
Knowledge sharing:

From atomic to parametrised context

and shallow to deep models

Yongxin Yang

August 2017

Submitted in partial fulfilment of the requirements of the Degree of

Doctor of Philosophy

1

I, Yongxin Yang, confirm that the research included within this thesis is my own work

or that where it has been carried out in collaboration with, or supported by others, that

this is duly acknowledged below and my contribution indicated. Previously published

material is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original,

and does not to the best of my knowledge break any UK law, infringe any third party’s

copyright or other Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check

the electronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree

by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or in-

formation derived from it may be published without the prior written consent of the

author.

Signature: YONGXIN YANG

Date: 13/06/2017

The Texts of Chapters

Chapter 3, in part, is a reprint of the material as it appears in Proceedings of the

3rd International Conference on Learning Representations (ICLR) 2015. “A Unified

Perspective on Multi-Domain and Multi-Task Learning”. Yongxin Yang and Timothy

Hospedales.

Chapter 4, in part, is a reprint of the material as it appears as a book chapter of Domain

Adaptation in Computer Vision Applications (Springer Series: Advances in Computer

Vision and Pattern Recognition, Edited by Gabriela Csurka). “Unifying Multi-Domain

Multi-Task Learning: Tensor and Neural Network Perspectives”. Yongxin Yang and

Timothy Hospedales.

Chapter 5, in part, is a reprint of the material as it appears in Proceedings of the

5th International Conference on Learning Representations (ICLR) 2017. “Deep Multi-

task Representation Learning: A Tensor Factorisation Approach”. Yongxin Yang and

Timothy Hospedales.

Chapter 6, in part, is a reprint of the material as it appears in the workshop track of

ICLR 2017. “Trace Norm Regularised Deep Multi-Task Learning”. Yongxin Yang and

Timothy Hospedales.

Full Publication List

Conference

Yongxin Yang and Timothy Hospedales. Deep Multi-task Representation Learning: A

Tensor Factorisation Approach. In International Conference on Learning Representa-

tions (ICLR), 2017.

Yongxin Yang, Yu Zheng, and Timothy Hospedales. Gated Neural Networks for Option

Pricing: Rationality by Design. In AAAI Conference on Artificial Intelligence (AAAI),

2

2017.

Yongxin Yang and Timothy Hospedales. Multivariate Regression on the Grassmannian

for Predicting Novel Domains. In Computer Vision and Pattern Recognition (CVPR),

2016.

Qian Yu∗, Yongxin Yang∗, Yi-Zhe Song, Tao Xiang, and Timothy Hospedales. Sketch-

a-Net that Beats Humans. In British Machine Vision Conference (BMVC), 2015.

Yongxin Yang and Timothy Hospedales. A Unified Perspective on Multi-Domain and

Multi-Task Learning. In International Conference on Learning Representations (ICLR),

2015.

Yanwei Fu, Yongxin Yang, Timothy Hospedales, Tao Xiang, and Shaogang Gong.

Transductive Multi-label Zero-shot Learning. In British Machine Vision Conference

(BMVC), 2014.

Zhiyuan Shi, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Weakly Supervised

Learning of Objects, Attributes and their Associations. In European Conference on

Computer Vision (ECCV), 2014.

Journal

Mingying Song, Ali Karatutlu, Isma Ali, Osman Ersoy, Yun Zhou, Yongxin Yang, Yuan-

peng Zhang, William R. Little, Ann P. Wheeler, and Andrei V. Sapelkin. Spectroscopic

super-resolution fluorescence cell imaging using ultra-small Ge quantum dots. In Optics

Express, 2017.

Zhiyuan Shi, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Weakly-Supervised

Image Annotation and Segmentation with Objects and Attributes. In IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (TPAMI), 2016.

Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang, and Timothy Hospedales.

Sketch-a-Net: A Deep Neural Network that Beats Humans. In International Journal of

Computer Vision (IJCV), 2016.

3

Abstract

Key to achieving more effective machine intelligence is the capability to generalise knowl-

edge across different contexts. In this thesis, we develop a new and very general per-

spective on knowledge sharing that unifies and generalises many existing methodologies,

while being practically effective, simple to implement, and opening up new problem set-

tings.

Knowledge sharing across tasks and domains has conventionally been studied dis-

parately. We first introduce the concept of a semantic descriptor and a flexible neural

network approach to knowledge sharing that together unify multi-task/multi-domain

learning, and encompass various classic and recent multi-domain learning (MDL) and

multi-task learning (MTL) algorithms as special cases.

We next generalise this framework from single-output to multi-output problems and

from shallow to deep models. To achieve this, we establish the equivalence between

classic tensor decomposition methods, and specific neural network architectures. This

makes it possible to implement our framework within modern deep learning stacks. We

present both explicit low-rank, and trace norm regularisation solutions.

From a practical perspective, we also explore a new problem setting of zero-shot

domain adaptation (ZSDA) where a model can be calibrated solely based on some

abstract information of a new domain, e.g., some metadata like the capture device of

photos, without collecting or labelling the data.

4

Contents

1 Introduction 9

1.1 Machine Learning . 9

1.2 Knowledge sharing in machine learning models 10

1.2.1 Multi-Task Learning . 11

1.2.2 Multi-Domain Learning . 11

1.3 Contributions of Thesis . 13

1.4 Organisation of Thesis . 14

2 Related Work 15

2.1 Linear Regression . 15

2.1.1 A numerical issue and an engineering trick 16

2.1.2 A regularisation-based solution 16

2.1.3 An equivalent Bayesian perspective 17

2.2 An introduction Multi-Task Learning . 18

2.2.1 Single-Task Learning . 18

2.2.2 Additive MTL model . 19

2.2.3 Multiplicative MTL model . 21

2.3 Literature Review . 23

2.3.1 Multi-Task Learning . 24

2.3.2 Multi-Domain Learning . 26

2.3.3 Zero-Shot Learning and Zero-Shot Domain Adaptation 27

2.3.4 Heterogeneous MTL and Deep MTL 27

2.4 The Intra- and Inter- Connections . 28

2.4.1 Intra-Connections . 28

2.4.2 Inter-Connections . 29

3 Single Output 32

3.1 Background . 32

3.2 Methodology . 33

3.2.1 General Framework . 33

3.2.2 Semantic Descriptor Design . 34

3.2.3 Unification of Existing Algorithms 36

5

3.2.4 Learning Settings . 37

3.2.5 Connection to Multilinear MTL 38

3.3 Experiments . 39

3.3.1 School Dataset - MDL and ZSDA 40

3.3.2 Audio Recognition - MDL and ZSDA 40

3.3.3 Animal with Attributes - MTL and ZSL 41

3.3.4 Restaurant & Consumer Dataset - MDMT 42

3.4 Summary . 43

4 Multi Output 44

4.1 Background . 44

4.2 Methodology . 45

4.2.1 Formulation . 46

4.2.2 Tensor Decomposition . 46

4.2.3 Gated Neural Network Architectures 49

4.2.4 Zero-Shot Domain Adaptation 50

4.3 Experiments . 51

4.3.1 Surveillance Image Classification 51

4.3.2 Gait-based Soft-Biometrics and Recognition 53

4.3.3 Multi-domain Multi-task Object Recognition 55

4.4 Summary . 56

5 Going Deep: Tensor Factorisation for Deep MTL 58

5.1 Background . 58

5.2 Methodology . 60

5.2.1 Tensor Factorisation for Knowledge Sharing 61

5.2.2 Deep Multi-Task Representation Learning 61

5.3 Experiments . 62

5.3.1 Homogeneous MTL . 64

5.3.2 Heterogeneous MTL: Face Analysis 66

5.3.3 Heterogeneous MTL: Multi-Alphabet Recognition 67

5.3.4 Multi-Domain Learning . 69

5.4 Summary . 71

6 Tensor Trace Norm Regularised Deep MTL 72

6.1 Background . 72

6.2 Methodology . 73

6.2.1 Tensor Tensor Norm . 73

6.2.2 Optimisation . 74

6.3 Experiment . 75

6.3.1 Omniglot . 75

6.4 Summary . 77

6

7 Conclusion and outlook 78

7.1 Parametrised DNNs . 78

7.2 Unlabelled Tasks/Domains . 79

7.3 Limitations and Future Works . 79

Appendices 80

A Notations 80

A.1 Variables . 80

A.2 Indexing . 80

A.3 Slicing and Stacking . 81

A.4 Operators . 81

A.4.1 Product operators . 81

A.4.2 Norm functions . 81

A.4.3 Matrix operators . 81

A.4.4 Tensor operators . 82

7

Acknowledgement

First, I would like to express my sincere gratitude to my supervisor, Timothy Hospedales,

for his support during my PhD. I am, semi-officially, Tim’s first PhD student. I guess it

is particularly worth celebrating that we make it because (i) Tim is a professional dancer

who happens to do research as a formal job, and (ii) I am a professional accountant who

accidentally slips into academia. I would also like to thank my colleagues, in particular,

Yun Zhou, Mingying Song, Zhiyuan Shi, Yanwei Fu, Qian Yu, Guosheng Hu, and Yu

Zheng.

Second, I want to thank my parents – I started feeling how hard it is to raise up a

kid. It is very challenging to take care of a kid like me (or my daughter).

Finally, and most importantly, I would like to thank my wife, Qing Li, I can not

survive without her – she keeps me fed, fat and “happy”. I love her forever.

Last but not least, my ten-month-old daughter Nina helped me type the last sym-

bol(s) of this sentence7 m7u w zfrm-e ;fs vszcx

8

Chapter 1

Introduction

1.1 Machine Learning

Machine learning [Hastie et al., 2001, Bishop, 2006, Barber, 2012, Murphy, 2012] is an

interdisciplinary field of computer science, statistics, mathematics (esp. optimisation),

and neuroscience. While a formal definition of machine learning leads to a philosophical

problem: can a machine learn? we sidestep the philosophical question and introduce

machine learning in a more straightforwardly quantifiable way.

Think about making a computer program that answers the following question: what

is it in a picture, an apple or a banana? This program is expected to be fed an image

and output a correct label (either apple or banana).

A naive implementation is simply detecting the colour, if (colour==red) {return

apple} else {return banana}. We denote this approach as explicit programming, because

we directly code the solution based on our own knowledge in a way that a computer

can execute it. We can continue to improve this program by adding more rules (if-

else statements), e.g., if (colour==red and shape==round) {return apple} else {return

banana}.
We can tell that the above program does not learn anything, as it just follows our

instructions. Instead, machine learning is looking for an alternative way: we present

a number of apple images as well as banana images, and let the program itself figure

out how to distinguish them by training it. We denote this approach as data driven

programming. While it sounds a bit magic without sufficient details on how training is

achieved, it turns out that machine learning is particularly good at this kind of tasks

and eventually outperforms humans in many cases [He et al., 2015, Yu et al., 2015, Lu

and Tang, 2015].

In summary, machine learning is the study of how to train a model (the program)

so that it can solve the problem that we, humans, can do. Conventionally machine

learning is categorised into three different settings, namely,

Supervised learning The objective is to find the mapping between the given pairs

9

of (input, output). There is ground truth for the output (true labels). Most

recognition problems and those involved with predictions fall into this category.

Unsupervised learning It finds the underlying structure of the given data by trans-

forming it into another representation. There is no right answer in this case.

Dimension reduction and clustering are typical studies in unsupervised learning.

Reinforcement learning An agent is trying to maximise its rewards in an environ-

ment by taking actions in different states. Reinforcement learning is about how

to pick the best action for the agent.

We point out that this kind of taxonomy, though being well accepted, may be kind

of misleading because overlap exists in those categories. For example, autoencoder

[Bourlard and Kamp, 1988], a classic unsupervised learning method, can be seen su-

pervised learning where the output is exactly the input: it “compresses” the data and

“reconstructs” them. The objective of autoencoder is usually to minimise the recon-

struction error, which is of the same form as regression. Another example is policy

gradient [Sutton et al., 1999], a popular reinforcement learning algorithm, is essentially

a supervised learning approach with dynamical labels and instance-wise re-weightings

for each round of training. On the other hand, some machine learning problems are

hard to fit into any of three categories, e.g., semi-supervised learning is a bridge be-

tween supervised and unsupervised learning.

1.2 Knowledge sharing in machine learning models

One typical practice of machine learning is (i) collect the data (ii) train the model,

and (iii) deploy it. When a new problem comes, the practitioner usually starts again

from scratch, and the existing model becomes useless. This process differs from humans

significantly, as humans rarely starts from nothing, instead they can leverage the expe-

rience in past, and master a new skill quickly. For example, it is easy to teach a kid to

recognise digit 8 given that (s)he knew how to recognise 0, as it appears that 8 is just

two stacked 0s. Humans are extremely good at building the connections between a new

task and the tasks that they have seen, thus they can reuse their knowledge. It however

is very hard for machines to do so.

Back to the problem of recognising digits, assuming we want to train a model that

recognise 0, we collect and annotate a number of images that are zeros (labelled as “is

zero”) and another set of images that are not zeros (labelled as “is not zero”), from

which we can train a model. Though the trained model can do an excellent job on

recognising 0, it is useless when we switch the problem into recognising 8: to deal with

this new problem, we need to do it again: get data and train the model.

One can easily tell that the cost of dealing with the new problem is (almost) the

same as the old one, but it should not be. The problem here is that we completely

abandoned the existing model.

10

The idea of storing the knowledge learned from previous problems and applying it to

a different but related problem is studied as transfer learning in machine learning litera-

ture. In this subsection, we briefly introduce two sub-fields of transfer learning, namely,

multi-task learning (MTL) and multi-domain learning (MDL), in a non-technical fash-

ion. A rigorous review can be found in Chapter 2.

1.2.1 Multi-Task Learning

Before introducing multi-task learning, it is useful to carefully define the term task in

the context of this thesis. A task roughly corresponds to a problem, e.g., in a recognition

system, it is a distinct class: recognising a cat is a task, and recognising a dog is another

(different but related) task.

Multi-task Learning [Caruana, 1997], in general, suggests a strategy that can poten-

tially benefit from jointly learning multiple tasks instead of treating them independently.

Recent survey on this topic can be found in [Ruder, 2017, Zhang and Yang, 2017].

Besides of the classic settings of MTL, there are paradigms involving with multiple

tasks, e.g., one-shot learning and zero-short learning. Here we briefly introduce these

topics due to the connections with MTL.

One-Shot Learning

Theoretically, the minimal requirement for training a machine learning model is one

positive example. This is intuitive, to recognise a cat, we should at least present one

image of cat. The study for this extreme case is usually called one-shot learning [Fei-

Fei et al., 2006], and it assumes the existence of a system that has already been able

to recognise many classes, and the target is to extend the system such that it can

recognise a new class with only one example. To achieve this, a mechanism that reuses

the knowledge from previously learned classes is the key.

Zero-Shot Learning

If we take one step further from one-shot learning, the only example is not in the form

of image, but more abstract, e.g., a semantic description, we reach a research area called

zero-shot learning [Lampert et al., 2009]. This is achievable for humans, for example,

we can teach kids how to recognise a unicorn without presenting any unicorn images,

instead we simply tell them unicorn is a horse with horn on its head (assuming that

they knew horse and horn). Zero-shot learning leads to a possibility that constructs a

model on-the-fly without training.

1.2.2 Multi-Domain Learning

The term domain is sometimes confused with task that we discussed in the previous

section. In this thesis, a domain roughly refers to a dataset, or more specifically, the

data distribution where a model is trained. A common assumption made in conventional

11

supervised learning is that the training data (from which a model is obtained) and the

testing data (to which a model is deployed) are drawn from the same distribution, when

this assumption is not held, the model performance can be significantly degraded. For

example, a face recognition system trained in the collection of front faces may not work

well when it is used for face images in extreme poses.

The problem setting of multi-domain learning [Daumé III, 2007] is similar to multi-

task learning, and the difference is that, the distinction of domains originates from

different data distributions (sometimes it is referred to as domain shift or domain bias).

In contrast, for multi-task learning, the distinction of tasks originates from different ob-

jectives of tasks. The distinction between multi-task learning and multi-domain learning

applies to the context of this thesis only, and for most of MTL algorithms, they can

solve MDL setting seamlessly.

Domain Adaptation

Domain 1

Domain 2 Domain 3

(a) Multi-Domain Learning

Source Domain Target Domain

(b) Domain Adaptation

Figure 1.1: Two different settings involving with more than one domains

Multi-domain learning is illustrated Fig. 1.1(a), where multiple domains are learned

jointly during training and the knowledge sharing happens in every pair of domains. But

a more common problem setting is that, we have a source domain where a model can be

trained, and a target domain for which the model is applied. The data distribution of

target domain is related but not identical to the source domain, so we want to calibrate

the model so that the model can perform well on the target domain. An option is to

re-train the model on the target domain regardless of the existing model, but it costs

an effort to collecting sufficient data for retraining. Domain adaptation (Fig. 1.1(b))

studies adapting the existing model to the target domain with minimal effort. The

knowledge sharing in domain adaptation happens in a single direction: source domain

→ target domain.

Two main settings of domain adaptation are,

Supervised Domain Adaptation Both source and target domain are labelled, but

the data volume of target domain is much smaller than source domain thus it is

12

impractical to train a model on it solely.

Unsupervised Domain Adaptation Source domain is labelled, but target domain

is unlabelled. I.e., we can not obtain the conditional distribution P (Label|Data)

for the target domain, thus the option left is to align the marginal distribution of

target domain P (Target Data) with that of source data Q(Source Data).

Zero-Shot Domain Adaptation

To realise domain adaptation, it appears that we at least need some unlabelled data

from the target domain.

Inspired by zero-shot learning, we propose a novel problem setting, instead of col-

lecting some data instances of the target domain, we study a scenario that we have some

high-level descriptions (e.g., meta-data like capture devices, lighting conditions.) of the

target domain only, and we want to calibrate the existing model on-the-fly without

training. We denote this new problem setting as zero-shot domain adaptation (ZSDA)

[Yang and Hospedales, 2015, 2016].

An alternative to ZSDA is to train a domain-invariant model, such that it can apply

for any unseen domains. This topic is usually called domain generalisation [Muandet

et al., 2013, Ganin and Lempitsky, 2015]. Domain generalisation seems to be appealing

as it does not even need the meta-data of target domain, but if such meta-data is

available, ZSDA can potentially exploit it to outperform domain generalisation.

1.3 Contributions of Thesis

In the following parts of this thesis, we will present a line of work in multi-task/multi-

domain learning, and the key contributions are,

A general framework encompassing classic methods It provides insights about

many existing methods by draw connections between them (e.g., additive or mul-

tiplicative MTL) and our general framework.

Atomic to parametrised domain/task By introducing the semantic descriptor, we

take the domain or task meta-data as an input directly to the model formulation,

rather than just use it as a means to distinguishes different domains. This provides

a new viewpoint on modelling this kind of problems.

Shallow to deep models Deep MTL was previously studied in an empirical way, and

we propose the first systematic study in this area. The softly-sharing mechanism

finds a mid-road between fully-sharing and non-sharing – these two designs have

to be determined by the user in a try-and-error fashion for every single layer of

neural networks, instead our approach can handle this automatically. This can be

seen as a deep generalisation of existing soft sharing but shallow methods as well.

13

1.4 Organisation of Thesis

The following part of thesis consists of six chapters,

Chapter 2 We review the classic work in the area of multi-task learning and multi-

domain learning. Based on the low-level mathematical tools, we classify them into

two main categories: matrix-based and tensor based. More importantly, we draw

the link between those classic work with the methodologies proposed in Chapter 3,

Chapter 4, Chapter 5, and Chapter 6.

Chapter 3 We start from matrix-based approach MTL/MDL, and introduce the core

concept: semantic descriptor, by which we can encompass several classic meth-

ods into a unified framework, and further it enables a new problem setting –

zero-shot domain adaptation. Besides, we detail the connection of the proposed

approach and the tensor-based one when it comes to the case of multi-indexed

tasks/domains.

Chapter 4 We extend the work in Chapter 3 so that it can work for the case when each

task/domain involves multiple outputs. We generalise the equivalence of matrix

factorisation and gated neural network to the equivalence of tensor factorisation

and another family of gated neural networks.

Chapter 5 We extend the work in Chapter 4 so that it applies to multi-layer neural

network models (deep learning [Schmidhuber, 2015, Lecun et al., 2015]). We

point out that it is an automatic method to design deep MTL architecture, as a

competitive choice to manual design.

Chapter 6 We propose to use a regularisation based approach to deal with the same

problem in Chapter 5. The methodology in Chapter 5 is essentially explicit tensor

factorisation, and the work in Chapter 6 can be seen as a continuous relaxation

of it.

Chapter 7 We conclude the thesis, briefly introduce some application directions, and

discuss some further directions.

14

Chapter 2

Related Work

In this chapter, we start from a simple linear regression problem, and sequentially

introduce many important concepts in machine learning, such as parametric model,

regularisation, and Bayesian prior. We aim at demonstrating that the ideas that appear

to be different at the first glance may actually be the same but derived from different

perspectives.

Then we introduce multi-task learning. Instead of reviewing the existing work as

originally presented, we reproduce them by ourselves, may or may not follow the path

of the original authors. Further, we exploit the key idea behind those methods, so we

can tell that, though being formulated differently, some methods are actually built upon

the same motivation.

Finally, we draw the connection of the methodology proposed in this thesis and

various classic methods, and pose our work as different directions of extension of existing

methods.

2.1 Linear Regression

Let {x1, x2, . . . , xN} be a set of instances, each represented by a D-dimensional vector,

i.e., x ∈ RD, and {y1, y2, . . . , yN} be a set of (continuous) labels and y ∈ R1. A (single-

output) regression problem seeks for a mapping function f such that the difference

between f(x) (prediction/estimation) and y (ground-truth) is minimised, formally,

argmin
f

N∑
n=1

`(f(xn), yn) (2.1)

Here `(ŷ, y) is a loss function that measures the error (loss) produced by a pair of

prediction ŷ = f(x) and ground-truth y, and a popular choice is squared error, i.e.,

`(ŷ, y) = (ŷ − y)2.

It is less practical to look for f from all possible functions, and we usually choose

f(·) to be a certain kind of functions. In this case, we choose f(·) to be a linear function

15

parametrised by w, i.e., fw(x) = wTx where w ∈ RD.

With the choice on `(·, ·) and f(·), we can rewrite Eq. 2.1 as,

argmin
w

N∑
n=1

(wTxn − yn)2 (2.2)

Eq. 2.2 has a closed-form solution, to see this, we first rewrite it into its matrix form.

Denote X to be a stack of instances in a row-wise manner, i.e., X = [x1;x2; . . . , xN] ∈
RN×D, and y to be a stack of labels, i.e., y = [y1; y2; . . . , yN] ∈ RN , and then Eq. 2.2

can be rewritten as,

argmin
w
||Xw − y||22 (2.3)

Here || · ||2 is the `2 norm for vector (see Sec. A.4.2 for all norm functions used in

this thesis). Now we take the derivative with respect to w,

∂

∂w
||Xw − y||22 = 2XT (Xw − y) (2.4)

By setting 2XT (Xw−y) = 0, we get the closed-form solution of w as w = (XTX)−1XT y.

