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The metrical structure is a fundamental aspect of music, yet its automatic analysis

from audio recordings remains one of the great challenges of Music Information Re-

trieval (MIR) research. This thesis is concerned with addressing the automatic analysis

of changes of metrical structure over time, i.e. metric modulations. The evaluation of

automatic musical analysis methods is a critical element of the MIR research and is

typically performed by comparing the machine-generated estimates with human expert

annotations, which are used as a proxy for ground truth. We present here two new

datasets of annotations for the evaluation of metrical structure and metric modulation

estimation systems. Multiple annotations allowed for the assessment of inter-annotator

(dis)agreement, thereby allowing for an evaluation of the reference annotations used to

evaluate the automatic systems. The rhythmogram has been identified in previous re-

search as a feature capable of capturing characteristics of rhythmic content of a music

recording. We present here a direct evaluation of its ability to characterise the metrical

structure and as a result we propose a method to explicitly extract metrical structure

descriptors from it. Despite generally good and increasing performance, such rhythm

features extraction systems occasionally fail. When unpredictable, the failures are a

barrier to usability and development of trust in MIR systems. In a bid to address this

issue, we then propose a method to estimate the reliability of rhythm features extraction.

Finally, we propose a two-fold method to automatically analyse metric modulations from

audio recordings. On the one hand, we propose a method to detect metrical structure

changes from the rhythmogram feature in an unsupervised fashion. On the other hand,

we propose a metric modulations taxonomy rooted in music theory that relies on metri-

cal structure descriptors that can be automatically estimated. Bringing these elements

together lays the ground for the automatic production of a musicological interpretation

of metric modulations.
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Chapter 1

Introduction

1.1 Music content analysis

Over the past twenty years, the combination of the democratisation of the internet and

the proliferation of music in digital format has brought about a deep and somewhat brutal

disruption to the way music may be stored, distributed and consumed. According to the

IFPI1, digital revenues (i.e. streaming and download) overtook physical sales (i.e. CD

and Vinyl) in 2015 and represent the growing source of revenue for the recorded music

industry. At the end of year 2016, the size of standard commercial music catalogues

accessible via streaming and download services exceeded 50 million tracks. Similarly,

the quantity of user-generated content shows a rapid growth and largely exceeds the

commercial collections. For instance, as of the 2016 statistics, approximately 600 hours

of video are uploaded on YouTube every minute2. It is clear that not all of this content

contains music, but we provide this figure to give the reader a sense of the amount of

content that must be looked after on modern platforms. Given the scale, it is clear

that the manual organisation, navigation and discovery of such collections has become

impractical. The automation of such tasks gives rise to both considerable challenges and

opportunities.
1The IFPI is a not-for-profit international organisation that represents the interests of the recorded

music industry globally and monitors its revenues. http://www.ifpi.org/
2Source: personal communication with YouTube employee

1
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In the field of Music Information Retrieval (MIR), research efforts are directed towards

the investigation and development of methods for automatically analysing musical con-

tent, with the aim of providing new and scalable ways of interacting with musical content

[4, 5]. Besides the clear industrial interest they generate, MIR paradigms are also deeply

related to more fundamental research questions regarding musicology, cognitive psychol-

ogy, signal processing, social sciences or natural language processing to name but a few.

Music is a largely multi-faceted phenomenon that proves to be an incredibly challenging

application for computational methods. As a consequence, MIR is a very active and very

diverse field of research, with many more challenges to be tackled [6]. This thesis aims at

contributing to the field of MIR by providing a research effort towards the improvement

of the computational methods available for the automatic analysis of musical content.

Among all the facets of MIR, we put our focus on the rhythmic properties of music and

more precisely on metric modulations.

1.2 Rhythm studies in MIR and towards the automatic de-

tection of metric modulations

A sizeable portion of MIR research efforts consist in developing models and methods

for the automatic estimation of musical attributes, such as harmony, timbre, melody,

rhythm etc. Since this thesis is primarily concerned with the estimation of rhythm-

related attributes we will focus on these aspects from now on. We refer the interested

reader to relevant literature for studies of other musical attributes, see for instance [5, 7].

Among the various musical attributes considered in MIR research, rhythm has received

a substantial amount of attention. A number of rhythm-related tasks are typically inves-

tigated. Examples of such tasks are onset detection [1, 8], tempo estimation [9, 10], beat

tracking [11, 12], downbeat tracking [13, 14] or metrical structure estimation [15, 16].

We reserve a more detailed review of the body of work relevant to this thesis for Chapter

2.

The term metric modulation has previously been used in different contexts. The usage

we make of it here might therefore not correspond to that of other authors. For the
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purpose of this thesis, let us define a metric modulation simply as a change of metrical

structure. We understand the term metric modulation in its most general sense: it

applies to any type of metrical change. As such, our definition of this term encompasses

definitions such as those given by Fétis or Carter (cf. Section 6.1), which refer to more

specific types or families of metrical changes. The estimation of the metrical structure has

received some attention from the MIR research community, and we propose an algorithm

for estimating metrical attributes in Chapter 4. There exist, however, very few works

addressing the automatic detection of metric modulations in the literature. A few latent

state space models for estimating the metrical structure that can track changes over time

(cf. Chapter 2), i.e. that have the potential to track metric modulations, were published

but they are subject to a trade-off between stability of the estimate and sensitivity to

metrical changes. Since they are typically used for estimating the metrical structure, they

are mostly set for stability, therefore inhibiting their ability to track abrupt changes.

Moreover, the architecture of the models, which implements a strong bias regarding

the expected musical content and the model parameters are typically set manually or

learnt in a supervised fashion. In order to tune the models for the estimation of metric

modulations, setting the parameters manually would enforce a very strong bias and

learning in a supervised fashion requires a large amount of adequate data. In this thesis,

we seek to investigate the automatic detection of metric modulations. Among the vast

diversity of possible modulations, we restrict the scope of this work to modulations that

consist in an abrupt change from one stable metrical structure to another. Slow and

gradual alterations of the metrical structure are therefore not considered. In particular,

we consider a blind detection scenario in which no prior knowledge regarding the metrical

structure nor metric modulations is assumed. In these circumstances, and given that

suitable training data is not available, latent state space models cannot be used for

addressing this task. We therefore propose an unsupervised approach to the automatic

detection of metric modulations.

Though metric modulations tend not to be used very often by contemporary western

popular music composers, they may be encountered a lot more frequently for instance in

progressive rock or in classical music compositions of Stravinsky or Monteverdi to name

but a few. Irrespectively of their popularity, metric modulations are distinctive musical
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features that deeply structure a musical composition. They are therefore susceptible to

have a great effect on the listener. As a consequence, the study of metric modulations

is of particular interest from a musicological perspective. They may further be exploited

as a feature to support the exploration of large music collections. Creative applications

involving metric modulations may also be considered. For instance, automatic sequenc-

ing or mashup creation systems such as the ‘Automashupper’ [17] typically assess the

rhythmic compatibility of two pieces by performing some form of similarity measure.

The transitions generated this way are therefore likely to always have similar musical

character. Introducing a method for handling metric modulations would then provide

an extension that enables interesting rhythmic effects (i.e. metric modulations) to be

produced when sequencing or mashing up pieces.

Both the intrinsic musical relevance, the applications that can be envisioned in today’s

context and the relatively small amount of existing work motivate our interest for the

study of metric modulations, and in particular for going towards their automatic analysis.

1.3 A signal-based approach

Questioning what music is is beyond the scope of this thesis. However, it is to be noted

that music, and therefore metre, is a construct of the human mind, and it can therefore be

argued that is does not exist outside of it [18]. A consequence of this posture is that music

can then be related to cognitive science, psychology and neuroscience [19]. Following this

rationale, it appears that the perception of music is affected by mental representations

[20], training [21], age [22, 23], expectation mechanisms [24] or enculturation [25] to name

but a few.

Although there are a variety of processes at play when a human subject is listening to

music, the perception of music as the formation of a mental construct is nevertheless

strongly conditioned by the acoustic stimulus [26]. In other words, the perception of

music is strongly (but not fully) determined by the acoustic phenomenon produced by

the musicians and/or captured on a record. As a consequence, we argue that a method
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based exclusively on the analysis of the audio stimuli, which may be treated as a signal,

can be used to form a first approximation estimate of the human musical perception.

In this thesis we will not consider the psychological and cognitive dimensions of music,

but we will rather focus on developing a fully unsupervised approach that only relies on

the acoustic stimulus and attempt to push it to its limits. In short, we will take a pure

signal-based approach. As such, its relative lack of ability to account for a number of

psychological and cognitive variables is counter-balanced by a lighter model that does

not require prior knowledge and a resulting wider applicability.

In the remainder of this chapter we summarise the research questions we are concerned

with and outline the structure of this thesis.

1.4 Research Questions

RQ1: How can we automatically estimate the metrical structure of

music?

This thesis is primarily concerned with the automatic detection of metric modulations,

which are characterised by a change of metrical structure over time. Tracking metric

modulations thus requires the ability to produce an estimation of the metrical structure,

and its evolution over time. As a consequence, it comes that the main objective of this

thesis is linked to the question of the automatic estimation of metrical structure of music,

which is by no means a solved problem in the current state of the art.

As we detail in chapter 2, we distinguish two categories of approaches to metrical struc-

ture estimation: the cycle tracking methods that aim at tracking the length of metrical

cycles as well as the location of their start and end locations, and the periodicities es-

timation methods that characterise the metrical structure via the measure of metrical

level pulse rates while disregarding the phase information. The rhythmogram has been

employed in the MIR literature for tasks involving the discrimination of different metri-

cal structures. Relating to RQ2, in Chapter 4 we propose and evaluate an algorithm for

automatically extracting attributes of the metrical structure from the rhythmogram.
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RQ2: To which extent does the rhythmogram capture the metrical

structure of music?

A number of prior studies mentioned the ability of the rhythmogram to capture metrical

structure. In particular, it has been suggested by a number of authors that metrical

level pulse rates correlate with salient peaks of energy in the rhythmogram. But this

hypothesis had never been directly evaluated. Moreover, there exist a number of methods

to calculate a rhythmogram that have been reported to have different properties for

capturing the metrical structure. After providing some background on the rhythmogram

feature and its variants in chapter 2, we investigate how the energy distribution in a

selection of variations of the rhythmogram relates to the metrical level pulse rates in

Chapter 4.

RQ3: What is the impact of human judgment discrepancies on the

evaluation of automatic metrical structure extraction algorithms?

The typical approach to evaluating automatic feature extraction algorithms, whether

they are applied to music or not, consists in comparing the estimates they produce with

a previously established “ground truth”. The quality of an algorithm is then measured

by how well it reproduces the ground truth. By the very nature of music, there is not

always a clear “ground truth” when it comes to estimating musical features (e.g. the

metrical structure). In order to evaluate musical feature extraction algorithms, human

expert annotations are typically used as a proxy for ground truth.

For many years MIR systems have been evaluated on datasets containing a single anno-

tation per excerpt. In this context the evaluation is merely a quantification of the ability

of an algorithm to reproduce the annotator’s bias. Since a number of studies have shown

that both expert and non-expert humans may disagree when annotating a piece, it be-

came clear that the evaluation produced against a single annotation may not generalise.

In a bid to tackle this shortcoming, datasets containing multiple annotations for each

excerpt have been created in the recent years for a variety of tasks. The availability of

this data has enabled the emergence of studies investigating the (dis)agreement between
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expert annotators. A handful of authors have investigated the impact of inter-annotator

disagreement on the evaluation of algorithms, notably on the task of music similarity.

In this thesis we seek, in chapter 3, to evaluate whether or not human expert disagree

when annotating the metrical structure of music, and if so we seek to understand how

they disagree. For instance, is the disagreement related to particular musical attributes?

to annotator singularities? Secondly, we investigate in chapter 4 how this disagreement

impacts the evaluation of feature extraction algorithms, based on the case study of

automatic metrical structure estimation.

RQ4: How can automatic feature extraction failures be predicted?

From the MIR literature, it is clear that the performance of state of the art algorithms

reaches different levels depending on the tasks considered. However, despite good and

increasing performance, none of these algorithms delivers a perfect performance, which

means that cases of failure exist. Numerous metrics are available to quantify a poste-

riori the respective proportion of successes and failures observed on available datasets.

Some algorithms attach a confidence value to each estimate though this practice is not

generalised. Therefore, the failures are typically unpredictable, which leaves only two

options to the MIR algorithm user: blindly trusting the algorithm and accepting that it

will occasionally fail or not using the system at all.

A number of MIR tasks (e.g. cover song detection) or complex systems (e.g. recom-

mendation system) involve processing pipelines in which the later stages rely on features

extracted in the earlier stages. In such a context, we believe that having the means to

evaluate how reliable the features on which a given processing pipeline relies are would be

a valuable asset for MIR research. We view the unpredictable character of this unreliabil-

ity as one of the main obstacle to MIR algorithms usability. If failures were predictable,

the potential MIR user would be given more leeway to handle failures and therefore po-

tentially be able to make use of MIR systems despite their imperfection. To this end, we

seek to investigate in this thesis how the reliability of feature extraction systems could be

estimated. In particular, we focus on the case of rhythm features extraction in Chapter

5.
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RQ5: How can we automatically detect metric modulations?

The automatic detection of metric modulations has seldom been addressed in the field

of MIR research. There exist a few latent state space models for estimating the metrical

structure that can track changes over time (see for instance [27]). As such, they theo-

retically have the potential to track metric modulations, but since they are subject to a

trade-off between stability of the estimate and sensitivity to metrical changes, they are

typically not used to that end (see for instance [28]). In fact they are commonly used for

estimating the metrical structure and are consequently set for stability, thereby inhibiting

their ability to track abrupt changes. The model parameters are typically set manually

or learnt in a supervised fashion. Considering a metric modulation detection scenario,

setting the parameters manually would enforce a very strong bias [27] and learning in

a supervised fashion would require a large amount of adequate training data, which is

currently not available.

In this thesis we consider a blind scenario for the automatic detection of metric modula-

tions, i.e. no prior knowledge regarding the metrical structure nor metric modulations is

assumed. Because of this posture and the fact that data suitable for supervised learning

is not available, latent state space models appear not to be most appropriate solution for

addressing this task. In contrast, we propose an unsupervised approach to the automatic

detection of metric modulations.

Relating to RQ1 and RQ2, we show that the rhythmogram enables the capture of at-

tributes of the metrical structure that are altered by metric modulations, namely the

metrical level pulse rates. As a result, it shows potential as a feature from which to de-

tect metric modulations. Combining these ideas, we describe an unsupervised approach

to detect modulations from the rhythmogram in Chapter 7.

RQ6: Can computational methods be used to automate musicological

analyses of metric modulations?

RQ5 is concerned with the detection of metric modulations, which is a challenging prob-

lem in itself. However, it is necessary to push the analysis further in order to gain a
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significant musicological insight. In particular, once a modulation has been detected it

remains to be characterised, for instance by answering questions like: how has the metri-

cal structure been affected by the modulation? What type of modulation is it? So far, in

the few examples of studies mentioning automatic detection of metric modulations, the

metrical structure classes accessible for the system were manually predefined (cf. [27]),

which makes this characterisation relatively straightforward.

In this thesis we aim at a more generalisable approach in which no prior information of

the nature of the metrical structures involved is assumed. In this context, how could

the metric modulations still be characterised? In order to formalise our approach, the

musicological literature provides a body of existing work to get inspiration from. In par-

ticular, a taxonomy of metric modulations can characterise each modulation type based

on distinctive attributes. However, traditional musicological approaches are typically

based on the analysis of a score. The fact that a score is not always available for any

musical recording, leads us to ask: how can we transfer the benefits of work carried out in

traditional scored-based musicology to the realm of automated computational methods

with the aim of producing musicologically meaningful automatic analyses? This question

is investigated in more details in Chapter 6.

1.5 Thesis Contributions

The contributions made by this thesis to the field of automatic analysis of rhythmic

properties of musical recordings may be summarised as follows:

Datasets

Algorithms for automatic musical analysis are typically evaluated by measuring their

ability to reproduce a reference “ground truth”. By the very nature of music, it is not

always possible to create an objective “ground truth” or “golden standard” for any given

musical feature (e.g. chords, tempo etc.). As a consequence, expert annotations are

commonly used as a proxy to ground truth for algorithms evaluation. One of the contri-

butions of this thesis is the creation of two new datasets for the evaluation of automatic
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metrical structure and metric modulation estimation systems. Our analysis of the inter-

annotator agreement on the GTZAN-Met dataset as well as the comparative analysis

with the GTZAN-Rhy dataset are reported in Chapter 3 and provide an insight into

the properties, qualities and singularities of these annotations, thereby enabling a more

robust evaluation of algorithms performance.

Rhythmogram and Metrical Structure

It has been reported in existing literature that the rhythmogram feature (with its multiple

variants) captures information related to the metrical structure of music. A number

of examples of application of the rhythmogram to classification tasks have indirectly

suggested that this assumption may hold, but it had never been evaluated directly.

This thesis contributes, in Chapter 4, the first direct evaluation of the ability of the

rhythmogram to capture metrical structure related information. We demonstrated that

this ability significantly varies depending on which rhythmogram variant is being used

and isolate the most efficient one. In addition, we propose and algorithm for estimating

metrical level pulse rates from the rhythmogram. Finally, we have shown that taking

inter-annotator (dis)agreement into account in the evaluation procedure provides support

for more robust conclusions to be drawn.

Feature Extraction Reliability Prediction

The performance of systems for automatically analysing musical recordings has increased

significantly during the past decade but occasional estimation failures are still present.

However, these systems seldom provide an indication of reliability of the estimates they

produce. Unpredictable failures are a major barrier to building trust in an automated

system and therefore present a significant obstacle to the adoption and/or usefulness of

such a system for scientific research as well as industrial applications. In Chapter 5 we

propose a method for predicting the reliability of the automatic production of rhythm

related estimates. We demonstrated that it is effective at evaluating the reliability of

beat positions, tempo and metrical structure estimation. As a result, this method aims

at making automatic musical feature estimation systems trustable and reliably usable on
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their own as well as in complex systems despite their imperfection. In a bid to facilitate

reliability estimation, we have implemented the method as a Vamp Plug-in.

Metric Modulations Detection and Analysis

The automatic detection of metric modulations is seldom addressed in MIR literature.

In fact, there exists models that have the capability of capturing metric modulations, but

they are typically not used to that end. Prior to our contribution there was no dedicated

dataset for evaluating metric modulation extraction systems. We hypothesise that this

may be one of the reasons why this task has not been thoroughly tackled. Moreover, the

few examples of existing models capable of capturing metric modulations must be trained

in a supervised fashion. In Chapter 7 we propose an unsupervised method for automati-

cally detecting metric modulations and demonstrate state of the art performance on the

task of retrieving segments of consistent metrical structure as well as metrical structure

change points (i.e. locating the metric modulations). The next step in the analysis of

metric modulations consists in characterising their nature. To this end, we propose, in

Chapter 6, to use a metric modulation taxonomy, inspired by musicological theory. First,

we produced an English translation of an existing metric modulations taxonomy from

musicological literature, originally written in French. Secondly, given that a score is not

always available, we adapt this taxonomy based on score notation to a formalism that

is compatible with features automatically extracted from audio recordings. In particu-

lar, we formulate an adapted taxonomy that relies on the metrical level pulse rates to

characterise metric modulations.

1.6 Publications

• Peer-reviewed:

– [29] Elio Quinton, Christopher Harte, and Mark Sandler. “Extraction of Met-

rical Structure from Music Recordings”. In Proc. of the 18th Int. Conference

on Digital Audio Effects (DAFx). Trondheim, Norway, 2015.
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– [30] Elio Quinton, Mark Sandler, and Simon Dixon, “Estimation of the Re-

liability of Multiple Rhythm Features Extraction from a Single Descriptor,”

in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2016, pp. 256-260.

– [31] Elio Quinton, Ken O’Hanlon, Simon Dixon and Mark Sandler, “Tracking

Metrical structure Changes with Sparse-NMF” in IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), 2017

• Other Contributions:

– [32] Elio Quinton, Christopher Harte, and Mark Sandler, “Audio Tempo Esti-

mation Using Fusion of Time-Frequency Analyses and Metrical Structure,” In

Proceedings of the Music Information Retrieval Evaluation eXchange (MIREX),

2014.

– [33] Elio Quinton, Ken O’Hanlon, Simon Dixon and Mark Sandler, “Automatic

Detection of Metrical Structure Changes” in Digital Music Research Network

1-Day Workshop (DMRN+11), 2016

1.7 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2

This chapter reviews existing work in areas of Music Information Retrieval (MIR) related

to the tasks considered in this thesis. In addition, computational techniques as well as

evaluation metrics used in subsequent chapters are briefly described.
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Chapter 3

This chapter briefly presents the datasets used in the work described in this thesis, two

of which are new contributions. Their creation and contents is described. In addition, we

detail an analysis of the inter-annotator agreement, as permitted by multiple annotations.

Chapter 4

Rhythmograms are one of the common feature used for automatic analysis of rhythm. In

this chapter, we propose a quantitative evaluation of the ability of the rhythmogram to

capture all metrical level pulse rates present in music recordings and propose an algorithm

to extract this information. In addition, we present a simple algorithm to estimate tempo

given the metrical structure that was submitted to the audio tempo estimation task at

MIREX 2014. The contents of this chapter are made of work reported in [29] and [32]

with the addition of further analysis.

Chapter 5

In this chapter, we propose a method to estimate the reliability of several rhythm features

extraction. The work described in this chapter was reported in [30].

Chapter 6

This chapter is concerned with the design of a taxonomy of metric modulations. We first

produce a brief English translation of an existing metric modulation taxonomy design

for score-based analysis taken from musicological literature and originally published in

French. We then proposed to take inspiration from it and produce a new taxonomy

suitable for analyses based on features automatically extracted from audio recordings.

Finally, we used this taxonomy to perform automatic classification of metric modulations.
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Chapter 7

This chapter introduces a new method to automatically detect metric modulations from a

rhythmogram-like feature. This method is compared to a range of existing and standard

methods that we adapted to the task of metric modulation detection. The description

and evaluation of our method was partly reported in [31].



Chapter 2

Background

In this chapter we introduce theoretical concepts and mathematical or computational

methods that will be used in the rest of this thesis, relate them to existing work, and

define notations. Because music is the subject of study in this thesis, it is important

to first define some music theory concepts in section 2.1. Given the focus on rhythm,

and more specifically on metrical structure, we review the concepts and methods used

for automatic analysis of metrical structure of music in sections 2.2 to 2.5. As will be

shown later in this thesis, a parallel can be drawn between the automatic detection of

metric modulations and the popular task of structural segmentation. As a consequence,

we present the relevant underlying concepts and metrics in section 2.10. A number of

techniques that were not specifically designed for the study of rhythmic properties of

music (e.g. Non-negative Matrix Factorisation) are employed in subsequent chapters of

this thesis. We therefore briefly describe them here, motivate their use and introduce

relevant notation in sections 2.6 to 2.9.

2.1 Music Theory Concepts

In this section we briefly present some music theory concepts relating to rhythm and more

specifically metrical structure. This is motivated by the fact that automatic metrical

structure estimation systems necessarily rely on a model of metrical structure of music,

whether or not it is explicitly stated. We therefore present the main concepts relevant

15



Background 16

in the context of automatic metrical structure analysis and their mutual relationships.

Common concepts associations and ambiguities are also highlighted.

2.1.1 Metrical Structure

In many musical cultures, including but not limited to western tradition as suggested by

studies on Turkish [34], Indian [35], African [36] or south-American [37, 38] music to only

name a few, an underlying sequence of beats and cycles is strongly perceived. Time is

typically subdivided in temporal units, the smallest of which is referred to as the tatum,

which stems from ‘temporal quantum’ [15, 39, 40]. By grouping these temporal units,

or beats, (for instance in patterns of strong and weak beats) a multi layered structure

emerges and is known as meter.

The Generative Theory of Tonal Music

Lerdahl and Jackendoff proposed a formalised description and definition of the metrical

structure in the Generative Theory of Tonal Music (GTTM) [41]. Since the GTTM is

useful to define some of the theoretical musical concepts used in this thesis, we repro-

duce here some definitions formulated by Lerahl and Jackendoff. The GTTM specifies

a number rules regarding the formal analysis of metrical structure1, grouped in three

categories:

1. The Well-Formedness Rules (WFR), which specify the requisite properties for

structural description. In other words, a structure is not acceptable unless it com-

plies with these rules.

2. The Preference Rules (PR), which steer the choice of a structural description to-

wards one that maximally correlates with expert listeners’ formalisation of any

piece.

3. The Transformational Rules (TR), which lay out means of relating distorted struc-

tures to well-formed descriptions.
1Although we only focus here on the metrical structure, we note that the GTTM is applicable to

several levels of musical structure, the metrical structure being only one of them.



Background 17

Figure 2.1: A simple rumba clave rhythm pattern and the corresponding
metrical structure. Each horizontal line of dots represents an underlying metrical

level.

Although we refer the reader to the original publication for in-depth detailed descrip-

tion, we reproduce here the metrical structure well-formedness rules as they describe the

fundamental structuration of the metrical structure:

1. WFR1: “Every attack point must be associated with a beat at the smallest metrical

level present at that point in the piece” (pp97)

2. WFR2: “Every beat at a given level must also be a beat at all smaller levels present

at that point in that piece” (pp97)

3. WFR3: “At each metrical level, strong beats are spaced either two or three beats

apart.” (pp97)

4. WFR4: “The tactus and immediately larger metrical levels must consist of beats

equally spaced throughout the piece. At subtactus metrical levels, weak beats must

be equally spaced between the surrounding strong beats.” (pp97)

With the GTTM, Lerdahl and Jackendoff lay out a formal description of the metrical

structure as a multilayered structure that follows hierarchical constraints. Figure 2.1

illustrates the hierarchical structure of metrical levels for the rumba clave rhythm. The

dots below the stave represent the beats corresponding to each metrical level. Note that

this arrangement is compliant with the well-formedness rules. For each layer, we refer to

the corresponding beat rate as a metrical level pulse rate in the remainder of this thesis.

Beat and Downbeat

Multiple meanings have been given to the term beat. Lerdahl and Jackendoff use the

word beat to describe the pulses corresponding to each metrical level (e.g. WFR2). On
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the other hand, it is also common to use the term beat to refer to the pulse of the metrical

level to which listeners synchronise when foot-tapping, nodding or perhaps dancing along

the music, which is known as the tactus. In such a scenario, beat and tactus are identified.

Note that in this case it is common the refer to ‘the beat’ instead of simply ‘beat’. The

MIR research community adopts the latter naming convention and the task of ‘beat

tracking’ consists in retrieving the positions of the beat, i.e. tactus.

Identifying the beat to the tactus implies that the term ‘beat’ cannot be used to describe

the pulse of other metrical levels (as opposed to Lerdahl and Jackendoff convention).

The term ‘downbeat’ refers to a metrical level of longer period than the beat, which is

typically aligned with the beginning of a rhythm cycle and/or with harmonic changes. In

score notation the downbeat commonly corresponds to the beginning of a bar. Note that

although the terminology is different, this definition is not incompatible with the GTTM

(e.g. the downbeat is one of the metrical levels). The concepts of beat and downbeat

effectively load some metrical levels with a distinctive semantic meaning.

The relation between beat and downbeat (e.g. the ratio of their pulse rates) is therefore

informative of the metrical structure in spite of the fact that it does not fully describe

it. On this ground, and this will be described further in section 2.4, numerous authors

in the MIR community identify meter tracking with joint beat and downbeat tracking.

Hierarchical structure

An important aspect of metrical structure is its hierarchical organisation. For instance,

in the GTTM, this property is encoded in the well-formedness rules 1 and 2. The

hierarchical relationships between metrical levels are then a fundamental descriptor of

the metrical structure. Figure 2.2 shows the association between some common terms

used to describe metrical structures and the hierarchical relations they imply. These

terms define relations between the metrical level immediately above and below the tactus

(or the beat) level respectively. Then, a metrical structure is labeled either as duple or

triple if the metrical level above the tactus corresponds to the grouping of two or three

beats respectively. Similarly, a metrical structure is labeled either as simple or compound

if the beat is subdivided in two or three equal parts respectively. The terms binary and
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Duple Triple

Simple Compound

Tactus

Figure 2.2: Common metrical hierarchy terminology. Left to right, these labels
describe the hierarchical relations between the metrical level immediately above and
below the tactus level respectively. In both cases, the terms describe a subdivision into

two or three equal parts from one metrical level to the next.

ternary are also used to described a subdivision in two or three equals parts respectively.

Combinations of these terms may then be used to describe metrical structures e.g. ‘simple

duple’ for describing a structure that would be easily scored as 2
4 , or ‘triple compound’

for describing a structure that would be easily scored as 9
8 . Note that this description

is only concerned with the metrical levels immediately neighbouring the tactus level

and are not informative nor restrictive of the hierarchical relationships to further levels.

For instance, a compound metrical structure could include a lower level that is either a

binary or ternary subdivision of the level immediately below the beat (see Figure 4.3 for

an example of full metrical structure representation). In addition, this nomenclature only

covers beats grouped and subdivided in a constant number of units, e.g. in compound

metrical structure all beats are subdivided in three equal parts. The term odd meter is

used to describe structures in which beats are subdivided or grouped in more than one

number of units. Figure 4.4 provides an example of such a structure in which a 5
8 bar is

made of groupings of two and three eighth notes. Because the interval between two pulses

is then not constant, this type of metrical structure can be described as non-isochronous.

2.1.2 Note Values and Time Signature

The concept of note values is used to represent the relative duration of sounded musical

events and rests. A sounded musical event may for instance be a note or any other sound

object and rests are understood here as any silent event [42]. In the western notation

system the whole note is the note value of longest duration2. All other note values are

obtained by successively subdividing the whole note in two equal parts, as illustrated

on Figure 2.3. As a consequence, a whole note is subdivided in two half notes, each of

which is then subdivided in two quarter notes and so on. Note that in the American
2Although it can be extended using dots and ties
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Whole Note

Half Note

Quarter Note

Eighth Note

Sixteenth Note

Figure 2.3: Basic note values and their labels

terminology for note values used here, each note value label describes how many of these

need to be added up to equal the duration of a whole note (i.e. 8 eighth notes in a whole

note). The British terminology provides equally functional, but not as self-explanatory

labels.

In the score notation system, the time signature is presented using two numbers. The

denominator specifies the time subdivision unit, or note value, to be counted, and the

numerator specifies how many of these units constitute a bar. Note that the number

used at the denominator to identify the note value corresponds to the naming system

given in Figure 2.3. A half note is identified with number 2 because two half notes add

up to a whole note, the quarter note is identified with number 4 as four quarter notes

add up to a whole note and so on. For instance 2
4 time signature means that there are 2

quarter notes per bar and 6
8 time signature means that there are 6 eighth notes per bar.

The time signature is often identified to the meter of a piece, so that a number of

automatic metrical structure analysis systems aim to retrieve the time signature, see

for instance [43]. This direct association of time signature and metrical structure is

subject to a few nuances, however. By convention, the time signature suggests a typical

specification of a portion of the metrical structure. For example, 3
4 time signature a priori

implies a simple triple meter. In other words, there are three beats in a bar and each beat

is subdivided in two equal parts (cf. Figure 2.2). On the other hand 6
8 a priori implies

a compound duple meter. In other words, there are two beats per bar and each beat is

subdivided in three equal parts. We note at this point the importance of time signature
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interpretation convention on this example: 3
4 and 6

8 are mathematically equivalent in

that there are the same number of units in each case (3 quarter notes equates to 6 eighth

notes), but not metrically equivalent given the convention. Moreover, note that the note

value specified at the denominator of the time signature does not necessarily specify the

note value associated to the metrical level intended to be the beat (i.e. tactus). In 3
4 ,

the quarter note is typically assumed to correspond to the beat, but the eighth note

is not in 6
8 . In addition, the score notation for a given piece of music is not unique.

Therefore, given that the score is a cue for the performers, the composer or arranger is

responsible for choosing the notation that will result in a performance suitable to his

intention. There exist more than one notation convention depending on era or genre.

For instance it is common practice in Jazz to use 4
4 time signature, which traditionally

implies a simple duple meter, to score compound meter pieces. Jazz performers are used

to interpret the score appropriately.

Finally, the time signature does not specify the entirety of the metrical structure. It

specifies a typical hierarchical structure around the beat (i.e. tactus) level, but for

instance does not specify lower metrical levels. Besides, the time signature does not imply

definitive constraints on the metrical structure. Accidentals may be used, and therefore

imply a metrical structure that is different from the typical structure associated to the

current metrical structure. Similarly, composers are free to choose to notate music as

they wish, and it is not rare to come across compound meter pieces (or sections thereof)

scored in 4
4 with use of eighth notes triplets although 12

8 would be a naturally suitable

time signature. To conclude, it is undeniable that there typically is a correlation between

the metrical structure of a piece and the time signature used in a score but there is no

strict equivalence between these two concepts. This motivates our choice to characterise

the metrical structure using metrical levels and their hierarchical organisation rather

than time signatures.

2.1.3 Tempo

The notion of tempo was historically introduced to describe the pace of music, i.e. how

fast it feels. On musical scores, tempo was indicated using words that evoke the intended
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feeling, such as presto meaning ‘very fast’. Often, the words used as tempo indications

have a connotation that goes beyond just the pace and also suggest a certain attitude to

be given to the music, e.g. largamente that means ‘slow and dignified’. The interpretation

of these words in terms of speed and expressivity of execution was the conductors’ or

performers’ responsibility. As a result, their choices may not have matched the intent of

the composer. With the invention of the metronome, there has been a way for composers

to specify the intended speed of execution more objectively and more reliably. The

metronomic indication, typically given in beats per minute (BPM), then indicates the

pulse rate of a given metrical level. This is typically specified on a score by marking

which note value is associated to the metronomic indication.

Since then, the original notion of tempo and the metronomic indication tend to be

confused. However, these concepts are not rigorously equivalent. The original notion

of tempo describes the pace of the music; in other words the perceptual effect that the

piece is intended to have on a listener. On the other hand, the metronomic indication

only provides a technical point of reference for the pulse rate of a given metrical level.

The metronomic indication is commonly (but not necessarily) associated with the pulse

rate of a metrical level labelled as the beat. In perceptual terms this is often associated

with the tactus rate, which is the pulse rate at which people would tap or nod along to

the music. The tactus rate is then implicitly associated to the metronomic indication,

which is itself identified with the tempo. However, it has been shown that the tactus

rate alone is not sufficient to characterise the pace of music [44]. In addition, it has also

been shown that different people can latch on a tactus rate that correspond to different

metrical level pulse rates [21, 45]. In the context of MIR research, the notion of tempo

is understood as equivalent with the tactus rate, and measured with a rate in BPM

similar to a metronomic indication. As a result, the large field of research labelled as

automatic tempo estimation is effectively performing tactus estimation (cf. section 2.5).

The estimation of the pace of music, however, has received far less attention; see for

example [46–48].
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2.2 Onset detection

The task of detecting the time instants at which musical events occur, known as ‘onset

detection’, is a necessary first step for a variety MIR tasks such as automatic transcrip-

tion, and generally all rhythm related features extraction such as beat tracking, tempo

estimation and metrical structure estimation. Relatively comprehensive reviews of the

underlying principles of onset detection as well as of the variety of methods proposed

in the literature3 are given in publications such as [1, 49]. The intent in this chapter is

not to provide an exhaustive description of the onset detection body of work but rather

to present the fundamentals principles of onset detection, briefly review the families of

onset detection functions calculation methods and highlight what aspects are relevant to

the work presented in this thesis.

2.2.1 General paradigm of onset detection

Music, as an acoustic signal, may be viewed as constituted of a number of organised

events that unfold in time. Conforming to this view, the musical event may then be seen

as the atomic constituent of music. A musical event could typically be a note, although

not limited to it. For instance a musical event could also be characterised by variations

of timbre. The investigation of what are the cognitive processes at play to enable the

human listener to isolate musical events is beyond the scope of this work, but we note

that in the context of audio-based MIR research the notion of musical event implies the

existence of a change of some nature measurable in the signal over time to isolate musical

events [1]. The temporal evolution of a sonic (musical) event is canonically represented

in several phases: attack, decay sustain and release, as illustrated in Figure 2.4. The

notion of onset intends to describe the time instant at which a musical event starts.

The term transient is also commonly used when describing temporal evolution of sonic

events. It is not easy to define, and should not be confused with the attack, however. A

transient is commonly defined as a short time interval “during which the signal evolves

quickly in some nontrivial or relatively unpredictable way” [1] whereas the attack is the

time interval during which the amplitude envelope increases. Thus the initial transient
3at the exception of the more recent neural networks methods
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Figure 2.4: Schematic magnitude envelope of a note onset, attack, decay, sustain
and release.

may include the decay phase, and the release may also be considered as a transient. The

task of onset detection then consists in detecting the onset of an event, that is to say

the the time at which its occurence starts. Typically, an onset will be located during a

transient (if there is one). A critical time resolution for the location of onsets is given

by the fact that two transients are perceived as two separate event only if they are more

than 10ms apart [50].

The general scheme of onset detection algorithms comprises three steps, for which we

use here the nomenclature introduced by Bello et. al. in [1]: (optional) Pre-processing,

Reduction and Peak-picking. The scheme is illustrated in Figure 2.5 and the constituent

steps are described below.

• Pre-processing may be applied to the raw audio signal with the aim of improving

the performance of the subsequent stages. Examples of such pre-processing could

consist in analysing the signal independently in several frequency bands [51–54].

These frequency bands can for instance be chosen to approximately reflect human

hearing filter distribution [55].

• Reduction is the process that aims at deriving from the audio signal a function

in which the occurence of musical events is clearly manifested. Such a function

is referred to as the Onset Detection Function (ODF). Onsets are expected to

be revealed as peaks in this function. The ODF is typically sampled at a lower

rate than the audio sampling rate by several orders of magnitude. Given that

the smallest perceivable time interval necessary for the human ear to resolve two

separate events is about 10 ms, ODF sampling rate is typically of the order of

200Hz. The computation of the ODF is a key element of onset detection. The main
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Figure 2.5: Onset detection scheme. Figure reproduced from [1]

approaches to the computation of onset detection functions are briefly described

in section 2.2.2.

• Peak-picking is the final step in the onset detection scheme. The goal of onset

detection is to retrieve the time instants at which onsets occur. The onset locations

are estimated by peak-picking the ODF in which they are expected to materialise

as peaks. Retrieving discrete onset locations is beyond the scope of this work, so

it will not be discussed here. We refer the interested reader to relevant literature,

e.g. [1, 49].

2.2.2 Onset Detection Functions

A vast number of methods have been proposed to compute onset detection. We do not

intend to offer here an exhaustive record of all the methods that have been proposed.
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Instead, we present here the main strategies that underpin the computation onset de-

tection functions reported in literature. We group them in four categories: the temporal

features, which operate directly on the audio waveform, the spectral features, which op-

erate on the magnitude spectrogram, the spectral features with phase, which exploit the

phase information of the spectrogram and finally the probabilistic models, which exploit

statistical models of the audio or spectral signal.

Temporal features

As a first approximation, it appears that onset occurrences coincide with transients in

the audio signal. On this premise, early onset detection methods relied on detection

functions that aim at capturing onsets from the amplitude envelope of the audio signal

[56–58]. In its simplest form a detection function could be computed by rectifying and

smoothing the audio signal withW is a window, or smoothing kernel, of length L centred

around 0:

ΦE(n) =
1

L

L
2
−1∑

i=−L
2

|s(n+ i)|W(i) (2.1)

where s(n) denotes the nth sample of the audio signal. A variation of this consists in

using the energy instead of the rectified signal:

ΦE2(n) =
1

L

L
2
−1∑

i=−L
2

[s(n+ i)]2W(i) (2.2)

Given that the target of this type of methods is to capture rapidly increasing amplitude

envelopes, a possible refinement consists in computing the derivative of the rectified signal

or of the local energy, i.e. dΦE/dn [52]. Taking in account that the loudness is perceived

logarithmically [59], a further refinement consists in computing d log(ΦE)/dn [53]. Such

temporal features are effective for clean signals with strong transients (typically stemming

from percussive sounds) but do not give satisfactory results for other type of signals.
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Spectral Features

Methods using the spectral representation of the audio signal to compute the detec-

tion function were later proposed. They typically produce more robust onset detection

functions than temporal features, which tend not to be used anymore in modern systems.

In the spectral domain, transients result in sort-term broadband energy bursts. In mu-

sical signals, most of the energy is located at low frequencies so that broadband events

are easier to capture at high frequencies [60]. Let X(m,n) be the short-term Fourier

transform (STFT) spectrogram of the audio signal, obtained using a L samples win-

dow where m is the frequency bin index and n is the frame index. The spectrum may

then be re-weighted with a frequency-dependent weighting function ν(m) to give more

importance to high frequency content (and therefore enhancing transients):

ΦHFC(n) =
1

L

L
2
−1∑

m=−L
2

ν(m) |X(m,n)|2 (2.3)

If ν(m) = 1, ν(m) |X(m,n)|2 is the local energy. Masri propose to weight each bin

proportionally to its frequency ν(m) = |m|, thereby resulting in a high frequency content

(HFC) detection function [61]. By construction, this is geared towards music with strong

transients.

A more general approach consists in measuring the distance between successive magni-

tude spectrogram frames. Onset detections calculated on this basis are labelled spectral

difference or spectral flux depending on authors. A number of variations of the spectral

flux have been proposed, with various pre-processing and metric employed to compute

the difference. Using the L1 norm of the difference between successive frames, the spec-

tral flux is given by [61]:

ΦSF (n) =

L
2∑

m=1

Y (|X(m,n)| − |X(m,n− 1)|) (2.4)

where L is the window length used in the processing of the Fourier spectrogram, X(m,n)

is the spectrogram coefficient of the mth bin of the nth frame, and Y is the half-wave



Background 28

rectifier function:

Y (x) =
x+ |x|

2
(2.5)

Half-wave rectification is introduced to account only for energy increases in successive

frequency bins, in order to capture onsets rather than offsets. Duxbury used a variation

of the spectral flux based on the L2 norm of the rectified difference [54].

ΦSF2(n) =

L
2∑

m=1

[
Y (|X(m,n)| − |X(m,n− 1)|)

]2 (2.6)

Spectral flux type methods are known for their robustness in capturing onsets from poly-

phonic recordings, even in the absence of very sharp onsets. The onset detection function

SF (n) effectively is the sum of (possibly squared) difference |X(m,n)|−|X(m,n−1)| for

all frequency bins m. Because this difference is computed frequency bin wise it captures

transitions between pitched notes because the fondamental frequency and harmonics, i.e.

the distribution of energy on the frequency axis, change from one note to another. Nat-

urally, the presence of a strong transient, i.e. of a short term broadband energy burst,

also results in a large difference because it can be expected that the energy of a large

number of frequency bins will increase during the transient. In other words, the spectral

flux is sensitive to transients and harmonic changes.

In the basic formulation of equations (2.4) and (2.6), the difference is computed between

adjacent frames. However, depending on the hop size chosen for the processing of the

audio spectrogram this might or might not provide enough context for an optimally

robust computation: if the hop size is very small, the overlap between windows is then

very large, which results in small differences between successive frames. The spectral

flux calculation can then be extended to compute the distance between frames that are

µ frames apart:

ΦSF3(n) =

L
2∑

m=1

Y (|X(m,n)| − |X(m,n− µ)|) (2.7)

If µ = 1, equation (2.7) is equivalent to (2.4). When µ > 1, the overlap between the

frames considered for the calculation is smaller, which yields larger differences. Note
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that the L2 norm formulation of (2.6) can be generalised to µ frames apart calculation

too.

The spectral flux is computed between frequency bin m and the same frequency bin µ

frames apart. This means that deviations in frequency that displace energy maxima from

one frequency bin to another over time would be registered as a large value in ΦSF (n).

In practice, small frequency deviations such as vibrato or pitch instability would result

in spurious peaks in the onset detection curve. Böck introduced a further improvement

on spectral flux, labelled superflux, by using a maximum filter to implement robustness

against local frequency deviations (e.g. vibrato) [62]. First, a pre-processing stage is

applied so that the magnitude spectrogram is filtered using a bank of 138 triangular

filters logarithmically distributed, aligned with the western scale and with central fre-

quency separated one quarter tone from each other; thereby covering the [27.5, 16000]

Hz frequency range:

Xlog,filt(f, n) = log10 (|X(m,n)| ·B(m, f) + 1) (2.8)

where Xlog,filt(f, n) is the filtered spectrogram, B(m, f) the filter bank and f the in-

dex of the current filter. Robustness against local frequency deviations is implemented

using a maximum filter. For each frequency bin in the scaled and filtered spectrogram

Xlog,filt(f, n), the energy is set to the maximum value in the neighbourhood (along

frequency axis):

Xmax
log,filt(f, n) = max (Xlog,filt(f − ρ : f + ρ, n)) (2.9)

where ρ is the width of the maximum filter, set to ρ = 1 in [62]. Finally, the superflux de-

tection function ΦSF ∗(n) is computed with respect to the maximum filtered spectrogram,

in a similar fashion to the spectral flux:

ΦSF ∗(n) =
T∑
f=1

Y
(
Xlog,filt(f, n)−Xmax

log,filt(f, n− µ)
)

(2.10)

Foote introduced a measure of audio novelty related to spectral difference methods in [63].
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First, the distance between feature vector frames (e.g. power spectrogram) is computed,

and a distance matrix is formed4. A “novety curve” is then obtained by correlating

a Gaussian tapered checkerboard kernel along a diagonal of the distance matrix. The

novelty curve shows sharp peaks at time instants corresponding to large differences. The

kernel size controls the time span over which distances are integrated to compute the

measure of novelty. Therefore, when the kernel is small (i.e. of a length in the order of

0.5s), the novelty curve effectively corresponds to an onset detection function. On the

other hand, when the kernel size is chosen larger (i.e. length in the order of seconds), the

peaks in the novelty curve are expected to signal structural segment boundaries. In fact,

this method is seldom used for onset detection, but mostly finds applications in the task

of structural segmentation. It is therefore described in greater detail in section 2.10.

