∅ if an is not matched to any agent in B; 2) |Ω(bm)| ≤ qb, ∀bm ∈ B, and

Ω(bm) = ∅ if bm is not matched to any agent in A; 3) an ∈ Ω(bm) iff bm ∈ Ω(an),
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where qa ∈ N and qb ∈ N denote quota of agents.

In many-to-many matching models, many stability concepts can be considered depend-

ing on the number of players who can improve their utility by matching to new partners.

In this work, the many-to-many matching model with externalities is considered, and

therefore the two-sided exchange stability is adopted to analyse the stability property of

the proposed algorithm.

Currently, the research on matching theory used in D2D communications is limited

and still in its infancy. The body of work in [GZPH15, HH15a] was based on the classical

deferred acceptance algorithm, where externalities among players were not taken into

consideration. In [Se15], a one-to-one matching model with externalities was discussed.

The authors in [PBS+13] formulated a many-to-one matching problem with externalities.

However, the complexity for analysing the stability of both the one-to-one and many-

to-one matching game with externalities is much lower than that of the many-to-many

one.

2.3 State-of-the-Art

2.3.1 Device-to-Device Communications

Since the system performance can be improved by effectively pairing cellular and D2D

UEs for sharing same resources, radio resource allocation is a critical issue in D2D com-

munications underlaying cellular networks. Some traditional centralised methods have

beed developed to tackle this issue [ZHS10, PLW+09, FLYW+13, WZZY13]. In [ZHS10],

a greedy heuristic RB allocation algorithm was proposed where any cellular UE with

higher channel quality could share RBs with the D2D UE that had lower channel qual-

ity. In [PLW+09], the authors proposed two algorithms to allocate radio resources to

D2D UEs. The two algorithms were based on interference mitigation between cellular

and D2D UEs using interference tracing and tolerable interference broadcasting mecha-
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nisms, respectively. In [FLYW+13], the authors proposed a resource allocation scheme

consisting of there steps, that is, access admission, optimal power control and resource

allocation, to find the optimal solution of the formulated problem. In [WZZY13], a

resource allocation scheme for D2D communications underlaying cellular networks was

proposed, where interference suppression and QoS requirements were taken into consid-

eration.

Motivated by practical factors such as the increasing density of wireless networks

and the need for communications with low latency, effectively managing resource alloca-

tion in complex environment warrants a fundamental shift from traditional centralised

mechanisms toward self-organising and self-optimising approaches. Indeed, there has

been a recent surge in literature that proposes new mathematical tools for implement-

ing distributed resource allocation in D2D communications, such as the game theory

[WXSH15, YXF+14, ZJLZ14, ZCC+15, ZCC+16]. The authors in [WXSH15] proposed

a two-level combinational auction game to jointly allocate channels to D2D UEs and

power to both D2D and cellular UEs to improve energy efficiency. Simulation results

showed that the proposed algorithm improved the system performance in terms of life-

time and data rate. In [YXF+14], the authors considered resource allocation problem

for D2D communications and proposed a solution based on a coalitional game among

D2D UEs, which aimed at minimising the total power while guaranteeing the UEs’ rate

requirements. In [ZJLZ14], a distributed coalition formation algorithm was proposed to

improve the overall data rate of the D2D communication system. The merge-and-split

rule was used as the basic principle for the coalition formation process. In [ZCC+15],

a joint mode selection and resource allocation algorithm is proposed for D2D communi-

cations aiming at improving overall system sum rate. In [ZCC+16], the spectrum and

power allocation problem is investigated in D2D-enabled relay networks.

Despite the potentials by applying game theory to deal with D2D resource allocation,

such approaches present some shortcomings. First, classical game-theoretic algorithms

such as best response will require some form of knowledge on other players actions, thus
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limiting their distributed implementation. Second, most game-theoretic solutions, such

as the Nash equilibrium, investigate one-sided (or unilateral) stability notions in which

equilibrium deviations are evaluated unilaterally per player. Such unilateral deviations

may not be practical when investigating assignment problems between distinct sets of

players. Last, but not least, the tractability of equilibria in game-theoretic methods

requires having some structure in the objective functions which for practical wireless

metrics may not always be satisfied. Recently, matching theory [GZPH15, HH15a, Se15,

PBS+13] has been in the spotlight for wireless resource allocation, which can overcome

some of the limitations of the game theory. The body of work in [GZPH15, HH15a] was

based on the classical deferred acceptance algorithm, where externalities among players

were not taken into consideration. In [Se15], a one-to-one matching model with exter-

nalities was discussed. The authors in [PBS+13] formulated a many-to-one matching

problem with externalities. However, the complexity for analysing the stability of both

the one-to-one and many-to-one matching game with externalities is much lower than

that of the many-to-many one. However, the work for applying matching theory to solve

resource allocation problems in D2D communications is still in its infancy. As such,

this thesis presents detailed work in proposing efficient matching algorithms to provide

performance enhancement in D2D communications in this report.

2.3.2 Non-Orthogonal Multiple Access

NOMA, as a promising candidate in the 5G networks for tackling the massive connec-

tivity and high data speed challenges [DLC+16], has recently received a great deal of

attentions. Having been included in 3GPP long term evolution (LTE) [DLC+16], NOMA

is regarded as one of the promising candidates in future 5G networks for its potential

ability to significantly improve the spectral efficiency [DWY+15, SBKN13]. Different

from the conventional orthogonal multiple access (OMA) technique, NOMA is capable

of supporting multiple users to share the same resource (e.g., time/frequency/code) with

using different power level. In order to better illustrate the concept of NOMA, NOMA
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Figure 2.4: NOMA transmission.

downlink transmission with two users is taken as an example. As shown in Figure 2.4,

the two users can be served by the base station (BS) at the same time/code/frequency,

but with different power levels. Specifically the BS will send a superimposed mixture

containing two messages for the two users, respectively. Recall that conventional power

allocation strategies, such as water filling strategies, allocate more power to users with

strong channel conditions. Unlike these conventional schemes, in NOMA, users with poor

channel conditions get more transmission power. In particular, the message to the user

with the weaker channel condition is allocated more transmission power, which ensures

that this user can detect its message directly by treating the other users information as

noise. On the other hand, the user with the stronger channel condition needs to first

detect the message for its partner, then subtract this message from its observation and

finally decode its own information. This procedure is called successive interference can-

cellation (SIC) (as shown in Figure 2.4). For example, a transmitter transmits contents

to three receivers requiring video, audio and text messages, respectively. If the video

and audio users are with good channel conditions, they can perform SIC for two or three

times to remove their partners’ messages completely and therefore achieve high data

rates. For text users, although they will experience strong co-channel interference, this

is not an issue since they need to be served only with small data rates.

Several initial technical research contributions have been made in deploying NOMA in



Chapter 2. Fundamental Concepts and State-of-the-Art 22

the power domain [DYFP14, TK15, LDEP16, Cho15]. In [DYFP14], a general downlink

NOMA transmission scenario was considered in which one BS was capable of communi-

cating with M randomly deployed users. In [TK15], the fairness issue of NOMA networks

was addressed with knowing different channel state information (CSI) at the BS. Con-

sidering the energy consumption issues, a new cooperative NOMA with invoking wireless

power transfer protocol was proposed in [LDEP16]. Stochastic geometry was employed

to model the locations of users and evaluated the performance of networks. In terms

of multiple-antenna scenarios, a two-stage beamforming approach was proposed for a

multiple-input single-output (MISO) NOMA case in [Cho15], in order to minimise the

system transmit power.

It is worth mentioning that due to the employment of superposition coding transmis-

sion scheme, the power allocation is an eternal problem to be investigated in NOMA,

especially in multiple subchannels/subcarriers/clusters scenarios. Somewhat related

power allocation and subchannel/subcarrier/cluster assignment problems have been stud-

ied in the context of NOMA [DBSL15, LYHS16, SNDS16, LEDK16]. It is worth men-

tioning that due to the employment of superposition coding transmission scheme, the

resource allocation is an eternal problem to be investigated in NOMA, especially in

multiple subchannels/subcarriers/clusters scenarios. More particularly, in [DBSL15] a

many-to-many two-sided matching theory was invoked to solve resource allocation in

downlink multiple subchannels NOMA scenarios, where the objective is to maximise

the system sum rate. In [LYHS16], with formulating NOMA resource allocation prob-

lems under several practical constraints, the traceability of the formulated problem was

analytically characterised. Moreover, a Lagrangian duality and dynamic programming

combining algorithm was also proposed to solve the formulated problems. Regarding

the multiple carrier NOMA resource allocation problem for the full-duplex NOMA com-

munication scenarios, the monotonic optimisation approach was employed in [SNDS16]

for investigating an optimal solution for the formulated problem. Regarding resource

allocation in cluster based multiple-input MIMO NOMA scenarios, the absolute fairness
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Figure 2.5: Two-tier heterogeneous networks.

issue was addressed in [LEDK16], with using the bi-section search approach for power

allocation and three efficient heuristic algorithms for cluster scheduling.

2.3.3 Heterogeneous Networks

To meet the surging traffic demands for wireless services and the need for high data rates,

cellular networks are trending strongly towards heterogeneity of cells with different trans-

mit power, coverage range and cost of deployment [DGBA12, Lag97, YRC+13]. HetNets

is capable of achieving more spectrum-efficient communications by deploying small cells,

i.e., picocells and femtocells, underlaid on the macrocells, as shown in Figure 2.5. Since

the spectrum sharing among multi-tier cells causes both co-tier and cross-tier interfer-

ence, efficient resource allocation and interference management become the fundamental

research challenges for HetNets. In [FR13], a unified static framework was employed

to study the interplay of user association and resource allocation in heterogeneous cel-

lular networks. A novel solution that jointly associated the users to the access points

(APs), and allocated the femtocell access points (FAPs) to the service providers (SPs)
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in an uplink OFDMA network was studied in [BLH+14], with the aim of maximising the

total satisfaction of users. Considering the D2D-enabled multi-tier scenario, a polyno-

mial time-complexity distributed solution approach for the heterogeneous cellular mobile

communication systems was presented in [HH15a].

2.4 Summary

This chapter provides an overview of the architecture of D2D communications and match-

ing theory. The existing research outcomes on resource allocation in D2D communi-

cations are surveyed and categorised with respect to different approaches: centralised

approach, game theory-based approach and matching theory-based approach. Since the

current literature on resource allocation to D2D communications based on matching

theory is still in its infancy, more research on matching theory-based resource allocation

design should be dedicated to develop self-organising algorithms and theoretically anal-

yse the merits of these algorithms. To make my own contribution to fill the above gap,

resource allocation for D2D communications based on matching theory is investigated

in Chapter 3.

While the cutting-edge architectures and technologies such as NOMA and HetNets

have been extensively solely studied in the existing literatures, their co-effects on enhanc-

ing network performance with D2D communications have not been quantified and anal-

ysed in a relatively practical scenario. Moreover, performance loss caused by the strong

inter-tier interference needs to be well managed. As such, quantifying and addressing the

co-effects of these highlighted technologies is also waited to be explored. In the sequel,

more research endeavours should be dedicated in this field, and provide more insights

on how NOMA and HetNets are capable of enhancing D2D communications underlaying

cellular networks. To cope with this, resource allocation for D2D communications with

NOMA and HetNets are investigated in Chapter 4 and Chapter 5, respectively.



Chapter 3

Matching-Based Resource
Allocation in D2D
Communications

3.1 Overview

This chapter focuses on conventional D2D scheme, where each D2D transmitter commu-

nicates with one receiver in pair. As mentioned in Chapter 2, it is imperative to support

spectrum efficiency and QoS in the resource allocation design, as well as address the

challenging issues imposed by the inherent nature of D2D communications. The chal-

lenging issues include the co-channel interference caused by spectrum sharing between

D2D and cellular users. As such, this chapter formulates resource allocation optimisation

as a matching problem which considers sum rate and QoS, and also pitches in to resolve

the context awareness issue in D2D communications. Specifically, in Section 3.2, the

general system model in this chapter is introduced. Then, a many-to-many matching

algorithm is proposed for improving resource utilisation in Section 3.3, where the SINR

constraints for both D2D and cellular UEs are satisfied. Additionally, in order to meet

priorities of applications in different hardware devices as well as QoS requirements of

different applications, a novel context-aware matching algorithm is proposed to enhance

QoS provision in Section 3.4.

25
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Figure 3.1: D2D communications underlaying cellular networks.

3.2 System Model

A scenario of sharing uplink resources of the cellular network is considered in this sec-

tion. Both the eNB and UEs are equipped with a single omni-directional antenna.

The eNB maintains the radio resource control for both cellular and D2D communica-

tions. The cellular UEs and D2D transmitters are distributed uniformly in the cell,

while each D2D receiver obeys a uniform distribution inside the circle centered at

the corresponding D2D transmitter, with a radius dmax. The set of D2D pairs is

denoted by D = {D1, ..., Dn, ..., DN}, and the set of D2D transmitters and receivers are

denoted by {DT1, ..., DTn, ..., DTN} and {DR1, ..., DRn, ..., DRN}, respectively. RB =

{RB1, ..., RBm, ..., RBM} is the set of RBs. For the sake of simplicity, the same index

is used for cellular UEs with RBs, i.e., the set of cellular UEs is denoted by C =

{C1, ..., Cm, ..., CM}. The channel is modeled as Rayleigh fading where the channel

response follows the independent complex Gaussian distribution1. Hence, the channel

gain can be expressed as G = βL−η|h|2, where β is the system constant, L is the dis-

1Considering correlated coefficients in adjacent RBs is beyond of the scope of this work.
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tance between signal transmitter and receiver, η is the path-loss exponent, and h is the

complex Gaussian channel coefficient that obeys h ∼ CN (0, 1). The system model is

shown in Figure 3.1.

3.3 Matching with Peer Effects for Resource Allocation in

D2D Communications

3.3.1 Motivation

As stated in Chapter 2, matching theory has been in the spotlight for wireless resource

allocation, which can overcome some of the limitations of game theory. The body of work

in [GZPH15, HH15a] was based on the classical deferred acceptance algorithm, where

peer effects among players were not taken into consideration. In [Se15], a one-to-one

matching model with peer effects was discussed. The authors in [PBS+13] formulated a

many-to-one matching problem with peer effects. However, the complexity for analysing

the stability of both the one-to-one and many-to-one matching game with peer effects

is much lower than that of the many-to-many one. Different from the prior work, a

novel resource allocation approach based on the many-to-many matching game with

peer effects is proposed in this section. By doing so, the resource utilisation can be

improved and the mutual interference among D2D pairs matched to the same RB can

be well handled.

The main contributions of this section are summarised as follows.

1. The system sum rate maximisation problem is formulated, which takes account of

the SINR constraints for both D2D and cellular UEs.

2. The formulated problem is modeled as a many-to-many matching game with peer

effects, and a novel algorithm of resource allocation for D2D communications is

proposed to obtain a stable matching between the D2D pairs and RBs.
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3. It is proved that the proposed algorithm converges to a stable state within limited

number of iterations.

4. Simulation results show that the proposed algorithm can achieve the near-optimal

performance compared to the exhaustive search, which significantly outperforms a

one-to-one matching algorithm.

3.3.2 Problem Formulation

It is assumed that multiple D2D pairs can share the same RB and one D2D pair can

occupy multiple RBs. The element λmn is used to indicate whether a RB is allocated

to a D2D pair or not. More specifically, if RBm is allocated to Dn, λmn = 1; otherwise,

λmn = 0. It is assumed that the total transmit power of each D2D transmitter is a fixed

value and the power is equally divided over the occupying RBs. The power allocated

to the D2D pair Dn over RB RBm is denoted by pnm, satisfying pnm = Pn∑M
m=1 λmn

, where

Pn is the total transmit power of DTn. Suppose that RBm is allocated to Dn, then the

received signal-to-noise-plus-interference-ratio (SINR) at DRn on RBm is expressed as

γnm =
pnmGn

QmGmn +
∑

m′ 6=m αm′np
n
m′Gm′n + σ2

, (3.1)

where Qm is the transmit power of Cm. Gm, Gmn, Gn′n are the channel gains between

DTn and DRn, that between Cm and DRn, and that between DTn′ and DRn, respec-

tively. σ2 is the additive white Gaussian noise power. Similarly, the received SINR at

the eNB is given by

γn =
QmGnB∑

i λmnp
n
mGmB + σ2

, (3.2)

where GmB and GnB are the channel gain between Cm and the eNB, and that between

DTn and the eNB, respectively. Based on the Shannon-Hartley theorem, the data rates

of Dn on RBm and that of Cm are Rnm = λmnB log2 (1 + γnm) and Rm = B log2 (1 + γn),

respectively, where B is the bandwidth of a RB.
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The objective is to maximise the system sum rate with SINR constraints for both

D2D and cellular UEs, which can be expressed as

maxλmn

∑
n

∑
m

(Rnm +Rm), (3.3a)

s.t. λmnγ
n
m ≥ λmnγminn , ∀m,n, (3.3b)

γm ≥ γminm , ∀n, (3.3c)

αm,n ∈ {0, 1} , ∀m ∈ {1, ...,M} , ∀n, (3.3d)

∑
m
αm,n ≤ qmax, ∀n, (3.3e)

where γminn and γminm are the minimum SINR targets for Dn and Cm, respectively. (3.3b)

and (3.3c) restrict the SINR requirements of D2D and cellular UEs. (3.3d) shows that

the value of λm,n should be either 0 or 1. In (3.3e), it is shown that at most qmax D2D

pairs can be allocated to each RB. This constraint is to restrict the interference on each

RB, as well as reduce the implementation complexity.