2.1.1 A numerical issue and an engineering trick

One may find a mistake here immediately, we implicitly use an assumption that (XTX)

is invertible without verifying it. When N < D, (XTX) is definitely non-invertible. In

fact, even for the case when N > D, it is not numerically safe to invert (XTX) because

X itself might be a low-rank matrix, a widely used engineering trick is to add a small

value to the diagonal of (XTX), so the solution becomes (XTX + λID)−1XT y, where

λ is a small number, e.g., λ = 10−5, and ID is a D ×D identity matrix.

2.1.2 A regularisation-based solution

The aforementioned engineering trick is widely used, and for a numerical stability per-

spective, it works for an obvious reason – (XTX+λID) is definitely invertible. Now we

derive the same trick from a different perspective – regularisation.

We modify the objective function in Eq. 2.2 by adding a new term λ||w||22.

argmin
w
||Xw − y||22 + λ||w||22 (2.5)

In machine learning, this term is usually called “regularisation term” or “penalty

term”, and it is used to control model complexity. Now the objective function contains

two parts (i) a loss term that measures how well the model fits the data and (ii) a

regularisation term that measures how complex the model is. The ratio λ is a positive

number that controls the balance between the loss term and the regularisation term:

(i) if λ = 0, we care about the model performance measured by the fitting quality only

16

(ii) if λ → +∞, we can find that the optimal solution is that w = 0D (here 0D is a

D-dimensional all-zero vector) regardless of the training data.

The meaning of w being a all-zero vector can be interpreted two ways: (i) From

modelling perspective, it implies that none of the feature is useful, since we ignore all

training data, this may be the least worst thing. (ii) From predicting perspective, the

model will always output zero for any instances. Note that we do not have a bias term

in this model, which implies the output has been normalised with zero mean (or if we

estimated the bias term when w = 0, we will get b = ȳ). a model that always produces

zero (for normalised output) or produces the mean (for un-normalised output) is the

simplest model without involving any input data.

It is easy to verity that the solution for Eq. 2.5 is the same as the engineering trick

mentioned in Sec. 2.1.1.

2.1.3 An equivalent Bayesian perspective

Now we re-derive the `2 regularisation approach from a Bayesian perspective. We

assume that the residual (ŷ − y) is from a Gaussian distribution with mean 0 and

standard deviation σ, the probabilistic form of Eq. 2.2 is,

argmax
w

N∏
n=1

N (wTxn − yn|0, σ) (2.6)

To add the prior knowledge on each wd, we impose a Gaussian prior with mean 0

and standard deviation φ, then Eq .2.6 becomes

argmax
w

D∏
d=1

N (wd|0, φ)

N∏
n=1

N (wTxn − yn|0, σ) (2.7)

Take the logarithm of Eq. 2.7, we can get,

argmax
w

−
N∑
n=1

1

σ2
(wTxn − yn)2 − 1

φ2

D∑
d=1

w2
d + constant (2.8)

Eq. 2.8 can be rewritten as,

argmin
w

N∑
n=1

1

σ2
(wTxn − yn)2 +

1

φ2

D∑
d=1

w2
d → argmin

w
||Xw − y||22 +

σ2

φ2
||w||22 (2.9)

Eq. 2.9 is equivalent with Eq. 2.5 when λ = σ2

φ2 , therefore we verify that the `2

regularisation is the same as posing a zero-mean Gaussian prior on the model parameter

w. This again verifies that the regularisation approach and Bayesian approach are both

built upon the following core idea: we believe w = 0 initially unless the later coming

evidences (training data) prove it wrong to a certain extent, and the hyper-parameter

λ is a measure that how strongly we believe w = 0.

17

2.2 An introduction Multi-Task Learning

In this section, we give an introduction to the problem setting of multi-task learning,

and re-derive two classes of classic MTL models (additive and multiplicative) from a

slightly different perspective than their original presentations, in order to draw new

connections between them and set the stage for our later generalisations. Note that,

these MTL methods are applicable to multi-domain learning as well, but we call them

MTL for simplicity.

2.2.1 Single-Task Learning

Assume we now have multiple regression problems instead of one, and these problems

are different but related. To give a concrete example, we introduce School Dataset

[Mortimore et al., 1988] that was brought to multi-task learning research by [Bakker and

Heskes, 2003]. The problem setting is as follows, the objective is to predict students’

exam scores based on their information, e.g., gender, ethnic group. There are 139

distinct schools, from which we build 139 regression problems (tasks).

Apart from multi-task learning, we have two approaches to modelling this problem,

Train 139 regression models independently We choose not to share any knowl-

edge between models, and the obtained models should be school-specific. The

disadvantage is clear: when some school have a small number of instances (stu-

dents), it is hard to train a good model.

Train 1 regression model from aggregated data We ignore school difference, and

concatenate all training instances from all schools to train a single model. The

obtained model is school-agnostic. This may lead to a good model because the

training data is sufficient, but it may not work well for all schools as the school

bias is completely missing.

Note that, though school dataset was introduced for multi-task learning originally, it

fits more with the definition of multi-domain learning in this thesis (Sec. 1.2.2), thus the

second approach is valid because it actually looks for a universal model for all schools.

For most multi-task learning problems, it is pointless to carry out the second approach

because the tasks are essentially different, which means there will not be a universal

model. Nevertheless, the task or domain distinction is subtle for school dataset, and to

follow the trace of research history, we still call it a multi-task learning problem, and

temporarily ignore the second approach.

Formally, we denote the first approach as single task learning (STL), also known as

independent task learning (ITL). Adapting two key choices from the regression model

in Sec. 2.1: linear model and squared error, the STL can be formulated as,

argmin
w(1),w(2),...,w(T)

T∑
i=1

N(i)∑
j=1

(w(i) · x(i)
j − y

(i)
j)2 (2.10)

18

Here i is the index of tasks, and T = 139 is the number of schools (tasks) in total.

For the i-th school there are N (i) students (training instances). j is the index of students

within the same school, and y
(i)
j stands for the j-th student’s exam score in the i-th

school. Here we assume that all students are represented by D-dimensional feature vec-

tors regardless which school they come from, thus we have x
(i)
j ∈ RD,∀i ∈ [1, 2, . . . , T].

Consequentially we have w(i) ∈ RD,∀i ∈ [1, 2, . . . , T] so that we can stack all model pa-

rameters and form a matrix W = [w1, w2, . . . , wT] ∈ RD×T . We slightly amend Eq. 2.10

to get its matrix form,

argmin
W

T∑
i=1

N(i)∑
j=1

(W·,i · x(i)
j − y

(i)
j)2 → argmin

W

T∑
i=1

||X(i)W·,i − y(i)||22 (2.11)

Here X(i) is an N (i) × D matrix stacking all instances in the i-th task and y(i) is a

N (i)-length vector stacking all labels in the i-th task. It is obvious that the learning for

W·,i involves (X(i), y(i)) only, thus each task is independent to others.

2.2.2 Additive MTL model

We illustrate the first MTL algorithm, denoted as Additive MTL model, and the key

idea here is to add one shared term for each single model parameter such that a degree

of knowledge sharing is introduced.

w(i) ← ŵ(i) + ŵ(0) (2.12)

Intuitively, the model parameter has two terms: one task-specific term or its own

use and one shared term that is used by all tasks. The mechanism of MTL is as follows:

the learning for ŵ(0) is affected by all ŵ(i) terms, and simultaneously ŵ(0) affects the

learning for every ŵ(i), therefore ŵ(i) is no longer an isolated term, it is indirectly linked

with all ŵ(k), k 6= i terms bridged by ŵ(0). To see this in detail, we rewrite Eq. 2.11 as,

argmin
Ŵ ,ŵ(0)

T∑
i=1

||X(i)Ŵ·,i +X(i)ŵ(0) − y(i)||22 (2.13)

Here Ŵ = [ŵ(1), ŵ(2), . . . , ŵ(T)]. From Eq. 2.13 we can see the gradient of Ŵ is related

with ŵ(0) and vice versa.

Next, we present two ways to understand this model.

Regularisation perspective

It is easy to interpret ŵ(0) as a shared term intuitively, but one may wonder what is the

physical meaning of ŵ(0) and how exactly it is involved in the learning process. [Evge-

niou and Pontil, 2004] derives a perspective from regularisation, here we reproduce this

work. Note that the original paper presented the methodology for a binary classification

19

problem with hinge loss, but it is applicable to the regression here.

First, we add two `2 norms for Ŵ and ŵ(0) respectively for regularising the model

in Eq. 2.13,

argmin
Ŵ ,ŵ(0)

T∑
i=1

||X(i)Ŵ·,i +X(i)ŵ(0) − y(i)||22 + λ1

T∑
i=1

||Ŵ·,i||22 + λ2||ŵ(0)||22 (2.14)

We denote the objective function in Eq. 2.14 as J(Ŵ , ŵ(0)), when the optimal solu-

tion for Eq. 2.14 is Ŵ ∗ and ŵ
(0)
∗ , we have ∂J

∂Ŵ·,i
|
Ŵ·,i=Ŵ∗

·,i,ŵ
(0)=ŵ

(0)
∗

= 0,∀i ∈ [1, 2, . . . , T]

and ∂J
∂ŵ(0) |Ŵ=Ŵ∗,ŵ(0)=ŵ

(0)
∗

= 0. By extending these two equations, we have,

X(i)T (X(i)Ŵ ∗·,i +X(i)ŵ
(0)
∗ − y(i)) + λ1Ŵ

∗
·,i = 0 (2.15)

T∑
i=1

X(i)T (X(i)Ŵ ∗·,i +X(i)ŵ
(0)
∗ − y(i)) + λ2ŵ

(0)
∗ = 0 (2.16)

Aggregating all Eq. 2.15 for i ∈ [1, 2, . . . , T] gives the equation,

T∑
i=1

X(i)T (X(i)Ŵ ∗·,i +X(i)ŵ
(0)
∗ − y(i)) + λ1

T∑
i=1

Ŵ ∗·,i = 0 (2.17)

By combining Eq. 2.16 and Eq. 2.17 we obtain that,

ŵ
(0)
∗ =

λ1

λ2

T∑
i=1

Ŵ ∗·,i (2.18)

By combining Eq. 2.12 and Eq. 2.18 we further get,

ŵ
(0)
∗ =

λ1

λ2 + λ1T

T∑
i=1

w
(i)
∗ =

1
λ2

λ1
+ T

T∑
i=1

w
(i)
∗ (2.19)

Eq. 2.19 indicates that the shared term ŵ(0) is a (smoothed) average of final model

parameters w(i). We can also find an equivalent formulation of Eq. 2.14,

argmin
W

T∑
i=1

||X(i)W·,i−y(i)||22+
λ1λ2

λ2 + λ1T

T∑
i=1

||W·,i||22+
λ2

1T

λ2 + λ1T

T∑
i=1

∣∣∣∣∣
∣∣∣∣∣W·,i −

∑T
j=1W·,j

T

∣∣∣∣∣
∣∣∣∣∣
2

2
(2.20)

Eq. 2.20 implies the core assumption behind this additive MTL model is that all

model parameters are “close” to their empirical mean, or, from a Bayesian viewpoint,

the model parameters are drawn from the Gaussian that has the mean of the empirical

mean of these model parameters.

20

Feature augmentation perspective

Apart from above regularisation perspective, we present another view of the additive

MTL model. The idea is very simple, just to copy the feature one more time and put

them as well as zero-paddings into an augmented space [Evgeniou and Pontil, 2004,

Evgeniou et al., 2005, Daumé III, 2007].

To illustrate this algorithm, we assume there are three tasks (T = 3): the training

datasets are {(X(1), y(1)), (X(2), y(2)), (X(3), y(3))}.
The original feature for the first task is X(1) ∈ RN(1)×D, and we transform it into

[X(1), X(1), 0N(1)×D, 0N(1)×D] ∈ RN(1)×4D, and for the task, we have a transformed

feature [X(2), 0N(2)×D, X
(2), 0N(2)×D] ∈ RN(2)×4D, and finally, for the third task, we

have [X(3), 0N(3)×D, 0N(3)×D, X
(3)] ∈ RN(3)×4D. By concatenating three augmented

features, we have (N (1) + N (2) + N (3)) × 4D sized training data for which we want to

predict (N (1) +N (2) +N (3)) labels (concatenated labels from all tasks). Again we build

one linear model for it, and the model parameter is w ∈ R4D.

We can tell the model parameter w here corresponds to [ŵ(0); ŵ(1); ŵ(2); ŵ(3)] in the

previous approach, thus these two formulations agree.

2.2.3 Multiplicative MTL model

Recall that the core of additive MTL model is w(i) ← ŵ(0) + ŵ(0), instead of addition

operator, we present an alternative MTL approach based on Multiplication operator.

The core of the so-called multiplicative MTL model is,

w(i) ← Ls(i) (2.21)

Similar to additive MTL model, the model parameter has a task-specific term s(i)

and a shared term L, but the final model parameter is produced by dot-product this time

instead of sum. This approach introduces a new hyper-parameter, namely the length of

s(i) (or the number of columns of L). One way to understand this hyper-parameter is

that it is (assumed) rank of matrix W = [w(1), w(2), . . . , w(T)] ∈ RD×T . By stacking all

s(i) to form a matrix S = [s(1), s(2), . . . , s(T)], we have W = LS. Replacing the model

matrix W with two factor matrices L and S, we write the general form of the objective

function for the multiplicative MTL model as,

argmin
L,S

T∑
i=1

||X(i)LS·,i − y(i)||22 (2.22)

Here L ∈ RD×K and S ∈ RK×T where K is a hyper-parameter. The mechanism of

MTL is clear: L will affect each individual s(i) and all s(i) terms jointly will affect L.

Next we present two ways to understand this method.

21

Dictionary learning of W

We can see this approach as an explicit matrix factorisation of W , or more generally

dictionary learning of W where L is the dictionary matrix and S is the coding matrix.

When K � min(D,T), the effectiveness of this approach can be explained as that

it effectively reduces the number of parameters to learn from DT (single task learning

mode) to K(D + T) – the statement holds true when K < DT
D+T . By reducing the

number of parameters to learn, it reduces the complexity of model, i.e., regularise the

model.

However, the model may still work when K ≥ DT
D+T if we further regularise L and/or

S. For example, we can set K sufficiently large (even larger than the maximum possible

rank) while imposing the `1 norm on the columns of S such that the coding of each task

will be sparse [Kumar and Daumé III, 2012], which corresponds to the over-complete

case of sparse coding.

It is worth mentioning that, apart from explicitly factorising W , it is also possible to

impose an appropriate matrix norm on W to achieve similar purposes, then the Eq. 2.22

becomes,

argmin
W

T∑
i=1

||X(i)W·,i − y(i)||22 + λΩ(W) (2.23)

where Ω(W) is a matrix norm function on W . Two typical papers in this line are,

To encourage sparsity along the rows of W [Argyriou et al., 2008] propose to use

`2,1 norm which is defined as ||W ||2,1 =
∑D
d=1 |(

∑T
i=1 |Wd,i|2)

1
2 |. We can see `2,1

norm as an `1 norm on a D-dimensional vector [||W1,·||2, ||W2,·||2, · · · , ||WD,·||2, ,

of which each element is the `2 norm of a row in W . It is well known that `1 norm

will encourage sparsity, thus the Euclidean norm of any row of W is encouraged to

be zero – this means a row in W is all-zero, or more intuitively, this feature is not

useful for any tasks. Therefore, this approach can be understood as a joint feature

selection (lasso regression) across tasks, which selects the most useful features for

all tasks. As `2,1 norm favours the matrix with more all-zero rows, consequently

W will be a low-rank matrix. A reduced version to [Argyriou et al., 2008], without

the feature mapping, is developed in [Obozinski et al., 2010].

To encourage low-rank of W Instead of explicitly factorising W and choosing a low

rank number as hyper-parameter, [Ji and Ye, 2009] propose to encourage low-

rank property of W by imposing a trace norm (a.k.a., nuclear norm) on W , i.e.,

Ω(W) = ||W ||∗. Trace norm is the tightest convex relation of matrix rank [Recht

et al., 2010], which makes it a good proxy when we do not want to work on rank

directly as it is an NP-hard problem that we want to secure a certain (small)

rank number. [Argyriou et al., 2008] propose the same formulation, but they have

opted for the alternating minimisation strategy instead of optimising for trace

norm directly due to the non-smoothness nature of trace norm.

22

L as a universally useful representation learning

Alternatively L can be seen as a linear transform that applies to all instances in all

tasks universally. This viewpoint leads to a way of positioning this method within a

neural network framework. First we see single task learning mode as training a number

of neural network models, where each task is modelled by a two-layer neural network

(one input layer, one output layer, and no hidden layer) fi(x) = σ(Wix), where σ(·) is

the activation function, and Wi is the weight matrix for input-to-output layer. Then

we add a hidden layer with activation function ψ(·) so that the model for each task

becomes fi(x) = σ(W
(2)
i ψ(W

(1)
i x)), where W

(2)
i is the weight matrix for hidden-to-

output layer and W
(1)
i is the weight matrix for input-to-hidden layer. Finally, we tie all

input-to-hidden weight matrices, i.e, W
(1)
1 = W

(1)
2 = · · · = W

(1)
T = W (1) and choose two

activation functions σ(·) and ψ(·) to be linear activation. Now we re-discover Eq. 2.21

by observing that W (1) = LT and W
(2)
i = sTi . Note that this kind of architecture design

is sometimes referred to as “shared layer”, “shared weight”, or “tied weight” in some

neural network literature, e.g., Siamese Network [Chopra et al., 2005].

Additive MTL model as a special case

One interesting connection is that we can see Additive MTL model in Section 2.2.2 as

a special case of the multiplicative MTL model here.

By default, both L and S are the parameters to learn in Eq. 2.22, however, we

can recover additive MTL model by setting S as a constant where S = [IT ; 1T×1] ∈
R(T+1)×T . We can see that, for the i-th task, its coding in S, i.e., S·,i is a binary

vector that has two units activated: the i-th one and the last one. Then we have

w(i) = LS·,i = L·,i + L·,T+1 where L·,i corresponds to ŵ(i) and L·,T+1 corresponds to

ŵ(0) in Eq. 2.12.

2.3 Literature Review

In this section, we review some related work in multi-task and multi-domain learning.

As we briefly discussed in Section 1.2.1 and Section 1.2.2, the difference between domains

and tasks could be subtle, and some multi-domain learning problems can be addressed by

methods proposed for multi-task learning and vice-versa. However, to better understand

the work in these two areas, it is useful to distinguish them clearly. Domains refer to

multiple datasets addressing the same task, but with differing statistical bias. For

example camera type for object recognition; time of day or year for surveillance video

analysis; or more subtle human biases in data collection [Torralba and Efros, 2011].

Tasks, on the other hand would refer to different object categories to recognise. In other

words, a task change affects the output label-space of a supervised learning problem,

while a domain change does not.

A classic benchmark with multiple domains is the Office dataset [Saenko et al., 2010].

It contains images of the same set of categories (e.g., mug, laptop, keyboard) from three

23

data sources (Amazon website, webcam, and DSLR). In this context, multi-task learning

could improve performance by sharing information about how to recognise keyboard and

laptop; while multi-domain learning could improve performance by sharing knowledge

about how to recognise those classes in Amazon product versus webcam images. Some

problems can be interpreted as either setting. E.g., in the School dataset the goal is

to predict students’ exam scores based on their characteristics. This dataset is widely

used to evaluate MTL algorithms, where students from different schools are grouped

into different tasks. However, one can argue that school groupings are better interpreted

as domains than tasks.

As a rule of thumb, multi-domain learning problems occur when a model from do-

main A could be directly applied to domain B albeit with reduced performance; while

multi-task learning problems occur where a model for task A can not meaningfully be

applied to task B because their label-spaces are fundamentally different. In some prob-

lems, the multi-domain and multi-task settings occur simultaneously. E.g., in the Office

dataset there are both multiple camera types, and multiple objects to recognise. Some

existing methods, especially those based on tensor methods can potentially deal with

this setting, but this setting is relatively less studied. Most classic MTL methods break

a multi-class problem into multiple one-vs-all tasks and share information across tasks

[Argyriou et al., 2008, Kumar and Daumé III, 2012], while MDL methods typically deal

with a single-output problem in multiple domains [Daumé III, 2007].

2.3.1 Multi-Task Learning

Matrix-based MTL

Matrix-based MTL algorithms assume that the input and model are both D-dimensional

vectors. The models of T tasks can then be stacked into a D×T sized matrix W . Despite

different motivations and implementations, many matrix-based MTL methods work by

placing constraints on W .

An early study [Evgeniou and Pontil, 2004] assumes a linear model for ith task can

be written as wi ← w0 + vi where w0 can be considered as the shared knowledge which

benefits all tasks and vi is the task-specific knowledge. A hierarchical model proposed

by [Salakhutdinov et al., 2011] is similar to this motivation, where a tree-structured

model for one object is generated by the sum of itself (task-specific knowledge) and its

parents (shared knowledge), i.e., w(van) ← w(global) + w(vehicle) + w(van).

Another common assumption of MTL is that the predictors lie in a low dimensional

subspace. [Argyriou et al., 2008] imposes the `2,1 norm on the predictor matrix W ,

where each column is a task, results in a low-rank W by forcing more rows of W to be

all-zero. [Ji and Ye, 2009] places the trace norm on W that encourages the lower rank of

W . However, this assumes that all tasks are related, which is likely violated in practice.

Forcing predictors to be shared across unrelated tasks can significantly degrade the

performance – a phenomenon called negative transfer [Rosenstein et al., 2005]. A task

grouping framework is thus proposed by [Kang et al., 2011] that partitions all tasks into

24

disjoint groups where each group shares a low dimensional structure. This partially

alleviates the unrelated task problem, but misses any fundamental information shared

by all tasks, as there is no overlap between the subspaces of each group.

As a middle ground, the GO-MTL algorithm [Kumar and Daumé III, 2012] allows

information to be shared between different groups, by representing the model of each

task as a linear combination of latent predictors. Thus the concept of grouping is no

longer explicit, but determined by the coefficients of the linear combination. Intuitively,

model construction can be thought of as: W = LS where L is the matrix of which

each column is a latent predictor (shared knowledge), and S = [s1, s2, . . . , sM] where

si is a coefficient vector that cues how to construct the model for the ith task (task-

specific knowledge). It is worth noting that this kind of predictor matrix factorisation

approach – W = LS – can explain several models: [Kumar and Daumé III, 2012] is

`1/`2 regularised decomposition, [Passos et al., 2012] is linear Gaussian model with

Indian Buffet Process [Griffiths and Ghahramani, 2011] prior and an earlier study [Xue

et al., 2007] assumes si are unit vectors generated by a Dirichlet Process (DP).

Apart from learning W only, some studies suggest to model the task relations ex-

plicitly, e.g., [Lee et al., 2016, Zhang and Yang, 2017] introduce an extra parameter –

a PSD matrix – to estimate the pair-wise task relatedness. This parameter is learned

with the task predictors in an alternating fashion.

Classic MTL setting usually assumes that all tasks are labelled, in contrast, [Pentina

and Lampert, 2017] study for the case either only some of the tasks are labelled (semi-

supervised learning) or the learner has to actively select tasks for annotation (active

learning).