Spectral Features with Phase

All the spectral methods described above only exploit the magnitude spectrogram. We

present here methods making use of the phase information of the complex spectrogram.

The Fourier transform computes the projection of a given signal on the basis of sinusoidal

functions, for which the phase advance is related to the instantaneous frequency:

ω(m,n) =

(
ϕ(m,n)− ϕ(m,n− 1)

2πd

)
ωs (2.11)

where ϕ(m,n) is the 2π unwrapped phase of the mth frequency bin at the nth time

frame, d the hop size and ωs the sampling frequency. For a stationary sinusoid, the

instantaneous frequency is expected to be approximately constant, which implies from

(2.11) that the phase advance should be constant too.

ϕ(m,n)− ϕ(m,n− 1) ≈ ϕ(m,n− 1)− ϕ(m,n− 2) (2.12)
4The euclidian distance as well as cosine distance are suggested by Foote as possible distance measures
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This could equally be characterised by the second order phase difference being approxi-

mately equal to zero in stationary parts (from (2.12)):

∆ϕ(m,n) , ϕ(m,n)− 2ϕ(m,n− 1) + ϕ(m,n− 2) ≈ 0 (2.13)

In spectrogram frames corresponding to transients, the input signal is not well approxi-

mated by a stationary sinusoid, hence the instantaneous frequency not being well defined

and therefore ∆ϕ(m,n) tends to be larger than zero in magnitude. As a result, it is ex-

pected that ∆ϕ(m,n) would peak around transients locations and close to zero in steady

state regions. Since ∆ϕ(m,n) is defined for each frequency bin, a simple way to construct

an onset detection function consists in computing the mean absolute phase deviation [64]:

Φp(n) =
1

M

M∑
m=1

|∆ϕ(m,n)| (2.14)

where M is the number of frequency bins in the spectrogram. Bello proposed a slightly

more intricate method to compute an onset detection from phase difference in [65]. It

consists in treating the M deviations ∆ϕ(m,n) as a probability distribution for each

frame. In stationary phases of the signal, deviations tend to be zero, and therefore the

distribution strongly peaks around this value. Reciprocally, during transients, the phase

deviations tend to be larger, but not necessarily consistent in magnitude, which means

that the distribution is then flattened. An onset detection is then obtained by computing

the inter-quartile range and the kurtosis of the distribution, i.e. measuring how flat it

is. By only relying on the phase information, these methods are equally sensitive to the

phase advance of components with no significant energy (e.g. silence), which tend to be

noisy. This effect can be minimised by combining phase and amplitude information [64].

Integrating further the notion of combination of phase and magnitude, Bello et al. pro-

pose a method to compute the onset detection directly in the complex domain [66]. The

difference between the observed complex value of spectrogram bin X(m,n) and the value

that can be predicted by phase advance from the previous frame X̂(m,n) is calculated:

Γ(m,n) =
[
|X̂(m,n)|2 + |X(m,n)|2 − 2|X̂(m,n)||X(m,n)| cos (∆ϕ(m,n))

] 1
2 (2.15)
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The distances are then summed along the frequency axis to form the onset detection

function:

Φc(n) =

M∑
m=1

Γ(m,n) (2.16)

Since this can be viewed as a measure of the stationarity of the signal, here again the

underlying working principle is that onsets are associated to a non-stationarity of the

signal and therefore yield large differences that materialise as peaks in the detection

function.

Probabilistic and Machine Learning Methods

Another approach consists in describing the music signal with a probabilistic model so

that probabilistic and statistical methods for onset detection can be constructed. Here

again the underlying working principle consists in estimating the onset locations via the

estimation of the likely times of abrupt change in the signal. One class of approaches

consists in considering two statistical models A and B. Each sample of the signal s(n)

is assumed to derive from either A or B. The log-likelihood ratio of the models is then

defined as

R = log
pB(s)

pA(s)
(2.17)

where pA(s) and pB(s) are the probability density functions of the two models. Assuming

that the signal follows one model and then switches to the other, the log-likelihood ratio

R will change sign. In the case of music signals, the probabilistic signal models are

generally unknown and are therefore typically estimated from the data. Assuming that

appropriate models can be learnt from the observed signal, this change of polarity can be

used to detect onsets, see for example Jehan [67] and Thornburg and Gouyon [68]. An

alternative approach consists in using a single probabilistic model and detecting instants

at which the signal does not follow the model, i.e. ‘surprising ’ moments. In this context,

a model of the signal can be built from the observed signal so that predictions of its

evolution can be formulated. It is then expected that onsets will emerge as events which

make prediction of the evolution of the signal after the onset difficult, i.e. surprising

events [69].
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In the recent years the use of a range of variations on Deep Neural Networks (DNN)

has emerged as a new trend for onset detection. Neural networks were first employed

to perform onset detection by peak-picking a hand-crafted onset detection function [70].

Lacost and Eck then proposed to learn the onset detector directly from spectral data [71].

In other words, the neural network learns how to compute an onset detection function.

Eyben [72] introduced the use of Recurrent Neural Networks (RNN) trained on Mel-

scaled magnitude spectrogram, later improved by Böck [73]. Inspired by the analogy

between edge detection in image processing and the task of detecting onsets from spectral

representations of the audio signal, Schlüter subsequently employed Convolutional Neural

Networks (CNN) for onset detection [74, 75]. Recent comparison of onset detection

methods revealed that current state of the art performance is achieved by neural networks

methods [72, 75].

Interestingly, after introspection of their CNN, Schlüter notes that the network seems to

learn to detect percussive (i.e. wide band and short term energy burst) and harmonic

(i.e. change of harmonic energy distribution) onsets [75]. That is to say the network

learns to detect features that closely ressemble what hand-crafted spectral flux based

methods are designed to detect. Schlüter then argues that the superiority of CNN over

hand-crafted functions resides in the fact that the network learns hundreds of variations

of these basic detectors, which would be impossible to replicate manually.

2.2.3 Difficulties in onset detection

From the descriptions provided in section 2.2.2, it becomes apparent that different meth-

ods for calculation of onset detection functions rely on different properties or assumptions

about the audio signal. It is then to be expected that performance would depend on the

audio signal to which these methods are applied. This intuition is confirmed by nu-

merous authors reporting different performance when applying the same onset detection

algorithms to different datasets (with different audio characteristics) [1, 49, 62].

Very quick and drastic change, such as a percussive sound, are typically referred to

as ‘hard ’ onsets, while onsets resulting in slow and/or small change in the audio are

commonly referred to as ‘soft ’ onsets. Given that the notion of onset is associated with
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the presence of a rapid change in the audio signal, the detection of soft onsets is more

difficult than that of hard onsets. In fact, the detection of ‘soft’ onsets remains an open

research question. Since the calculation of an onset detection function is the first step

of the vast majority of rhythm feature extraction and processing methods, soft onsets

are problematic for most of rhythm related MIR tasks. Chapter 5 is concerned with

the estimation of the reliability of rhythm feature extraction methods, and soft onset

constitute one of the sources of failures that will be considered.

2.2.4 Onset detector choice motivation

Comparing a number of handcrafted onset detection functions, it was reported by nu-

merous authors that temporal features and high frequency content typically perform

best on percussive sounds while methods like phase deviation perform well for pitched

sounds (including non percussive). In comparison, the spectral flux method appears to

be a good all rounder, exhibiting the most stable performance over a variety of types of

audio signals, see for example [1]. Superflux brings an improvement in performance over

spectral flux, while preserving the all-rounder quality [62].

In addition, Tian performed an evaluation combinations of pairs of a variety of standard

and then state-of-the-art handcrafted onset detectors (i.e. not based on machine-learning

methods) in [76]. The parameters space was exhaustively explored and results for the best

performing configurations are reported. The constituent onset detection methods were

also evaluated individually for comparison. The outcome of this study is two-fold. On the

one hand it was shown that combining onset detectors instead of using the constituent

methods led to an increase in performance. On the other hand, it appeared that the

superflux method is the best performing method, and is also a constituent method of the

top 6 composite methods. Moreover, it appeared that composite methods that do not

comprise superflux exhibit lower performance than superflux alone. This result suggests

that superflux is providing a robust and performant onset detection function.

Competitive, if not state-of-the-art results have been reported for onset detection func-

tions employing a probabilistic framework, such as log-likelihood and neural network



Background 35

based methods [1, 72, 75]. The gain in performance in comparison to methods like su-

perflux comes at the price of increased computational complexity, and perhaps more

importantly is dependant on the fitness of the probabilistic model to the audio signal. In

practical terms, it means that a large quantity of (annotated) training data is required

to estimate a suitable model.

In the remainder of this thesis, we chose not to use deep learning based methods in order

to limit the complexity of the overall system. Note that this choice is also in line with the

bottom-up unsupervised approach take here. In the light of the results discussed in this

section, the superflux method was chosen to generate an onset detection function that

is used for further processing. The symbol Φ(n) is used to denote the onset detection

function in the remainder of this thesis.

2.3 Rhythmogram

This section is dedicated to the rhythmogram, which is a useful feature for the automatic

analysis of metrical structure. First, a definition of the rhythmogram feature as well as

of the related terminology is given. In a second part, the main rhythmogram calculation

methods are presented. Lastly, an introduction to the interpretation of the rhythmogram

with respect to musical concepts is provided.

2.3.1 Definitions and Terminology

Let us define the rhythmogram as a two dimensional frequency domain representation

of the onset detection function, by analogy with the spectrogram that is the frequency

domain transform of the audio signal5. As such, the horizontal and vertical axes respec-

tively represent time and frequency. By construction, the frequencies of the rhythmogram

effectively represent the periodicity rates of the onset detection function. In the context

of rhythm studies, it is natural to consider frequencies in the rhythm range, that is to say

approximately in the [0.2,13] Hz range [19]. Beats per minute (BPM) is more suitable
5Note that although this definition is limited to computations based on onset detection functions,

this approach is also applicable to features derived from discrete onset positions, such as Inter-Onset
Intervals (IOI) [77]
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a unit to measure frequencies in the rhythm range, and is proportional to Hz with 1Hz

= 60BPM. A number of authors have used the term tempogram to refer to this type

of feature, see for instance [78–80], while some other prefer the term rhythmogram, see

for example [81, 82]. Since they describe the same feature, the two terms are effectively

interchangeable. However, it will become apparent in the remainder of this thesis that

the rhythmogram captures more than strictly tempo information. On that account the

term rhythmogram will be preferred over tempogram from now on. The symbol R will

be used to denote the rhythmogram in equations.

Just like the frames of the spectrogram are spectra of segments of the audio signal (delim-

ited by the windows), each frame of a rhythmogram is a rhythm periodicity spectrum of a

segment of onset detection function. Periodicity spectra, in the broad sense of the term,

i.e. a spectrum representing the periodicities present in the onset detection function, are

widely used in the literature. Again, the terminology used depends on the authors and

could for instance be beat spectrum [83], spectral rhythm pattern [84] or beat histogram

[85]. For conciseness, in the remainder of this thesis, the rhythm periodicity spectra (i.e.

the rhythmogram frames) will be referred to simply as ‘periodicity spectra’, and notated

with symbol r.

2.3.2 Calculation Methods

Given an onset detection function, several methods have been proposed to compute a

rhythm periodicity spectrum. We group the different strategies proposed in the literature

in two categories. On the one hand, methods estimating periodicities by measuring

similarity between two instances of the onset detection function shifted by a given time lag

are grouped in the the ‘Self-Similarity Lag’ category. On the other hand, the ‘Frequency

Domain’ methods project the onset detection function of a basis of vectors covering an

appropriate frequency range.
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Self-Similarity Lag

The most popular approach consists in calculating the autocorrelation of the onset de-

tection function for a range of lags corresponding to rhythm periodicities. After an early

implementation using this method on an onset detection function generated from sym-

bolic data by Brown [86], it has widely been applied to onset detection functions derived

from audio [43, 85, 87–92]:

rA(l) =

L∑
n=1

Φ̂(n)Φ̂(n− l)

I
(2.18)

where Φ̂(n) , Φ(n)W(n) is the windowed onset detection function, W(n) a window

of length L, l is the lag and I is a normalisation factor. In its simplest form, the

autocorrelation is obtained with I = 1. It is however common to normalise it against

the first element (I = Φ̂(1)) or to use the unbiased autocorrelation, i.e. I = L + 1 −

l. The computational complexity of such a calculation is N2. The Wiener-Khinchin

theorem allows a more efficient computation of the autocorrelation with a computational

complexity in the order of N log(N), using the FFT of the raw signal (the ODF here):

Ω(ω) = FFT{Φ(t)}

rA(l) = iFFT{Ω(ω)Ω∗(ω)}
(2.19)

In this thesis, we compute the ACF using the Wiener-Khinchin theorem. Note that since

the first step consists in computing the FFT of the ODF, the computation of the ACF

is related to the FFT-based computation described in (2.20).

Foote and Uchihashi propose to estimate periodicities from “self similarity” of the features

derived from the audio signal [83]. This is achieved by first building a similarity matrix

and then compute sums of the matrix diagonal elements. The distance from any diagonal

to the main diagonal effectively represents a time lag. In that sense, the summation over

the lth diagonal is analogous to the computation of an autocorrelation with lag l.



Background 38

Frequency Domain

The Fourier transform is also used to analyse periodicities in the onset detection function

[43, 84, 93]. The periodicity spectrum is then straightforwardly obtained by computing

the Fourier transform (FT) of the windowed onset detection function:

rF (m) = FT {Φ(n)W(n)} (2.20)

where m denotes the frequency bin index.

Finally, a number of authors have proposed to use resonator filter banks to estimate

periodicities in the onset detection function [52, 89]. Each bin of the periodicity spec-

trum then represents the magnitude response of a filter of the corresponding resonance

frequency. While standard filter banks, such as comb filters [52], have traditionally been

used, Large developed a model of interconnected neural oscillators, named Gradient Fre-

quency Neural Networks (GFNN) with the intent of modelling human auditory system

[94]. The architecture he proposed is effectively a single layer filter bank, and should

therefore not be confused with deep neural networks. This model was later extended by

Lambert [95]. So far GFNN have only been applied to simple elementary signals (e.g.

click track or son clave pattern) and are yet to be tested with realistic polyphonic music

recordings.

2.3.3 Interpreting a Rhythmogram

The intent in this section is to give the reader a sense of how a rhythmogram can be

interpreted. Examples of gradual complexity are shown to expose fundamental properties

of rhythmograms as well as highlighting some differences between the two classes of

computation methods. First, two computer-generated elementary signals are considered.

They consist of a percussive (cross-stick) sound repeated at a regular interval of 1s and

0.5s respectively. For conciseness, we refer to these as ‘click tracks’. Figure 2.6 shows a 6s

excerpt of the superflux onset detection, the Fourier periodicity spectrum corresponding

to the first rhythmogram frame as well as the Fourier rhythmogram for each track. The

Fourier transform of a periodic function of period τ is also periodic in the frequency
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(a) Onset detection function
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(b) Onset detection function,
Click track 120BPM
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(c) Periodicity spectrum
Click track 60BPM
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(d) Periodicity spectrum
Click track 120BPM
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(f) Fourier Rhythmogram
Click track 120BPM

Figure 2.6: Example rhythmograms of cowbell sounds.

domain with period 1/τ . This property is clearly observed on Figure 2.6 (A) and (C)

and on Figure 2.6 (B) and (D) respectively, that illustrate the characteristic behaviour of

the Fourier transform of a train of impulses. The period of the audio signal being stable

for its entire duration, the periodicity spectra constituting each rhythmogram frame

are approximately identical. As a consequence, a clear structure of horizontal lines is

observed in the rhythmograms, where each line corresponds to a peak in the periodicity

spectrum. In the case of the 60BPM click track, a line in the rhythmogram is observed

at 60BPM. As series of lines are also observed at integer multiples of this frequency. A

similar observation can be made for the case of the 120BPM click track, where all the

harmonics of 120BPM rate are observed.

Similarly, the autocorrelation of a periodic function is also periodic. The main difference

with the Fourier transform being that the autocorrelation function peaks at multiples of
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Figure 2.7: ACF rhythmograms of two percussive audio signals

the period lag. Figure 2.7 illustrate this on the same two audio tracks as Figure 2.6, which

consist of a percussive sound repeated at a period of 1.0s (60BPM) and 0.5s (120BPM)

respectively. Figure 2.7 (A) exhibits a horizontal line at 1.0s lag, corresponding to the

periodicity of the audio signal as well as a second line at 2.0s lag, corresponding to first

multiple of the audio signal periodicity. In a similar fashion, a horizontal line at lag 0.5s

corresponding to the periodicity of the audio signal as well as lines at all the multiples

of this periodicity are observed on Figure 2.7 (B). Note that periodicity multiples can

equivalently be described as frequency sub-multiples, or sub-harmonics. It is then inter-

esting to point out that the Fourier transform of a periodic signal includes harmonics

of the signal frequency (i.e. inverse of its periodicity), while the ACF of the same sig-

nal includes sub-harmonics. As originally suggested by Peeters, these complementary

properties offer potential to estimate periodicities of the signal [84]. This aspect will be

addressed in more details in Chapter 4.

A number of authors have observed that the distribution of energy in rhythmograms of

musical recordings is related to the metrical structure of music, see for example [43, 83,

84]. The hierarchical organisation of the metrical structure of music implies that there

exists a sense of periodicity at a number of levels in parallel, and these periodicities

are typically related to the metrical level pulse rates [41]. Let us now consider two

other synthetic audio signals to illustrate how the rhythmogram may reveal the metrical

structure. Both tracks use a single percussive sound (the same as before) played at two

loudness levels, controlled by the MIDI velocity parameter: ‘loud’ (velocity = 127) and

‘quiet’ (velocity = 60). The first track is composed of the repetition of the sequence
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(a) Spectrogram of a 2Hz percussive beat with
every second note accented
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(b) Spectrogram of a 3Hz percussive beat with
every third note accented
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(c) Spectrogram of a 2Hz percussive beat with
every second note accented
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(d) Spectrogram of a 3Hz percussive beat with
every third note accented
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(e) Spectrogram of a 2Hz percussive beat with
every second note accented
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(f) Spectrogram of a 3Hz percussive beat with
every third note accented

Figure 2.8: Spectrogram of a 2Hz percussive beat with every second note accented

{loud, quiet}. The interval between each onset is 0.5s, so that the period of the sequence

is 1s. Similarly, the second track is composed of the repetition of the sequence {loud,

quiet, quiet}. The interval between each onset is 0.5s, so that the period of the sequence

is 1.5s. Because each track has two periodicities, with different relative periodicities,

they stand for elementary examples of two different metrical structures. Figure 2.8 (A)

and (B) show a 6s excerpt of the corresponding onset detection functions, where the

two velocity levels of the audio signal translate in two magnitude levels. Similarly the

periodicity spectra, and therefore rhythmograms shown in Figure 2.8 (C) to (F) exhibit

two levels of peaks and lines respectively, thereby reflecting the two levels of periodicity.

The distribution of high and low peaks suggests that the distribution of energy in the

rhythmogram reveals the hierarchical relationships between metrical level pulse rates.
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If the relationship between metrical structure and energy distribution in the rhythmo-

gram seems to be reasonably straightforward on elementary synthetic examples, the

question of the generalisation of this relationship to full musical recordings arises. Since

the metrical structure of a musical piece is typically made of 4 or 5 metrical levels, it can

be expected that the distribution of energy in the rhythmogram would be more complex

than in the elementary examples presented so far. Figure 2.9 shows the rhythmogram of

an excerpt of a commercial pop song (Lady Gaga’s ‘Do What You Want’). The distribu-

tion of energy is indeed more complex than the synthetic elementary examples previously

shown. However, it is still possible to discern patterns of distribution of energy at dif-

ferent rates, which suggests that the metrical structure of the music still influences the

distribution of energy in the rhythmogram in complex musical mixtures. Moreover, the

energy distribution in the rhythmogram changes around the 80s timestamp. This song

is in simple duple meter (typically scored in 4/4) but contains some metrical structure

changes. Considering the beat rate of 97BPM, the section ending around 80s relies heav-

ily on sixteenth notes subdivision, whose rate is then 388BPM (=97×4). This subdivision

is dropped in the section starting at 80s, so that eighth notes are the shortest subdivision

used. This change appears to be captured by the rhythmogram as the energy around

388BPM and around 776BPM significantly decreases around the change. As a result, this

observation suggests that the rhythmogram is able to capture metrical structure changes

over time, i.e. metric modulations. This question will be explored in greater details in

Chapter 7. On the other hand, this example also demonstrate the difficulty to explicitly

extract the metrical level rates from the rhythmogram. Although the sixteenth note

subdivision is not used anymore after the change, there is still energy around 388BPM.

This could be explained as being a harmonic of the eighth note rate (194BPM), as well as

of the quarter note (97BPM) and so on. As a consequence, this suggests that identifying

metrical level pulse rates from the rhythmogram is not straightforward. Exploiting the

complementarity of self similarity lag and frequency domain methods pointed earlier in

this section, Chapter 4 is concerned with addressing the questions of the relationship

between the energy distribution in the rhythmogram and the metrical level rates and of

the determination of the metrical level rates from the rhythmogram.
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Figure 2.9: Fourier rhythmogram of an excerpt of Lady Gaga’s ‘Do What You Want’

2.4 Metrical Structure Estimation

Automatic extraction of the metrical structure of music from audio recordings is a com-

plex and challenging task, which is by no means a solved problem in the current state of

the art. In this section we briefly describe work related to automatic metrical structure

extraction. Note that the methods presented here all rely on music theoretical concepts

presented in section 2.1.

2.4.1 Canonical Metrical Structure Estimation Pipeline

The canonical approach is a two-stages process. The first stage consists in estimating the

positions of onsets of musical events from the audio, either in a discrete (onset locations)

or continuous (via an onset detection function) fashion. This problem is an active field

of research on its own, we refer to section 2.2 for a brief overview. The second stage

focuses on estimating the metrical structure from the onset locations representation

derived at the first stage, see for example [15, 28, 43, 96]. In order to account for

the fact that the perception of metrical structure is affected by a range of different

musical features (e.g. harmony, melodic contour etc.) [26], methods using several onset

detection function-like curves derived from a number of features (e.g. timbral or harmonic

features) have been proposed, see for example [97–99]. This effectively corresponds to

using several variants of the first stage of processing in parallel. The adoption of deep

learning methods to address MIR tasks has been significant over the last few years and
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is still steadily progressing. Although deep learning has been employed to address the

first and second stages independently so far, an emerging trend in recent deep learning

work is the development of “end-to-end” systems, which apply deep learning directly on

audio, or on the audio spectrum, and output the high level estimate to solve the task

under consideration [100, 101]. As a consequence, it may be foreseen that “end-to-end”

deep learning methods for metrical structure estimation may be proposed in the close

future, therefore departing from this canonical two-stages process. In this section we

only discuss the metrical structure estimation step, i.e. the second stage.

2.4.2 Metrical Structure Extraction Strategies

The formal description of the metrical structure (as proposed for instance in the GTTM)

implies the existence of periodicities in the structure of music. Each metrical level oper-

ates at a different period length (cf. Figure 2.1). As a result, the automatic estimation

of metrical structure typically involves a form of estimation of these periodicities and/or

their hierarchical relationships. Metrical structure estimation strategies can broadly be

classified in two categories. On the one hand, the metrical structure may be charac-

terised by the estimation of the temporal location of metrical cycles. On the other hand,

the metrical structure may be characterised by the analysis of metrical periodicities and

their mutual relationships.

Cycle Tracking Methods

Works addressing the task of metrical structure estimation by tracking cycles typically

focus on two to three metrical levels, i.e. two to three cycles, among the downbeat,

tactus (or beat, cf. section 2.1) and tatum. All these approaches consist in tracking the

positions of the pulses for each metrical level tracked. In this scenario, the description

of the metrical structure therefore equates to the identification of the pulses of two to

three metrical levels. The hierarchical organisation of the metrical structure is implicitly

encoded in the problem definition: it is assumed that the downbeat cycle is made of a

number of beat pulses, which are themselves made of a number of tatum pulses. The

estimation of beat and downbeat constitutes the majority of works, see for example
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[37, 99, 102]. The tatum, which stems from ‘temporal atom’ and represents the metrical

level with the shortest period present in the music, is sometimes considered as a third

metrical level of interest [15, 39, 40].

Probabilistic state space models have become the standard approach to address this type

of problem, see for example [15, 16, 27, 103, 104]. In this framework, metrical level pulses

are modelled via latent variables and the audio signal, or features thereof (typically an

onset detection function) are the observations. The task of metrical structure inference

then consists in estimating the most probable latent state sequence given the observa-

tions. Hidden Markov Models are one form of state space models that may be used of

metrical structure estimation, e.g. [15]. The bar pointer model proposed by Whieteley

et al. includes a further variation of this class of approaches [27]. In particular, on top of

latent variables representing the current position in the metrical cycle (the bar), called

the pointer, and the speed at which the pointer progresses within the bar, called instan-

taneous tempo, this model includes a rhythmic pattern variable that represents probable

locations of onsets. As a result this last variable is conceptually similar to the rhythm

patterns considered by Dixon in [105] and implicitly incorporates information about the

metrical structure. Further improvements on this model include the optimisation of effi-

ciency by designing a more effective state space [96] or usage of particle filters to handle

high dimensionality state-spaces, which is not possible using exact inference (e.g. via

HMM) [28].

Although these concepts are formulated in western music terms, the notion of tracking

metrical cycles of different periodicities generalises to other musical cultures [35]. The

notions of beat, downbeat and tatum must then be transposed to the relevant units for

the music considered, but the fundamental principle remains identical. For instance,

Srinivasamurthy applied such an analysis framework on carnatic music, tracking the

sama and aksara in order to characterise the tala cycle [80]. In Indian music tradition,

the aksara is the smallest time unit of the cycle, so in that respect is analogous to the

tatum. The sama is “the first aksara” of the cycle, that is to say the starting point of the

cycle, which is analogous to the downbeat. One difficulty arising from such transposition

is that the length of the relevant cycles might be dependant on the musical culture
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considered and potentially exceed the period length range for which such systems were

originally designed. In the case of indian music, the longest cycle can exceed the typical

length of downbeat cycle (in western music) by an order of magnitude. For this reason,

Srinivasamurthy proposed an extension of the bar pointer model to track long metrical

cycles [106], of durations up to a minute (when a bar in western music is typically a

few seconds long). However, such long cycles are typically associated with the structural

segmentation of a piece rather than metrical cycles and given the perceptive thresholds

observed in psychological experiments, it is questionable whether such long cycles can be

perceived as metrical cycles [19]. In fact, Srinivasamurthy named this extended model

the “Section Pointer Model”, which reveals his awareness of the issue.

Periodicities Estimation Methods

Another approach to metrical structure analysis consists in analysing metrical period-

icities and their mutual relationships. In this scenario, the temporal information (i.e.

the temporal position of the beats, downbeats etc.) is not considered, but it is easier to

track a large number of periodicities (i.e. more than 2 or 3) than with a cycle tracking

method.

The first step of processing is the calculation of a feature that reveals the metrical

periodicities present in the music, such as the beat spectrum [83], inter-onset histograms

[92], or periodicity spectra [107]. We refer to section 2.3 for a more detailed description

of these features and their computation. However, we recall that these feature share a

common property: periodicity rates are captured as peaks. The raw periodicity features

may then be normalised so that the peaks are identified with respect to a given rate,

for instance the tactus rate (or tempo). This type of approach was adopted for instance

by Peeters [93] or Robine who uses this representation to build meter class profiles as

vectors of thirteen dimensions representing the relative strength of pulses at rates related

in a fixed set of integer ratios to the tempo (which is required as prior knowledge) [43].

Further analysis can then be performed using these features, normalised or not.

A range of metrical structure related tasks have been tackled using such features. One

trend is concerned with rhythm-based classification [84, 92]. It is to be expected that the
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metrical structure of music has an influence on such a classification, but the classification

task in itself does not explicitly reveal the metrical structure. Gouyon proposed a more

direct estimation of metrical structure properties by performing a classification based on

a dichotomy between duple and triple meter [90]. Robine used the meter class profiles to

classify musical excerpts with respect to time signature tags [43]. The explicit extraction

of the metrical structure — i.e. associating periodicities to metrical level pulse rates — is

comparatively rarely addressed, see for example [108]. Authors often observe that some

peaks in the periodicity features correspond to metrical level pulse rates, and use these

features for a variety of tasks on the basis of this assumption. A formal evaluation of

this assumption has not been carried out, however. This observation forms one of the

motivations for the study carried out in Chapter 4. It is likely that the lack of available

data for carrying such a study is, at least partly, responsible for this. The metrical

structure annotation dataset introduced in Chapter 3 enables such an evaluation.

Metric Modulations

In the vast majority of the works referenced above, changes of metrical structure over time

(i.e. metric modulations) are not considered. Often the metrical structure is assumed

constant over the duration of the piece, or excerpt under scrutiny. There exist, however,

a few works addressing the issue of abrupt changes of metrical structure [109, 110].

Latent state space models are theoretically capable of tracking metric modulations. This

capability is however dependant on architecture design, and more importantly on model

parameter settings. For instance, the transition probabilities are often set so that they

implement robustness against octave jumps [15]. This type of setting also implements

the inability, or at least greatly limits the ability to track metric modulations. As a

result of these design choices, metric modulations tracking capability is compromised.

Nevertheless, it is to be noted, that Witheley et al. demonstrated that the bar pointer

model can track metric modulations [111]. However, their evaluation is only carried

out on two symbolic data examples, which is not sufficient evidence to assess the general

robustness of the system. In particular, it may be hypothesised that the gain in sensitivity

to metrical changes may lead to a large number of spurious (metrical change) detection
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in sections of consistent meter. Automatic tracking of metric modulations has otherwise

seldom been addressed.

Besides, latent state space models used in metrical cycles tracking systems, require a

number of parameters to be set in order to function, such as the acceptable tempo range,

the length of a metrical cycle or the rhythm patterns. It is clear that these parameters

are critical for the description of the metrical structure. They are typically set manually

or learnt from data in a supervised fashion. This implies that the range of musical

variety covered is highly dependant on either the training data or the manual inputs.

A limited performance on music which properties differ from the training data is to

be expected. Therefore, a large amount of training data is required in order to derive

robust models. On the other hand, section 2.3 suggests that the rhythmogram may be

capable of capturing metrical structure changes, and its processing does not require prior

knowledge. As a result of all these observations we propose in Chapter 7 a method to

detect metric modulations from audio recordings in an unsupervised fashion, on the basis

of a rhythmogram feature.

2.5 Tempo estimation

The estimation of tempo is not an objective of this thesis. Nevertheless, because it is

related to some aspects considered here (cf. Chapter 5), we provide a brief overview

of the paradigm of tempo estimation, related work and challenges. Note that this brief

overview is limited to estimation of tempo from audio recordings, i.e. estimation of

tempo from symbolic representations of music is not considered here.

2.5.1 Tempo Estimation Paradigm

In the context of audio-based MIR research, the tempo is understood as the tactus rate

(cf. section 2.1.1). As a consequence the task of tempo estimation consists in extracting

the rate at which listeners tap along a musical audio recording. Because it relates to

human perception, this definition of tempo is also often referred to as perceived tempo, by

opposition to the notated tempo, which is the metronomic indication on a score. Given
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this definition, tempo estimation algorithms are evaluated against annotations of the

perceived tempo, which are typically collected by asking a listener (or a group thereof)

to tap along to the music. The tempo annotation is then derived as the rate of tapping.

Algorithms performance is evaluated against the annotated value. In a typical scenario,

the tempo is regarded as correct if it lies within a tolerance window around the annotated

value, e.g. 8% of the annotated value in the MIREX audio tempo estimation task6.

2.5.2 Related work

The first step of a tempo estimation algorithm is the computation of an onset detection

function. One strategy consists in extracting discrete onset positions by peak-picking

the ODF. The time interval between each pair of onset position then defines an inter-

onset interval (IOI) [39, 112–115]. Informations about the tempo may then be extracted

from appropriate7 IOI histograms [112]. This range of methods relies on the explicit

determination of onset positions, which is an error-prone step.

An alternative to the explicit estimation of discrete onset positions consists in using the

ODF directly. A tempo estimate may then be derived by the analysis of periodicities in

the ODF. Periodicities may be revealed by the computation of a periodicity spectrum or

rhythmogram, as already described in section 2.3. In particular, the Fourier transform

[116–119], ACF [93, 118, 120–122], and bank of filters [15, 52] have been used to capture

periodicities in the context of tempo estimation. As shown in section 2.3, periodicity

spectra obtained with these methods tend to exhibit several peaks, i.e. reveal several

periodicities. The final step of tempo estimation consists in picking the periodicity cor-

responding to the tempo. The various methods proposed are typically differentiated by

the approach taken to address this critical decision step. The periodicity selection often

relies on the assumption that the strongest peak in the periodicity spectrum corresponds

to the tempo. Retrieving the tempo can then be performed by picking the rate of the

strongest peak. However, this assumption does not always hold; so that a peak that does

not correspond to the tempo may be the strongest. This leads to a common difficulty
6http://www.music-ir.org/mirex/wiki/2016:Audio_Tempo_Estimation
7A limit to the maximum IOI is generally set, so that only a range of intervals meaningful for rhythm

analysis is considered
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in tempo estimation, known as the octave error because the erroneous tempo estimate

is usually related to the annotated tempo by a factor of two (or three if compound or

triple meter). A number of approaches have been proposed to implement robustness

against octave error, such as incorporating a metrical structure informed prior [121] or

transposing methods for pitch estimation to tempo estimation [89] to name but a few.

Since the tempo is defined as the tactus rate, tempo estimation is closely related to the

task of beat tracking, which consists in retrieving the beat positions from audio recordings.

Beat tracking is typically performed by tracking the beat period (i.e. tempo) and the

beat alignment (also know as beat phase). Some systems estimate the beat period and

alignment separately [88, 112, 121], while some other estimate them jointly [15, 52].

In other words beat trackers also perform tempo estimation whereas tempo estimation

system do not necessarily perform beat tracking (because they do not estimate the beat

alignment).

Following a similar trend as a number of other MIR tasks, tempo tracking systems have

started using deep learning [9, 123, 124]. Böck introduced a deep-learning method that

consistently outperforms previous state of the art methods in [9]. This publication also

offers a compact summary of performance of various methods on 10 different datasets. It

clearly illustrates the gain in performance, but also that before the introduction of this

method, deep learning methods were competitive with method based on hand-crafted

features, such as [15, 121, 125, 126], but not significantly more performant. In this

context, the method proposed by Davies in [121] exhibits competitive performance and

its Vamp Plugin implementation8 was used in Chapter 5 and Chapter 7.

2.6 Non-Negative Matrix Factorisation

Non-Negative Matrix Factorisation (NMF) provides a framework to approximate a 2-

dimensional non-negative matrixR ∈ RM×N≥0 by the product of two non-negative matrices

8http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#qm-tempotracker
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W ∈ RM×K≥0 and H ∈ RK×N≥0 [127] such that:

R ≈WH (2.21)

In this context, the columns of W are commonly referred to as template or dictionary

vectors while the rows of H as the corresponding activations and K is the number of

templates used. K is typically chosen so that MK + KN � MN , thereby reducing

the dimensionality of the data. In the context of this thesis, NMF is applied to the

rhythmogram, hence the choice of symbol R. However, the NMF framework can be

applied to any 2-dimensional matrix. It has consequently been applied in a wide variety of

domains such as financial data analysis [128], image classification [129] or bioinformatics

[130]. In the audio and musical domain, NMF has become a standard technique for source

separation, see for example [131, 132] and polyphonic transcription, see for example

[133–136] in which cases the matrix R to be approximated is typically a spectrogram

representation of the audio signal.

Typically, NMF is performed by assigning a cost function to the difference between the

original and reconstructed matrices, R and WH respectively, which is reduced using

gradient-based optimisation with respect to W and H [127]:

min
W,H≥0

D(R|WH) (2.22)

where D is typically the Euclidian distance or a variant of the Kullback-Liebler (KL)

divergence, defined for two matrices A and B as:

DKL(A|B) =
∑
i,j

(
Ai,j log

Ai,j

Bi,j
−Ai,j + Bi,j

)
(2.23)

While enforcing the non-negativity constraints usually requires rather complex optimi-

sation algorithms, Lee and Seung proposed multiplicative update rules derived from a

gradient descent method; the main advantage of these rules being that they are easy to

implement [137]. The update rules, using the KL divergence, are formulated as follows:
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H← H�WT ( R
WH)

WTJ
(2.24)

W←W � ( R
WH)HT

JHT
(2.25)

Where J ∈ RM×N≥0 is a matrix of ones, � denotes the Hadamard product (element-wise

multiplication) and the division is understood element-wise.

The non-negativity constraint has been shown to be useful to make matrix factorisation

learn templates that represent parts of the data [127]. For example, in the context of

monophonic transcription, it is to be expected that the templates learnt by NMF would

relate to the spectral representation of individual notes [133–136]. This fundamental

property explains the popularity of NMF over other matrix factorisation techniques when

semantically interpretable templates are desirable. For instance, techniques such as Prin-

cipal Component Analysis (PCA) or Vector Quantisation (VQ), which are also forms of

matrix factorisation [138], do not enforce non-negativity constraints. As a result, coeffi-

cients cancellations allow factorisations in which the templates do not represent parts of

the data.

The generalised β-divergence offers a generalised closed form for a family of divergences

parametrised by β. It includes Euclidean distance (β = 2), Kullback-Leibler (KL) and

Itakuro-Saito (IS) divergences as limit cases as β → {1, 0}, respectively :

Dβ(x|y) =


xβ

β(β−1) + yβ

β −
xyβ−1

β−1 β ∈ R\{0, 1}

x log
(
x
y

)
− x+ y β = 1

x
y − log

(
x
y

)
− 1 β = 0

(2.26)

The β-divergence was proposed for use in NMF as a generalised measure of the recon-

struction error in [139] and later in [140]. Let us denote β-NMF the NMF factorisation

obtained when minimising the β-divergence reconstruction error Dβ(R|WH). A set of

multiplicative update rules, parametrised by β can then be derived [141]:
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H← H�WT
(
R� (WH)(β−2)

)
WT (WH)(β−1)

(2.27)

W←W �
(
R� (WH)(β−2)

)
HT

(WH)(β−1) HT
(2.28)

where � denotes the element-wise multiplication, the division is also element-wise.

Penalty terms Υ can be used to encourage certain behaviours in NMF, such as sparse

activation [142] or co-ocurrence constraints [143]. The cost function to minimise with

respect to H, W and Υ in order to learn the factorisation is then:

Dβ(R|WH) + αΥ (2.29)

where α is a parameter to control the weight of the penalty. The multiplicative update

rules that can be derived to solve this optimisation problem depend on the penalty that

is applied. For example, with the application of sparse activation constraints, the β-NMF

multiplicative update rules given in equations (2.27) and (2.28) typically become [144]:

H← H�
[
WT

(
R� (WH)(β−2)

)
WT (WH)(β−1) + αΨH

]ϕ(β)

(2.30)

W←W �
[ (

R� (WH)(β−2)
)
HT

(WH)(β−1) HT + αΨW

]ϕ(β)

(2.31)

where ΨH and ΨW typically describe the gradient of the penalty term, α controls the

weight of the penalty and ϕ(β) is a parameter that varies with β and the penalty used

to ensure descent of the cost function at each iteration.

A range of penalised NMFmethods are considered for the detection of metric modulations

in Chapter 7.

2.7 K-means Clustering

K-means clustering aims at partitioning a large number of data points (the observations)

into a fixed number of clusters K defined beforehand. Each observation is assigned to the
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cluster with the closest mean. The cluster centroid, which is the mean of the observations

it contains, may then be regarded as a prototypical representation of the cluster content.

The partition of the observations is optimised by minimising a within-cluster cost that is

a distance between the cluster centroid and all the cluster elements, typically the squared

euclidian distance. Let R ∈ RM×N be the observations matrix, whose columns are N

observations vectors of dimension M so that R = (r1, ..., rN ), Z = {z1, ..., zK} be the

set of cluster centroids and C = {C1, ..., CK} be the set of clusters. The assignment of

each one of the N observation vectors to exactly one of the K cluster seeks to minimise

the function ∑
r∈R

min
z∈Z
||r− zi||2 (2.32)

where || · || denotes the euclidian distance operator.

Solving this optimisation problem is computationally difficult but algorithms such as the

standard Lloyd’s algorithm guarantee a quick convergence to a local minimum in the

observation data space [145]. It is structured as follows:

1. Initialisation step: Choose K cluster centroids {z1, ..., zK}.

2. Assign each observation r to the cluster having the nearest centroid.

3. Update each cluster centroids zi to be the mean of the clusters generated in step

2: zi = 1
|Ci|

∑
r∈Ci

r. Then compute the difference between the old and new centroid.

4. Repeat steps 2 and 3 until the set of cluster centroids {z1, ..., zK} does not vary

anymore. In practice, this is implemented by stopping the iterative updates when

the variation of the cluster centroids falls below a given convergence threshold.

Several approaches for choosing the initial centroids are possible, two of which are most

commonly used. The first consists in arbitrarily picking K observations from R and use

these as cluster centroids. The second consists in randomly assigning each observation r

to a cluster and then computing the cluster centroids as in the update of step 3. This has

the effect of locating the initial means near the centre of the data distribution. Given that

Lloyd’s algorithm only converges towards a local minimum, the clustering result depends

on the initialisation. Arthur and Vassilvitskii proposed an improved initiation strategy,
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named “K-means++”, that they found to lead to better clustering results [146]. The idea

in their approach is to choose initial cluster centroids that are more uniformly distributed

in the data space. They implement this constraint by performing the initialisation step

as follows:

1. (a) Choose the first centroid z1 = r where r is picked uniformly at random in the

observations space.

(b) Take a new centroid zi, choosing r with probability d(r)2∑
r∈R

d(r)2
where d(r) is the

shortest distance from an observation to the closest centroid already chosen.

(c) Repeat step (b) until K centroid are chosen.

The uniformity of distribution of the centroids is effectively enforced by step 1 (b) in

which the probability for choosing an observation as the new centroids is proportional to

the squared shortest distance between the observation and the closest centroid already

chosen. In other words, this strongly favours observations that are located far apart from

existing centroids in the observations space, thereby globally favouring uniformity of the

centroid locations distribution. The following steps are identical to Lloyd’s algorithm.

K-means is used as a comparison method for clustering in Chapter 7. It was chosen over

other clustering techniques because it is a standard clustering algorithm. We use the

K-means ++ algorithm in all our experiments.

2.8 Harmonic and Percussive Sound Separation using Me-

dian Filtering

Fitzgerald proposed a method to separate harmonic and percussive parts of an audio

recording by applying median filtering to the audio spectrogram [147]. The working

principle of this technique effectively consists in separating energy distributions that

form vertical and horizontal lines in the magnitude spectrogram respectively. Apply-

ing median filtering across successive frames suppresses vertical lines and thereby can

be seen as an enhancement of the horizontal structures. Conversely, applying median
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filtering across the frequency axis suppresses horizontal structures and can then be seen

as an enhancement of vertical structures. Fitzgerald applied this technique to percus-

sive/harmonic separation on the grounds that percussive events typically result in short

broadband energy bursts (i.e. vertical lines) and steady state harmonic sounds result in

a series of horizontal lines representing the energy of the partials. Harmonic and percus-

sive sound separation is beyond the scope of this thesis but this technique generalises to

any multi-dimensional feature, hence its use to enhance horizontal structures in a rhyth-

mogram feature (cf. Chapter 7). We briefly describe the calculation procedure below,

following [147].

Given an input vector x(n), the median filterM can be defined as:

M : x(n) 7→ median

[
x

(
n− `− 1

2
: n+

`− 1

2

)]
(2.33)

where ` is odd and defines the number of samples over which the median filtering is

applied.

Let us notate the audio magnitude spectrogram X, so that xn is the nth spectrogram

frame and xm the mth frequency slice. Then, a percussion-enhanced spectrogram frame

pn is computed by median filtering xn:

pn =M{xn, `perc} (2.34)

where `perc is the length of the median filter used to filter out horizontal lines and there-

fore enhance percussive (i.e. vertical) structures. A percussion enhanced spectrogram P

is then constructed by concatenating the percussion-enhanced frames pn. Similarly, a

harmonic-enhanced spectrogram H is constructed by concatenating harmonic-enhanced

spectrogram slices hm, obtained by median filtering spectrogram frequency slices xm:

hm =M{xm, `harm} (2.35)

where `harm is the length of the median filter used to enhance harmonic (i.e. horizontal)

structures.
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The harmonic and percussion suppressed spectrograms can then serve as a basis to

compute masks to be applied to the original complex spectrogram X̂. Two masking

strategies were proposed. First a hard, or binary, masking, where each spectrogram bin

is assigned either to the harmonic or percussive part, hence each element of the masks

being defined as:

MH(m,n) =

 1 if H(m,n) > P(m,n)

0 otherwise
(2.36)

MP(m,n) =

 1 if H(m,n) < P(m,n)

0 otherwise
(2.37)

Alternatively, a soft masking strategy can be employed, based on Wiener Filtering:

MH(m,n) =
[H(m,n)]v

[H(m,n)]v + [P(m,n)]v
(2.38)

MP(m,n) =
[P(m,n)]v

[H(m,n)]v + [P(m,n)]v
(2.39)

where v is the element-wise exponent, typically set to 1 or 2. The complex harmonic and

percussion-enhanced spectrograms are then computed as

Ĥ = X̂�MH (2.40)

P̂ = X̂�MP (2.41)

where � indicates element-wise multiplication and X̂ is the complex spectrogram. This

last operation enables the inversion of the filtered complex spectrogram back to an audio

signal.