Note that the formulated problem is a non-convex one due to the binary constraints as

well as the existence of the interference term in the objective function [WN99]. Therefore,

it may be too complex to solve this problem by utilising the conventional centralized

exhaustive method, especially in a dense network. However, since problem (3.3) contains

only one binary variable, it can be modeled as a matching problem. Thus to optimally

solve the optimisation problem (3.3), a many-to-many matching algorithm is developed

in the next section.
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3.3.3 Resource Allocation for D2D Communications

3.3.3.1 Many-to-Many Matching with Peer Effects

The many-to-many matching model between D2D pairs and RBs is defined as the fol-

lowing:

Definition 7. In the many-to-many matching model, a matching Ω is a function from

the set RB∪D into the set of all subsets of RB∪D such that 1) |Ω(Dn)| ≤ N, ∀Dn ∈ D,

and Ω(Dn) = ∅ if Dn is not matched to any RB; 2) |Ω(RBm)| ≤ qmax, ∀RBm ∈ RB,

and Ω(RBm) = ∅ if RBm is not matched to any D2D pair; 3) RBm ∈ Ω(Dn) iff Dn ∈

Ω(RBm).

The preference value for D2D pair Dn on RBm is defined as Um(n) = Rnm. It is

easy to find that Um(n) is a function of the interference from the D2D and cellular UEs

occupying the same RB. Therefore, the following observation can be made:

Remark 1. The proposed matching game has peer effects, where the preference values

of D2D pairs not only depend on the RBs that they are matched with, but also on the

other D2D pairs matched to the same RB.

This type of matching is called the matching game with peer effects, where each player

has a dynamic preference list over the opposite set of players. This is different from

the conventional matching games in which players have fixed preference lists [GZPH15,

HH15a, RS92]. In this matching model, the preference of players over the opposite set

of players replies on the matching states. Therefore, a preference list over the set of

matching states is adopted. For example, the preference list of the D2D pair Dn on

all the possible matching states is with respect to the descending order for the value of

Um(n,Ω), where Um(n,Ω) is the utility of the D2D pair Dn on the RB RBm under the

matching state Ω.

The preference value of RBm on the set of D2D pairs S under the matching state Ω

is defined as the sum rate of both the occupying D2D pairs as well as the corresponding
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cellular UE, i.e, Um(S,Ω) = Rm +
∑

n∈S R
n
m. As with the preference lists of the D2D

pairs, the preference list of RBm is ranked by RBm’s preference values in descending

order.

Motivated by the housing assignment problem in [BBLC+11], an extended matching

algorithm is proposed for solving the many-to-many matching problem with peer effects.

Different from the traditional deferred acceptance algorithm solution [RS92], the swap

operations between any two D2D pairs to exchange their matched RBs is enabled. To

better describe the interdependencies between the players’ preferences, the concept of

swap matching is first defined as follows:

Ωn′m′
nm =

{
Ω \

{
(n,Ω (n)) ,

(
n′,Ω

(
n′
))}}

∪{(
n,
{
{Ω(n) \ {m}} ∪

{
m′
}})

,
(
n′,
{{

Ω
(
n′
)
\
{
m′
}}
∪ {m}

})}
, (3.4)

where m ∈ Ω(n), m′ ∈ Ω(n′), m /∈ Ω(n′), and m′ /∈ Ω(n). In other words, a swap

matching enables D2D pair Dn and Dn′ to switch one of their matched RBs while

keeping other D2D pairs and RBs’ matchings unchanged. It is worth noticing that one

of the D2D pairs involved in the swap can be a “hole” representing an open spot of a

RB, thus allowing for a single D2D pair moving to available vacancies. Similarly, one of

the RBs RBm involved in the swap can be a “hole” if Ω(m) = ∅. Based on the concept

of swap matching, the swap-blocking pair is defined as

Definition 8. (Dn, Dn′) is a swap-blocking pair if and only if

1) ∀x ∈ {m,m′, n, n′} , Ux(Ωn′m′
nm ) ≥ Ux(Ω), and

2) ∃x ∈ {m,m′, n, n′}, such that Ux(Ωn′m′
nm ) > Ux(Ω).

The swap operations are expected to take place between the swap-blocking pairs. That

is, if two D2D pairs want to switch between two RBs, the RBs involved must “approve”

the swap. Condition 1) implies that the utilities of all the involved players should not be

reduced after the swap operation between the swap-blocking pair (Dn, Dn′). Condition 2)
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indicates that at least one of the players’ utilities is increased after the swap operation

between the swap-blocking pair. This avoids looping between equivalent matchings where

the utilities of all involved agents are indifferent. Note that the utilities of the “holes”

and the players in the opposite set matched with the “holes” are not considered in these

two conditions. Through multiple swap operations, the dynamic preferences of players

which depend on the entire matching of the others, and the peer effects of matchings are

well handled.

As stated in [RS92], there is no longer a guarantee that a traditional “pairwise-

stability” exists when players care about more than their own matching, and, if a sta-

ble matching does exist, it can be computationally difficult to find. The authors in

[BBLC+11] focused on the two-sided exchange-stable matchings, which is defined as fol-

lows:

Definition 9. A matching Ω is two-sided exchange-stable if there does not exist a swap-

blocking pair.

The two-sided exchange stability is a distinct notion of stability compared to the

traditional notion of stability of [RS92], but one that is relevant to the situation where

agents can compare notes with each other.

3.3.3.2 Proposed Resource Allocation Algorithm

The proposed matching algorithm, i.e., resource allocation for D2D communications

using matching theory (RADMT), is shown in Table 3-A. The algorithm consists of three

main steps: Step 1 sets up the initial matching state; Step 2 focuses on the swap-matching

process between different D2D pairs; and Step 3 outputs the final matching state. Ini-

tially, D2D pairs and RBs randomly match with each other satisfying constraints (3.3b)

- (3.3e), and each D2D pair performs equal power allocation on its matched RBs. Sub-

sequently, each D2D pair keeps searching for all the other D2D pairs and the available

vacancies of RBs to check whether there is a swap-blocking pair. The swap-matching



Chapter 3. Matching-Based Resource Allocation in D2D Communications 33

process ends when there exists no swap-blocking pair, and the final matching is obtained.

Table 3-A: Resource Allocation for D2D Communications Using Matching
Theory (RADMT)

Step 1: Initialisation

1. D2D pairs and RBs are randomly matched with each other subject
to constraints (3.3b) - (3.3e).

2. Each D2D pair equally divides its transmit power on the matched
RBs.

Step 2: Swap-matching process
1. For each D2D pair Dn, it searches for another D2D pair Dn′ or an

open spot O of RB’s available vacancies to form a swap-blocking pair.
(a) If (Dn, Dn′) or (Dn,O) forms a swap-blocking pair along with

m ∈ Ω(n), and m′ ∈ Ω(n′),
i. update the current matching state to Ωn′m′

nm .
ii. update the number of D2D pairs matched with each RB.

(b) Else if there does not exist such a swap-blocking pair,
i. keep the current matching state.

2. Repeat Step 2 until there is no swap-blocking pair in the current
matching.

Step 3: End of the algorithm.

To evaluate the proposed algorithm, the properties in terms of effectiveness, stability,

convergence, complexity and overhead are analysed in the following.

Lemma 1. The system sum rate increases after each swap operation.

Proof. Suppose a swap operation makes the matching state change from Ω to Ωn′m′
nm .

According to RADMT, a swap operation occurs only when Un(Ωn′m′
nm ) ≥ Un(Ω) as well

as Un′(Ω
n′m′
nm ) ≥ Un′(Ω). Given that Un(Ω(n),Ω) = Rn(Ω(n),Ω) +

∑
m∈Ω(n)Rm(n,Ω),

the following inequality holds:

ΦΩ→Ωn′m′
nm

= Rsum

(
Ωn′m′
nm

)
−Rsum (Ω)

=
∑

n

(
Rn

(
Ωm′n′
m (mn),Ωn′m′

nm

)
+
∑

m∈Ωn′m′
nm (n)

Rm

(
n,Ωn′m′

nm

))
−
∑

n

(
Rn (Ω(n),Ω) +

∑
m∈Ω(n)

Rm (n,Ω)

)
> 0, (3.5)
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where ΦΩ→Ωm′
n

is the difference of the system sum rates under the matching state Ωn′m′
nm

and that under the matching state Ω.

Theorem 1. If the proposed algorithm converges to a matching Ω∗, then Ω∗ is a two-

sided exchange-stable matching.

Proof. Assume that there exists a swap-blocking pair (Dn, Dn′) in the final matching Ω∗

satisfying that ∀x ∈ {m,m′, n, n′} , Ux(Ωn′m′
nm ) ≥ Ux(Ω∗) and ∃x ∈ {m,m′, n, n′}, such

that Ux(Ωn′m′
nm ) > Ux(Ω∗). According to Table 3-A, the algorithm does not terminate

until all the swap-blocking pairs are eliminated. To this end, Ω∗ is not the final matching,

which causes conflict. Therefore, it is concluded that the proposed algorithm can reach

the two-sided exchange stability in the end of the algorithm.

Theorem 2. The proposed algorithm converges within limited number of iterations.

Proof. From (3.5), it is observed that the system sum rate increases after each successful

swap operation. Since the system sum rate has an upper bound due to limited spectrum

resources, the swap operations stop when the system sum rate is saturated. Therefore,

within limited number of rounds, the matching process converges to the final state which

is stable.

Theorem 3. The number of communication packets between the D2D pairs and the RBs

required in RADMT is upper bounded by Nmax =
(
N
2

)
+M ×N.

Proof. Following the RADMT in Table I, the D2D pairs and RBs communicate with each

other in the swap-matching process to find the potential swap-blocking pairs. The number

of communication packets of the potential swap operations between any two D2D pairs

is
(
N
2

)
. Furthermore, the D2D pairs also search for the open spots of RBs’ available

vacancies to form swap-blocking pairs, and the maximum number of communication

packets for this process is M ×N .

Regarding the time scale of the proposed algorithm, the signaling packet length
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required for the communication between the D2D pairs and the RBs until the algo-

rithm converges is very short. In particular, each D2D pair is only required to send one

bit to another D2D pair indicating a swap-operation offer, and then the involved D2D

pairs each send a one-bit request to their occupying RBs. Finally, the RBs only need to

send one bit back to the offering D2D pairs indicating either accept or reject the request.

The total amount of overhead from the proposed algorithm thus can be quite small.

It can be observed that the complexity of the exhaustive searching method increases

exponentially with the number of D2D pairs and RBs. In contrast, the complexity of the

proposed algorithm is O(M ∗N), which is significantly lower than that of the exhaustive

searching method.

Table 3-B: Simulation Parameters
Cellular radius 300 m

D2D pair radius 50 m

RB bandwidth 180 kHz

Cellular UEs’ SINR threshold 4 dB

D2D UEs’ SINR threshold 2 dB

Noise power -98 dBm

D2D transmission power 24 dBm

3.3.4 Numerical Results

In this section, numerical results are provided to demonstrate the performance of the

proposed algorithm. The exhaustive optimal search and one-to-one matching algorithm

are also plotted as benchmarks. Specifically, the exhaustive search guarantees the global

optimal result and the one-to-one matching algorithm enables the one-to-one allocation

of RBs to D2D pairs. The parameter settings in the simulation are shown in Table 3-B.

Figure 3.2 plots the system sum rate versus different numbers of D2D pairs. One can

observe that the sum rate increases with the number of D2D pairs. When the number of

D2D pairs is large enough, the sum rate keeps increasing due to the multi-user diversity

gain, but with a lower speed. It is also observed that the proposed algorithm improves
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Figure 3.2: System sum rate versus different number of D2D pairs.

the sum rate by around 74% compared to the one-to-one matching algorithm in the

case of number of RBs N = 2, and 64% in the case of N = 4. Meanwhile, the proposed

algorithm can reach 91.3% of the exhaustive optimal result, unequivocally substantiating

the plausibility of the proposed algorithm.

Figure 3.3 plots the number of accessed D2D pairs versus different numbers of D2D

pairs in the network. With the increase of number of D2D pairs, the largest number of

accessed D2D pairs is N in the one-to-one matching algorithm. This is because each RB

can be allocated to no more than one D2D pair. The number of accessed D2D pairs of

the proposed algorithm is improved by around 110% compared to that of the one-to-one

matching algorithm in the case of N = 2, and 60% in the case of N = 4.
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Figure 3.3: Number of accessed D2D pairs versus different number of D2D
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3.4 Matching with Peer Effects for Context-Aware Resource
Allocation in D2D Communications

3.4.1 Motivation

This section investigates the context-aware resource allocation for D2D communications

accounting for the QoS requirements and priorities of different applications based on

users’ requests. A context-aware optimisation problem is formulated and the matching

theory is implemented to solve the problem. A novel algorithm with peer effects is

proposed, where the action of each D2D pair is affected by the decisions of its peers.

This is in contrast to most existing works on matching theory for wireless networks

[MHW15, Se15]. In [MHW15], peer effects were not taken into consideration because

of the difficulty to analyse the stability. In [Se15], a one-to-one matching model with

peer effects was discussed, for which the complexity for analysing stability is much lower

than the many-to-one matching. It is analytically proved that the algorithm converges
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to a two-sided exchange stability within limited number of swap operations. It is also

demonstrated that the proposed algorithm significantly outperforms the context-unaware

resource allocation algorithm by around 62.2%.

The main contributions of this section are summarised in the following.

1. A novel context-aware RB allocation problem is formulated for D2D communica-

tions, where different priorities of applications with respect to UEs’ requests are

taken into consideration.

2. To solve the formulated problem, a novel algorithm based on the many-to-one

matching is proposed, which is shown to allow the D2D pairs and RBs to interact

and converge to a stable matching with manageable complexity.

3. Simulation results demonstrate that the proposed algorithm outperforms the tra-

ditional Gale-Shapley (GS) algorithm, the one-to-one matching algorithm as well

as the context-unaware algorithm.

3.4.2 Problem Formulation

It is assumed that multiple D2D pairs can share the same RB, while each D2D pair can

use no more than one RB for transmission. The received signal-to-noise-plus-interference-

ratio (SINR) at the receiver of Dn on RBm is given by

γnm =
PnGn

PnGmn +
∑

m′ 6=m αm′nPm′Gn′n + σ2
, (3.6)

where Pn and Pm are the transmission power of the transmitter of Dn and Cm, respec-

tively. Gn, Gmn, Gn′n are the channel gains between the transmitter and receiver of Dn,

that between Cm and the receiver of Dn, and that between the transmitter of Dn′ and

the receiver of Dn, respectively. σ2 is the additive white Gaussian noise power. λmn

indicates a RB is allocated to a D2D pair or not. If RBm is allocated to Dn, λmn = 1;
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otherwise, λmn = 0. Similarly, the received SINR at the eNB on RBm is given by

γm =
PmGmB∑

n λmnPnGnB + σ2
, (3.7)

where GmB and GnB are the channel gains between Cm and the eNB, and that between

the transmitter of Dn and the eNB, respectively. Based on the Shannon-Hartley theorem,

the data rate of Dn on RBm is Rnm = λmnB log2 (1 + γnm), and the data rate of Cm is

Rm = B log2 (1 + γn). Here, B is the bandwidth of a RB.

The probability of packet error during the transmission between the transmitter and

receiver of a D2D pair can be expressed as a function of the SINR. For uncoded quadra-

ture amplitude modulation (QAM), this PER is given by [PBS+13]

PERn(γnm) =


anexp(−bnγnm), if γnm ≥ γthrn ;

1, otherwise,

(3.8)

where an, bn are packet-size dependent constants and γthrn is the minimum SINR thresh-

old which guarantees the correct demodulation. For ease of analysis, the retransmission

of the packets which are erroneously received is not taken into consideration.

The UEs’ context in terms of priorities of their requests for different active applica-

tions is considered. On the one hand, the priorities of applications vary with respect

to different UEs. On the other hand, for different active applications, the minimum

QoS requirements, including data rate, PER, and delay, which guarantees the successful

transmission are different. To this end, three types of UEs are considered, i.e., UE1, UE2,

and UE3; and four types of applications, i.e., HD video streaming, multi-user gaming,

audio streaming, and file transmission. It is assumed that the set of active applications

of D2D pair Dn is Kn = {1, ...,Kn}, where the applications are ordered in descending

order with respect to their priorities. For example, for UE1, the HD video streaming

is with the highest priority, followed by the file transmission which is the background
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application. For UE2, the audio streaming is the main application and given the highest

priority to transmit, but HD video streaming is with lower priority.

Inspired by the proposed context model, where the priorities of applications with

respect to D2D UEs’ requests are different, D2D pair Dn is able to discriminate the traffic

stream of each application. Then, Dn gives each traffic stream of the application k the

k-th priority to transmit. It is assumed that the aggregated traffic of Dn is composed by

packets of constant size generated using a Poisson arrival process with an average arrival

rate of κn, where the arrival rate of each application is κn,k, and
∑Kn

k=1 κn,k = λn. It is

assumed that the channel conditions are constant during the scheduling procedure, and

thus the traffic at each D2D link is modeled as a priority-based M/D/1 queueing system,

where the traffic requests are serviced according to the context dependent priorities.

Thus, the average delay for the x-th priority stream of D2D pair Dn is given by

dm,x =

∑Kn
k=1 κn,kTm

2

2(1−
∑x−1

k=1 ρm,k)(1−
∑x

k=1 ρm,k)
+

1

Rm
, (3.9)

where ρm,k = κn,k/Rn is the utilization factor for the k-th stream of D2D link Dn and

Tn
2

is the second moment of service time. It can seen from (3.9) that the knowledge of

context information enables D2D links to better prioritise application requests.

To capture characteristics of different applications and their priorities, the optimisa-

tion problem is given as follows:

maxλmn

∑
n

Un(m), (3.10a)

s.t. Rn ≥ maxk∈Kn R
thr
k , ∀m, (3.10b)

dn,k ≤ dthrk , ∀k,m, (3.10c)

PERn ≤ mink∈Kn PER
thr
k , ∀m, (3.10d)

γm ≥ γminm , ∀m, (3.10e)
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αmn ∈ {0, 1} , ∀m,n, (3.10f)

∑
n
αmn ≤ qmax, ∀m, (3.10g)

where Un(m) is the utility function which is defined as

Un(m) =
Rn(1− PERn)∑Kn

k=1 dn,k
. (3.11)

This utility function captures the data rate and PER of D2D pair n given the achievable

SINR γnm on RB m. Moreover, the utility also properly accounts for the priorities of

applications through the delay term dn,k. R
thr
k , dthrk , and PERthrk are the minimum QoS

requirements for the k-th application in terms of data rate, delay, and PER, respec-

tively. (3.10b), (3.10c) and (3.10d) restrict these requirements. (3.10e) gives the SINR

constraints of cellular UEs. (3.10f) shows that the value of λmn should be either 0 or 1.