Tensor-based MTL

Most MTL methods in literature assume that each task is an atomic entity indexed by

a single categorical variable. Though it is a classic setting that each task is indexed

by a single factor in MTL studies, in many real-world problems, tasks are indexed

by multiple factors. For example, to build a restaurant recommendation system, we

want a regression model that predicts the scores for different aspects (food quality,

environment) by different customers. Then the task is indexed by aspects × customers.

For this case, the collection of all linear models for all tasks is then a 3-way tensorW of

size D×T1×T2, where T1 and T2 are the number of aspects and the number of customers

respectively. This 3-way tensor has to be flattened for matrix-based MTL to be applied,

and some recent studies [Romera-Paredes et al., 2013, Wimalawarne et al., 2014] noticed

the drawback of flattening is that the structural information will be lost. Thus they

look for some techniques that natively apply to tensors, e.g., to impose a variety of

regularisations by tensor norms, such as sum of the ranks of the matriciations1 of the

tensors [Romera-Paredes et al., 2013] and scaled latent trace norm [Wimalawarne et al.,

2014].

1Matriciation is also known as tensor unfolding or flattening.

25

Besides regularisation, [Romera-Paredes et al., 2013] considers a solution based on

Tucker decomposition for tensors [Tucker, 1966], where the model parameters are core

tensor and factor matrices in the context of Tucker decomposition, and we generate

the predictors by reconstructing the tensor from Tucker composition. In deep learning,

such tensor factorisation techniques have been used to exploit factorised tensors’ fewer

parameters than the original (e.g., 4-way convolutional kernel) tensor, and thus compress

and/or speed up the model, e.g., [Lebedev et al., 2015, Novikov et al., 2015].

An alternative solution is to concatenate the one-hot encodings of task factors and

feed it as input into a two-branch neural network model [Yang and Hospedales, 2015],

in which there are two input channels for feature vector and encoded task factor.

2.3.2 Multi-Domain Learning

Domain Adaptation

There has been extensive work on domain adaptation (DA) [Beijbom, 2012]. A variety

of studies have proposed both supervised [Saenko et al., 2010, Duan et al., 2012] and un-

supervised [Gong et al., 2012, Sun and Saenko, 2014] methods. As we have mentioned,

the typical assumption is that domains are indexed by a single categorical variable: For

example a data source such as Amazon/DSLR/Webcam [Saenko et al., 2010], a bench-

mark dataset such as PASCAL/ImageNet/Caltech [Gong et al., 2012], or a modality

such as image/video [Duan et al., 2012].

Despite the majority of research with the categorical assumption on domains, it

has recently been generalised by studies considering domains with a (single) continuous

parameter such as time [Hoffman et al., 2014] or viewing angle [Qiu et al., 2012]. In

this thesis, we take an alternative approach to generalising the conventional categori-

cal formulation of domains, and instead investigate information sharing with domains

described by a vector of discrete parameters.

Multi-Domain Learning

Multi-domain learning [Dredze et al., 2010, Joshi et al., 2012] is a relatively independent

line of research to multi-task learning. There is close relation to domain adaptation

(DA), especially supervised DA where all domains have some labelled data, e.g., [Saenko

et al., 2010, Duan et al., 2012]. DA and MDL differ in their goals: with DA focusing on

improving performance in a specific target domain given a model trained in a different

source, and MDL focusing on simultaneously improving performance in all domains

analogously to MTL. Though some MTL methods have been applied to MDL scenarios

[Argyriou et al., 2008, Kumar and Daumé III, 2012], they are restricted to single-output

problems.

Although some existing MTL algorithms reviewed in the previous section tackle

MDL as well, we distinguish them by the key difference during testing time: MDL

makes prediction for same problem (binary classification like “is laptop”) across multiple

26

domains (e.g., datasets or camera type), but MTL handles different problems (such as

“is laptop” versus “is mouse”).

2.3.3 Zero-Shot Learning and Zero-Shot Domain Adaptation

Zero-Shot Learning (ZSL) aims to eliminate the need for training data for a particular

task. It has been widely studied in different areas, such as character [Larochelle et al.,

2008] and object recognition [Lampert et al., 2009, Socher et al., 2013, Fu et al., 2014].

Typically for ZSL, the label space of training and test data are disjoint, so no data has

been seen for test-time categories. Instead, test-time classifiers are constructed given

some mid-level information. Although diverse in other ways, most existing ZSL methods

follow the pipeline in [Palatucci et al., 2009]: X → Z → Y where Z is some “semantic

descriptor”, which refers to attributes [Lampert et al., 2009] or semantic word vectors

[Socher et al., 2013]. Our work can be considered as an alternative pipeline, which

is more similar to [Larochelle et al., 2008] and [Frome et al., 2013] in the light of the

following illustration: Z ++X // Y .

Going beyond conventional ZSL, we generalise the notion of zero-shot learning of

tasks to zero-shot learning of domains. In this context, zero-shot means no training

data has been seen for the target domain prior to testing. The challenge is to construct

a good model for a novel test domain based solely on its semantic descriptor. This is the

analogous problem for domain-adaptation that zero-shot learning poses for recognition.

The closest work to our zero-shot domain adaptation setting is [Ding et al., 2014], which

addresses the issue of a missing modality with the help of the partially overlapped

modalities that have been previously seen. However they use a single fixed modality

pair, rather than synergistically exploiting an arbitrary number of auxiliary domains in

a multi-domain way as in our framework. Note that despite the title, [Blitzer et al.,

2009] actually considers unsupervised domain adaptation without target domain labels,

but with target data.

2.3.4 Heterogeneous MTL and Deep MTL

Some studies consider heterogeneous MTL, where tasks may have different numbers of

outputs [Caruana, 1997]. This differs from the previously discussed studies [Evgeniou

and Pontil, 2004, Argyriou et al., 2008, Bonilla et al., 2007, Jacob et al., 2009, Kumar

and Daumé III, 2012, Romera-Paredes et al., 2013, Wimalawarne et al., 2014] which

implicitly assume that each task has a single output.

Heterogeneous MTL typically uses neural networks with multiple sets of outputs

and losses. E.g., [Huang et al., 2013] proposes a shared-hidden-layer DNN model for

multilingual speech processing, where each task corresponds to an individual language.

[Zhang et al., 2014] uses a DNN to find facial landmarks (regression) as well as recognise

facial attributes (classification). [Liu et al., 2015] proposes a DNN for query classification

and information retrieval (ranking for web search). [Arik et al., 2017] apply MTL to

the text-to-speech problem by modelling both the phoneme duration and frequency

27

profile jointly. A key commonality of these studies is that they all require a user-defined

parameter sharing strategy. A typical design pattern is to use shared layers (same

parameters) for lower layers of the DNN and then split (independent parameters) for

the top layers. This kind of architecture design can be traced back to 2000s [Bakker

and Heskes, 2003]. However, there is no systematic way to make such design choices, so

researchers usually rely on trial-and-error, further complicating the already somewhat

dark art of DNN design. In contrast, in Chapter 5 and Chapter 6, we propose methods

that learn where and how much to share representation parameters across the tasks,

hence significantly reducing the space of DNN design choices.

2.4 The Intra- and Inter- Connections

2.4.1 Intra-Connections

We draw connections for the methodologies in Chapter 3, Chapter 4, Chapter 5, and

Chapter 6.

Chapter 3 focuses on the single-output case only, where each task or domain is

essentially a binary classification problem or a single-output regression problem. It

introduces a key concept called semantic descriptor, as a way to deal with multi-indexed

task or domain, e.g., a domain is distinct from others by more than one factors. The

introduced semantic descriptor is also the key to enable zero-shot learning and zero-shot

domain adaptation.

Chapter 4 extends Chapter 3 to the multi-output case, where each task or domain

involves multiple outputs, e.g., a domain corresponds a multi-class classification problem

for a certain dataset. The core part is switch the model generating function from a set-

ting of being parametrised by a matrix (Chapter 3) to a setting of being parametrised by

a tensor. Naturally tensor factorisation becomes the key mathematical tool in Chapter 4

replacing matrix factorisation used in Chapter 3. Not surprisingly, the methodology de-

veloped in Chapter 3 is a special case of the methodology in Chapter 4 because tensor

factorisation is a generalisation of matrix factorisation.

Chapter 5 considers a deep model instead of the shallow models in Chapter 3 and

Chapter 4. The model block for Chapter 5 is directly borrowed from Chapter 4, but

the motivation is different: the key motivation in Chapter 5 is that we want to find a

data-driven way to design a deep neural network architecture for multi-task learning,

which was previously carried out manually by the model designers.

Chapter 6 is a sister work of Chapter 5. Recall that the key technique in Chapter 4

and Chapter 5 is based on tensor factorisation, but in Chapter 6 we try to impose a

family of tensor norms to encourage low-rank tensor rather than explicitly factorise the

tensor with the chosen low-rank number(s).

To better illustrate these connections, see Fig. 2.1.

28

Chapter 4

Chapter 7 Chapter 6

Chapter 5
Single- to Multi- Output

S
hallow

 to D
eep

Explicit to Implicit Low-Rank

Figure 2.1: Intra-connections of methodologies in this thesis

2.4.2 Inter-Connections

We draw connections for our methodologies and existing studies. Table 2.1 shows one

direction: from atomic task/domain to parametrised task/domain. Table 2.2 shows

another direction: from shallow models to deep models.

Atomic-to-parametrised is illustrated in Table 2.1, we categorise the problem settings

in multi-task learning by two aspects: (i) how the task is indexed: by one factor (single-

index) or more than one factors (multi-index) (ii) how many outputs of an individual

task: one (single-output) or many (multi-output). Therefore we have four distinct

problem settings,

Single-Index, Single-Output This is the classic problem setting that is studied by

the matrix-based multi-task learning. Our method in Chapter 3 encompasses

many classic matrix-based MTL methods.

Multi-Index, Single-Output This is studied by tensor-based MTL. Our method in

Chapter 3 can deal with case as well, but by a different strategy (see the first part

of Section 3.2.5 for a detailed discussion).

Single-Index, Multi-Output This is a mirror to the setting of multi-index-single-

output, as we can see the axis of outputs as yet another task axis. The view angle,

i.e., it is an output unit or a task, is usually less important, and the tensor-based

MTL methods naturally work for this setting. However, our method in Chapter 3

can not be used for this case directly under certain application scenarios, for

example, we need to cast multi-class into multiple binary classifications (see the

29

second part of Section 3.2.5 for a detailed discussion). To make it more flexible,

we develop an extended approach in Chapter 4.

Multi-Index, Multi-Output Though not being empirically studied, tensor-based MTL

methods apply to this case in principle. The method in Chapter 4 is also capable

of handling this setting.

The benefits of introducing of semantic descriptor (parametrised tasks/domains), or

feeding the task/domain metadata directly into the model rather than just using it on

distinguishing tasks/domains are four-fold:

• It encompasses many existing methods in a unified framework.

• It can deal with multi-index case as an alternative to tensor based methods. In

fact, it makes the difference on single- or -multi- index trivial.

• It enables ZSDA by a generating model parameter mechanism. This is in contrast

to task imputation realised in [Romera-Paredes et al., 2013, Wimalawarne et al.,

2014] as a side product of low-rank tensor assumption – tensor completion.

• It can be realised in the neural network framework which makes it simple to

implement and end-to-end trainable.

Shallow-to-deep is illustrated in Table 2.2, where we classify the MTL methods

by two aspects: (i) the core mathematical object is matrix or tensor, and (ii) the

key technique is based on explicit factorisation or regularisation. We can see that our

methods in Chapter 5 and Chapter 6 are natural extensions from shallow to deep models

backed by either factorisation or regularisation.

Atomic Parametrised
Single-Index Multi-Index Single-Index Multi-Index

Single-Output

[Evgeniou and Pontil, 2004],
[Xue et al., 2007],

[Argyriou et al., 2008],
[Ji and Ye, 2009],

[Kumar and Daumé III, 2012],
[Passos et al., 2012]

[Romera-Paredes et al., 2013],
[Wimalawarne et al., 2014]

Chapter 3

Multi-Output
[Romera-Paredes et al., 2013],

[Wimalawarne et al., 2014]
[Romera-Paredes et al., 2013],

[Wimalawarne et al., 2014]
Chapter 4

Table 2.1: From atomic to parametrised

30

Explicit Factorisation Regularisation

S
h
al

lo
w

M
o
d
el

M
at

ri
x
-b

as
ed

[Evgeniou and Pontil, 2004],
[Xue et al., 2007],

[Kumar and Daumé III, 2012],
[Passos et al., 2012]

[Argyriou et al., 2008],
[Ji and Ye, 2009]

T
en

so
r-

b
as

ed

MLMTL-NC of [Romera-Paredes et al., 2013]
MLMTL-C of [Romera-Paredes et al., 2013],

[Wimalawarne et al., 2014]

D
ee

p
M

o
d
el

M
at

ri
x
-b

as
ed

DMTRL-LAF in Chapter 5 TNRDMTL-LAF in Chapter 6

T
en

so
r-

b
as

ed

DMTRL-Tucker, TT in Chapter 5 TNRDMTL-Tucker, TT in Chapter 6

Table 2.2: From shallow to deep

31

Chapter 3

Single Output

In this chapter, we provide a new neural-network based perspective on multi-task learn-

ing (MTL) and multi-domain learning (MDL). By introducing the concept of a semantic

descriptor, this framework unifies MDL and MTL as well as encompassing various classic

and recent MTL/MDL algorithms by interpreting them as different ways of constructing

semantic descriptors. Our interpretation provides an alternative pipeline for zero-shot

learning (ZSL), where a model for a novel class can be constructed without training

data. Moreover, it leads to a new and practically relevant problem setting of zero-shot

domain adaptation (ZSDA), which is the analogous to ZSL but for novel domains: A

model for an unseen domain can be generated by its semantic descriptor. Experiments

across this range of problems demonstrate that our framework outperforms a variety of

alternatives.

3.1 Background

Multi-task and multi-domain learning are established strategies to improve learning by

sharing knowledge across different but related tasks or domains. Multi-domain learning

refers to sharing information about the same problem across different contextual do-

mains, while multi-task learning addresses sharing information about different problems

in the same domain. Because the domain/task distinction is sometimes subtle, and some

methods proposed for MTL can also address MDL and vice-versa, the two settings are

sometimes loosely used interchangeably. A detailed way to distinguish MTL and MDL

clearly can be found in Section 2.3, and we recap the key idea briefly here: Domain

relates to some covariate, such as the bias implicitly captured in a particular dataset

[Torralba and Efros, 2011], or the specific data capture device. For example the Office

Dataset [Saenko et al., 2010] contains three domains related to image source: Amazon,

webcam, and DSLR. A multi-domain learning problem can then be posed by training a

particular object recogniser across these three domains (same task, different domains).

In contrast, a multi-task problem would be to share information across the recognisers

for individual object categories (same domain, different tasks).

32

In this chapter, we propose a neural network framework that addresses both multi-

domain and multi-task learning, and can perform simultaneous multi-domain multi-task

learning. A key concept in our framework is the idea of a multivariate “semantic de-

scriptor” for tasks and domains. Such a descriptor is often available as metadata, and

can be exploited to improve information sharing for MTL and MDL. We show that

various classic and recent MTL/MDL methods are special cases of our framework that

make particular assumptions about this descriptor: Existing algorithms typically im-

plicitly assume categorical domains/tasks, which is less effective for information sharing

when more detailed task/domain metadata is available. For example, the classic “school

dataset” poses a task of predicting students’ grades, and is typically interpreted as con-

taining a domain corresponding to each school. However, since each school has three

year groups, representing domains by a semantic descriptor tuple (school-id, year-group)

is better for information sharing. Our framework exploits such multi-variate semantic

descriptors effectively, while existing MTL/MDL algorithms would struggle to do so, as

they implicitly consider tasks/domains to be atomic.

Going beyond information sharing for known tasks, an exciting related paradigm for

task-transfer is “zero-shot” learning (ZSL) [Larochelle et al., 2008, Lampert et al., 2009,

Fu et al., 2014]. This setting addresses automatically constructing a test-time classi-

fier for categories which are unseen at training time. Our neural-network framework

provides an alternative pipeline for ZSL. More interestingly, it leads to the novel prob-

lem setting of zero-shot domain adaptation (ZSDA): Synthesising a model appropriate

for a new unseen domain given only its semantic descriptor. For example, suppose

we have an audio recogniser trained for a variety of acoustic playback environments,

and for a variety of microphone types: Can we synthesise a recogniser for an arbi-

trary environment-microphone combination? To answer this question, zero-shot domain

adaptation is addressed here.

3.2 Methodology

3.2.1 General Framework

Assume that we have M domains (tasks), and the ith domain has Ni instances. We

denote the feature vector of the jth instance in the ith domain (task) and its associated

semantic descriptor by the pair {{x(i)
j , z(i)}j=1,2,··· ,Ni

}i=1,2,··· ,M and the corresponding

label as {{y(i)
j }j=1,2,··· ,Ni

}i=1,2,··· ,M . Note that, in multi-domain or multi-task learn-

ing, all the instances are effectively associated with a semantic descriptor indicating

their domain (task). Without loss of generality, we propose an objective function that

minimises the empirical risk for all domains (tasks),

arg min
P,Q

1

M

M∑
i=1

(
1

Ni

Ni∑
j=1

L
(
ŷ

(i)
j , y

(i)
j

))
, where ŷ

(i)
j = fP (x

(i)
j) · gQ(z(i)) (3.1)

33

. . .

. . .

xT

P
. . .

. . .

zT

QT

y

Figure 3.1: Two-sided Neural Network for Multi-Task/Multi-Domain Learning

This model can be understood as a two-sided neural network illustrated by Fig-

ure 3.1. One can see it contains two learning processes: the left-hand side is representa-

tion learning fP (·), starting with the original feature vector x; and the right-hand side

is model construction gQ(·), starting with an associated semantic descriptor z. P and

Q are the weights to train for each side. To train P and Q, standard back propagation

can be performed by the loss L(·) calculated between ground truth y and the prediction

ŷ.

With this neural network interpretation, the two sides can be arbitrarily complex

but we find that one inner product layer for each is sufficient to unify some existing

MDL/MTL algorithms and demonstrate the efficacy of the approach. In this case, P is a

D-by-K matrix and Q is a B-by-K matrix, where K is the number of units in the middle

layer; D and B is the length of feature vector x and semantic descriptor z respectively.

The prediction is then based on (x
(i)
j P)(z(i)Q)′.

It is worth mentioning that such ‘two-sided neural network’ topology exists in many

other works, e.g., siamese architecture [Bromley et al., 1994, Chopra et al., 2005]

and conditional GANs [Mirza and Osindero, 2014], though they are not related to

MTL/MDL directly.

3.2.2 Semantic Descriptor Design

One-hot encoding z

In the simplest scenario z is a one-hot encoding vector that indexes domains/tasks

(Fig. 3.2). The model generation function f(z(i)) then just selects one column from

the matrix W . For example, z(1) = [1, 0, 0]T , z(2) = [0, 1, 0]T , z(3) = [0, 0, 1]T if there

are M = 3 domains/tasks. In this case, the length of the descriptor and the number

of unique domains (tasks) are equal B = M , and the stack of all z(i) vectors (denoted

Z = [z(1), z(2), . . .]) is an M ×M identity matrix.

34

Z =


Domain-1 Domain-2 Domain-3

Index-1 1 0 0
Index-2 0 1 0
Index-3 0 0 1

 Z =


Domain-1 Domain-2 Domain-3

Index-1 1 0 0
Index-2 0 1 0
Index-3 0 0 1
Shared 1 1 1


Figure 3.2: Domain descriptor for categorical/atomic domains. One-hot encoding (left),
and one-hot with constant encoding (right).

One-hot encoding z with a constant

A drawback of one-hot encoding is that the z(i)’s are orthogonal to each other, which

suggests that all domains/tasks are independent – there is no cross domain/task infor-

mation sharing. To encode an expected sharing structure of an underlying common-

ality across all domains/tasks, an alternative approach to constructing z is to append

a constant term after the one-hot encoding. For the case of M = 3, we might have

z(1) = [1, 0, 0, 1]T , z(2) = [0, 1, 0, 1]T , z(3) = [0, 0, 1, 1]T . Fig. 3.2 shows the resulting

B ×M matrix Z (in this case, B = M + 1). The prediction of task (domain) i is given

as ŷ(i) = x(i)TWz(i) = x(i)T (w(i) + w(4)), i.e., the sum of a task/domain specific and

a globally shared prediction. Learning the weight generator corresponds to training

both the local and shared predictors. This approach is implicitly used by some classic

MDL/MTL algorithms [Evgeniou and Pontil, 2004, Daumé III, 2007].

Distributed encoding z

In most studies of MDL/MTL, domain or task is assumed to be an atomic category

which can be effectively encoded by the above indexing approaches. However more struc-

tured domain/task-metadata is often available, such that a domain (task) is indexed by

multiple factors (e.g., time: day/night, and date: weekday/weekend, for batches of video

surveillance data). Suppose two categorical variables (A,B) describe a domain, and each

of them has two states (1,2), then at most four distinct domains exist. Fig. 3.3(left)

illustrates the semantic descriptors for one-hot encoding. However this encoding does

not exploit the sharing cues encoded in the metadata (e.g., in the surveillance example

that day-weekday should be more similar to day-weekend and night-weekday than to

night-weekend). Thus we propose to use a distributed encoding of the task/domain

descriptor (Fig. 3.3(right)). Now prediction weights are given by a linear combination

of W ’s columns given by the descriptor, and learning the weight generating function

means learning weights for each factor (e.g., day, night, weekday, weekend). We will

demonstrate that the ability to exploit structured domain/task descriptors where avail-

able, improves information sharing compared to existing MTL/MDL methods in later

experiments.

35

Z =


Domain-1 Domain-2 Domain-3 Domain-4

A-1-B-1 1 0 0 0
A-1-B-2 0 1 0 0
A-2-B-1 0 0 1 0
A-2-B-2 0 0 0 1

 Z =


Domain-1 Domain-2 Domain-3 Domain-4

A-1 1 1 0 0
A-2 0 0 1 1
B-1 1 0 1 0
B-2 0 1 0 1


Figure 3.3: Example domain descriptor for domains with multiple factors. One-hot
encoding (left). Distributed encoding (right).

3.2.3 Unification of Existing Algorithms

We next demonstrate how a variety of existing algorithms1 are special cases of our

general framework. For clarity we show this in an MDL/MTL setting with M = 3

domains/tasks. Observe that RMTL [Evgeniou and Pontil, 2004], FEDA [Daumé III,

2007], MTFL [Argyriou et al., 2008], TNMTL [Ji and Ye, 2009], and GO-MTL [Kumar

and Daumé III, 2012] each assumes specific settings of Z, P and Q′ as in Table 3.1.