Harmonic-Percussive separation was originally introduced to be applied to the audio

spectrogram, for source separation. In this thesis it applied to the metergram, and
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used as a pre-processing step in our metrical structure based segmentation procedure

presented in detail in Chapter 7.

2.9 Markov Models

First introduced in the 1960s, Hidden Markov Models (HMM) have since proven to be

precious tools for analysis of time series data. In the audio domain, they are particu-

larly well-known for speech recognition applications [148, 149]. In the music domain,

HMMs have become a standard approach for chord recognition, see for example [150–

153], but have also been used for key estimation [154], structural segmentation [155] and

transcription [133, 156]. In this thesis, a HMM is used as part of the metric modula-

tion detection scheme introduced in Chapter 7. A brief description of Markov chains

and Hidden Markov Models (HMM) is given in this section in order to specify the no-

tions, terminology and notation used in this thesis. For a more exhaustive and detailed

description of HMMs we refer the reader to Rabiner’s reference tutorial [149].

2.9.1 Markov Chain

Let us consider a system that may be described as being in a particular state at any

time. The set of all K possible states for the system is labelled state space:

S , {ψ1, ψ2, · · · , ψK} (2.42)

At every time step t, a change of state occurs (possibly back to the same state). In a

probabilistic framework, the probability of being in state k at time t is conditioned on

all preceding states. A system satisfying the property such that the state at any time qt

is conditioned only on the preceding state qt−1, which is expressed as:

P (qt = ψj |qt−1 = ψi, qt−2 = ψk, · · · ) = P (qt = ψj |qt−1 = ψi) (2.43)
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qt−1

P (qt|qt−1)
qt

P (qt+1|qt)
qt+1

Figure 2.10: A Markov chain over three time steps. The arrows represent
conditional dependence. qt is the state at time step t, and P (qt+1|qt) is the transition

probability from state qt to state qt+1.

is therefore called a first order Markov chain. This system having only a first order

temporal conditional dependence, the state transition probabilities can be defined as:

pij = P (qt = ψj |qt−1 = ψi) (2.44)

where 1 ≤ i, j ≤ K and pij ∈ [0, 1]. The transition probabilities moreover obey the

standard stochastic constraint:
K∑
j=1

pij = 1 (2.45)

A state transition probability matrix Θ, in which each entry is a pij , then characterises

all possible transitions. A schematic representation of a first order Markov chain is given

in Figure 2.10. Note that systems incorporating a conditional dependence on the N

preceding states are then known as N th order Markov chains.

2.9.2 Hidden Markov Model

The Markov chain could be called an observable Markov model since the output of the

process is the state at each time step. In other word, the states of the model itself are

observable. In the context of musical analysis, say for example chord recognition, the

states could correspond to chord labels. Therefore a Markov chain represents observable

chord labels. However, in audio-based processing the chords labels are not directly

observable and must be inferred from the audio signal or suitable features thereof. The

hidden Markov models extend the concept of Markov chain by involving two layers. The

lowest layer is visible and therefore represents the observations (i.e. the audio signal, or

features thereof). The highest layer is a Markov chain representing the underlying states

of the system (the musical feature of interest, e.g. chords), which is not visible, hence

the name ‘hidden’. It is then considered that the observations may be explained by the
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qt−1

ot−1

P (qt|qt−1)

π
(
ot−1|qt−1

)
qt

ot

π
(
ot|qt

)
P (qt+1|qt)

qt+1

π
(
ot+1|qt+1

)
ot+1

Figure 2.11: Illustration of a Hidden Markov Model. The hidden layer of the
model corresponds to the Markov chain of Figure 2.10. The lower layer represents
the observations. Arrows represent conditional dependence. At each time step, the

observations are conditioned only on the current state.

hidden states of the system. The two layers are connected to each other via emission

probabilities, which provide a statistical description of how observations relate to hidden

states. Furthermore, the observation at time t, notated ot, is conditioned only on the

state of the Markov chain at this time, with emission probability π
(
ot|qt

)
. This structure

is illustrated in Figure 2.11.

In a typical MIR scenario, the goal is to uncover the hidden state sequence given the

observations (i.e. the chord sequence from the signal). This is a difficult problem in

general. However, the Viterbi algorithm offers an efficient way to find the most likely

state sequence given the observations and the HMM [149, 157, 158].

The choice of the model parameters, i.e. state space, state transition probabilities and

emission probabilities, is highly task-dependant. While choosing an appropriate state

space is usually straightforward, deriving state transition probabilities and emission prob-

abilities is not trivial. Typically these probabilities can either be set manually, perhaps

using prior or expert knowledge, or learnt from data. Again, these choices are highly

dependant on the purpose of the use of the HMM and on the data available.

One type of use for a HMM is post-filtering [7, 150]. In this setting, a rough estimate

of the information to be extracted has already been obtained from a given processing

pipeline. The HMM is then used to filter this rough estimate with the aim of obtaining

a cleaner, and therefore more accurate and/or meaningful output. HMM post-filtering is

particularly effective for stabilising stuttering estimates. By construction of this use case,
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the desired output (i.e. a state sequence) closely ressembles the input of the filtering stage

(i.e. the observations). A HMM for post-filtering metrical structure change estimates is

described in section 7.4.5. We refer the reader to relevant literature for the description

of other classes of use cases for HMM, e.g. [149].

In this thesis, a HMM is used a post-filtering stage of a segmentation algorithm, in order

to eliminate spurious segmentation. As will be described in further details in Chapter

7, in this case the hidden states represent the different metrical structures present in a

piece. Then, the decoded state sequence characterises the segmentation of the piece and

state transitions correspond to metric modulations.

2.10 Structural Segmentation

At the most granular level music is made of sound events that may for instance be

individual notes occurring over time. The grouping, combination and organisation of

these events results in higher levels of structure, such as motifs, patterns, phrases and

sections. Their relative organisation then defines the overall layout of a piece. Such a

structure is broken down in parts with a musical role. For instance in classical music

these parts could consist of exposition, development and recapitulation of a movement

while in popular music the parts typically correspond to the verse, chorus and bridge of

a song. Note that, in this sense, the organisation of musical events considered as struc-

tural segmentation is distinct from that considered as the metrical structure [41]. The

task of structural segmentation is concerned with automatically retrieving this structural

organisation, i.e. the musical form, from audio recordings9. In this sense, retrieving the

structural segmentation is beyond the scope of this thesis. However, because the met-

rical structure detection approach introduced in Chapter 7 borrows from it, the general

principles of structural segmentation as well as the corresponding evaluation metrics are

briefly presented in this section.
9Although this task can also be performed on symbolic representations, we recall that focus in this

thesis on analyses on audio recordings.
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2.10.1 Musical Dimensions

Musical structure is multifaceted. Composers have a large number of musical dimensions

on their palette to materialise the musical form. Attempting to produce a comprehen-

sive list of such attributes is vain, but one can cite harmony, melody, rhythm, timbre,

instrumentation, repetition, dynamics, audio effects, lyrics or key as examples. Unless

prior knowledge is available for the pieces under study, it is impossible to know a priori

what musical dimension(s) have been used by composers and/or producers to structure

the piece. This is why it is common when attempting to retrieve structural segmentation

from musical audio to make assumptions as to what these dimensions might be. The

first necessary step in the automatic processing then consists in extracting features that

characterise the musical dimensions of interest.

When attempting to retrieve timbre-based segmentation, the Mel-Frequency Cepstral

Coefficients (MFCCs) is a commonly used feature [63, 159]. Similarly, the chromagram

may be used to retrieve structure based on harmony [160] and so may the rhythmogram

for rhythm-based segmentation [161]. However, since the musical form is typically mate-

rialised by the combination of more than one musical dimension, methods that combine

different features [82, 162–164] or operate directly on spectral representation of audio

[155, 165, 166] have been introduced with success.

2.10.2 Musical Structure Analysis Strategies

Once the relevant features have been extracted from the audio recording, the musical

form is to be retrieved from them. A number of approaches have been proposed to

achieve this goal. On the ground of common underlying concepts, they can be loosely

grouped in three categories that were devised in previous work [7, 167], which we briefly

summarise below.

Novelty-based Segmentation

Novelty-based methods for structural segmentation rely on the contrast between succes-

sive sections. It is assumed that a change of section coincides with a change in some
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musical dimensions, and therefore in the feature(s) of interest. The goal is then to re-

trieve the locations of the changes in time in order to determine the boundaries between

two successive sections or segments. The classic approach to novelty-based segmenta-

tion was introduced by Foote in [63]. In a first step, a self-similarity matrix (SSM) of

the evolution of the feature of interest over time is computed. Because this method is

applied to the rhythmogram later in this thesis, let r be the N frames feature vector.

Each element of the self-similarity matrix B ∈ RN×N is the defined as:

B(i, j) = ‖rj − ri‖ (2.46)

where rj and ri represent the feature vector corresponding to the jth and ith frame

respectively and || · || denotes the euclidian distance operator. Though the self-similarity

matrix may be computed using other distance measures. Foote suggested the cosine

distance as a possible alternative that is invariant to the norm of the frame vectors

considered. Nevertheless, the euclidian distance is widely used in the literature and is

used here to facilitate comparison with existing work.

A novelty function is then computed by correlating the main diagonal of the SSM with

a checkerboard kernel. Peaks in this novelty curve are expected to indicates significant

changes in the feature vectors. The elementary kernel κ is defined as:

κ =

−1 1

1 −1

 (2.47)

The size of the kernel defines the timespan over which the novelty calculation is performed

at every step. The size of a block kernel matrix κBlock can be adjusted by computing the

Kronecker product, notated ⊗, of the elementary kernel κ with a matrix of ones, which

size determines the size of the resulting kernel. For example, using a 2×2 matrix of ones:

κBlock =

−1 1

1 −1

⊗
1 1

1 1

 =



−1 −1 1 1

−1 −1 1 1

1 1 −1 −1

1 1 −1 −1


(2.48)
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In order to minimise edge effects, Foote recommended to smooth the block kernel using

a radially tapered Gaussian window:

κGauss(i, j) = exp
(
−ξ2

(
i2 + j2

))
· κBlock(i, j) (2.49)

where ξ > 0 allows for the adjustment of the tapering. Foote suggests choosing ξ to

equate to half the number of columns in κBlock. The kernel may finally be normalised in

order to compensate the influence of its size:

κNorm(i, j) =
κGauss(i, j)∑

i,j
|κGauss(i, j)|

(2.50)

The novelty curve is then obtained by sliding the checkerboard along the main diagonal

of the SSM and summing the element-wise product of κNorm and B:

ζ(n) =
∑
i,j

κNorm(i, j)B(n+ i, n+ j) (2.51)

Segment boundaries are expected to yield local maxima in the novelty curve and may

therefore be recovered by peak picking. As such, the novelty curve is analogous to an

onset detection function in which peaks reveal musical event onsets. An example of

application of the Foote method on the metergram is given in Figure 7.4.

A number of variations on this method have been proposed in the literature. Their

description is beyond the scope of this thesis, we refer the interested reader to [7] (Chapter

4) for a more exhaustive description.

Repetition-based Segmentation

Repetition is a fundamental aspect of music and of particular importance in musical

form. Musical sequences such as phrases, themes or patterns are often repeated. Musical

form may also be defined by repetition. For instance, in popular music the chorus is

typically repeated several times over the course of a piece. Note that in contrast with

novelty-based methods that only produce segment boundaries, repetition-based methods

additionally describe the relation between parts. As such they provide a structural
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analysis that goes beyond the sole segmentation. A major drawback of repetition-based

methods, however, is that they cannot detect segments that are never repeated. Due to

this limitation, repetition-based methods are not applicable to the problem addressed in

Chapter 7. Nevertheless, a few pointers to relevant literature are given in the following.

A range of methods rely on the detection of repetitions for retrieving the structural

segmentation of a piece, see for example [168–170]. SSM are also applicable in this

scenario as repetitions result in off-diagonal path structures [7]. The number and length

of repetitions is related to the number and length of off-diagonal paths. The SSM can

then be processed in order to perform repetition-based structural segmentation [171].

Departing from the SSM-based methods, Weiss proposed a variant of sparse convolutive

Non-Negative Matrix Factorisation (NMF, described in section 2.6) to identify repeated

patterns [172]. The NMF decomposition then learns the repeated patterns and their

temporal activation reveals the musical structural.

Homogeneity-based Segmentation

Sections of a music piece tend to exhibit some degree of homogeneity, with respect to some

musical dimensions such as tempo, instrumentation or key. In other words, the musical

structure may be characterised by a relative consistency of some musical descriptors

within sections. Homogeneity based structural segmentation retrieval then consists in

grouping similar frames of a given feature vector in contiguous clusters.

A variety of methods have been proposed to achieve this. Levy used a Hidden Markov

Model (HMM) to perform the clustering [155]. Given that this formulation of structural

segmentation is effectively a clustering problem, a comparison to standard clustering

techniques such as K-means clustering is also performed. Mc Fee proposed to use graph

theory as an alternative approach to clustering [173]. Note that, by construction, seg-

ments belonging to the same cluster are somewhat similar. In this sense, formulating the

segmentation task as a clustering problem enables an estimation of similarity between

different segments.
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SSM are also usable in this context as homogeneous regions of the audio signal trans-

late into blocks in the SSM. A number of authors have therefore approached the task

of homogeneity-based structural segmentation by exploiting this property [7]. Blocks

on the main diagonal represent the succession of homogeneous regions (i.e. sections)

while off-diagonal blocks reveal the similarity between non-adjacent blocks. As such, off-

diagonal blocks may also be indicators of repetition. In a SSM-based scenario, retrieving

the segmentation consists in recovering the block structure. Enhancement of the block

structure has been proposed to facilitate segmentation retrieval in [174]. Kaiser also

proposed to use NMF to learn a decomposition of the SSM in order to cluster blocks,

and therefore reveal similarities [175].

In Chapter 7, we introduce a method to track zones of stable metrical structure, and

by extension metric modulations, that is analogous to homogeneity-based segmentation,

using the metergram as a basis feature. In particular this is achieved by introducing a

variation of sparse NMF.

2.10.3 Evaluation metrics

Structural segmentation is known as a challenging and multifaceted task. As a result, a

number of evaluation metrics, offering a variety of viewpoints, have been introduced. We

describe in this section a range of metrics used to evaluate segmentation algorithms. All

segmentation algorithms are expected to produce a structural division of a music piece as

an output. As such they are expected to produce, in some shape of form, either segment

boundaries timestamps or segments temporal extent, or locations. On top of specifying

regions or time instants corresponding to segment or segment boundaries respectively,

some algorithm also aim at labelling the sections, producing labels such as “verse” and

“chorus” or “A” and “B” for instance. In the work presented here, we do not address the

issue of the semantic label assignments. In other words we do not intend to evaluate if

a segment labelled as a “verse” effectively corresponds to a verse and not another label

(e.g. a chorus). As a result the metrics we present here are not sensitive to the labels

of the segments. Some of them are sensitive to segments clustering, however. Then it
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does not matter if verses are effectively labeled as “verses”, as long as all verses receive

the same label - i.e. the belong to the same cluster.

As we will see later in Chapter 7, all of the metrics described below individually only

provide a narrow insight into the quality of the segmentation, but their combination

enables a far greater depth of analysis.

2.10.3.1 Boundaries Retrieval

Let us first introduce metrics that measure the ability of a system to accurately retrieve

segment boundary positions. It is to be noted at this point that such metrics implicitly

assume a model of structural segmentation whereby segments are delimited by boundaries

that are time instants of zero duration. In other words a transition from one segment to

another is modelled as a sudden change, which constitutes a limitation for this metric.

However, it is common practise when using these metrics to allow a certain tolerance

window in the evaluation to account for the fact that segment boundaries might not be

as sharp as a time instant of zeros duration.

Hit rate

Segment boundaries estimated by the algorithm are regarded as correct — or to

be a ‘hit’ — if they are within a tolerance window from a boundary in the ground

truth. Values for the tolerance window commonly found in MIR literature are 0.5s

[164] and 3s [155]. The MIREX structural segmentation task10 evaluates algorithms

using the hit rate metric both with 0.5s and 3s tolerance. Given the matches be-

tween the ground truth and estimated boundaries, the boundary retrieval precision

recall and F-measure rates are calculated.

Precision =
TP

TP + FP
(2.52)

Recall =
TP

TP + FN
(2.53)

F-measure = 2 · Precision ·Recall
precision+ recall

(2.54)

10http://www.music-ir.org/mirex/wiki/2016:Structural_Segmentation
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Where TP , FP and FN are the number of true positives, false positives and false

negatives respectively. Note that these are standard information retrieval metrics,

which use is therefore not limited to segmentation.

Median Deviation

As opposed to the Hit rate metrics, which assignes a binary value to each boundary

(hit or non-hit), the median deviation aims at providing a quantitative measure

of the distance between ground truth and estimated boundaries. Two median

deviations can be computed: the median true-to-guess (TTG), which is the median

distance (in seconds) from boundaries in ground truth to the closest estimated

boundaries and the median guess-to-true (GTT), which is the median distance (in

seconds) from estimated boundaries to the closest boundaries in ground truth [164].

The choice of the median rather than the mean has the advantage of being robust

against the presence of outliers. As a result the median true-to-guess and median

guess-to-true metrics provide a quantitative measure of the most prominent trend

in terms of segment boundaries location.

2.10.3.2 Frames clustering

Structural segmentation may be interpreted as a clustering process: the audio frames

belonging to a given segment are seen as belonging to a cluster. As a consequence the

pairwise precision, recall and f-measure, which are standard metrics for cluster quality

evaluation, can be used to evaluate the segmentation as suggested by Levy and Sandler

[155]. Pairs of frames from the machine-estimated segmentation and the reference seg-

mentation are compared. The pairwise precision rate, ppr , pairwise recall rate, prr , and

pairwise F-measure, pfm are calculated as

ppr =
|Pe ∩ Pa|

Pe
(2.55)

prr =
|Pe ∩ Pa|

Pa
(2.56)
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pfm = 2 · ppr · prr
ppr + prr

(2.57)

where Pe is the set of similarly-labelled pairs of frames estimated by the machine and Pa

is the set of similarly-labelled pairs of frames annotated in the human-generated reference

ground truth.

This metric effectively quantifies the amount of overlap between segments generated

by the machine and the human ground truth. As such, it is very complementary to

the boundaries retrieval metrics introduced previously, which exclusively quantify the

accuracy of the boundary locations.

2.10.3.3 Normalised conditional entropies

Here again, the structural segmentation is represented as a sequence of frame labels,

each label denoting the frame membership to a cluster (i.e. a segment). Let A and E be

the sequences of annotated and machine-estimated segmentation, respectively. Using the

conditional entropy as an evaluation metric for structural segmentation was originally

proposed by Abdallah in [176]. The conditional entropy S(A|E) measures the amount

of ground truth segmentation information missing from the estimated segmentation.

Similarly, the conditional entropy S(E|A) measures the amount of spurious information

in the estimated segmentation. Just like the mutual information metrics presented in

[176], the conditional entropy does not have an upper bound and the scale of the metric

depends on the number of segments present in a song. The more segments and the

more uniform their distribution, the higher the conditional entropy. This mathematical

property has the disadvantage of not allowing a meaningful comparison of two musical

pieces with a different number of segments.

Lukashevich introduced the over and under segmentation scores, which are based on

conditional entropy, with an additional normalisation applied so that a meaningful com-

parison of songs with a different number of segments is made possible [177]. The over-

segmentation So and under-segmentation Su scores are defined as:

So = 1− S(E|A)

log2Ne
(2.58)
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Su = 1− S(A|E)

log2Na
(2.59)

where Ne and Na are the number of estimated and annotated segment clusters respec-

tively. We refer the reader to the original publication for a detailed derivation of these

expressions [177]. Both scores range from 0 to 1. They are maximal when the annotated

and estimated segmentations match perfectly and tend towards 0 when the frame labels

are randomly attributed. Note that the interpretation of these scores is counter-intuitive:

the over (resp. under) segmentation score is takes small values when the estimated struc-

ture highly over (resp. under) segments the piece and conversely.

2.11 Summary

The theoretical concepts and computational techniques that are either underpinning or

used in this thesis were introduced in this chapter. Because we are concerned here

with rhythmic properties of music, we first introduced the music theory concepts and

corresponding nomenclature on which the work presented in all subsequent chapters

relies.

A sizeable body of work focusing on the automatic analysis of rhythmic properties from

musical audio recordings already exists. In sections 2.2 to 2.5 we review computational

methods and representations that are relevant to the analysis of metric modulations,

such as onset detection, rhythmograms, metrical structure and tempo estimation. Onset

detection is typically the first processing step in a method for rhythmic analysis and is

therefore used in the processing involved in Chapters 4 to 7. Similarly, we demonstrate

in Chapters 4 and 5 that the rhythmogram captures information related to the metrical

structure of music and is therefore exploited for the detection of metric modulations

in Chapter 7. Since the estimation of the tempo and metrical structure are related

to the task of metric modulation tracking, the corresponding processing principles and

strategies presented in sections 2.4 and 2.5 are referred to in Chapters 4, 5 and 7.

The detection of metric modulations is formulated here as a segmentation retrieval prob-

lem, which will be described in greater details in Chapters 6 and 7. Although it is, to
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the best of our knowledge, the first time this type of approach is proposed to address the

detection of metric modulations, it bears formal similarities with the well known task of

structural segmentation. For this reason, the paradigm of structural segmentation along

with the standard evaluation metrics were presented in section 2.10. However, a num-

ber of mathematical models, such as Hidden Markov Models, and numerical optimisation

techniques, such as Non-negative Matrix Factorisation, are employed in subsequent chap-

ters of this thesis and therefore form a pre-requisite for the presentation of segmentation

retrieval schemes. For this reason, these were presented in sections 2.6 to 2.9, prior to

the introduction of structural segmentation.



Chapter 3

Datasets

Typically, the performance of a given algorithm is estimated by evaluating how well it

reproduces a ground truth. In order to provide robustness against outliers and general-

isability of results, the evaluation is typically carried out on a large number of examples

from which statistics are derived. In this context, evaluating automatic musical features

estimation systems in a formal and quantitative way requires a corpus of audio recordings

as well as the corresponding reference ground truth, produced in relevance to a specific

task (e.g. structural segmentation, beat tracking etc.). In this chapter, we present the

datasets of audio recordings and reference annotations used for evaluation purposes in

this thesis. In particular, we briefly describe contents and properties relevant to the tasks

addressed using them. Some of these are standard datasets that have been widely used in

MIR research for several tasks. In addition, we introduce two new datasets for the eval-

uation of metrical structure and metric modulation estimation algorithms respectively

and describe their creation process and contents.

Music tends to be equivocal by nature, which means that an absolute ground truth might

not always exist. As a consequence, human expert annotations are commonly used as a

proxy for ground truth in order to evaluate musical feature estimation systems. However,

it has been shown that different people may exhibit different reactions or behaviours and

therefore potentially produce different annotations in response to music [21, 178]. In

this context, producing a rigorous evaluation of algorithms against “ground truth” that

contains variability itself is not trivial. Over the last two decades, it has been common

72
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Figure 3.1: Simple example of several possible segmentations of the same piece

practice to collect one annotation per excerpt and evaluate the algorithm against it. But

this is merely an evaluation of the ability of the algorithm to reproduce the annotator’s

interpretation of the piece. In response to this observation, it has been shown that

collecting multiple annotations and assessing the level of agreement (or disagreement)

between annotators enables more meaningful and more generalisable evaluation [10, 179,

180]. Note that although it has not been largely addressed in music-related tasks, this

problem is not specific to music, see for example [181]. In Section 3.7, an analysis of

the inter-annotator agreement in the newly introduced GTZAN-Met dataset is reported.

The benefits of having multiple annotations for the interpretation of the results of the

evaluation of algorithms using this dataset are shown in Chapter 4.

3.1 SALAMI Dataset

Emerging from the Structural Analysis of Large Amounts of Musical Information (SALAMI)

project, the SALAMI dataset was created for evaluation of structural segmentation algo-

rithms [182]. Most structural segmentation test sets provide annotations of the musical

structure either as letter markings (eg. AABA) or functional annotations such as Verse,

Chorus, Bridge etc. However, the structural segmentation of a piece can be interpreted

in multiple ways [169], as illustrated on an example in Figure 3.1. When transcribing the

structural segmentation of a piece, annotators effectively provide one possible interpre-

tation of this structure. One may observe that the multiple segmentation interpretations

highlight a hierarchical organisation of the structure of a piece, which is not captured

by annotations at a single level (e.g. verse, chorus etc.). This is a difficulty for the

evaluation of segmentation algorithms, as evaluating against annotations at a given (and

unique) level of granularity may give distorted measure of the algorithm performance,

or at least is a truncated analysis. The SALAMI dataset improves on this aspect by
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a ab

A B C

b ba c d c d a b ba

B

Intro Verse Chorus Verse

Figure 3.2: Example of segmentation annotation from the SALAMI dataset
(track 6, annotation 1). The annotation is produced at two levels of granularity
denoted by lowercase and uppercase letters respectively. Functions, such as Intro,
Verse and Chorus, are also annotated and are typically associated to segments denoted

by uppercase letters

providing annotations of structural segmentation at two different granularity levels, de-

noted by lower case and upper case letters respectively. By this means, the annotations

locate the segment boundaries, specify segments similarity and include a description of

the hierarchical organisation of the structural segmentation (e.g. segment A is made of

the sequence of sub-segment a and b). In addition, semantic functions, such as Verse

Chorus, or Bridge are provided. They typically refer to segments described by uppercase

letters. An example of annotation from the SALAMI dataset is given in Figure 3.2.

Moreover, each track was annotated by one or two annotator(s), so that inter-annotator

disagreement can be assessed in the latter case.

Initially collected as a unit, the SALAMI dataset is split in two parts that have distinct

purpose: a publicly available part, open for researchers to evaluate their algorithms,

and a hidden part used in the MIREX structural segmentation task. In the MIREX

challenge, only the uppercase letters segmentation layer is used. The publicly available

dataset1 is made of 827 audio files and corresponding annotations. The results of the

MIREX structural segmentation task on the SALAMI dataset are used to compare the

segmentation results obtained in Chapter 7.

3.2 SMC Dataset

Holzapfel et. al. proposed a method to identify challenging tracks for beat tracking

without relying on annotated ground truth in [3]. Essentially, it consists in measuring

the disagreement between a committee of automatic beat trackers, thus considering as
1https://ddmal.music.mcgill.ca/research/salami/annotations
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challenging the tracks that result in a high disagreement, and conversely. Using this

approach, they selected a corpus of 270 music samples that are challenging for beat

tracking amongst a database of 678 manually chosen excerpts of 40s length. The authors

restricted their selection to western music “because it is not always apparent how the

notion of beat is used in music of other cultures”. To this set were added 19 excerpts

deemed as easy using the same approach (i.e. resulting in a strong agreement between

beat trackers). The resulting 289 excerpts were then manually annotated. In this pro-

cess, annotators had the possibility to reject a piece if the annotation process seemed

intractable to them. 72 pieces were indeed rejected this way. The remaining 217 excerpts

constitute what we refer to as the SMC dataset2 here. The musical genres represented

are predominently classical music, romantic music, film soundtracks, blues, chanson and

solo guitar compositions.

Holzapfel et. al. argue that the 72 pieces that humans could not successfully annotate

are not helpful to improve the state of the art in beat tracking research. Given that

automatic beat tracking consists in retrieving the positions of beats as perceived by

human listeners, it is indeed unclear how to evaluate a beat tracker on a piece for which

humans cannot find a beat. This is echoed by the discussion of the outcomes of the

analysis of inter-annotator disagreement on the GTZAN-Met dataset detailed in Section

3.7, which seem to suggest that the notion of beats, and more generally of pulse, is not

applicable to all musical styles, even within the western genres.

Nevertheless, the SMC dataset contains 198 excerpts that are challenging for automatic

beat trackers but tractable by humans, therefore providing a valuable resource for the

advance of beat tracking research. The SMC is used in Chapter 5 for a slightly different

purpose. It provides excerpts that are challenging for beat trackers and are therefore

likely to make algorithms fail. It also provides a subset of tracks for which beat tracking

is expected to be successful. As such it provides a useful test set for evaluating the

reliability estimation method proposed in Chapter 5.
2http://smc.inesctec.pt/research/data-2/
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3.3 GTZAN audio dataset

Originally curated manually by Tzanetakis to evaluate a genre classification algorithm

in 2002 [183], the GTZAN dataset has been used extensively in the last decade — Sturm

counts at least 100 published papers using it [184]. The dataset is composed of 1000

audio music excerpts of 30 seconds duration from commercial recordings grouped in 10

genre classes, namely Blues, Classical, Country, Disco, Hiphop, Jazz, Metal, Pop, Reggae

and Rock, with 100 tracks in each, all presented as a mono PCM .wav file 16bit sampled

at 22.05kHz. The tracks are labelled with their genre and an index ranging from 00000

to 00099 which results in track labels such as ‘pop.00055 ’. No other identifiers (such as

track and artist name) are provided with the dataset.

Sturm carried out an exhaustive study of the content of the dataset in [184]. Using

automatic fingerprinting, he was able to identify a very large portion of the recordings

present in the dataset. A number of tracks not identified automatically were identified

manually by a variety of contributors, but not all the dataset contents have been identified

yet. This identification clearly reveals strong biases in the composition of the dataset that

limit the representativity of some genre classes. For instance, most of the reggae tracks

are by Bob Marley. Undeniably, Bob Marley had an enormous influence on the genre,

but the generalisability of the classification performance of any algorithm on this reggae

class is questionable as a result. Moreover, Sturm identified several types of singularities

of the dataset (that he named “faults”) such as mislabelling, distortions and repetitions3

and demonstrated how they could affect the scope, if not the validity of the conclusions

they are used to draw on genre classification [184].

With 1000 tracks, the GTZAN dataset is not among the largest publicly available

datasets, but it contains a good degree of musical variety and a complete manual anno-

tation is manageable. Two sets of key reference annotations4,5 [185] as well as a set of

tempo annotations6 exist for the GTZAN dataset. The variety of annotations available
3In addition to the published papers, the “faults" and dataset content are listed online respectively:

http://www.eecs.qmul.ac.uk/∼sturm/research/GTZANtable2/index.html
http://vbn.aau.dk/files/206248560/GTZANindex.txt

4https://github.com/alexanderlerch/gtzan_key/blob/master/gtzan_key/KeyEnumeration.txt
5http://visal.cs.cityu.edu.hk/downloads/#gtzankeys
6http://www.marsyas.info/tempo/genres_tempos.mf
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for this dataset make it particularly valuable. The musical excerpts being 30 seconds

long, it may also be assumed that they will feature a relatively stable metrical structure

rhythmic content. For these reasons, the GTZAN was chosen as the corpus for which to

create a new set of metrical structure annotations, which we describe in Section 3.5.

3.4 GTZAN-rhythm annotations corpus

Simultaneously, but independently of the introduction of the GTZAN-Met dataset, a

second corpus of rhythmic annotations for the GTZAN dataset was released by Marchand

et. al. [186]. For conciseness, it will be referred to as GTZAN-Rhy in the remainder of

this document The GTZAN-Rhy corpus consists of annotations of the beat and downbeat

for every track. The beat subdivision7 positions were annotated for the swung and

compound meter (labeled as “ternary”) excerpts only. A straight duple subdivision was

assumed otherwise, and the corresponding eighth notes positions were not annotated.

The annotations were produced semi-automatically: an estimate of beat and downbeat

positions was automatically produced and corrected by the human annotator if necessary.

A subdivision (duple or triple) of the beat was automatically generated and manually

modified to align it to the actual position of the eighth notes, from which an estimation

of the swing ratio was performed. The annotations were produced by two annotators

(both researchers and practicing musicians) each one annotated half of the dataset. In

order to give a quantitative estimate of the reliability of the annotations, 5% of the tracks

(tracks numbered 95 to 99 for each genre) were annotated by both annotators and the

agreement between them measured. An inter-annotator agreement F-measure of 0.91 for

beat positions is reported.

3.5 GTZAN Metrical Structure annotations corpus

Sets of annotations for several metrical levels (typically beat and downbeat) are already

available, see for example the Isophonics dataset8 [187], the Million Song Dataset9 [188]
7Typically corresponding to the eighth notes positions
8http://isophonics.net/datasets
9http://labrosa.ee.columbia.edu/millionsong/
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or the GTZAN-Rhy dataset described in Section 3.4. To the best of our knowledge, there

is no dataset for which audio recordings and annotations of all the metrical levels are

publicly available, however. In this section, we introduce a corpus providing annotations

of the pulse rate of every metrical level present in each track of the GTZAN dataset. It

was first made public in [29]. For convenience, we will refer to it as GTZAN-Met in the

remainder of this document.

Over the last two decades, it has been common practice to collect one annotation per

excerpt and evaluate algorithms against it. Since music may be ambiguous, there may

exist several interpretations of the same piece and it may not be trivial to state which

one is more “correct” that the other(s). One way to account for the inherent ambiguity of

music in the evaluation of automatic algorithms is to collect multiple annotations for the

same piece. It has then be shown that doing so and assessing the level of agreement (or

disagreement) between annotators provides extra insight and is therefore a step towards

more complete, more meaningful and more generalisable evaluation [10, 179]. Note that

although it has not been largely addressed in music-related tasks, this problem is not

specific to music, see for example [181]. In order to handle the multiplicity of annota-

tions, a number of methods to combine them in a single reference ground truth have been

proposed in computer vision [189–192]. In such a scenario, the descriptor considered as

ground truth may be, for instance, the intersection of all annotations, or the mean of all

annotations. Flexer proposed to use the inter-annotator disagreement to estimate the

upper limit of performance that any algorithm can possibly reach on a given dataset,

and applied it to the task of music similarity estimation [180]. All aforementioned stud-

ies suggest that the provision of multiple annotations can bring an extra depth to the

interpretation of the evaluation results.

Following this idea, multiple annotations were produced for every track of the dataset.

The annotation procedure was carried out by a total of 11 different professional drum-

mers, 6 of whom received formal academic training. Each annotator has a unique and

anonymous identifier number. Annotator 1 annotated the entire dataset once while the

others covered portions of the dataset of various sizes, depending on the time they could

commit to the task. At the end of the annotation campaign, the dataset had been
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Table 3.1: Contents of rhythmic annotations corpora for the GTZAN dataset

GTZAN-Rhy [186] GTZAN-Met

Contents Beat, Downbeat and
swing 8th notes positions All metrical levels rates

Annotators 2 Researchers/authors 11 Professional Drummers

Total number of
Annotators per track 1 (2 for 5% of tracks) 2 (3 for 60% of tracks)

entirely annotated twice and a bit more than 60% of the tracks by three different anno-

tators. The musical excerpts being 30 seconds long, it was hypothesised that they will

feature a relatively stable rhythmic and metrical content so that a single annotation is

provided for the whole duration of each track. After having listened to all tracks in the

dataset, we can confirm that this hypothesis is verified, as the overwhelming majority of

excerpts feature stable rhythmic content. The respective contents of the GTZAN-Met

and GTZAN-Rhy annotation corpora is summarised in Table 3.1.

The annotation process was carried out using a web interface, so that the annotations

collection was easily centralised. Before starting the annotation task, annotators were

shown the interface and received instructions about the process. The annotators were

presented with one track at a time and asked to annotate the pulse rate of every under-

lying metrical level they could hear in the music. Deciding on the depth of the metrical

structure — i.e. where to set the limits of meter and hyper meter and of the shortest sub-

division — was left to the annotators’ judgment. They could achieve this either by filling

in the BPM value directly or by tapping the adjacent button to automatically measure

the tapping rate. The annotations they provided had to match the metrical hierarchy

format described in Section 4.2, i.e. that the pulse rates they annotate must be related

to each other in integer ratios. Annotators had the possibility to mark the absence of

meter or signal an intractable metrical structure by submitting a blank annotation (i.e.

no metrical levels provided). The name of the track being annotated was obfuscated,

so that annotators were not influenced by any preconception about a given genre they

might have. As a consequence, mislabellings listed by Sturm in [184] do not have any

influence on the annotation process. The annotators were listening to the music through

studio quality headphones and were allowed to listen to the tracks as many times as they



Datasets 80

needed. The annotators were not given speed or time constraints to annotate tracks, so

that the quality of annotations did not suffer from time-induced pressure. In order to

prevent concentration loss and decrease of annotation quality, they were, however, lim-

ited to sessions of two consecutive hours of annotations. They could do several sessions,

provided they took at least a 30 minutes break between sessions, but were moreover

limited to 5 hours of annotations per day because the task is tiring. Only one annotator

reached this daily upper limit. Overall, they could annotate around 40 tracks per hour

on average, which is equivalent to 25 hours of continuous work to annotate the whole

dataset once.

3.6 Metric Modulations Dataset

To the best of our knowledge a dataset of audio music recordings containing metric mod-

ulation with the corresponding annotations does not exist. We introduce such a dataset

here. Because creating a corpus of pieces featuring specific musical features is hard

and extremely time consuming, and in order to minimise personal biases, suggestions

of pieces containing metric modulations have been crowdsourced. The crowdsourcing

request was broadcast in a variety of channels such as academic interest group mailing

lists and social media. The suggestions obtained this way were then filtered. In par-

ticular, for the purpose of the study presented in this document (cf. Chapter 7) only

the pieces featuring relatively abrupt changes from a section of relatively stable metrical

structure to a segment of stable but different metrical structure were kept. This way,

pieces containing gradual changes such as accelerando were not selected. In addition,

we recall that musical pieces with soft onsets and/or with no clear metrical structure

are challenging for automatic rhythm analysis systems (cf. Chapter 5) and that the ex-

traction of the metrical structure typically relies on lower level features such as an onset

detection function. Since the creation of this dataset is aimed at enabling the evaluation

of metric modulation estimation systems, only pieces with hard onsets and clear metrical

structure — i.e. for which the necessary underlying rhythmic descriptors can be reliably

estimated — were kept so that the evaluation carried out using it actually focus on the
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Figure 3.3: Metrical structure annotations collection interface
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Table 3.2: Metric modulations dataset contents

Avg/Track Total

Number of tracks - 67
Number of segments 6.6 445
Number of modulations 5.6 378

ability of a system to detect metric modulations. The complete list of tracks selected

this way is given in appendix A.

Once a corpus of music pieces had been created, they were then annotated in two phases.

Firstly, the beat and down beat positions were semi-automatically annotated. Beat and

downbeat positions estimation was performed using the Vamp plugin implementation10

of the algorithm presented in [121]. They were then exhaustively manually checked and

corrected if necessary, using Sonic Annotator [193]. In addition, the segment boundary

locations were annotated. The precise location of such a boundary may be very ambigu-

ous. Nevertheless, in order to maximise the consistency of the annotations, the segment

boundaries were annotated so that they coincide with the first down beat of the new

segment.

In a second phase, all the metrical level pulse rates were annotated for each segment

previously annotated. Recall that the pieces have been chosen because they contain

modulations from one relatively stable metrical structure to different but stable metrical

structure. As a result the metrical structure within a segment is assumed to be consistent.

The metrical level pulse rates were annotated using the same procedure as for the creation

of the GTZAN-Met dataset described in Section 3.5. A summary of the contents of the

dataset is given in Table 3.2. A total of 67 tracks made of 445 segments were considered.

Producing multiple annotations for each track is expensive and time consuming and was

not practically feasible for this dataset in the given timeframe. Therefore a rigorous

assessment of the inter-annotator disagreement is not possible so far and left for fu-

ture work. However, given that the metrical level pulse rates annotation procedure is

identical to the one that produced the GTZAN-Met dataset, it may be assumed that

inter-annotator agreement with similar properties would be observed.
10http://www.vamp-plugins.org/download.html
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3.7 Inter-annotator agreement analysis

In this section, we present an analysis of the inter-annotator (dis)agreement that may

be derived from the multiple annotations available for the GTZAN dataset. In the case

of the GTZAN-Rhy corpus, the only quantitative information about inter-annotator

agreement available was derived from an evaluation performed on a small subset of the

dataset, as opposed to the GTZAN-Met corpus for which the information is retained

on a much finer grained level, as each track received multiple annotations. As a result,

most of the analysis of inter-annotator agreement will be carried out on the GTZAN-

Met dataset and the GTZAN-Rhy corpus is used as a point of comparison when it is

relevant. Nevertheless, the GTZAN-Rhy dataset provides rhythmic information that is

not present in the GTZAN-Met corpus (e.g. swing ratio), which enables the analysis of

its correlation with inter-annotator disagreement.

3.7.1 Quantifying the Inter-annotator agreement

In order to quantify the inter-annotator agreement the metrics introduced in Section

4.4.1 are used here. Then, for each track, the agreement between a pair of annotations

is quantified by a F-measure score.

Figure 3.4 shows some statistics of the distribution of inter-annotator agreement per

genre class for the GTZAN-Met corpus. The mean inter-annotator agreement F-measure

across the entire dataset is 0.88, and is represented as a horizontal dashed line. This

suggests a high average inter-annotator agreement at the corpus level. For most of the

genres, the relatively narrow distribution of F-measure suggests a consistent the level of

agreement. The agreement also tends to be very high with mean values often around or

above 0.9 and median equal to 1.0 for 7 out of 10 genres. In comparison, in the case of

the GTZAN-Rhy corpus, the authors report an inter-annotator agreement F-measure of

0.91 for beat positions. These results suggest a high level of agreement overall in both

corpora. Nevertheless, significantly wider distributions and lower mean and median

values characterise a significantly larger level of inter-annotator disagreement for the
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Figure 3.4: Inter-annotator agreement for every genre. The box extends from
the lower to upper quartile values of the data, with a red line at the median while the
green dot is the mean. The whiskers extend from the box to show the range of the data,
excluding the outliers 11. The black dashed horizontal line is the mean F-measure for

the entire corpus.

tracks in the classical and jazz genre classes on the GTZAN-Met corpus. In the following

sections, the cases of disagreement are investigated further.

3.7.2 Inter-annotator disagreement and metrical hierarchy

Are all the metrical levels equally likely to generate inter-annotator disagreement or are

some of them more challenging to annotate than others? This is the question to be

addressed in this section.

When annotating the metrical structure, it is necessary for the annotators to make

a decision about the depth of the hierarchy, i.e. to decide what are the highest and

lowest metrical levels. The highest level corresponds to longer periodicities and the

potential ambiguity of its determination resides in the fact that several candidates might

be relevant. Should the highest level correspond to one bar or a 2 bar pattern, for

instance? This highest metrical level lies at the limit between the description rhythm

and structural segmentation. Because it is hard to define a clear boundary between long

metrical cycles and structural segmentation, it can be expected that different annotators

make different judgments. In other words, it can be expected that the highest metrical

level is particularly prone to inter-annotator disagreement.
11The upper whisker will extend to last data point less than Q3+ 1.5× IQR, where IQR = Q3−Q1

is the inter-quartile range and Q3 and Q1 are the third and first quartile respectively. The lower whisker
is similarly obtained with Q3− 1.5× IQR. This configuration is used for all box plots in the remainder
of this thesis
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Figure 3.5: Example of metrical accidental. The red 16th note only is the only
note requiring the metrical structure to be extended below the 8th level to describe the
musical content, and it appears once: it may be considered as a metrical accidental

Similarly, the determination of the lowest level, which features the highest pulse rate,

and also known as tatum, might be subject to some ambiguity. A similar difficulty was

reported by Klapuri in the annotation of tatum [15]. Let us introduce the term metrical

accidental to describe the difficulty with the lowest level. It is used in analogy with

harmonic accidentals, in which case the occasional use of a note outside the current

key (for example an F# in C major) is referred to as an accidental. Similarly, in the

rhythmic counterpart, the occasional use of a subdivision that is not part of the current

metrical structure is referred to as a metrical accidental. Figure 3.5 shows an example of

what may be considered as a metrical accidental: the sixteenth note in the second bar,

highlighted in red. It is the only instance of usage of a sixteenth note subdivision in this

example, so that the metrical structure contains subdivisions up to the eighth note, and

the sixteenth might be seen as an accidental. This example is relatively straightforward

in that the sixteenth note is an accidental. However, in the grey area between clearly

occasional and clearly non-occasional use of a subdivision, the decision is left to the

annotators’ judgment and can therefore be expected to be prone to disagreement.

As a consequence, we hypothesise that extreme levels (i.e. highest and lowest) are more

likely to generate inter-annotator disagreement than other metrical levels. In order to

test this hypothesis, all annotation pairs for which a disagreement between annotators is

found are chosen. Disagreement on at least one level is characterised by an agreement F-

measure inferior to 1.0. Then the position of the metrical level (relatively to the hierarchy

it belongs to) resulting in the disagreement is tracked. Finally, the proportion of metrical

levels leading to disagreement being either the lowest (highest pulse rate), highest (lowest

pulse rate) or other levels for the entire corpus is computed. The results are presented

in Table 3.3. Note that the number of “other” metrical levels varies depending on the
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Table 3.3: Relative position of metrical levels leading to inter-annotator disagreement

Metrical Levels Disagreement proportion

Highest level 28.7%
Lowest level 46.1%
Other levels 25.2%
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Figure 3.6: Inter annotator agreement F-measure vs swing classes from
[2].The box extends from the lower to upper quartile values of the data, with a red line
at the median while the green dot is the mean. The whiskers extend from the box to

show the range of the data, excluding the outliers.

tracks and annotators12.