(3.10g) means at most qmax D2D pairs can be allocated to each RB. This constraint is

to restrict the interference on each RB, as well as reduce the implementation complexity.

The formulated problem here is a 0-1 integer program, which is one of Karp’s 21

NP-complete problem [Kar72]. Thus it is difficult to solve this problem via classical

optimisation approaches. Moreover, for a large-scale cellular network with D2D com-

munications, it is desirable to develop a decentralized, self-organizing approach to make

resource allocation decisions based on the local context information. Therefore, the

many-to-one two-sided matching is invoked for obtaining a suboptimal solution in the

next subsection.

3.4.3 Context-Aware Resource Allocation for D2D Communications

The matching problem formulated here is the many-to-one two sided matching between

D2D pairs and RBs. The set of D2D pairs and RBs can be regarded as two opposite

groups of selfish and rational players who try to enhance their own benefits during the

matching process. To proceed with proposing the resource allocation algorithm, some
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notations and basic definitions are first introduced for the matching model.

Definition 10. In the many-to-one matching model, a matching Ω is a function from

the set RB∪D into the set of all subsets of RB∪D such that 1) |Ω(Dn)| ≤ 1, ∀Dn ∈ D,

and Ω(Dn) = ∅ if Dn is not matched to any RB; 2) |Ω(RBm)| ≤ qmax, ∀RBm ∈ RB,

and Ω(RBm) = ∅ if RBm is not matched to any D2D pair; 3) Dn ∈ Ω(RBm) iff RBm =

Ω(Dn).

The utility of D2D pair n occupying RB m is given in (3.11), while the utility of RB

m when choosing a set S of D2D pairs is the sum utility of D2D pairs n ∈ S, which is

expressed as

Um(S) =
∑
n∈S

Rn(1− PERn)∑Kn
k=1 dn,k

. (3.12)

Given these utilities, D2D pairs and RBs can set their own preference lists with the

descending order of utilities. According to (3.6) and (3.11), the utility of D2D pair n

depends not only on the cellular user it is matched with, but also on the set of D2D

pairs that are matched to the same RB. In other words, the preference lists of D2D pairs

and RBs change as the game evolves. This kind of interdependence among D2D pairs

matched to the same RB is called peer effects [BBLC+11]. To deal with peer effects,

swap operations are enabled between D2D pairs to exchange their matched RBs. A swap

matching Ωn′
n is expressed as

Ωn′
n =

{
Ω \

{
(n,m), (n′,m′)

}}
∪
{

(n,m′), (n′,m)
}
, (3.13)

where m = Ω(n), and m′ = Ω(n′). A swap matching enables D2D pair Dn and Dn′ to

switch their matched RBs while keeping other D2D pairs and RBs’ matchings unchanged.

Accordingly, a swap-blocking pair is defined as

Definition 11. (Dn, Dn′) is a swap-blocking pair if and only if

1) ∀x ∈ {m,m′, n, n′} , Ux(Ωn′
n ) ≥ Ux(Ω), and

2) ∃x ∈ {m,m′, n, n′}, Ux(Ωn′
n ) > Ux(Ω).
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Table 3-C: Context-Aware Resource Allocation for D2D Communications
(CARAD)

Stage 1: GS Algorithm-Based Initialisation
a. D2D pairs and RBs construct their preference lists.
b. Each D2D pair proposes to its most preferred RB that has not rejected if

before.
c. Each RB keeps the most preferred qmax D2D pairs and rejects the others.
d. Repeat b) and c) until each D2D pair is accepted by a RB or rejected by

all its preferred RBs.
Stage 2: Swap-matching process

a. ∀Dn ∈ D, it searches for another D2D pair Dn′ ∈ {D \ {Dn} , O}, where
O is an open spot of RB’s available vacancies.

b. If (Dn, Dn′) or (Dn,O) is a swap-blocking pair, Ω ← Ωn′
n . Else, keep the

current matching state.
c. Repeat a) and b) until @(Dn, Dn′) blocks the current matching.

End of the algorithm.

The above definition indicates that, if two D2D pairs want to switch their matched

RBs, RBs must “approve” the swap. Condition 1) implies that the utilities of all the

involved players should not be reduced after the swap operation between the swap-

blocking pair (Dn, Dn′). Condition 2) indicates that at least one of the players’ utilities

is increased after the swap operation between the swap-blocking pair. This avoids looping

between equivalent matchings where the utilities of all involved agents are indifferent.

Inspired by the work in [ZGPH14], a context-aware resource allocation algorithm

is proposed for D2D communications (CARAD), where D2D pairs and RBs selfishly

and rationally interact with each other to make matching decisions. The details of the

algorithm is shown in Table 3-C. CARAD is composed of two main stages: Stage 1

initialises the matching state via the traditional GS algorithm. Stage 2 focuses on the

swap-matching process. Particularly, in stage 1, D2D pairs and RBs first set up their

own preference lists. Then, each D2D pair proposes to its most preferred RB, and each

RB accepts the most preferred D2D pairs and rejects the others. Stage 1 terminates

once each D2D pair is accepted by a RB or rejected by all its preferred RBs. Stage 2

enables D2D pairs to exchange their matched RBs to eliminate potential swap-blocking

pairs, which ends when there is no more swap-blocking pairs.
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Theorem 4. The final matching Ωfinal of CARAD is two-sided exchange stable. The

proof is given as follows.

Proof. As shown in Table 3-C, the swap operations occur only when the utilities of players

are strictly improved. After searching for all the possible swaps, the swap-matching phase

terminates and there does not exist any swap matching to further improve the utilities

for players in both sides of the current matching. Hence, the final matching is two-sided

exchange stable.

Lemma 2. The sum utility of D2D pairs increases after each swap operation.

Proof. Suppose a swap operation makes the matching state change from Ω to Ωn′
n .

According to Table 3-C, a swap operation occurs only when Um(Ωn′
n ) ≥ Um(Ω) as well

as Um′(Ω
n′
n ) ≥ Um′(Ω). Given that Um(S,Ω) =

∑
n∈S Un(m,Ω), the following inequality

holds:

ΦΩ→Ωn′
n

=
∑

m

∑
n
Un(m,Ωn′

n )

−
∑

m

∑
n
Un(m,Ω) ≥ 0. (3.14)

Therefore, the sum utility of D2D pairs is improved after each swap-matching process in

Table 3-C.

As shown in Table 3-C, the complexity of the proposed algorithm mainly depends on

the number of iterations in the swap-matching phase. As proved in Lemma 1, the sum

utility increases with the swap operations going on. However, since the number of RBs

and the maximum number of D2D pairs can be allocated to each RB are both limited,

the sum utility has an upper bound. The difference of the sum utilities of the final

matching and the initial matching is denoted as ΦΩ0→Ωfinal
, and the minimum increase

of each swap operation as ∆min. Thus, in the worst case, the computational complexity

of the proposed algorithm is of the order O
(

ΦΩ0→Ωfinal

∆min

)
.
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3.4.4 Numerical Results

In this section, numerical results are provided to demonstrate the performance of the

proposed algorithm CARAD. The traditional GS algorithm, one-to-one matching algo-

rithm and context-unaware RB allocation algorithm are plotted as baseline 1, 2, and 3,

respectively. Particularly, baseline algorithm 1 enables D2D pairs to apply for RBs, and

get accepted or rejected via the GS algorithm. For baseline algorithm 2, D2D pairs and

RB are matched via the one-to-one matching algorithm. For baseline algorithm 3, each

D2D pair is associated with the RB that provides it with the highest SINR, without

considering the context information. For the simulations, the cellular radius is set to

300 m, the bandwidth of each RB is 180 kHz, the cellular UEs’ SINR threshold is 4 dB,

σ2 is −98 dBm, L is 50 m, and qmax is 4. The QoS parameters of popular wireless

services are shown in Table 3-D [Qe12, Zam09].

Table 3-D: QoS Requirements of Multimedia Applications.

Application Data rate (kbps) Delay (ms) PER

HD video streaming 1800 40 0.05

Multi-user gaming 700 30 0.01

Audio streaming 320 20 0.08

File transmission 200 3000 0.1

Figure 3.4 plots the CDF of the number of swap operations for the proposed algo-

rithm. One can observe that the number of swap operations increases with the increased

number of D2D pairs, which is due to the improved probability of the existence of swap-

blocking pairs. The CDF also shows that the proposed matching algorithm converges

within a reasonable number of iterations. For example, when there are 30 D2D pairs in

the network, on average a maximum of 40 iterations is required to ensure the proposed

algorithm to converge.

Figure 3.5 plots the average utility per D2D pair versus different numbers of RBs. It

is not surprising to see that the average utility per D2D pair increases with a slow rate

with larger number of RBs due to the multi-user diversity gain. The proposed algorithm
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Figure 3.4: CDF of the number of swap operations, where M = 10.

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

Number of RBs (N)

A
v
e
ra

g
e
 u

ti
lit

y
 p

e
r 

D
2
D

 p
a
ir
 (

k
b
p
s
/m

s
)

 

 

CARAD

Baseline 1: GS algorithm

Baseline 2: One−to−one matching

Baseline 3: Context−unaware algorithm

Figure 3.5: Average utility per D2D pair versus different number of RBs,
where M = 30.



Chapter 3. Matching-Based Resource Allocation in D2D Communications 47

5 10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

Number of D2D pairs (M)

A
v
e
ra

g
e
 u

ti
lit

y
 p

e
r 

R
B

 (
k
b
p
s
/m

s
)

 

 

CARAD

Baseline 1: GS algorithm

Baseline 2: One−to−one matching

Baseline 3: Context−unaware algorithm

Figure 3.6: Average utility per RB versus different number of D2D pairs,
where N = 10.

achieves a higher average utility of D2D users compared to baseline algorithm 1 since

swap operations are enabled after the GS algorithm-based initialisation. For baseline

algorithm 2, the average utility is restricted due to the limited number of served D2D

pairs in the one-to-one matching algorithm. Baseline algorithm 3 has the lowest average

utility since it does not take the context information into consideration. In particular,

the proposed algorithm improves the average utility by around 11%, 20%, and 63%

compared to baseline 1, 2, and 3, respectively. Recall the definition of the utility of each

D2D pair, the utility enhancement indicates that the proposed algorithm can jointly

provide improved data rate, decreased PER and reduced delay.

Figure 3.6 plots the average utility per RB versus different numbers of D2D pairs.

Two main observations are as follows: 1) the average utility increases with the number

of D2D pairs; and 2) the growth rate of the average utility is declined as the number of

D2D pairs increases. This is due to the fact that the maximum number of D2D pairs

that can be allocated to each RB is restricted. Moreover, the co-channel interference is



Chapter 3. Matching-Based Resource Allocation in D2D Communications 48

enhanced when more D2D pairs occupy the same RB, which further limits the upper

bound of the average utility.

3.5 Summary

This chapter focused on resource allocation optimisation in D2D communications under-

laying cellular networks. More specifically, the resource allocation optimisation was

formulated as a matching problem.

In Section 3.3, a novel resource allocation algorithm was proposed for D2D commu-

nications using many-to-many matching with peer effects. It was demonstrated that

the proposed algorithm could converge to a two-sided exchange-stable matching within

limited number of iterations. Simulation results showed that the proposed algorithm

achieved the near-optimal sum rate which significantly outperformed the one-to-one

matching algorithm.

Furthermore, a novel approach was presented for context-aware resource allocation in

D2D communications in Section 3.4. Formulating an optimisation problem by maximis-

ing the utilities of the D2D user equipments, a novel algorithm based on the many-to-one

matching game with peer effects was proposed. It has been shown that the context-aware

D2D transmission is capable of providing remarkable performance enhancement in terms

of improved data rate, decreased packet error rate and reduced delay, compared to that

of the context-unaware approach.



Chapter 4

Spectrum Allocation and Power
Control for NOMA-Enhanced
D2D Communications

4.1 Overview

Inspired by the potential benefits of D2D and NOMA to improve spectrum efficiency

as stated in Chapter 2, it is natural to investigate the promising application of NOMA

technology in the D2D communications for further performance improvement, in term of

both spectrum efficiency and massive connectivity. More specifically, a NOMA enhanced

D2D communication scheme is developed in this chapter. In this new scheme, the concept

of “D2D group” is proposed. Unlike the traditional concept of “D2D pair” [DRW+09b,

CLZT16], one D2D transmitter is able to communicate with several D2D receivers via

NOMA protocol. With OMA, transmitting contents to different D2D receivers requires

multiple bandwidth channels; however, NOMA can serve these receivers in a single chan-

nel use. The main advantages of implementing NOMA enhanced D2D communications

are the enhanced system sum rate and the increased number of accessed D2D receivers

which are simultaneously served by one D2D transmitter.

49
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4.2 Motivation

Recall that although D2D promises unprecedented increase in spectrum efficiency, it

brings in interference to the cellular network [DRW+09b, Liu16, LWH17]. Similarly,

the application of NOMA into D2D communications brings intra-“D2D group” inter-

ference among receivers in the same group as well as inter-“D2D group” interference

among groups occupying the same subchannel, which makes the interference manage-

ment problem more complicated. As such, whether NOMA is capable of enhancing D2D

communications underlaying cellular networks still remains unknown and investigating

effective resource allocation strategies is more than necessary, which is one of the motiva-

tions of this work. To the best of the knowledge, there is no existing work investigating

the joint subchannel and power allocation problem of NOMA enhanced D2D communi-

cations scenarios, which motivates this treatise. It is attempted to explore the potential

of the NOMA enhanced D2D communications in underlay cellular networks and identify

the key influence factors on system performance.

In this chapter, the setting of an uplink single-cell cellular network communications

is considered, where multiple D2D groups are allowed to reuse the same subchannel

occupied by a cellular user to improve the spectrum utilisation. It is recognised that

the spectrum allocation can be regarded as a many-to-one matching process between the

D2D groups and subchannels. Due to the co-channel interference among D2D groups

occupying the same subchannel, D2D groups have peer effects with the interdependen-

cies among each other. The spectrum allocation is formulated as a many-to-one match-

ing problem with peer effects[GSB+15, DBSL15]. Appropriate power allocation among

receivers in the same D2D group is also taken into consideration. Note that allocating

D2D groups to orthogonal subchannels with considering power allocation generally turns

out to be a combinatorial non-convex problem. Therefore, the subchannel assignment of

D2D groups and the power allocation for each D2D group are decoupled.

The main contributions of the work in this chapter can be summarised as follows:
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1. A novel NOMA enhanced D2D scheme that introduces the concept of “D2D group”

is developed, where each D2D transmitter is enabled to communicate with multi-

ple D2D receivers simultaneously via NOMA protocol. Based on this scheme, a

mechanism that jointly performs subchannel assignment to D2D groups and power

allocation in each D2D group is designed.

2. For the subchannel assignment, the fixed power allocation in each D2D group is

first given, and then the subchannel assignment is formulated as a many-to-one

matching problem. To maximise the system sum rate, a matching algorithm is

proposed, where the peer effects among the D2D groups are taken into considera-

tion. It is analytically proved that the proposed algorithm is capable of improving

the system sum rate and converging to a stable state within limited rounds of

interactions.

3. Based on the proposed subchannel assignment algorithm, the power allocation

problem for each D2D group is formulated as a non-convex problem because of

the existence of intra-group interference. The sequential convex programming is

applied to iteratively update the power allocation vector by solving the approximate

convex problem. It is proved that the proposed algorithm is convergent and the

solution satisfies the Karush-Kuhn-Tucker (KKT) conditions.

4. Two approaches are proposed to jointly consider the subchannel and power alloca-

tion problems. The iterative joint subchannel and power allocation algorithm (I-

JSPA) enables the power allocation under each given case of the matching between

D2D groups and subchannels. Because of the high complexity of I-JSPA, a low-

complexity joint subchannel and power allocation algorithm (LC-JSPA) is pro-

posed. The result of LC-JSPA is shown to closely approach to that of the I-JSPA.

5. It is shown that the proposed joint subchannel and power allocation algorithm

can achieve the near performance to the exhaustive-searching method at a low

computational complexity. It is also demonstrated that the NOMA enhanced D2D
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communications achieve higher system sum rate and larger number of accessed

users than the OMA based D2D scheme.

4.3 System Model

4.3.1 System Description

A single-cell uplink transmission scenario is considered, as illustrated in Figure 4.1(a). It

is considered that M cellular users, i.e. C = {C1, ..., Cm, ...CM}, communicate with one

BS in the traditional cellular mode. Each cellular user Cm is allocated in one subchannel

SCm ∈ SC, SC = {SC1, . . . , SCm, . . . , SCM} and all the subchannels are orthogonal

with each other2. There are N D2D groups D = {D1, . . . , Dn, . . . , DN} communicating

underlaying cellular networks. Unlike the traditional D2D-pair communications, it is

assumed that the n-th D2D transmitter DTn communicates with a group of Ln D2D

receivers, i.e., {DRn,1, ..., DRn,k, ..., DRn,Ln}. The D2D transmitter can send the super-

imposed mixture containing the required messages for the receivers in the same group by

applying NOMA transmission protocol, which introduces the concept of “D2D group”

(as shown in Figure 4.1(a)). Here, k is the index of the receivers in each D2D group. It

is worth noticing that when Ln = 1, it is the special case of the conventional “D2D pair”

scenario.

In Figure 4.1(b), the interference received at the k-th receiver of the n-th D2D group

DRn,k is illustrated as follows:

• The intra-group interference (the black dashed line) refers to the interference of

superposition signals from the D2D transmitter in the same D2D group;

• The inter-group interference (the red dashed line) indicates the interference from

the D2D transmitters of other D2D groups that reuse the same subchannel;

2Considering subchannel assignment to cellular UEs is beyond the scope of this work.
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Figure 4.1: NOMA enhanced D2D communications scenario.

• Last, the cellular interference (the blue dashed line) represents the interference

from the cellular user reusing the same subchannel.