Table 3.1: A Unifying Review of Some Existing MTL/MDL Algorithms

Z P Norm on P Q′ Norm on Q′

RMTL

1 0 0 1
0 1 0 1
0 0 1 1

 Identity None

 | | | |
v1 v2 v3 w0

| | | |

 Frobenius

FEDA

1 0 0 1
0 1 0 1
0 0 1 1

 Identity None

 | | | |
v1 v2 v3 w0

| | | |

 None

MTFL

1 0 0
0 1 0
0 0 1

 Identity None W `2,1-Norm

TNMTL

1 0 0
0 1 0
0 0 1

 Identity None W Trace Norm

GO-MTL

1 0 0
0 1 0
0 0 1

 L Frobenius S Entry-wise `1

The notion used is kept same with the original paper, e.g., P here is analogous to L

in Kumar and Daumé III [2012]. Each row of the matrices in the second (Z) column is

the corresponding domain’s semantic descriptor in different methods. These methods

are implicitly assuming a single categorical domain/task index: with 1-of-N encoding

as semantic descriptor (sometimes with a constant term).

We argue that more structured domain/task-metadata is often available, and with

our framework it can be directly exploited to improve information sharing (with the dis-

tributed encoding in Section 3.2.2) compared to simple categorical indices (correspond-

ing to the one-hot encoding in Section 3.2.2). The ability to exploit more structured

domain/task descriptors Z where available, improves information sharing compared to

1RMTL: Regularized Multi–Task Learning, FEDA: Frustratingly Easy Domain Adaptation,
MTFL: Multi–Task Feature Learning, TNMTL: Trace-Norm Multi–Task Learning, and GO-MTL:
Grouping and Overlap for Multi–Task Learning

36

existing MTL/MDL methods, and more importantly, it enables zero-shot domain adap-

tation. In our experiments, we will demonstrate examples of problems with multivariate

domain/task metadata, and its efficacy to improve learning.

3.2.4 Learning Settings

Multi-Domain Multi-Task (MDMT)

Existing frameworks have focused on either MDL or MTL settings but not considered

both together. Our interpretation provides a simple means to exploit them both si-

multaneously for better information sharing when multiple tasks in multiple domains

are available. If z(d) and z(t) are the domain and task descriptors respectively, then

MDMT learning can be performed by simply concatenating the descriptors [z(d), z(t)]

corresponding to the domain and task of each individual instance during learning.

Zero-Shot Learning (ZSL)

As mentioned, the dominant zero-shot (task) learning pipeline is X → Z → Y . At

training time, the X → Z mapping is learned by classifier/regressor, where Z is a task

descriptor, such as a binary attribute vector [Lampert et al., 2009, Fu et al., 2014], or

a continuous word-vector describing the task name [Socher et al., 2013, Fu et al., 2014].

At testing time, the “prototype” semantic vector for a novel class z is presented, and

zero-shot recognition is performed by matching the X → Z estimate and prototype z,

e.g., by nearest neighbour [Fu et al., 2014].

In our framework, ZSL is achieved by presenting each novel semantic vector z∗j (each

testing category is indexed by j) in turn along with novel category instances x∗. Zero-

shot recognition then is given by: j∗ = argmax
j

fP (x∗) · fQ(z∗j). Note that this pipeline

is more similar to [Larochelle et al., 2008, Frome et al., 2013] in the light of the following

illustration: Z ++X // Y .

If z is the binary vector that contains the one-hot encoding attributes, Q can be

understood as the word embedding matrix, and it can be initialised by pre-trained

word2vec models [Mikolov et al., 2013] optionally, where each row of Q is a dense word

vector.

Zero-Shot Domain Adaptation (ZSDA)

ZSDA becomes possible with a distributed rather than one-hot encoded domain de-

scriptor, as in practice only a subset of domains is necessary to effectively learn Q.

Thus a model w(∗) suitable for an unseen domain can be constructed without any train-

ing data – by applying its semantic descriptor z(∗) to the model generation matrix Q:

w(∗) = Qz(∗). The generated domain-specific model – w(∗) – is then used to make

predictions for the re-represented input: xT∗ Pw
(∗).

37

3.2.5 Connection to Multilinear MTL

In this section, we discuss the connection of the proposed method and a variant of these

tensor-based MTL methods, e.g., [Wimalawarne et al., 2014, Romera-Paredes et al.,

2013].

Our method and tensor-based MTL can deal with the case when a task is indexed

by more than one factors. For example, in the School Dataset, we have T1 = 139 schools

and each school has T2 = 3 grades, thus we can (at most) have T1×T2 = 139× 3 = 417

tasks. Assume we use two one-hot encoding vectors to represent the task identity: z1 is

for school factor and of length T1 = 139 and z2 is for grade factor and of length T2 = 3.

The model generating function in our approach can be written as w = W [z1; z2],

where W ∈ RD×(T1+T2), in contrast, the model generating function in tensor-based

MTL can be written as w =W • z2 • z1. Here • operator indicates tensor dot product

(see Appx. A.4.4 for the detailed definition).

Note that we can (optionally) factorise W in our approach, then the model is pro-

duced by w = UV [z1; z2] where U ∈ RD×K , V ∈ RK×(T1+T2), and K is a hyper-

parameter (matrix rank). Further we expand V as V = [V1, V2] where V1 ∈ RK×T1 and

V2 ∈ RK×T2 , then we have w = UV [z1; z2] = U [V1, V2][z1; z2] = U((V1z1) + (V2z2)).

MLMTL-NC [Romera-Paredes et al., 2013] factorises the tensor W according to the

formulation of Tucker decomposition. Here we choose to use CP decomposition instead,

i.e.,W = I • U(1,2) • V(1,1) 1 • V(1,1) 2, where, I is a K×K×K identity tensor (constant),

U ∈ RD×K , V1 ∈ RK×T1 , V2 ∈ RK×T2 , and K is a hyper-parameter (tensor CP-rank).

Then we have w =W • z2 • z1 = U((V1z1) ◦ (V2z2)).

Now we have two observations: (i) For the number of model parameters, our ap-

proach and this variant of MLMTL-NC has the same: K × (D+ T1 + T2). (ii) If we see

U as the basis of latent tasks, then the key difference of these two approaches is about

how to aggregate the task coding vectors produced by different task factors, i.e., V1z1

and V2z2. Our method chooses to sum together, i.e., (V1z1) + (V2z2), but the variant of

MLMTL-NC chooses to do element-wise product, i.e., (V (1)z1) ◦ (V (2)z2).

We can not make a comment about which one is better, as this kind of essential design

choice is very likely to be problem dependent. One minor advantage of our approach

over the original MLMTL-NC is that our method has fewer hyper-parameters.

Discussion on Multi-Class v.s. One-vs-All

It is common that in MTL studies, a multi-class classification problem with C unique

classes is usually built up as C binary one-vs-all binary classification problems, and each

class will be treated as a task. If we have more than one factors distinguishing tasks,

e.g., apart from class, we have another factor indicating data source, our method can

still be applied, as detailed in multi-domain-multi-task in Section 3.2.4.

However, we have to cast the multi-class problem into multiple binary one-vs-all

problems for applying our method. This is unnecessary for tensor-based methods such

as [Wimalawarne et al., 2014, Romera-Paredes et al., 2013] because they are built on

38

modelling predictor tensors, so the multi-class problem can be set as-it-is, e.g., one can

use cross-entropy loss for multi-class.

Theoretically our approach can also work in this fashion as it essentially models the

predictors like tensor-based MTL methods, but the bottleneck happens in the architec-

ture of neural network in Fig. 3.1: there is only one output unit. This this motivates

us to generalise our method in Chapter 4.

3.3 Experiments

For the method in Chapter 3, named as GNNMTL (Gated Neural Network Multi-Task

Learning), we demonstrate on five experimental settings: MDL, ZSDA, MTL, ZSL and

MDMT. These experiments are for two main purposes: (i) to compare our general

unified method to prior special cases (ii) to validate that semantic descriptors can be

used to improve performance when available.

Implementation We implement the model with the help of Caffe framework [Jia

et al., 2014]. Though we don’t place regularisation terms on P or Q, a non-linear

function σ(x) = max(0, x) (i.e., ReLU activation function) is placed to encourage sparse

models gQ(z(i)) = σ(z(i)Q). The choice of loss function for regression and classification

is Euclidean loss and Hinge loss respectively. For the hyper-parameter K, i.e., the rank

of W (or the number of hidden neurons), the preliminary experiments show K = D
log(D)

leads to satisfactory solutions for all datasets in this section.

MTL/MDL Baselines: We compare the proposed method with a single task

learning baseline – linear or logistic regression with `2 regularisation (LR), and four

multi-task learning methods: (i) RMTL [Evgeniou and Pontil, 2004], (ii) FEDA [Daumé

III, 2007], (iii) MTFL [Argyriou et al., 2008] and (iv) GO-MTL [Kumar and Daumé III,

2012]. Note that these methods are re-implemented within the proposed framework. We

have verified our implementations with the original ones and found that the performance

difference is not significant. Baseline methods use traditional 1-of-N encoding, while we

use a distributed descriptor encoding based on metadata for each problem.

Zero-Shot Domain Adaptation: We follow the MDL setting to learn P and

Q except that one domain is held out each time. We construct test-time models for

held out domains using their semantic descriptor. We evaluate against two baselines:

(i) Blind-transfer (LR): learning a single linear/logistic regression model on aggregated

data from all seen domains. To ensure fair comparison, distributed semantic descriptors

are concatenated with the feature vectors for baselines, i.e., they are included as a plain

feature. (ii) Tensor-completion (TC): we use a tensor W ∈ RD,p1,p2,··· ,pN to store

all the linear models trained by SVM where N is the number of categorical variables

and pi is the number of states in the ith categorical variable (p1 + p2 + · · · + pN =

B in our context and p1 ∗ p2 ∗ · · · ∗ pN = M if there is always a domain for each

of possible combinations). ZSDA can be formalised by setting the model parameters

for the held-out domain to missing values, and recovering them by a low-rank tensor

39

completion algorithm [Kressner et al., 2014]. This low-rank strategy corresponds to our

implementation of [Romera-Paredes et al., 2013].

3.3.1 School Dataset - MDL and ZSDA

Data This classic dataset2 collects exam grades of 15,362 students from 139 schools.

Given the 23 features3, a regression problem is to predict each student’s exam grade.

There are 139 schools and three year groups. School IDs and year groups naturally form

multivariate domains. Note that 64 of 139 schools have the data of students for all three

year groups, and we also choose the school of which each year group has more than 50

students so that each domain has sufficient training data. Finally there are 23× 3 = 69

distinct domains given these two categorical variables.

Settings and Results For MDL we learn all domains together, and for ZSDA

we use a leave-one-domain-out strategy, constructing the test-time model based on the

held-out domain’s descriptor with P and Q learned from the training domains. In each

case the training/test split is 50%/50%. Note that the test sets for MDL and ZSDA are

the same. The results in Table 3.2 are averages over the test set for all domains (MDL),

and averages over the held-out domain performance when holding out each of the 69

domains in turn (ZSDA). Our method outperforms the alternatives in each case.

Table 3.2: School Dataset (RMSE)

LR RMTL FEDA MTFL GO-MTL TC GNNMTL
MDL 9.51 9.46 10.75 10.22 10.00 - 9.37
ZSDA 10.35 - - - - 12.41 10.19

3.3.2 Audio Recognition - MDL and ZSDA

Audio analysis tasks are affected by a variety of covariates, notably the playback device

/ environment (e.g., studio recording versus live concert hall), and the listening device

(e.g., smartphone versus professional microphone). Directly applying a model trained

in one condition/domain to another will result in poor performance. Moreover, as the

covariates/domains are combinatorial: (i) models cannot be trained for all situations,

and (ii) even applying conventional domain adaptation is not scalable. Zero-shot domain

adaptation has potential to address this, because a model could be calibrated on the fly

for a given environment.

Data We investigate recognition in a complex set of noise domains: covering both

acoustic environment and microphone type. We consider a music-speech discrimination

task introduced in [Tzanetakis and Cook, 2002], which includes 64 music and speech

2Available at http://multilevel.ioe.ac.uk/intro/datasets.html
3The original dataset has 26 features, but 3 that indicate student year group are used in semantic

descriptors.

40

tracks. Two categorical variables are smartphone microphone and live concert hall

environment, and each of them has two states: on or off. Then the four domains

are generated as: (i) Original (ii) Live Recording (LRc) (iii) Smartphone Recording

(SRc) and (iv) smartphone in a live hall (LRSR). The noises are synthesised by Audio

Degradation Toolbox [Mauch and Ewert, 2013].

Settings and Results We use MFCC [Ellis, 2005] to extract audio features and

K-means to build a K = 64 bag-of-words representation. We split the data 50%/50% for

training and test and keep test sets same for MDL and ZSDA. The results in Table 3.3

break down the results by each domain and overall (MDL), and each domain when

held-out (ZSDA). In each case our method is best or joint-best due to better exploit-

ing the semantic descriptor (recall that it does not have any additional information; for

fairness the descriptor is also given to the other methods as a regular feature). The only

exception is the least practical case of ZSDA recognition in a noise free environment

given prior training only in noisy environments. The ZSDA result here generally demon-

strates that models can be synthesised to deal effectively with new multivariate domains

/ covariate combinations without needing to exhaustively see data and explicitly train

models for all, as would be conventionally required.

Table 3.3: Audio Recognition: Music versus Speech (Error Rate)

Origin LRc SRc LRSR Avg

M
D

L

LR 3.13 18.75 6.25 17.19 11.33
RMTL 6.25 18.75 6.25 17.19 12.11
FEDA 7.81 18.75 9.38 18.75 13.67
MTFL 6.25 21.88 9.38 14.06 12.89
GO-MTL 3.13 17.19 6.25 18.75 11.33
GNNMTL 3.13 17.19 4.69 14.06 9.77

Z
S

D
A LR 32.81 28.13 14.06 23.44 24.61

TC 46.88 21.88 26.56 59.38 38.67
GNNMTL 35.94 9.38 12.50 18.75 19.14

3.3.3 Animal with Attributes - MTL and ZSL

Animal with Attributes [Lampert et al., 2009] includes images from 50 animal categories,

each with an 85-dimensional binary attribute vector. The attributes, such as “black”,

“furry”, “stripes”, describe an animal semantically, and provide a unique mapping from

a combination of attributes to an animal. The original setting of ZSL with AwA is to

split the 50 animals into 40 for training and hold out 10 for testing.

We evaluate this condition to investigate: (i) if multi-task learning of attributes and

classes improves over the STL approaches typically taken when analysing AwA, (ii) if it

helps to use the attributes as an MTL semantic task descriptor against the traditional

setting of MTL where semantic descriptor is a 1-of-N unit vector indexing tasks. For

MTL training on AwA, we decompose the multi-class problem with C categories to

41

C one-vs-rest binary classification tasks. For testing time, we try each testing class’

descriptor z∗ in turn and pick the best one (with the highest fP (x) · fQ(z∗) value).

Multi-Task Learning We use the recently released DeCAF feature [Donahue

et al., 2015] for AwA. For MTL, we pick five animals from the training set with moder-

ately overlapped attributes, and use the first half of the images for training then test on

the rest. The results in Table 3.4 show limited improvement by existing MTL approaches

over the standard STL. However, our attribute-descriptor approach to encoding tasks

for MTL improves the accuracy by about 2% over STL.

Table 3.4: AwA: MTL Multi-Class Accuracy

antelope killer whale otter walrus blue whale Avg
LR 92.31 87.08 89.26 75.60 82.44 85.34
RMTL 86.08 71.22 80.99 61.90 96.18 79.28
FEDA 92.31 83.39 88.15 79.17 89.31 86.47
MTFL 92.67 85.61 90.36 79.76 87.02 87.09
GO-MTL 91.21 84.87 89.81 80.36 84.73 86.20
GNNMTL 93.41 91.51 94.21 79.76 79.39 87.66

Zero-Shot Learning For ZSL, we adopt the training/testing split in [Lampert

et al., 2009]. The blind-transfer baseline is not meaningful because there are different

binary classification problems, and aggregating does not lead to anything. Also, tensor-

completion is not practical because of its exponential space (D ∗ 285) against D ∗ 40

observations. Our method achieves 43.79% multi-class accuracy, compared to 41.03%

from direct-attribute prediction (DAP) approach [Lampert et al., 2009] using DeCAF

features. A recent result using DeCAF feature is 44.20% in [Deng et al., 2014], but this

uses additional higher order attribute correlation information. Given that we did not

design a solution for AwA specifically, or exploit this higher order correlation cue, the

result is encouraging.

3.3.4 Restaurant & Consumer Dataset - MDMT

The restaurant & Consumer Dataset, introduced in [Vargas-Govea et al., 2011] contains

1161 customer-to-restaurant scoring records, where each record has 43 features and three

scores: food, service and overall. We build a multi-domain multi-task problem as follows:

(i) a domain refers to a restaurant, (ii) a task is a regression problem to predict one of

the three scores given an instance and (iii) an instance is a 43-dimensional feature vector

based on customer’s and restaurant’s profile. The 1161 records cover 130 restaurants

but most of them just have few scores, so we just pick 8 most frequently scored ones,

and we split training and test sets equally. The semantic descriptor is constructed by

concatenating 8-bit domain and 3-bit task indicator. Conventional MTL interpretations

of this dataset consider 8× 3 = 24 atomic tasks. Thus the task overlap across domain

or domain overlap across task is ignored. Results in Table 3.5 shows that our approach

42

outperforms this traditional MTL setting by better representing it as a distributed

MDMT problem.

Table 3.5: Restaurant & Consumer Dataset (RMSE)

LR RMTL FEDA MTFL GO-MTL GNNMTL
2.32 1.23 1.17 1.13 1.06 0.78

3.4 Summary

In this chapter we proposed a unified framework for multi-domain and multi-task learn-

ing. The core concept is a semantic descriptor for tasks or domains. This can be used to

unify and improve on a variety of existing multi-task learning algorithms. Moreover it

naturally extends the use of a single categorical variable to index domains/tasks to the

multivariate case, which enables better information sharing where additional metadata

is available. Beyond multi task/domain learning, it enables the novel task of zero-shot

domain adaptation and provides an alternative pipeline for zero-shot learning.

Neural networks have also been used to address MTL/MDL by learning shared

invariant features [Donahue et al., 2015]. Our contribution is complementary to this (as

demonstrated e.g., with AwA) and the approaches are straightforward to combine by

placing more complex structure on left-hand side fP (·). Our future directions are: (i)

The current semantic descriptor is formed by discrete variables. We want to extend this

to continuous and periodic variable like the pose, brightness and time. (ii) We assume

the semantic descriptor (task/domain) is always observed, an improvement for dealing

with a missing descriptor is also of interest.

43

Chapter 4

Multi Output

In Chapter 3, we proposed a general framework for multi-domain and multi-task learn-

ing, but one key assumption that we made is that the each domain (or task) is associ-

ated with a single-output prediction problem, e.g., binary classification. In this chapter,

we present a higher order generalisation of the framework in Chapter 3, which makes

it capable of dealing with the case that each domain is associated with a multiple-

output problem (simultaneous multi-domain-multi-task setting). This generalisation

has two mathematically equivalent views in multi-linear algebra and gated neural net-

works respectively. In practice, this framework provides a powerful yet easy to imple-

ment method that can be flexibly applied to multi-domain learning, multi-task learning,

and a mixture of these two.

4.1 Background

The multi-domain setting arises when there is data about a task in several different

but related domains. For example in visual recognition of an object when viewed with

different camera types. Multi-domain learning (MDL) models [Dredze et al., 2010,

Daumé III, 2007, Yang and Hospedales, 2015] aim to learn a cross-domain parameter

sharing strategy that reflects the domains’ similarities and differences. Such selective

parameter sharing aims to be robust to the differences in statistics across domains, while

exploiting data from multiple domains to improve performance compared to learning

each domain separately.

In this chapter we derive a general framework that encompasses MDL and MTL

from both neural network and tensor-factorisation perspectives. Many classic and re-

cent MDL/MTL algorithms can be understood by the assumptions about the cross

domain/task sharing structure encoded in their designs. E.g., the assumption that

each task/domain’s model is a linear combination of a global and a task-specific pa-

rameter vector [Evgeniou and Pontil, 2004, Daumé III, 2007]. Our framework includes

these as special cases corresponding to specific settings of a semantic descriptor vector

parametrising tasks/domains [Yang and Hospedales, 2015]. This vector can be used

44

to recover existing models from our framework, but more generally it allows one to

relax the often implicit assumption that domains are atomic/categorical entities, and

exploit available metadata about tasks/domains to guide sharing structure for better

MDL/MTL [Yang and Hospedales, 2015, 2016]. For example, in surveillance video anal-

ysis, exploiting the knowledge of the time of day and day of week corresponding to each

domain for better MDL. Finally, the idea of a semantic task/domain descriptor, allows

our framework to go beyond the conventional MDL/MTL setting, and address both

zero-shot learning [Yang and Hospedales, 2015] and zero-shot domain adaptation [Yang

and Hospedales, 2015, 2016] – where a model can be deployed for a new task/domain

without any training data, solely by specifying the task/domain’s semantic descriptor

metadata.

Relation to Domain Adaptation and Domain Generalisation

Dataset bias/domain-shift means that models trained on one domain often have weak

performance when deployed in another domain. The community has proposed two

different approaches to alleviate this: (i) Domain adaptation (DA): calibrating a pre-

trained model to a target domain using a limited amount of labelled data – supervised

DA [Saenko et al., 2010], or unlabelled data only – unsupervised DA [Gong et al., 2012],

or both – semi-supervised DA [Li et al., 2014]. (ii) Domain generalisation (DG): to

train a model that is insensitive to domain bias, e.g., learning domain invariant features

[Muandet et al., 2013].

The objective of multi-domain learning is different from the mentioned domain adap-

tation and domain generalisation. MDL can be seen as a bi-directional generalisation

of DA with each domain benefiting the others, so that all domains have maximal per-

formance; rather than solely transferring knowledge from source → target domain as

in DA. In its conventional form MDL does not overlap with DG, because it aims to

improve the performance on the set of given domains, rather than address a held out

domain. However, our zero-shot domain adaptation extension of MDL, relates to DG

insofar as aiming to address a held-out domain. The difference is that we require a

semantic descriptor for the held out domain, while DG does not. However where such

a descriptor exists, ZSDA is expected to outperform DG.

4.2 Methodology

For the methodology developed in Section 3.2, the final output of each model is a scalar

(single output). However for some practical applications, multiple outputs are desirable

or required. For example, assume that we have M = 2 handwriting digit datasets

(domains): MNIST and USPS. For any MNIST or USPS image, a D-dimensional feature

vector is extracted. The task is to classify the image from 0 to 9 and thus we have D×C
(C = 10) model parameters for each dataset. Therefore, the full model for all digits

and datasets should contain D×C×M parameters. We denote this setting of multiple

45

domains, each of which has multiple tasks, as multi-domain-multi-task learning. In some

recent literature [Romera-Paredes et al., 2013] a similar setting is named multi-linear

multi-task learning.

4.2.1 Formulation

The core formulation in Chapter 3 can be understood as follows: the predictor for the

ith task w(i) is generated from a function parametrised by the model parameters W

in the way that w(i) = fW (z(i)) = Wz(i). The key observation is this formulation

generates a certain task’s model parameter via its associated descriptor vector (z(i))

hitting a matrix (W).