Nearly half of the metrical levels generating disagreement between the annotators corre-

spond to the lowest metrical level. This result tends to support the idea that this type

of disagreement relates to metrical accidentals and is consistent with Klapuri’s obser-

vation [15]. Typically, in such a case one annotator might have included a high pulse

rate in the metrical hierarchy when the other considered it as an accidental and did not

include it. The highest level accounts for about a quarter of the disagreement cases, and

the remaining 25% correspond to other levels. Overall, about 75% of the disagreement

observed between annotators is relate to the extreme metrical levels.

3.7.3 On swing and inter-annotator disagreement

A duple subdivision of a time unit, e.g. the subdivision of a quarter note in two eighth

notes, implies by default that the longer interval (e.g. the quarter note period) is sub-

divided in two parts of equal length (e.g. the eighth note period). A piece is typically

labelled as ‘swung ’ when the subdivision of a time unit departs from the two equal parts

schema, therefore generating a series of alternating long and short time intervals. The
12Different pieces may have different metrical hierarchy depth. In addition different annotators may

have different interpretations of a given piece
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swing may then be quantified by the ratio of the long to the short interval. The swing

is typically viewed as an element of expressive timing, hence the swing ratio being con-

trolled by the performers. Ratios typically vary from 1:1 to 2:1 while more extreme ratios

(e.g. 3:1 and higher) are observed less often.

The model underpinning the GTZAN-Met annotations only captures isochronous pulse

rates (i.e. is limited to swing ratios such of the form n:1 where n ∈ N) and is thus not able

to accurately capture swing. When presented a swing piece, the annotators therefore had

to approximate the swung metrical level with the closest underlying isochronous metrical

level. For example, let us consider swung eighth notes. Depending on the long-short ratio

and the annotator judgment, they might either be approximated as straight eighth notes

(long-short ratio 1:1), or triplet shuffle (long-short ratio 2:1), which implies an underlying

triplet metrical level. This decision is left to the annotator’s choice, and may therefore

be expected to result in inter-annotator disagreement.

The swing data from the GTZAN-Rhy corpus was used in order to address the following

questions: Is there more inter-annotator disagreement observed in presence of swing

in the GTZAN-Met corpus? Does the swing ratio influence the agreement between

annotators, and if so how?
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Figure 3.7: Inter annotator agreement (IAA) F-measure vs. swing ratio
from [2], for tracks with swing. Each dot represents the inter-annotator agreement

for one track

First, the tracks are classified as “swing” if the swing tag provided in the GTZAN-Rhy

dataset is set to True and “non-swing” otherwise. Then, each track is associated with an

F-measure characterising the inter-annotator agreement from the GTZAN-Met corpus.
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Figure 3.8: Inter-annotator agreement per swing ratio class. The box extends
from the lower to upper quartile values of the data, with a red line at the median while
the green dot is the mean. The whiskers extend from the box to show the range of the
data, excluding the outliers. Note that [2.59,2.79] class only contains 3 scores (Fm = 1.0

in all cases).

Figure 3.6 shows the distribution of inter-annotator agreement for the swing and non-

swing classes. The spread of the agreement F-measure distributions is comparable in

the swing and non-swing classes. Although the mean F-measure in the non-swing class

is slightly lower than in the swing class, the null hypothesis of equality of the mean

F-measures is not rejected by a Mann-Whitney U-test (p-value = 0.16). As consequence,

this classification does not provide any tangible evidence to support the idea that the

presence of swing impacts the level of inter-annotator agreement.

In order to assess the influence of the swing ratio on inter-annotator disagreement, each

track is associated with an F-measure characterising the corresponding inter-annotator

agreement from the GTZAN-Met corpus and the swing ratio collected from the GTZAN-

Rhy corpus. Figure 3.7 shows the scatter plot of the corresponding data. It does not

reveal any salient trend of correlation between the swing ratio and the inter-annotator

agreement. Figure 3.8 shows the same data, segmented by swing ratio classes and does

not reveal any clear pattern either. Note that the [2.59,2.79] class only contains 3 scores

(=1.0). In conclusion, it appears that there is no tangible evidence of a negative impact

of the presence of swing nor of the swing ratio on inter-annotator agreement scores.
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Figure 3.9: Inter-annotator agreement per annotator. The box extends from
the lower to upper quartile values of the data, with a red line at the median while the
green dot is the mean. The whiskers extend from the box to show the range of the
data, excluding the outliers. The horizontal solid and dashed lines represent the mean

and mean ± standard deviation of the mean F-measure across all annotators.

3.7.4 Annotators comparison

Being humans, it is to be expected that the annotators come with their personal bias and

therefore might not all deliver the exact same performance. Then, do some annotators

stand out by disagreeing with the others more than the average? The existence of such

outliers is investigated in this section.

The annotators were free to chose how much time they wanted to commit to the annota-

tion procedure. As a result, they did not all annotate the same number of tracks. While

Annotator1 covered the entire dataset, the others typically annotated between 30 and

300 excerpts, presented to them in random order. For each annotator, the distribution

of its agreement scores is shown in Figure 3.9. It can be observed that annotators 1,2

and 6-11 produce comparable distribution of agreement F-measure. Annotators 3-5 on

the other hand seem to agree less with other annotators. In addition to the distribution

of agreement F-measure per annotator, the mean and standard deviation of the mean

F-measure for each annotator (the green dots in Figure 3.9) are computed. In this con-

text, an annotator may be regarded as an outlier if his mean agreement F-measure is

more than a standard deviation away from the overall mean [181], i.e. outside the zone

delimited by the horizontal dashed lines in Figure 3.9. Again, Annotators 3-5 appear as

outliers whose level of agreement with other annotators is notably low. Table 3.4 sums

up the highest formal qualification of each annotator as well as the average speed at
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Table 3.4: Annotators education details and annotation speed

Annotator Formal Education Annotation Speed (tracks/h)

Annotator 1 Dip 80.3
Annotator 2 - 55.6
Annotator 3 BMus 57.5
Annotator 4 - 31.6
Annotator 5 - 50.0
Annotator 6 MMus 49.8
Annotator 7 - 25.0
Annotator 8 BMus, PGDip 39.7
Annotator 9 - 25.0
Annotator 10 BMus 28.3
Annotator 11 BMus 75.3

Mean - 40.2

which they annotated tracks. There does not appear to be any correlation between for-

mal education nor annotation speed and the level of agreement of a given annotator with

the others. It may then be hypothesised that the non-consensual annotations produced

by Annotator 3-5 either correlate to attributes for which no data is available or simply

result from the annotators’ idiosyncrasies and personal biases.

3.7.5 Intra-corpus consistency

Some singularities of the GTZAN dataset can be leveraged to gain some insight on the

quality of the annotations. In particular, we propose to use the 46 pairs or triplets

of exact duplicates listed by Sturm [184] to assess the consistency of annotators; the

hypothesis being that two exact duplicates annotated by the same person should ideally

receive the exact same annotation.

We first detail the results of this analysis for the annotators of the GTZAN-Met corpus.

For each annotator, the mean self-agreement F-measure (i.e. the mean of the F-measure

obtained for each duplicate pair he/she annotated) as well as the number of duplicate

pairs annotated are given in Table 3.5. Note that Annotator 1 covered the entire dataset,

and therefore annotated all the duplicates. In contrast, the other annotators covered only

a portion of the dataset, which was randomly presented to them. As a consequence the 10

other annotators have annotated between 0 and 7 pairs of duplicates each. The mean F-

measures observed tend to be very high although for all annotators but Annotator 1 they
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Table 3.5: Annotators self-agreement as estimated from the exact duplicates
listed by Sturm [184]. The mean self-agreement F-measure and the number of

duplicates pairs annotated are given for each annotator

Annotator mean Fm #pairs annotated

Annotator1 0.96 55
Annotator2 0.97 4
Annotator3 0.67 1
Annotator4 0.88 2
Annotator5 - 0
Annotator6 0.94 2
Annotator7 - 0
Annotator8 0.98 7
Annotator9 - 0
Annotator10 - 0
Annotator11 0.89 3

bear very little statistical significance given the small number of samples. Annotator 1

covered the entire dataset, spreading his workload over 8 days distributed over two weeks

and the tracks were presented in random order. Given these conditions, a self-agreement

F-measure of 0.96 suggests a very high level of annotation consistency.

Similarly, the exact duplicates may be leveraged to evaluate the consistency of the anno-

tations of the GTZAN-Rhy corpus. First, the tempo annotation consistency is evaluated.

The aim of this analysis is to verify that two annotations correspond to the same metrical

level rather than assessing the accuracy of the annotated rate. The annotations for a

duplicate pair are thus considered consistent if the two tempi are equal within an 8%

tolerance, in accordance with the MIREX standard, which leaves room for some vari-

ability with respect to the rate, but guarantees that it corresponds to the same metrical

level. Under this condition, only one case of inconsistency is observed between tracks

metal.00040 and metal.00061, which corresponds to an ‘octave error ’. This then suggests

a high level of consistency in the tempo annotations in this corpus.

Following the same procedure, the beat, downbeat and 8th note position consistency is

analysed using the MIREX standard so that two beat positions are considered consistent

if they fall in a 70ms window. The F-measure for each pair of tracks is then computed

and we present here the mean F-measure for all duplicates. F-measures equal to 0.69

and 0.58 are obtained for the beat and downbeat annotations respectively, which would

tend to suggest that the consistency of the annotations is rather poor. This result may
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Table 3.6: Consistency of the annotations estimated from the exact dupli-
cates listed by Sturm [184]. Consistency scores are given by an F-measure with the

exception of Tempo, for which a matching percentage is provided

Corpus Annotation non-Corrected Corrected

GTZAN-Rhy

Tempo 98.1% —
Beat 0.69 0.93
Downbeat 0.58 0.83
8th note 0.89 0.96

GTZAN-Met Met Structure (Ann1) 0.96 —

be surprising given that the tempo annotations are very consistent. In fact, not all the

exact duplicates listed by Sturm are identical sample for sample. A large portion of the

duplicate pairs exhibit a time offset of the order of tens to a couple of hundred ms between

the two supposedly identical tracks. Two excerpts were defined as exact duplicates “when

two excerpts are the same to such a degree that their time-frequency fingerprints are the

same” [184]. This result is given within the time offset error marging of the fingerprinting

algorithm, which is observed to be of the order of 100ms13. Such time offsets may not

be problematic for MIR tasks that do not require a fine time resolution, but are large

enough to be significant in comparison to the 70ms tolerance window used here. As a

consequence, for all the duplicate pairs, the relative time offset between two excerpts was

measured as the lag resulting in the maximum correlation between the two time domain

waveforms. The evaluation was then run again with the time offset compensated. After

correction, the overall consistency scores are significantly higher, as shown in Table 3.6,

which suggests that the time offset was responsible for a large part of the inconsistencies

measured in the non-corrected condition. Here again, with F-measures higher than 0.8,

a high degree of consistency is observed. It may also be noted that the annotation of

the downbeat seems to be less consistent than the beat level. Given that the downbeat

is likely to be the highest metrical level annotated, the relatively higher inconsistency

observed here is consistent with the observation that extreme metrical levels lead to

greater inter-annotator disagreement reported in Section 3.7.2.
13Personal correspondance with B.Sturm
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Table 3.7: Tempo mismatches between the GTZAN-Rhy and GTZAN-Met
corpora. In the All Ann condition, all the annotators of the GTZAN-Met corpus dis-
agree with the tempo annotation in the GTZAN-Rhy corpus. In the Partial mismatch
condition, there is at least one annotator from the GTZAN-Met corpus agreeing with

the annotation of the GTZAN-Rhy corpus and at least one disagreeing.

All Ann Partial mismatch
Genre Count Ratio (%) Count Ratio (%)

Blues 2 7.7 8 14.8
Classical 12 46.2 16 29.6
Country 0 0.0 1 1.9
Disco 1 3.8 2 3.7
Hiphop 0 0.0 1 1.9
Jazz 5 19.2 9 16.7
Metal 3 11.5 3 5.6
Pop 1 3.8 4 7.4
Reggae 1 3.8 8 14.8
Rock 1 3.8 2 3.8

TOTAL 26 100 54 100

3.7.6 Inter-corpus consistency

In this section, we investigate the consistency of redundant annotations across the two

corpora. The GTZAN-Rhy corpus contains annotations of the tempo as well as of the

beat positions. The tempo rate is also expected to correspond to a metrical level rate

in the GTZAN-Met annotations. Therefore, the tempo annotation is redundant across

these two corpora and offers an ideal point of comparison.

First, for each track of the dataset, we verified if the tempo annotation from the GTZAN-

Rhy corpus corresponds to a metrical level rate annotation in the GTZAN-Met corpus,

allowing a tolerance of ± 8% of the tempo value. It results in a 95.2% match rate, which

reveals a very high level of consistency across the corpora.

In a second step, the cases of tempo annotation mismatch (4.8%) were analysed. The

distribution of these cases per genre class under two conditions are shown in Table 3.7.

For a given track, in the Partial mismatch condition, some annotations of the GTZAN-

Met corpus match the GTZAN-Rhy tempo and some others do not14, while in the All

ann condition, all the annotations of the GTZAN-Met corpus result in a mismatch with

the tempo annotation of the GTZAN-Rhy corpus. Once again, it is observed that Jazz
14This necessarily implies a disagreement between the annotators of the GTZAN-Met corpus
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Table 3.8: Lists of tracks to use with care. Tracks labelled as intractable and
divergent were not successfully annotated by human experts. Tracks are labelled as
Suspicious when all the annotators of the GTZAN-Met corpus agree between each

other and disagree with the GTZAN-Rhy tempo annotation.

Intractable Divergent Suspicious

blues.00032 blues.00032 pop.00011
jazz.00026 jazz.00026 disco.00047
jazz.00030 jazz.00030 jazz.00019
jazz.00003 jazz.00003 rock.00014
reggae.00086 reggae.00086 blues.00038
classical.00080 classical.00080 classical.00057
classical.00038 classical.00038 classical.00047
classical.00033 classical.00033 classical.00042
classical.00040 classical.00040 classical.00056
classical.00041 classical.00041 classical.00037
classical.00055 jazz.00066 classical.00007
classical.00077 classical.00028
classical.00036 metal.00080
classical.00067 metal.00096

metal.00092

and Classical stand out as the genres that generate the two highest mismatch rates in

both conditions.

The mismatches in the All ann condition highlight consistent (and therefore interesting)

discrepancies between the two corpora: all annotations in the GTZAN-Met corpus are

in disagreement with the tempo annotation of the GTZAN-Rhy corpus. These cases

of consistent disagreement were further divided in two sub-conditions whether there

was a high or low inter-annotator agreement score (i.e. F-measure>(resp. <) 0.5) in

the GTZAN-Met corpus. In the first sub-condition, all the GTZAN-Met annotators

strongly agree against the GTZAN-Rhy annotation. This condition is realised for a total

of 15 tracks, for which the GTZAN-Rhy tempo annotation is labelled suspicious. We

then listened to all the corresponding tracks, which confirmed the suspiciousness of the

annotations: the annotated tempo did not seem correct to us, not even when allowing

for octave errors. In the second sub-condition, all GTZAN-Met annotators disagree with

the GTZAN-Rhy annotation but also disagree between each other. It is likely that such

divergent annotations are generated by musical content that is difficult to annotate. This

condition is realised for 11 tracks labelled as divergent.

In addition, the posture adopted towards tracks which are difficult to annotate was



Datasets 95

significantly different in the two annotation campaigns. In the case of the GTZAN-

Rhy all tracks have received an annotation, whereas the annotators of the GTZAN-Met

corpus had the possibility to provide a blank annotation to signify that they could not

annotate a track, either because it is too difficult or because providing an annotation

is not relevant (e.g. absence of pulse). Tracks are listed as intractable if at least one

annotator decided not to provide an annotation. Table 3.8 provides a list of all the

tracks mentioned in this section. In the process of creating a challenging dataset for beat

tracking, Holzapfel et al. noted that including tracks that even humans cannot annotate

is not helpful in designing better algorithms, and only kept tracks that are challenging

for algorithms but successfully annotated by humans [3]. In a similar fashion, the tracks

listed here as intractable or divergent are not successfully annotated by human experts

and may therefore be used with care, if not disregarded, in algorithm evaluations.

3.8 Conclusions

All the datasets used for the experiments reported in this thesis were briefly described

in this chapter. Two of these, namely the GTZAN-Met and the Metric Modulations

Dataset, are original contributions. In addition, we have presented an analysis of rhythm

annotations for the GTZAN dataset, as provided by two recently published corpora.

Overall, the results show, first of all, that the annotations provided are of high quality,

as the high annotation consistency and high inter-annotator agreement suggest. Simi-

larly, a high level of consistency of annotations was revealed by the measurement of an-

notators self-agreement allowed by leveraging the presence of duplicates in the GTZAN

audio dataset. Nevertheless the cases of annotation inconsistencies or of inter-annotator

disagreement revealed interesting properties of the annotations.

It has been shown that the extreme metrical levels (i.e. highest and lowest) account for

75% of the cases of inter-annotator disagreement, which suggest that the depth of the

metrical hierarchy is hard to determine unequivocally. In addition, it appeared that Jazz

and Classical genres result in significantly more inter-annotator disagreement than other

genres. The Jazz genre is known for its use of swing and syncopation. Comparing the
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inter-annotator agreement measured on the GTZAN-Met corpus with the swing data

from the GTZAN-Rhy corpus, no tangible evidence that either the presence of swing or

the swing ratio has a systematic impact on inter-annotator agreement was found. The

absence of data on syncopation did not enable the evaluation its effect.

The comparison of the inter-annotator agreement scores for each annotator showed that

8 out of 11 annotators tend to exhibit a similar behaviour while 3 others appear as rela-

tive outliers by agreeing less consistently and less on average with other annotators. No

correlation between these relative discrepancies and available data, such as the annota-

tors’ formal education and annotation speed, was found. It may then be hypothesised

that the less consensual behaviours observed either correlate with attributes for which

no data is available or simply stem from the annotators’ personal idiosyncrasies.

Finally, from the analysis of the inconsistency of annotations over the GTZAN-Met

and GTZAN-Rhy corpora, a lists of tracks — labelled intractable and divergent — for

which producing annotations is either irrelevant, impossible or at least very difficult was

derived. In addition, the tracks for which the validity of the tempo annotations of the

GTZAN-Rhy corpus seem to be strongly challenged are listed and labelled as suspicious.

As such, these lists specify tracks which should be used with care for the evaluation of

automatic algorithms. The fact that a large proportion of the intractable and divergent

tracks belong to the Classical genre relates to a conclusion that was also drawn from the

analysis of inter-annotator disagreement: it can be suspected that a model of metrical

structure built on the notion of a relatively steady underlying pulse, such as the one

considered here, may not be applicable to such music pieces. The elaboration of an

alternative model of metrical structure which does not rely on the existence of a steady

underlying pulse and which would be applicable to the currently intractable pieces is still

an open question, which most likely constitutes a promising avenue for future research.



Chapter 4

On the Explicit Extraction of

Metrical Structure From the Beat

Spectrum

4.1 Introduction

Two main classes of approaches for metrical structure estimation have been identified

in Chapter 2. Owing to their suitability for application in an unsupervised scheme1, we

focus in this chapter on periodicities estimation methods that rely on time-frequency

transforms of the onset detection function. Typical frequency transforms are the Fourier

Transform (FT) or the Auto-Correlation Function (ACF), which are used to compute

beat spectra and rhythmograms (cf. Section 2.3). It is commonly observed that metrical

level pulse rates relate to salient periodicities in the beat spectrum [43, 93, 194]. But it is

also easily shown that not all the salient periodicities in a beat spectra relate to metrical

level pulse rates (cf. Section 2.3), which is understandably an obstacle to the explicit

metrical structure extraction from such features. Peeters proposed to multiply the ACF

and Fourier rhythmograms to eliminate periodicities that do not relate to metrical levels

pulse rates from the beat spectrum [93]. It was then qualitatively observed that the
1as opposed to cycle tracking methods that typically function in a supervised fashion

97



On the Explicit Extraction of Metrical Structure From the Beat Spectrum 98

salient periodicities in the resulting spectrum indeed match more closely the metrical

level pulse rates. However the use of this feature did not surpass the use of Fourier beat

spectrum in a rhythm classification task [84]. To our knowledge, an explicit evaluation

of the relationship between salient periodicities in the beat spectra and the metrical level

pulse rates has never been carried out. This leads us to ask: To which extent do the peaks

in the periodicity spectrum correspond to metrical level pulse rates? To which extent is

it possible to explicitly extract the metrical levels pulse rates from a beat spectrum?

In this chapter we aim at addressing these questions. Carrying out an explicit evaluation

requires the existence of reference data to compare the outputs of an algorithm to.

Publicly available datasets containing metrical structure-related annotations typically do

not contain annotations for more than two or three metrical levels while typical metrical

structures commonly consist of 4 to 5 metrical levels. As a consequence, the evaluation

presented here relies on the GTZAN-Met dataset, which was created in response to the

lack of data at this level of detail and presented in Section 3.5.

In a first experiment, we quantify the match between peaks in the periodicity spectrum

and metrical level pulse rates as well as the effect of the rhythmograms combination

proposed by Peeters [93]. Since the metrical structure features a hierarchical organisation

of the metrical level pulse rates (cf. Section 2.4), we propose a simple algorithm to

estimate the metrical structure from the beat spectra by enforcing hierarchical constraints

and evaluate its performance.

It has been shown that inter-annotator disagreement sets an upper bound on the perfor-

mance possibly achievable by an algorithm [180]. In a second experiment we investigate

how the performance of the algorithm relates to human experts (dis)agreement, as as-

sessed on the GTZAN-Met dataset in Section 3.7. Finally, given that the beat rate is a

metrical level, it ought to be part of the metrical pulse rates extracted using the afore-

mentioned algorithm. On this premise, we derive a simple tempo extraction algorithm

from the metrical levels pulse rates estimation system. It was submitted to the MIREX

2014 tempo estimation task and gave competitive performance.
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4.2 Formalising the metrical structure representation

In this section we specify some notation used in the remainder of this chapter for the

description of the metrical structure, based on the formal description that was provided

in Section 2.1. We then relate this notation to its musical interpretation.

4.2.1 Notation

Figure 4.1 shows a hierarchical representation of several examples of metrical structure. It

is similar to the dots representation of Figure 2.1 with the addition of explicit hierarchical

links. Each horizontal level of nodes on the tree accounts for one metrical level of index

i ∈ [1, L], which is associated with a pulse rate ωi measured in BPM (Beats Per Minute).

The number of metrical levels necessary to represent the full hierarchy of a piece of music

is therefore L. We define the sequence of metrical level pulse rates, sorted in ascending

order as:

F = 〈ω1, · · · , ωL〉 (4.1)

Hierarchical relationships are defined by λi ∈ N, the ratio between the pulse rates of a

metrical level and the next one. This is represented in Figure 4.1 by number of child

nodes that each node generates. The sequence of metrical levels pulse rate ratios is then

defined as:

Λ = 〈λ1, · · · , λi, · · · , λL−1〉 (4.2)

where ∀i ∈ [1, L − 1], λi = ωi+1

ωi
. As a result, Λ is a representation of the hierarchical

relationships between the layers of the metrical structure and is therefore independent of

the absolute value of the metrical levels pulse rates, i.e. independent of tempo. This rep-

resentation is also independent of the semantic role (e.g. beat, downbeat etc.) attributed

to each metrical level.

Reconstructing a metrical level pulse rates sequence F from hierarchical sequence Λ is

trivial and requires the provision of only one pulse rate. For instance, given the lowest

pulse rate ω0, the entire sequence is reconstructed with ωi = ω1 ·
∏i
k=2 λk.
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Figure 4.1: Tree representation for metrical hierarchy. (a) A simple duple hierarchy
dividing the lower level into two groups of two. (b) A simple triple hierarchy dividing
the lower level into three groups of two. (c) A compound-duple hierarchy dividing the

lower level into two groups of three.

4.2.2 Relation to musical concepts

The metrical structure descriptors used here do relate to more traditional concepts, typ-

ically derived for score-based musicology, such as time signatures and note values, but

there is no isomorphic mapping between the two domains. In particular the score rep-

resentation of a given metrical structure is not necessarily unique. Figure 4.2 illustrates

this fact by giving two different score notations for the same pattern. The time signature,

tempo markings and therefore the note values used are different. However, the under-

lying organisation of musical events is the same in both cases, because they represent

the same piece of music, which result in an identical metrical hierarchy (cf. Figure 4.3).

Time signature is sometimes used as a proxy to characterise and classify metrical struc-

ture (see for example [43]) but the examples just provided illustrate the fact that the time

signature alone does not fully define the metrical structure. The time signature typically

specifies a canonical organisation for a part of the metrical structure. Let us consider

the 12
8 time signature as an example. It specifies that each bar is made of 4 beats and

that the beat is subdivided in three equal part. Other elements, such as the potential

subdivision of the eighth notes, are not specified by the time signature. Similarly, the
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Figure 4.2: Two alternative score notations for the same drums pattern. The tran-
scription is inspired from John Mayer’s “Gravity”.
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Figure 4.3: Metrical level pulse rates hierarchical structure for John Mayer’s Gravity,
with the two corresponding notation options given in Figure 4.2. Only one branch of

the metrical pulse rates hierarchichy is developed for clarity.

9
8 time signature specifies that each bar is made of 3 beats, which are then subdivided

in three equal parts but does not specify further subdivision levels. As a result, using

score notation, the metrical structure can be fully specified only by the joint provision of

a time signature and the note values used. This nuance explains how two different time

signature can represent the same metrical structure.

On the other hand, the hierarchical organisation of the underlying metrical level pulse

rates is independent of the score notation. In fact, this is an interesting property of

this type of representation of the metrical structure of music. What is an ambiguous

case from a score point of view maps to a unique representation. Note that this type

of hierarchical organisation is related to the well-formedness and preference rules of

the GTTM, which are briefly summarised in Section 2.1.1. Figure 4.3 illustrates such a

structure on the musical example presented in Figure 4.2. For clarity, only the child nodes

of one branch of each level are depicted — we refer the reader to Figure 4.1 for examples
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of full development of the tree structure. In the example of Figure 4.2 and Figure 4.3,

the hierarchical structure may be described by F = 〈10.25, 20.5, 41, 123, 369〉 and Λ =

〈2, 2, 3, 3〉. We also note that if the 16th notes in case (A) (which correspond to the eighth

notes in case (B) ) were removed from the pattern, the depth of the metrical structure

tree would be reduced by removing the last level (bottom of the tree in Figure 4.3),

so that the hierarchical structure may be described by F = 〈10.25, 20.5, 41, 123〉 and

Λ = 〈2, 2, 3〉. In other words, the use of subdivisions and the length of the bars or

patterns directly affects the depth of the metrical structure tree.

Given a hierarchical organisation of metrical levels, the choice of the association of met-

rical levels with semantic roles (e.g. beat, downbeat etc.) leads to radically different

score representations, as illustrated in Figure 4.3. In case (A), the metrical level of pulse

rate 41 BPM is regarded as the beat, which leads to a 12
8 time signature in which the

eighth notes are subdivided in 16th note triplets, whereas in case (B), considering the 123

BPM pulse rate as the beat rate leads to a pattern that runs over four 9
8 bars with very

long note durations. As a consequence, producing a time signature estimate from audio

recordings requires an estimate of the periodicities present in the music in order to form

a model of the metrical structure, and a semantic interpretation of this structure. In

this chapter, we only investigate problems relating to the estimation of the hierarchical

structure of metrical level pulse rates and do not consider the semantic interpretation.

4.2.3 Limitations

Describing the metrical structure via metrical level pulse rates is effectively a frequency

domain representation. Implicitly, it assumes isochronous pulse rates, because a fre-

quency cannot be defined otherwise. Such a representation is therefore not fit to fully

describe non-isochronous elements. Music in odd time is often used as an example of

non-isochronous metrical structure. Figure 4.4 shows a simple example of rhythm with

a non-isochronous accent pattern.

In the example, the accenting pattern implies a 3+2 grouping of eighth notes as it groups

together 3 and then 2 eighth notes, therefore creating a non-isochronous structure. The
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Figure 4.4: Example of odd time signature with non-isochronous accent pattern

hierarchical structure of isochronous metrical level pulse rates cannot describe the non-

isochronous groupings organisation. Nevertheless it is important to note that the model

can still account for a meter “in five” as the bar is subdivided in 5 equal parts (eighth

notes), i.e. the ratio of pulse rates between two metrical levels equals 5. In other words,

a reduced representation of non-isochronous metres is possible in this model. All the

isochronous subdivisions are captured, only the phase of the non-isochronous grouping is

lost (in the 5/8 example, the model captures the subdivision of the bar in 5 equal parts

but cannot distinguish 3+2 from 2+3 groupings).

4.3 Periodicity Spectrum and Metrical Structure Estima-

tion

In this section we first detail the computation of the periodicity spectra used in this

chapter and the remainder of this thesis. Secondly, we present a simple algorithm to

extract metrical level pulse rates from the periodicity spectrum. A flowchart summarising

the structure of the algorithm is given in Figure 4.5. It can be broken down into three

main processing steps. First, an onset detection function is computed from audio using

the superflux method described in Section 2.2. Then, the analysis of the periodicities

present in the musical signal is performed via the computation of rhythmograms. Finally,

the metrical structure is estimated by peak-picking the periodicity spectrum, with the

hypothesis that some of the peaks will correspond to metrical level rates.

4.3.1 Periodicity analysis

The autocorrelation function (ACF) based and Fourier transform-based rhythmograms

are considered as features on which to base the periodicity analysis, notated RA and

RF respectively. We refer to Section 2.3 for details of the computation of such features.
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Audio Input

Onset Detection Function Generation
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Fourier Rhythmogram ACF Rhythmogram

Metrical Structure

Figure 4.5: The feature extraction algorithm is divided in three major steps: com-
puting an onset detection function, performing a periodicity analysis by combining two
rhythmograms and finally extracting the metrical structure from the resulting period-

icity spectrum.

All rhythmograms are computed using 12s Hann windows and 0.36s hop size. Using

such long windows allow for the capture of long periodicities (e.g. at the bar level) at

the expense of the inability to accurately capture changes happening at a scale typically

shorter than the window length.

In addition, we consider the approach introduced by Peeters [93], which we briefly sum-

marise in the following. Two rhythmograms RA and RF are calculated in parallel (i.e.

using the same onset detection function). By construction, the Fourier transform gen-

erates harmonics at integer multiples of the periodicities present in the signal whereas

the autocorrelation function generates subharmonics. The strategy proposed by Peeters

consists in multiplying element-wise the Fourier transform and the autocorrelation func-

tion so that the harmonics and sub harmonics are cancelled by zero entries in the other

periodicity spectrum, assuming that the peaks that are left (which must appear in the

two functions) correspond to metrical level pulse rates.

The autocorrelation functions provides an analysis of periodicities against a lag l, so that

the autocorrelation-based rhythmogram is natively a function of time and lag RA(l, n).

In order to be able to multiply the Fourier transform-based and autocorrelation-based

periodicity spectra, it is necessary to rescale the two rhythmogram to a common fre-

quency scale. In particular, the autocorrelation periodicity spectra (i.e. the frames of

RA) are mapped to a frequency scale with l = fs/ω where l is the lag in the ACF, and ω

is the corresponding frequency and fs is the onset detection function sampling frequency.
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Figure 4.6: Example periodicity spectra for the track blues.00053. Respec-
tively from top to bottom, Fourier transform based, r̂F (m), autocorrelation function
based, r̂A(m) and the result of their multiplication, r̂(m). Most of the harmonics in

the Fourier and ACF spectra are rejected from r̂(m).

The ACF is resampled so that the frequency scale matches the FFT bins (alternatively,

both the FFT and ACF spectra can be resampled to a common frequency scale).

Given that the dataset used to carry the evaluation is made of short excerpts (cf. Section

3.3), the metrical structure is assumed to be constant. Therefore, the Fourier trans-

form and frequency mapped autocorrelation function based rhythmograms, RF (m,n)

and RA(m,n) respectively, can be summarised in average spectra r̂F (m) and r̂A(m) by

summing frames:

r̂F (m) =
∑
n
RF (m,n)

r̂A(m) =
∑
n
RA(m,n)

(4.3)

A composite spectrum r̂(m) is produced by calculating the element-wise multiplication,

or Hadamard product, denoted as �, of the spectra r̂F (m) and r̂A(m), and normalising

the result:

r̂(m) =
r̂A(m)� r̂F (m)

max
m

(
r̂A(m)� r̂F (m)

) (4.4)

The three spectrum r̂F (m), r̂A(m) and r̂(m) computed for a track from the GTZAN

dataset are shown in Figure 4.6 in order to illustrate the properties discussed here. It
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is clear that only the peaks that appear in the two periodicity functions are preserved

in r̂(m), while most of the others are eliminated by the multiplication with a coefficient

close (or equal) to zero in the other spectrum.

In the current formulation, a summarised description of the periodicity content is used

at a track level, as realised by equation (4.3). This is adequate for use cases in which

consistency of metrical structure can be assumed, as it is the case here and in the original

studies carried out by Peeters [84, 93]. However, this assumption may not hold in a more

general setting. In particular, we will come back to this issue in Chapter 7 where we

extend Peeters’ multiplicative strategy to every frame of the rhythmograms in order to

track the evolution of metrical structure over time.

4.3.2 Peak-picking algorithm

One hypothesis to be tested here is that metrical levels are represented by salient pe-

riodicities in the onset detection function, and are therefore revealed as peaks in the

spectrum r̂(m). If this is true, peak-picking the spectrum r̂(m) should be enough to

retrieve all the metrical level pulse rates. However, empirical experience has suggested

this hypothesis might not always hold and Section 2.3 provides a theoretical explanation

as to why this is the case. As a consequence, we devise three peak-picking steps to test

this hypothesis.

First, a simple algorithm detecting local maxima if an element is larger than both of its

neighbours is employed to find all the peaks in r̂(m). Only the peaks higher than a given

threshold εr̂ are kept, i.e.

r̂(mpeak) > εr̂ (4.5)

The threshold is set small (εr̂ = 0.005) so that at this stage all the peaks present in r̂(m)

are detected.

Secondly, from this list of peaks, the one with the largest magnitude is selected and its

corresponding rate ωmax

ωmax = argmax
m

(r̂(m)) (4.6)
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is used as a reference. For instance, ωmax is located around 200BPM in the example of

Figure 4.6. It is hypothesised that metrical level pulse rates result in salient periodicities

in the onset detection function, and thereby in salient peaks in the periodicity spectrum.

Then it is to be expected that the corresponding peaks contain more energy than the

related harmonics. ωmax represents the rate containing the most energy in the spectrum,

and is therefore assumed to represent a salient metrical level. Picking the most ener-

getic rate minimises the likelihood of deriving ωmax from a spurious peak and therefore

maximises the robustness of the system in that respect. By construction of the metrical

structure model used here, the rates of all other metrical levels ωj should be related to

ωmax by integer ratios (cf. Section 4.2). Then, the pulse rate ωj of the jth peak in r̂(m)

is compared to ωmax and is kept as a metrical level candidate if, and only if, it satisfies

one of the following conditions:

∃n ∈ N :


ωj
ωmax

≈ n if ωj > ωmax

ωmax
ωj
≈ n if ωj < ωmax

(4.7)

and rejected otherwise. This operation effectively filters out peaks that cannot possibly

be part of a metrical structure that obeys the constraints established earlier. It is labelled

as Peak Filtering and referred to as ‘PF’ in the following.

Finally, a third peak-picking step based on a Peak-Picking Kernel labelled ‘PPK’ is

introduced. Given the hierarchical description of the metrical structure provided in

Section 2.1.1, it comes that finding all the peaks that are integer multiples of ωmax using

the peak filtering step PF is not sufficient to guarantee that they constitute a well-

formed structure. In particular, the pulse rate of each metrical level and its immediate

neighbour must be related by an integer ratio λi too. This peak-picking step, PPK, aims

at guaranteeing that it is the case. Starting with ωmax, the relationship of each metrical

level with its two closest neighbours are compared. The process is iteratively repeated

until the list of peaks is exhausted. The comparison is performed both in ascending and

descending pulse rates. Several candidate metrical structures can be tracked in order

to deal with ambiguous cases, depending on the result of the comparisons at each step.

At the end of the procedure, the candidates are weighted, and the heaviest is chosen.

Algorithm 1 describes the details of the procedure for the ascending pulse rate search
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in pseudo-code. The descending search algorithm is easily derived by symmetry and

provided in pseudo-code in Appendix B.

Algorithm 1 Peak-picking kernel: K(ωj ,M)

Require: ωj is the level under analysis andM, the metrical structure candidates
1: while ωj+1

ωj
/∈ N do

2: ωj+1 ← ωj+2

3: ωq ← ωj+1

4: if ωq+1

ωj
∈ N then

5: if ωq+1

ωq
/∈ N then

6: M1 ←M
7: M2 ←M
8: ωj ← ωq
9: (ωj ,M1)← K(ωj ,M1) . call peak-picking kernel

10: M← {M,M1}
11: ωj ← ωq+1

12: (ωj ,M2)← K(ωj ,M2) . call peak-picking kernel
13: M← {M,M2}
14: else
15: append ωj+1 toM
16: ωj ← ωj+1

17: else
18: append ωj+1 toM
19: ωj ← ωj+1

return ωj ,M

Lines 1 to 3 filter out metrical level candidates not related in integer ratio to ωj . Once

an integer ratio ωq
ωj

with q > j is found, the second nearest neighbour ωq+1 is taken

in account. A special case occurs when ωq+1

ωj
is an integer ratio but ωq+1

ωq
is not. This

means that the metrical level ωj could equally be subdivided in levels ωq or ωq+1 whereas

level ωq+1 is not a subdivision of level ωq. This is in contradiction with the hierarchical

model of metrical structure (cf. WFR1 and WRF2 in Section 2.1.1). It is therefore

considered that levels ωq and ωq+1 cannot coexist in a single metrical hierarchy. In

such a situation, two hierarchy candidates are generated (lines 6 and 7) and constructed

independently by calling two new instances of the peak-picking kernel (lines 9 to 13),

one including metrical level ωq and the other including level ωq+1. If this special case

is not encountered — which means that all neighbouring metrical level rates are related

by integer ratios — ωj+1 is appended to the metrical structure, the index of level under

analysis is incremented (lines 17 and 21), and the procedure is repeated until all peaks

have been analysed.
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At the end of this peak-picking stage, metrical structure candidates have been generated,

and are represented by their sequence of metrical level pulse rates F . Note that if the

condition of line 5 in algorithm 1 is never entered, only one candidate is generated.

Finally, for each hierarchy candidate, each one of the metrical level pulse rate ωi is

associated with a weight ui = r̂(ωi) stored in U = 〈u1, · · · , uL〉. Each hierarchy candidate

is graded by the sum of the weights of its metrical levels Θ =
L∑
i=1

ui. The metrical

structure with the largest cumulated weight Θ is considered as the most salient, and is

therefore chosen as the final estimate. Note that here we only consider a scenario where

a single metrical structure estimate is considered. However, our proposed model has the

capability to produce several estimates and weight them. This can be interpreted as

a mean to capture metrical ambiguity. Though this is beyond the scope of this work,

one could imagine a scenario in which the metrical ambiguity could be evaluated by

comparing the relative weights of the metrical structure candidates.

4.4 Evaluation

4.4.1 Evaluation metrics

For each track of the dataset, a pairwise comparison of every level pulse rate of the

metrical hierarchy from the reference annotation (A) and the estimated feature (E) is

performed. Let LA and LE be the depth of the metrical hierarchy (i.e. the number of

metrical levels) of the reference annotation and estimated feature respectively. The goal

of this comparison is to establish if a metrical level pulse rate in the reference annotation

matches an estimated rate and reciprocally. In order to do so, a binary matrix M of size

LA ×LE capturing the matching information between extracted feature and annotation

is built with each element Mi,j defined as:

Mi,j =

 1 if
∣∣∣log10

(
ωAi
)
− log10

(
ωEj

)∣∣∣ < ξ

0 otherwise
(4.8)

Consequently, each match between an annotation and an extracted metrical level is

associated with the value 1 while mismatches are associated with 0. A tolerance ξ is
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applied to account for the variability of human rating; its value is set to allow a tolerance

window of 15% of the annotated value. Note that the intent here is not to evaluate

the accuracy of the pulse rate annotation but rather to evaluate if a pair of annotated

and estimated pulse rate correspond to the same metrical level. As a consequence the

tolerance is set large enough to allow for imprecise rate estimation, yet small enough so

that two unrelated pulse rates are distinguishable.

In this context, a false negative is characterised by a row of zeros in the matrix M

because they correspond to levels being present in the annotation but not in the extracted

feature. Likewise, a false positive is characterised by a column of zeros. The number of

true positives is obtained by summing all the coefficients Mi,j of the matrix. Standard

information retrieval metrics are then computed. For each track, Precision, Recall and

F-measure as defined in Section 2.10.3 are calculated, therefore measuring the ability of

the system to retrieve a metrical structure that corresponds to the reference annotations

on each track. Average values of these scores across all tracks of the dataset are then

calculated.

An example of such metrics is given below. It corresponds to the evaluation of the

extracted metrical structure against one annotation for the track rock.00029 from the

GTZAN dataset.

M =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


In this case, there are four true positives, i.e. four levels matching, indicated by the ones,

one false negative indicated by the last row of zeros and no false positive as there is no

column of zeros. It results in Precision=1.0, Recall=0.80 and F-measure=0.89.

4.4.2 Evaluation Dataset

The GTZAN audio dataset and the corresponding metrical structure annotations from

the GTZAN-Met dataset are used to carry out evaluations in this chapter. Although
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we refer the reader to Chapter 3 for a detailed description of the dataset and reference

annotations, we recall that each one of the 1000 audio tracks of the dataset has been

annotated by two to three different annotators, resulting in more than 2600 annotations.

It is then possible to assess the inter-annotator (dis)agreement using the metrics described

in Section 4.4.1. Instead of comparing annotation data (A) and an extracted feature

(E), annotations produced by one annotator are compared with annotations produced

by another. The F-measure is used as a figure of merit to assess the agreement for

each track, 1 meaning perfect agreement (annotators have annotated a structure that

contains exactly the same metrical levels) and 0 meaning complete disagreement (nothing

in common in their annotations). By doing so, it comes that the average inter-annotator

agreement F-measure for the entire dataset is 0.88, therefore setting the average upper

limit of algorithm performance [180]. In the following, for each track, the estimated

feature is evaluated against all the annotations available; from which are calculated

average value per track and the dataset average values presented below. The tracks

labelled as “intractable” were excluded from the evaluation (cf. Section 3.7.6).

4.4.3 Baseline method

Lartillot proposed a method to extract all the metrical level pulse rates from an ACF

rhythmogram [194], which we also include in our evaluation. We use the implementation

of the mirmetre() function from the Mirtoolbox2. The metrical structure estimation

proposed in [194] comprises three steps that are very similar to the ones in the method

presented here. First of all, an onset detection function is processed using a spectral

flux method. Secondly an analysis of the periodicities present in this onset detection

curve is performed by calculating an ACF rhythmogram (labeled “autocorrelogram” in

the original publication). Finally, the metrical structure is estimated from the ACF

rhythmogram. This last step is performed by peak-picking the rhythmogram frames and

filtering the peaks on the basis of heuristic rules. In our experiment, we set the window

length and hop size identical to the values used for the algorithm described in Section

4.3. All other parameters were set to default values. The metrical structure is returned
2Version 1.6.1 used in our experiments.

Available at: https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
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in the form of a list of metrical level pulse rates. For each metrical level rate, the average

value for the entire duration of the track is used for the evaluation.

4.4.4 Experiments

In a first experiment, the correspondence between salient periodicities in rhythmograms

and metrical level pulse rates is assessed. This is achieved by evaluating the methods

described above with respect to their ability to retrieve metrical level pulse rates.

In particular, three peak-picking steps are proposed in the algorithm presented in Section

4.3, canonically applied sequentially. The ability of the system to retrieve metrical level

pulse rates is evaluated under different peak-picking conditions. Starting with only the

raw peak-picking step, the evaluation of the algorithm is repeated, activating an extra

layer of peak-picking step each time (i.e. adding PF and then PPK). Using only the

first layer of peak-picking, which simply detects all the peaks in a periodicity spectrum,

to perform estimation of metrical level pulse rates therefore allows quantification of the

correspondence between peaks in the periodicity spectrum and metrical level pulse rates.

Repeating the evaluation with the addition of extra layers of peak-picking then quantifies

how the introduction of hierarchical constraints impacts the performance of metrical level

pulse rates estimation.

In addition, we seek to evaluate the effectiveness of the multiplication of the periodicity

spectra proposed by Peeters. The evaluation is thus performed using the ACF spectrum

r̂A as well as the product spectrum r̂ under the same peak-picking conditions. Using the

ACF spectrum only also enables comparison with the Lartillot’s baseline method [194].