It is assumed that the cellular users and D2D transmitters are uniformly distributed

in the cell. The Ln receivers in each D2D group are uniformly distributed within a disc
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with radius dmax, and the origin of the disc is the corresponding DTn. All channels

are assumed to undergo quasi-static Rayleigh fading, where the channel coefficients are

constant for each channel.

4.3.2 Channel Model

It is assumed that each subchannel which is occupied by a cellular user can be reused

by multiple D2D groups. As a consequence, the received signal at the BS corresponding

to subchannel SCm is given by

ym =
√
Pchmxm +

∑
n
λn,m

√
Pdgntn + ζm, (4.1)

where xm and tn are the transmit signals of Cm and DTn, respectively. ζm is the additive

white Gaussian noise (AWGN) at the BS on subchannel SCm with variance σ2. The

matrix λ ∈ RN×M with the elements λn,m represents the subchannel allocation indicator

for D2D groups, i.e., if SCm is assigned to Dn, λn,m = 1; otherwise, λn,m = 0. Pc and Pd

are the transmit power of the cellular users and D2D transmitters, respectively. In this

chapter, it is assumed that all the cellular users have the same transmit power and so do

all the D2D transmitters for simplicity. hm and gn are the channel coefficients including

small-scale fading and path-loss between Cm and the BS, and that between DTn and the

BS, respectively.

Based on (4.1), the received signal-to-interference-plus-noise ratio (SINR) at the BS

corresponding to Cm is

γm =
Pc|hm|2∑

n λn,mPd|gn|
2 + σ2

, (4.2)

where |hm|2 = |ĥm|2(dm1 )−η and |gn|2 = |ĝn|2(dn2 )−η. Here, ĥm and ĝn are small-scale

fading with ĥm ∼ CN (0, 1) and ĝn ∼ CN (0, 1). dm1 is the distance from Cm to the BS,

and dn2 is the distance from DTn to the BS. η is the path-loss exponent.
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The NOMA protocol requires the super-position coding technique at the D2D trans-

mitter side and SIC techniques at the receivers. In each D2D group, the vector an ∈

R1×Ln with the elements an,k represents the power allocation coefficients in each D2D

group. The D2D transmitter Dn sends Ln messages to the destinations based on the

NOMA principle, i.e., Dn sends
∑Ln

k=1 an,ksn,k, where sn,k is the message for the k-th

receiver in the n-th D2D group. Therefore, the received signal at DRn,k is given by

zn,k =fn,k

Ln∑
k′=1

√
an,k′Pdsn,k′ +

√
Pchm,n,kxm

+
∑
n∗6=n

λn∗,n
√
Pdgn∗,n,ktn∗ + ζn,k, (4.3)

where fn,k, hm,n,k, and gn∗,n,k are the channel coefficients between DTn and DRn,k, that

between Cm and DRn,k, and that between DTn∗ and DRn,k, respectively. ζn,k is the

AWGN at DRn,k with variance σ2. λn∗,n represents the presence of interference, i.e., if

D2D group Dn and Dn∗ reuse the same subchannel, λn∗,n = 1; otherwise, λn∗,n = 0.

NOMA systems exploit the power domain for multiple access, where different users

are served at different power levels. The present work does not focus on the optimal

SIC ordering problem, but in the design of the subchannel allocation indicator λ and

power allocation coefficients an, that maximise the network sum rate, for a given SIC

ordering. More sophisticated design strategies can be developed for further enhancing

the attainable performance of the networks considered, but this is beyond the scope of

this treatise. For illustration, it is assumed that the SIC decoding order is as the index

order of the receivers in each D2D group, i.e., the k-th receiver can decode the signals of

the {1, ..., (k− 1)}-th receivers. Specifically, the k-th receiver first successively subtracts

the messages of the receivers j < k, and then obtain its own information by regarding

the messages of the receivers i > k as noise. Therefore, according to the received signal

expressed in (4.3), the received SINR at the k-th receiver in the n-th D2D group to
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decode its own information is given by

γkn,k =
|fn,k|2Pdan,k

Ik,inn,k + Ioutn,k + Icn,k + σ2
, (4.4)

where Ik,inn,k = |fn,k|2Pd
∑Ln

i=k+1 an,i is the intra-group interference from the superim-

posed signals, Ioutn,k =
∑

n∗6=n λn∗,nPd|gn∗,n,k|
2 is the inter-group interference, and Icn,k =∑

m λm,nPc|hm,n,k|
2 is the interference from the cellular user. Here, |fn,k|2 = |f̂n,k|2(dn,k3 )−η,

|gn∗,n,k|2 = |ĝn∗,n,k|2
(
dn∗,n,k4

)−η
, and |hm,n,k|2 = |ĥm,n,k|2(dm,n,k5 )−η. f̂n,k, ĝn∗,n,k and

ĥm,n,k are small-scale fading with f̂n,k ∼ CN (0, 1), ĝn∗,n,k ∼ CN (0, 1) and ĥm,n,k ∼

CN (0, 1). dn,k3 is the distance from DTn to the DRn,k, d
n∗,n,k
4 is the distance from DTn∗

to DRn,k and dm,n,k5 is the distance from Cm to DRn,k. Note that the Ln-th receiver of

the n-th D2D group can decode the signals of all the other receivers in the same group,

thus the SINR is expressed as

γLn
n,Ln

=
|fn,Ln |

2Pdan,Ln

Ioutn,k + Icn,k + σ2
. (4.5)

The k-th receiver’s received SINR for the j-th receiver’s required signal is given by

γjn,k =
|fn,k|2Pdan,j

Ij,inn,k + Ioutn,k + Icn,k + σ2
, (4.6)

where Ij,inn,k = |fn,k|2Pd
∑Ln

i=j+1 an,i. The interference cancellation is successful if the k-th

receiver’s received SINR for the j-th receiver’s signal is larger or equal to the received

SINR of the j-th receiver for its own signal [DYFP14, SNDS16]. Therefore, the condition

of the given SIC decoding order3 is expressed as

|fn,k|2Pdan,j
Ij,inn,k + Ioutn,k + Icn,k + σ2

≥ |fn,j |2Pdan,j
Ij,inn,j + Ioutn,j + Icn,j + σ2

. (4.7)

3Inside a D2D group, the D2D transmitter only needs to know the channel ordering of receivers rather
than the full CSIs.
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The inequality in (4.7) can be simplified and rewritten in the following:

|fn,k|2
(
Ioutn,j + Icn,j + σ2

)
≥ |fn,j |2

(
Ioutn,k + Icn,k + σ2

)
. (4.8)

It is observed from the above inequality that the SIC order in the n-th D2D group

is only related to the channel gains as well as the co-channel interference from cellular

users and other D2D groups reusing the same subchannel, but not related to the power

allocation coefficient an. Therefore, the SIC order in each D2D group can be fixed after

the subchannel assignment.

4.4 Problem Formulation

In this section, the constraints of cellular users’ received interference from the D2D

groups are first given, and then the network sum rate is introduced. Subsequently, the

joint subchannel and power allocation problem for the NOMA enhanced D2D system is

formulated.

4.4.1 Interference Constraints

One of the key challenges in D2D communications underlaying cellular networks is the

co-channel interference caused by the spectrum sharing between the D2D and tradi-

tional cellular links. To guarantee the service qualities of cellular and D2D users, the

interference constraints expressed in the format of SINR are

γm =
Pc|hm|2∑

n λn,mPd|gn|
2 + σ2

≥ γthrm , (4.9)
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γkn,k =
|fn,k|2Pdan,k

Ik,inn,k + Ioutn,k + Icn,k + σ2
≥ γthrn,k , (4.10)

where γthrm and γthrn,k are the given SINR thresholds for the m-th cellular user and the

k-th receiver in the n-th D2D group, respectively.

4.4.2 Network Sum Rate

Based on the expression of SINR in (4.2) and the Shannon formula, the data rate for

the m-th cellular user Cm is give by

Rm = log2

(
1 +

Pc|hm|2∑
n λn,mPd|gn|

2 + σ2

)
. (4.11)

Similarly, the data rate for the k-th receiver in the n-th D2D group DRn,k is given

by

Rn,k =


log2

(
1 +

|fn,k|2Pdan,k
Ik,inn,k + Icn,k + σ2

)
, if k = Ln,

log2

(
1 +

|fn,k|2Pdan,k
Ik,inn,k + Ioutn,k + Icn,k + σ2

)
, else.

(4.12)

As such, the network sum rate of all the cellular and D2D users is

Rsum =
∑M

m=1

(
Rm +

∑N

n=1
λn,m

Ln∑
k=1

Rn,k

)
. (4.13)
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4.4.3 Optimisation Problem Formulation

Now, the joint subchannel and power allocation problem for the NOMA enhanced D2D

system can be formulated as the following:

max
λn,m,an,k

Rsum, (4.14a)

s.t. γm ≥ γthrm , ∀m, (4.14b)

|fn,k|2
(
Ioutn,j + Icn,j + σ2

)
≥ |fn,j |2

(
Ioutn,k + Icn,k + σ2

)
,

∀n, k, j ∈ {1, ..., k − 1}, (4.14c)

γkn,k ≥ γthrn,k ∀n, k, (4.14d)

λn,m ∈ {0, 1} , ∀n,m, (4.14e)

∑
m
λn,m ≤ 1, ∀n, (4.14f)

∑
n
λn,m ≤ qmax, ∀m, (4.14g)

an,k ≥ 0, ∀n, k, (4.14h)

∑Ln

k=1
an,k ≤ 1, ∀n. (4.14i)

Constraint (4.14b) is imposed to restrict the interference received at the cellular links

from the D2D groups. Constraint (4.14c) is to guarantee the policy for SIC decoding

order. Constraint (4.14d) guarantees the minimum SINR constraints for D2D users.

Constraint (4.14e) shows that the value of λn,m should be either 0 or 1. Constraint (4.14f)

guarantees that at most one subchannel can be allocated to each D2D group. Constraint

(4.14g) introduces the maximum number of D2D groups qmax can be allocated to each

subchannel, which is to reduce the implementation complexity and the interference on
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each subchannel. Constraint (4.14h) is a non-negative constraint for power allocation

coefficients. Constraint (4.14i) restricts the upper bound of the D2D users’ transmit

power.

The formulated problem here is a 0-1 integer program, besides, the objective function

is non-convex. There is no systematic and computational efficient approach to solve this

problem optimally. In addition, according to (4.14), the subchannel and power allocation

variables are coupled. Therefore, in section 4.5 and 4.6, the formulated problem is

decoupled into two sub-problems: 1) subchannel assignment of D2D groups; and 2)

power allocation to the receivers in each D2D group.

4.5 Subchannel Allocation for NOMA-Enhanced D2D Groups

In this section, it is assumed that the power allocated to the transmission from the

transmitter to receivers in each D2D group is a fixed value. Thus the sub-problem of

subchannel assignment is

max
λn,m

Rsum, (4.15a)

s.t. (4.14b)− (4.14g), (4.15b)

Note that the formulated problem is a non-convex optimisation problem due to the

existence of the interference term in the objective function [WN99]. The complexity

of the exhaustive method increases exponentially with the number of D2D groups and

subchannels, which makes it unpractical especially in a dense network. To describe the

dynamic matching between the D2D groups and subchannels, the subchannel assignment

is regarded as a two-sided many-to-one matching process between the sets of D2D groups

and subchannels. The D2D groups and subchannels act as two sets of players and interact

with each other to maximise the sum rate. To solve this problem, the matching theory

[RS92, GSB+15] is adopted, which provides mathematically tractable and low-complexity
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solutions for the combinatorial problem of matching players in two distinct sets [Man13].

The subchannel assignment is regarded as a many-to-one matching problem and propose

an efficient algorithm to solve this problem.

4.5.1 Many-to-One Matching with Peer Effects

To proceed with proposing the subchannel assignment algorithm, some notations and

basic definitions are first introduced for the proposed matching model between the sets

of D2D groups and subchannels.

Definition 12. In the many-to-one matching model, a matching Ω is a function from

the set SC∪D into the set of all subsets of SC∪D such that 1) |Ω(Dn)| = 1,∀Dn ∈ D, and

Ω(Dn) = {Dn} if Ω(Dn) 6⊂ SC; 2) |Ω(SCm)| ≤ qmax, ∀SCm ∈ SC, and Ω(SCm) = ∅ if

SCm is not matched to any D2D group; 3) Ω(Dn) = {SCm} if and only if Dn ∈ Ω(SCm).

Based on the perfect CSI, D2D groups have preferences over individual subchannels,

just as in a one-to-one matching model, and subchannels have preferences over sets of

D2D groups. Note that a positive integer qmax called quota is associated with each

subchannel SCm, which indicates the maximum number of D2D groups that can be

matched with each subchannel. The preference list is given by

PL = {P (D1) , . . . ,P (DN ) ,P (SC1) , . . . ,P (SCM )} , (4.16)

where P(Dn) is the preference list of Dn over individual subchannels, and P(SCm) is

the preference list of SCm over sets of D2D groups.

The preference lists of players are formed in descending order with respect to the

preference value which is defined as the utility of each side of the players. For a D2D

group Dn, the utility on a subchannel SCm is defined as the achievable data rate of Dn
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when it occupies SCm, which is given by

Un(m) =
∑Ln−1

k=1
log2

(
1 +

|fn,k|2Pdan,k
Iinn,k + Ioutn,k + Icn,k + σ2

)

+ log2

(
1 +
|fn,Ln |

2Pdan,Ln

Ioutn,k + Icn,k + σ2

)
. (4.17)

From (4.17), it is not difficult to find that the utility of a D2D group depends not

only on the subchannel that it is matched with, but also on the set of D2D groups that

are matched to the same subchannel, due to the existence of the co-channel interference

Ioutn,k . Therefore, the following observation holds:

Remark 2. The proposed matching game has peer effects [BBLC+11]. That is, the

D2D groups care not only where they are matched, but also which other D2D groups are

matched to the same place.

This type of matching is called the matching game with peer effects, where each player

has a dynamic preference list over the opposite set of players. This is different from

the conventional matching games in which players have fixed preference lists [GZPH15,

HH14, RS92]. In this matching model, the preference of players over the opposite set of

players replies on the matching states. To this end, it needs to define the new preference

P∗(Dn) of D2D group Dn on the set of possible matchings rather than the P(Dn) which

is simply the preference of Dn on the subchannels. The relationship of “prefer” for a

D2D group on subchannels under different matching states is expressed as

(m,Ω) �n (m′,Ω′)⇔ Un(m,Ω) > Un(m′,Ω′), (4.18)

where Un(m,Ω) is the utility of D2D group Dn when it occupies the subchannel SCm

under the matching state Ω.

The preference values of subchannel SCm on a set of D2D groups SD is defined as the

sum rate of all the D2D groups and the corresponding cellular user, which is expressed
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as

Um(S) = log2 (1 + γm(S)) +∑
Dn∈S

(∑Ln−1

k=1
log2

(
1 + γkn,k

)
+ log2

(
1 + γLn

n,Ln

))
, (4.19)

where γm(S) is the SINR of the cellular user Cm when it shares the subchannel with the

set of D2D groups S.

Based on the utility definition of the subchannel SCm, the “prefer” relationship of

SCm on the set of D2D groups S and S ′ is

(S,Ω) �m
(
S ′,Ω′

)
⇔ Um(S,Ω) > Um(S ′,Ω′), (4.20)

where Um(S,Ω) is the utility of SCm on the set of D2D groups S under the matching

state Ω.

There is a growing literature studying many-to-one matchings with peer effects [DM97,

Haf08]. However, these researches find that designing matching mechanisms is signifi-

cantly more challenging when peer effects are considered. Motivated by the housing

assignment problem in [BBLC+11], an extended matching algorithm is proposed for the

many-to-one matching problem with peer effects in the following.

Like the many-to-one matching described in section 3.4, the swap operations between

any two D2D groups to exchange their matched subchannels is enabled. The concept

of swap matching, swap-blocking pair and two-sided exchange stability are as defined in

Eq. (3.4), Definition 8 and Definition 9, respectively, in chapter 3.



Chapter 4. Spectrum Allocation and Power Control for NOMA-Enhanced D2D
Communications 64

4.5.2 Proposed Subchannel Assignment Algorithm (SAA) Based on

Many-to-One Matching

To find a two-sided exchange-stable matching for the matching game, a matching-theory

based subchannel assignment algorithm is proposed, i.e., SAA, between D2D groups and

subchannels based on multiple swap operations, as shown in Algorithm 1. The input

of the proposed algorithm includes the initial list of the number of D2D groups matched

to each subchannel as well as the initial matching state. To initialise the matching state,

it randomly matches each D2D group with a subchannel or an empty set. If a D2D

group is matched to an empty set, it indicates that no subchannel is allocated to the

D2D group in the initial state. The main process of the proposed algorithm is the swap

operation between different D2D groups, where each D2D group keeps searching for all

the other D2D groups to check whether there is a swap-blocking pair. Note that one

of the D2D groups taking part in the swap operations can be an available vacancy of a

subchannel. The swap operations continue until there are no more swap-blocking pairs,

and the final matching state is the output.

Regarding the time scale of SAA, the signaling packet length required for the com-

munication between the D2D groups and subchannels until the algorithm converges is

very short. In particular, each D2D group is only required to send one bit to another

D2D group indicating a swap-operation offer, and then the involved D2D groups each

send a one-bit request to their occupying subchannels. Finally, the subchannels only

need to send one bit back to the offering D2D groups indicating either accept or reject

the request. The total amount of overhead from SAA thus can be quite small, which

enables it to well perform in practical scenarios.

4.5.3 Property Analysis of SAA

To evaluate the performance of SAA, the properties in terms of effectiveness, stability,

convergence and complexity are analysed in this subsection.
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Algorithm 1 Matching-Theory Based Subchannel Assignment Algorithm (SAA)

1: – Input:
• Initial matching Ω0: Randomly match each D2D group with SC ∈ {SC, ∅}

satisfying the constraint that qm ≤ qmax, ∀qm ∈ Q;
• Initial list of the number of D2D groups matched to each subchannel Q =
{q1, ..., qM}.