Now we have the situation that the desired model parameter itself is in a form of

matrix, e.g, a D × C matrix in the above example. To adapt this setting, we propose

to use the following formulation,

W (i) = fW(z(i)) =W • z
(i)

(3,1) (4.1)

Here • operator indicates tensor dot product (see Appx. A.4.4 for the detailed def-

inition). The generated model is now a weight matrix W (i) rather than a vector w(i).

The weight generating function f(·) is now parametrised by a third-order tensor W of

size D × C × B, and it synthesises the model matrix for the ith domain by hitting

the tensor with its B-dimensional semantic descriptor z(i). This is a natural extension:

if the required model is a vector (single output), the weight generating function is a

matrix (second-order tensor) hits the semantic descriptor z; when the required model is

a matrix (multiple outputs), the weight generating function is then z hits a third-order

tensor.

Given one-hot encoding descriptors z(1) = [1, 0]T and z(2) = [0, 1]T indicating

MNIST and USPS respectively. Eq. 4.1 would just slice an appropriate matrix from

the tensor W. However alternative and more powerful distributed encodings of z(i) are

also applicable. The model prediction can be written as,

ŷ
(i)
j =W • z

(i)
(3,1) j • x

(i)
(1,1) j (4.2)

where ŷ
(i)
j is now a C-dimensional vector instead of a scalar. Nevertheless, this method

does not provide information sharing in the case of conventional categorical (one-hot

encoded) domains. For this we turn to tensor factorisation next.

4.2.2 Tensor Decomposition

Recall that the key technique that underlies many classic (matrix-based) multi-task

learning methods is to exploit the information sharing induced by the row-rank factori-

sation, i.e., W := PQ thus the model generating function becomes fP,Q(z) = PQz.

Instead of learning the predictor W directly, it learns two factor matrices P and Q.

For MDL with multiple outputs, we aim to extend this idea to the factorisation of

46

the weight tensor W. In contrast to the case with matrices, there are multiple ap-

proaches to factorising tensors, including CP [Hitchcock, 1927], Tucker [Tucker, 1966],

and Tensor-Train [Oseledets, 2011] Decompositions.

CP decomposition

For a third-order tensor W of size D × C ×B, the rank-K CP decomposition is:

Wd,c,b =

K∑
k=1

U
(D)
k,d U

(C)
k,c U

(B)
k,b (4.3)

W = I • U(1,1) • U
(D)

(1,1) • U
(C)

(1,1) • U
(B)

(1,1) (4.4)

The factor matrices U (D), U (C), and U (B) are of respective size K ×D, K ×C, and

K × B, and they are the parameters to learn as a replacement of original W. I is a

K ×K ×K identity tensor (it is a constant rather than a parameter to learn).

Given a data point x and its corresponding descriptor z (we omit the upper- and

lower- scripts for clarity.), Eq. 4.2 will produce a C-dimensional vector y (e.g., C = 10

the scores/logits of 10 digits for the MNIST/USPS example). By substituting Eq. 4.4

into Eq. 4.2 and some reorganising, we obtain

y = U (C)T ((U (D)x) ◦ (U (B)z)) (4.5)

where ◦ is the element-wise product. It also can be written as,

y = U (C)T diag(U (B)z)U (D)x (4.6)

from which we obtain a specific form of the weight generating function in Eq. 4.1, which

is motived by CP decomposition:

W (i) = fU(D),U(B),U(C)(z(i)) = U (D)T diag(U (B)z)U (C) (4.7)

diag(·) is a function that converts a vector into a matrix by placing its elements along

the diagonal of matrix. It is worth mentioning that this formulation has been used in

the context of gated neural networks [Sigaud et al., 2015], such as Gated Autoencoders

[Droniou and Sigaud, 2013]. However, [Droniou and Sigaud, 2013] uses the technique to

model the relationship between two inputs (images), while we exploit it for knowledge

sharing in multi-task/multi-domain learning.

Tucker decomposition

Given the same sized tensor W, Tucker decomposition outputs a core tensor S of size

KD ×KC ×KB , and 3 matrices U (D) of size KD ×D, U (C) of size KC × C, and U (B)

47

of size KB ×B, such that,

Wd,c,b =

KD∑
kD=1

KC∑
kC=1

KB∑
kB=1

SkD,kC ,kBU
(D)
kD,d

U
(C)
kC ,c

U
(B)
kB ,b

(4.8)

W = S • U
(D)

(1,1) • U
(C)

(1,1) • U
(B)

(1,1) (4.9)

Substituting Eq. 4.9 into Eq. 4.2, we get the prediction for instance x in domain/task z

y = ((U (D)x)⊗ (U (B)z))ST(2)U
(C) (4.10)

where ⊗ is Kronecker product. S(2) is the mode-2 unfolding of S which is a KC×KDKB

matrix, and its transpose ST(2) is a matrix of size KDKB ×KC .

This formulation was used by studies of Gated Restricted Boltzmann Machines

(GRBM) [Memisevic and Hinton, 2007] for similar image-transformation purposes as

[Droniou and Sigaud, 2013]. The weight generating function (Eq. 4.1) for Tucker de-

composition is

W (i) = fS,U(D),U(B),U(C)(z(i)) = S • U
(D)

(1,1) • U
(C)

(1,1) • ((1,1) U
(B)z(i)). (4.11)

TT decomposition

Given the same sized tensor W, Tensor-Train (TT) decomposition produces two matri-

ces U (D) of size D ×KD and U (B) of size KB × B and a third-order tensor S of size

KD × C ×KB , so that

Wd,c,b =

KD∑
kD=1

KB∑
kB=1

U
(D)
d,kD
SkD,c,kBU

(B)
kB ,b

, (4.12)

W = U (D) • S • U (B) (4.13)

Substituting Eq. 4.13 into Eq.4.2, we obtain the MDL/MTL prediction

y = (U (D)Tx)⊗ (U (B)z))ST(2) (4.14)

where S(2) is the mode-2 unfolding of S which is a C×KDKB matrix, and its transpose

ST(2) is a matrix of size KDKB×C. The weight generating function (Eq. 4.1) for Tensor

Train decomposition is

W (i) = fS,U(D),U(B)(z(i)) = U (D) • S • (U (B)z(i)). (4.15)

48

Method Factors (Shape)

CP U (D) (K ×D) U (C) (K × C) U (B) (K ×B)
Tucker U (D) (KD ×D) U (C) (KC × C) U (B) (KB ×B) S (KD ×KC ×KB)

TT U (D) (D ×KD) U (B) (KB ×B) S (KD × C ×KB)

Table 4.1: Summary of factors used by different tensor (de)composition methods.

4.2.3 Gated Neural Network Architectures

We previously showed the connection between matrix factorisation for single-output

models, and a two-sided neural network in Section 3.2.1. We will next draw the link

between tensor factorisation and gated neural network [Sigaud et al., 2015] architectures.

First we recap the factors used by different tensor (de)composition methods in Table 4.1.

To make the connection to neural networks, we need to introduce two new layers:

Hadamard Product Layer Takes as input two equal-length vectors u and v and

outputs [u1v1, u2v2, · · · , uKvK]. It is a deterministic layer that does Hadamard

(element-wise) product, where the input size is K +K and output size is K.

Kronecker Product Layer Takes as input two arbitrary-length vectors u and v and

outputs [u1v1, u1v2, · · · , u1vKu
, u2v1, · · · , uKu

vKv
]. It is a deterministic layer that

takes input of size Ku +Kv and returns the size KuKv Kronecker product.

W(1)%

W(M)%

(a) Single domain learning

Hadamard&Product&Layer&

UD& UB&

Uc&

(b) CP network

Kronecker(Product(Layer(

UD(UB(

Fla5ened(S(

(c) TT network

Kronecker(Product(Layer(

UD(UB(

UC(

Fla6ened(S(

(d) Tucker network

Figure 4.1: Learning multiple domains independently, versus learning with parametrised
neural networks encoding the factorisation assumptions of various tensor decomposition
methods.

49

Method/Factors U (D) U (C) U (B) S
Tucker U (D) U (C) U (B) S

CP U (D) U (C) U (B) K ×K ×K Identity Tensor

TT U (D)T C × C Identity Matrix U (B) S
Single Output PT K × 1 All-ones Vector Q K ×K ×K Identity Tensor

Table 4.2: Tensor and the matrix-factorisation-based single output (Sec. 3.2.1,
[Yang and Hospedales, 2015]) networks as special cases of the Tucker Network.
Underlined variables are constant rather than parameters to learn.

Fig. 4.1 illustrates the approaches to multi-domain learning in terms of NNs. Sin-

gle domain learning of M domains requires M single-layer NNs, each with a D × C
weight matrix (Fig. 4.1(a)). Considering this set of weight matrices as the correspond-

ing D × C × M tensor, we can use the introduced layers to define gated networks

(Figs. 4.1(b)-(d)) that model low-rank versions of this tensor with the corresponding

tensor-factorisation assumptions in Eq. 4.5, 4.10, and 4.14 and summarised in Tab. 4.1.

Rather than maintaining a separate NN for each domain as in Fig. 4.1(a), the networks

in Fig. 4.1(b)-(d) maintain a single NN for all domains. The domain of each instance is

signalled to the network via its corresponding descriptor, which the right hand side of

the network uses to synthesise the recognition weights accordingly.

We note that we can further unify all three designs, as well as the single-output model

proposed in Section 3.2.1, by casting them as special cases of the Tucker Network as

shown in Table 4.2. Thus we can understand all these factorisation-based approaches by

their connection to the idea of breaking down the stacked model parameters (matrix W

or tensor W) into a smaller number of parameters composing a domain-specific (U (B)),

task-specific (U (C)) and shared components (U (D)). It is important to note however

that, despite our model’s factorised representation assumption in common with tensor

decomposition, the way to train our model is not by training a set of models and decom-

posing them – in fact matrix/tensor decomposition is not used at all. Rather a single

Tucker network of Fig. 4.1(d) is trained end-to-end with backpropagation to minimise

the multi-domain/task loss. The network architecture enforces that backpropagation

trains the individual factors (Tab. 4.1) such that their corresponding tensor composition

solves the multi-domain-multi-task problem. In summary, our framework can be seen

as ‘discriminatively trained’ tensor factorisation, or as a gated neural network, where

the NN’s weights are dynamically parametrised by a second input, the descriptor z.

4.2.4 Zero-Shot Domain Adaptation

The mechanism of implementing ZSDA is similar to what appears in Sec. 3.2.4, i.e., we

can feed an unseen domain descriptor z(∗) into the weight generating function and get

a model on-the-fly: fW(z(∗)).

50

4.3 Experiments

For the method1 in Chapter 4, named as TuckerNN (Tucker decomposition Neural Net-

work), we explore the application of TuckerNN for a variety of MDL and ZSDA problems

including object recognition (Section 4.3.3), surveillance image analysis (Section 4.3.1)

and person recognition/soft-biometrics (Section 4.3.2). The first recognition experiment

follows the conventional setting of domains/tasks as atomic entities, and the latter ex-

periments explore the potential benefits of informative domain descriptors, including

zero-shot domain adaptation.

Implementation We implement our framework with TensorFlow [Abadi et al., 2015],

taking the neural network interpretation of each method, thus allowing easy optimisa-

tion with SGD-based backpropagation. We use hinge loss for the binary classification

problems and (categorical) cross-entropy loss for the multi-class classification problems.

4.3.1 Surveillance Image Classification

Figure 4.2: Illustration of domain factors in surveillance car recognition task. Above:
Example frames illustrating day/night domain factor. (Left: With car. Middle and
right: No cars.) Below: Activity map illustration of weekday/weekend domain factor.
(Left: Weekday, Middle: Weekend: Right: Weekday-Weekend difference.)

In surveillance video analysis, there are many covariates such as season, work-

day/holiday and day/night. Each of these affects the distribution of image features,

and thus introduces domain shift. Collecting the potentially years of training data

required to train a single general model is both expensive and suboptimal (due to ig-

noring domain shift, and treating all data as a single domain). Thus in this section

we explore the potential for multi-domain learning with distributed domain descriptors

(Section 3.2.2) to improve performance by modelling the factorial structure in the do-

1We use the Tucker variant only because it generalises the other variants.

51

main shift. Furthermore, we demonstrate the potential of ZSDA to adapt a system to

apply in a new set of conditions for which no training data exists.

Data We consider the surveillance image classification task proposed by [Hoffman

et al., 2014]. This is a binary classification of each frame in a 12-day surveillance stream

as being empty or containing cars. Originally, [Hoffman et al., 2014] investigated con-

tinuous domains (which can be seen as a 1-dimensional domain descriptor containing

time-stamp). To explore a richer domain descriptor, we use a slightly different defini-

tion of domains, considering instead weekday/weekend and day/night as domain fac-

tors, generating 2 × 2 = 4 distinct domains, each encoded by a 2-of-4 binary domain

descriptor. Figure 4.2(top) illustrates the more obvious domain factor: day/night. This

domain-shift induces a larger image change than the task-relevant presence or absence

of a car.

Settings We use the 512 dimensional GIST feature for each frame provided by [Hoff-

man et al., 2014]. We perform two experiments: Multi-domain learning, and zero-shot

domain adaptation. For MDL, we split all domains’ data into half training and half

testing, and repeat for 10 random splits. We use our single-output network (Fig. 3.1,

Tab. 4.2 bottom row) with a distributed domain descriptor for two categories with two

states (i.e., same descriptor as Fig. 3.3, right). The baselines are: (i) SDL: train an

independent model for each domain (ii) Aggregation: to train a single model covering

all domains (ii) Multi-Domain I: a multi-domain model with low-rank factorisation

of W̃ and one-hot encoding of domain descriptor (in this case, Z is an identity matrix

thus W̃ = WZ = W – this roughly corresponds to our reimplementation of [Kumar and

Daumé III, 2012]), and (iv) Multi-Domain II: a factorised multi-domain model with

one-hot + constant term encoding (this is in fact the combination the sharing structure

and factorisation proposed in [Evgeniou and Pontil, 2004] and [Kumar and Daumé III,

2012] respectively).

For ZSDA, we do leave-one-domain-out cross-validation: holding out one of the four

domains for testing, and using the observed three domains’ data for training. Although

the train/test splits are not random, we still repeat the procedure 10 times to reduce

randomness of the SGD optimisation. Our model is constructed on the fly for the held-

out domain based on its semantic descriptor. As a baseline, we train an aggregated

model from all observed domains’ data, and apply it directly to the held-out domain

(denoted as Direct). We set our rank hyper parameter via the heuristic K = D
log(D) .

We evaluate the the mean and standard deviation of error rate.

Results and Analysis The results shown in Table 4.3.1 demonstrate that our pro-

posed method outperforms alternatives in both MDL and ZSDA settings. For MDL we

see that training a per-domain model and ignoring domains altogether perform simi-

larly (SDL vs Aggregation). By introducing more sharing structure, e.g., Multi-Domain

I is built with low-rank assumption, and Multi-Domain II further assumes that there

is a globally shared factor, the multi-domain models clearly improve performance. Fi-

nally our full method performs notably better than the others because it can benefit

52

Table 4.3: Surveillance Image Classification. Mean error rate (%) and standard devia-
tion.

MDL Experiment SDL Aggregation Multi-Domain I Multi-Domain II TuckerNN
Err. Rate 10.82 ± 3.90 11.05 ± 2.73 10.00 ± 0.90 8.86 ± 0.79 8.61 ±0.51

ZSDA Experiment Direct TuckerNN
Err. Rate 12.04 ±0.11 9.72 ±0.08

Normal' With'Coat'

Front'
Side'

F'''''''''''''''''''M' F'''''''''''''''''''M'

Figure 4.3: Example gait images illustrating independent domain factors.

from both low-rank modelling and also exploiting the structured information in the

distributed encoding of domain semantic descriptor.

In ZSDA, our proposed method also clearly outperforms the baseline of directly

training on all the source domains. What information is our model able to exploit to

achieve this? One cue is that various directions including right turn are common on

weekends and weekdays are primarily going straight (illustrated in Figure 4.2(below) by

way of an activity map). This can, e.g., be learned from the weekend-day domain, and

transferred to the held-out weekend-night domain because the domain factors inform

us that those two domains have the weekend factor in common.

4.3.2 Gait-based Soft-Biometrics and Recognition

Gait-based person and soft biometric recognition are desirable capabilities due to not

requiring subject cooperation [Zheng et al., 2011]. However they are challenging espe-

cially where there are multiple covariates such as viewing angle and accessory status

(e.g., object carrying). Again training a model for every covariate combination is in-

feasible, and conventional domain adaptation is not scalable as the number of resulting

domains grows exponentially with independent domain factors. In contrast, zero-shot

domain adaptation could facilitate deploying a camera with a calibration step to specify

53

covariates such as view-angle, but no data collection or re-training.

Data We investigate applying our framework to this setting using the CASIA gait

analysis dataset [Zheng et al., 2011] with data from 124 individuals under 11 viewing

angles. Each person has three situations: normal (‘nm’), wearing overcoat (‘cl’) and

carrying a bag (‘bg’). This naturally forms 3 × 11 = 33 domains. We extract Gait

Energy Image (GEI) features, followed by PCA reduction to 300 dimensions, retaining

more than 97% of the variance.

Settings We consider two gait analysis problems: (i) Soft-biometrics: Female/Male

classification and (ii) Person verification/matching. For matching each image pair xi

and xj , generates a pairwise feature vector by xij = |xi − xj |. The objective is to learn

a binary verification classifier on xij to predict if two images are the same person or not.

All experiment settings (baseline methods, training/testing splits, experiments repeats,

and the choice of hyper-parameter) are the same as in Section 4.3.1, except that for the

verification problem we build a balanced (training and testing) set of positive/negative

pairs by down-sampling negative pairs.

Results and Analysis Figure 4.3 illustrates the nature of the domain factors here,

where the cross-domain variability is again large compared to the cross-class variability.

Our framework uniquely models the fact that each domain factor (e.g., view angle and

accessory status) can occur independently. The results shown in Tables 4.4 and 4.5

demonstrate the same conclusions – that explicitly modelling MDL structure improves

performance (Multi-domain I and II improve on SDL and Aggregation), with our most

general method performing best overall.

Table 4.4: Gait: Male/Female Biometrics. Error Rate (%) and Standard Deviation

MDL Experiment SDL Aggregation Multi-Domain I Multi-Domain II TuckerNN
Err. Rate 2.35 (±0.20) 2.62 (±0.18) 2.25 (±0.20) 2.07 (± 0.15) 1.64 (±0.14)

ZSDA Experiment Direct TuckerNN
Err. Rate 3.01 (±0.08) 2.19 (±0.05)

Table 4.5: Gait: Person Verification. Error Rate(%) and Standard Deviation

MDL Experiment SDL Aggregation Multi-Domain I Multi-Domain II TuckerNN
Err. Rate 23.30 (±0.28) 24.62 (±0.32) 22.18 (±0.25) 21.15 (± 0.13) 19.36 (±0.09)

ZSDA Experiment Direct TuckerNN
Err. Rate 26.93 (±0.10) 23.67 (±0.11)

54

Figure 4.4: Illustration of the domains in the office dataset. An image of a backpack
collected from four different sources.

4.3.3 Multi-domain Multi-task Object Recognition

In this section we assume conventional atomic domains (so domain descriptors are sim-

ply indicators rather than distributed codes), but explore a multi-domain multi-task

(MDMTL) setting. Thus there is a multi-class problem within each domain, and our

method (Section 4.2) exploits information sharing across both domains and tasks. To

deal with multi-class recognition within each domain, it generalises existing vector-

valued MTL/MDL methods, and implements a matrix-valued weight generating func-

tion parametrised by a low-rank tensor (Fig. 4.1).

Datasets We first evaluate the multi-domain multi-task setting using the well-known

office dataset [Saenko et al., 2010]. Office includes three domains (data sources): Ama-

zon: images downloaded from Amazon, DSLR high-quality images captured by digital

camera, webcam low-quality images captured by webcam. For every domain, there are

multiple classes of objects to recognise, e.g., keyboard, mug, headphones. In addition

to the original Office dataset, add a 4th domain: Caltech-256 [Griffin et al., 2007], as

suggested by [Gong et al., 2012]. Thus we evaluate recognising 10 classes in common

the four domains. See Fig. 4.4 for an illustration. The feature is the 800-dimension

SURF feature [Bay et al., 2006]. As suggested by [Gong et al., 2012], we pre-process

the data by normalising the sum of each instance’s feature vector to one then applying

a z-score function.

Settings We compare the three proposed method variants: CP, Tucker, and TT-

Networks with two baselines. SDL: training each domain independently and Aggre-

gation: ignoring domains and training an aggregate model for all data. For these two

baselines, we use a vanilla feed-forward neural network without hidden layers thus there

are no hyper-parameters to tune. For our methods, the tensor rank(s), i.e., K for CP-

Network, (KD, KC , KB) for Tucker-Network, and (KD, KB) for TT-network are chosen

by 10-fold cross validation. The grids of KD, KC , and KB are respectively [16, 64, 256],

[2, 4, 8], and [2, 4]. The multi-class recognition error rate at 9 increasing training-testing-

ratios (10%, 20% . . . 90%) is computed, and for each training-testing-ratio, we repeat the

experiment 10 times with random splits.

Results and Analysis The result is shown in Fig. 4.5. We can see that the proposed

55

10% 20% 30% 40% 50% 60% 70% 80% 90% 10% 20%

Training Data Fraction

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

er
ro

r
ra

te

SDL
Aggregation
CP
TT
Tucker

Figure 4.5: Office Dataset: Error mean and std. dev. recognising C = 10 classes across
M = 4 domains. Comparison of three parametrised neural networks with SDL and
Aggregation baselines.

methods perform well compared to SDL. When the training data is extremely small,

Aggregation is a reasonably good choice as the benefit of more data outweighs the

drawback of mixing domains. However, the existence of domain bias eventually prevents

a single model from working well for all domains. Our proposed methods can produce

different models for the various domains so they generally outperform the baselines.

Tucker-and TT-Network are better than CP-Network because of their greater flexibility

on choosing more than one tensor rank. However as a drawback, this also introduces

more hyper-parameters to tune.

4.4 Summary

In this chapter, we discussed multi-domain learning – a bi-directional generalisation

of domain adaptation, and zero-shot domain adaptation – an alternative to domain-

generalisation approaches. We introduced a semantic domain/task descriptor to unify

various existing multi-task/multi-domain algorithms within a single matrix factorisa-

tion framework. To go beyond the single output problems considered by prior methods,

we generalised this framework to tensor factorisation, which allows knowledge sharing

for methods parametrised by matrices rather than vectors. This allows multi-domain

learning for multi-output problems or simultaneous multi-task-multi-domain learning.

All these approaches turn out to have equivalent interpretations as neural networks,

which allow easy implementation and optimisation with existing toolboxes. Promising

lines of future enquiry include extending this framework for end-to-end learning in con-

56

volutional neural networks (Chapter 5), tensor rank-based regularisation (Chapter 6),

and applying these ideas to solve practical computer vision problems.