In a second experiment the algorithms performance is compared to the inter-annotator

(dis)agreement. In particular, leveraging the multiple annotations available for this

dataset, the algorithms performance is compared to the upper limit set by the inter-

annotator disagreement [195]. For this purpose, we compute the Performance Relative

to the Upper Limit (PRUL) implied by the inter-annotator disagreement as:

PRUL = 100 · FmE

FmA
(4.9)
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Table 4.1: System configurations (‘methods’) under evaluation defined by three pa-
rameters: the periodicity spectrum used ‘PS’, the activation of the Peak Filtering step
‘PF’, and the activation of the Peak-Picking Kernel ‘PPK’. Results are presented for
each method as well as for the baseline method [194] as Precision, Recall, F-measure

and Performance Relative to the Upper Limit (PRUL) scores.

Method PS PF PPK Precision Recall F-measure PRUL

Method 1 r̂ on on 0.83 0.84 0.82 93.2%
Method 2 r̂ on off 0.61 0.86 0.68 77.3%
Method 3 r̂ off off 0.51 0.96 0.64 72.7%
Method 4 r̂A on on 0.86 0.77 0.80 90.9%
Method 5 r̂A on off 0.70 0.79 0.72 81.8%
Method 6 r̂A off off 0.43 0.95 0.58 65.9%
Lartillot [194] - - - 0.36 0.55 0.43 48.9%

where FmE is the average F-measure obtained for the automatically estimated metrical

level pulse rates on one track and FmA is the average F-measure representing the agree-

ment between all the annotators for the same track 3. We recall that every track of the

dataset was annotated by two to three different annotators. For each track, the metrical

structure estimate produced by a given algorithm is compared to all the annotations

available for this track, so that several F-measure scores are produced. We then present

the average F-measure (FmE), precision and recall over all the annotations available for

the track. Similarly, the inter-annotator agreement is evaluated by comparison of all the

pairwise combinations for a track. This results in one F-measure score if there are two

annotations (only one pair combination possible) or three F-measure score if there are

three annotations. The average score over all the combinations is then computed for

each track. On top of an average for the entire dataset, we present average values per

genre cluster.

4.5 Results and discussion

For all methods under evaluation, only the metrical level rates in the range 30-800BPM

were considered for evaluation. The 30BPM lower limit is chosen because periodicity

spectra (in particular r̂F ) tend to be very noisy in the 0-25BPM range. The upper limit
3We have shown in Chapter 3 that some metrical levels are more prone to inter-annotator disagree-

ment than others. However, it has also been shown that any level of the metrical structure can be subject
to disagreement. In this context FmA represents an average inter-annotator agreement, irrespective of
the position of metrical levels in the metrical structure.
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is set to 800BPM in order to be greater than the fastest rate observed in the annotations

of dataset. We recall from Chapter 3 that the average inter-annotator agreement F-

measure for the whole dataset is FmA = 0.88. As a result and unless stated otherwise

the PRUL for average scores at the dataset level is computed with respect to this value.

4.5.1 Metrical level pulse rates vs. salient periodicity

Results of the evaluation of the automatic metrical structure extraction for all methods

considered in this chapter are presented in Table 4.1 as average precision, recall and

F-measure scores for the entire dataset.

Methods 3 and 6 both have the PF and PPK steps deactivated so that only the first

raw peak-picking step is active (cf. Section 4.3). The evaluation of method 3 and 6

provide an assessment metrical information captured by r̂ and r̂A respectively. Methods

3 and 6 exhibit similar performance in terms of recall with very high scores (0.96 and

0.95 respectively). This confirms the hypothesis that the metrical level pulse rates are

captured as peaks in the periodicity spectra. In addition, method 3 scores higher than

method 6 in terms of precision. Once again this result validates the assumption that

irrelevant peaks would be rejected by the multiplication of r̂A and r̂F . However, the

rather low precision (0.51) also demonstrates that r̂ does not only contain peaks relating

to metrical level pulse rates. In other words, the multiplication of periodicity spectra

improves the correspondence between peaks in the periodicity spectra and metrical level

pulse rates, but is not sufficient to eliminate all peaks that do not relate to a metrical

level pulse rate. This last observation motivates the introduction of more elaborate

peak-picking strategies.

Comparison of methods 2 and 3 reveals that the peak filtering step PF only brings a

small improvement in F-measure, and therefore is not sufficient to extract a meaningful

metrical structure on its own. Comparing the results of Method 1 and 2 clearly shows

that constraining the peak-picking algorithm with a musically meaningful model for

metrical structure (via the activation of step PPK) results in a substantial increase in

performance (0.14 points of F-measure score). This is primarily achieved by increasing

precision score at the expense of a very small decrease of recall, which means that the
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PPK step effectively helps picking peaks that correspond to metrical level rates with a

very little rate of error. Relating the F-measure to the average inter-annotator agreement,

a PRUL of 93.2% is obtained for method 1, which suggest that the algorithm estimates

closely approach human expert judgment on average. A similar trend emerges from

comparison of methods 4, 5 and 6.

Lartillot’s baseline method should be compared with methods 4, 5 and 6, as they all use

ACF to estimate periodicities of the onset detection function. In all cases, this method is

outperformed. Given that the onset detection function and periodicity estimation used

in the baseline method are similar to the algorithm proposed here, it is assumed that

the difference resides mostly in the metrical structure estimation steps — i.e. in the

peak-picking strategy. As a consequence, the results corroborates the idea that peak-

picking the periodicity spectra is a difficult and sensitive, yet crucial step. Lartillot’s peak

picking is achieved using heuristics that are not strongly rooted in music theory whereas

our constraining of the metrical structure estimation with a musicologically motivated

model proves to be instrumental in achieving a better level of agreement with human

experts. Method 1, which involves the use of all the processing stages, delivers the best

overall performance, with the highest F-measure.

From these results, the conclusions that can be drawn are threefold. Firstly, they sug-

gest that the hypothesis according to which metrical level pulse rates are materialised by

peaks in the periodicity spectrum is validated. On the other hand, it clearly appears that

not all peaks in the periodicity spectrum relate to metrical level pulse rates. Secondly,

the rhythmogram multiplication strategy proposed by Peeters appears to be effective to

preserve the peaks that relate to metrical level pulse rates while eliminating some of the

peaks that do not. The elimination is not total, however. Finally, a peak-picking strat-

egy enforcing musically relevant hierarchical constraints (materialised by steps PF and

PPK) is beneficial to perform accurate metrical structure extraction from the periodicity

spectrum.
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Figure 4.7: Algorithm performance for every genre. The box extends from the
lower to upper quartile values of the data, with a red line at the median while the green
dot is the mean. The whiskers extend from the box to show the range of the data,

excluding the outliers.

4.5.2 Genre classes and inter-annotator agreement

The GTZAN dataset was initially introduced to evaluate genre classification algorithms

[183]. Taking advantage of the genre class annotation of the dataset, we first present

the evaluation results per genre class. The corresponding F-measure distributions are

shown in Figure 4.7. Jazz and Classical genres stand out as they exhibit a lower mean

and much wider distribution of F-measure than other genres, which suggests that the

algorithm performs significantly worse on the tracks in these genre classes. However,

it has been shown in Chapter 3 that inter-annotator agreement also depends on genre

classes. We refer to Figure 4.7 and Figure 3.4 for comparison of the F-measure distribu-

tions. These two genres put aside, the inter-annotator agreement F-measure distribution

is more consistent across genres than algorithm performance F-measure distribution is.

So far, only the average PRUL for the entire dataset has been computed. We extend

here the evaluation to the computation of the average PRUL for every genre class as it

may be expected that its value varies across genres. The results are shown in Table 4.2.

At the exception of Jazz, the PRUL is over 90% for all genres. This result suggests that

the algorithm performs with a good consistency in comparison to expert annotations,

for all genres except Jazz. In other words, tracks belonging to the Jazz genre class seem

to have properties that make them challenging for the algorithm more than for humans.
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Table 4.2: F-measure of algorithm performance, inter-rated agreement and Algo-
rithm Performance Relative to the Upper Limit (PRUL) imposed by inter-annotator

agreement; by genre classes.

Genre FmA FmE PRUL

Blues 0.87 0.81 93.1 %
Classical 0.72 0.66 90.9 %
Country 0.92 0.83 90.4 %
Disco 0.91 0.91 99.1 %
HipHop 0.91 0.88 96.8 %
Jazz 0.81 0.61 75.6 %
Metal 0.91 0.89 98.4 %
Pop 0.93 0.85 91.7 %
Reggae 0.90 0.90 99.2 %
Rock 0.92 0.89 96.8 %

The automatic algorithm used here relies on the premise that metrical level pulse rates

correlate with salient periodicities in the onset detection function. This assumption

seem to hold for most of the genres classes in this dataset, but is possibly challenged

in the case of Jazz. Several hypotheses may be formulated to explain the relatively

low performance obtained for tracks in this class. Jazz is known for making use of a

sizeable amount of syncopation. Syncopation being produced by the use of rhythms that

contradict the established meter [196], it is possible that more syncopation leads to less

salient periodicities relating to the metrical structure and therefore to lower performance.

Syncopation may also explain the relatively higher rate of inter-annotator disagreement

on Jazz excerpts. Additionally, Jazz typically does not have a backbeat nor a very strong

emphasis on the beats and patterns of strong and weak beats. Again, this is likely to

diminish the salience of meter-related periodicities in an onset detection function and

therefore explain the relatively lower performance of the algorithm on tracks belonging

to the jazz class. It is probable that the lack of backbeat and more generally the fact

that metrical structure is not necessarily clearly marked by percussive accents in Jazz

makes its analysis harder for automated systems than for humans, which would explain

the lower PRUL. However, the metadata available for this dataset does not allow these

hypotheses to be directly tested, so we leave this investigation for future work.
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The evaluation results on the tracks belonging to the classical genre class reveal an-

other interesting case. Although, in absolute values, Classical displays the worst inter-

annotator agreement score and the second worst algorithm performance, its PRUL is

still above 90%, therefore comparable with Country and not far from the one obtained

for pop. This result indicates that estimating metrical level pulse rates for these tracks

is difficult for both human experts and the algorithm. Soft onsets are a known difficulty

for automatic rhythm feature extraction from audio in the case of classical music [3]. By

listening to the tracks and the annotators feedback, not only does this observation hold

but it also appears that a number of tracks in the Classical class do not have a clear

pulse and/or feature very strong use of expressive timing. By relying on the notion of

pulse rates, the formal description of the metrical structure used here implicitly assumes

the existence of a relatively stable and salient pulse. Furthermore, by relying on a onset

detection function, the algorithm also implicitly assumes that musical events onsets are

captured as peaks in this function. But these fundamental assumptions are contradicted

by the musical properties that can be observed in a number of tracks in the Classical

class, which explains why the algorithm as well as humans are unable to provide a sat-

isfactory analysis of these pieces within this framework. This suggests such difficulties

possibly cannot be overcome by simply improving the capabilities of an algorithm relying

on such premises but would rather require the use of a different formal model of metrical

structure on which to build an algorithm. The definition of such a formal framework is

still an open question, however.

4.5.3 Alternative metrics

Previously, the metrical structure extracted for each track has been compared with all the

annotations available for this track, therefore producing several F-measures which were

then averaged to produce a unique score per track. By doing so, the variance in the scores

for each tracks is disregarded. In this section, we introduce alternative metrics for further

evaluation of the algorithm performance in order to assess how good is the best agreement

as well as how bad is the worst. Two evaluation conditions are considered and respectively

labelled ‘Best’ and ‘Worst’. In the ‘Best’ evaluation condition, for each audio track, the
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Figure 4.8: Algorithm performance for every genre in the ’Best’ condition.
The box extends from the lower to upper quartile values of the data, with a red line
at the median while the green dot is the mean. The whiskers extend from the box to

show the range of the data, excluding the outliers.

metrical hierarchy extracted by the algorithm is evaluated against all the annotations

available for this track (exactly as it is done in Section 4.5.2). Then, for each track, only

the highest F-measure is kept. As a result, only the best agreement between annotated

and extracted metrical hierarchies is considered in this evaluation condition. Similarly, in

the ‘Worst’ condition, only the lowest F-measure is kept, therefore considering only the

worst agreement between annotated and extracted metrical hierarchies. The statistics of

the results of the evaluation under these two conditions are shown, per genre cluster, in

Figure 4.8 and Figure 4.9. As expected by construction, the ‘Best’ condition exhibits

much higher performance than the ‘Worst’ condition and the average results shown in

Figure 4.7 lie in between. Regardless of the evaluation conditions, Jazz and Classical

remain performance outliers. This corroborates the observation made in Section 4.5.2

and the conclusions that can be drawn from them. In the ‘Best’ condition, Jazz and

Classical genres aside, the median F-measure equals 1.0 and the mean in consistently

well above 0.8 for all genres. Moreover the score distributions are very narrow, which

accounts for a high level of consistency. This means that the estimated metrical structure

always corresponds very well with at least one of the annotations, which suggests that

the algorithm robustly produces meaningful estimates. In the ‘Worst’ condition, the

distribution of F-measure scores tends to widen and the median and average values

decrease with respect to the ‘Best’ condition or the average scores considered in Section
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Figure 4.9: Algorithm performance for every genre in the ’Worst’ condition.
The box extends from the lower to upper quartile values of the data, with a red line
at the median while the green dot is the mean. The whiskers extend from the box to

show the range of the data, excluding the outliers.

4.5.2. However, it is interesting to note that the scores obtained in the ’Worst’ condition

are not dramatically low, which indirectly reveals the relatively good agreement between

annotators.

Table 4.3 and Table 4.4 show the mean F-measure (FmE) obtained from the evalua-

tion in the ‘Best’ and ‘Worst’ conditions respectively as well as the mean F-measure

of inter-annotator agreement (FmA) for each genre. The calculation of FmA and of

the PRUL are identical to those presented in Section 4.5.2. In the ‘Best’ condition, the

PRUL exhibits values higher than 100%. It means that the best agreement between one

annotation and the extracted metrical structure is greater that the average agreement

between annotators, or FmE > FmA. This result shows the importance of taking into

account the inter-annotator agreement. Evaluating the algorithm under the ‘Best’ con-

dition effectively neglects the impact of the disagreement and therefore produces values

that are not representative of the actual performance of the algorithm.

4.6 Extension to tempo estimation

The concepts of tempo, tactus and beat rate are often used interchangeably in MIR

literature focusing on beat tracking and tempo estimation, although the limits of such a
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Table 4.3: F-measure of algorithm performance in the ‘Best’ condition, inter-rated
agreement and Algorithm Performance Relative to the Upper Limit (PRUL) imposed

by inter-annotator agreement; by genre classes.

Genre FmA FmE PRUL

Blues 0.87 0.88 101.1%
Classical 0.72 0.74 102.8%
Country 0.92 0.87 94.6 %
Disco 0.91 0.94 103.3%
HipHop 0.91 0.92 101.1%
Jazz 0.81 0.69 85.1 %
Metal 0.91 0.94 103.3%
Pop 0.93 0.89 95.7 %
Reggae 0.90 0.93 103.3%
Rock 0.92 0.93 101.1%

Table 4.4: F-measure of algorithm performance in the ‘Worst’ condition, inter-rated
agreement and Algorithm Performance Relative to the Upper Limit (PRUL) imposed

by inter-annotator agreement; by genre classes.

Genre FmA FmE PRUL

Blues 0.87 0.73 83.9 %
Classical 0.72 0.56 77.8 %
Country 0.92 0.77 83.7 %
Disco 0.91 0.85 93.4 %
HipHop 0.91 0.83 91.2 %
Jazz 0.81 0.53 65.4 %
Metal 0.91 0.84 92.3 %
Pop 0.93 0.80 86.0 %
Reggae 0.90 0.83 92.2 %
Rock 0.92 0.85 92.4 %

view point have been pointed out [44]. Despite the intrinsic interest of this discussion,

debating the difference between those terms is beyond the scope of this study. In the

following we comply with the standard convention used in MIR literature and thus adopt

the consideration that the beat rate describes the pulse rate of the metrical level labelled

as ‘beat’ — which is therefore expected to be part of the metrical structure. We also

adopt the consideration that the beat rate can be labelled as ‘tempo’. Finally, we adopt

the idea that listeners would tap their foot along the music at a given metrical level that

can be labelled as the ‘beat’, therefore associating the tactus and the beat rate.

On this premise, a simple tempo estimation system based on the metrical structure

estimation algorithm described above that was submitted to the MIREX 2014 tempo
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estimation task is presented in this section. It effectively consists in selecting two met-

rical level pulse rates from the metrical structure estimate as tempo estimates. In the

following, we start by briefly presenting the MIREX audio tempo estimation task, then

detail the tempo estimation algorithm and finally discuss the results.

4.6.1 The MIREX audio tempo estimation task

The MIREX audio tempo estimation task4 aims at providing a reference evaluation

framework for audio tempo estimation systems and therefore enabling meaningful com-

parisons of their performance.

The test set consists of 160 music tracks of various genre, instrumentation, tempo and

meter. A subset of 20 tracks is made public for participants to tune their algorithms while

the remaining 140 are kept secret so that they are unseen by the participants’ algorithms

at evaluation time. The challenge organisers specify that the musical excerpts used for

testing have the following properties:

• Stable tempo within each excerpt

• A good distribution of tempo across excerpts

• A large variety of instrumentation and beat strengths (with and without percus-

sion)

• A variation of musical styles, including many non-western styles

• The presence of non-binary meters (about 20% have a ternary element and there

are a few examples with odd or changing meter)

The dataset is annotated with the “perceived tempo”, which effectively means that the

ground truth data was gathered by asking a group of listeners to tap along each track

— thereby associating the tempo to the tactus rate. In the interest of consistency of

nomenclature and conciseness, we will keep on using the term tempo in this section.

Ambiguity arises as listeners may tap at different rates [21], and consequently the data
4http://www.music-ir.org/mirex/wiki/2016:Audio_Tempo_Estimation
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forms a probability density distribution across the possible tapping rates. In order to

account for the non singularity of tapping behaviour captured, the annotation data for

each track is made of two tempo values and their relative strength. Effectively, the two

most salient peaks in the probability distribution of tapped rates are chosen as the two

tempi, notated T1 and T2, and their relative weight is derived from the number of people

tapping to each one of them and then normalised to sum to 1.0. The more people tap

to a given perceptual tempo, the larger its weight is.

Algorithms receive three scores, in percentages, as evaluation metrics: ‘Both tempi cor-

rect’, ‘At least one tempo correct’ and ‘Tempo P-Score’. While the two first ones are

self-explanatory, P-Score calculation is given by :

P-score = ST1 · TT1 + (1− ST1) · TT2 (4.10)

where TT1 is the relative perceptual strength (given by groundtruth data, varies from 0 to

1.0) of T1, TT1 is the ability of the algorithm to identify T1 to within 8%, and TT2 is the

ability of the algorithm to identify T2 to within 8%. Participating algorithms are therefore

expected to output two tempo candidates T1 and T2. Evaluating a tempo estimation

system against two ground truth values instead of one provides a finer granularity in the

analysis of the results, and has been implemented in response to the well known octave

error. Typically, an algorithm producing an octave error output would be less penalised

than one producing a totally uncorrelated value.

4.6.2 Proposed algorithm

The algorithm relies on the assumption that the two ground truth tempi correspond to

metrical level pulse rates. As a result, the algorithm we propose here aims at selecting

the two tempi amongst the metrical level pulse rate estimates produced by the algorithm

described in Section 4.3. In particular the metrical levels are filtered on the basis on a

set of rules described below. This processing stage is referred to as ‘Rule based filtering’

block in the flowchart of Figure 4.10, where the dashed line box represents the metrical
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Figure 4.10: Audio tempo estimation algorithm flowchart

structure extraction algorithm presented in Section 4.3 and which flowchart was given in

Figure 4.5.

The filter uses the parametrised resonance curve proposed to fit the perceived tempo

tapped by listeners in [21]:

Eω0,η(ω) =
1√(

ω2
0 − ω2

)2
+ η · ω2

+
1√

ω4
0 + ω4

(4.11)

where ω0 is the resonant tempo, η the damping constant and ω the tempo (i.e. metrical

level pulse rate). McKinney and Moelants carried out experiments on two group of

listeners: musicians and non-musicians. They then obtained two sets of parameter to fit

the results: ω0 = 138 BPM and η = 5.0 for musicians and ω0 = 125 BPM and η = 2.0

for non-musicians. In our implementation, we use the average values over these two

groups for ω0 and η. The corresponding curve is reproduced in Figure 4.11. It represents

the tempo induction likelihood; in other words how likely, or comfortable listeners are

tapping at a given rate. The curve tapers at its extremities, which accounts for the

unlikeliness of listeners to tap tempo typically below 50 BPM and above 200 BPM. As

a consequence, the tempi are limited to the 30-230 BPM range in the present algorithm.

The selection of the two successful candidates among metrical levels extracted at the

previous stage is achieved using the following rationale: First of all, the number of
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Figure 4.11: Tempo induction resonance curve from [21]

metrical levels present in range 30-230 BPM is calculated. Secondly, depending on that

number, the appropriate processing is performed, with four possible cases:

• There are exactly two metrical level pulse rates in the 30-230 BPM range: they are

chosen as the tempo estimates and their weights W1 and W2 are set equal to the

corresponding weights in vector U .

• There are more than two metrical level pulse rates in the 30-230 BPM range: The

level with the heaviest weight (from weight vector U) and the heaviest first adjacent

metrical level (either greater or smaller pulse rate) are chosen as the two estimates5.

Their weights W1 and W2 are set equal to the corresponding weights in vector U .

• There is only one metrical level pulse rate in the 30-230 BPM range: it is set as the

first tempo estimate T1 and W1 is set equal to its corresponding weight in vector

U . Two candidates are then generated from the first estimate. One with double

frequency Ta = 2T1 and, one with half frequency Tb = T1/2. Both are weighted

using the normalised resonance curve of equation (4.11) , so that Wa = Eω0,η(Ta)

and Wb = Eω0,η(Tb), and the heaviest one is chosen as the second estimate so that

W2 = max (Wa,Wb) and T2 is set equal to the corresponding metrical level pulse

rate.
5We choose the heaviest first adjacent metrical level rather than the second heaviest level, because

we assume that the two annotated tempi correspond to adjacent metrical levels. This assumption is
motivated by the annotation procedure of the MIREX dataset: annotators were asked to tap along the
music. We therefore assume that it is more likely that annotators would latch on two adjacent metrical
levels rather than on two potentially far apart levels.
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• There is no metrical level pulse rate present in the 30-230 BPM range: The heaviest

metrical level present outside the range is taken as a reference and its frequency is

iteratively divided by two until two candidates in the range are found if it is above

the higher bound of the range (resp. multiplied if it is below the lower bound).

Tempo estimates are then both weighted using the normalised curve of equation

(4.11).

The two latter cases are implemented to enable recovery from any possible failure of the

previous processing stage (i.e. that would fail at detecting some metrical levels). In that

type of scenario, the tempo estimate is an artificial guess that is made at the expense of

a major bias: simple duple meter is assumed, hence the factor of two in the rules above.

This assumption is made because the music corpus used in the MIREX audio tempo

estimation task is known to be predominantly made of music in simple duple meter.

Therefore, this assumption will hold in most of the cases on this dataset but does not

generalise. Most musical pieces are expected to fall under one of the first two conditions,

however.

The weight of the two tempi W1 and W2 are then used to compute the relative strength,

ST1, of tempo 1 in comparison to tempo 2:

ST1 =
W1

W1 +W2
(4.12)

4.6.3 Results

The results of the MIREX audio tempo estimation task for the years 2011-2016 are

regrouped in Figure 4.12. The algorithm presented here is highlighted in green and

labeled QHS1. Its detail score is given in Table 4.5.

The QHS1 algorithm achieves an overall performance that is in the upper half of best

performances. This is a good result given the extreme simplicity of this algorithm com-

pared to the other entries in the challenge, which usually involve more complex systems.

It produces at least one correct estimate in 92% of the cases, but correctly estimates the
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MIREX audio tempo algorithm

At least one tempo correct 0.92
Both tempi correct 0.56
P-Score 0.80

Table 4.5: Mirex results

two tempi in only 56%. Unfortunately, because the test set is hidden from participants,

it is impossible to investigate in more detail the causes of failure. For instance, the al-

gorithm fails at estimating even one tempo in 8% of the cases and there is no way to

investigate the causes of failure further. Similarly it is not clear if the algorithm fails at

estimating both tempi because it is picking an incorrect metrical level, or because the

metrical level estimation is incorrect all together. However, the results reported in Sec-

tion 4.5 suggest that the algorithm is robustly picking metrical level pulse rates, and we

therefore hypothesise that it is likely that the main cause of failure is picking a metrical

level that had not been annotated as the tempo.

The overall results of the MIREX audio tempo estimation task show that it can be

considered that there is little to no room for improvement over the best performing

methods with respect to the at least one tempo correct metric, as several algorithms

scored 0.99 and a large number of entries consistently score over 0.90. In contrast,

getting both tempi correct proves to be a much more challenging task and therefore still

leaves room for improvement. The P-score being a composite derivative of the two other

metrics and improving on current state of the art will only be possible by improving on

the both tempi correct metric.

4.7 Conclusions

The relationship between peaks in the beat spectrum and metrical level pulse rates has

been investigated via the evaluation of algorithms for explicit extraction of all the full

metrical structure from the beat spectrum. The conclusions that can be drawn from

this evaluation are threefold. Firstly, the results suggest that the hypothesis according

to which metrical level pulse rates relate are materialised by peaks in the periodicity

spectrum is validated. On the other hand, it clearly appears that not all peaks in
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Figure 4.12: MIREX 2014 audio tempo results. The algorithm presented here
is labeled QHS1 and highlighted in green in the bar charts
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the periodicity spectrum relate to metrical level pulse rates. As result, retrieving the

metrical structure from the periodicity spectrum is not straightforward. Secondly, the

rhythmogram multiplication strategy proposed by Peeters in order to address this issue

appears to be effective to preserve the peaks that relate to metrical level pulse rates

while eliminating some of the peaks that do not. However, the elimination is not total,

which implies that extra post-processing is required to estimate the metrical structure.

Finally, a peak-picking strategy enforcing hierarchical constraints rooted in music theory

appeared to significantly improve the accuracy of metrical structure extraction.

Further analysis of the performance is performed by estimating the algorithm perfor-

mance relative to a measure of the level of agreement between annotators. In this con-

text, we find that the proposed system reaches 93% of maximum achievable accuracy,

and largely outperforms the baseline method. Taking advantage of the genre cluster an-

notations available for the dataset under consideration, the performance was evaluated

for the 10 genres in parallel. It appears that for common western popular music genres

the metrical structure estimates closely match the expert annotations. However, the

analysis of performance on tracks in the Jazz and Classical categories suggest that some

musical properties such as syncopation or lack of clear accentuation of strong and weak

beats patterns make the estimation of metrical structure more difficult for the machine

than it is for human experts. This suggests that there is still room for improving the

robustness of algorithms against these properties. On the other hand, by relying on a

onset detection function and on the notion of pulse rates, most metrical structure es-

timation algorithms, including the one proposed in this chapter, implicitly assume the

existence of a relatively stable and salient pulse and that musical events result in peaks

in the onset detection function. But these fundamental assumptions are contradicted

by the musical properties that can be observed in a number of tracks in the Classical

class, which explains why neither the algorithm nor human experts are able to provide a

satisfactory analysis of these pieces within this framework. As a result it suggests that

overcoming such difficulties is not a matter of making algorithms better at detecting

localised events and salient pulses but would rather require the use of a different formal

model of metrical structure on which to build an automatic estimation system. The

definition of such a formal framework is still an open question, however.



Chapter 5

Estimating the Reliability of

Rhythmic Features Extraction

5.1 Introduction

The design of systems for automatic feature extraction from audio is a central aspect

of the field of Music Information Retrieval. Combining features or using one feature

to inform the extraction of another (e.g. beat synchronous chromagram) has appeared

to be a fruitful approach [197–199]. In such a setting, it is typically assumed that the

base features (e.g. the beat positions) are reliable. However, it is widely known that

despite exhibiting good and increasing performance, the automatic extraction of musical

features (e.g. tempo or chords) occasionally fails and feature extraction systems seldom

provide an indication of reliability. In the absence of a reliability indication, only two

postures can be adopted: we either assume the extracted feature is reliable and use it

as it is, knowing that it will occasionally fail, or we disregard the feature all together

— i.e. it is considered unusable. Blindly relying on extracted features without the

provision of additional information implies that the cases of failure cannot be anticipated.

Unpredictable failures are a major barrier to building trust in an automated system and

130



Estimating the Reliability of Rhythmic Features Extraction 131

therefore present a significant obstacle to the adoption and/or usefulness of such a system

for scientific research as well as industrial applications1.

The fact that automatic musical feature estimation systems occasionally fail, but, more

often than not, do produce a useful estimate leads us to ask: How can we facilitate the

development of trust in MIR feature extraction systems? How can we make them usable

and useful despite their imperfection? In this chapter we propose a method to estimate

the reliability of automatically extracted features, focusing on the case of high-level

rhythm features, namely tempo, beat positions and metrical structure. A music recording

is given an estimate of the probability that a reliable (or erroneous) estimate would be

produced from it. As a result, although the intrinsic performance of the feature extraction

scheme is left untouched, the failures are then predictable, so the hypothetical complex

system relying on this feature can react accordingly. In this context, the provision of

a reliability estimate forms a strategy for handling the imperfection of the MIR feature

extraction systems. Our method for predicting reliability shall be seen as a flag providing

an extra information about features produced for a given track. In this capacity, it can

be used as a way to advice users or complex systems whether or not it is worth or useful

to attempt using rhythm related features extracted from a given track. For example,

let us considers a hypothetical scenario where a user facing interface which content and

operation rely on a rhythm feature estimate. If, for a given track, our method predicts

very low reliability, it might be better to skip this track and avoid exposing it to the

user. It is important to note, however, that our method only provides an estimate of the

reliability and that the decisions to be made from it naturally depend on the application

scenario and should be adapted accordingly. The discussion of such strategies, however,

is beyond the scope of this work, and we leave it at the discretion of interested parties.

It has been extensively reported in the MIR literature that it is difficult to reliably

extract high-level rhythm related features from musical excerpts having properties such

as soft onsets, heavy syncopation or use of expressive timing (e.g. rubato playing). Thus

far, there has been relatively little effort in quantifying this, however. The extraction of

indicators such as ‘beat strength’ [85] and ‘pulse clarity’ [200] has been proposed. In these
1This problem has been faced on a number of occasions when deploying MIR features at industrial

scale and leveraging them to power consumer facing products, via our collaboration with Omnifone Ltd.
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studies, the proposed calculation methods were directly evaluated against annotations

produced by human ratings. The impact of such an attribute on the extraction of related

rhythm features was not investigated, however. Goto [88] proposed a similar approach

to estimate the strength of the beat by calculating the difference of the power on the

beat, and the power on other positions in order to assess the beat tracking difficulty of a

song. The underlying hypothesis is that beat tracking is easiest on a piece with a strong

beat. Note that this feature is computed within a beat tracking algorithm in order to

adapt its characteristics to the music excerpt under analysis.

In a case study on Chopin Mazurkas, Grosche tried to identify the musical properties

that make a piece difficult for automatic beat tracking [201]. He isolates properties such

as trills, arpeggios and grace notes, which manifest as several note onsets very close to

each other and therefore make the precise estimation of the beat position harder. Other

difficult properties that were reported include soft onsets and tempo changes. Holzapfel

proposed a beat tracking difficulty estimation method based on disagreement in a com-

mittee of beat trackers, so that a disagreement suggests a difficult case for beat tracking

[3]. This method was used to produce the SMC dataset comprising tracks that are dif-

ficult for beat tracking which we use in the following sections (cf. Section 3.2). Thanks

to tags provided by the annotators, Holzapfel et al. identified recurrent musical prop-

erties that make beat trackers fail and summarised them in three categories: i) timing

and tempo related (i.e. expressive timing, tempo change, rich ornamentation etc.), ii)

lack of clear rhythmic onsets (i.e. lack of transient sounds and quiet accompaniment)

and iii) metrical structure related (i.e. compound meter). The existence of category iii)

suggests that most beat trackers are geared towards music in simple duple meter. These

findings corroborate Grosche’s conclusions as the challenging properties he reported fall

in categories i) and ii). In Section 5.2 we provide a number of examples showing how

the distribution of energy in the rhythmogram is affected by musical properties falling

in categories i) and ii), thereby motivating its use as a base feature for the estimation of

rhythm feature extraction reliability. It has been shown in Chapter 4 that the rhythmo-

gram captures metrical structure-related information, so this aspect, which corresponds

to category iii), will not be addressed again in this chapter.
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In recent work, Thoshkahna demonstrated that the entropy of a cyclic rhythmogram

(labelled ‘tempogram’ in the original publication) [202] can be used as an indicator of the

tempo salience of a musical piece [203]. Building on the premise that the distribution

of energy in the rhythmogram is affected by properties of the audio signal that make

beat tracking and other rhythm features extraction difficult, in Section 5.3 we propose to

extend Thoshkahna’s work and use the entropy of a rhythmogram to provide an estimate

of the reliability of rhythm features extraction. Section 5.4 describes the experiments

and the results are presented and discussed in Section 5.5 for the extraction of three

rhythm features, namely the tempo, metrical structure and beat positions.

5.2 Rhythmogram and challenging musical properties

In this section, we illustrate how musical attributes known to be challenging for rhythm

feature extraction affect the energy distribution in rhythmogram frames. Let us first

consider the timing and tempo related properties — i.e. category i) according to [3].

In particular we illustrate how departing from the canonical model of a steady and

consistent tempo affects the energy distribution in a rhythmogram. For this matter,

two synthetic audio excerpts were produced: the first one consists of a percussive sound

repeated at a frequency of 240BPM; realised by creating a MIDI score and triggering the

corresponding sound from it. The second example was produced using the same MIDI

score and sound but this time linearly increasing the tempo between 240 and 270 BPM

over the duration of the excerpt (15s). The corresponding rhythmograms are given in

Figure 5.1 (A) and (C). In addition, periodicity spectra, effectively corresponding to a

frame of each rhythmogram (delimited by the vertical lines), are given in Figure 5.1 (B)

and (D).

For the fixed tempo example, the audio signal consists of sharp percussive events, which

translate into sharp and equally spaced peaks in the onset detection function. In other

words, the onset detection function is periodic, so that Φ(t) = Φ(t + τ) where Φ is the

onset detection function (ODF) and τ is the period. Then, the ODF is closely approx-

imated by a Dirac comb convolved with the envelope shape specific to the percussive
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(a) Rhythmogram stable tempo
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(b) Periodicity spectrum stable tempo
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(c) Rhythmogram unstable tempo
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(d) Periodicity spectrum unstable tempo

Figure 5.1: Rhythmograms and periodicity spectra for stable and unstable
tempo. The rhythmogram and corresponding periodicity spectra presented here were
computed from two audio click tracks. The two excerpts were synthesised using the
same instrument (monophonic percussive sound). Each excerpt was synthesised under
a specific tempo condition: stable tempo in cases (A) and (B) (240BPM) and unstable
tempo, linearly increasing the tempo between 240 and 270 BPM over the duration of
the excerpt (15s), in cases (C) and (D). The periodicity spectrum corresponds to the
frame delimited by the white vertical lines on the rhythmogram and is normalised to

sum to one.

sound. As a result the periodicity spectrum also exhibits sharp peaks arranged in a

harmonic structure (cf. Figure 5.1 B).

An unstable tempo implies that the ODF is no longer strictly periodic. This may be

modelled by a time-varying quasi-period τ(t) so that Φ(t) = Φ (t+ τ(t)). In the context

of the frame-wise analysis that is considered here, the periodicity estimation is effectively

integrated over the window length. Given that the windows used for the periodicity

analysis need to be long enough to capture the rhythmic and metrical periodicities of

interest (typically several seconds), a change of tempo occurring within a window would

result in the integration of its corresponding (time-varying) periodicity. As a result the

peaks in the beat spectrum are expected to be widened in presence of tempo variations.

This phenomenon can be observed in Figure 5.1. The peaks of the periodicity spectrum

depicted in Figure 5.1 (D) are not as sharp as in Figure 5.1 (D), which also translates in

thicker horizontal lines in the rhythmogram in Figure 5.1 (C).
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(a) Rhythmogram ‘hard’ onsets
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(b) Periodicity spectrum ‘hard’ onsets
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(c) Rhythmogram ‘soft’ onsets

0 100 200 300 400 500 600 700 800
Frequency (BPM)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ag

ni
tu

de
(d) Periodicity spectrum ‘soft’ onsets

Figure 5.2: Rhythmograms and periodicity spectra for hard and soft onsets.
The rhythmogram and corresponding periodicity spectra presented here were computed
from audio excerpts synthesised from the same MIDI score at constant tempo, using
two different instruments: a piano in cases (A) and (B) and a synthesiser producing
soft onsets in cases (C) and (D). The periodicity spectrum corresponds to the frame
delimited by the white vertical lines on the rhythmogram and is normalised to sum to

one.
The entropy of the periodicity spectra is (B) S = 0.68 and (D) S = 0.89

Let us now consider the category of musical attributes that regroups all forms of lack of

clear onsets, i.e. category ii) according to [3]. This could correspond to ‘soft’ onsets as

may be produced by bowed string instruments for instance. The term ‘soft’ onset is used

in contrast with ‘hard’ onsets, which are typically produced by percussive instruments.

Many authors also report ‘quiet accompaniment’ to describe a similar property [3], i.e. it

is not clear where the onset of a musical event (e.g. a note) is located in time. Although

we refer the reader to Section 2.2 for a discussion of soft onsets and onset detection

functions, we recall that ODF are canonically designed to reveal onsets as peaks and

that most rhythm analysis systems rely on an ODF. Since soft onsets typically do not

produce clear peaks in the ODF, subsequent rhythmic analyses may be undermined.

In order to illustrate the effect of ‘soft onsets’ on the rhythmogram and beat spectrum,

two musical excerpts were synthesised. The excerpts are both based on a MIDI score

of the first two bars of John Lennon’s Imagine; chosen because it features a simple and
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steady rhythm pattern. The first excerpt was produced by synthesising an audio track

using a grand piano sound, featuring ‘hard’ onsets by virtue of the percussive nature of

the piano sound production mechanism. The second audio track standing as example of

‘soft onsets’ was produced using a synthesised sound with very smooth attacks. In both

cases the tempo is constant and the note onsets locations are quantised to strict metrical

positions on a grid. Figure 5.2 shows the rhythmogram and beat spectra obtained under

these two conditions. In the case of ‘hard’ onset, the canonical behaviour is observed; the

rhythmogram features clear horizontal lines and the periodicity spectrum features clear

peaks, organised in harmonic series, which account for clear periodicities of the onset

detection function. In contrast, in the ‘soft’ onsets example some peaks are discernable,

but they are not as salient as in the hard onset case, and no clear harmonic arrangement

is apparent. Moreover, the periodicity spectra are normalised to sum to unity, and thus

reveal that most of the energy is located in the peaks in the case of the hard onsets while

it is more homogeneously distributed in the case of soft onsets.

5.3 Rhythm salience feature

We hypothesise that musical attributes known to make high level rhythm feature extrac-

tion fail, such as expressive timing or soft onsets result in rhythmogram structures in

which the energy is more uniformly distributed along the frequency axis. The examples

given in Section 5.2 were provided to illustrate this phenomenon and thereby motivate

this hypothesis. As a consequence, we hypothesise that the evenness of the distribution

of energy in the rhythmogram frames (in other words measuring its peakiness) should

be related to the reliability of rhythm feature extraction.

The entropy, commonly known as a measure of certainty when applied to probability

distributions, is in fact a peakiness measure. On this premise, Thoshkahna proposed to

use the entropy of the frames of a cyclic rhythmogram2 as a measure of tempo salience

[203], but did not investigate the relation between tempo salience and feature extraction

reliability. The cyclic variation of the rhythmogram is computed by wrapping it over

one octave so that pulses related by a power of two are identified, by analogy with the
2labelled as ‘tempogram’ in the original publication
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Figure 5.3: Rhythmograms and entropy for examples of hard and soft on-
sets. The rhythmogram is the concatenation of rhythmograms obtained for hard and
soft onsets examples and shown in Figure 5.2 (A) and (C). The curve in the lower panel

show the entropy of the corresponding rhythmogram frames.

chromagram processing for pitch [202]. While in the case of the chromagram the octave

wrapping is justified by the octave equivalence in human pitch perception, Grosche moti-

vates the construction of the cyclic rhythmogram solely on the basis of the mathematical

analogy. Moreover, the wrapping proposed by Grosche relies on octave ratios (i.e. fre-

quency ratios equal to powers of two), which introduces a strong bias towards simple

duple meters. For these reasons, the cyclic rhythmogram is not used here. However, we

propose to use the entropy of the rhythmogram frames.

The computation is carried out as follows: An onset detection function is computed from

the audio signal using the Superflux method [62]. A rhythmogram RF is then generated

as the Fourier transform based magnitude spectrogram of the onset detection function,

using 12s long Hanning windows and 0.2s step. The columns of the rhythmogram are

normalised with respect to the L1 norm, and for a vector rn = (r1,n, · · · , rM,n) in RM

representing the nth rhythmogram frame, the entropy Sn is defined as:

Sn =

M∑
m=1
−rm,n log2 (rm,n)

log2(M)
(5.1)

with M the number of frequency bins in the rhythmogram. This way, a vector S =

(S1, · · · , SN ), where N is the total number of rhythmogram frames, captures the evolu-

tion of the entropy over time.
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Entropy, commonly used as a measure of disorder, or uncertainty in a probabilistic frame-

work, takes high values for uniform distributions of energy in vector rn, and small values

for highly organised, and therefore uneven, distributions. In other words, the entropy of

vector rn is small when the energy is mostly concentrated in peaks and conversely. In

this context, musical recordings featuring challenging properties for high level rhythm

feature extraction are expected to result in high rhythmogram entropy whereas tracks

with a clear, steady pulse and hard onsets are expected to result in good feature ex-

traction performance and to yield lower entropy values. Figure 5.3 shows an example of

rhythmogram and corresponding entropy for hard and soft onsets.

5.4 Experiments

In this section we lay out experiments to test the hypothesis according to which the

entropy of rhythmogram frames is related to the reliability of rhythm feature extraction.

First, several features are extracted from audio and the performance of the extraction

is evaluated using standard metrics. Secondly, the rhythmogram entropy is computed

for every track according to the method specified in Section 5.3. We then investigate

how it relates to the evaluated feature extraction performance. It is important to note

that the aim of this study is not to investigate nor to improve feature extraction or

evaluation methods per se (we refer to relevant literature for this purpose) but to focus

on the analysis of the relationship between rhythmogram entropy and feature extraction

performance.

Three high level rhythm feature extraction procedures were considered: tempo estima-

tion, metrical structure estimation and beat tracking. Tempo estimation is performed

using the Vamp plugin implementation3 of the algorithm introduced by Davies et al.

in [121] (cf. Section 2.5). The metrical structure is extracted using the algorithm we

presented in Chapter 4. For beat tracking, the evaluation results are drawn from a prior

study on beat tracking evaluation [3]. Two publicly available datasets are used to carry

out the estimation of feature extraction reliability. The GTZAN dataset [183] is used in

the case of tempo and metrical structure, along with the corresponding annotations for
3http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html#qm-tempotracker
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tempo4 and metrical structure (cf. Section 3.5). The average tempo and the metrical

structure estimate for the average periodicity spectrum (identically to the processing of

Section 4.3.1) are used for each track since the GTZAN dataset comprises 30 seconds

long excerpts of overall reasonable consistency (i.e. they do not contain a lot of musical

changes).

For each track, the estimated tempo is compared to the annotated tempo and considered

correct if they are equal within a tolerance window of 8% of the annotated value. This

tolerance window is chosen consistently with the standard adopted in the MIREX audio

tempo evaluation task5, which is a commonly used standard in MIR literature, so that

the results presented here are comparable with existing work. We refer the reader to

Chapter 4 for a detailed description of the metrical hierarchy feature extraction evalu-

ation metrics. However, we recall that, the extracted feature consists of an estimate of

the pulse rate of all the metrical levels present in the music. These are compared with

the corresponding annotations and the result is summarised by an F-measure. In both

the tempo and metrical structure cases, the feature extraction procedure is considered

reliable if it consistently matches the human annotations. In the case of beat tracking,

we rely on the difficulty assessment by disagreement in a committee of beat trackers [3].

Holzapfel et al. then used this method to compose the SMC dataset, made up ‘hard’ and

‘easy’ musical excerpts (cf. Section 3.2). The hard tracks were chosen for their propen-

sity to generate disagreement in the committee, that is to say unreliable beat estimates.

Conversely, ‘easy’ tracks were chosen for their propensity to generate consistent agree-

ment in the committee. It is therefore considered that the estimates produced for ‘easy’

tracks are reliable. For each musical excerpt considered in this chapter, we computed the

entropy of all rhythmogram frames according to equation 5.1, and an average entropy

value Ŝ obtained as:

Ŝ =

N∑
n=1

Sn

N
(5.2)

where N denotes the total number of rhythmogram frames.
4http://www.marsyas.info/tempo/genres_tempos.mf
5http://www.music-ir.org/mirex/wiki/2015:Audio_Tempo_Estimation
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Figure 5.4: Metrical structure feature extraction performance, given by the F-
measure, against track mean entropy Ŝ. Each dot on the graph represents the results

of the evaluation for a track of the GTZAN dataset.

5.5 Results

In this section we analyse the relationship between the rhythmogram entropy and the

performance of rhythm feature extraction algorithms, evaluated according to the methods

described in Section 5.4. Since the evaluation procedures are feature specific, the results

are presented on a per-feature basis.