2: – Swap Operations:
3: repeat
4: for ∀Dn ∈ D do
5: for ∀Dn′ ∈ {D \ {Dn} , O}, where O is an open spot of subchannel’s available

vacancies, with Ω(n) = m, and Ω(n′) = m′ do
6: if (Dn, Dn′) is a swap-blocking pair, and (5.11b)-(5.11f) are satisfied then
7: Ω← Ωn′

n ;
8: Update Q;
9: break;

10: end if
11: end for
12: end for
13: until @(Dn, Dn′) blocks the current matching.
14: – Output: Final matching Ω∗.

Theorem 5. The final matching Ω∗ of SAA is a two-sided exchange-stable matching.

Proof. Assume that there exists a swap-blocking pair (Dn, Dn′) in the final match-

ing Ω∗ satisfying that ∀i ∈ {n, n′,Ω(Dn),Ω(Dn′)} , Ui
(

(Ω∗)n
′

n

)
≥ Ui(Ω

∗) and ∃i ∈

{n, n′,Ω(Dn),Ω(Dn′)}, such that Ui

(
(Ω∗)n

′

n

)
> Ui(Ω

∗). According to SAA, the algo-

rithm does not terminate until all the swap-blocking pairs are eliminated. In other words,

Ω∗ is not the final matching, which causes conflict. Therefore, there does not exist a

swap-blocking pair in the final matching, and thus it can be concluded that the proposed

algorithm reaches a two-sided exchange stability in the end of the algorithm.

Lemma 3. The system sum rate increases after each swap operation.

Proof. Suppose a swap operation makes the matching state change from Ω to Ωn′
n .

According to SAA, a swap operation occurs only when Um(Ωn′
n ) ≥ Um(Ω) as well as

Um′(Ω
n′
n ) ≥ Um′(Ω). Given that Um (Ω(m),Ω) = Rm(Ω(m),Ω)+

∑
n∈Ω(m)

∑Ln
k=1Rn,k(m,Ω),
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the following inequality holds:

ΦΩ→Ωn′
n

=

= Um

(
Ωn′
n (m),Ωn′

n

)
− Um (Ω(m),Ω)

= Rsum

(
Ωn′
n

)
−Rsum (Ω)

> 0, (4.21)

where ΦΩ→Ωn′
n

is the difference of the system sum rates under the matching state Ωn′
n

and that under the matching state Ω. From (4.21), it is concluded that the system sum

rate increases after each successful swap operation.

Theorem 6. The proposed subchannel assignment algorithm converges within limited

number of iterations.

Proof. In the proposed matching model, the number of players is limited and the max-

imum number of D2D groups can be allocated to each subchannel is restricted, which

indicates that the number of potential swap operations is finite. Moreover, from (4.21),

it is observed that the system sum rate increases after each successful swap operation.

Since the system sum rate has an upper bound due to limited spectrum resources, the

swap operations stop when the system sum rate is saturated. Therefore, within limited

number of rounds, the matching process converges to the final state which is stable.

Theorem 7. The computational complexity of the proposed algorithm is of the order

O
(

ΦΩ0→Ω∗

∆min

)
in the worst case.

Proof. As shown in SAA, the complexity of the proposed algorithm mainly depends on

the number of iterations in the swap-matching phase. Since it is uncertain that at which

step the algorithm converges to a two-sided exchange stable matching, the number of

iterations cannot be given in a closed-form expression. The number of total iterations

for different numbers of D2D groups will be analysed in Figure 3, and give more detailed

analysis in section VI. Here, an upper bound of the complexity is given. As proved
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in (4.21), the sum rate increases with the swap operations going on. The difference

of the sum rates of the final matching and the initial matching is denoted as ΦΩ0→Ω∗ ,

and the minimum increase of each swap operation as ∆min. Thus, in the worst case, the

computational complexity of the proposed algorithm is of the the order O
(

ΦΩ0→Ω∗

∆min

)
.

Theorem 8. All local maxima of system sum rate corresponds to a two-sided exchange-

stable matching.

Proof. Assume that the sum rate achieved by matching Ω is a local maximal value. If Ω

is not a stable matching, there exists a swap-blocking pair that can further improve the

sum rate, as proved in Lemma 1. However, this is inconsistent with the assumption

that Ω is local optimal. Hence, it is concluded that Ω is a two-sided exchange-stable

matching.

However, not all two-sided exchange-stable matchings obtained from SAA can achieve

the local maximum of system sum rate. The reason can be shown in a simple example.

D2D group Dn does not approve the swap operation with Dn′ along with their current

matched subchannels SCm and SCm′ , due to the fact that the utility of Dn is decreased

after the swap operation. However, SCm and SCm′ can benefit a lot from this swap

operation, which causes that the optimal sum rate can not be achieved by the swap

operations. Of course, it can force the swap operation to happen to further improve the

sum rate, but this will obtain a weaker stability [DSL16].

4.6 Power Allocation for NOMA-enhanced D2D Groups

For a given subchannel assignment strategy λ, the SIC order is determined according to

(4.14c), based on which the power allocation can be performed independently in each

D2D group. In this section, it is assumed that the SIC order has already been given based

on the subchannel assignment result λ, and thus the constraint (4.14c) does not need

to be taken into consideration in the power allocation problem. To make the notation
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simplified, it drops the D2D group index n, thus the power allocation problem for each

D2D group can be expressed as

max
an,k

Ln∑
k=1

Rn,k, (4.22a)

s.t. (4.14d), (4.14h), (4.14i). (4.22b)

4.6.1 Pareto Optimal Solution

Because of the existence of the co-channel interference, the formulated problem is a

non-convex problem with respect to an,k. Therefore, obtaining the global optimum with

affordable complexity is rather difficult. Alternatively,the sequential convex program-

ming [MW78] is applied, i.e., finding local optimum of (4.22) by solving a sequence of

easier problems. In the following, a low-complexity algorithm is proposed to obtain a

local-optimal solution for the optimisation problem.

The objective function in (4.22a) can be rewritten as

max
an,k

∑Ln

k=1
Rn,k =

∑Ln

k=1

(
log2

(
1 + γkn,k

))
. (4.23)

As proved in [PE06], the following inequality exists:

log2(1 + γkn,k) ≥ bk log2 γ
k
n,k + ck, (4.24)

where bk and ck are defined as

bk =
γ̂kn,k

1 + γ̂kn,k
, (4.25)

ck = log2(1 + γ̂kn,k)−
γ̂kn,k

1 + γ̂kn,k
log2 γ̂

k
n,k, (4.26)

respectively. The equality is satisfied when γkn,k = γ̂kn,k.
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Based on the inequality function in (4.24), the lower bound of the objective function

in (4.23) is
Ln∑
k=1

Rn,k ≥
Ln∑
k=1

Θk (an,k) , (4.27)

where Θk (an,k) is defined as

Θk (an,k) = bk log2 γ
k
n,k + ck. (4.28)

Set an,k = 2sn,k , ∀k ∈ {1, ..., Ln}, and define sn = [sn,1, ..., sn,k, ..., sn,Ln ]. A new

optimisation problem from (4.22) and (4.27) can be formulated as follows:

max
sn,k

∑Ln

k=1
Θk (2sn,k) , (4.29a)

s.t. γkn,k(sn,k) ≥ γthrn,k , ∀k ∈ {1, ..., Ln} , (4.29b)

∑Ln

k=1
2sn,k ≤ 1. (4.29c)

Remark 3. The new formulated problem is a concave problem, which is proved as the

following:

Proof. Rearranging Θk (2sn,k), it obtains:

Θk (2sn,k) =bk[sn,k − log2(|fn,k|2Pd
∑Ln

i=j+1
2sn,i

+ Ioutn,k + Icn,k + σ2)] + bk log2(|fn,k|2Pd) + ck. (4.30)

Θk (2sn,k) is a concave function of sn,k because of the convexity of the log-sum-exp

function [BV04]. Since the objective function in (4.29a) is a summation of concave terms

of sn, it can be concluded that the problem in (4.29) is a standard convex optimisation

problem.
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Since (4.29) is a standard convex optimisation problem, there exists many efficient

numerical algorithms such as the interior-point method to obtain the optimal solution. It

iteratively updates the power allocation vector an by solving (4.29) to tighten the lower

bound in (4.27) until convergence. The proposed power allocation algorithm (PAA) for

each D2D group is shown in Algorithm 2. The algorithm contains two main steps. The

first step is to initialise the power allocation vector an(0) to the n-th D2D group Dn. The

second step is the update step. In the i-th round of the update step, set γ̂kn,k = γkn,k(i−1),

and subsequently derive the solution sn(i) by solving the convex-optimisation problem

in (4.29). This process continues until the gaps between the values of γkn,k in the current

round and that in the previous round for all receivers in the n-th D2D group, are smaller

than the convergence threshold ∆.

Algorithm 2 Power Allocation Algorithm for Each D2D Group (PAA)

1: – initialisation Phase:
2: Set i = 0.
3: initialise the power allocation vector an(0) and the maximum number of iterations
Imax. Calculate γkn,k(0) based on an(0).

4: Set the convergence threshold ∆.
5: – Update Phase:
6: while |γkn,k(i)− γkn,k(i− 1)| ≥ ∆, ∀k ∈ {1, ..., Ln} do
7: i = i+ 1;
8: Set γ̂kn,k = γkn,k(i− 1) and compute bk and ck according to (5.17) and (5.18).
9: Solve the convex optimisation problem in (4.29) and set the result as sn(i).

10: Update an(i), where an,k(i) = 2sn,k(i),∀k ∈ {1, ..., Ln}.
11: Calculate γkn,k(i),∀k ∈ {1, ..., Ln} based on an(i).
12: end while
13: Result: a∗n = an(i).

4.6.2 Property Analysis of PAA

In this subsection, the analysis on the convergence and the local-optimal property of the

proposed power allocation algorithm is given.

Theorem 9. The proposed PAA for power allocation is guaranteed to converge.

Proof. Assume that the optimal solution of the convex problem in (4.29) is sn(i) after
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the i-th iteration. Set an(i) = 2sn(i). Then, the following inequalities can be obtained:

Ln∑
k=1

Rn,k(an,k(i)) =

Ln∑
k=1

Θi+1
k (2sn,k(i))

≤
Ln∑
k=1

Θi+1
k (2sn,k(i+1)) ≤

Ln∑
k=1

Rn,k(an,k(i+ 1)), (4.31)

where Θi+1
k is the expression of Θk during the (i + 1)-th iteration. The first equality

holds because bk and ck are calculated based on γ̂kn,k, thus the bound is tight; the second

inequality holds because sn,k(i + 1) is the optimal solution of (4.29) for the (i + 1)-

th iteration; the third inequality holds because Θi+1
n,k (sn,k(i + 1)) is the lower bound of

Rn,k(an,k(i + 1)). Therefore, from (4.31), the value of
∑Ln

k=1Rn,k increases after each

iteration in PAA. Since the value of
∑Ln

k=1Rn,k is upper bounded due to limited spectrum

resources, there exists an iteration after which the sum rate stops increasing. PAA then

converges to a final state and outputs the final power allocation result a∗n.

Theorem 10. The convergent solution of PAA is a first-order optimal solution of the

problem in (4.22), which satisfies the KKT conditions.

Proof. Denote the power allocation indicator at convergence of PAA is a∗n. Since a∗n is the

optimal solution of the concave problem in (4.29), a∗n must satisfy the KKT conditions

of (4.29). Actually, the problem (4.22) and (4.29) share the same constraints but have

different objective functions with
∑Ln

k=1Rn,k and
∑Ln

k=1 Θk(2
sn,k), respectively. However,

when PAA converges, it has
∑Ln

k=1Rn,k =
∑Ln

k=1 Θk(2
sn,k). Therefore, a∗n also satisfies

the KKT conditions of the problem in (4.22).

4.6.3 Proposed Joint Subchannel and Power Allocation Algorithm

Based on the two proposed algorithms, i.e., SAA and PAA, it is worth considering how

to jointly consider subchannel and power allocation together. In the following, two

approaches are demonstrated:
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Figure 4.2: Flow charts of the two proposed joint subchannel and power allo-
cation algorithms.

1) Iterative Joint Subchannel and Power Allocation Algorithm (I-JSPA): According to

the optimisation problem in (4.14), the subchannel assignment indicator λ and the power

allocation coefficient a jointly influence the sum data rate. Therefore, a joint subchannel

and power allocation algorithm is proposed, where the power allocation, i.e., PAA, is

executed iteratively after each swap operation in SAA, as shown in Figure 4.2(a). In this

way, the power allocation coefficient a can be updated timely after any change of the

subchannel assignment indicator λ, which improves the system performance. However,

the shortcoming of this approach is the high complexity, which increases exponentially

with the number of swap operations.

2) Low-Complexity Joint Subchannel and Power Allocation Algorithm (LC-JSPA):
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Because of the high complexity of I-JSPA, an alternative low-complexity approach is

proposed, which is shown in Figure 4.2(b). Without knowing the subchannel assignment

result, the SIC order in each D2D group can not be decided, and thus the power allocation

can not be completed. Therefore, it first solves the subchannel assignment problem via

SAA based on random given initial values of the power allocation coefficients an,∀n.

After the convergence of SAA, the BS can allocate power to receivers in each D2D group

via PAA.

4.7 Numerical Results

In this section, the performance of the proposed joint subchannel and power allocation

algorithm is investigated through simulations. For simplicity, in the following simula-

tion results, it is assumed that all D2D groups have the same number of receivers, i.e.,

Ln = K,∀n ∈ {1, ..., N}. The performance of the joint subchannel and power allocation

algorithm in I-JSPA and LC-JSPA is given, respectively. The performance of the exhaus-

tive search and the one-to-one matching based algorithm are also provided as benchmarks

for comparison, in order to show the effectiveness of the proposed algorithm. More par-

ticularly, the exhaustive search enables searching for all possible subchannel allocation

ways while the power allocation is also performed exhaustively for each given case. Since

power is a continuous variable, it is not easy to search for all possible power allocation

values. Therefore, the values of an,k,∀k ∈ {1, ...,K} are searched with an interval of

ε, through which the approximately global optimal solution can be obtained. In the

one-to-one matching algorithm, one D2D group can use no more than one subchannel,

and one subchannel can only be allocated to one D2D group. The specific parameter

value settings are summarised in Table 4-A unless otherwise specified.

The performance of the conventional OMA based D2D communications is also illus-

trated in an effort to demonstrate the potential benefits of the proposed NOMA enhanced

D2D scheme. For OMA based D2D communications, the achievable data rate for the



Chapter 4. Spectrum Allocation and Power Control for NOMA-Enhanced D2D
Communications 74

k-th receiver in the n-th D2D group is 1
K log2

(
1 +

Pd|fn,k|2
Ioutn,k+Icn,k+σ2

)
, where 1

K is due to

the fact that the time/frequency resource is split among the K receivers, which is as

mentioned in Section II of [DLC+16]. The many-to-one matching, one-to-one matching

and exhaustive search are also applied to the OMA based D2D scenarios, respectively,

with the aim of comparing the performance of the corresponding NOMA enhanced D2D

scenarios with.

Table 4-A: Simulation Parameters
Cellular radius 40 m

Maximum distance between D2D pairs 5 m

Cellular-user SINR threshold 1.8 dB

Transmit power of cellular users 23 dBm

Noise power -98 dBm

Path-loss exponent 4

Number of subchannels 3

4.7.1 Convergence of the Proposed Algorithm

Figure 4.3 plots the cumulative distribution function (CDF) of the number of swap oper-

ations for the matching process, and thus demonstrates the convergence of the proposed

subchannel assignment algorithm for different number of D2D groups in the network.

The CDF shows that the proposed matching algorithm converges within a small number

of iterations. For example, when there are 11 D2D groups in the network, on average

a maximum of 40 iterations is required to ensure the proposed algorithm to converge.

One can also observe that the number of swap operations increases with the increased

number of D2D groups, which is due to the improved probability of the existence of

swap-blocking pairs.

4.7.2 I-JSPA versus LC-JSPA

Figure 4.4 investigates the total sum rate versus different D2D transmit signal-to-noise-

ratio (SNR). The number of D2D groups is set to N = 6, and the number of receivers in
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Figure 4.4: Total sum rate versus different D2D transmit SNR, with N =
6,K = 2.



Chapter 4. Spectrum Allocation and Power Control for NOMA-Enhanced D2D
Communications 76

1 3 5 7 9 11
0

1

2

3

4

5

6

Number of D2D groups (N)

N
um

be
r 

of
 a

cc
es

se
d 

D
2D

 g
ro

up
s

 

 

Exhaustive search 
LC−JSPA
One−to−one matching

Figure 4.5: Number of accessed D2D groups versus different number of D2D
groups in the network, with K = 3.

each D2D group is set toK = 2. As can be observed, the total sum rate increases with the

D2D transmit SNR since the received SINR at the receivers are improved by allocating

more power at the transmitters. For comparison, Figure 5.7 shows the performance of

the fixed power allocation algorithm, where the power allocation coefficients are set to

an,1 = 0.6, an,2 = 0.4. It can be observed that the fixed power allocation algorithm

achieves substantially lower sum rate compared to the proposed algorithm. Besides, it

also shows that LC-JSPA closely approaches the performance of I-JSPA. As discussed

before, since the complexity of I-JSPA increases exponentially with the number of swap

operations, LC-JSPA is adopted in the remaining parts of this chapter.

4.7.3 NOMA-enhanced versus OMA-based D2D Communications

Figure 4.5 shows that, the number of accessed D2D groups increases as the number of

D2D groups in the network increases. This is because as N increases, the probability of

D2D groups with less interference to the cellular UEs being assigned to them increases,
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Figure 4.6: Total sum rate versus different number of D2D groups in the net-
work, with K = 3.

which leads to larger number of accessed D2D groups that can meet the SINR constraints

of cellular UEs. This phenomenon is similar to the effect of multi-user diversity. It

is worth noting that with the increase of the number of D2D groups in the network,

the increasing rate of the number of accessed D2D groups becomes smaller due to the

enhanced co-channel interference. One can also observe that the number of accessed

D2D groups can get saturated quickly in the one-to-one matching algorithm. This is due

to the fact that each subchannel can be allocated to no more than one D2D group.