57

Chapter 5

Going Deep: Tensor

Factorisation for Deep MTL

Most contemporary multi-task learning methods assume linear models. This setting is

considered shallow in the era of deep learning. In this chapter, we present a new deep

multi-task representation learning framework that learns cross-task sharing structure

at every layer in a deep network. In this chapter, we adapt the tensor factorisation

techniques used in Chapter 4, and take a further step that applies it to deep neural

networks in a layer-wise fashion, in order to realise automatic learning of end-to-end

knowledge sharing in the neural networks. This is in contrast to existing deep learning

approaches that need a user-defined multi-task sharing strategy – usually implemented

by tying the parameters of different neural networks. Our approach applies to both

homogeneous and heterogeneous MTL. Experiments demonstrate the efficacy of our

deep multi-task representation learning in terms of both higher accuracy and fewer

design choices.

5.1 Background

The paradigm of multi-task learning is to learn multiple related tasks simultaneously

so that knowledge obtained from each task can be re-used by the others. Early work in

this area focused on neural network models [Caruana, 1997], while more recent methods

have shifted focus to kernel methods, sparsity and low-dimensional task representations

of linear models [Evgeniou and Pontil, 2004, Argyriou et al., 2008, Kumar and Daumé

III, 2012]. Nevertheless given the impressive practical efficacy of contemporary deep

neural networks (DNN)s in many important applications, we are motivated to revisit

MTL from a deep learning perspective.

While the machine learning community has focused on MTL for shallow linear mod-

els recently, applications have continued to exploit neural network MTL [Zhang et al.,

2014, Liu et al., 2015]. The typical design pattern dates back at least 20 years [Caru-

58

ana, 1997]: define a DNN with shared lower representation layers, which then forks into

separate layers and losses for each task. The sharing structure is defined manually: full-

sharing up to the fork, and full separation after the fork. However this complicates DNN

architecture design because the user must specify the sharing structure: How many task

specific layers? How many task independent layers? How to structure sharing if there

are many tasks of varying relatedness?

In this chapter we present a method for end-to-end multi-task learning in DNNs.

This contribution can be seen as generalising shallow MTL methods [Evgeniou and

Pontil, 2004, Argyriou et al., 2008, Kumar and Daumé III, 2012] to learning how to

share at every layer of a deep network; or as learning the sharing structure for deep

MTL [Caruana, 1997, Zhang et al., 2014, Spieckermann et al., 2014, Liu et al., 2015]

which currently must be defined manually on a problem-by-problem basis.

Before proceeding it is worth explicitly distinguishing some different problem set-

tings, which have all been loosely referred to as MTL in the literature. Homogeneous

MTL: Each task corresponds to a single output. For example, MNIST digit recognition

is commonly used to evaluate MTL algorithms by casting it as 10 binary classification

tasks [Kumar and Daumé III, 2012]. Heterogeneous MTL: Each task corresponds to

a unique set of output(s) [Zhang et al., 2014]. For example, one may want simultaneously

predict a person’s age (task one: multi-class classification or regression) as well as iden-

tify their gender (task two: binary classification) from a face image. Multi-Domain

Learning: Each “task” corresponds to a dataset [Yang and Hospedales, 2015]. For ex-

ample, one jointly can train a multi-class object recognition model for images captured

by an HD camera (task/domain one) and for those captured by a webcam (task/domain

two). The key difference between MTL and MDL is that MTL deals with a change in the

target label-space, while MDL deals with differences due input data statistics. Within

the machine learning community, key MTL algorithms [Evgeniou and Pontil, 2004, Ar-

gyriou et al., 2008, Kumar and Daumé III, 2012] (linear or kernelised versions) have

been designed for the problem with single-output (e.g., binary classification, or single-

output regression), and thus have been applied to homogeneous MTL and a special case

of MDL when each task just has a single output. Heterogeneous MTL has not been

studied systemically, but is popular in applications, which typically use multi-objective

(i.e., multiple loss function) neural networks [Zhang et al., 2014, Liu et al., 2015].

In this chapter, we propose a multi-task learning method that works on all these

settings. The key idea is to use tensor factorisation to divide each set of model pa-

rameters (i.e., both FC weight matrices, and convolutional kernel tensors) into shared

and task-specific parts. It is a natural generalisation of shallow MTL methods that

explicitly or implicitly are based on matrix factorisation [Evgeniou and Pontil, 2004,

Argyriou et al., 2008, Kumar and Daumé III, 2012, Daumé III, 2007]. As linear meth-

ods, these typically require pre-engineered features. In contrast, as a deep network, our

generalisation can learn directly from raw image data, determining sharing structure in

a layer-wise fashion. For the simplest NN architecture – no hidden layer, single output

– our method reduces to matrix-based ones, therefore matrix-based methods including

59

[Evgeniou and Pontil, 2004, Argyriou et al., 2008, Kumar and Daumé III, 2012, Daumé

III, 2007] are special cases of ours.

5.2 Methodology

Preliminaries

The concept of tensor and its operations has been summarised in Appx. A.4.4

Matrix-based Knowledge Sharing

Assume we have T linear models (tasks) parametrised by D-dimensional weight vectors,

so the collection of all models forms a size D×T matrix W . One commonly used MTL

approach [Kumar and Daumé III, 2012] is to place a structure constraint on W , e.g.,

W = LS, where L is a D × K matrix and S is a K × T matrix. This factorisation

recovers a shared factor L and a task-specific factor S. One can see the columns of L

as latent basis tasks, and the model w(i) for the ith task is the linear combination of

those latent basis tasks with task-specific information S·,i.

w(i) := W·,i = LS·,i =

K∑
k=1

L·,kSk,i (5.1)

From Single to Multiple Outputs

Consider extending this matrix factorisation approach to the case of multiple outputs.

The model for each task is then a D1 × D2 matrix, for D1 input and D2 output di-

mensions. The collection of all those matrices constructs a D1 × D2 × T tensor. A

straightforward extension of Eq. 5.1 to this case is

W (i) :=W·,·,i =

K∑
k=1

L·,·,kSk,i (5.2)

This is equivalent to imposing the same structural constraint on WT
(3) (transposed

mode-3 flattening of W). It is important to note that this allows knowledge sharing

across the tasks only. I.e., knowledge sharing is only across-tasks not across dimen-

sions within a task. However it may be that the knowledge learned in the mapping

to one output dimension may be useful to the others within one task. E.g., consider

recognising photos of handwritten and print digits – it may be useful to share across

handwritten-print; as well as across different digits within each. In order to support

general knowledge sharing across both tasks and outputs within tasks, we propose to

use more general tensor factorisation techniques. Unlike matrix factorisation, there are

multiple definitions of tensor factorisation, and we use Tucker [Tucker, 1966] and Tensor

Train (TT) [Oseledets, 2011] decompositions.

60

5.2.1 Tensor Factorisation for Knowledge Sharing

In Section 4.2.2 we reviewed three classic tensor decomposition methods for the case

of 3-way tensors, in this section, we introduce the general form of Tucker and TT

decomposition that applies to N -way tensors.

Tucker Decomposition

Given an N -way tensor of size D1 ×D2 · · · ×DN , Tucker decomposition outputs a core

tensor S of size K1 ×K2 · · · ×KN , and N matrices U (n) of size Dn ×Kn, such that,

W = S • U
(1)

(1,2) • U
(2)

(1,2) • · · · • U
(N)

(1,2) (5.3)

Tensor Train Decomposition

Tensor Train (TT) Decomposition outputs 2 matrices U (1) and U (N) of size D1 ×K1

and KN−1×DN respectively, and (N − 2) 3-way tensors U (n) of size Kn−1×Dn×Kn.

The elements of W can be computed by,

W = U (1) • U (2) • · · · • U (N) (5.4)

Knowledge Sharing

If the final axis of the input tensor above indexes tasks, i.e. if DN = T then the last

factor U (N) in both decompositions encodes a matrix of task specific knowledge, and

the other factors encode shared knowledge.

5.2.2 Deep Multi-Task Representation Learning

To realise deep multi-task representation learning (DMTRL), we learn one DNN per-

task each with the same architecture1. However each corresponding layer’s weights are

generated with one of the knowledge sharing structures in Eq. 5.2, Eq. 5.3 or Eq. 5.4.

Note that we apply these ‘right-to-left’ in order to generate weight tensors with the

specified sharing structure, rather than actually applying Tucker or TT to decompose

an input tensor. Thus in the forward pass, we synthesise weight tensorsW and perform

inference as usual.

Our weight generation (construct tensors from smaller pieces) does not introduce

non-differentiable terms, so our deep multi-task representation learner is trainable via

standard backpropagation. Specifically, in the backward pass over FC layers, rather

than directly learning the 3-way tensor W, our methods learn either {S, U1, U2, U3}
(Tucker, Eq. 5.3), {U1,U2, U3} (TT, Eq. 5.4), or in the simplest case {L, S} (SVD,

1Except heterogeneous MTL, where the output layer is necessarily unshared due to different dimen-
sionality.

61

Eq. 5.2). Besides FC layers, contemporary DNN designs often exploit convolutional

layers. Those layers usually contain kernel filter parameters that are 3-way tensors

of size H ×W × C, (where H is height, W is width, and C is the number of input

channels) or 4-way tensors of size H ×W × C ×M , where M is the number of filters

in this layer (i.e., the number of output channels). The proposed methods naturally

extend to convolution layers as convolution just adds more axes on the left-hand side.

E.g., the collection of parameters from a given convolutional layer of T neural networks

forms a tensor of shape H ×W × C ×M × T .

These knowledge sharing strategies provide a way to softly share parameters across

the corresponding layers of each task’s DNN: where, what, and how much to share

are learned from data. This is in contrast to the conventional Deep-MTL approach of

manually selecting a set of layers to undergo hard parameter sharing: by tying weights

so each task uses exactly the same weight matrix/tensor for the corresponding layer

[Zhang et al., 2014, Liu et al., 2015]; and a set of layers to be completely separate:

by using independent weight matrices/tensors. In contrast our approach benefits from:

(i) automatically learning this sharing structure from data rather than requiring user

trial and error, and (ii) smoothly interpolating between fully shared and fully segregated

layers, rather than a hard switching between these states. An illustration of the proposed

framework for different problem settings can be found in Fig. 5.1.

5.3 Experiments

We next validate the Deep Multi-Task Representation Learning (DMTRL) method in

Chapter 5 under three experimental settings: Homogeneous MTL, Heterogeneous MTL,

and Multi-Domain Learning. We evaluate the low-rank tensor approach to knowl-

edge sharing, and show that it provides an effective alternative to the traditional ex-

pert/exhaustive approach to sharing architecture design.

Implementation The method is implemented with TensorFlow [Abadi et al., 2015].

The code is released on GitHub2. For DMTRL-Tucker, DMTRL-TT, and DMTRL-

LAF, we need to assign the rank of each weight tensor. The DNN architecture itself

may be complicated and so can benefit from different ranks at different layers, but

grid-search is impractical. However, since both Tucker and TT decomposition methods

have SVD-based solutions ([Lathauwer et al., 2000, Oseledets, 2011]), and vanilla SVD

is directly applicable to DMTRL-LAF, we can initialise the model and set the ranks as

follows: First train the DNNs independently in single task learning mode. Then pack the

layer-wise parameters as the input for tensor decomposition. When SVD is applied, set

a threshold for relative error so SVD will pick the appropriate rank. Thus our method

needs only a single hyper parameter of max reconstruction error (we set to ε = 10%

throughout) that indirectly specifies the ranks of every layer. Note that training from

random initialisation also works, but the STL-based initialisation makes rank selection

2https://github.com/wOOL/DMTRL

62

https://github.com/wOOL/DMTRL

... ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

H
o
m
o
g
e
n
e
o
u
s
M
T
L

(S
h
a
ll
o
w
)

H
e
te
ro
g
e
n
e
o
u
s
M
T
L

M
u
lt
i­
D
o
m
a
in
L
e
a
rn
in
g

...

...

...

...

...

...

...

...

STL
MTL

UD­MTL DMTRLSTL

Aggregation DMTRLSTL

...

...

...

...

...

...

...

H
o
m
o
g
e
n
e
o
u
s
M
T
L

(D
e
e
p
)

...

...

...

...

UD­MTL DMTRLSTL

Figure 5.1: Illustrative example with two tasks corresponding to two neural networks
in homogeneous (single output) and heterogeneous (different output dimension) cases.
Weight layers grouped by solid rectangles are tied across networks. Weight layers
grouped by dashed rectangles are softly shared across networks with our method. Un-
grouped weights are independent.
Homogeneous MTL Shallow: Left is single task (two independent networks); right is
MTL. In the case of vector input and no hidden layer, our method is equivalent to con-
ventional matrix-based MTL methods. Homogeneous MTL Deep: Single task (Left) is
independent networks. User-defined-MTL (UD-MTL) selects layers to share/separate.
Our DMTRL learns sharing at every layer. Heterogeneous MTL: UD-MTL selects lay-
ers to share/separate. Our DMTRL learns sharing at every shareable layer. MDL: Left
is single task (independent networks). Middle is to aggregate all domains. Right is our
DMTRL where soft sharing structure for both layers is learned.

easy and transparent. Nevertheless, like [Kumar and Daumé III, 2012] the framework

is not sensitive to rank choice so long as they are big enough. If random initialisation is

desired to eliminate the pre-training requirement, good practice is to initialise parameter

tensors by a suitable random weight distribution first, then do decomposition, and use

the decomposed values for initialising the factors (the real learnable parameters in our

framework). In this way, the resulting re-composed tensors will have approximately the

intended distribution. Our sharing is applied to weight parameters only, bias terms are

not shared. Apart from initialisation, decomposition is not used anywhere.

63

5.3.1 Homogeneous MTL

Dataset, Settings and Baselines We use MNIST handwritten digits. The task is

to recognise digit images zero to nine. When this dataset is used for the evaluation

of MTL methods, ten 1-vs-all binary classification problems usually define ten tasks

[Kumar and Daumé III, 2012]. The dataset has a given train (60,000 images) and test

(10,000 images) split. Each instance is a monochrome image of size 28× 28× 1.

We use a modified LeNet [LeCun et al., 1998] as the CNN architecture. The first

convolutional layer has 32 filters of size 5×5, followed by 2×2 max pooling. The second

convolutional layer has 64 filters of size 4×4, and again a 2×2 max pooling. After these

two convolutional layers, two fully connected layers with 512 and 1 output(s) are placed

sequentially. The convolutional layers and first FC layer use RELU f(x) = max(x, 0)

as the activation function. The loss is hinge loss, `(y) = max(0, 1− ŷ · y), where y ∈ ±1

is the true label and ŷ is the output of each task’s neural network.

Conventional matrix-based MTL methods [Evgeniou and Pontil, 2004, Argyriou

et al., 2008, Kumar and Daumé III, 2012, Romera-Paredes et al., 2013, Wimalawarne

et al., 2014] are linear models taking vector input only, so they need a preprocessing

that flattens the image into a vector, and typically reduce dimension by PCA. As per

our motivation for studying Deep MTL, our methods will decisively outperform such

shallow linear baselines. Thus to find a stronger MTL competitor, we instead search

user defined architectures for Deep-MTL parameter sharing (cf [Zhang et al., 2014, Liu

et al., 2015, Caruana, 1997]). In all of the four parametrised layers (pooling has no

parameters), we set the first N (1 ≤ N ≤ 3) to be hard shared3. We then use cross-

validation to select among the three user-defined MTL architectures and the best option

is N = 3, i.e., the first three layers are fully shared (we denote this model UD-MTL).

For our methods, all four parametrised layers are softly shared with the different fac-

torisation approaches. To evaluate different MTL methods and a baseline of single task

learning (STL), we take ten different fractions of the given 60K training split, train the

model, and test on the 10K testing split. For each fraction, we repeat the experiment

5 times with randomly sampled training data. We report two performance metrics:

(1) the mean error rate of the ten binary classification problems and (2) the error rate

of recognising a digit by ranking each task’s 1-vs-all output (multi-class classification

error).

Results As we can see in Fig. 5.2, all MTL approaches outperform STL, and the

advantage is more significant when the training data is small. The proposed methods,

DMTRL-TT and DMTRL-Tucker outperform the best user-defined MTL when the

training data is very small, and their performance is comparable when the training data

is large.

3This is not strictly all possible user-defined sharing options. For example, another possibility is the
first convolutional layer and the first FC layer could be fully shared, with the second convolutional layer
being independent (task specific). However, this is against the intuition that lower/earlier layers are
more task agnostic, and later layers more task specific. Note that sharing the last layer is technically
possible but not intuitive, and in any case not meaningful unless at least one early layer is unshared,
as the tasks are different.

64

10 -2 10 -1 100

Fraction of Training Data

0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

or
 R

at
e

Binary Classification

STL
DMTRL-LAF
DMTRL-Tucker
DMTRL-TT
UD-MTL

10 -2 10 -1 100

Fraction of Training Data

0

0.05

0.1

0.15

0.2

E
rr

or
 R

at
e

Multi-class Classification

STL
DMTRL-LAF
DMTRL-Tucker
DMTRL-TT
UD-MTL

Figure 5.2: Homogeneous MTL: digit recognition on MNIST dataset. Each digit pro-
vides a task.

Further Discussion

For a slightly unfair comparison, in the case of binary classification with 1000 training

data, shallow matrix-based MTL methods with PCA feature [Kang et al., 2011, Kumar

and Daumé III, 2012] reported 14.0% / 13.4% error rate. With the same amount of

data, our methods have error rate below 6%. This shows the importance of our deep

end-to-end multi-task representation learning contribution versus conventional shallow

MTL. Since the error rates in [Kang et al., 2011, Kumar and Daumé III, 2012] were

produced on a private subset of MNIST dataset with PCA representations only, to

ensure a direct comparison, we implement several classic MTL methods and compare

them.

We provide a comparison with classic (shallow, matrix-based) MTL methods for the

first experiment (MNIST, binary one-vs-rest classification, 1% training data, mean of

error rates for 10-fold CV).

A subtlety in making this comparison is what feature should the classic methods

use? Conventionally they use a PCA feature (obtained by flattening the image, then

dimension reduction by PCA). However for visual recognition tasks, performance is

better with deep features – a key motivation for our focus on deep approaches to MTL.

We therefore also compare the classic methods when using a feature extracted from the

penultimate layer of the CNN network used in our experiment.

Model PCA Feature CNN Feature
Single Task Learning 16.89 11.52

Evgeniou and Pontil [2004] 15.27 10.32
Argyriou et al. [2008] 15.64 9.56

Kumar and Daumé III [2012] 14.08 9.41
DMTRL-LAF - 8.25

DMTRL-Tucker - 9.24
DMTRL-TT - 7.31

UD-MTL - 9.34

Table 5.1: Comparison with classic MTL methods. MNIST binary classification error
rate (%).

65

As expected, the classic methods improve on STL, and they perform significantly

better with CNN than PCA features. However, our DMTRL methods still outperform

the best classic methods, even when they are enhanced by CNN features. This is due to

soft (cf hard) sharing of the feature extraction layers and the ability of end-to-end train-

ing of both the classifier and feature extractor. Finally, we note that more fundamen-

tally, the classic methods are restricted to binary problems (due to their matrix-based

nature) and so, unlike our tensor-based approach, they are unsuitable for multi-class

problems like omniglot and age-group classification.

For readers interested in the connection to model capacity (number of parameters),

we list the number of parameters for each model in the first experiment (MNIST, binary

one-vs-rest classification) and the performance (1% training data, mean of error rate

for 10-fold CV).

Model Error Rate (%) Number of parameters Ratio
STL 11.52 4351K 1.00

DMTRL-LAF 8.25 1632K 0.38
DMTRL-Tucker 9.24 1740K 0.40

DMTRL-TT 7.31 2187K 0.50
UD-MTL 9.34 436K 0.10

UD-MTL-Large 9.39 1644K 0.38

Table 5.2: Comparison of deep models: Error rate and number of parameters.

The conventional hard-sharing method (UD-MTL) design is to share all layers except

the top layer. Its number of parameter is roughly 10% of the single task learning method

(STL), as most parameters are shared across the 10 tasks corresponding to 10 digits.

Our soft-sharing methods also significantly reduce the number of parameters compared

to STL, but are larger than UD-MTL’s hard sharing.

To compare our method to UD-MTL, while controlling for network capacity, we

expanded UD-MDL by adding more hidden neurons so its number of parameter is close

to our methods (denoted UD-MTL-Large). However UD-MDL performance does not

increase. This is evidence that our model’s good performance is not simply due to

greater capacity than UD-MTL.

5.3.2 Heterogeneous MTL: Face Analysis

Dataset, Settings and Baselines The AdienceFaces [Eidinger et al., 2014] is a

large-scale face images dataset with the labels of each person’s gender and age group.

We use this dataset for the evaluation of heterogeneous MTL with two tasks: (i) gender

classification (two classes) and (ii) age group classification (eight classes). Two inde-

pendent CNN models for this benchmark are introduced in [Levi and Hassncer, 2015].

The two CNNs have the same architecture except for the last fully-connected layer,

since the heterogeneous tasks have different number of outputs (two / eight). We take

these CNNs from [Levi and Hassncer, 2015] as the STL baseline. We again search for

the best possible user-defined MTL architecture as a strong competitor: the proposed

66

CNN has six layers – three convolutional and three fully-connected layers. The last

fully-connected layer has non-shareable parameters because they are of different size.

To search the MTL design-space, we try setting the first N (1 ≤ N ≤ 5) layers to

be hard shared between the tasks. Running 5-fold cross-validation on the train set to

evaluate the architectures, we find the best choice is N = 5 (i.e., all layers fully shared

before the final heterogeneous outputs). For our proposed methods, all the layers before

the last heterogeneous dimensionality FC layers are softly shared.

We select increasing fractions of the AdienceFaces train split randomly, train the

model, and evaluate on the same test set. For reference, there are 12245 images with

gender labelled for training, 4007 ones for testing, and 11823 images with age group

labelled for training, and 4316 ones for testing.4.

10 -2 10 -1 100

Fraction of Training Data

0.2

0.25

0.3

0.35

0.4

0.45

E
rr

or
 R

at
e

Gender Classification

10 -2 10 -1 100

Fraction of Training Data

0.5

0.55

0.6

0.65

0.7

0.75
E

rr
or

 R
at

e

Age Group Classification

STL
DMTRL-LAF
DMTRL-Tucker
DMTRL-TT
UD-MTL

Figure 5.3: Heterogeneous MTL: Age and Gender recognition in AdienceFace dataset.

Results Fig. 5.3 shows the error rate for each task. For the gender recognition

task, we find that: (i) User-defined MTL is not consistently better than STL, but (ii)

our methods, esp., DMTRL-Tucker, consistently outperform both STL and the best

user-defined MTL. For the harder age group classification task, our methods generally

improve on STL. However UD-MTL does not consistently improve on STL, and even

reduces performance when the training set is bigger. This is the negative transfer phe-

nomenon [Rosenstein et al., 2005], where using a transfer learning algorithm is worse

than not using it. This difference in outcomes is attributed to sufficient data eventu-

ally providing some effective task-specific representation. Our methods can discover

and exploit this, but UD-MTL’s hard switch between sharing and not sharing can not

represent or exploit such increasing task-specificity of representation.

5.3.3 Heterogeneous MTL: Multi-Alphabet Recognition

Dataset, Settings and Baselines We next consider the task of learning to recognise

handwritten letters in multiple languages using the Omniglot [Lake et al., 2015] dataset.