5.5.1 Metrical structure

We first investigate the existence of a linear correlation between the entropy and the

performance F-measure for all the songs. The Pearson coefficient was computed and is

presented in Table 5.1. Pearson’s coefficient is a measure of linear correlation and results

in values which magnitude ranges from 0 (no correlation) to 1 (maximum correlation),

with the sign indicating the direction of the correlation. For the metrical structure, the

Pearson coefficient reveals a significant but weak correlation between entropy and the

algorithm performance. This evidence is graphically corroborated by the scatter plot of

Figure 5.4 in which no clear linear trend is apparent. However, it is apparent on this

plot that the bottom left area contains virtually no data points, which seem to indicate

a tendency in the distribution: tracks with low entropy tend to consistently lead to good

performance while tracks with high entropy result in inconsistent performance.

In order to gain more statistical insight, we now group data points by entropy classes.

Each class regroups tracks for which the average entropy Ŝ is within a given interval.
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Table 5.1: Correlation coefficients between entropy and both the mean tempo accu-
racy and the metrical structure F-measure, alongside with the corresponding p-value.

Tempo Metrical Structure
Coefficient p-value Coefficient p-value

Pearson -0.947 0.0001 -0.282 <0.0001

Figure 5.5 shows a boxplot of the distribution of the feature extraction performance

F-measure for each entropy class. Although the [0.6,0.65] class appears as a relative

outlier, it suggests a tendency for the performance characterised by the F-measure to be

relatively consistent up until the entropy reaches values around 0.8, and a clear decrease

of both mean performance and performance consistency (characterised by the spread

of the distribution) is observed. In order to assess the statistical significance of the

drop in mean performance, a Mann-Whitney U-test was run on F-measures distributions

belonging to adjacent entropy classes. The results are shown in Table 5.2 and confirm

that the decrease of mean performance observed for entropy values higher than 0.8 is

statistically significant at the 0.001 level. The distributions for the two smaller entropy

classes also exhibit apparently significant differences in their means (p < 0.01). The

number of observations in theses classes is small (<10 in the lowest entropy class) and

the overall mean F-measure remains very high as well as the spread of the distribution

remains small. As a consequence, although the means of these two classes are different,

the data still suggests both high performance and high performance consistency, with

high mean and narrow distribution. The width of the distribution in the [0.6,0.65] entropy

class is probably affected by a number of relatively mediocre performance outliers, as

suggested by the scatter plot of Figure 5.4. Nevertheless, its mean appears not to be

significantly different from the mean of the [0.65,0.7] class.

In conclusion, it appears that for entropy values higher than 0.8 (approximately), the

mean performance significantly decreases and the consistency of performance also de-

creases, as suggested by the widening of the performance scores distribution. In other

words, the reliability of the feature extraction drops significantly for high entropy values,

while it remains relatively stable on the lower range.
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Figure 5.5: F-measure distribution for each entropy class. The box extends from the
lower to upper quartile values of the data, with a red line at the median while the green
dot is the mean. The whiskers extend from the box to show the range of the data,

excluding the outliers.

Table 5.2: Mann-Whitney u-test p-values for the mean of F-measure of metrical
hierarchy evaluation. Values rejecting the null hypothesis of equal means at the 0.01

level are in bold font.

Entropy classes Means Sample Sizes p-value

[0.50, 0.55] - [0.55, 0.60] 0.82 - 0.92 14 - 45 < 0.001
[0.55, 0.60] - [0.60, 0.65] 0.92 - 0.84 45 - 125 0.002
[0.60, 0.65] - [0.65, 0.70] 0.84 - 0.87 125 - 207 0.062
[0.65, 0.70] - [0.70, 0.75] 0.87 - 0.90 207 - 430 0.094
[0.70, 0.75] - [0.75, 0.80] 0.90 - 0.89 430 - 562 0.088
[0.75, 0.80] - [0.80, 0.85] 0.89 - 0.83 562 - 555 < 0.001
[0.80, 0.85] - [0.85, 0.90] 0.83 - 0.75 555 - 538 < 0.001
[0.85, 0.90] - [0.90, 0.95] 0.75 - 0.47 538 - 147 < 0.001

5.5.2 Tempo

The evaluation of tempo extraction provides a dichotomy between correct and incorrect

estimations. The resulting data is grouped in entropy classes so that some statistical

information can be derived. The percentage of successful tempo estimation for each

entropy class is given in Figure 5.6 (A). The apparent trend in this data suggests that

the tempo extraction accuracy decreases as the rhythmic entropy increases. The Pearson

coefficient computed for the middle of the entropy class and the mean tempo accuracy

for each class is given in Table 5.1. It reveals a strong and significant negative linear

relationship between entropy and tempo estimation accuracy.

Tempo usually represents the rate of a metrical level, and an ‘octave error’ occurs when

the algorithm produces a tempo estimate that is typically half or twice of the annotated
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(a) Tempo estimation accuracy
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(b) Tempo estimation accuracy, octave er-
ror tolerated
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(c) Octave error rate

Figure 5.6: Tempo estimation performance against rhythmogram entropy.
(A) Mean tempo extraction accuracy (proportion of correct estimations) per entropy
class. (B) Mean tempo extraction accuracy (proportion of correct estimations) per
entropy class, also considering an octave error by a factor 1/3, 1/2, 2 or 3 as correct

tempo estimate. (C) Mean octave error rate per entropy class.

tempo in the case of duple meter (a third or three times in the case of triple and com-

pound meter). As such, the ‘octave error’ estimate effectively corresponds to a different

metrical level than the one which the annotated tempo is associated with. Therefore,

incorporating tolerance to octave error in the evaluation procedure implicitly relates to

the estimation of a part of the metrical structure. Interestingly, if the evaluation metric

that we use so that it counts an ‘octave error’ (by ratios of either 1/3, 1/2, 2 or 3) as

a correct tempo estimate, the distribution of percentage of ‘correct’ estimates exhibits a

shape very similar to the distribution of mean F-measure in the case of metrical structure

extraction, as shown by the comparison of Figure 5.6 (B) and Figure 5.5. Here again,

the performance appears to be relatively stable from lowest entropy class up to a critical

value (around 0.8) after which the performance drops. Note that the difference between

Figure 5.6 (A) and (B) is the octave error rate, which increases as the entropy increases

as shown in Figure 5.6 (C)
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Figure 5.7: Entropy distribution for the dataset published by Holzapfel et al. [3].
The box extends from the lower to upper quartile values of the data, with a red line
at the median while the green dot is the mean. The whiskers extend from the box to

show the range of the data, excluding the outliers.

5.5.3 Beat tracking

In the case of beat tracking, we use the SMC dataset for evaluation purposes. In par-

ticular, we investigate if a significant difference between the distributions of entropy of

‘hard’ and ‘easy’ tracks can be observed. The entropy distribution for ‘hard’ and ‘easy’

categories are graphically set apart in Figure 5.7. In addition, a Mann-Whitney U-test

strongly rejected the null hypothesis of equal means of the two distributions at the 0.001

level, which means that ‘easy’ tracks tend to have a significantly smaller entropy than

‘hard’ tracks. This suggests that the entropy measurement is correlated with the re-

sults obtained by Holzapfel et al. [3]. In other words, the beat tracking difficulty (and

thus the reliability of the beat estimates) that had been estimated using beat tracker

disagreement, is also related on average to measurement of the rhythmogram entropy.

5.6 Conclusions

Despite good and increasing performance of contemporary algorithms, the automatic

extraction of musical features occasionally fails. In addition, feature extraction systems

often do not provide an indication of the reliability of the corresponding feature, which

makes the inevitable failures unpredictable. Given this unpredictability, such systems are

doomed to be (at least to some extent) unreliable, and therefore unusable in a variety of

research and application scenarios. As a consequence, providing a reliability or confidence

value alongside an extracted feature significantly increases its usability in complex and/or

composite systems and studies.
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In response to this observation, the relationship between the entropy of a rhythmogram

derived from the audio, and the reliability of the extraction of several high level rhythm

features was investigated in this chapter. In particular, tempo and metrical structure

estimation algorithm were considered along with beat tracking. A feature extraction

system is considered reliable if it performs consistently well. The results show that the

entropy of rhythmogram frames is statistically related to the reliability of the extraction

of multiple high-level rhythm features, a higher entropy being related to lower feature

extraction reliability and vice versa. Given that the rhythmogram entropy is computed

directly from the audio, it is a valuable asset for the production of an estimate of the

reliability of high level rhythm feature extraction, independent of the feature extraction

itself. As a result, this may enhance the usability of the corresponding features for

applications such as exploring large music collections or powering user-facing systems

to name but a few [204]. It may therefore prove useful for a number of cases including

assessing if it is worth attempting the extraction of rhythm features and attaching a

confidence value to a feature for which it was not originally provided. Furthermore, in

a machine learning setting, the entropy could be used as a weight for feature or model

selection. Naturally, many more applications can be considered, beyond the handful of

use case examples that were cited here.



Chapter 6

On Metric Modulations Taxonomy

6.1 Introduction

A metric modulation in a piece of music is understood in this thesis as a change in

the metrical structure over time. The nature of the modulation, as well as the effect it

produces on the listener, naturally depends on what attributes of the metrical structure

are modified and how. Modulations could for instance be realised by the alteration of

the number of beats in a bar, the beat subdivision, the beat rate, or possibly several of

these occurring simultaneously. It follows that metric modulations come in a variety of

types, and we will revisit this point later. We recall that our usage of the term metric

modulation in this thesis includes any type of changes of meter. As a consequence, the

terminology used by other authors may or may not be in line with ours. In most instances,

authors have focused on a subset of all possible metric modulations and have named

them accordingly. However, unless stated otherwise, we will not adopt the terminology

proposed by other authors in the remainder of this thesis.

Fétis, who wrote prolifically on the topic in the 19th century (see for instance [205,

206]), stated that rhythm had been left in a secondary position [throughout history]

and advocated for a more prominent role to be given to rhythm as a compositional

device [207]. His stance has later found an echo in a movement of 20th century avant-

garde music to which complex manipulations of rhythm and meter were central pillars of

146
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compositions. Elliott Carter, who gives primary importance to rhythm in his music [208]

is seen as a pioneer in the art of using tempo and metric modulations as a fundamental

compositional technique, and is widely considered as a figurehead of this movement. As

a consequence, his work is of particular interest for musicologists interested in rhythm

studies [209–212]. Although not used so extensively or intensely outside of 20th century

avant-garde music, metric modulations are not a rarity in the more common musical

repertoire. For instance, they are frequently encountered in Stravinsky’s body of work

and in the progressive rock genre as well as occasionally in popular music. Madonna’s

‘Dear Jessie’ contains a metric modulation, as does the music of the Beatles, to only

name a few.

Study, analysis, characterisation and classification of harmonic modulations are exten-

sively covered in the musicology literature. In contrast, there are only very few studies

focusing on metric modulations. Nevertheless, as Fétis mentioned in the 19th century,

there exist numerous parallels between metric and harmonic modulations [207] and this

analogy offers an opportunity to transfer many of the benefits of work carried out on

harmonic modulations to its metric counterpart. Bouchard [213], inspired by the concept

of this analogy, proposed a transposition of the theoretical framework for tonal modu-

lation analysis into the rhythm domain. From this theoretical framework, he derived a

relatively exhaustive taxonomy of metric modulations.

With the aim of enabling musically meaningful analyses, this chapter is concerned with

the question of outlining a musicologically-grounded metric modulations taxonomy suit-

able for automatic classification of metric modulations from audio recordings. We first

provide in Section 6.2 a description, in English, of the metric modulations taxonomy pro-

posed (in French) by Bouchard in [213]. While we intend here to perform audio-based

analysis, Bouchard proposed a score-based taxonomy of metric modulations. Musical

scores are not always available and recreating a score from an audio recording, which

is known as automatic transcription, is by no means a solved problem in the current

state of the art [101, 133]. Consequently, it is not possible to directly deploy Bouchard’s

analytical framework to audio recordings. Benadon suggested the use of another musical

representation, namely the metrical level pulse rates, as a feature to characterise what
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he calls “tempo modulations”; which in fact correspond to a category of metric modula-

tions in Bouchard’s taxonomy [214]. We propose a generalisation of Benadon’s concept

and tie it with the framework introduced by Bouchard in order to produce a taxonomy

applicable in an automatic analysis framework. In particular, in Section 6.3 we present

a reformulation of Bouchard’s taxonomy in terms of metrical level pulse rates, which

can be extracted automatically from audio recordings (cf. Chapter 4) rather than score

notation.

In Section 6.4 we employ the newly introduced taxonomy for automatic metric modu-

lations classification. In particular, we introduce an automatic classifier based on the

taxonomy and then carry out two classification experiments on the dataset introduced in

Section 3.6. First we employ the metric modulations classifier to automatically label the

modulations from the reference annotations. In a second experiment, we automatically

label modulations from automatically extracted metrical structure. We finally draw con-

clusions regarding the use of such a taxonomy in an automatic classification scenario and

propose directions for future work in Section 6.5.

6.2 Bouchard’s Taxonomy

In this section we summarise the taxonomy of metric modulations derived by Bouchard

in [213]. His theoretical framework is built on the premise of an analogy between tonal

and metric modulations. This allowed him to transpose a series of theoretical concepts

developed for the analysis of tonal modulations to the case of metric modulations. The

notion of pivot, which is the unit common to the two structures around which the mod-

ulation is articulated, is an example of such a concept. In the case of tonal modulation,

the pivot may be a chord or a note, whereas in the case of metric modulation it would

typically be a metrical level (e.g. the eighth note). As such, the pivot articulates the

modulation while maintaining a link that unites the parts together. Using a pivot is a way

for composers to produce modulations that bring a metrical change between parts with-

out sounding disjoint, because the pivotal unit maintains a certain continuity. Choosing

the pivot and the mechanism by which the modulation articulates around it allows the
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composer to control the musical effect produced. In the following, we briefly describe

the varieties of modulation types defined by Bouchard.

Bouchard sorts the metric modulation types he defined into two groups: Metric Modu-

lations, which imply a change of metrical structure that leaves the beat rate untouched

and Combined Modulations which are defined as joint tempo and metric modulations.

The following definitions summarise those provided by Bouchard in [213]. They are

formulated using his choices of terms in order to maximise the fidelity of the translation.

Tempo Modulation

Tempo modulations regroup the variations of speed of execution in a music piece.

Doubling or halving tempo are examples of tempo modulation. Naturally, other

speed ratios are possible. This category does not include subjective or expressive

speed variations such as rubato, ritardando, accelerando etc. In its simplest form,

a tempo modulation does not imply a metric modulation.

Metric Modulation Type I

Bouchard’s Type I modulation is defined as a combined alteration of the numerator

and the denominator of the time signature, such that the number of beats per bar

remains unchanged. The beat rate also remains unchanged (and can therefore be

regarded as the pivot). In other words, this modulation is characterised by a change

of beat subdivisions. Figure 6.1 shows an example of Metric Modulation Type I.

Figure 6.1: Example of Metric modulation Type I

Metric Modulation Type II

This type of modulation is characterised by Bouchard as a change of numerator in

the time signature i.e. the number of beats in the bar, while the tempo remains

unchanged. The beat rate is used as the pivot. Figure 6.2 shows an example of

Metric Modulation Type II.
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Figure 6.2: Example of Metric modulation Type II

Metric Modulation Type I Hybrid

This modulation is characterised by a change of numerator and denominator of the

time signature, as well as a change of number of beats per bar, while the beat rate

remains unchanged. As such it has got the characteristics of both Type I and Type

II modulations, hence the “hybrid” label. Figure 6.3 shows an example of Metric

Modulation Type I Hybrid.

Figure 6.3: Example of Metric modulation Type I Hybrid

Metric Modulation Type III

It is characterised as a change of denominator in the time signature while the pivot

keeps the same pulse value before and after the modulation. All other metrical

aspects are kept identical, including number of beats per bar, strong and weak

beats patterns, subdivisions etc. As a result, this type of modulation only exists as

a written (i.e. score) artefact, and does not imply any audible change. Bouchard

states he added this modulation type in order to provide symmetry of the modu-

lation parameters. Although potentially relevant for score-based musicology and

certainly impactful on musicians performance, this type of modulation is not prac-

tically useful for an audio-based analysis of music recordings as it is not related to

any sonic change. Figure 6.4 shows an example of Metric Modulation Type III.

Figure 6.4: Example of Metric modulation Type III
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Combined Modulation Type I

A Type I combined modulation is a Type I metric modulation — that is to say

the numerator and denominator of the time signature are altered — paired with

a change of tempo. Two sub-categories of Type I combined modulation can be

specified based on the role played by the pivot before and after the modulation:

a. Identical pivot

The numerator and denominator are both modified, and the pivot chosen

corresponds to the same note value for each metrical structure. In the example

of Figure 6.5, the eighth note is the pivot, which results in a modified beat

rate. Figure 6.5 shows an example of Combined Modulation Type I a.

Figure 6.5: Example of Combined modulation Type I a

b. Different pivot

The numerator, denominator and beat rate are modified, but the pivot cor-

responds to different note values for each metrical structure. The comparison

of cases a. and b., as well as the corresponding examples of Figure 6.5 and

Figure 6.6 illustrates the fact that the choice of the pivot has a direct influence

on the resulting tempo modulation, all other elements left untouched.

Figure 6.6: Example of Combined modulation Type I b

Combined Modulation Type II

A Type II combined modulation is a Type II metric modulation paired with a

change of tempo. In this case only the numerator of the time signature changes

(i.e. the number of beats per bar). As a consequence, in order to guarantee the

change of tempo, the pivot must correspond to a different note value on each side
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of the modulation. Figure 6.7 shows an example of Combined Modulation Type

II.

Figure 6.7: Example of Combined modulation Type II

Combined Modulation Type I Hybrid

As with Type I and Type II metric modulation, a Combined Type I hybrid mod-

ulation is introduced to describe a modulation that exhibits attributes of both a

Combined Type I and a Combined Type II modulation. In this case, the tempo,

the numerator and denominator of the time signature, as well as the number of

beats in a bar are altered. Inheriting from Combined Type I modulations, the pivot

may correspond to identical or different note values on each side of the modulation.

Figure 6.8 provides an example for a pivot corresponding to identical note values.

Note that pivots corresponding to different note values may be used.

Figure 6.8: Example of Combined modulation Type I Hybrid

Combined Modulation Type III

A Type III combined modulation is a Type III metric modulation paired with a

change of tempo. Here again, two sub-categories can be specified based on the

value of the pivot before and after the modulation:

a. Identical pivot

Changing the denominator of the time signature with a pivot having identical

value on both side of the modulation necessarily implies a change of beat rate.

In the example of Figure 6.9 the beat rate is doubled.

b. Different pivot

In this case, values used as the pivot must not correspond to the denominator
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Figure 6.9: Example of Combined modulation Type III a

of each time signature in order to guarantee the change of beat rate. They

can be chosen freely outside of this limitation. Figure 6.10 shows an example

of Combined Modulation Type III b.

Figure 6.10: Example of Combined modulation Type III b

This type of modulation entails a change of beat rate, but does not explicitly relate

to a change of hierarchical organisation of the metrical structure. The difference

between a Combined Type III modulation and a Tempo Modulation resides in the

score notation. As a consequence, these two modulations may be indistinguishable

without the score. Although these characterisations are redundant from a sonic per-

spective, they result in a significant difference for the performing musician reading

the score. Figure 6.9 and Figure 6.11 represent the same musical artifact with two

different notations implying a Combined Type III modulation and a Tempo Mod-

ulation respectively. The main difference between these two notations is that the

Figure 6.11: Example of Tempo Modulation equivalent to a Combined Type III
modulation

note values used as the pivot in the case of the tempo modulation are different on

each side of the modulation, whereas they are identical in the case of the Combined

Type III Modulation. Using a pivot with identical values may prove easier to read

for the performer because having different values would require one extra operation



On Metric Modulations Taxonomy 154

in order to adapt to the tempo change. Scoring a change of tempo as a Tempo

Modulation or as a Combined Modulation Type III is then a composer’s decision.

6.3 Adapted Taxonomy

In this section we propose a transposition of Bouchard’s taxonomy in terms that make

it compatible with features that may be extracted automatically from audio recordings.

Benadon reported a preliminary study on characterising what he called “tempo modu-

lations” in [214]. His contribution consisted in proposing the use of metrical level pulse

rates to characterise “tempo modulations”. He did not explicitly tie this concept with any

theory or model of metric modulations even though some elements were already present

in his work. Notably, he mentioned one or more pulse rates common to the two metrical

structures, which effectively correspond to the notion of a pivot presented above. He

did not incorporate this idea in any automated system either. Our contribution in this

section consists is the reformulation of Bouchard’s taxonomy using metrical level pulse

rates as a feature, in a similar fashion as Benadon. We choose a nomenclature that

remains close to Bouchard’s taxonomy, so that the proximity remains explicit when it is

relevant.

In some cases, the transposition of the definition of metric modulations provided by

Bouchard to metrical level rates based framework leaves some ambiguities. For instance,

he defines a Type I Combined Modulation as the alteration of the numerator and de-

nominator of the time signature along with a beat rate change. It specifies explicitly the

existence of a pivot that is not the beat rate, which effectively means that the pulse rate

of the corresponding metrical levels are equal, but does not specify any constraints for the

other beat subdivisions. In such a case, we propose two possible type of modulations (cf.

below C1.1 and C1.2) to cover different scenarios. Conversely some definitions provided

by Bouchard offer nuances for analysis of score notation, but are sonically indistinguish-

able. For instance, the Type III Metric Modulation does not relate to an audible change

and the Type III Combined Modulation is indistinguishable from a Tempo Modulation.
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Such definitions (e.g. the Type III modulations) are thus discarded in the transposed

taxonomy.

A few categories are added on top of Bouchard’s taxonomy in order to augment the

descriptive power as well as the real life applicability of the taxonomy. Examples of such

categories are for instance the ‘No Meter Modulation’ that captures transitions from a

region without a clear sense of meter to a region with a clear meter and vice versa or the

‘Other changes’ category to flag modulations that do not correspond to a modulation

with characteristic features such as the use of a pivot. A detailed description of the

transposed taxonomy is given in the following.

All modulation types are illustrated by a diagram in Figure 6.12 to Figure 6.25. In these

diagrams, the modulation (i.e. the segment boundary) is represented by the vertical axis.

Horizontal lines on the left hand side of the vertical axis represent the pulse rates (in

BPM) of metrical levels corresponding to the metrical structure before the modulation.

Similarly, horizontal lines on the right hand side of the vertical axis represent pulse rates

of the metrical levels after the modulation. Given that metrical level pulse rates relate

to horizontal lines in a metergram, the diagrams used in this section may be interpreted

as idealised metegrams for each modulation type. The characteristics of all modulations

are then summarised in Table 6.1.

Tempo Modulation (TM)

A tempo modulation is characterised by a different tempo on each side of the

modulation, while the relative metrical structure is preserved. Figure 6.12 shows

an example metrical level pulse rates diagram for a tempo modulation.

Modulation Type 1 (T1)

In a Type 1 modulation, the beat rate and the metrical level rates lower the beat

rate (e.g. the number of beats per bar) remain unchanged. The metrical levels

with pulse rates greater than the beat rate (i.e. the beat subdivisions) change from

one segment to the next. Figure 6.13 shows an example metrical level pulse rates

diagram for a Type 1 Modulation.
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Figure 6.12: Example of Tempo Modulation where TA and TB are the beat rates
before and after the modulation respectively
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Figure 6.13: Example of Type 1 Modulation where T is the beat rate

Modulation Type 2 (T2)

The beat rate and the metrical level pulse rates greater than the beat rate remain

unchanged. Only the metrical levels with rate lower beat rate (i.e. longer periodic-

ities, such as bar length) are altered. Figure 6.14 shows an example metrical level

pulse rates diagram for a Type 2 Modulation.
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Figure 6.14: Example of Type 2 Modulation where T is the beat rate
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Modulation Type 1 Hybrid (T1H)

The Type 1 Hybrid modulation combines characteristics of the Type 1 and Type

2 modulations. The tempo remains the same, but the number of beats in the

bar as well as the subdivisions of the beat differ. Therefore the Type 1 Hybrid

modulation is characterised by having only one metrical level in common between

the two segments, and this level is the beat rate T . Figure 6.15 shows an example

metrical level pulse rates diagram for a Type 1 Hybrid Modulation.
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Figure 6.15: Example of Type 1 Hybrid Modulation where T is the beat rate

Combined Modulation Type 1.1 (C1.1)

The Combined Modulation Type 1.1 is encountered if the two segments have only

one metrical level in common and that level has a pulse rate strictly greater than the

tempo (i.e. be a beat subdivision). The beat rate of the two segments is therefore

different. Figure 6.16 shows an example metrical level pulse rates diagram for a

Combined Modulation Type 1.1.
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Figure 6.16: Example of Combined Type 1.1 Modulation where TA and TB are the
beat rates before and after the modulation respectively
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Combined Modulation Type 1.2 (C1.2)

In a Combined Modulation Type 1.2, the beat rates of the two segments are dif-

ferent but all the metrical levels with a pulse rate greater than the beat rate are

identical. Figure 6.17 shows an example metrical level pulse rates diagram for a

Combined Modulation Type 1.2.
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Figure 6.17: Example of Combined Type 1.2 Modulation where TA and TB are the
beat rates before and after the modulation respectively

Combined Modulation Type 2.1 (C2.1)

In a Combined Modulation Type 2.1, the beat rates of the two segments are differ-

ent and the two segments have only one metrical level rate in common. This com-

mon level has a pulse rate lower than the beat rate (e.g. the bar level). Figure 6.18

shows an example metrical level pulse rates diagram for a Combined Modulation

Type 2.1.
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Figure 6.18: Example of Combined Type 2.1 Modulation where TA and TB are the
beat rates before and after the modulation respectively
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Combined Modulation Type 2.2 (C2.2)

A Combined Modulation Type 2.2 is characterised by the beat rates of the two

segments being different and all the metrical levels with a pulse rate lower than the

beat rate (e.g. the bar level) remaining identical. Figure 6.19 shows an example

metrical level pulse rates diagram for a Combined Modulation Type 2.2.
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Figure 6.19: Example of Combined Type 2.2 Modulation where TA and TB are the
beat rates before and after the modulation respectively

Subdivision Addition (SA)

A subdivision addition is characterised by the addition of an extra level of beat

subdivision (therefore having the highest pulse rate) to the metrical structure.

Figure 6.20 shows an example metrical level pulse rates diagram for a Subdivision

Addition.
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Figure 6.20: Example of Subdivision Addition where T is the beat rate
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No Meter Modulation (NoMe)

This modulation characterises the transition from a segment with no meter to a

segment with a clear meter and vice versa. Figure 6.21 shows an example metrical

level pulse rates diagram for a No Meter Modulation.
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Figure 6.21: Example of Modulation from a segment with no clear meter to a segment
with clear meter where TB is the beat rate after the modulation.

Indeterminate Modulation (IM)

When a change of metrical structure that does not fit any modulation category,

but features some characteristics of the Type 1, Type 1H or Type 2 modulations

it is classified as an Indeterminate Modulation. In particular, at least one met-

rical level pulse rate is preserved (i.e. there is a pivot), and the beat rate is not

modified. Figure 6.22 shows an example metrical level pulse rates diagram for an

Indeterminate Modulation.
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Figure 6.22: Example of Indeterminate Modulation where T is the beat rate
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Indeterminate Combined Modulation (IC)

When a change of metrical structure that does not fit the into any modulation cat-

egory, but features some characteristics of the combined modulations it is classified

as an Indeterminate Combined Modulation. In particular, at least one metrical

level pulse rate is preserved (i.e. there is a pivot), and the beat rate is altered. Fig-

ure 6.23 shows an example metrical level pulse rates diagram for an Indeterminate

Combined Modulation.
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Figure 6.23: Example of Indeterminate Combined Modulation where TA and TB are
the beat rates before and after the modulation respectively

Other Change (OC)

This category regroups all metrical structure changes by which no metrical level

pulse rate is preserved and that does not fit in any other category. It implies

that there is no pivot providing a sense of metrical structure continuity. The

modulations falling in this category are therefore expected to sound more disruptive

to a listener. As an example, a joint change of tempo and metrical structure in

ratios that do not allow any metrical reinterpretation (i.e. prevents the existence

of a pivot) would fall in this category. Figure 6.24 shows an example metrical level

pulse rates diagram for an Other Change modulation.

No Modulation (NoMo)

In the eventuality that none of the modulations described above has been detected

and therefore that no change of metrical structure is happening, the transition

between the two segments is flagged as featuring ’No Modulation’. This class
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Figure 6.24: Example of Other Change Modulation where TA and TB are the beat
rates before and after the modulation respectively

is added to enable recovery from spurious segmentation. Figure 6.25 shows an

example metrical level pulse rates diagram for No Modulation.
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Figure 6.25: Example of No Modulation where T is the beat rate.

6.4 Metric Modulations Classification

In this section we employ the adapted metric modulations taxonomy presented in Section

6.3 in a metric modulation classification scenario. We assume that the segmentation of

the music and the metrical levels pulse rates characterising the metrical structure of

each segment are known. A hard classifier is derived by the direct implementation of the

description of each modulation defined in the adapted taxonomy: each metric modulation

can be classified with respect to this taxonomy, given the metrical pulse rates before and

after the modulation.
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Table 6.1: Summary of adapted metric modulation taxonomy. Each mod-
ulation is characterised by preserving or not some metrical levels. A modulation can
preserve One, All, None of the metrical levels in question or be undetermined regarding
them (represented by a ‘-’ in the table). For SA, All* stands for ‘All but one’. See

Section 6.3 for a detailed description of all modulations

Metrical levels preserved
Modulation Type Beat rate Above beat rate Below beat rate

TM No None None
T1 Yes None -
T2 Yes All -
T1H Yes None None
C1.1 No One -
C1.2 No All -
C2.1 No - One
C2.1 No - All
SA Yes All* All
NoMe No None None
IM Yes - -
IC No - -
OC No None None
NoMo Yes All All

In the following we consider two approaches: First we use the reference segmentation

and metrical structure annotations (cf. Figure 6.26a) in order to compute a reference

distribution of the metric modulation types across the dataset. Secondly, we use the

segmentation from the reference annotation and the metrical structure automatically ex-

tracted to perform the classification (cf. Figure 6.26b). This result is then compared to

the result obtained from the pure annotations, which enables the evaluation of the met-

ric modulation classification performance when using automatically estimated metrical

structure. We save the description of the automatic detection of the metric modulation

boundaries (cf. Figure 6.26c) for Chapter 7.

6.4.1 Metric modulations classifier

We outline here a simple system to classify metric modulations based on the taxonomy

presented in Section 6.3. In particular, the intent is to construct a classifier that directly

implements the taxonomy. A flowchart representing the classifier is shown in Figure 6.27.

The input consists of the metrical level pulse rates as well as the beat rate before and after

the modulation. For each metric modulation, a boolean detector was created from its

description formulated in the taxonomy, and is represented as a diamond in Figure 6.27.
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(a)

(b)

(c)

Figure 6.26: Formal representation of the metric modulation tracking sys-
tem and its evaluation. The human annotations are represented in blue and features
automatically extracted are represented in red. (a) The segment boundaries (vertical
lines) and metrical structure for each segment are provided by human annotations. A
reference metric modulation classification can be derived from these. (b) The tracks are
segmented using human annotations, but the modulation classification is performed on
the metrical structure computed automatically for each segment. (c) A representation
of the ideal automatic system that produces both segment boundaries and metrical

structures (and therefore metric modulation) that match the human annotations

Each modulation detector outputs a True value when the detection of a given modulation

type is positive and False otherwise.

The C2.1 modulation detector is described in pseudo-code in algorithm 2. Since it is

derived from the definition of the C2.1 modulation, we refer the reader to Section 6.3.

The first step (line 1) consists in computing the metrical level pulse rates matches. This

step aims at detecting which metrical level pulse rates are altered by the modulation

and which ones are not, so that each level is attached with match or non-match Boolean

value. This operation is performed by comparing the two metrical structures using the

metrics described in Section 4.4.1. The true positives reveal a match (pulse rate non-

altered), while the false positives and false negatives reveal an non-match (pulse rate
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Figure 6.27: Metric modulations classifier. The input consists of the metrical
level pulse rates before and after the modulation boundary. Each diamond represents
Boolean metric modulation type detector. The final classification is derived from the

overall result of individual classifications.

altered). Lines 2 and 3 guarantee that there are metrical level pulse rates detected

before and after the modulation because their existence is implicitly assumed by the

C2.1 definition. The definition of the C2.1 modulation also stipulates that the beat rate

before and after the modulation must be different. This condition is tested in line 4

and 5: a metrical structure change cannot be a C2.1 modulation if the beat rate is not

altered. Finally lines 6 to 12 first evaluate whether or not there is only one match (noted

Ξ) and secondly if this match has a lower pulse rate than the beat rate before and after

the modulation.

Algorithm 2 C2.1 Modulation Detector
Require: Metrical level pulse rates and beat rate before (TB) and after (TA) the mod-

ulation boundary
1: Compute metrical level pulse rates matches
2: if no pulse rate before or after modulation then
3: return False
4: if not TB 6= TA then
5: return False
6: if there is only one match (Ξ) then
7: if Ξ ≤ TB and Ξ ≤ TA then
8: return True
9: else

10: return False
11: else
12: return False
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Figure 6.28: Occurences count per metric modulation type in the reference
annotations. The metric modulation labels were obtained using the classifier described

in Section 6.4.1 directly on the annotations in the dataset.

The algorithms for detection of all other modulations are obtained with a similar ap-

proach. Each metric modulation is tested against all taxonomy class detectors. Note

that the taxonomy is defined so that metric modulation classes are orthogonal, i.e. there

can be a True value only for one class. The modulation label is then obtained by finding

which modulation detector output a True value, hence the argmax block in Figure 6.27.

6.4.2 Reference Annotations Content

The metric modulation dataset we use here includes annotations of the segment bound-

aries and the metrical structure of each segment. It therefore contains information about

the nature of the metric modulations involved although it does not contain explicit mod-

ulation labels. In this section we intend to uncover what type of metric modulations

are present in the dataset and in which proportions. In order to do so, all modulations

are labelled using the classifier described in Section 6.4.1. The input to the classifier

consists of the annotated metrical level pulse rates and the beat rate, calculated as the

median of the inter-beat interval for each segment. In Figure 6.28 we present the resulting

distribution of metric modulation types in the reference annotations.

It appears that the dataset does not seem to contain any examples of Type 1 Hybrid

modulation. The absence of ‘no Modulation’ indicates good quality annotations: all the
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annotated segment boundaries effectively correspond to a metrical structure change. In

addition, the modulation classes added on top of Bouchard’s taxonomy (i.e. ‘Subdivision

Addition’, ‘no Meter’) are observed in the dataset, which validates their inclusion. It is

also apparent that not all metric modulation types are equally represented in the dataset.

For instance, the combined type 2.1 modulation is only encountered twice while there

are 47 instances of Type 1 modulation.

More interestingly, we note that the three classes capturing relatively undefined mod-

ulations (i.e. ‘Indeterminate Modulation’, ‘Indeterminate Combined Modulation’ and

‘Other Changes’) represent nearly half (48%) of the modulations present in the dataset.

Furthermore, the proportion of indeterminate to clearly determinate modulations is sig-

nificantly larger in the case of combined modulations than in the case of tempo-preserving

modulations (i.e. T1, T1H, and T2). This observation is not surprising, however. The

combined modulations imply a change of tempo and of some of the metrical structure

while preserving a small part of the metrical structure (as little as one metrical level

pulse rate), which allows a much larger number of possible combinations than in the case

of tempo-preserving modulations. Despite being labeled as ‘indeterminate’, these classes

are nonetheless informative as they capture characteristic modulation features. For in-

stance, the Indeterminate Combined Modulation class regroups modulations generating

a change of beat rate and using a pivot (i.e. maintaining some metrical continuity) while

the Indeterminate Modulation class regroups modulations that preserve the tempo and

alter some metrical levels. As a result, from a musical standpoint, it may be expected

that an Indeterminate Combined Modulation generates a stronger perceptual effect than

an Indeterminate Modulation.

The sizeable proportion of modulations assigned to indeterminate classes suggests that

the modulation types defined in the taxonomy do not exhaustively capture the variety

of modulations present in observable data. As a result, this suggest that there is room

to develop the taxonomy further. A greater exhaustivity could for instance be achieved

by including more sub-classes. However, what should the new categories be? On which

basis should they be specified? These are open research questions. In order to make such

an extension musically meaningful it is desirable that it is rooted in music theory, and
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perhaps music psychology. Consequently, it is probably desirable that these questions

are addressed in collaboration with musicologists in future work.

6.4.3 Classification from extracted features of known segments

In this section we aim to evaluate the use of automatically extracted metrical structure for

metric modulations classification. To serve this purpose, we use the segment boundaries

from the reference annotations along with the metrical structure extracted automatically,

which is schematically illustrated by Figure 6.26b. This is then used as an input to the

metric modulation classifier described in 6.4.1. Using the annotated segment boundaries

guarantees that the segments under consideration in this experiment are identical to

those used in Section 6.4.2. As a result, comparing the classification results obtained in

this condition with the classification obtained in Section 6.4.2 (we recall it was obtained

using segment boundaries and metrical structure from the reference annotations) enables

the evaluation of the impact of automatic extraction of metrical structure.

Since we focus here on abrupt metrical structure changes, which locations are indicated

by the segment boundaries, the metrical structure is assumed to be consistent within

every segment. We first extract the average metrical level pulse rates using the method

described in Chapter 4. In addition, the beat rate of each segment is estimated using

the Vamp plugin implementation1 of the algorithm proposed by Davies et al. in [121].

The combination of beat rate and metrical level pulse rates constitute the information

necessary to classify the metric modulation types using the classifier presented in Section

6.4.1. As a result, each modulation is classified with respect to the taxonomy presented in

Section 6.3. For each segment boundary (i.e. each metric modulation), we then compare

the classification produced from the automatically extracted metrical structure with the

classification produced using reference annotated metrical structure. The results of this

comparison are presented as a confusion matrix in Figure 6.29.

Entries on the diagonal indicate the number of instances of agreement between classifi-

cation generated from reference annotations and from automatically extracted features.

In other words, the same modulation class was affected to a given segment using the
1http://www.vamp-plugins.org/download.html
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Figure 6.29: Metric Modulations Confusion Matrix. For each segment bound-
ary, this matrix represents the comparison between the modulation classification ob-
tained using reference annotations and the modulation classification obtained using
automatically estimated metrical structure. Diagonal entries reveal ‘correct’ classifi-
cations, while off-diagonal entries reveal confusions. The areas marked by blue boxes
imply an incorrect beat rate estimation. Areas delimited by red boxes include correct

classification and confusions within a family of metric modulations.

Table 6.2: Metric Modulation confusion statistics

Occurences %

Correct 115 37.0
Intra-family confusion 75 24.1
Necessary beat rate error 71 22.8
Other errors 50 16.1
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annotated and the automatically estimated metrical structure. These may then be re-

ferred to as ‘correct’ classifications. Conversely, off-diagonal entries reveal the number of

segment boundaries for which the classification obtained using annotated metrical struc-

ture differs from the classification obtained using the automatically extracted metrical

structure. These may then be referred to as ‘confusions’ (or ‘incorrect’ classifications).

The confusion matrix reveals that 37% of the classifications are correct. No confusion

arises with the ‘no Modulation’ class. Given that the reference annotations for segment

boundaries always correspond to a metrical structure change (cf. Section 6.4.2), this

result suggests that the automatic feature extraction reliably captures metrical structure

changes. In other words, even if the nature of the metric modulation may be incorrectly

classified, the system captures the presence of a change.

Some confusions may be grouped into clusters on the basis of their similar nature. The

corresponding areas of the confusion matrix are delimited by rectanglular boxes with

colour corresponding to a particular confusion group. Some statistics based on these

confusion clusters are given in Table 6.2. The original taxonomy proposed by Bouchard

groups the metric modulations in two families: the ‘Metric Modulations’ (i.e. T1, T1H,

T2, and by our extension IM), and the ‘Combined Modulations’ (i.e. C1.1, C1.2, C2.1,

C2.2 and IC). The red boxes in Figure 6.29 mark areas corresponding to confusion be-

tween metric modulations belonging to the same family, which are referred to as ‘intra-

family confusion’ in Table 6.2. Within each family, a sizeable proportion of the confusions

occur between the indeterminate class (IM and IC respectively) and the other classes.

This observation is easily explained by the hard selectivity of the metric modulation

classes characteristics. As a matter of fact, if as little as one metrical level pulse rate is

incorrectly detected (irrespectively of being a false negative or false positive) the classi-

fication decision may go from one class to another. The number of correct classifications

and the number intra-family confusions add up to 61.1% of the total number of classifi-

cation decisions and effectively represents the cases in which at least the correct family

is chosen. This result suggests that the classification is more robust for coarser granular-

ity, i.e. when classifying modulation in families rather than against a more fine grained

taxonomy.
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A direct consequence of the architecture of the metric modulation taxonomy is that

the confusion between certain classes necessarily implies that the beat rate estimation is

incorrect (i.e. does not match the annotated reference) in at least one of the two segments.

In particular, a range of modulation types are characterised by the preservation of the

beat rate (e.g. T1, T2, SA etc.), while some others are explicitly characterised by a

change of beat rate (e.g. all combined modulations, OC, etc.). Then, the confusion of a

modulation type preserving the beat rate with a modulation type characterised a beat

rate change necessarily implies that the beat rate has been incorrectly estimated on at

least one side of the modulation. The areas of the confusion matrix corresponding to

such confusions are marked by the blue rectangles, and referred to as ‘necessary beat rate

error’ in Table 6.2. It is to be noted, however, that incorrect beat rate estimation may

occur in other zones of the confusion matrix, although it is not a necessary condition.

The ‘Necessary beat rate errors’ account for a significant proportion of all confusions

(22.8%). The beat rate estimation algorithm may be incriminated for this result and

a first order conclusion to be drawn from this observation may be that improving the

beat rate estimation would have potential to very significantly improve the classification

results.

However, as discussed in Chapter 3, one of the limits of notions such as tempo and

beat is that even human experts tend to disagree when producing annotations. As

a consequence, it is hard, if possible at all, to provide an annotation of the ‘true’ or

‘correct’ beat rate. The taxonomy considered here is also affected by this limitation

because it relies on the provision of the beat rate. Moreover, the current taxonomy is a

relatively direct transposition of a taxonomy originally designed for score-based analysis,

which implements hard classification constraints (boolean tests, essentially). Typically,

symbolic data is free of noise and of relatively clearly established semantics, so that the

application of hard constraints is effective in this context. In contrast, audio data is

typically noisy and extraction of semantically meaningful information from it is difficult,

therefore resulting in an error prone process. A possible avenue for future work could

be to investigate the design of a taxonomy based on softer classification constraints.

This would, however, require a reformulation of the underlying musicological concepts

in terms that are compatible with the aforementioned softer constraints, which is not
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trivial. Again, it is probably desirable that such a research question is addressed in

collaboration with musicologists in order to maximise its musical meaningfulness.

6.5 Conclusions

In this chapter we proposed the use of a musicologically-grounded taxonomy as a strategy

for classifying metric modulations in a musically meaningful way. We first summarised

in English a taxonomy inspired by the analogy between theory of harmony and metrical

structure originally formulated in French by Bouchard. Since this taxonomy was designed

for score-based analyses it is not directly applicable in an audio-based scenario in which

the score is not available. On the other hand, in a preliminary study, Benadon proposed

to use the metrical level pulse rates to characterise metric modulations. He did not for-

mulate a metric modulation taxonomy, neither did he attempt automatic classification,

however. As a consequence we proposed a new metric modulations taxonomy obtained

by transposing Bouchard’s taxonomy in a framework relying on metrical level pulse rates,

as suggested by Benadon. A metric modulation classifier was then proposed on the basis

of the newly introduced taxonomy. The metric modulation classification obtained with

this classifier using either the reference annotations or automatically extracted features

allowed us to draw several conclusions: First of all, the relatively direct transposition of

Bouchard’s taxonomy performed here seems to be insufficient to capture all the variety of

modulations present in the dataset. This suggests that in order to achieve an exhaustive

description of metric modulations from audio recordings, the taxonomy would need to

be extended (to include more classes). Nevertheless, it has also been shown that the

classification performance is significantly higher when only considering metric modula-

tion families (i.e. a less refined taxonomy); thus providing an informative classification.

Moreover, the classification considered here relies on hard classification constraints (i.e.

Boolean decisions), which is an error prone process. We therefore note that these promis-

ing results might be improved by formulating a taxonomy of metric modulations based on

softer constraints. However, the construction of such a taxonomy require a redefinition

of the underlying musical concepts in terms compatible with softer constraints, which is
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an open research question that ought to be addressed in collaboration with musicologists

in future work.



Chapter 7

Towards the Automatic Detection of

Metric Modulations

7.1 Introduction

The presence of a metric modulation implies a transition from one metrical structure to

another over time. Formally, the detection of metric modulations may be broken down

in two sub-tasks: detecting a change and identifying the nature of the change - e.g.

with respect to a taxonomy. Latent state space models, such as the bar pointer model

originally introduced in [27], have become popular in the recent years to infer rhythmic

structure of music and are theoretically capable of tracking its changes. This model

includes three hidden variables: the bar position, defined as the position of the current

audio frame with respect to the bar cycle (therefore independent of tempo), the tempo,

defined as the time derivative of the bar position, and the rhythmic pattern representing

the likelihood of onset with respect to the position in the bar cycle [28]. A range of

variations have been proposed to extend the scalability of the system by amending the

state space [96] or using particle filters [28, 111]. The bar pointer model represents

changes in metrical structure by transitions between states representing different bar

length (i.e. number of beats in a bar) or rhythmic pattern [27]. Other latent state

space models for rhythm tracking typically also represent changes in metrical structure

by transitions between states [215]. The model parameters, such as bar length and

174



Towards the Automatic Detection of Metric Modulations 175

rhythmic patterns, are not known a priori and are therefore typically set manually based

on expert knowledge, musical structure hypothesis, or by supervised learning from data.