Figure 4.6 plots the total sum rate versus different number of D2D groups in the

network. One can observe that the sum rate increases with the number of D2D groups,

which follows the intuition that more D2D groups contribute to a higher total sum rate.

It is also observed that the proposed algorithm achieves much higher sum rate compared

to the one-to-one matching algorithm. Meanwhile, the proposed algorithm is capable of

reaching around 93.7% of the result of the exhaustive search. Recall the complexity of

the proposed algorithm, which is much lower than the exhaustive search, unequivocally
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Figure 4.7: Number of accessed receivers versus different number of D2D
groups in the network, with K = 3.

substantiates the plausibility of the proposed algorithm. Figure 5.4 also demonstrates

that the NOMA enhanced D2D scheme achieves larger sum rate than the conventional

OMA based D2D scheme, which demonstrates the performance gains of the prior one.

Figure 4.7 plots the number of accessed receivers versus different number of D2D

groups in the network. It can be seen from the figure that the number of accessed

receivers in the proposed algorithm is larger than that in the one-to-one matching algo-

rithm. This is because more than one D2D groups are allowed to be allocated to one

subchannel in the proposed algorithm, and thus the resource utilisation is improved. It

is also noted that the NOMA enhanced D2D communications achieves a larger number

of accessed D2D receivers than the OMA based D2D communications, which further

shows the merits of applying NOMA transmission protocol in D2D communications.
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Figure 4.8: Total sum rate versus different number of receivers in each D2D
group, with N = 5.

4.7.4 “D2D group” versus “D2D pair”

Figure 4.8 depicts the total sum rate versus different number of receivers in each D2D

group. It can be seen that the sum rate increases as the number of receivers in each D2D

group increases, with a small increasing rate. This is because, in this scenario, the total

transmit power of each D2D transmitter is a fixed value when the number of receivers

in each D2D group varies. Thus the partition of power allocated to each receiver gets

smaller when the number of receivers in each D2D group gets larger. This leads to the

phenomenon that the total sum rate is not increased much with the larger number of

receivers in each D2D group. For the case of K = 1, it becomes the conventional “D2D

pair” scenario. In other words, the conventional “D2D pair” scenario is the special case,

and thus the proposed algorithm is also valid for the “D2D pair” scenario. Figure 4.8

demonstrates that the network sum rate of the “D2D group” scenario is improved com-

pared to that of the “D2D pair” one.
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4.7.5 Impact of Interference Constraints for Cellular Users

Figure 4.9(a) shows the number of accessed D2D groups versus different D2D transmit

SNR and different SINR constraints of cellular users. It can be observed that the number

of accessed D2D groups decreases with higher SINR constraint of the cellular users. This

is because the maximum allowed interference for the cellular users gets smaller with the

higher SINR constraint, and therefore the number of acceptable D2D groups for each

subchannel is decreased. Figure 4.9(a) further shows that the number of accessed D2D

groups increases with the lower D2D transmit SNR. This is due to the fact that the

interference caused to the cellular users and other D2D groups occupying the same

subchannels gets smaller with the lower D2D transmit SNR, and thus the acceptable

number of D2D groups on each subchannel is increased.

Figure 4.9(b) depicts the total sum rate versus different D2D transmit SNR and

different SINR constraint of the cellular users. It can be seen that the total sum rate

decreases with the higher SINR constraint of the cellular users. This can be easily under-

stood because of the smaller number of accessed D2D groups, as shown in Figure 4.9(a).

Besides, it is easy to find that, when the D2D transmit SNR is small, the total sum

rate increases with the larger SNR, which is caused by the increased transmit power.

When the D2D transmit SNR increases to a certain value, the total sum rate starts to

decrease with the higher value of D2D transmit SNR. This is because of the smaller num-

ber of accessed D2D groups as shown in Figure 4.9(a). Figure 4.9(a) and Figure 4.9(b)

illustrates how the interference constraints of cellular users influence the sum rate and

number of accessed D2D groups.

4.8 Summary

In this chapter, the application of non-orthogonal multiple access (NOMA) to the device-

to-device (D2D) communications has been studied. With the objective of maximising
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Figure 4.9: Performance analysis of the proposed algorithm.
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network sum rate while satisfying the interference constraints of cellular users, a joint

subchannel and power allocation problem was formulated. Since the formulated prob-

lem was a mixed-integer non-convex problem, it was decoupled into two subproblems,

i.e., subchannel assignment and power allocation problems. A novel algorithm invok-

ing many-to-one matching theory was proposed for tackling the subchannel assignment

problem. Based on the subchannel assignment result, the non-convex power allocation

problem for receivers in each D2D group was solved by applying the sequential con-

vex programming, which was proved to be convergent. Simulation results showed that

the proposed joint subchannel and power allocation algorithm approached close to the

exhaustive-searching method. It was also shown that the proposed NOMA enhanced

D2D scheme outperformed the conventional OMA based D2D scheme, in terms of both

sum rate and number of accessed users.



Chapter 5

Resource Allocation for D2D
Communications in HetNets with
NOMA

5.1 Overview

In this chapter, a novel resource allocation design is investigated for D2D communications

in HetNets with NOMA, where underlay transmitters (UTs), i.e., D2D transmitters and

small cell base stations (SBSs), are capable of communicating with multiple underlay

receivers (URs), i.e., D2D receivers and small cell users (SCUs), respectively, via the

NOMA protocol. With the aim of maximising the sum rate of URs while taking the

fairness issue into consideration, a joint problem of spectrum allocation and power control

is formulated. Particularly, the spectrum allocation problem is modeled as a many-to-one

matching game with peer effects. A novel algorithm where the UTs and RBs interact to

decide their desired allocation is proposed. The proposed algorithm is proved to converge

to a two-sided exchange-stable matching. Furthermore, the concept of ‘exploration’ is

introduced into the matching game for further improving the sum rate. The power

control of each UT is formulated as a non-convex problem, where the sequential convex

programming is adopted to iteratively update the power allocation result by solving

the approximate convex problem. The obtained solution is proved to satisfy the KKT

83
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conditions. It is unveiled that: 1) The proposed algorithm closely approaches the optimal

solution within a limited number of iterations; and 2) The ‘exploration’ action is capable

of further enhancing the performance of the matching algorithm.

5.2 Motivation

Despite the fact that there are ongoing research efforts to address the resource alloca-

tion problems for D2D, HetNets and NOMA, the solutions for the resource allocation

problems of D2D communications in HetNets with NOMA have not been studied in

the literature. Note that NOMA and HetNets pose additional challenges in terms of

interference management since it brings additional co-channel interference to the exist-

ing networks. As such, novel resource allocation design for intelligently managing and

coordinating various types of interference are more than desired, which motivates us to

develop this work. The joint spectrum and power allocation problem for D2D commu-

nications in HetNets with NOMA is studied, with the aim of maximising the sum rate

of D2D users (DUs) and SCUs. Particularly, the downlink scenario is considered, where

one macro base station (MBS) communicates with multiple macro cell users (MCUs) via

the conventional OMA protocol, while each SBS communicates with two NOMA SCUs

and each D2D transmitter communicates with two NOMA receivers. The small cells and

DUs are referred as underlay tier. The SBSs and DUs are underlaid within the macro

tier (e.g., MBS and MCUs) since both the macro tier and the underlay tier (e.g., SBSs,

SCUs and DUs) use the same set of RBs.

To tackle the formulated problem, the spectrum and power allocation problems are

decoupled and a joint solution where the spectrum and power allocation are executed

iteratively is provided. For the spectrum allocation, multiple UTs are allowed to reuse the

same RB occupied by a MCU to improve the resource utilisation. It is recognised that

the spectrum allocation can be regarded as a many-to-one matching process between

UTs and RBs, where the UTs and RBs act as two sets of players and interact with
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each other to maximise the sum rate of underlay tier. In addition, the UTs have peer

effects with the interdependencies among each other due to the co-channel interference.

Therefore, matching theory [RS92, GSB+15] is applied to solve this problem, which

provides mathematically tractable and low-complexity solutions for the combinatorial

problem of matching players in two distinct sets [Man13]. Then the spectrum allocation

problem is formulated as a many-to-one matching problem with peer effects and propose

efficient algorithms to solve the problem. The primary contributions of this paper can

be summarised as follows.

1. A new model of D2D communications in HetNets with NOMA is proposed, in which

NOMA technique is invoked in underlay tier for spectrum efficiency enhancement

and user access improvement. Based on the proposed model, a joint spectrum

allocation and power control problem is formulated with the aim of maximising

the sum rate of underlay tier while considering users’ fairness issues.

2. The spectrum allocation for underlay tier is formulated as a many-to-one matching

problem with peer effects. For solving the formulated problem, a swap-operation

enabled matching algorithms (SOEMA-1) is first proposed to match UTs with

RBs aiming at maximising the sum rate of underlay tier. For further improving

the performance of SOEMA-1, the concept of “experimentation” is introduced into

the matching game and propose a novel algorithm SOEMA-2, where irrational swap

decisions are enabled with a small probability to explore the potential matching

states.

3. To solve the non-convex power control problem of each UT, the sequential convex

programming is invoked to iteratively update the power allocation vector by solving

the approximate convex problem. It is proved that the proposed algorithm is

convergent and the solution satisfies the KKT conditions.

4. It is demonstrated that NOMA-enhanced HetNets is capable of significantly out-

performing the conventional OMA based HetNets in terms of both the sum rate
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Figure 5.1: D2D communications in HetNets with NOMA.

of underlay tier and users’ connectivity. Additionally, it is also presented that the

performance of the matching algorithm can be further improved via the “experi-

mentation” action.

5.3 System Model

5.3.1 System Description

Consider a downlink K-tier HetNets model, where the first tier represents a single macro

cell and the other tiers represent the small cells such as pico cells and femto cells as well as

D2D links. The set of UTs is represented by UT = {1, ..., B}, which is composed of both

SBSs and D2D transmitters. The MBS serves a set of M MCUs, i.e.,MCU = {1, ...,M}.

There are M RBs, and each MCU occupies a RB. For the sake of simplicity, the RBs use

the same index as the MCUs, and thus the set of RBs is represented by RB = {1, ...,M}.

In this work, it is assumed that each UT b occupies no more than one RB and serves at

most two URs simultaneously via the NOMA protocol. This assumption is attributed to
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limit the co-channel interference and to lower the hardware complexity and processing

delay4. The illustration of cellular layout is shown in Figure 5.1.

This work allows multiple UTs to reuse the same RB to improve the spectrum effi-

ciency. The maximum number of UTs occupying the same RB is restricted to qmax. Since

the spectrum sharing brings in both co-tier and cross-tier interference, efficient resource

allocation is required for D2D communications in HetNets with NOMA. In this work, it

is assumed that the user association is completed prior to the resource allocation.

5.3.2 Channel Model

NOMA-based transmission requires to apply the superposition coding (SC) technique

at UTs and SIC5 technique at URs. The vector ab = [ab,k, ab,j ] represents the power

allocation coefficients for URs, i.e., SCUs and D2D receivers, in each small cell/D2D

group. UT b sends messages to receivers k and j on RB m, based on the NOMA

principle, i.e., b sends anb,kx
n
b,k + anb,jx

n
b,j , where xnb,k is the message for receiver k. The

received signal at receiver k served by the b-th UT, i.e., b ∈ {1, ..., B}, on the m-th RB

is given by

ynb,k = fmb,k
√
pbab,kx

m
b,k︸ ︷︷ ︸

desired signal

+ fmb,k
√
pbab,jx

m
b,j︸ ︷︷ ︸

interference from NOMA users

+ ζmb,k︸︷︷︸
noise

+
∑M

m=1
λm,bhm,b,k

√
pmxm︸ ︷︷ ︸

cross-tier interference

+
∑

b∗6=b
λb∗,bg

m
b∗,b,k
√
pb∗x

m
b∗︸ ︷︷ ︸

co-tier interference

, (5.1)

where xmb,k, xm are the symbols transmitted from the b-th UT to its serving receiver k,

and from the MBS to the MCU m, respectively. fmb,k, hm,b,k, and gmb∗,b,k are the channel

coefficients between UT b and receiver k, that between the MBS and receiver k, and that

4NOMA requires SIC at the receivers. A user performing SIC needs to demodulate and decode the
signals transmitted to other receivers. Therefore, the hardware complexity and processing delay increases
with the number of users multiplexed on the same RB.

5It is assumed that perfect SIC is achieved at the receivers. In practical scenarios, proceeding perfect
SIC may be a non-trivial task. Therefore, this work actually provides an upper bound in terms of the
attainable data rates.
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between UT b∗ and receiver k on RB m, respectively. pb and pm are the total transmit

power of UT b and the transmit power from the MBS to MCU m, respectively. λm,b

represents the RB allocation indicator for UTs, i.e., if UT b occupies RB m, λm,b = 1;

otherwise, λm,b = 0. λb∗,b represents the presence of co-tier interference, i.e., if UT b and

b∗ reuse the same RB, λb∗,b = 1; otherwise, λb∗,b = 0. ζnb,k is the AWGN at receiver k

with variance σ2.

NOMA systems exploit the power domain for multiple access, where different users

are served at different power levels. For illustration, assume UR j desires to decode

and remove interference from the superposition signal of k via SIC. The interference

cancellation is successful if UR j’s received SINR for k’s signal is larger or equal to the

received SINR of k for its own signal [DYFP14, SNDS16]. Therefore, the condition of

the given SIC decoding order is given by

∣∣∣fmb,j∣∣∣2pbamb,k
Ij,kN + Ijco + Ijcr + σ2

≥

∣∣∣fmb,k∣∣∣2pbamb,k
Ik,kN + Ikco + Ikcr + σ2

. (5.2)

The inequality in (5.2) can be rewritten in the following:

∣∣fmb,j∣∣2 (Ikco + Ikcr + σ2
)
−
∣∣fmb,k∣∣2 (Ijco + Ijcr + σ2

)
≥ 0. (5.3)

Therefore, according to the received signal expressed in (5.1), the received SINR at UR

k served by UT b on RB m to decode its own information is given by

γmb,k,k =

∣∣∣fmb,k∣∣∣2pbamb,k
Ik,kN + Ikco + Ikcr + σ2

, (5.4)

where Ik,kN =
∣∣∣fmb,k∣∣∣2 pbamb,j is the interference from the superposed signal to UR j, Ikco =∑

b∗6=b λb∗,bpb∗
∣∣∣gmb∗,b,k∣∣∣2 is the co-tier interference from the other UTs reusing the same RB,

and Ikcr =
∑

m λm,bpm|hm,b,k|
2 is the cross-tier interference from the MBS. Here,

∣∣∣fmb,k∣∣∣2 =∣∣∣f̂mb,k∣∣∣2(db,k)
−η,

∣∣∣gmb∗,b,k∣∣∣2 =
∣∣∣ĝmb∗,b,k∣∣∣2(db∗,b,k)

−η, and |hm,b,k|2 =
∣∣∣ĥm,b,k∣∣∣2(dm,b,k)

−η. f̂mb,k,
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ĝmb∗,b,k and ĥm,b,k are small-scale fading with f̂mb,k ∼ CN (0, 1), ĝmb∗,b,k ∼ CN (0, 1) and

ĥm,b,k ∼ CN (0, 1). db,k is the distance from UT b to k. db∗,b,k is the distance from UT

b∗ to k, and dm,b,k is the distance from the MBS to k.

Note that UR j can decode the signal to k, thus the SINR received at j is expressed

as

γmb,j =

∣∣∣fmb,j∣∣∣2pbamb,j
Ijco + Ijcr + σ2

. (5.5)

To guarantee the service qualities of the MCUs, an interference threshold Ithr is given

to the aggregated interference caused to the MCUs from the links in the underlay tier.

The aggregated interference experienced on the MCU m is given by

Im =
B∑
b=1

λm,bpb |tb,m|2 , (5.6)

where |tb,m|2 =
∣∣t̂b,m∣∣2 (db,m)−η, and t̂b,m is small-scale fading with t̂b,m ∼ CN (0, 1). db,m

is the distance from UT b to MCU m.

5.4 Problem Formulation

In this section, the α-utility function is defined for underlay links’ data rates to guarantee

the fairness among the receivers served by each UT. Then the maximisation problems of

underlay links’ sum rate via proper spectrum and power allocation are formulated.
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5.4.1 Fairness Among URs Based on α-Utility Function

Based on the SINR expressions of URs k and j in (5.4) and (5.5), the data rates of k

and j served by UT b over RB m can be calculated as

Rmb,k = λm,blog2

1 +

∣∣∣fmb,k∣∣∣2pbamb,k
Ik,kN + Ikco + Ikcr + σ2

 , (5.7)

and

Rmb,j = λm,blog2

1 +

∣∣∣fmb,j∣∣∣2pbamb,j
Ijco + Ijcr + σ2

 , (5.8)

respectively. For receivers served by the same UT, the optimal power allocation is

to allocate the total transmit power to the receiver with the best channel condition

[LYHS15]. To guarantee the rate fairness among URs served by the same UT, the α-

proportional fairness is adopted, where the α-utility function of receiver k served by

transmitter b is defined as [MW00]

Uα
(
Rmb,k

)
=


lnRmb,k, if α = 1

(1− α)−1
(
Rmb,k

)1−α
, if 0 ≤ α < 1.