Omniglot contains handwritten characters in 50 different alphabets (e.g., Cyrillic, Ko-

rean, Tengwar), each with its own number of unique characters (14 ∼ 55). In total,

4https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds/train_val_txt_

files_per_fold/test_fold_is_0

67

https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds/train_val_txt_files_per_fold/test_fold_is_0
https://github.com/GilLevi/AgeGenderDeepLearning/tree/master/Folds/train_val_txt_files_per_fold/test_fold_is_0

there are 1623 unique characters, and each has exactly 20 instances. Here each task

corresponds to an alphabet, and the goal is to recognise its characters. MTL has a

clear motivation here, as cross-alphabet knowledge sharing is likely to be useful as one

is unlikely to have extensive training data for a wide variety of less common alphabets.

The images are monochrome of size 105×105. We design a CNN with 3 convolutional

and 2 FC layers. The first conv layer has 8 filters of size 5 × 5; the second conv layer

has 12 filters of size 3× 3, and the third convolutional layer has 16 filters of size 3× 3.

Each convolutional layer is followed by a 2 × 2 max-pooling. The first FC layer has

64 neurons, and the second FC layer has size corresponding to the number of unique

classes in the alphabet. The activation function is tanh.

We use a similar strategy to find the best user-defined MTL model: the CNN has 5

parametrised layers, of which 4 layers are potentially shareable. So we tried hard-sharing

the first N (1 ≤ N ≤ 4) layers. Evaluating these options by 5-fold cross-validation, the

best option turned out to be N = 3, i.e., the first three layers are hard shared. For our

methods, all four shareable layers are softly shared.

Since there is no standard train/test split for this dataset, we use the following

setting: We repeatedly pick at random 5, . . . 90% of images per class for training. Note

that 5% is the minimum, corresponding to one-shot learning. The remaining data are

used for evaluation.

Results Fig. 5.4 reports the average error rate across all 50 tasks (alphabets). Our

proposed MTL methods surpass the STL baseline in all cases. User-defined MTL does

not work well when the training data is very small, but does help when training fraction

is larger than 50%.

Measuring the Learned Sharing Compared to the conventional user-defined

sharing architectures, our method learns how to share from data. We next try to

quantify the amount of sharing estimated by our model on the Omniglot data. Returning

to the key factorisation W = LS, we can find that S-like matrix appears in all variants

of proposed method. It is S in DMTRL-SVD, the transposed U (N) in DMTRL-Tucker,

and U (N) in DMTRL-TT (N is the last axis of W). S is a K × T size matrix, where

T is the number of tasks, and K is the number of latent tasks [Kumar and Daumé III,

2012] or the dimension of task coding [Yang and Hospedales, 2015]. Each column of S is

a set of coefficients that produce the final weight matrix/tensor by linear combination.

If we put STL and user-defined MTL (for a certain shared layer) in this framework, we

see that STL is to assign (rather than learn) S to be an identity matrix IT . Similarly,

user-defined MTL (for a certain shared layer) is to assign S to be a matrix with all zeros

but one particular row is all ones, e.g., S = [11×T ;0]. Between these two extremes, our

method learns the sharing structure in S. We propose the following equation to measure

the learned sharing strength:

ρ =
1(
T
2

) ∑
i<j

Ω(S·,i, S·,j) =
2

T (T − 1)

∑
i<j

Ω(S·,i, S·,j) (5.5)

Here Ω(a, b) is a similarity measure for two vectors a and b and we use cosine

68

Conv1 Conv2 Conv3 FC1 FC2

Layers

0

0.2

0.4

0.6

0.8

1

S
ha

rin
g

S
tr

en
gt

h

Sharing Strength at Each Layer

DMTRL-LAF
DMTRL-Tucker
DMTRL-TT
UD-MTL

0.05 0.10 0.20 0.50 0.60 0.70 0.80 0.90

Fraction of Training Data

0.3

0.4

0.5

0.6

0.7
E

rr
or

 R
at

e

Alphabet Classification

STL
DMTRL-LAF
DMTRL-Tucker
DMTRL-TT
UD-MTL

Figure 5.4: Results of multi-task learning of multilingual character recognition (Om-
niglot dataset). Below: Illustration of the language pairs estimated to be the most
related (left - Georgian Mkhedruli and Inuktitut) and most unrelated (right - Balinese
and ULOG) character recognition tasks.

similarity. ρ is the average on all combinations of column-wise similarity. So ρ measures

how much sharing is encoded by S between ρ = 0 for STL (nothing to share) and ρ = 1

for user-defined MTL (completely shared).

Since S is a real-valued matrix in our scenario, we normalise it before applying

Eq. 5.5: First we take absolute values, because large either positive or negative value

suggests a significant coefficient. Second we normalise each column of S by applying a

softmax function, so the sum of every column is 1. The motivation behind the second

step is to make a matched range of our S with S = IT or S = [11×T ;0], as for those

two cases, the sum of each column is 1 and the range is [0, 1].

For the Omniglot experiment, we plot the measured sharing amount for training

fraction 10%. Fig. 5.4 reveals that three proposed methods tend to share more for

bottom layers (‘Conv1’, ‘Conv2’, and ‘Conv3’) and share less for top layer (‘FC1’).

This is qualitatively similar to the best user-defined MTL, where the first three layers

are fully shared (ρ = 1) and the 4th layer is completely not shared (ρ = 0). However,

our methods: (i) learn this structure in a purely data-driven way and (ii) benefits from

the ability to smoothly interpolate between high and low degrees of sharing as depth

increases. As an illustration, Fig. 5.4 also shows example text from the most and least

similar language pairs as estimated at our multilingual character recogniser’s FC1 layer

(the result can vary across layers).

5.3.4 Multi-Domain Learning

Dataset, Settings and Baselines For MDL, we consider a digit recognition prob-

lem with three different datasets – MNIST, USPS, and SVHN. Here a domain now

corresponds to dataset, and the tasks are multi-class (digits 0-9) recognition. USPS is

69

a smaller handwritten digit dataset with 7291 training and 2007 testing images. The

Street View House Numbers (SVHN) [Netzer et al., 2011] is an image dataset that

contains photos of door numbers. SVHN ‘Format 2’ has cropped digits, which makes

it a MNIST-like problem. However it is harder than MNIST as more than one digit

may appear in an image, and the model should correctly label the one in the centre.

Directly applying a model trained on one of these tasks to another would not yield good

performance due to domain shift [Saenko et al., 2010].

The multi-domain learning problem setting considered in this section is related to

supervised domain adaptation (where all domains have labels) [Saenko et al., 2010],

however the objective is to perform well in all domains rather than only on one special

target domain. Few existing MTL methods can deal with this multi-class recognition

problem, as they usually assume each task has a single output. Applying the strat-

egy in the last section (heterogeneous MTL) is technically possible, but not intuitive

because in this case each task is the same – classifying ten digits, and task difference

is essentially from dataset bias. Therefore we compare our methods with two single

task learning modes. STL is to train three independent models for MNIST, USPS, and

SVHN respectively. ALL is to train a single model that ignores domain information,

aggregating all data sources. We use the pre-given train/test splits for all three datasets

in this experiment. We increase the size of MNIST/USPS images from 28× 28/16× 16

to 32 × 32, and copy the data to each of three colour channels, so that all data have

the same 32× 32× 3 dimensions. For the network architecture, we use the same design

as [Goodfellow et al., 2013]. Results Fig. 5.5 shows that USPS gets the most benefit

10 -2 10 -1 100

Fraction of Training Data

0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 R

at
e

MNIST

STL
ALL
DMTRL-LAF
DMTRL-Tucker
DMTRL-TT

10 -2 10 -1 100

Fraction of Training Data

0

0.1

0.2

0.3

0.4

E
rr

or
 R

at
e

USPS

10 -2 10 -1 100

Fraction of Training Data

0.2

0.4

0.6

0.8

E
rr

or
 R

at
e

SVHN

Figure 5.5: Multi-domain learning on MNIST, USPS and SVHN datasets. Each provides
a 10-way multi-class recognition task. (Fraction of training data is domain-wise).

from multi-task learning with the other datasets. USPS dataset has a train-test bias,

with the images in testing set being harder than the training set. MNIST images serve as

a good auxiliary data for transfer in this case. MNIST benefits slightly from MTL in the

small data condition, and SVHN not at all. Conceptually, the presence of USPS could

be beneficial for MNIST but, as USPS is a much smaller dataset compared to MNIST,

its contribution is not significant. It is perhaps unsurprising that MNIST/USPS does

70

not help SVHN due to the extreme difference between written/photo digit appearances.

Their significant difference can be seen in that a well trained MNIST model performs

just slightly better than random on SVHN. On the other hand, it is noteworthy that

the ALL baseline experiences significant negative transfer on both SVHN and MNIST

in particular when the amount of data is small. In contrast, despite the huge dataset

shift, by learning how much to share, our methods do not suffer from negative transfer.

5.4 Summary

In this chapter, we propose a novel framework for end-to-end multi-task representa-

tion learning in contemporary deep neural networks. The key idea is to generalise

matrix factorisation-based multi-task ideas to tensor factorisation, in order to flexi-

bly share knowledge in fully connected and convolutional DNN layers. Our method

provides consistently better performance than single task learning and comparable or

better performance than the best results from exhaustive search of user-defined MTL

architectures. It reduces the design choices and architectural search space that must

be explored in the workflow of Deep MTL architecture design [Caruana, 1997, Zhang

et al., 2014, Liu et al., 2015], relieving researchers of the need to decide how to structure

layer sharing/segregation. Instead sharing structure is determined in a data-driven way

on a layer-by-layer basis that moreover allows a smooth interpolation between sharing

and not sharing in progressively deeper layers. In the next chapter, we will present a

regularisation-based solution for the same problem setting.

71

Chapter 6

Tensor Trace Norm

Regularised Deep MTL

In this chapter, we propose an alternative approach for training multiple neural networks

simultaneously, in contrast to the tensor factorisation based approach in Chapter 5.

The core idea in this chapter is that the parameters from all models at the same layer

are stacked and regularised by the tensor trace norm, so that each neural network is

encouraged to reuse others’ parameters at every layer. We can tell that this idea is

related to the approach in Chapter 5 that can be understood as the parameters from

all models at the same layer are stacked and factorised.

6.1 Background

This is the sister work of Chapter 5, and we take a regularisation approach instead of

explicitly factorising the tensor. The motivation is the same: we aim at a data-driven

sharing strategy instead of a manually-designed one. The reason why regularisation

based solution is potentially better is that the trace norm is a continuous relaxation of

discrete rank, which indicates that it is a more fine-grained control of model complexity

than choosing a fixed low-rank factorisation. It is more obvious when the number of

tasks is small, for example, when we have two tasks, we have the dilemma on choosing

task-axis rank: if it is one, then each model is just a rescaled version of a single latent

model, which is very unlikely unless these two tasks are very similar; if it is two, then

it increases, rather than reduce the number of parameters, which is not very common

in MTL methodology, and makes it necessary to regularise the latent tasks parameters.

The drawback of this approach is that it is more computational expensive due to the

non-differentiable nature of trace norm.

72

6.2 Methodology

Instead of predefining a parameter sharing strategy, we propose the following framework:

For T tasks, each is modelled by a neural network of the same architecture1. We

collect the parameters into a single tensor of one higher order than the individual layer

parameter tensors, and put a tensor norm on every collection.

We illustrate our framework by a simple example: assuming that we have T = 2

tasks, and each is modelled by a 4-layer convolution neural network (CNN). The CNN

architecture is: (1) convolutional layer (‘conv1’) of size 5× 5× 3× 32, (2) convolutional

layer (‘conv2’) of size 3× 3× 32× 64, (3) fully-connected layer (‘fc1’) of size 256× 256,

(4) fully-connected layer (‘fc2’(1)) of size 256× 10 for the first task and fully-connected

layer (‘fc2’(2)) of size 256× 20 for the second task.

Note that we assume these two tasks have different number of outputs. In our

framework, the shareable layers are ‘conv1’, ‘conv2’, and ‘fc1’.

For single task learning mode, the parameters are ‘conv1’(1), ‘conv2’(1), ‘fc1’(1), and

‘fc2’(1) for the first task; ‘conv1’(2), ‘conv2’(2), ‘fc1’(2), and ‘fc2’(2) for the second task.

We can see that there are not any parameter sharing between these two tasks.

For one of the possible predefined deep MTL, the parameters could be ‘conv1’,

‘conv2’, ‘fc1’(1), and ‘fc2’(1) for the first task; ‘conv1’, ‘conv2’, ‘fc1’(2), and ‘fc2’(2) for

the second task, i.e., the first and second layer are fully shared in this case.

For our proposed method, the parameter setting is the same as single task learning

mode, but we put three tensor norms on the stacked {‘conv1’(1), ‘conv1’(2)} (a tensor of

size 5× 5× 3× 32× 2), the stacked {‘conv2’(1), ‘conv2’(2)} (a tensor of size 3× 3× 32×
64× 2), and the stacked {‘fc1’(1), ‘fc1’(2)} (a tensor of size 256× 256× 2) respectively.

6.2.1 Tensor Tensor Norm

We choose to use the trace norm, which is defined as the sum of matrix’s singular values.

||W ||∗ =
∑
i=1

σi(W) (6.1)

The trace norm is named by the fact that when W is a positive semidefinite matrix,

it is the trace of W . It is sometimes referred to as nuclear norm. Trace norm is the

tightest convex relation of matrix rank [Recht et al., 2010].

The extension of trace norm from matrix to tensor is not unique, just like the rank

of tensor has different definitions. How to define the rank of tensor largely depends on

how the tensor is factorised, e.g., Tucker decomposition [Tucker, 1966] and Tensor-Train

decomposition Oseledets [2011].

We propose three tensor trace norm designs here, which are corresponding to three

variants of the proposed method.

For an N -way tensor W of size D1 ×D2 × · · · ×DN . We define

1For the case that each task has a different number of outputs, the parameters of topmost layers
from neural networks should be of different size, thus they are opted out for sharing.

73

Tensor Trace Norm Tucker

||W||∗ =

N∑
i=1

γi||W(i)||∗ (6.2)

Here W(i) is the mode-i tensor flattening/unfolding, which is obtained by,

W(i) := reshape(permute(W, [i, 1, . . . , i− 1, i+ 1 . . . , N]), [Di,
∏
j¬i

Dj]) (6.3)

Tensor Trace Norm TT

||W||∗ =

N−1∑
i=1

γi||W[i]||∗ (6.4)

Here W[i] is yet another way to unfold the tensor, which is obtained by,

W[i] = reshape(W, [D1 ×D2 . . . Di, Di+1 ×Di+2 . . . DN]) (6.5)

Tensor Trace Norm Last Axis Flattening

||W||∗ = γ||W(N)||∗ (6.6)

This is the simplest definition. Given that in our framework, the last axis of tensor

indexes the tasks, i.e., DN = T , it is the most straightforward way to adapt the technique

in matrix-based MTL – reshape the D1 ×D2 × · · · × T tensor to D1D2 · · · × T matrix.

6.2.2 Optimisation

For the regularisation terms defined in Eq. 6.2 and Eq. 6.4, we see that tensor trace

norm is formulated as the sum of matrix trace norms, and Eq. 6.6 is also about ma-

trix trace norm. Thus the optimisation is ultimately targeting on matrix trace norm.

Using gradient-based method for optimisation involved with matrix trace norm is not

a common choice, as there are better solutions based on semi-definite programming

or proximal gradients since the trace norm is essentially non-differentiable. However,

deep neural network is usually trained by gradient descent, and it is relatively harder

to modify the training process of neural network. Therefore we derive a (sub-)gradient

descent method for trace norm minimisation.

We start from an equivalent definition of trace norm instead of the sum of singular

values,

||W ||∗ = Trace((WTW)
1
2) = Trace((WWT)

1
2) (6.7)

(·) 1
2 is the matrix square root. Given the property of the differential of the trace function,

74

∂ Trace(f(A)) = f ′(AT) : ∂A (6.8)

The colon : denotes the double-dot (a.k.a. Frobenius) product, i.e., A : B = Trace(ABT).

In this case, A = WTW , f(·) = (·) 1
2 thus f ′(·) = 1

2 (·)− 1
2 , so we have,

∂ Trace((WTW)
1
2) =

1

2
(WTW)−

1
2 : ∂(WTW) (6.9)

=
1

2
(WTW)−

1
2 : ((∂WT)W +WT (∂W)) (6.10)

= W (WTW)−
1
2 : ∂W (6.11)

Therefore we have ∂||W ||∗
∂W = ∂ Trace((WTW)

1
2)

∂W = W (WTW)−
1
2 . In the case that WTW is

not invertible, we can derive that ∂||W ||∗
∂W = ∂ Trace((WWT)

1
2)

∂W = (WWT)−
1
2W similarly.

To avoid the check on whether WTW is invertible, and more importantly, to avoid the

explicit computation of the matrix square root, which is usually not numerically safe,

we use the following procedure.

First, we assume W is an N × P matrix (N > P) and let the (full) SVD of W be

W = UΣV T . Σ is an N × P matrix in the form of Σ = [Σ∗;0(N−P)×P]. Then we have

W (WTW)−
1
2 = UΣV T (V Σ2

∗V
T)−

1
2 = UΣV TV Σ−1

∗ V T = UΣΣ−1
∗ V T = U [IP ;0(N−P)×P]V T

(6.12)

This indicates that we only need to compute the truncated SVD, i.e., W = U∗Σ∗V
T
∗ ,

and W (WTW)−
1
2 = U∗V

T
∗ . For the case when N < P , we have the same result as,

(WWT)−
1
2W = (UΣ2

∗U
T)−

1
2UΣV T = UΣ−1

∗ UTUΣV T = UΣ−1
∗ ΣV T = U [IN ,0(P−N)×N]V T

(6.13)

Now we have an agreed formulation2: ∂||W ||∗
∂W = U∗V

T
∗ that we can use for gradient

descent. To compute SVD exactly is expensive, a possible solution is to use a fast

randomized SVD [Halko et al., 2011].

6.3 Experiment

We evaluate our alternative tensor-trace norm regularisation approach to deep multi-

task learning (TNRDMTL , Chapter 6) by experimenting on the Omniglot dataset.

Implementation Our method is implemented in TensorFlow [Abadi et al., 2015], and

released on Github3.

6.3.1 Omniglot

For a quick recap, Omniglot contains handwritten letters in 50 different alphabets (e.g.,

Cyrillic, Korean, Tengwar), each with its own number of unique characters (14 ∼ 55).

2An alternative way to derive the same equation can be found in [Watson, 1992].
3https://github.com/wOOL/TNRDMTL

75

https://github.com/wOOL/TNRDMTL

In total, there are 1623 unique characters, each with 20 instances. Each task is a

multi-class character recognition problem for the corresponding alphabet. The images

are monochrome of size 105 × 105. We design a CNN with 3 convolutional and 2

FC layers. The first conv layer has 8 filters of size 5 × 5; the second conv layer has

12 filters of size 3 × 3, and the third convolutional layer has 16 filters of size 3 × 3.

Each convolutional layer is followed by a 2× 2 max-pooling. The first FC layer has 64

neurons, and the second FC layer has size corresponding to the number of unique classes

in the alphabet. The activation function is tanh. We compare the three variants of the

proposed framework – TNRDMTL-LAF (Eq. 6.6), TNRDMTL-Tucker (Eq. 6.2), and

TNRDMTL-TT (Eq. 6.4) with single task learning (STL). For every layer, there are one

(LAF) or more (Tucker and TT) γ that control the trade-off between the classification

loss (cross-entropy) and the trace norm terms, for which we set all γ = 0.01. The

experiments are repeated 10 times, and every time 10% training data and 90% testing

data are randomly selected.

STL LAFTucker TT

0.34

0.35

0.36

A
c
c
u
ra

c
y

0 200 400

Number of Iteration

0

1

2

3

4

C
ro

s
s
 E

n
tr

o
p
y
 L

o
s
s

STL

LAF

Tucker

TT

0 200 400

Iterations (LAF)

50

100

150

200

250

300

N
o
rm

LAF

Tucker

TT

0 200 400

Iterations (Tucker)

50

100

150

200

250

300

N
o
rm

LAF

Tucker

TT

0 200 400

Iterations (TT)

50

100

150

200

250

300

N
o
rm

LAF

Tucker

TT

Conv1Conv2Conv3 FC1
0

0.5

1

LAF

Tucker

TT

Figure 6.1: Top-left: Testing accuracy. Top-mid: Training loss. Top-right: shar-
ing strength by layer. Bottom: Norms when optimising TNRDMTL-LAF (left),
TNRDMTL-Tucker (middle), TNRDMTL-TT (right).

We plot the performance measured by accuracy, change of cross-entropy loss during

training, strength of sharing across layers, and the values of norm terms with the neural

networks’ parameters updating. As we can see in Fig. 6.1, STL has the lowest training

loss, but worst testing performance, suggesting over-fitting. Our methods alleviate the

problem with multi-task regularisation. We roughly estimate the strength of parameter

sharing by calculating 1 − Norm of Optimised Param
Norm of Initialised Param , we can see the pattern that with

bottom layers share more compared to the top ones. This reflects the common design

intuition that the bottom layers are more data/task independent. Finally, it appears

that the choice on LAF, Tucker, or TT may not be very sensitive as we observe that

when optimising one, the loss of the other norms still reduces.

76

6.4 Summary

In this chapter, we propose a data-driven solution to the branching architecture design

problem in deep multi-task learning. It is a flexible norm regularisation based alternative

to explicit factorisation-based approaches to the same problem in Chapter 5.

77

Chapter 7

Conclusion and outlook

We have presented a line of work in multi-task/multi-domain learning. The key con-

tributions of this thesis are (i) a general framework encompassing classic methods, (ii)

extending MDL/MTL problem setting from atomic to parametrised domain/task, and

(iii) extending MTL from shallow to deep models.

Finally, we outline some directions for future work, some of those were preliminarily

studied in some of our work that is not covered in this thesis.

7.1 Parametrised DNNs

Our method in Chapter 5 is a parametrised DNN [Sigaud et al., 2015], in that DNN

weights are dynamically generated given some side information – in the case of MTL,

given the task identity. In a related example of speaker-adaptive speech recognition [Tan

et al., 2016] there may be several clusters in the data (e.g., gender, acoustic conditions),

and each speaker’s model could be a linear combination of these latent task/clusters’

models. They model each speaker i’s weight matrix W (i) as a sum of K base models

W̃ , i.e., W (i) =
∑K
k=1 λ

(i)
p W̃ (p). The difference between speakers/tasks comes from λ

and the base models are shared. An advantage of this is that, when new data come,

one can choose to re-train λ parameters only, and keep W̃ fixed. This will significantly

reduce the number of parameters to learn, and consequently the required training data.

Beyond this, in Chapter 3 we show that it is possible to train another neural network to

predict those λ values from some abstract metadata. Thus a model for an unseen task

can be generated on-the-fly with no training instances given an abstract description of

the task. The technique developed in Chapter 5 is, in theory, compatible with both

these ideas of generating models with minimal or no effort.