Similarly, the structure of the model (e.g. the number of rhythmic patterns to be learnt)

has to be manually set. As a result, this type of approach is suitable for classification

tasks in which the number of classes is known or for which a robust hypothesis can

be made; and for which a large amount of annotated reference data is available, but

impractical otherwise. Authors have typically used this type of method for beat and

downbeat tracking on corpora having a known range of metrical structures [28, 35].

Even if the computational models in use have this capability, changes of metrical struc-

ture over time are rarely considered and when they are, tracking of metric modulations is

not typically considered as a task in itself. We propose here to focus on the detection and

classification of metric modulations. In particular, we consider an application scenario in

which neither the number nor the nature of the metrical structures to be encountered in

a piece are known a priori. In contrast with the supervised learning systems such as the

beat pointer model mentioned above, we propose an unsupervised method for automatic

metric modulations detection.

We formulate the detection of metric modulations as a segmentation problem. Indeed,

the transition between two sections of different metrical structure outlines a form seg-

mentation of the musical piece, as shown on Figure 7.1. For ease of reading, we refer

to metric modulation-based segmentation simply as segmentation for the remainder of

this chapter. We restrict the scope of the current study to metric modulations that fea-

ture a stable metrical structure before and after the modulation as well as a relatively

abrupt transition between the two. In other words, we do not consider slow and/or pro-

gressive alterations of the metrical structure (e.g. progressive tempo change or gradual

metrical structure change via long transitory sections), so that transitions between two

segments may be modelled as discrete boundaries. As such, this problem formulation

is analogous to the structural segmentation retrieval task, well documented in the MIR

literature (see for example [7]). Musicians and musicologists commonly use the terms

‘structure’ or ‘form’ to refer to the high-level layout that divides a piece into sections.

In the context of popular music, these sections are typically labelled using terms such
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Figure 7.1: Problem definition: metric modulation detection as a segmen-
tation task.

as ‘verse’, ‘chorus’ and ‘bridge’. It is usually considered that the sections constituting

the musical form exhibit some self-consistency with respect to some musical features,

such as instrumentation, harmony, melody or rhythmic patterns to name but a few. The

inherent open-ended nature of such a description jointly accounts for the wide degree of

liberty at the composer’s disposal to realise structural segmentation and the resulting

difficulty to automatically retrieve such a structure. Automatic structural segmentation

algorithms are therefore inevitably built on the assumption that the musical form is

made apparent by a given musical feature or a set thereof. For instance, assuming that

the structural segmentation is underpinned by harmonic progressions, using a feature

capturing the evolution of harmonic content over time (e.g. a chromagram) is one option

[172, 216]. Other features will naturally capture different musical properties, such as

timbre and may also be useful for structural segmentation, e.g. mel spectrogram [165]

or spectral envelope [155]. Since the musical attributes used by the composer to realise

the structural segmentation are usually not know a priori, several authors have proposed

methods based on the combination of a number of audio features [169, 173].

For the problem we are interested in here, prior information regarding the strategy used

by the composer is not available either. However, the definition of the problem provides a

strong constraint that is a metric modulation implies a change in the metrical structure.

In this case, audio features capturing the evolution of the metrical structure over time

may be relevant for this task. In particular, we introduce the metergram as a feature from

which we might recover the segmentation. It consists of the combination of rhythmogram

which has been shown to capture metrical structure information in Chapter 4, and its
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computation is described in Section 7.2.1. In order to retrieve the segmentation from

the metergram in an unsupervised fashion we propose the use of Non-negative Matrix

Factorisation (NMF) as a frame clustering technique. Several varations of this approach

are explored in Section 7.3 and we refer the reader to Section 2.6 for a description of

the bascics of NMF. We also investigate the use of a novelty-based approach that is

commonly used for structural segmentation in Section 7.4. By construction, all methods

presented in this chapter are off-line an non-causal, therefore not suitable for real-time

processing in their current form.

The segmentation and the classification of metric modulations are evaluated separately.

All the experiments reported here have been carried out on the dataset introduced in

Section 3.6. Firstly, a reference classification of modulation is produced using the human

annotations and the adapted taxonomy (Figure 6.26 a). Then, given the annotated

segmentation, we evaluate the automatic classification of the metric modulations using

the adapted taxonomy and the metrical levels pulse rates extracted with the method

presented in Chapter 4 (Figure 6.26 b) in Section 6.4. In a separate experiment, we

propose and evaluate a range of methods to automatically retrieve the metrical structure-

based segmentation in sections 7.4 and 7.3. An automatic metric modulation tracking

system is considered ideal if it accurately reproduces both the segmentation and the

classification of metric modulations (Figure 6.26 c).

In the remainder of this chapter, we first present the different signal processing building

blocks and segmentation algorithms under scrutiny and illustrate their respective prop-

erties on a single example in Section 7.2 to 7.4. The example track we use for illustration

purpose is “Geno (Tribute to Dexys Midnight Runners)” by Union of Sound and its me-

tergram with overlaid annotated metric modulation boundaries is given in Figure 7.2.

The track starts with a short introduction and then develops as the alternation between

two parts of distinct metrical structure. It is therefore made of three metrically distinct

parts. The two alternating parts are respectively in compound and simple meter. We

then compare all algorithms on the entire dataset using a range of metrics, while param-

eters for secondary steps not expected to produce much difference across the different
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algorithms (e.g. metergram window size, and Pd, cf. below) were set in preliminary

studies.

7.2 Feature pre-processing for automatic metrical structure

change detection

7.2.1 Metergram

Initially suggested by Peeters [93], the multiplication of the Fast Fourier Transform

(FFT) and Autocorrelation Function (ACF) based periodicity spectra has been shown

in Chapter 4 to be effective to filter out harmonics in the resulting spectrum so that

its peaks more closely relate to the metrical structure of the music. Such composite

beat spectra have so far only been used as a summary feature (i.e. averaged over time),

however. Here, we propose to extend this approach to the use of a metergram, in which

every frame is the product of FFT and ACF beat spectra proposed by Peeters. Since

the peaks in the periodicity spectra (i.e. the metergram frames) relate to metrical level

pulse rates (cf. Chapter 4), the metrical structure relates to a structure of horizontal

lines in the metergram, each line typically corresponding to a metrical level pulse rate.

As a result, changes in metrical structure over time are expected to manifest as apparent

changes of structure in the metergram.

The computation of the metergram is identical to the calculation detailed in Chapter 4,

with the addition of a logarithmic rescaling of the frequency axis and frame normalisation.

We briefly summarise this calculation in the following. We first compute a spectrogram

of the audio signal sampled at 44.1kHz using a Hann window of 512 samples and a

step size of 256 samples. An onset detection function is derived using the superflux

method with the parameter values recommended by the authors [62]. We then compute

two rhythmograms RF and RA, based on the FFT and ACF of the windowed onset

detection function respectively, using 12s Hann windows with 0.24s overlap. The ACF

rhythmogram RA(l, n) is mapped to the frequency domain RA(m,n), with l = fs/ω

where l is the lag in the ACF, and ω is the corresponding rate associated to frequency bin
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Figure 7.2: Metergram with annotated segment boundaries overlaid for the track
“Geno (Tribute to Dexys Midnight Runners)” by Union of Sound.

m and fs is the onset detection function sampling frequency, as initially proposed in [93].

The metergram is then computed as the element-wise product of the two rhythmograms:

R(m,n) = RF (m,n)�RA(m,n) (7.1)

The relative structure of horizontal lines in the metergram (i.e. the relationships between

metrical level pulse rates) characterises the metrical structure of music. In other words,

a given metrical structure results in a pattern of metrical level pulse rates, just like

a harmonic sound results in a pattern of partials in a spectrogram. On a logarithmic

frequency scale, the shape of the corresponding horizontal lines pattern is independent

of the fundamental frequency in a spectrogram, which is a desirable property for further

analysis of these patterns [217]. Similarly, using a logarithmic pulse rate scale in a

metergram implements invariance of the shape of the pattern of metrical level pulse rates

against speed of execution of a piece. The bins of the metergram are then re-assigned to

a logarithmic rate scale so that the rate corresponding to the mth bin is:

ωm = ω0 × 2

(
m
ρ

)
(7.2)

where ω0 = 20 BPM and ρ = 100 bins/octave. Additionally, each frame of the metergram

is normalised by its L1 norm:

r̂n =
rn
||rn||1

(7.3)

where rn is the nth metergram frame.
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Metric modulations are expected to be related to the alteration of metrical level pulse

rates over time (cf. Chapter 6), which are expected to correspond to discontinuities

in the horizontal lines structure of the metergram. Figure 7.2 illustrates this on an

example taken from the metric modulations dataset introduced in Section 3.6, where the

annotated modulation boundaries are represented by the white vertical lines. In this

chapter we seek to automatically recover these changes of structure in the metergram.

7.2.2 Horizontal median filtering

The energy distribution characteristic of a clear metrical structure that is expected in a

metergram consists of horizontal lines and therefore resembles a harmonic structure in

an audio spectrogram. This chapter is concerned with the automatic detection of metric

modulations, which we formulate here as the detection of changes in the structure of

horizontal lines in the metergram over time. The diagrams given in Section 6.3 represent

idealised metergram structures for a variety of metric modulations: an abrupt change

from one structure of horizontal lines to another. Naturally, metergrams computed

from musical recordings are more noisy than their idealised counterparts. Broad band

energy distributions and noisy components that form vertical (or at least non-horizontal)

structures in the metergram, analogous to percussive events in an audio spectrogram, are

not informative about the metrical structure and may therefore be removed because they

may interfere with the segmentation algorithms. Fitzgerald proposed a method based

on median filtering to perform separation of harmonic and percussive components of an

audio signal that effectively consists in filtering horizontal and vertical lines, and which

is briefly described in Section 2.8. Applying this method to the metergram instead of

the magnitude spectrogram enables the enhancement of the structure of horizontal lines

in the metergram. Replacing the audio spectrogram X by the metergram R in equation

(2.35), a new metergram in which the horizontal lines (“harmonic”) structures of interest

are enhanced is created:

r̄m =M{r̂m, `} (7.4)

where r̂m is the mth normalised metergram frequency slice and ` is the length of the

median filter. The length of the median filter controls the temporal extent over which
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(a) Metergram before median filtering
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(b) Metergram after median filtering

Figure 7.3: Metergram before and after horizontal lines enhancement by median
filtering for the track ’One Rainy Wish’ by The Jimi Hendrix Experience

the filtering occurs. As a result, horizontal lines whose extent is equal to or greater

than the median filter length are preserved while energy distributions that do not form a

horizontal line or form a horizontal line for a duration noticeably shorter than the median

filter length are eliminated. Given that forming a meter perception takes a few seconds

[19], we assume sections of consistent metrical structure to be at least around 10s long.

Then, successive metric modulations are assumed to be separated by 10s or more. On

this account, the median filter length must be set in the order of 10s so that changes

of energy distribution stemming from metric modulations, i.e. alteration of horizontal

lines that were relatively stable for a period of 10s or more, while other alterations are

removed. Preliminary experiments have shown that modifying the median filter length

by a few seconds did not significantly affect the resulting metergram. The filter length

is then set to ` = 15s. Note that as opposed to the audio spectrogram, the metergram is

not invertible because it is computed as the product of two rhythmograms.

Figure 7.3 illustrates the effect of the application of the median filter on the metergram.

As expected, the vertical energy distributions and noisy components are removed. See

for example some vertical energy distributions around the 200s mark (especially visible

around 640BPM) present in Figure 7.3 (A) and removed in Figure 7.3 (B). Small and local

energy fluctuations along the frequency axis are also stabilised by the application of the

median filter. These correspond to small and local changes in metrical level pulse rates

and therefore represent local timing instabilities or expressive timing. See for example the

horizontal line around 320BPM and between timestamps 130s and 180s in Figure 7.3. The
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rate of the corresponding metrical level appears to slightly fluctuate before filtering and

is stabilised by application of the filter. Note that alterations of energy distribution that

occur on a longer time scale, typically corresponding to sections of consistent metrical

structure, are preserved by the filter. In other words, the manifestation of the metric

modulations are preserved. In the remainder of this chapter and unless stated otherwise,

we exclusively use the median filtered metergram, and refer to it simply as the metergram

for conciseness.

The use of the vertically enhanced metergram, which can be expected to specifically

capture the information that is removed from the horizontally-enhanced metergram, is

not considered in this study. Although the local fluctuations are interesting in their

own right, their study is beyond the scope of this work. We note that this may be an

interesting avenue for future work, however. The vertical structures in the metergram

reveal the absence of a clear periodicity in the novelty curve for the window under

analysis. Thus it can be hypothesised that this phenomenon may have several origins such

as soft onsets, a lack of clear pulse, micro-timing, local inconsistencies and fluctuations

or a somewhat chaotic rhythm to name only a few.

7.3 Novelty-based automatic metrical structure change de-

tection

Metric modulations may be characterised by a change of energy distribution in the meter-

gram frames. Figure 7.2 illustrates such changes. One approach to segmentation consists

of computing similarity between metergram frames and characterising segment bound-

aries as significant dissimilarities over time. This type of approach is commonly referred

to as novelty-based segmentation [7, 167]. Foote introduced a novelty-based method that

has since become a standard for automatic structural segmentation [63]. Here, we adapt

it to the detection of metric modulations by applying it to the metergram. This method

is then regarded as a baseline for novelty-based methods in our experiments.
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Figure 7.4: Example of Self-Similarity Matrix (A) and resulting Foote nov-
elty curve (B) with reference segment boundaries annotations overlaid as
vertical lines. The SSM (A) and novelty curve (B) are computed for the track “Geno
(Tribute to Dexys Midnight Runners)” by Union of Sound. The horizontal dotted line in
(B) represents an example of possible hard threshold for retrieving segment boundaries

by peak-picking the novelty curve

First, we compute a Self-Similarity Matrix (SSM) of the metergram, using the Euclidian

distance as a similarity measure between frames, so that:

bi,j = ||rj − ri||2 (7.5)

where rj and ri are the jth and ith metergram frames respectively, bi,j is the corresponding

entry in the self-similarity matrix B and || · ||2 denotes the Euclidian distance operator.

Although presented here using the euclidian distance, the self-similarity matrix may

be computed using other distance measures. Foote suggested the cosine distance as a

possible alternative that is invariant to the norm of the frame vectors considered (rj

and ri in our case). In order to maximise comparability of our results with existing

work, which predominantly employs euclidian distance, we use the Euclidian distance to

compute the SSM. We note that informal experiments have suggested that the cosine and

euclidian distance produce comparable results, owing to the L1 normalisation applied to

the metergram frames.
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Figure 7.5: Average segmentation performance as a function of the peal-
picking threshold. The pfm segmentation score is computed for every track of the

dataset and the average value is presented here.

We recall from Section 2.10 that the size of the checkerboard kernel determines the

timescale at which the novelty may be captured. As a consequence, small checkerboard

allow computation of novelty at a short timescale, for instance suitable for onset detec-

tion, while larger (typically by a few orders of magnitude) checkerboards are suitable

for structural segmentation. In addition, the fine adjustment of the checkerboard size

controls the smoothness of the novelty curve produced, longer kernels yielding smoother

curves. In this work we assume that sections of consistent metrical structure will be at

least around 10s long and segment boundaries are expected to manifest as peaks in the

novelty curve. Because the boundary positions are to be retrieved by peak-picking, it is

desirable to produce a smooth novelty curve. As a result, the checkerboard kernel length

was set to 15s.

In our experiments, a simple peak-picking algorithm1 followed by a hard thresholding

stage are used, in order to only keep peaks which magnitude is greater than the threshold

(represented by the horizontal dashed line in Figure 7.4 B). Boundary locations are

then retrieved as the timestamp of the peaks. Because the optimal threshold value is

not known a priori, the segmentation was computed for a range of threshold values.

Figure 7.5 shows the average pfm score obtained across all tracks of the dataset for a

range of threshold values. For clarity, in the following we only report the results obtained

with the threshold value (=5.10−5) resulting in the highest average performance across

the dataset.
1A sample is considered as a peak if its magnitude is greater that both the previous and next (along

the time dimension) sample. We use the implementation from the SciPy library v.0.15.1 via the function
scipy.signal.argrelmax()
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Figure 7.4 shows an example SSM and its corresponding novelty curve for the track “Geno

(Tribute to Dexys Midnight Runners)” by Union of Sound (the metergram of which

is shown in Figure 7.2). A typical structure of diagonal and off-diagonal rectangles is

observed in the SSM. The darker the colour, the higher the similarity between metergram

frames. The diagonal squares reveal the temporal segmentation of the piece, while the off-

diagonal dark rectangles reveal similarity between sections spanning different parts of the

piece, i.e. repetition of similar metrical structures [63]. Segment boundaries are located

at the corners joining two adjacent squares and the area of the square characterises the

length of a section of consistent metrical structure. Figure 7.4 shows an example of

result obtained using this approach. It appears that the structure made apparent by

the SSM correlates with the reference annotations. Similarly, the novelty curve exhibits

a structure that appears to be in good agreement with the reference annotations, both

in terms of number and location of the peaks. We save the details of the quantitative

analysis of the segmentation performance evaluation using this novelty-based method for

Section 7.4.6.

7.4 Homogeneity-based automatic metrical structure change

detection

In this section, we consider a range of methods to perform homogeneity-based segmenta-

tion. Here again, we hypothesise that the energy distribution of the metergram frames

(i.e. the beat spectra) reflect the metrical structure, so that metric modulations would

result in changes in the metergram with segments of consistent metrical structure re-

sulting in homogeneous regions in the metergram. In this context, similar metergram

frames are to be clustered together so that segments can be defined as contiguous re-

gions in which the frames belong to the same cluster. Although we refer the reader to

Section 2.6 for a description of NMF, we recall that it is known for its ability to learn

“parts of objects” in an unsupervised fashion [127] and has previously been proposed to

retrieve structural segmentation [218]. Here, we propose to use NMF to learn a decom-

position of the metergram R in order to retrieve the homogeneity-based segmentation.
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Consequently, by using NMF to chose W and H so that

R ≈WH, (7.6)

the ‘parts’ we aim at recovering here are the beat spectra characteristic of the metrical

structure of each segment, represented by the templates in matrix W. Then, the matrix

H is expected to reveal the structural segmentation by specifying when the templates

are being activated, i.e. when the parts are occurring.

A number of variations on the standard NMF algorithm have been proposed in the

literature in order to favour different properties of the learnt decomposition, i.e. to

favour certain properties in matrices W and/or H. We consider a number of these

variations in the following as well as the standard k-means clustering algorithm as a

baseline. In order to illustrate the differences between the various approaches, we use

one music piece from our metric modulation database as an example. From a metrical

structure point of view, this track is made of three different parts: a short introduction,

and two main alternating parts. The median filtered metergram of this track is given in

Figure 7.2, with the segment boundaries reference annotations overlaid.

7.4.1 The rank estimation problem

In the NMF framework, the number of templatesK is a fixed parameter — also known as

the rank of the decomposition — that needs to be specified in advance in order to carry

out the matrix factorisation. In the following we show that the choice of this parameter

has critical impact on the properties of the learnt decomposition and therefore on its

possible interpretation in terms of segmentation.

Figure 7.6 shows the template W, activations H and reconstructed WH matrices learnt

by NMF to approximate R for a range of K. Overall, it appears from the observation of

the reconstructed matrix that the metergram can be reconstructed with good accuracy

via NMF decomposition with only a few templates (4 or more in this case). This accounts

for a very high level of dimensionality compression in the sense that MK+KN �MN .
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Figure 7.6: NMF decompositions of of the track ‘Geno’ for a range of num-
ber of templates. Each row presents from left to right the template W, activations
H and reconstructed W ·H matrices for a music piece containing metric modulations.

For K < 4 it appears that the reconstruction of R is not accurate. In particular, the me-

tergram frames over the first few seconds are erroneously reconstructed: the metergram

exhibit a strong energy activation around 160BPM which is not reconstructed properly.

Figure 7.7 shows the NMF reconstruction error, computed as the Kullback-Leibler di-

vergence between the matrix to be estimated, R, and the NMF reconstructed matrix

WH for K ∈ [1, 7]. It exhibits a convex shape that accounts for the fact that low

rank decompositions do not provide accurate reconstructions but also that further rank

augmentation only result in small error decrease. This is also graphically apparent in

Figure 7.6 where the reconstructed matrices are not significally different for K ≥ 4.

In addition, we can observe that the learnt templates exhibit structures that resemble

the structures of the metergram. This is in accordance with the initial aim of NMF

to learn “the parts of objects” and is a benefit of the non-negativity constraint [127].

However, for the templates to capture individual parts of the metergram, it is necessary

that the rank of the decomposition is large enough to learn all parts. In the present

example, the templates learnt by NMF fail to represent individual parts if the rank of

the decomposition is smaller than the number of parts in R. The activation matrix does

not clearly capture the segmentation either. The learning process is constrained by the
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Figure 7.7: NMF reconstruction error for Geno. Reconstruction error calcu-
lated as the Kullbach-Liebler divergence between the matrix to be estimated R and the

NMF reconstructed matrix WH for K ∈ [1, 7]

minimisation of D(R,WH), which is applied for the entire matrix. Therefore, a simple

intuition to explain this result is that if the rank of the decomposition is too small,

the templates that are learnt will jointly capture structures of several parts in order to

minimise the reconstruction error. This behaviour is easily observed in Figure 7.6 for

small values of K. For instance, for K = 1, the learnt template summarises the energy

distribution in R along the time axis. Obviously, such a decomposition does not enable

an accurate reconstruction, which results in a high reconstruction error, as can be seen

in Figure 7.7.

As the rank of the decomposition increases, more templates are available to more finely

reconstruct the data. The drawback of this gain in precision is the dilution of the sum-

marising quality of the templates. As K increases, the decomposition starts producing

templates that represent subspaces of parts. In other words, the information that would

ideally be captured by one template is now spread over several, so that one template does

not necessarily represent a metergram frame. By construction of the NMF decomposi-

tion, such a subspace decomposition implies simultaneous activation of several templates

in order to produce an accurate reconstruction of R. Each metergram frame is then a

linear combination of co-activated templates. Simultaneous activations can for instance

be observed in Figure 7.6 (T). Templates 3 and 4 tend to mostly be co-activated. They

may therefore be seen as a subspace decomposition of the beat spectrum of the second

and fourth segments of the metergram. The gain in precision also manifests itself in
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the transition zones between two parts. For K = 5 and over, we observe an increasing

number of very short activations in matrix H hence corresponding to transitional states.

Some of the learnt templates are strictly dedicated to the description of the transitions

e.g. template 7 in Figure 7.6 (T). In these circumstances the segmentation does not

appear very clearly in the activation matrix. In conclusion, it is clear that the rank

of the NMF decomposition has a large impact on the properties of the learnt represen-

tation of the data. When chosen too small, an accurate reconstruction of the initial

data (matrix R) is not possible. Conversely, when chosen too large, the reconstruction

is very accurate but the learnt representation does not represent the segmentation in a

straightforward fashion. The choice of the optimal rank of the decomposition therefore

appears to be critical to retrieve accurate segmentation by frame clustering. We note

that a similar observation was made in a different context in [172]. In that case, the au-

thors also approached homogeneity-based segmentation as a clustering task, though their

problem formulation as well as the task they addressed were different. They employed

a shift-invariant Probabilistic Latent Component Analysis (SI-PLCA) in which the tem-

plates were 2-dimensional matrices representing chord sequences and also noted that an

accurate rank estimation is instrumental in achieving good segmentation performance.

We are interested here in recovering the segmentation of a music piece into segments with

consistent metrical structure. As a result, recovering information about the transitions

between segments, which may be a valuable information in itself, is of little interest

in this context. On the other hand, recovering all the parts is essential. Obtaining a

decomposition in which templates correspond to parts of the metergram and activations

correspond to the temporal extent of the parts represents our desired outcome. It appears

from the discussion above that choosing the rank equal to (or in the close vicinity of) the

number of different parts in the data seems ideal. Assuming the number of different parts

in a music piece is not known a priori, in the following we present a variety of methods to

automatically determine the optimal rank or circumvent the rank determination problem

by applying sparsity constraints to the NMF approximation.
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7.4.2 Heuristic automatic rank determination baseline

When the chosen rank is too small, the factorisation cannot be accurate (cf. Figure

7.6), implying a large reconstruction error. This error is expected to decrease when the

rank increases, becoming reasonably small when K is equal to the number of different

segments in the track, with small decreases in error for further rank augmentation. On

this premise, we devise a baseline automatic rank estimation method, notated NMF-Ke.

For each track, an NMF decomposition and the reconstruction error is computed for a

range of ranks, i.e. K ∈ {1, ..., 10}. The effective rank Ke is selected so that

Ke , K : DKL(R,WH)K ≥ ε and DKL(R,WH)K+1 < ε (7.7)

with ε = 2.10−4. The activation matrix from the factorisation of rank K = Ke is

then used to retrieve segmentation. We refer to Section 7.4.6 for the evaluation of the

segmentation performance obtained with this method.

7.4.3 Sparse-NMF

Owing to non-negativity constraints, the data representations produced by NMF tend to

be relatively sparse [127], but in its basic formulation NMF does not allow control over

the degree of sparsity. Nevertheless, it has been shown to be beneficial for a variety of

tasks to enforce sparsity constraints [142, 219–223] or to explicitly control the sparseness

of the learnt decomposition [224]. Sparsity constraints may be applied either on the

activation or templates matrix or both. Because the learnt templates are expected to

represent parts of the input data, it is to be expected that the density of the templates

resembles that of the input data, which is therefore not necessarily sparse in general. In

our case, the input data (the metergram R) is very sparse — only a few of its coefficients

are significantly non-zero — hence leading to the learning of very sparse templates.

It has been shown in Section 7.4.1 that the rank of the NMF decomposition has a

significant impact on the properties of the data representation that is learnt. When

the rank is too small, the data cannot be represented well, so this situation must be

avoided. When the rank is too large, the activation matrix gets fragmented, simultaneous
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activations develop and templates start learning sub-spaces of the parts of the data, if

not being redundant. Given that the optimal rank is not known a priori, we propose to

choose it purposefully too large and apply sparsity constraints on the activation matrix so

that fragmentation of activations and co-activations are penalised. We assume unlikely

that a piece contains more than 10 different metrical structures and therefore set the

rank K = 10. One may also consider estimating the maximum number of modulations

per piece from the dataset. Although this approach is perfectly justifiable in general, it

goes against the fully unsupervised philosophy adopted here. Note that we have chosen

K = 10 in this study, but any arbitrary value for K would be suitable, provided that it

is purposefully chosen to be too large. In a hypothetical scenario where the maximum

number of modulation is not known and cannot be estimated, the larger the value chosen

for K, the lower the probability that a piece featuring K distinct metrical structures is

encountered. In the following we consider a range of sparsity constraints to be enforced

in the NMF approximation optimisation.

7.4.3.1 NMF with L1 activation sparsity constraint

The first method we consider is a standard KL divergence NMF with the addition of an

activation penalty defined as the L1-norm of the activation matrix:

Υ = ||H||1 (7.8)

where the L1-norm is given by ||H||1 =
∑

i,j hij . This constraint encourages factori-

sations that keep the activations in H to a minimum by penalising non-zero entries.

Replacing equation (7.8) in equation (2.29), the cost function to minimise is:

DKL(R|WH) + α ||H||1 (7.9)

Minimising the cost function implies the minimisation of Υ alongside the reconstruction

errorDKL(R|WH), with the tradeoff between the respective weight of the reconstruction

error and the penalty being controlled by α. Then, increasing α leads to greater sparsity
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and vice-versa. Multiplicative update rules can be derived to include this constraint in

the optimisation of the factorisation, following [225]:

H← H�WT ( R
WH)

WTJ + α
(7.10)

W←W � ( R
WH)HT

JHT
(7.11)

where J is a matrix of ones of dimensionM ×N . Let us notate this method as SNMF-L.

A trivial solution to minimise the penalty term of equation (7.9) is to scale down the

activations in H while increasing the norm of the templates in W so that the product

WH is not affected. In this case, the optimisation problem is equivalent to a standard

NMF with no penalty. In order to prevent such a behaviour, a third update implements

the L1-normalisation of the columns of the templates matrix W at each iteration [225]:

W← W

repmat(J1,MW,M, 1)
(7.12)

where J1,M is a matrix of ones of size 1 × M and repmat(J1,MW,M, 1) is a matrix

of dimension M × K which M rows are the repetition of vector J1,MW of dimension

1×K. Figure 7.8 shows the factorisations obtained with SNMF-L method, for a range

of values of the sparsity penalty weight α. It is clear that equations (7.10) and (7.11)

are equivalent to equations (2.24) and (2.25) — that is to say standard NMF — when

α = 0. The factorisation obtained for α = 0 exhibits a typical NMF behaviour. Even

with very large weight, the sparsity constraint does not seem to have a very significant

influence on the learnt activation matrix.

7.4.3.2 Monotonic algorithm for NMF with L1 activation sparsity constraint

A shortcoming of the method described in Section 7.4.3.1 is that the addition of the

normalisation update (7.12) to the multiplicative update rules (7.10) and (7.11), does

not guarantee the decrease of the cost function at each iteration. In this section we

summarise and examine a NMF algorithm with with L1 activation sparsity constraint
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Figure 7.8: Sparse-NMF decompositions for a range of values of α. Each
row presents from left to right the template W, activations H and reconstructed WH
matrices for a music piece containing metric modulations: “Geno (Tribute to Dexys
Midnight Runners)” by Union of Sound. All decompositions are computed with K = 10

that guarantees a monotonic descent. The multiplicative update rules considered are

[142, 219]:

H← H�
W̄T

(
R

W̄H

)
W̄TJ + α

(7.13)

W← W̄ �

(
R

W̄H

)
HT + W̄ �

(
1
(
JHT � W̄

))
JHT + W̄ �

(
1
(

R
W̄H

HT � W̄
)) (7.14)

where W̄ is the column-normalised templates matrix, J ∈ RM×N≥0 is a matrix of ones of

the same size as R and 1 ∈ RM×M≥0 is a square matrix of ones. Let us label this method

SNMF-S.

Figure 7.9 shows the NMF decompositions computed for a range of values of the sparsity

parameter α. The sparsity of matrix H appears to be noticeably affected for values

around α ≈ 10 and above. It is also to be noted that when sparsity parameter values get

large, i.e. α � 1, the resemblance between the learnt templates and the original data

is affected. As a result, the fidelity of the reconstructed matrix WH is also adversely

impacted. This effect is very prominent in the case α = 100 depicted in Figure 7.9

(P) (Q) and (R). On the other hand, the activation matrix H exhibits a structure that

is close to the structural segmentation of the piece. Moreover, the role of the learnt

components is semantically much more meaningful than for lower sparsity value. For

instance, component 8 clearly corresponds to the opening part of the track that is never

repeated. Component 3 corresponds to the 2nd, 4th and 6th part, which have the same
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Figure 7.9: Sparse-NMF decompositions for a range of values of α. Each
row presents from left to right the template W, activations H and reconstructed WH
matrices for a music piece containing metric modulations: “Geno (Tribute to Dexys
Midnight Runners)” by Union of Sound. All decompositions are computed with K = 10

metrical structure, and are therefore repeated parts from a metrical structure standpoint.

Components 1, 6 and 10 exclusively feature very short activations located at the border

between sections, which clearly suggest that they correspond to transitional components.

Interestingly, a template is learnt for components 5 and 9, but they are pruned out of the

model by never being activated. In conclusion, it appears that the effect of the sparsity

constraint is only significant when very large weight is given to the sparsity constraint,

i.e. α� 10, and produces semantically meaningful structures in the activation matrices

for values of the order of α ≈ 100. This comes at the expense of inaccurate template

learning and therefore inaccurate reconstruction, however.

7.4.3.3 Sparse β-NMF with Lβ penalty

The observations made in Section 7.4.3.2 suggest that the structure of the activation

matrix is significantly affected only when very strong sparsity constraints are applied —

realised by very large values for the penalty weight α. In our scenario, greater sparsity

appears to be desirable. An alternative approach to setting very large penalty weight

could be choosing a stronger penalty to enforce the sparsity constraint. Defining the

penalty as the L0-norm of H so that Υ = ||H||0 provides a much stronger sparsity

constraint [226] but leads to a cost function with a large number of local minima and is

therefore difficult to meaningfully minimise [219].

In this section we propose a method using a Lβ-norm penalty to enforce the sparse ac-

tivation constraint in a β-divergence NMF algorithm, inspired from the group sparsity
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method developed in [144]. We refer the reader to Appendix C for the details of the

mathematical derivation but summarise the key elements of this approach in the follow-

ing. The reconstruction error is measured by the β divergence given in (2.26) the penalty

term enforcing the sparsity constraint is:

Υ =
1

β

N∑
n=1

‖yn‖ββ (7.15)

where

yk,n = hk,n × ‖wk‖2 (7.16)

Given that the scale relationship

Dβ(r|v)

‖h‖ββ
=
Dβ(gr|gv)

‖gh‖ββ
(7.17)

is verified for β > 0 and g ∈ R∗ [144], a Lββ-norm penalty is scale-invariant to the β-

divergence. In other words, choosing to pair a Lββ-norm penalty with a β-divergence

reconstruction error implies a consistent penalisation regardless of the scale of the matri-

ces coefficients. Note that when setting β = 1 we see that the L1-norm penalty is scale

invariant to the KL divergence (cf. sections 7.4.3.1 and 7.4.3.2).

Another interesting property of this penalty term is that it ties together the L2-norm of

the metergram templateswk and its activation at nth time frame hk,n in (7.16). By trying

to minimise the penalty, the algorithm therefore tries to jointly minimise the norm of the

templates and their activations. As we will show later, this property is instrumental in

achieving good results because it allows to prune templates out of the model by turning

their norm and activation to zero. By virtue of the multiplicative updates, a template

whose L2-norm becomes zero (i.e. all its coefficients are zero) at a given iteration can no

longer take non-zero values, which effectively excludes it from future updates.

The intent here is to derive a monotonic algorithm to enforce sparsity constraints sig-

nificantly stronger than L1 constraints. In order to do so, β must be chosen so that

0 < β < 1. In our experiments we set β = 1
2 . Subsituting β and equation (7.15) in
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(2.29), the cost function function to minimise in order to optimise the factorisation is

then:

D 1
2
(R|WH) + 2α

N∑
n=1

‖yn‖
1
2
1
2

(7.18)

Multiplicative updates to monotonically minimise the cost function are obtained by sub-

stituting

ΨW = W � repmat

∑
j

√
hTi,j ,M, 1

 , (7.19)

ΨH = 1/
√
H (7.20)

and

ϕ(β) = (3− β)−1 (7.21)

into (2.30) and (2.31). The activation and template matrices are then normalised:

hk,n = hk,n × ‖wk‖2 (7.22)

wk =
wk

‖wk‖2
(7.23)

Note that given (7.16), this normalisation step does not affect the value of the cost

function. Let us refer to this method as Lβ-S-β-NMF in the remainder of this chapter.

Figure 7.10 shows the factorisations obtained with this method for a range of sparsity

weights α. The condition α = 0 means that the sparsity constraint is not applied to

the factorisation, and therefore provides a baseline. The effect of the sparsity constraint

is significantly felt for α ' 1. In this condition, some components are pruned out of

the model: the template vectors tend to zero, so that by virtue of the multiplicative

updates, once they are zero vectors they cannot be updated further. Alternatively, even

if templates are non-zero vectors, they may effectively be pruned out of the model by

not being activated (cf. Figure 7.10 (M), (N) and (O) ). When the weight given to the

sparsity penalty is too large (α ≈ 10), all components but one are pruned out of the

model. The representative power of the factorisation is then lost, and the segmentation
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is no longer captured. The structure of H seems to optimally capture the segmentation

for α ≈ 5. We also note that the quality of the segmentation captured in the structure of

the activation matrix is significantly better with the current method than with SNMF-S

(cf. Figure 7.10 (N) vs. Figure 7.9 (Q) ).
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Figure 7.10: Lβ-S-β-NMF decompositions for a range of values of α. Each
row presents from left to right the template W, activations H and reconstructed WH
matrices for a music piece containing metric modulations: “Geno (Tribute to Dexys
Midnight Runners)” by Union of Sound. All decompositions are computed with β = 1

2

7.4.3.4 L1-ARD for β-NMF

For comparison then, we present in this section a method proposed by Tan and Févotte

in [227] to perform Automatic Relevance Determination (ARD) for β-NMF. It is an

extension of β-NMF which effectively aims at pruning templates that only explain a little

part of the observed data (matrix R) during the iterative optimisation. The optimal rank

of the NMF decomposition can then be computed a posteriori.

A key feature of this method is that the rows of H are coupled with the corresponding

columns of W via a scaling vector λ = (λ1, ..., λK) containing the relevance weights so

that the kth row of the activation matrix H is tied with the kth column of the templates

matrix W via the coefficient λk. The strategy implemented by Tan and Févotte is to

update the relevance weights vector λ as well as H and W at each iteration so that the

template-activation pairs (tied by a single coefficient λk) of low relevance are gradually

scaled down until they ultimately become zero entries. Using multiplicative update rules,

the zero entries then remain zero in further iterations. Conversely, template-activations

pairs of high relevance are maintained at non-zero values. As a result, starting with a rank

purposefully chosen to be too large, the superfluous templates are gradually deactivated

by their relevance weights tending towards zero. An effective rank estimation can then

be performed by counting the number of templates that are effectively being used.

Although we refer the reader to the original publication [227] for a detailed derivation

of the algorithm, we will present some of its key elements in the following. The algo-

rithm based on multiplicative update rules is summarised in pseudo-code in Algorithm
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3. The iterative algorithm takes four parameters: a, φ, β and τ . The parameter τ is

Algorithm 3 L1-ARD for β-NMF
Parameters: a, φ, β, τ
Init: tol = −∞
while tol < τ do

H← H�
[

WT [(WH)(β−2)�R]
WT [(WH)(β−1)]+φ/repmat(λ,1,N)

]γ(β)

W←W �
[

[(WH)(β−2)�R]HT

[(WH)(β−1)]HT+φ/repmat(λ,M,1)

]γ(β)

λk ← (
∑

mwmk +
∑

n hkn + b) /c for all k
tol← maxk=1,...,K |(λk − λ̃k)/λ̃k|

Calculate Ke as in Equation 7.27

the convergence stopping criterion. It is set to τ = 5.10−7 in our experiments2. Tan

and Févotte report that the choice of a in a data-driven manner is not straightforward

and not satisfactory. As a result, they recommend to chose it small compared to M +N

in order to minimise its influence. They also report that the best results were obtained

under this condition. We explored values in the a ∈ [5, 1000] range in our experiments.

Here again β refers to the β-divergence. In our experiments β ∈ {0, 1, 2}.

The parameter φ controls the tradeoff between data fidelity and regularisation: the larger

the value of φ, the stronger pruning of latent components. As such, φ has an effect on

the sparsity of H and W and plays a similar role as the penalty weight α in the previous

sections. In fact, we note at this point that the multiplicative update rules for W and H

given in algorithm 3 closely resemble the generic form of sparse-β-NMF updates given in

equations (2.30) and (2.31) where φ/repmat(λ, 1, N) and φ/repmat(λ,M, 1) are in lieu

of αΨH and αΨW respectively.

The other terms used in Algorithm 3 are defined as:

c = M +N + a+ 1 (7.24)
2We also add a limit to the number of iterations allowed (200 in our experiments) in order to limit

the computation time. As a consequence, the iterative algorithm is stopped either when tol < τ or when
the maximum number of iterations is reached
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γ(β) =


1/(2− β) β < 1

1 1 ≤ β ≤ 2

1/(β − 1) β > 2

(7.25)

b =

√
(a− 1)(a− 2)µ̂R

K
(7.26)

where µ̂R is the variance of R and λ = (λ1, ..., λK) and λ̂ = (λ̂1, ..., λ̂K) are the vectors

of relevance weights at the current (updated) and previous iteration respectively. The

notations repmat(λ, 1, N) and repmat(λ,M, 1) respectively represent matrices of RK×N

in which each column is a λ vector and of RM×K in which each row is a λ vector.

Tan and Févotte propose a simple rationale to estimate the effective rank Ke of the

decomposition after convergence. By construction, the λk are bounded so that λk ≥ b
c .

The bound is reached when the L1 norms of the kth column of W and of the kth row

of H are zero, which directly implies that the corresponding matrix coefficients are zero

because of the non-negativity constraint. In other words, the relevance weights λk reach

their lower bound when the corresponding component is pruned out of the model. The

effective rank Ke is then set as the number of relevant components according to:

Ke =

∣∣∣∣∣
{
k ∈ {1, ...,K} :

λk − b
c

b
c

> τ

}∣∣∣∣∣ (7.27)

Analytically, the relevance condition is satisfied if λk−
b
c

b
c

> 0 but setting a small positive

threshold guarantees numerical robustness. For convenience, this threshold is set to be

the same as the iteration stopping criterion τ [227].

Figure 7.11 shows the factorisations computed with the L1-ARD β-NMF algorithm for

φ ∈ {0, 0.01, 0.1, 1} for the track “Geno (Tribute to Dexys Midnight Runners)” by Union

of Sound. The initial rank of the decomposition is fixed to K = 10, β = 1 and a = 500.

When φ = 0, the regularisation term at the denominator of the update rules disappears

so that they become equivalent to a standard β-NMF decomposition (equations (2.27)

and (2.28)). In this case, the behaviour observed is naturally that of a standard NMF:

the learnt decomposition features good fidelity of the reconstructed matrix, templates
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(i) WH with φ = 0.1
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Figure 7.11: L1-ARD β-NMF decompositions for a range of values of φ. Each
row presents from left to right the template W, activations H and reconstructed WH
matrices for a music piece containing metric modulations: “Geno (Tribute to Dexys
Midnight Runners)” by Union of Sound. All decompositions are computed with β = 1,

a = 500 and K = 10
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learning sub-spaces of parts of the matrix R and a very scattered activation matrix H

(cf. Section 7.4.1). The effect of the pruning of irrelevant components is visible when

φ increases. As expected, the higher φ, the more aggressive the pruning. When φ gets

too large, the pruning effect is so pronounced that only one component remains, learning

a template that is a form of mean of R over time. The tradeoff between pruning and

fidelity is also visible in Figure 7.11: the greater the pruning (and therefore the sparsity),

the lower the fidelity of the reconstruction WH. More interestingly, this method shows

very promising behaviour for φ = 0.1. Although the fidelity of the reconstruction is not

perfect, the segmentation of the piece is very well captured in H.

It is interesting to note at this point that the factorisations, and in particular the structure

of the activation matrices, learnt with ARD-β-NMF are similar to those learnt with Lβ-

S-β-NMF. Tan and Févotte note in [228] that ARD-β-NMF bears some similarities to

re-weighted L1-minimisation [229], which is a way to enforce sparsity constraints stronger

than the standard L1 penalty. Lβ-S-β-NMF with β < 1 also aims at enforcing sparsity

constraints stronger than L1 but does so by employing an alternative penalisation (Lβ-

norm). In addition, we note that the term yn in the penalty used in Lβ-S-β-NMF

(equation (7.15)) ties together the norm of a template with its activation at a given time

frame, and therefore constitutes another point of similarity with ARD-β-NMF, which

ties together templates vectors and rows of H with the relevance parameter λ.

Nevertheless, we note a significant difference between the two methods. ARD-β-NMF

relies on prior distributions parametrised by hyper-paremeters a, b and c. Tan and

Févotte outline analytical relationships between these hyper-parameters so that b and c

are determined by the value of a. In other word, the only parameter to be fixed is a.

However, it remains unclear how to systematically determine a. Lβ-S-β-NMF, on the

other hand, does not require this extra parameter and therefore greatly simplifies the

model selection.

7.4.4 Comparison with K-means

As opposed to the novelty detection based techniques presented in Section 7.3, the NMF-

based approach to automatic segmentation retrieval exposed in Section 7.4 is related to
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a clustering problem. The goal is to learn latent components that represent parts of

the input data (matrix R). Then, each frame of the input data is approximated by a

weighted combination of learnt templates. These weights are more commonly referred to

as activations in the NMF framework. Then, the activation matrix H may be interpreted

as a cluster assignment matrix. In this section we propose to use the popular K-means

clustering method for comparison with NMF-based methods. We refer to Section 2.7 for a

brief description of the K-means clustering method and the algorithm used to implement

it, as well as the definition of some notation.

Here again, we consider the metergram as the observation matrix. The K-means cluster-

ing procedure assigns each column of R to one and only one cluster. The assignments

are stored in a vector C = (c1, ..., cN ), each element representing the index of the corre-

sponding cluster, i.e. ci = k with i ∈ J1, NK and k ∈ J1,KK. The result of the K-means

clustering can be represented in a matrix decomposition similar to NMF. The template

matrix W is straightforwardly defined as the matrix whose columns are the cluster cen-

troids. The activation matrix H is derived from the cluster assignments so that each

entry is:

hij = δicj (7.28)

where δ is the Kronecker symbol. Then, an approximative reconstruction of R can be

computed as WH.