(5.9)

Based on the defined α-utility function, the α-fairness based sum rate of UT b is expressed

as:

Uα (Rmb (λ,a)) = Uα
(
Rmb,k

)
+ Uα

(
Rmb,j

)
. (5.10)

5.4.2 Optimisation Problem Formulation

For facilitating the presentation, λ ∈ RM×B and a ∈ RB×2 are denoted as the collections

of optimisation variables λm,b and ab,k, respectively. The system objective is to maximise

the sum α utility of the SCUs with interference constraints for the MCUs satisfied, which
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can be expressed as follows:

max
λ,a

B∑
b=1

M∑
m=1

Uα (Rmb (λ,a)), (5.11a)

s.t.
B∑
b=1

λm,bpb |tb,m|2 ≤ Ithrm ∀m, (5.11b)

∣∣fmb,j∣∣2 (Ikco + Ikcr + σ2
)
−
∣∣fmb,k∣∣2 (Ijco + Ijcr + σ2

)
≥ 0, (5.11c)

λm,b ∈ {0, 1} , ∀m, b, (5.11d)

∑
m

λm,b ≤ 1, ∀b, (5.11e)

∑
b

λm,b ≤ qmax, ∀m, (5.11f)

ab,k ≥ 0, ab,j ≥ 0, ∀b, (5.11g)

ab,k + ab,j ≤ 1, ∀b. (5.11h)

With the constraint in (5.11b), the aggregated interference caused to the MCU m by the

UTs reusing the same RB is restricted by a predefined threshold, i.e., Ithrm . Constraint

(5.11c) guarantees successful SIC at receiver j. Constraints (5.11d) and (5.11e) are

imposed to guarantee that each UT occupies no more than one RB. Constraint (5.11f)

limits the maximum number of UTs, i.e., qmax, reusing each RB. Constraint (5.11g) is

the non-negative transmit power constraint for the UTs. Constraint (5.11h) gives the

upper bound of the transmit power of the UTs.

The formulated problem is a mixed combinatorial non-convex problem due to the

binary constraint for RB allocation in (5.11d) as well as the non-convex objective func-

tion. In general, there is no systematic and computational efficient approach to solve this

problem optimally. As can be observed, the optimisation problem in (5.11) is coupled by

the two problems of spectrum allocation and power control. To reduce the computational

complexity, these two subproblems are decoupled as the following. For any fixed power
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allocation, the spectrum allocation for UTs is formulated as a many-to-one matching

game [GSB+15] where RBs and UTs interact with each other to find the optimal match-

ing. For the given spectrum allocation result, the power allocation problem for URs is

solved by applying the sequential convex programming [PE06]. Then a joint algorithm

is proposed, where the spectrum allocation and power control are performed iteratively

to find the joint resource allocation result.

5.5 Subchannel Allocation for D2D communications in Het-

Nets with NOMA

In this section, the spectrum allocation problem for UTs given fixed power allocation is

first considered. More particularly, for any given feasible power allocation, the original

problem in (5.11) can be decomposed into the RB allocation problem for all the UTs,

which can be expressed as

max
λ

B∑
b=1

M∑
m=1

Uα (Rmb (λ)), (5.12a)

s.t. (5.11b)− (5.11f). (5.12b)

For obtaining the global optimal solution of (5.12), all the possible combinations of

scheduling RBs to UTs need to be fully searched. Thus, even for a centralised algorithm,

it is not feasible in practical systems to solve it. However, since λ is a binary variable,

the RB allocation is formulated as a many-to-one matching problem [GSB+15].

5.5.1 Many-to-One Matching Problem Formulation

To proceed with formulating the matching problem, some important definitions are first

introduced.

Definition 13. In the many-to-one matching model, a matching Ω is a function from
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the set RB∪UT into the set of all subsets of RB∪UT such that 1) |Ω(b)| = 1,∀b ∈ UT ;

2) |Ω(m)| ≤ qmax, ∀m ∈ RB; 3) Ω(b) = m if and only if b ∈ Ω(m).

For the conditions in Definition 13, condition 1) implies that each UT can only be

matched with one RB; condition 2) gives the quota qmax of the maximum number of

UTs that can be matched to each RB; and condition 3) implies that if UT b is matched

with RB m, then RB m is also matched with UT b.

The utility of UT b is defined as the sum rate of all the serving receivers minus its

cost for occupying RB m, which is given by

Ub =

K∑
k=1

Uα
(
Rmb,k

)
− τpb |gb,m|2 , (5.13)

where τ ∈ R+ is the fixed coefficient with unit interference of UT b bringing to the m-th

MCU.

The utility of RB m is defined as the sum rate of the occupying underlay links, and

thus the utility function of RB m can be expressed as

Um =
B∑
b=1

λm,b

K∑
k=1

Uα
(
Rmb,k

)
, (5.14)

To start the matching process, both UTs and RBs need to set up the preference

lists with respect to their own interests. The preference list is a descending order list

formed by each side of the players according to their preference to the other side of the

players. For each UT b, it forms a descending order preference list BLIST b according

to its utilities over all the RBs. For example, if UT b can achieve higher data rate over

RB m compared to RB m’, i.e., Ub(m) > Ub(m
′), it has m �b m′, which indicates that b

prefers m to m′. Since each RB can be matched with up to qmax UTs, each RB m forms

a preference list RBLIST m over all the possible sets of UTs with the descending order

of its utility. That is, Um(S) > Um(S ′)⇒ S �m S ′, which refers that RB m prefers the

set of UTs S to S ′.
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Remark 4. The matching game formulated above is a many-to-one matching with peer

effects.

Proof. As observed in (5.4), (5.5) and (5.13), the utility of each UT is affected by the

co-tier interference from the UTs occupying the same RB. In other words, the utility

of each UT depends not only on the RB it matches with, but also on which other UTs

match to the same RB. Therefore, the formulated game model is a many-to-one matching

with peer effects.

Due to the existence of peer effects in this matching model, the preference lists of

players change with the matching game proceeds, which is different from conventional

matching games where players have fixed preference lists [GZPH15, HH14]. There is

a growing literature studying many-to-one matchings with peer effects [DM97, Haf08].

However, these research contributions have demonstrated that designing matching mech-

anisms is significantly more challenging when peer effects are considered. Motivated by

the housing assignment problem in [BBLC+11], an extended matching algorithm for the

many-to-one matching problem with peer effects is proposed in the following.

Remark 5. The formulated matching game is lack of the property of substitutability.

Proof. See Appendix A.1.

Due to the lack of substitutability, the traditional Gale Shapley (GS) Algorithm

[RS92] does not apply to the formulated matching game any more. To better handle

the interdependencies between players’ preferences, the swap operations between any

two SBSs to exchange their matched RBs is enabled. The detailed definition of swap

matching, swap-blocking pair and two-sided exchange stability can be found in Eq. (3.4),

Definition 8 and Definition 9, respectively, in chapter 3.
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5.5.2 Proposed Spectrum Allocation Algorithm

In this subsection, an initialisation algorithm (IA) is proposed based on the GS algorithm

to obtain the initial matching state [ZGPH14]. After the initialisation, it proceeds with

swap operations among SBSs to further improve the performance.

1) Initialisation Algorithm: In the initialisation algorithm, UTs and RBs first ini-

tialise their own preference lists. The list of all the UTs that are not matched with any

RB is denoted by UNMAT CH. In the matching process, each UT proposes to its most

preferred RB, then each RB accepts the most preferred UT and rejects the others. This

process continues until the set UNMAT CH goes empty. The details of the initialisation

algorithm are as shown in Algorithm 3.

Algorithm 3 Initialisation Algorithm (IA)

1: Construct the preference lists of the UTs BLIST b, b ∈ UT ; and the preference lists
of the RBs RBLIST m,m ∈ RB;

2: Construct the set of the UTs that are not matched UNMAT CH;
3: while UNMAT CH 6= ∅ and ∃ BLIST b 6= ∅ do
4: for ∀b ∈ UNMAT CH do
5: UT b proposes to its most preferred RB that has never rejected it before;
6: end for
7: for ∀m ∈ RB do
8: if

∑
b∈UT ηm,b ≤ qmax then

9: RB m keeps all the proposed UTs;
10: Remove the matched UTs from UNMAT CH;
11: else
12: RB m keeps the most preferred qmax UTs, and rejects the others;
13: Remove the matched UTs from UNMAT CH; and keep the rejected UTs in

UNMAT CH.
14: end if
15: Remove m from the preference lists of UTs that have sent proposals;
16: end for
17: end while

2) Swap Operations Enabled Matching Algorithm: After the initialisation of the

matching state based on the IA, swap operations among UTs are enabled to further

improve the performance of the resource allocation algorithm. The details of the pro-

posed swap operations enabled matching algorithm (SOEMA-1) is shown in Algo-
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rithm 4. SOEMA-1 is composed of three steps. Step 1 initialises the matching state

based on the algorithm IA. Step 2 focuses on the the swap operations between the UTs.

Each UT keeps searching for all the other UTs to check whether there exists a swap-

blocking pair. The swap-matching process continues until there exists no swap-blocking

pair, and then the algorithm goes to step 3, i.e., the end of the algorithm. Note that to

prevent UT b looping in the swap operations with another UT b′, the flag SRb,b′ is set

to record the time that UT b and b′ swap their allocated RBs. Each UT b can at most

swap with another UT b′ twice.

Algorithm 4 Swap Operations Enabled Matching Algorithm (SOEMA-1)

1: – step 1: Initialisation
2: Matching by the initialisation Algorithm (IA);
3: Obtain the initial matching state: Ω0;
4: Initialise the number of swapping requests that UT b sends to b′, i.e., SRb,b′ = 0;
5: – Step 2: Swap-matching process:
6: For each UT b, it searches for another UT b′ to check whether it is a swap-blocking

pair;
7: if (b, b′) forms a swap-blocking pair along with m = Ω(b), and m′ = Ω(b′), as well as
SRb,b′ + SRb′,b < 2 then

8: Update the current matching state to Ωb′
b ;

9: SRb,b′ = SRb,b′ + 1;
10: else
11: Keep the current matching state;
12: end if
13: Repeat Step 2 until there is no swap-blocking pair.
14: – Step 3: End of the algorithm

3) Irrational Swap Matching Decisions: It is observed that the final matching of the

proposed algorithm SOEMA-1 is significantly affected by the initial matching state. Since

the UTs can swap only between their current matchings, a better matching state that can

achieve higher sum rate many not be formed directly based on the current matching state.

For example, if the current matching state is {{m, b}, {m′, b′}, {m′′, b′′}} and the optimal

matching6 is {{m, b′}, {m′, b′′}, {m′′, b}}, the optimal matching can not be reached if

(b, b′) (or (b′, b′′)) is not a swap-blocking pair under the current matching state. Motivated

6The optimal matching here is defined as the matching that can achieve the highest sum α fairness-
based data rate of SCUs.
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to solve this issue, the concept of “experimentation” [AS02] is introduced to explore

the space of matching states. Experimentation enables a player to destabilise a state

involving a dominated allocation, at the cost of a temporary loss in utility. In this case,

a novel experimentation enabled matching algorithm (SOEMA-2) is proposed, as shown

in Algorithm 5. In SOEMA-2, the initialisation step is the same as that in SOEMA-1.

During the swap-matching process, if a pair of UT (b, b′) forms a swap-blocking pair,

the swap operation between b and b′ happens with probability 1. Otherwise, the swap

operation between b and b′ happens with the probability ε through experimentation.

Note that 0 < ε� 1 is a small number that corresponds to the probability that a player

makes an irrational decision. rand in Algorithm 5 is a random number generator, and

tmax is the maximum number of iterations.

Algorithm 5 Swap Operations Enabled Matching Algorithm (SOEMA-2)

1: – step 1: Initialisation
2: Matching by the initialisation Algorithm (IA), and obtain the initial matching state:

Ω0;
3: – Step 2: Swap-matching with experimentation enabled:
4: while t ≤ tmax do
5: For each UT b, it searches for another UT b′ to check whether it is a swap-blocking

pair;
6: if (b, b′) forms a swap-blocking pair along with m = Ω(b), and m′ = Ω(b′) then
7: Update the current matching state to Ωb′

b ;
8: else
9: if rand < ε then

10: Update the current matching state to Ωb′
b ;

11: else
12: Keep the current matching state;
13: end if
14: end if
15: t = t+ 1;
16: end while
17: – Step 3: End of the algorithm
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5.5.3 Property Analysis

Given the proposed SOEMA-1 above, some important remarks on the properties in terms

of stability, convergence, complexity and optimality are presented.

5.5.3.1 Stability

Lemma 4. The final matching Ω∗ of SOEMA-1 is a two-sided exchange-stable matching.

Proof. See Appendix A.2.

5.5.3.2 Convergence

The convergence of SOEMA-1 is proved here while the convergence of SOEMA-2 is

usually not considered as it is constrained by the maximum number of iterations tmax.

Theorem 11. SOEMA-1 converges to a two-sided exchange stable matching Ω∗ within

limited number of iterations.

Proof. See Appendix A.3.

5.5.3.3 Complexity

The complexity of SOEMA-1 is composed of two main parts, i.e., the IA and the swap-

matching phases. For the IA, the complexity of setting up the preference lists of SBSs

and RBs is O(BM2). For the swap-matching phase, the number of iterations cannot be

given in a closed form. This is because it is uncertain that at which step the algorithm

converges to a two-sided exchange stable matching. This is a common problem in most

heuristic algorithms. The number of total iterations for different numbers of SBSs and

RBs is analysed in Figure 5.2, and more detailed analysis can be found in Section VI.

Here, an upper bound of the complexity is given as follows:



Chapter 5. Resource Allocation for D2D Communications in HetNets with NOMA 99

Theorem 12. The complexity of SOEMA-1 is upper bounded by O(B2).

Proof. Since it is restricted that each UT b can at most swap its allocated RB with

another UT b′ twice, the number of potential swap operations is upper bounded by

2×
(
B
2

)
. Therefore, the complexity of SOEMA-1 is upper bounded by O(B2).

The complexity of SOEMA-2 is restricted by the maximum number of iterations tmax.

For traditional exhaustive searching method, the complexity increases exponentially with

B and M , which is much higher than SOEMA-1 and SOEMA-2.

5.5.3.4 Optimality

It is shown below whether SOEMA-1 and SOEMA-2 can achieve an optimal matching.

Theorem 13. All local maxima of URs’ sum α fairness-based data rate corresponds to

a two-sided exchange stable matching.

Proof. Assume that the URs’ sum α fairness-based data rate of matching Ω is a local

maximum value. If Ω is not a stable matching, it indicates that there exists a swap-

blocking pair that can further improve the sum α fairness-based data rate of URs. How-

ever, this is inconsistent with the assumption that Ω is local optimal, and hence it is

concluded that Ω is two-sided exchange stable.

However, not all two-sided exchange stable matchings obtained from SOEMA-1 are

local maxima of URs’ total α fairness-based data rate. The reason can be given in

a simple example: UT b does not approve a swap matching with b′ along with their

current matched RBs m and m’, due to the fact that its utility is not improved after

the swap operation. However, m and m′ can benefit a lot via this swap operation, which

further improves the sum of URs’ α fairness-based data rates. Of course, it can force the

swap operation to happen, but this will obtain a weaker stability, as stated in [DSL16].

Similarly, although SOEMA-2 allows to explore the space of matching states, it still can
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not guarantee the optimality of the final matching.

5.6 Power Allocation for D2D Communications in HetNets

with NOMA

In this section, the power control for each UT is discussed. More particularly, for any

given RB allocation result λ, the original problem in (5.11) reduces to the power alloca-

tion problem for a UT b as follows:

max
ab

Uα (Rmb (ab)), (5.15a)

s.t. (5.11c), (5.11g), (5.11h), (5.15b)

where ab is the power allocation vector of UT b for its serving URs.

Because of the existence of the co-channel interference, (5.15) is a non-convex problem

with respect to ab. Therefore, obtaining the global optimum is rather difficult. In this

section, the sequential convex programming is adopted to solve the power allocation

problem of each UT.

Based on the proof in [PE06], the following inequality for γmb,k holds:

log2

(
1 + γmb,k

)
≥ bk log2 γ

m
b,k + ck, (5.16)

where bk and ck are defined as

bk =
γ̄mb,k,k

1 + γ̄mb,k,k
, (5.17)

ck = log2(1 + γ̄mb,k,k)−
γ̄mb,k,k

1 + γ̄mb,k,k
log2 γ̄

m
b,k,k, (5.18)

respectively. The bound is tight for γmb,k = γ̄mb,k,k.
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Consequently, the lower bound to the objective function in (5.15) is obtained as

Uα
(
Rmb,k

)
+ Uα

(
Rmb,j

)
≥ Uα

(
R̄mb,k

)
+ Uα

(
R̄mb,j

)
, (5.19)

where R̄mb,k = bk log2

(
γmb,k

)
+ ck, R̄

m
b,j = bj log2

(
γmb,j

)
+ cj .

To transform R̄mb,k to a concave function, set ab,k = 2xb,k , ab,j = 2xb,j and define

xb = [xb,k, xb,j ]. Accordingly, a new optimisation problem can be obtained from (5.15)

and (5.19) as follows:

max
xb

(
Uα
(
R̄mb,k

)
+ Uα

(
R̄mb,j

))
, (5.20a)

s.t. 2xb,k + 2xb,j ≤ 1, (5.20b)

Proposition 1. The rewritten optimisation problem in (5.20) is a convex optimisation

problem with respect to xb.

Proof. See Appendix A.4.

Since the problem in (5.20) is a convex optimisation problem, the power allocation

vector ab is iteratively updated by solving (5.20) to tighten the lower bound in (5.19)

until convergence. The details of the proposed power allocation algorithm is shown in

Algorithm 6. The proposed algorithm consists of two main steps. The first step is

the initialisation step, where the initial power allocation vector ab(0) is set. The second

step is the update step. In the i-th iteration of the second step, set γ̄mb,k,k = γmb,k(i − 1),

and subsequently derive the solution xb(i) by solving the convex optimisation problem

in (5.20). This process continues until the gap between the values of γmb,k in the current

iteration and that in the previous iteration is smaller than the threshold gthr.

With the proposed subchannel allocation algorithms, i.e., IA, SOEMA-1, and SOEMA-

2, and the power allocation algorithm, i.e., SCPAA, a joint spectrum allocation and power

control algorithm (JSAPCA) is proposed to solve the URs’ sum rate maximisation prob-

lem in (5.11), as shown in Algorithm 7. In the first step of initialisation, each UT
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Algorithm 6 Sequential Convex Programming Based Power Allocation Algorithm
(SCPAA)

1: – Initialisation Phase:
2: Set i = 0.
3: Initialise the power allocation vector xb(0). Calculate γmb,k(0) based on xb(0).
4: Set the convergence threshold gthr.
5: – Update Phase:
6: while |γmb,k(i)− γmb,k(i− 1)| ≥ gthr, ∀k do
7: i = i+ 1;
8: Set γ̂mb,k,k = γmb,k(i− 1) and compute bk and ck according to (5.17) and (5.18);
9: Solve the convex optimisation problem in (5.20) and set the result as xb(i);

10: Update ab(i), where ab,k(i) = 2xb,k(i),∀k;
11: Calculate γmb,k(i), ∀k based on ab(i);
12: end while
13: Result: a∗b = ab(i).