78

7.2 Unlabelled Tasks/Domains

In the whole thesis, we assume that task/domain information, either in a form of task

identity index or a semantic descriptor, is always available. However, in some practical

problems, we do not have the task labels, but we believe that the problem potentially

involves multiple partitions (tasks or domains).

A natural question is that if we can find the hidden task identities? We can think of

it as constructing a multi-task learning problem meanwhile solving it. While it sounds

a bit hard, we briefly propose a possible solution here.

Recall the basic formulation of Eq. 3.1 in Chapter 3, ŷ = fP (x) · gQ(z). Now we do

not have the true z for x, so we have to infer it. Assume that we estimate z(i) using

another neural network, i.e., ẑ = hΘ(x), the equation becomes,

ŷ = fP (x) · gQ(hΘ(x)) (7.1)

Eq. 7.1 has some connections with several classic models: e.g., its simplest form is

ŷ = xTWx (i.e., bilinear model), or we can think of it as a mixture of expert models

[Jacobs et al., 1991], fP (x) produces some estimations, and gQ(hΘ(x)) provides the

weights for these estimations.

In [Yang et al., 2017], we apply this approach to a specific problem, and encour-

agingly, it shows some abilities to discover hidden tasks in a meaningful way, i.e., it

divided data in several different groups (corresponding to tasks) that coincide with

domain expert’s choice.

7.3 Limitations and Future Works

This thesis focused on ‘parallel’ MTL where all models and data are ready before train-

ing, but how to do it in an incremental way remains an open question.

The methodologies in Chapter 5 and Chapter 6 heavily reply on the assumption

that (most of) the architectures of each task’s/domain’s neural network is the same,

however, it may be of interest to know what to do when this assumption is violated:

can we share the parameters between a small neural network for a very specific problem

(e.g., fine-grained classification – which species of flower is) and a large neural network

for a more general purpose problem (classifying 1000 common objects). Furthermore,

we discuss a lot on sharing across the same level of layers (horizontally), is it possible

to share across different levels of layers (vertically) within a single neural network (or

even cross different NNs) is an interesting direction.

79

Appendix A

Notations

We summarise the notations used throughout the thesis.

A.1 Variables

Variable type Notation Example
Scalar Greek letter α
Vector Lower-case letter a
Matrix Upper-case letter A

Tensor (3-way or higher) Calligraphic upper-case letter A
Real/Complex Space Blackboard bold letter Rn, Cn

Table A.1: Variable Notations

All vectors are column vectors, unless otherwise specified, e.g., a = [1, 2, 3]T =

[1; 2; 3].

A.2 Indexing

A lower-case letter n is usually used for indexing an integer sequence starting with 1

(inclusive) and ending with its upper-case letter N (inclusive), e.g.,

N∑
n=1

xn = x1 + x2 + · · ·+ xN

We use ¬i indicating a certain integer i is excluded from the sequence, e.g.,

∑
n¬i

xn =
∑

n=1:N,n6=i

xn = x1 + x2 + · · ·+ xi−1 + xi+1 + · · ·+ xN

By default, when we use n = 1 : N , two bounds – 1 and N – are included.

80

A.3 Slicing and Stacking

For a matrix A, Ai,· is a vector containing the elements from the i-th row of A, similarly

A·,i is the i-th column of A. By default, we assume all vectors are column vectors.

When it comes to tensors, e.g., a 3-way tensor A, Ai,·,· is a matrix sliced from the

tensor along the first axis at the i-th index.

We use [A;B] for stacking two variables A and B vertically (row-wise), and [A,B]

for stacking two variables A and B horizontally (column-wise).

A.4 Operators

A.4.1 Product operators

· stands for dot product, but it is usually omitted, e.g., u · v = uT v

◦ is element-wise product (entry-wise product, or Hadamard product), e.g., u ◦ v =

[u1v1, u2v2, · · ·]T .

Kronecker product (and its special case outer product) is denoted by ⊗, e.g., for an

N -dimensional vector u and an M -dimensional vector v, we have

u⊗ v = [u1v1, u1v2, · · · , u1vM , u2v1, · · · , uNvM]T

Tensor dot product is denoted by •(i,j), e.g., U • V(i,j) computes the tensor dot

product of two tensors U and V along specified axes: the i-th axis of U and the j-th

axis of V. We detail how tensor dot product is implemented in Appx. A.4.4.

A.4.2 Norm functions

The norm function is denoted by || · ||, some frequently used norms in this thesis are as

follows,

• vector `2 norm, ||a||2 =
√∑N

n=1 |an|2

• vector `1 norm, ||a||1 =
∑N
n=1 |an|

• matrix Frobenius norm, ||A||F =
√∑M

m=1

∑N
n=1 |Am,n|2

• matrix trace norm, ||A||∗ = σ1 + σ2 + · · · + σmin(M,N), i.e., the sum of singular

values of A.

A.4.3 Matrix operators

The inverse of a square matrix A (assuming it is invertible) is denoted A−1.

The determinant of a square matrix A is denoted by det(A).

The rank of a matrix A is denoted by rank(A), an M ×N sized matrix A is called

full rank matrix if its rank equals the largest possible rank, e.g., rank(A) = min (M,N).

The following three statements are equivalent:

81

• A is an invertible matrix.

• The determinant of A is not zero, i.e., det(A) 6= 0.

• A is a full rank matrix.

The trace of a square matrix A is the sum of A’s diagonal elements, and it is denoted

as Tr(A) = A11 +A22 + · · · .

A.4.4 Tensor operators

An N -way tensor A with shape D1×D2×· · ·DN is an N -dimensional array containing∏N
n=1Dn elements. Scalars, vectors, and matrices can be seen as 0-, 1-, and 2-way

tensors respectively, although the term tensor is usually used for 3-way or higher. A

mode-i fibre of A is a Di-dimensional vector obtained by fixing all but the i-th axis. The

mode-i flattening (unfolding) A(i) of A is the matrix of size Di ×
∏
n¬iDn constructed

by concatenating all of the
∏
n¬iDn mode-i fibres along columns, i.e.,

A(i) := reshape(permute(A, [i, 1, 2, . . . , i− 1, i+ 1, . . . , N]), [Di,
∏
n¬i

Dn]) (A.1)

reshape function gives a new shape to an array without changing its data and permute

function permutes the dimensions of a multi-dimensional array. The dot product of two

tensors is a natural extension of matrix dot product, e.g., if we have a tensor A of size

M1 ×M2 × · · · × P and a tensor B of size P ×N1 ×N2 × · · · , the tensor dot product

A • B will be a tensor of size M1 ×M2 × · · · × N1 × N2 × · · · by matrix dot product

AT(−1)B(1) and reshaping1, i.e.,

A • B := reshape(AT(−1)B(1), [M1,M2, . . . , N1, N2, . . .]) (A.2)

More generally, tensor dot product can be performed along specified axes, A• B(i,j) =

AT(i)B(j) and reshaping. Here the subscripts indicate the axes of A and B at which dot

product is performed. E.g., when A is of size M1 × P ×M3 × · · · ×MI and B is of size

N1 ×N2 × P ×N4 × · · · ×NJ , then we have

A • B(2,3) := reshape(AT(2)B(3), [M1,M3, . . . ,MI , N1, N2, N4, . . . , NJ]) (A.3)

resulting a tensor of size M1 ×M3 × · · · ×MI ×N1 ×N2 ×N4 × · · · ×NJ .

Note that in Eq. A.1, the specification of permutation operator is usually less im-

portant. Two popular choices are permute(A, [i, i+ 1, i+ 2, . . . , N, 1, 2, . . . , i− 1]) and

permute(A, [i, 1, 2, . . . , i− 1, i+ 1, . . . , N]), and we use the latter one in this thesis. It is

very important to keep the specification consistent across related calculations, because

it will, consequently, affect the calculation of tensor dot product.

1We slightly abuse ‘-1’ referring to the last axis of the tensor.

82

Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,

C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and

X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

http://tensorflow.org/. Software available from tensorflow.org.

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learn-

ing, 2008.

S. Ö. Arik, M. Chrzanowski, A. Coates, G. F. Diamos, A. Gibiansky, Y. Kang, X. Li, J. Miller,

A. Y. Ng, J. Raiman, S. Sengupta, and M. Shoeybi. Deep voice: Real-time neural text-to-

speech. In International Conference on Machine Learning (ICML), 2017.

B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. Journal

of Machine Learning Research (JMLR), 2003.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up robust features. In European

Conference on Computer Vision (ECCV), pages 404–417, 2006.

O. Beijbom. Domain adaptations for computer vision applications. Technical report, UCSD,

2012.

C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387310738.

J. Blitzer, D. P. Foster, and S. M. Kakade. Zero-shot domain adaptation: A multi-view

approach. Technical report, University of California, Berkeley, 2009.

E. V. Bonilla, K. M. Chai, and C. Williams. Multi-task gaussian process prediction. In Neural

Information Processing Systems (NIPS), 2007.

H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value

decomposition. Biological Cybernetics, 1988.

J. Bromley, I. Guyon, Y. Lecun, E. Sckinger, and R. Shah. Signature verification using a

“siamese” time delay neural network. In Neural Information Processing Systems (NIPS),

1994.

R. Caruana. Multitask learning. Machine Learning, 1997.

83

http://tensorflow.org/

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with

application to face verification. In Computer Vision and Pattern Recognition (CVPR), 2005.

H. Daumé III. Frustratingly easy domain adaptation. In Annual Meeting of the Association

for Computational Linguistics (ACL), 2007.

J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy, S. Bengio, Y. Li, H. Neven, and H. Adam.

Large-scale object classification using label relation graphs. In ECCV, pages 48–64, 2014.

Z. Ding, S. Ming, and Y. Fu. Latent low-rank transfer subspace learning for missing modality

recognition. In AAAI, pages 1192–1198, 2014.

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep

convolutional activation feature for generic visual recognition. In International Conference

on Machine Learning (ICML), 2015.

M. Dredze, A. Kulesza, and K. Crammer. Multi-domain learning by confidence-weighted

parameter combination. Machine Learning, 2010.

A. Droniou and O. Sigaud. Gated autoencoders with tied input weights. In International

Conference on Machine Learning (ICML), 2013.

L. Duan, D. Xu, and S.-F. Chang. Exploiting web images for event recognition in consumer

videos: A multiple source domain adaptation approach. In Computer Vision and Pattern

Recognition (CVPR), 2012.

E. Eidinger, R. Enbar, and T. Hassner. Age and gender estimation of unfiltered faces. IEEE

Transactions on Information Forensics and Security, 2014.

D. P. W. Ellis. PLP and RASTA (and MFCC, and inversion) in Matlab, 2005. URL http:

//www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/. online web resource.

T. Evgeniou and M. Pontil. Regularized multi–task learning. In Knowledge Discovery and

Data Mining (KDD), 2004.

T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods.

Journal of Machine Learning Research (JMLR), 6:615–637, Dec. 2005.

L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), 2006.

A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov. Devise: A

deep visual-semantic embedding model. In NIPS, 2013.

Y. Fu, T. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for

zero-shot recognition and annotation. In European Conference on Computer Vision (ECCV),

2014.

Y. Ganin and V. S. Lempitsky. Unsupervised domain adaptation by backpropagation. In

International Conference on Machine Learning (ICML), 2015.

B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain

adaptation. In Computer Vision and Pattern Recognition (CVPR), 2012.

I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and Y. Bengio. Maxout networks.

In International Conference on Machine Learning (ICML), 2013.

84

http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/
http://www.ee.columbia.edu/~dpwe/resources/matlab/rastamat/

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report

7694, California Institute of Technology, 2007. URL http://authors.library.caltech.

edu/7694.

T. L. Griffiths and Z. Ghahramani. The indian buffet process: An introduction and review.

Journal of Machine Learning Research (JMLR), 2011.

N. Halko, P. Martinsson, and J. Tropp. Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2):217–

288, 2011.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer New

York Inc., 2001.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification. In International Conference on Computer Vision

(ICCV), 2015.

F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of

Mathematics and Physics, 1927.

J. Hoffman, T. Darrell, and K. Saenko. Continuous manifold based adaptation for evolving

visual domains. In Computer Vision and Pattern Recognition (CVPR), 2014.

J.-T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong. Cross-language knowledge transfer using

multilingual deep neural network with shared hidden layers. In International Conference on

Acoustics, Speech, and Signal Processing (ICASSP), 2013.

L. Jacob, J.-p. Vert, and F. R. Bach. Clustered multi-task learning: A convex formulation. In

Neural Information Processing Systems (NIPS), 2009.

R. Jacobs, M. I. Jordan, N. S. J., and G. E. Hinton. Adaptive mixtures of local experts. In

Neural Computation, volume 3, pages 79–87, 1991.

S. Ji and J. Ye. An accelerated gradient method for trace norm minimization. In International

Conference on Machine Learning (ICML), 2009.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and

T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

M. Joshi, M. Dredze, W. W. Cohen, and C. P. Rosé. Multi-domain learning: When do domains

matter? In Empirical Methods on Natural Language Processing (EMNLP), 2012.

Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task feature learning.

In International Conference on Machine Learning (ICML), 2011.

D. Kressner, M. Steinlechner, and B. Vandereycken. Low-rank tensor completion by riemannian

optimization. BIT Numerical Mathematics, 54(2):447–468, 2014. ISSN 1572-9125. doi:

10.1007/s10543-013-0455-z. URL http://dx.doi.org/10.1007/s10543-013-0455-z.

A. Kumar and H. Daumé III. Learning task grouping and overlap in multi-task learning. In

International Conference on Machine Learning (ICML), 2012.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through

probabilistic program induction. Science, 2015.

85

http://authors.library.caltech.edu/7694
http://authors.library.caltech.edu/7694
http://dx.doi.org/10.1007/s10543-013-0455-z

C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by

between-class attribute transfer. In Computer Vision and Pattern Recognition (CVPR),

2009.

H. Larochelle, D. Erhan, and Y. Bengio. Zero-data learning of new tasks. In AAAI Conference

on Artificial Intelligence (AAAI), 2008.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multilinear singular value decomposition.

SIAM Journal on Matrix Analysis and Applications, 2000.

V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky. Speeding-up con-

volutional neural networks using fine-tuned cp-decomposition. In International Conference

on Learning Representations (ICLR), 2015.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 1998.

Y. Lecun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 5 2015. ISSN

0028-0836. doi: 10.1038/nature14539.

G. Lee, E. Yang, and S. Hwang. Asymmetric multi-task learning based on task relatedness

and loss. In International Conference on Machine Learning (ICML), 2016.

G. Levi and T. Hassncer. Age and gender classification using convolutional neural networks.

In Computer Vision and Pattern Recognition Workshops (CVPRW), 2015.

W. Li, L. Duan, D. Xu, and I. W. Tsang. Learning with augmented features for supervised

and semi-supervised heterogeneous domain adaptation. IEEE Trans. Pattern Anal. Mach.

Intell., 36(6):1134–1148, June 2014. ISSN 0162-8828. doi: 10.1109/TPAMI.2013.167. URL

http://dx.doi.org/10.1109/TPAMI.2013.167.

X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y.-Y. Wang. Representation learning using multi-

task deep neural networks for semantic classification and information retrieval. NAACL,

2015.

C. Lu and X. Tang. Surpassing human-level face verification performance on LFW with gaus-

sianface. In AAAI Conference on Artificial Intelligence (AAAI), 2015.

M. Mauch and S. Ewert. The audio degradation toolbox and its application to robustness

evaluation. In ISMIR, 2013.

R. Memisevic and G. E. Hinton. Unsupervised learning of image transformations. In Computer

Vision and Pattern Recognition (CVPR), 2007.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations

in vector space. CoRR, abs/1301.3781, 2013.

M. Mirza and S. Osindero. Conditional generative adversarial nets. CoRR, abs/1411.1784,

2014. URL http://arxiv.org/abs/1411.1784.

P. Mortimore, P. Sammons, L. Stoll, D. Lewis, and R. Ecob. School Matters: the Junior Years.

Wells: Open Books, 1988.

K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization via invariant feature

representation. In International Conference on Machine Learning (ICML), 2013.

86

http://dx.doi.org/10.1109/TPAMI.2013.167
http://arxiv.org/abs/1411.1784

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natu-

ral images with unsupervised feature learning. In NIPS Workshop on Deep Learning and

Unsupervised Feature Learning, 2011.

A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov. Tensorizing neural networks. In Neural

Information Processing Systems (NIPS), 2015.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection

for multiple classification problems. Statistics and Computing, 20(2):231–252, Apr 2010.

I. V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 2011.

M. Palatucci, D. Pomerleau, G. Hinton, and T. Mitchell. Zero-shot learning with semantic

output codes. In Neural Information Processing Systems (NIPS), 2009.

A. Passos, P. Rai, J. Wainer, and H. Daumé III. Flexible modeling of latent task structures in

multitask learning. In International Conference on Machine Learning (ICML), 2012.

A. Pentina and C. H. Lampert. Multi-task learning with labeled and unlabeled tasks. In

International Conference on Machine Learning (ICML), 2017.

Q. Qiu, V. M. Patel, P. Turaga, and R. Chellappa. Domain adaptive dictionary learning. In

European Conference on Computer Vision (ECCV), 2012.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix

equations via nuclear norm minimization. SIAM Rev., 2010.

B. Romera-Paredes, H. Aung, N. Bianchi-berthouze, and M. Pontil. Multilinear multitask

learning. In International Conference on Machine Learning (ICML), 2013.

M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich. To transfer or not to transfer.

In In NIPS Workshop, Inductive Transfer: 10 Years Later, 2005.

S. Ruder. An Overview of Multi-Task Learning in Deep Neural Networks. ArXiv e-prints, June

2017.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains.

In European Conference on Computer Vision (ECCV), 2010.

R. Salakhutdinov, A. Torralba, and J. B. Tenenbaum. Learning to share visual appearance for

multiclass object detection. In CVPR, pages 1481–1488. IEEE, 2011.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117,

2015. Published online 2014; based on TR arXiv:1404.7828 [cs.NE].

O. Sigaud, C. Masson, D. Filliat, and F. Stulp. Gated networks: an inventory. CoRR,

abs/1512.03201, 2015.

R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng. Zero-shot learning through cross-modal

transfer. In Neural Information Processing Systems (NIPS), 2013.

S. Spieckermann, S. Udluft, and T. Runkler. Data-effiicient temporal regression with multitask

recurrent neural networks. In NIPS Workshop on Transfer and Multi-Task Learning, 2014.

B. Sun and K. Saenko. From virtual to reality: Fast adaptation of virtual object detectors to

87

real domains. In BMVC, 2014.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for rein-

forcement learning with function approximation. In Neural Information Processing Systems

(NIPS), 1999.

T. Tan, Y. Qian, and K. Yu. Cluster adaptive training for deep neural network based acoustic

model. IEEE/ACM Trans. Audio, Speech & Language Processing, 24(3):459–468, 2016.

A. Torralba and A. A. Efros. Unbiased look at dataset bias. In Computer Vision and Pattern

Recognition (CVPR), 2011.

L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966.

G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE Transactions

on Speech and Audio Processing, 10(5):293–302, July 2002.

B. Vargas-Govea, G. González-Serna, and R. Ponce-Medellın. Effects of relevant contextual

features in the performance of a restaurant recommender system. ACM RecSys, 11, 2011.

G. Watson. Characterization of the subdifferential of some matrix norms. Linear Algebra and

its Applications, 170:33 – 45, 1992. ISSN 0024-3795.

K. Wimalawarne, M. Sugiyama, and R. Tomioka. Multitask learning meets tensor factorization:

task imputation via convex optimization. In Neural Information Processing Systems (NIPS),

2014.

Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with

dirichlet process priors. Journal of Machine Learning Research (JMLR), 2007.

Y. Yang and T. M. Hospedales. A unified perspective on multi-domain and multi-task learning.

In International Conference on Learning Representations (ICLR), 2015.

Y. Yang and T. M. Hospedales. Multivariate regression on the grassmannian for predicting

novel domains. In Computer Vision and Pattern Recognition (CVPR), 2016.

Y. Yang, Y. Zheng, and T. M. Hospedales. Gated neural networks for option pricing: Ratio-

nality by design. In AAAI Conference on Artificial Intelligence (AAAI), 2017.

Q. Yu, Y. Yang, Y. Song, T. Xiang, and T. M. Hospedales. Sketch-a-net that beats humans.

In British Machine Vision Conference 2015 (BMVC), 2015.

Y. Zhang and Q. Yang. A Survey on Multi-Task Learning. ArXiv e-prints, July 2017.

Y. Zhang and Q. Yang. Learning sparse task relations in multi-task learning. In AAAI Con-

ference on Artificial Intelligence (AAAI), 2017.

Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark detection by deep multi-task

learning. In European Conference on Computer Vision (ECCV), 2014.

S. Zheng, J. Zhang, K. Huang, R. He, and T. Tan. Robust view transformation model for gait

recognition. In International Conference on Image Processing (ICIP), 2011.

88

	Introduction
	Machine Learning
	Knowledge sharing in machine learning models
	Multi-Task Learning
	Multi-Domain Learning

	Contributions of Thesis
	Organisation of Thesis

	Related Work
	Linear Regression
	A numerical issue and an engineering trick
	A regularisation-based solution
	An equivalent Bayesian perspective

	An introduction Multi-Task Learning
	Single-Task Learning
	Additive MTL model
	Multiplicative MTL model

	Literature Review
	Multi-Task Learning
	Multi-Domain Learning
	Zero-Shot Learning and Zero-Shot Domain Adaptation
	Heterogeneous MTL and Deep MTL

	The Intra- and Inter- Connections
	Intra-Connections
	Inter-Connections

	Single Output
	Background
	Methodology
	General Framework
	Semantic Descriptor Design
	Unification of Existing Algorithms
	Learning Settings
	Connection to Multilinear MTL

	Experiments
	School Dataset - MDL and ZSDA
	Audio Recognition - MDL and ZSDA
	Animal with Attributes - MTL and ZSL
	Restaurant & Consumer Dataset - MDMT

	Summary

	Multi Output
	Background
	Methodology
	Formulation
	Tensor Decomposition
	Gated Neural Network Architectures
	Zero-Shot Domain Adaptation

	Experiments
	Surveillance Image Classification
	Gait-based Soft-Biometrics and Recognition
	Multi-domain Multi-task Object Recognition

	Summary

	Going Deep: Tensor Factorisation for Deep MTL
	Background
	Methodology
	Tensor Factorisation for Knowledge Sharing
	Deep Multi-Task Representation Learning

	Experiments
	Homogeneous MTL
	Heterogeneous MTL: Face Analysis
	Heterogeneous MTL: Multi-Alphabet Recognition
	Multi-Domain Learning

	Summary

	Tensor Trace Norm Regularised Deep MTL
	Background
	Methodology
	Tensor Tensor Norm
	Optimisation

	Experiment
	Omniglot

	Summary

	Conclusion and outlook
	Parametrised DNNs
	Unlabelled Tasks/Domains
	Limitations and Future Works

	Appendices
	Notations
	Variables
	Indexing
	Slicing and Stacking
	Operators
	Product operators
	Norm functions
	Matrix operators
	Tensor operators