Algorithm 7 Joint Spectrum Allocation and Power Control Algorithm (JSAPCA)

1: – Step 1: Initialisation:
2: Randomly allocate power for URs served by each UT, where a should satisfy the

constraints in (5.11g) and (5.11h).
3: Set i = 0;
4: – Step 2: Joint Spectrum Allocation and Power Control
5: repeat
6: Update the subchannel allocation result λ according to IA, SOEMA-1 or SOEMA-

2;
7: Given λ, update the power allocation vector a according to SCPAA.
8: i = i+ 1;
9: until convergence or i ≥ imax.

10: Resource allocation result: λ, a.

randomly allocates power to URs satisfying the constraints in (5.11g) and (5.11h). In

the second step, the subchannel allocation is first performed based on the current value

of a. Subsequently, the power allocation algorithm is executed based on the subchannel

allocation result. This process is repeated for a maximum number of imax iterations,

where the joint solution is obtained.

Theorem 14. The proposed algorithm JSAPCA with SOEMA-1 is guaranteed to con-

verge.

Proof. Each iteration of the joint algorithm JSAPCA consists of two main stages: spec-

trum allocation and power control. It has been proved in Theorem 11 that the sum
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α-fairness based data rate of URs is improved after the swap operations in SOEMA-

1. For the power allocation algorithm SCPAA, the sum α utility is guaranteed to not

decrease according to the inequality in (5.19). It is assumed that Uα−totalR
m
b,k(i) and

Uα−totalR
m
b,k(i

′) are the sum utilities of URs at the beginning and end of the i-th itera-

tion. The following inequality holds:

Uα−totalR
m
b,k(i

′) > Uα−totalR
m
b,k(i). (5.21)

Since the upper bound of the sum rate of URs exists due to the limited resources, it can

be concluded that the joint algorithm JSAPCA with SOEMA-1 converges within limited

number of iterations.

For JSAPCA with IA and SOEMA-2, the maximum number of iterations is con-

strained by the value of imax, as shown in Algorithm 7.

5.7 Numerical Results

In this section, the performance of the proposed resource allocation algorithm is investi-

gated through simulations. The adopted simulation parameters are given in Table 5-A.

For convenience, it refers to the JSAPCA with IA as JSAPCA-1, the JSAPCA with

SOEMA-1 as JSAPCA-2, and the JSAPCA with SOEMA-2 as JSAPCA-3. The opti-

mal performance which is obtained by exhaustive search for both spectrum allocation

and power control is given as the baseline. JSAPCA-1, JSAPCA-2, and JSAPCA-3 are

compared in the proposed scheme to show differences among their performances. In

addition, it also considers the performance of the traditional OMA case where each UT

communicates with at most one UR in a transmission interval. In order to have a fair

comparison, the resource allocation result for the OMA case is also obtained by utilis-

ing JSAPCA-1, JSAPCA-2 and JSAPCA-3, respectively. The settings of the proposed

algorithms and benchmarks are summarised in Table 5-B.
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Table 5-A: Parameter Values Used in Simulations
Macro cell radius 300 m

Small cell radius 30 m

Transmit power of MBS 43 dBm

Transmit power of SBSs 23 dBm

Noise power spectral density −174 dBm/Hz

Path-loss exponent 4

Interference threshold at each MCU −70 dBm

Table 5-B: Algorithm Settings
Algorithm Subchannel

Allocation
Power Control Multiple Access

Optimal Solution Exhaustive
search

Exhaustive
search

NOMA

JSAPCA-1 IA SCPAA NOMA

JSAPCA-2 SOEMA-1 SCPAA NOMA

JSAPCA-3 SOEMA-2 SCPAA NOMA

JSAPCA-1 (OMA) IA SCPAA OMA

JSAPCA-2 (OMA) SOEMA-1 SCPAA OMA

JSAPCA-3 (OMA) SOEMA-2 SCPAA OMA
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Figure 5.2: Convergence of the proposed matching algorithms with different
numbers of RBs and SBSs.
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Figure 5.3: Convergence of JSAPCA-2 with different numbers of SBSs, with
M = 5.

Figure 5.2 illustrates the convergence of the proposed algorithms, i.e., IA, SOEMA-1

and SOEMA-2, with different numbers of RBs M and UTs B. It can be seen that IA

and SOEMA both converge within a small number of iterations for different values of

M and B. Besides, both IA and SOEMA need more iterations to converge with a larger

number of RBs and UTs. For example, when B = 7,M = 5, SOEMA and IA converge

in less than 6 iterations on average. When B = 10,M = 5, SOEMA and IA converge

to a stationary point at around 12 iterations. This is due to the fact that additional

players participating in the matching game results in additional searching dimensions

in the possible matching solutions. It is also shown in Figure 5.2 that the proposed

algorithm performs very close to the exhaustive searching based spectrum allocation. In

particular, for the case of B = 10,M = 5, SOEMA-2 gets around 93% of the sum rate

of URs achieved by exhaustive search.

Figure 5.3 depicts the URs’ sum rate with number of iterations in JSAPCA-2, under

the case of M = 5. In particular, JSAPCA-2 needs more iterations to converge when the
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Figure 5.4: Sum rate of the SCUs with different numbers of small cells, with
M = 7.

number of UTs B gets larger. For example, when B = 8, the number of iterations for

convergence is 2 on average. In the case of B = 11, JSAPCA-2 converges to a stationary

point after 4 iterations on average. This is due to the fact that more UTs need to

be coordinated, which causes the higher dependency between spectrum allocation and

power control. It can also be observed that, in the case of B = 11, JSAPCA-2 gets

roughly 91% of the URs’ sum rate achieve by the optimal solution.

Figure 5.4 plots the sum rate of URs versus different numbers of UTs in the network,

for M = 7 and qmax = 2. As can be observed, the sum rate increases monotonically with

the number of UTs due to the exploitation of multi-user diversity gain. Figure 5.4 also

shows that JSAPCA-2 achieves a higher sum rate compared to JSAPCA-1 due to the

involvement of the swap operations between the potential swap-blocking pairs. Besides,

JSAPCA-3 further improves the performance of JSAPCA-2 because of the “experimenta-

tion” action to explore the space of matching states. Compared to the traditional OMA

system, the NOMA-enhanced system can achieve higher sum rate since it exploits not
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Figure 5.5: Number of scheduled SBSs with different numbers of SBSs in the
network, with M = 10.

only the frequency domain but also the power domain for multiple access. In particularly,

at the point of B = 18,M = 7, JSAPCA-2 achieves roughly a 10%, 49% and 55% higher

sum rate than JSAPCA-1, JSAPCA-2 (OMA), and JSAPCA-1 (OMA), respectively.

In Figure 5.5, the number of scheduled UTs versus the number of UTs is investigated,

with M = 10 in the NOMA-enhanced system. Here, the number of scheduled UTs

is defined as the average number of simultaneously scheduled UTs in a transmission

interval. It is observed that the number of scheduled UTs increase monotonically with

the total number of UTs. However, the increasing trend becomes slower as the total

number of UTs becomes larger. This is due to the fact that the UTs causing server

co-channel interference to others may not be allocated any RB for the maximisation of

URs’ sum rate as well as the satisfaction of interference constraints of MCUs. Besides,

the proposed algorithm is capable of accommodating more UTs when the maximum

number of allowed UTs on each RB gets larger, since more UTs have the opportunity to

get access to the RBs.
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Figure 5.6: Sum rate of SCUs with different maximum numbers of SBSs
allowed on each RB, with M = 5.

Figure 5.6 demonstrates the sum rate of URs versus different maximum numbers of

UTs allowed on each RB with the RBs’ number of M = 5. One can observe that the

with a fixed value of UTs’ number B, the sum rate of URs grows to a fixed value as

the quota qmax increases since all the UTs have been matched after qmax reaches B/M .

In particular, for the case of B = 20, the URs’ sum rate reaches a stable value when

qmax > 4. For the case of B = 40, the sum rate keeps increasing because B/M > 7.

However, the growth rate gets smaller with larger value of qmax due to the enhanced

interference on each RB.

Figure 5.7 shows the resource allocation fairness versus the total number of UTs in

the network, for a fixed RB’s number M = 10. To evaluate the fairness of the proposed

algorithm, the Jain’s fairness index [JCH84] is adopted, which can be calculated as

(
∑B

b=1(Rm
b,k+Rm

b,j))
2

2×B
∑B

b=1(Rm
b,k

2+Rm
b,j

2)
. The value of Jain’s fairness index is between the range of 0 and 1.

The fairest resource allocation is obtained when the value equals to 1, which indicates

that all users enjoy the same data rate. One can observe that the fairness index of the
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Figure 5.7: SCUs fairness index with different numbers of SBSs in the network,
with M = 10.

proposed algorithm decreases with the number of UTs in the network. This is due to

the fact that higher number of UTs contributes to more severe competition on limited

spectrum resources, and hence more UTs with poor channel conditions may not be

accessed to the network. This phenomenon is consistent with Figure 5.5 showing that

the number of scheduled UTs increases non-linearly with the total number of UTs in

the network. Besides, it is also worth noting that the proposed algorithm can achieve a

higher fairness index when the maximum number of UTs allowed on each RB, i.e., qmax,

gets larger. Actually, as qmax increases, the proposed algorithm is capable of multiplexing

more UTs on each RB, which increases the utilisation of multiuser diversity.

5.8 Summary

In this chapter, the spectrum allocation and power control problems for D2D commu-

nications in HetNets with NOMA were jointly studied, with the aim of maximising the
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sum rate of URs while considering the fairness issues. By formulating the spectrum

allocation problem as a many-to-one matching game with peer effects, a low-complexity

algorithm based on the swap operations was proposed to enable UTs and RBs to effec-

tively interact with each other. In addition, the “experimentation” action was utilized

to further improve the performance by exploring the space of matching states. It was

proved mathematically that the matching algorithm converged to a two-sided stable

state within limited number of iterations. For solving the power allocation problem, the

sequential convex programming was adopted to approximate the non-convex problem to

a convex one and update the power allocation result iteratively. How well the applica-

tion of NOMA could improve the performance of D2D communications in HetNets was

investigated, where it was shown via numerical results that NOMA-enhanced system had

more potential benefits in terms of sum rate compared to conventional OMA cases.

‘



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis was dedicated to the resource allocation optimisation for D2D communica-

tions based on matching theory. Matching theory has some main advantages compared

to traditional centralised solutions as we as game theory. On one hand, matching theory

is a distributive solution, which can overcome some of the disadvantages of centralised

solutions, such as significant overhead and high computation complexity. On the other

hand, in matching theory, players make decisions locally and use preference lists rather

than specific closed-form utility functions that are adopted in game theory.

A many-to-many matching algorithm was proposed to improve resource utilisation

in D2D communications, which was capable of achieving the near-optimal sum rate

with acceptable complexity. Subsequently, a novel approach for context-aware resource

allocation in D2D communications was investigated. By formulating a utility function

taking account of data rate, packet error rate and delay, a matching algorithm was

proposed, which was shown to outperform the conventional context-unaware algorithm

by roughly 63%.

To enhance resource utilisation, resource allocation design for NOMA-enhanced D2D

communications was investigated. With the objective of maximising sum rate while

111
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considering interference constrains, joint spectrum allocation and power control problem

was studied. To reduce the computational complexity, spectrum allocation and power

control were decoupled and solved using many-to-one matching and sequential convex

programming, respectively. Results shown that NOMA-enhanced D2D communications

could achieve promising gains in terms of network sum rate and number of accessed users

compared to conventional OMA cases. Besides, the proposed algorithm was capable of

reaching around 93.7% of the optimal result obtained by exhaustive search.

In order to investigate the performance of D2D communications in HetNets and co-

effects of different technologies, the new paradigm of D2D communications in HetNets

with NOMA was studied. Compared with the state-of-the-art schemes, the new paradigm

was demonstrated to achieve roughly a 49% higher sum rate.

For all algorithms proposed in this thesis, great attention is given to accommodate the

inherent nature of D2D communications and matching theory in the resource allocation

design. The proposed algorithms provide useful guidelines and potential solutions for

the resource allocation mechanisms in future D2D networks.

6.2 Future Work

6.2.1 Resource Allocation for Content-Centric D2D Communications

Current wireless services is experiencing a transfer from traditional connection-centric

communications to the emerging content-centric communications, such as video stream-

ing, push media, mobile applications download/updates, and mobile TV [Ind13]. A

main feature of content-centric communication is that the same contents are requested

by multiple users, referred to as content diversity [LCT+14] or content reuse [GMDC13].

Two enabling techniques to exploit such content diversity are multicasting and caching

[TCZY16]. It is a very interesting topic to consider using the terminals themselves as

caching helpers, which can distributed contents through D2D communications. To the
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best of the knowledge, resource allocation in content-centric D2D communications is still

a fairly open field, and is expected to become a rewarding research area.

6.2.2 Resource Allocation for D2D Communications with Privacy

D2D communications underlaying cellular networks enables spectrum reuse between D2D

users and primary cellular users, and thus increase the efficiency of spectrum sharing.

While this system is anticipated to increase spectrum efficiency, primary users have

raised concerns about exposing details of their operations and have questioned whether

their privacy can be protected [CP16]. For example, in the United States, the Federal

Communications Commission recently issued a riling that the 3550-3700 MHz band will

be opened up to new spectrum uses through advanced shared spectrum access systems

[C+12]. Many of the incumbent systems in 3550-3700 MHz are operated by government

entities, e.g., Department of Defense radars. Therefore, the information that a spectrum

access system would need to assign spectrum resource, such as location, frequencies,

time of use and susceptibility to interference, may be considered very sensitive by the

incumbents and should be protected from exposure to a potential adversary.

To retain a critical level of privacy for primary cellular users, primary users may

need to alter their operational behaviour to improve privacy and defense adversaries

with sensing capabilities. One potential approach is to allow primary users to transmit

dummy signals even when the spectrum is idle. Spectrum allocation strategies need

to be investigated to adapt to the primary users to mitigate risks to their privacy. As

such, resource allocation for D2D communications with the consideration of privacy is

a promising research avenue, and more research efforts are needed for the final practical

deployment.



Appendix A

Proof in Chapter 5

A.1

Proof of Remark 5: Faced with a set S of SBSs, RB m can determine which subset of

S it would most prefer to match with. This is regarded as RB m’s choices from S, and

denote it by Chm(S) = S ′. That is, for any subset S of SBS, the most preferred set of

RB m is S ′ satisfying: ∀S ′′ ⊂ S,S ′′ 6= S ′ ⇒ S ′ �m S ′′. A RB m’s preferences over sets

of SBSs has the property of substitutability if, for any set S that contains SBSs b and b′,

if b is in Chm(S), then b is in Chm(S \ {b′}).

However, in the formulated game model, due to the existence of co-tier interference,

the achievable rate of RB m with SBS b may change after b′ is unmatched with m,

and therefore, b may not be in the preferred set any more, which is concluded that the

formulated game model does not have the property of substitutability.

114



Appendix A. Proof in Chapter 5 115

A.2

Proof of Lemma 4: Assume that there exists a swap-blocking pair (b, b′) in the final

matching Φ∗ satisfying that ∀s ∈ {b, b′,Φ(b),Φ(b′)} , Us
(

(Φ∗)b
′

b

)
≥ Us(Φ

∗) and ∃s ∈

{b, b′,Φ(b),Φ(b′)}, such that Us

(
(Φ∗)b

′

b

)
> Us(Φ

∗). According to SOEMA-1, the algo-

rithm does not terminate until all the swap-blocking pairs are eliminated. In other words,

Φ∗ is not the final matching, which causes conflict. Therefore, there does not exist a

swap-blocking pair in the final matching, and thus it can be concluded that the proposed

algorithm reaches a two-sided exchange stability in the end of the algorithm.

A.3

Proof of Theorem 11 : The convergence of SOEMA-1 depends mainly on Step 2 in

Algorithm 4. According to Definition 2, after each swap operation between SBS b and

b′ along with their corresponding matched RBs m, m′, the utilities of m and m′ satisfy:

Um(Φb′
b ) ≥ Um(Φ), Um′(Φ

b′
b ) ≥ Um′(Φ), in which at least one of the equalities does not

stand. Since the utility of each RB is defined as the sum α fairness-based data rate of

its occupying SCUs as in (5.14), the following inequality holds:

Uα−totalR
m
b,k

(
Φb′
b

)
> Uα−totalR

m
b,k (Φ) , (A.1)

where Uα−totalR
m
b,k =

∑B
b=1

∑M
m=1 Uα (Rmb ), which is the sum α fairness-based data rate

of all the SCUs in the network. Note that the number of iterations of SOEMA-1 is

limited since the number of players is limited and the system sum rate has an upper

bound due to the limited spectrum resources. Therefore, there exists a swap operation

after which no swap-blocking pair can further improve the sum rate of SCUs. SOEMA-1

then converges to the final matching Φ∗ which is stable as proved in Lemma 1.
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A.4

Proof of Proposition 1: R̄mb,k can be rearranged as the following:

R̄mb,k =bk[xb,k − log2(|fmb,k|2pb2xb,j + Ikco + Ikcr + σ2)]

+ bk log2(|fmb,k|2pb) + ck. (A.2)

R̄mb,k is a concave function of xb because of the convexity of the log-sum-exp function

[BV04]. Furthermore, as the α-fair utility function is strictly increasing and concave

for any given α, their composition, Uα

(
R̄mb,k

)
is also a concave function of xb [BV04].

Since the objective function in (5.53a) is a summation of the concave terms of xb, it is

straightforward to conclude that (5.53a) is also a concave function of xb. Therefore, the

optimization problem in (5.20) is a standard convex optimization problem with respect

to xb.
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[FDM+12] Gábor Fodor, Erik Dahlman, Gunnar Mildh, Stefan Parkvall, Norbert Rei-
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