K-means is a “hard” clustering method in that it assigns every observation to one and

only one cluster. A direct consequence of this property is that the activation matrix H

obtained by the method described above from the K-means decomposition is binary. In

this respect, it differs from the NMF framework that may be seen as a “soft” clustering

method in which the cluster assignments (the activations) take continuous values and

template co-activations are possible.

Figure 7.12 shows a series of NMF-like matrix decomposition and reconstructions ob-

tained by K-means clustering for a range of K values. A behaviour comparable to NMF

is observed in the activation matrix. As K increases, the long parts are learnt first and

templates for transitional components start being learnt (for K ≥ 4 in the example).
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Similar conclusions as in the case of NMF developed in Section 7.4.1 can be drawn in

the case of K-means based decompositions with the exception that the hard clustering

property prevents the learning of cluster centroids that form sub-spaces of the ideal parts

decomposition ofR. K-means owes its popularity more to its simplicity and the efficiency

of the algorithms that implement it than to its accuracy, which is inferior to many other

clustering techniques. This is visible in the reconstruction matrices WH that tend to be

coarser than with NMF. However, K-means also produces activation matrices with struc-

ture that meaningfully relates to the segmentation of a piece. In this respect, K-means

clustering may be a competitive alternative to NMF.

As with NMF though, the rank estimation problem persists with K-means as K must

still be set in advance. In our experiments, we apply the heuristic automatic rank esti-

mation method presented in Section 7.4.2 in order to provide a K-means-based baseline

to compare other algorithms. We refer to this method as K-means-Ke.

7.4.5 Hidden Markov Model for final segmentation

We aim at retrieving the segmentation from the activation matrix H, regardless of the

technique used to compute it (NMF or k-means). It has be shown above that its ar-

rangement closely relates to the annotated reference segmentation when the number of

latent components is optimally chosen. When the number of components is too large

and regularisation is not optimally applied, transitional and, only if using NMF, simul-

taneous activations arise. However, the structure of a piece is modelled here as a series

of non-overlapping segments and we do not seek to capture transitional components. In

order to retrieve segmentation with a structure that matches these requirements, we pro-

pose the use of a simple Hidden Markov Model (HMM) to make the final segmentation

decision. We refer the reader to Section 2.9 for a brief presentation of HMM and the

definition of the corresponding notation.

We assume that the structure of the activation matrix H already largely correlates to the

segmentation, i.e. segments are highly correlated to contiguous series of large activation

coefficients. We also assume that there may be transitional and simultaneous activations
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Figure 7.12: K-means decompositions of and reconstructions for a range
of number of clusters. Each row presents from left to right the cluster centroids
W, activations H and reconstructed WH matrices for a music piece containing metric

modulations: “Geno (Tribute to Dexys Midnight Runners)” by Union of Sound.

(cf. Figure 7.6(Q) for example). The HMM then produces an estimate of the most likely

non-overlapping segmentation that could have generated the observed data (matrix H).

The number of hidden states is set equal to the rank K, each state being associated with

the true activation of a component — i.e. of the activation of the metrical structure

specific to a segment. We define the emission probability π(ek|ψk), i.e. the probability

of emitting the component index k from the kth hidden state ψk as:

π(ek|ψk) =
exp (−Ak,n)∑K
k=1 exp (−Ak,n)

(7.29)

with

Ak,n =
(hk,n − µ)2

2σ2
(7.30)

where hk,n is the activation coefficient of the kth component at the nth time frame,

µ = maxk,n(hk,n), and σ = µ. The emission probability π(ek|ψk) is therefore large for

large activation coefficients and vice versa.
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The transition probabilities are defined in two classes: the probability of remaining in

the same state P (ψi|ψi) and the probability of a transition from state ψi to state ψj

notated P (ψj |ψi). Since we consider a scenario in which no prior knowledge regarding

the metrical structure nor the metric modulations is assumed, no particular transitions

are favoured. As a consequence the transition probabilities are uniform across the state

space for i 6= j:

∀(i, j) ∈ {1, ...,K},

 P (ψj |ψi) = Pd i = j

P (ψj |ψi) = 1−Pd
K−1 i 6= j

(7.31)

where Pd is the probability of remaining in the same state and K is the number of states,

set to equal the rank of the NMF decomposition. The probability Pd effectively controls

the inertia of the model: the higher Pd, the higher the likelihood to stay in the same

state and vice versa. The HMM is employed here to filter out transitional components

and co-activations. In order to do so, it should therefore penalise numerous transitions

between states. For this reason, a model high inertia (i.e. large Pd) is desirable. We

set Pd = 0.9 in our experiment, as it has been found to produce the best results in our

preliminary experiments.

The HMM is decoded using the Viterbi algorithm to reveal the most likely state sequence

ψ = {ψk1, · · · , ψkN}, where ψk,n denotes the HMM state ψk at the nth time frame.

Segment boundary timeframes n̂ are easily extracted from the HMM state sequence by

detecting state transitions:

n̂ , n : ψk,(n−1) 6= ψk,n (7.32)

For ease of visual comparison, an activation matrix corresponding to the HMM state

sequence HHMM ∈ RK×N≥0 is formed in a similar fashion as with K-means, i.e. defining

each entry as:

hk,n = δk,ψk,n (7.33)

where δ is the Kronecker symbol.

Figure 7.13 shows example of such matrices HHMM as well as the activation matrices H

they are derived from for different NMF-based methods. It suggests that the improve-

ment brought by the use of the HMM depends on the properties of the activation matrix
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(a) H for SNMF-S with α = 10
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(b) H for Lβ-S-β-NMF with α =
5
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(c) HHMM for SNMF-S with α =
10
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(d) HHMM for Lβ-S-β-NMF with
α = 5

Figure 7.13: HMM-based segmentation inference. (A) and (C) show the ac-
tivation matrix H and the HMM segmentation estimate in the form of an activation
matrix HHMM for SNMF-S with α = 10. Similarly, (B) and (D) are matrices H and
HHMM for Lβ-S-β-NMF with α = 5. All matrices are processed from the track “Geno

(Tribute to Dexys Midnight Runners)” by Union of Sound.

H. In a case where H contains transitional activations and co-activations, the HMM

seems to improve the segmentation. On the other hand, Figure 7.13 (B) and (D) sug-

gest that when the segmentation is already accurately captured by H, the HMM cannot

bring any further improvement, though it is important to note that it does not have a

deleterious impact on the segmentation. Finally, it suggests that despite the use of the

HMM, the quality of the segmentation captured by H has a direct impact on the final

segmentation result (cf. Figure 7.13 (B), which features a spurious short segment around

the 55s mark). This suggest that even if the HMM can improve an untidy segmenta-

tion, the use of a technique that produces activation matrices accurately capturing the

segmentation is still preferable.

7.4.6 Results and Discussion

We present here an evaluation of the performance of the various segmentation strategies

described above, using the metrics presented in Section 2.10.3 on the metric modulations
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dataset presented in Section 3.6.

7.4.6.1 Effect of the rank

It has been discussed on an example in Section 7.4.1 how critical the impact of the choice

of the rank of the NMF (or K-means) decomposition is on the properties of the represen-

tation learnt. Figure 7.14 presents the influence of the rank on the average performance

of NMF and K-means decompositions over the entire dataset with respect to a selection

of metrics. When K = 1, the model cannot capture more than one metrical structure

and is therefore not able to capture changes (i.e. no segment boundary detected), hence

the F-measure equalling zero. The absence of segment boundaries implies that the track

is regarded as made of a unique segment, which is a case of extremee under-segmentation,

hence the very low Su though it is non-zero as there is at least one annotated segment

overlapping with a part of the extracted segment. The pfm is non-zero for the same

reason. When only one estimated segment, that is Ne = 1, it implies log2Ne = 0. As a

consequence, Equation 2.58 is not defined and the over-segmentation score So cannot be

calculated. It is forced to zero in this case.

As the rank of the decomposition increases, so that K > 1, Su quickly saturates for

K ' 3, i.e. the average under-segmentation is very small under this condition and further

rank increase do not bring significant performance improvement. This suggests that the

minimum rank required to achieve good average performance on this dataset lies in the

vicinity of K ≈ 3. Considering the three other metrics, it appears that two-templates

models (K = 2) lead to the best average results for both NMF and K-means. The

performance decreases when the order of the model increases, in a particularly dramatic

manner in the case of pfm metric. The fall in performance can be explained by the

increasing over-segmentation, reflected by a decrease in So, and related to the scattering

of the activation matrices easily apparent in Figure 7.6 and Figure 7.12. This result

suggests that rank K = 2 optimally suits this dataset. Note that it is not to be expected

that this optimal rank holds in general. Nevertheless, this result also demonstrates that

the choice of the rank has a significant impact on the segmentation performance, and it
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Figure 7.14: Segmentation performance metrics as a function of K for NMF
and k-means. (A) Pairwise F-measure pfm, (B) Hit rate F-measure Fm3, (C) Under-
segmentation score Su and (D) Over-segmentation score So. For each metric, the scores

being shown are the average scores across the entire dataset, for each value of K.

is to be expected that this observation generalises well, irrespectively of the value of the

optimal rank.

7.4.6.2 Methods comparison

At the exception of the baselines NMF-Ke and K-means-Ke, all segmentation methods

have been run for a range of parameter values. For synthetic result analysis, we present

for each method the results obtained with the parameter configuration leading to the

highest pairwise F-measure pfm in Table 7.1. The best result for each metric is high-

lighted in bold characters. However, it is to be noted that the parameter configurations

that produce the highest pfm also produce the highest hit rate F-measure and Sf in the

vast majority of the cases. In other words, the performance of the methods tends to

peak in the same area of the parameter space for all F-measure metrics.
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Reminder: Methods summary

ARD β-NMF-based Automatic Relevance Determination

Lβ-S-β-NMF Lβ-Sparse β-NMF (proposed algorithm)

SNMF-S Monotonic L1-Sparse NMF

SNMF-L L1-Sparse NMF

NMF-Ke NMF with heuristic automatic rank determination

K-means-Ke K-means with heuristic automatic rank determination

SSM Foote Self-Similarity Matrix and checkerboard kernel

Reminder: Evaluation metrics summary

ppr Frame clustering pairwise precision rate

prr Frame clustering pairwise recall rate

pfm Frame clustering pairwise F-measure

Fm3 Hit rate F-measure (3s window)

Fm8 Hit rate F-measure (8s window)

So Normalised conditional entropy over-segmentation score

Su Normalised conditional entropy under-segmentation score

Sf Normalised conditional entropy F-measure

TTG True-to-guess median deviation

GTT Guess-to-true median deviation

Considering the pairwise frame clustering metrics (i.e. ppr , prr and pfm), it is interesting

to note that the ARD method leans towards high recall whereas other NMF-based meth-

ods lean towards higher precision, with the exception of the Lβ-S-β-NMF which exhibits

a very balanced performance. ARD with β = 1 produces the best pfm performance, with

Lβ-S-β-NMF closely following. The examination of under- and over-segmentation scores

reveals that all methods tend to over-segment more than they under-segment (So < Su)

and Lβ-S-β-NMF produces the highest Sf score.

It may be noted that the maximum hit rate F-measure achieved across all methods and

all configurations is 0.42 with a 3s threshold. The median GTT represents the median

distance between an extracted boundary and the closest annotated boundary. The values

obtained for median GTT are significantly higher than 3s for all methods. For instance,
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Table 7.1: Segmentation performance results for all methods considered. For each
method, we present the results obtained with the parameter configuration leading to
the best pfm. For each metric, the highest score is in bold characters and the symbol
* is used to denote a statistically significant difference to the highest score (p < 0.05).

Methods ppr prr pfm So Su Sf Fm3 Fm8 TTG(s) GTT(s)

ARD β = 0 0.59* 0.92 0.66* 0.59* 0.58* 0.58* 0.22* 0.38* 32.88* 10.51*
ARD β = 1 0.70* 0.91 0.75 0.69 0.70* 0.70 0.42 0.53 12.65* 6.63
ARD β = 2 0.61* 0.84* 0.66* 0.61* 0.63* 0.62* 0.28* 0.36* 27.97* 14.82*
Lβ-S-β-NMF 0.77 0.78* 0.73 0.72 0.84 0.75 0.41 0.52 5.82* 9.00
SNMF-S 0.84 0.50* 0.57* 0.58* 0.85 0.69 0.31* 0.43* 5.15 19.75*
SNMF-L 0.87 0.44* 0.52* 0.54* 0.87 0.67 0.31* 0.44 3.96 19.33*
NMF-Ke 0.80 0.67* 0.67* 0.66* 0.81* 0.73 0.39* 0.53 8.55* 12.80*
K-means-Ke 0.89 0.47* 0.57* 0.61* 0.90 0.73 0.37* 0.45 4.78 17.64*
SSM Foote 0.66* 0.81* 0.68* 0.68* 0.68* 0.68* 0.07* 0.42* 24.10* 15.22*

in the case of ARD β = 1, the median GTT is 6.63s, meaning that many extracted

boundaries are located outside of the 3s window required for them to be counted as a

hit. For every NMF+HMM method, raising the hit rate threshold from 3s to 8s improves

the F-measure score by about 0.1 points, which suggests that the precise localisation of

the boundaries is a significantly challenging problem which should be a focus of future

work. The effect is even more pronounced in the case of novelty-based segmentation (SSM

Foote), which suggests that the NMF+HMM strategy leads to more precise boundary

locations estimates than peak-picking a Foote novelty curve.

Overall it appears that Lβ-S-β-NMF and ARD with β = 1 share the highest scores on

all F-measure metrics (i.e. pfm, Sf ,Fm3 and Fm8), often exhibiting close scores. These

are the only two methods to consistently equal or outperform SSM Foote and automatic

rank determination baselines and may therefore be considered as the two best performing

methods. They are also the two methods enforcing the strongest sparsity constraints in

the NMF decomposition. In addition, SNMF-S performs best when the weight of its

sparsity constraint, which is comparatively weaker, is extremely large (α = 100). This

suggests in more general terms that very strong sparsity constraints are beneficial for the

quality of the segmentation produced.
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Table 7.2: Best results for each metric for each method. As a consequence, for each
method the parameter configurations leading to the best result might differ from metric
to metric. For each metric, the highest score is in bold characters and the symbol * is

used to denote a statistically significant difference to the highest score (p < 0.05).

Methods ppr prr pfm So Su Sf Fm3 Fm8 TTG(s) GTT(s)

ARD β = 0 0.59* 1.00 0.66* 0.61* 0.59* 0.60* 0.24* 0.38* 18.2* 0.21
ARD β = 1 0.85 1.00 0.75 0.71 0.85 0.73 0.42 0.53 0.69 0.67
ARD β = 2 0.85 1.00 0.66* 0.63* 0.86 0.71 0.34* 0.48 4.18 0.73
Lβ-S-β-NMF 0.83 0.98 0.73 0.72 0.84 0.75 0.41 0.52 5.82 9.00*
SNMF-S 0.88 0.50* 0.57* 0.58* 0.88 0.69 0.32* 0.44 3.75 19.75*
SNMF-L 0.87 0.44* 0.52* 0.54* 0.88 0.67 0.33* 0.44 3.54 19.33*
NMF-Ke 0.80 0.67* 0.67* 0.66* 0.81* 0.73 0.39* 0.53 8.55* 12.80*
K-means-Ke 0.89 0.47* 0.57* 0.61* 0.90 0.73 0.37* 0.45 4.78 17.64*
SSM Foote 0.66* 1.00 0.68* 0.68* 0.68* 0.68* 0.07* 0.46 24.10* 6.67*

7.4.6.3 Performance upper bound

While Section 7.4.6.2 aims at analysing results for a typical optimal parameter configu-

ration, this section investigates the maximum performance achievable for each method

across its parameter space with respect to all metrics. In particular, Table 7.2 presents

in each of its cells the best result obtained for a given method with respect to a given

metric. As a consequence, for each method the parameter configurations leading to the

best result might differ from metric to metric. The best result according to each metric

is highlighted in bold characters.

Firstly, it appears that a sizeable number of the maximum scores reported in Table 7.2

exactly correspond to those reported in Table 7.1. Detailed inspection revealed that

the parameter configuration leading to these scores is identical in both cases. It is

particularily true of F-measure type of metrics (i.e. pfm, SF , Fm3 and Fm8). This

reveals that the optimum compromise between recall and precision tends to be found in

the same area of the parameter space for all F-measure type of metrics. As a result, this

observation augments the generality of the conclusions drawn from the analysis carried

out in Section 7.4.6.2.

Some observations persist from the analysis exposed above. In particular, for the vast

majority of methods, the maximum over-segmentation score is lower than the maximum

under-segmentation score (So < Su). This means that, even with the most optimal

parameter configuration, these methods tend to be biased towards over-segmentation
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more than under-segmentation. Considering the pairwise frame clustering metrics reveals

that the Lβ-S-β-NMF, ARD and SSM Foote methods are capable of generating higher

recall than precision as opposed to other NMF-based methods as well as K-means-Ke. Hit

rate F-measure scores (Fm3 and Fm8) are not significantly greater than those reported

in Table 7.1. This results corroborates the observation made earlier that extracting

precise boundary positions is a challenge for all techniques considered here.

The median true-to-guess (TTG) and median guess-to-true (GTT) are reported here for

consistency, although a meaningful interpretation of their value cannot be made. These

metrics are only informative in conjunction with other metrics. For instance, in the

case where only very few boundaries are retrieved and that these boundaries happen

to be very close to the reference annotation boundaries, the median deviation will be

very small. Taken in isolation, this figure would suggest a good performance in terms of

boundary localisation, but may not be significant.

Here again Lβ-S-β-NMF and ARD with β = 1 exhibit very close scores. This result

is consistent with the theoretical similarity between these two techniques highlighted in

Section 7.4.3.4. These two techniques also compare with or outperform most of other

methods, which validates further their relative superiority. We also note that the base-

line methods NMF-Ke and K-means-Ke tend to outperform the common sparse-NMF

approaches (SNMF-L and SNMF-S) and thereby validates the application of very strong

sparsity penalties.

7.4.6.4 Comparison with state of the art structural segmentation algorithms

The task of detecting metric modulations is formulated as a segmentation problem in

this thesis. Because it is, to the best of our knowledge, the first attempt at detecting

metric modulations with such an approach, there is not prior art to compare our results

to. In order to somewhat contextualise our results, in this section we compare them to

results obtained by state of the art algorithms on a similar but different task that is

a well documented area of MIR research, namely structural segmentation, in terms of

musical form such as Verse, Chorus, Bridge etc. (cf. Section 2.10).
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For comparison, we consider a selection of some of the best performing algorithms sub-

mitted to the MIREX Structural Segmentation task from 2012 to 2016 3. Table 7.3

regroups the corresponding results obtained on the SALAMI dataset (cf. Section 3.1).

The comparison of algorithms performance is straightforward because the metrics used in

the previous sections of this chapter are identical to those used in the MIREX challenge,

with the exception of Fm8. As a results the results of Table 7.3 should be compared to

those of Table 7.1.

The order of magnitude of performance according to ppr , prr , Su and So metrics is

comparable in the two cases. Lβ-S-β-NMF and ARD-NMF exhibit a sizeable posi-

tive difference in terms of pairwise clustering F-measures pfm and Sf with respect to

best performing structural segmentation algorithms. On the other hand, they produce

lower performance in terms of hit rate F-measure (Fm3) and median deviations (GTT

and TTG). This reveals that state of the art structural segmentation algorithms pro-

duce more accurate boundary locations that the metrical-structure based segmentation

methods we investigated here. Overall, in comparison to the state of the art in struc-

tural segmentation, the methods we proposed here tend to produce a segmentation that

overlaps very well with the annotated segmentation, but that does not produce very

accurate segment boundary locations. These results show that it is possible to achieve

better boundary precision on a task analogous to the one considered in this thesis (i.e.

another segmentation task) and therefore suggest that there may be a good prospect for

improving metric modulation boundary detection accuracy by taking inspiration from

structural segmentation methods. Therefore we assume that improving on the boundary

location accuracy in future work could bring a gain to the quality of metrical structure

based segmentation.

Boundary location accuracy aside, the methods investigated in this chapter seem to pro-

duce segmentation that is significantly closer to the annotated segmentation than state

of the art structural segmentation algorithms are. It is now well understood that the

structure of a musical piece, in terms of musical form, is multifaceted [178] and happens
3http://www.music-ir.org/mirex/wiki/2016:Structural_Segmentation
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Table 7.3: Performance score of the best performing algorithms in the MIREX Struc-
tural Segmentation task over the years 2012-2016 for the SALAMI dataset

Algorithm ppr prr pfm So Su Sf Fm3 TTG(s) GTT(s)

GS1 [230] 0.41 0.80 0.51 0.54 0.82 0.65 0.62 2.20 2.37
SUG1 [231] 0.73 0.44 0.48 0.52 0.74 0.61 0.61 6.20 2.75
SUG2 [231] 0.88 0.30 0.42 0.45 0.88 0.60 0.69 1.44 4.15
MHRAF1 [232] 0.56 0.67 0.57 0.63 0.52 0.57 0.42 6.24 5.50
SMGA1 [233] 0.68 0.58 0.58 0.62 0.68 0.65 0.49 1.77 6.71

at multiple layers simultaneously [172], which makes it very hard to define what is a “cor-

rect” segmentation. Such considerations have motivated the creation of more elaborate

evaluations and datasets such as SALAMI [182] but also reveal the difficulty to be faced

when designing automatic systems to retrieve structural segmentation in this context.

Conversely, in this chapter we focus on metric modulations, for which we can provide a

definition that is sharper than in the case of structural segmentation. While choosing

which musical feature(s) to base the automatic structural segmentation algorithms on is

a difficult and dataset-dependant exercise, the metric modulation detection algorithms

investigated here are naturally restrained to metrical structure changes. In fact, in its

current formulation, metric modulation detection can be seen as a sub-task of the more

general structural segmentation task.

7.4.6.5 Performance per modulation class

The previous sections have concentrated on evaluating the automatic metrical structure

based segmentation, irrespective of the nature of the modulations. Let us now consider

the following question: “Are some types of modulation harder to detect than others?”

For each annotated boundary, the corresponding reference metric modulation type is

derived from the annotation of the two adjacent segments on the basis of the adapted

taxonomy presented in Section 6.3. This is then compared to the automatically produced

boundaries. The number of successfully detected boundaries per type of modulation is

counted. A successful boundary detection is defined in line with the hit rate metric: a

hit is recorded if an extracted boundary is present in a window around the annotated

boundary, a miss is recorded otherwise. Consistently with the Fm3 and Fm8 metrics
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presented earlier, windows of 3s and 8s are used. For each modulation type, the recall

rate is calculated

Modulation Recall =
TP

TP + FN
(7.34)

where TP is the number of true positives, i.e. the number of hits, and FN is the number

of false negatives, i.e. the number of misses. The recall rates for each metric modulation

type for a selection of method and for both the 3s and 8s hit threshold window are

presented in Figure 7.15.

In this case the results are naturally influenced by the overall recall of the each method.

The increase in absolute performance when raising the hit threshold from 3s to 8s already

reported in Table 7.1 is apparent on Figure 7.15 (A). For instance, it is very obvious that

the SSM-Foote method performs very poorly with a hit rate window of 3s. There are no

examples of T1H nor noMo modulations in the annotations of this dataset, so that such

boundaries cannot be recalled.

In order to get insight into the relative performance against metric modulation types,

we normalise the Modulation Recall by the Global Recall (i.e. the recall for the whole

dataset):

Normalised Recall =
Modulation Recall

Global Recall
(7.35)

As a result, Figure 7.16 gives a graphic representation of the relative boundary retrieval

performance across modulation types. Overall it appears that, with the exception of a

couple of outliers, the tendencies are similar for every method. In other words, all the

methods considered appear to respond in a comparable fashion to the type of metric

modulation performance-wise. In particular, SA and IM modulations appear to be com-

paratively more challenging for the algorithms than other types of modulations whereas

C2.1, OC, T1 and C1.2 are the easiest modulations to retrieve. This relative performance

discrepancy may be related to the amount of change in energy distribution in the meter-

gram they result in. We refer the reader back to Section 6.3 in which the diagrams for

each metric modulations closely relate to the energy distribution change in a metergram

around the modulation. For instance, Subdivision Addition (SA) is a subtle change in
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Figure 7.15: Recall rate of metric modulation detection, per modulation
type. Results are presented for four NMF-based segmentation methods corresponding
to the results presented in Table 7.1. (A) With a 3s hit rate threshold window, (B)

With a 8s hit rate threshold window.
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the sense that it implies that all metrical levels are preserved and one is added. Con-

versely, OC implies that no metrical level pulse rate is preserved by the modulation. In

other words, in the latter case, the change of energy distribution in the metergram frames

around the modulation is far greater than in the former case. The methods considered in

this chapter for automatic segmentation proceed either by detection or novelty of frame

clustering. The results obtained in this section corroborate the idea, which can be intu-

itively formulated, that detecting modulations discriminating two segments in which the

energy distribution in the metergram frames is similar is a more arduous task than when

the energy distributions are drastically different. In other words, the results obtained in

this section demonstrate that metric modulations inducing small alterations of metrical

structure are harder to detect than modulations inducing more substantial changes.

7.5 Conclusions

In this chapter we proposed to consider automatic metric modulation detection as a task

in itself and formulated it as a segmentation retrieval problem for the first time. We

assumed the metric modulations to occur as a change from one segment of relatively

stable metrical structure to another segment of relatively stable, but different metrical

structure. No other prior knowledge prior knowledge was assumed and we therefore

proposed to address this problem in an unsupervised fashion.

In order to perform this segmentation retrieval task from audio we proposed an extension

of existing rhythmogram processing in order to form the metergram, which is the feature

from which the segmentation is estimated. Both novelty-based as well as homogeneity-

based methods were applied to the metergram in order to retrieve the segmentation.

While Foote’s novelty-based method detects metric modulations as changes of energy

distribution in the rhythmogram frames, a range of NMF-based methods were consid-

ered to cluster together frames of consistent metrical structure. The standard k-means

algorithm was employed for comparison. We additionally introduced a new variation

of sparse-NMF algorithm to the existing methods considered. Finally, we proposed to
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Figure 7.16: Normalised recall rate of metric modulation detection, per
modulation type. Results are presented for four NMF-based segmentation methods
corresponding to the results presented in Table 7.1. (A) With a 3s hit rate threshold

window, (B) With a 8s hit rate threshold window.
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employ a Hidden Markov Model on the data representation learnt in order to produce

the final segmentation estimate in the case of homogeneity-based methods.

Experiments have demonstrated that optimal rank estimation is critical to obtain mean-

ingful results using standard NMF, although the rank information is not known a priori.

Experiments have also shown that enforcing very strong sparsity constraints in NMF

decompositions allows to circumvent the rank estimation problem, therefore making this

technique practically usable and also leading to the best performance amongst all method

considered. Since tackling the detection of metric modulations as a segmentation prob-

lem had never been attempted before, no prior art is available to compare our results

to. We therefore contextualise them by comparing our results to the results obtained by

state of the art algorithms on a different, but similar task, namely structural segmenta-

tion. We then demonstrated that our proposed approach is competitive with state-of-the

art structural segmentation algorithms. More precisely, it outperforms state of the art

algorithms on pfm and Sf metrics, while it is still inferior on Fm3 metric. Exploiting the

taxonomy of metric modulations introduced in Chapter 6, we showed that not all metric

modulations are equally easy to detect: modulations inducing substantial alterations of

the metrical structure tend to be easy to detect and vice-versa.



Chapter 8

Conclusion

8.1 Summary

This thesis took a number of steps towards the automatic analysis of metric modulations.

After giving a general introduction and laying out the research questions to be addressed

in Chapter 1 and then reviewing the necessary elements of background in Chapter 2, we

presented the datasets used in this work in Chapter 3. In particular, we introduce two

new datasets for the evaluation of metrical structure and metric modulation detection

algorithms respectively. In addition, we evaluated the inter-annotator agreement in the

GTZAN-Met dataset, which enabled us to isolate intractable tracks and asses the upper

limit of performance achievable by an algorithm on this dataset.

In Chapter 4 we investigated the use of the rhythmogram as a feature to estimate the

metrical structure, thereby assessing its suitability to lay the ground for the detection

of metric modulations. Our experiments demonstrate that the metrical pulse rates are

related to peaks in the periodicity spectrum but that the reciprocal proposition is not

necessarily true. On that account we proposed a peak-picking algorithm that enforces

hierarchical constraints derived from music theory to extract metrical levels from the

periodicity spectrum. We then demonstrate its efficiency by evaluating it on the GTZAN-

Met dataset. Moreover, comparing the algorithm scores to inter-annotator agreement

225
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revealed that its performance closely approaches human performance on a number of

genres while there is still room for improvement for tracks in the Jazz genre.

Chapter 5 focused on the estimation of rhythm feature extraction reliability. As a matter

of fact, feature extraction algorithms occasionally fail. Since feature extraction is often

the first step in a mote complex system (e.g. recommendation engine) or to compute

composite features (e.g. beat-synchronous chromagram), failures in feature extraction

lay unstable ground for the system. On the other hand, some causes of systematic failure

are well known to the MIR research community. On that account, our proposed approach

to estimating reliability of rhythm features extraction consists in capturing properties of

the musical signal that are known for causing failures. We then demonstrate that the

entropy of the rhythmogram may be used as a predictor of the reliability of the extraction

of several rhythm features.

Finally, in chapters 6 and 7 we introduce a metric modulation taxonomy with its corre-

sponding classifier and address the automatic detection of metric modulations, respec-

tively. Considering metric modulations as changes of metrical structure over time, we

proposed to approach their automatic detection as a metrical structure based segmenta-

tion retrieval problem, the segment boundaries representing the temporal location of the

modulations. Furthermore, we consider a scenario in which no prior knowledge about the

modulations or metrical structure is assumed. In this context, we propose to address the

automatic detection of metric modulations in an unsupervised fashion and considered

both novelty-based and homogeneity-based segmentation retrieval strategies. A variety

of numerical methods were examined to perform metergram frame clustering in the con-

text of homogeneity-based segmentation. We showed that the estimation of the rank

of the decomposition (i.e. the number of clusters used) is critical for obtaining good

segmentation results. We therefore introduce an algorithm for computing a β-sparse

β-NMF that enables the automatic pruning of components and therefore overcomes the

rank estimation problem. Our results showed that a NMF approach enabling automatic

rank estimation (via pruning of un-necessary components) outperforms all other methods

under scrutiny. In order to enable a musicologically meaningful analysis, we proposed

for the first time to classify metric modulations against a dedicated taxonomy. Since, to
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the best of our knowledge, there does not exist a taxonomy that relies on features au-

tomatically extractable from musical recordings, we reformulated a taxonomy designed

for score-based musicological analysis in terms of metrical level pulse rates. By doing so

we showed that not all modulations are equally easy to detect: modulations implying

large changes of metrical level pulse rates are typically easier to detect than modulations

implying only subtle changes.

In the following sections we relate our investigations to the research questions established

in Chapter 1 and subsequently deduce possible directions for future work.

8.2 Discussion of Research Questions

RQ1: How can we automatically estimate the metrical structure of

music?

This thesis is concerned with the automatic analysis of metric modulations, that is

to say changes of metrical structure over time. On that account, it is related to the

topic of metrical structure estimation, which, in the current state of the art, is by no

means a solved problem. Although the aim of this thesis is not to contribute to the

advance of metrical structure estimation methods, it is necessary for the analysis of

metric modulation to capture at least some properties of the metrical structure.

Relating to RQ2, we demonstrated that the rhythmogram feature, and in particular

the metergram variation of it, has the ability to capture, in an unsupervised fashion,

some metrical structure information on which a metric modulation detection system can

be based. However, we showed in Chapter 4 that there is no direct mapping between

the periodicity rates observed in the metergram and metrical pulse rates. Since the

metrical structure typically exhibits hierarchical organisation, we introduced a peak-

picking algorithm enforcing hierarchical constraints to retrieve metrical pulse rates from

the rhythmogram. Taking the inter-annotator disagreement in account (cf. RQ3), we

demonstrated that applying this algorithm to the metergram very closely matches human
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performance on a number western popular music genres. It also shed a light on some

weaknesses that will be discussed in Section 8.3.

RQ2: To which extent does the rhythmogram capture the metrical

structure of music?

It has been suggested by a number of authors that the rhythmogram is capable of cap-

turing metrical structure related information, and more precisely that peaks in its frames

(that we call periodicity spectra) correspond to metrical level pulse rates. Nonetheless,

it is also widely known that ‘harmonics’ of the metrical level pulse rates are present

in the periodicity spectra (cf. Chapter 2). The lack of congruence between these two

observations motivates the a direct examination of their respective limits. In Chapter

4 we presented an experiment investigating the correspondance between metrical level

pulse rates and peaks in the rhythmogram.

Our results confirm the informal observations made by previous authors: the metrical

level pulse rates correspond to peaks in the FFT and ACF rhythmogram, but not all

the peaks correspond to metrical level pulse rates. Starting from the idea that the FFT

rhythmogram produces harmonics of the metrical pulse rates while the ACF rhythmo-

gram produces sub-harmonics, Peeters proposed multiply the FFT and ACF rhythmo-

grams in order to eliminate harmonics so that only the peaks corresponding to metrical

level pulse rates remain. This hypothesis had not been explicitly tested, however. Our

experiments show that the correspondance between metrical level pulse rates and peaks

in the rhythmogram is greatly improved using this method, even though some harmonics

persist. In the light of this result we chose to use the multiplication of the FFT and ACF

rhythmogram (that we label ‘metergram’ for clarity) as a feature for extraction of metric

modulations.
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RQ3: What is the impact of human judgment discrepancies on the

evaluation of automatic metrical structure extraction algorithms?

MIR algorithms are typically evaluated against expert human annotations, which are

then considered as ‘ground truth’. It is then clear that if the annotations are provided

by one annotator only, the evaluation is merely a measure of the ability of the algorithm

to reproduce the annotator’s bias. The generalisability of results obtained in such a

setting is therefore questionable. This issue can be addressed by collecting multiple an-

notations (from distinct annotators) for each musical excerpt in a dataset and accounting

for potential discrepancies between these. In Chapter 3 we presented a dataset of met-

rical structure annotations in which every track was annotated by two to three distinct

annotators. In Chapter 4, we evaluated our metrical structure extraction algorithm using

our newly created dataset.

It has been shown in previous work that the level of inter-annotator agreement puts

an upper bound to algorithm performance. By evaluating both the algorithm and the

level of inter-annotator agreement we demonstrated that a performance score might

be misleading when not compared to inter-annotator disagreement. For example, the

algorithm relatively performed poorly on tracks in the ‘classical’ genre category, but

human annotators also tend to disagree a lot on this subset of the corpus so that the

average performance of the humans and the algorithm is identical. As a result, if the

inter-annotator agreement had not been evaluated, the performance score would have

suggested that there is room to improve the algorithm on data resembling that in the

‘classical’ genre category when it is not actually the case: it already performs as well as

human experts do.

In Chapter 3 the agreement between annotators (as well as self-agreement) was examined

in greater detail. This analysis enabled us to draw additional conclusions regarding the

impact of inter-annotator agreement on algorithms evaluation. In particular, tracks for

which human annotators were not able to produce an annotation were isolated and

labelled intractable on that account. It is thus unclear how to meaningfully evaluate

algorithms against such intractable tracks. For that reason, we excluded them from the

evaluation procedure in Chapter 4. Overall, the evaluation of human annotations used
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to evaluate algorithms appears to greatly improve the quality of the conclusions that can

be drawn.

RQ4: How can automatic feature extraction failures be predicted?

Some properties of the musical signal are known to create challenging conditions for

rhythm features extraction. One example of such property is ‘soft onsets’, which are

known to be the cause of mediocre rhythm feature extraction performance at best. As a

result, we hypothesised that measuring these properties should enable the computation

of a predictor of the reliability of rhythm features extraction. Chapter 5 is dedicated to

the investigation of this research question.

We consider a feature extraction system to be reliable if it consistently produces estimates

that are deemed to be good. We then proposed to use the entropy of a rhythmogram

as a predictor of the feature extraction reliability. Our experiments demonstrated that

this descriptor relates to the reliability of three rhythm-related tasks, namely tempo

estimation, beat tracking and metrical structure estimation.

RQ5: How can we automatically detect metric modulations?

A metric modulation is defined, for the purpose of this thesis, as a relatively abrupt

change of metrical structure over time. This implicitly assumes a segmentation of musical

pieces in sections of relatively consistent metrical structure, the boundaries of which

represent metric modulations. On that account, we formulated the problem of automatic

detection of metric modulations as a metrical structure based segmentation retrieval task.

Relating to RQ1 and RQ2, it appeared that the metergram feature captures attributes

of the metrical structure and we therefore proposed to use it as a feature on which to

base the detection of metric modulations. We proposed an unsupervised approach to

perform the segmentation and examined a number of methods in Chapter 7.

Two classes of approaches were employed: novelty-based and homogeneity-based seg-

mentation. Novelty methods aim at detecting metric modulations by detecting a change
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of metrical structure while homogeneity-based methods aim at clustering together con-

tiguous regions of consistent metrical structure. Clustering algorithms typically require

the number of clusters, i.e. the number of different metrical structures to be found to

be set in advance. However, in the blind scenario we are considering, this information is

not known a priori. In order to circumvent this issue we introduced a new algorithm to

compute a β-NMF decomposition with β-sparse constraints, which automatically prunes

out un-necessary components. Results show that the decomposition rank selection is

instrumental in achieving good performance and reveal state of the art performance for

our proposed method.

RQ6: Can computational methods be used to automate musicological

analyses of metric modulations?

Traditional musicology is typically carried out by relying on a score for analysing musical

features through the lens of a specific research question or framework, see for example

[234–236]. Musicological questions typically involve the study of high (semantic) level,

and possibly abstract, concepts such as leitmotif whereas computational methods are

typically better suited for low level analysis. As a consequence, addressing musicological

questions with computational methods remains a very challenging task.

In a bid to progress in this direction, we proposed to employ a taxonomy of metric mod-

ulations. By grounding the taxonomy in musicological theory, the musicological depth is

hard coded in the structure of the taxonomy itself. Starting from an existing metric mod-

ulation taxonomy designed for score-based analysis and given that a score is not available

for all musical recordings, we proposed in Chapter 6 to adapt Bouchard’s taxonomy so

that it is applicable to computational analyses. In particular we reformulated Bouchard’s

taxonomy so that it relies on features that can be automatically extracted from audio

recordings, namely the metrical level pulse rates. On this basis, we constructed a metric

modulations classifier.

The comparison of the classification results obtained with the annotated metrical pulse

rates from the GTZAN-Met dataset with automatically extracted metrical pulse rate

revealed that the classification accuracy obtained from automatically extracted features
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depends on the which level of granularity of the taxonomy is considered. While the

classification of families of metric modulations showed promising results, the classification

into individual modulation categories was significantly less accurate. The discussion of

this result uncovers directions for future work, which we will examine in the next section.

Finally, we have shown in Chapter 7 that this musicologically-driven and taxonomy-based

classification is useful to help gaining a deeper understanding of the of segmentation

performance: categories of metric modulations that imply a large change in the metrical

structure are easier to detect than metric modulations implying only subtle changes.

8.3 Future Work

Finally, in this section we outline the main avenues for future work that could be identified

on the basis of the results obtained in this thesis.

Overcoming the onset detection bottleneck

As described in Chapter 2, onset detection is the first step of the prototypical MIR rhythm

analysis pipeline. The rhythm analyses are then derived from a feature analogous to an

onset detection function. Moreover, an onset canonically characterises the time instant

(of zero duration) associated with the beginning of a musical event, often closely related

to the concept of sound transient. The results of Chapter 4 and Chapter 5 as well as a

number of observations reported in the literature tend to suggest that the limited scope

of this type of approach to onset detection puts a limit to the performance of subsequent

analyses. In other words, when the musical signal does not feature the characteristics

that enable reliable onset detection, the premises on which systems for the estimation of

rhythm attributes rely are not verified, which leads to failures.

In the recent years, the introduction of neural networks based onset detection algorithms

has improved the performance, but the underlying estimation paradigme has seldom

been modified. As noted by Schlüter [75], onset detection is approached as the audio

analogue to edge detection, i.e. local (ideally punctual) changes.
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Great successes have been achieved in recent work in computer vision to detect complex

objects (e.g. faces) by applying neural networks to images. Systems producing the

expected result for a given task (i.e. detection of faces) by directly feeding the raw data

(e.g. the image) to a neural network are known as end-to-end systems. The network

architectures are typically hierarchically structured so that the first layers typically learn

elementary filters such as edge detectors and topmost layers learn representations of

complex objects [237]. Recent network introspection studies tend to suggest that this

assumption is verified [238, 239]. On the other hand it has also been shown that end-

to-end learning can be applied to music [100, 101]. Pursuing the analogy with computer

vision, it may therefore be hypothesised that if neural networks can learn to recognise

a variety of complex objects they may also be capable of learning to recognise complex

musical objects — i.e. non punctual onsets. For these reasons, we view the design of

end-to-end rhythm analysis systems as a possibly promising avenue for future work that

may enable to better handle challenging musical signals, such as pieces featuring with

soft onsets.

Towards a better location of metric modulation boundaries

It has been shown in Chapter 7 that regardless of the numerical method used for

homogeneity-based segmentation a higher pfm than Fm3 or Fm8 is always obtained.

Moreover, in all cases the Fm8 is about 0.1 points greater than Fm3. These results

suggest that although the methods under scrutiny tend isolate the right segments, their

ability to precisely locate segment boundaries (i.e. metric modulations) is comparatively

inferior. This tendency is even clearer in the case of novelty-based segmentation. An

avenue for future work may therefore consist in improving the accuracy of metric mod-

ulations location. Given that all methods rely on the metergram and that the trend

we observed is shared by all methods, we hypothesise that the source of this impreci-

sion may lie in the computation of the metergram. More precisely, the windows used

for computing the metergram are very long (12s) so that long metric cycles (e.g. bar

cycle) may be captured. The use of such long windows implies a smearing of the time

evolution of metrical structure. One way to overcome this limitation may be to employ
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a multi-resolution metergram, thereby combining long windows that allow the capture

of long metrical cycles and shorter windows that enable more accurate location of metric

modulations. Another approach may consist in combining the metergram with other

features providing a finer temporal resolution, e.g. using the metergram to produce a

rough boundary location estimate that may then be refined by synchronising it with the

closest downbeat.

It has to be noted, however, that seeking to capture accurate metric modulation loca-

tions in the terms used above implicitly assumes that a modulation is a punctual segment

boundary. But this is a somewhat simplistic model. Metric modulations are transitions

between one segment of consistent metrical structure to another segment of different

structure, and are typically set up so that they unfold in a musically meaningful way.

Defining the temporal position of a metric modulation is an arduous task, even from

a music theoretical point of view. We thus argue that aiming at characterising metric

modulations as a region of change rather than an punctual alteration may be a fruitful

approach for future work. We also note that this concept is applicable to other segmen-

tation tasks for which a punctual boundary model does not accurately represents the

musical content.

Towards a better metric modulation taxonomy

The results of automatic classification of metric modulations obtained in Chapter 6 and

Chapter 7 revealed that a meaningful insight can be gained from the classification in

families of metric modulations but that there is room for improving the classification in

finer individual modulation types, as suggested by the number of undefined modulations

detected. In its current form, the metric modulation classifier is made of hand-crafted

modules that make binary classification decisions. Our results suggest that either the

modulation types specified were not optimally chosen or that binary decisions is too

harsh a process for metric modulations classification, or a combination of both.

As a consequence, future work should investigate the design of a metric modulation tax-

onomy that relies on softer constraints, possibly refining or refactoring the modulation

types considered here. We recall that the reason for introducing a metric modulation
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taxonomy was to enable musicologically meaningful automatic analyses. Musicological

considerations should therefore still be considered in future work. In particular, devising

adequate metric modulation types on the basis of features that may be automatically

extracted is not straightforward and we argue that involving musicologists in this process

should be instrumental in improving the taxonomy. Secondly, since the hard classification

architecture used in this thesis has shown limitations, we hypothesise that employing a

framework enforcing softer constraints (e.g. probabilistic framework) should lead to im-

proved classification performance in future work. Neural networks have been successfully

applied to a variety of classification tasks and therefore represent a promising option for

the technical implementation of such classification system. Given that neural networks

learn latent representations from the data, it may be hypothesise in first approximation

that they would learnt adequate representations of metric modulations. However, recent

work shows that the representations learnt by neural networks do not necessarily respect

sanity constraints of a given task [240]. A part of such future investigation may then con-

sist in encoding the desired musicological constraints in the network architecture and/or

via the training method [241]. As a further extension, rather than explicit annotations,

the ground truth used for training such models may also be produced from psychological

studies, or by directly learning models the the human perception of metric modulations.

Towards alternative musical concepts to circumvent intractability

When given the possibility, human annotators may chose not to annotate certain tracks

because they are not able to do so (cf. Chapter 3 and existing work such as [3]). Such

tracks were consequently labelled in this thesis as intractable. This observation raises

the following question: why are these pieces intractable? One possible reason could

be that the musical content of the piece is ‘complex’ (e.g. very fast, or including heavy

syncopation) makes the annotation of the corresponding musical feature (say the metrical

structure) difficult to track. The intractability then reflects the limited abilities of the

annotators. In this case, intractability can be overcome by selecting annotators with

more advanced skills. Another hypothesis could be that the task expected from the
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annotator is not relevant to the piece at hand. For instance, the task of attempting to

annotate the key is unlikely to be relevant to an atonal piece.

Going back to metrical structure, we have observed in Chapter 3 that the majority of

intractable tracks were from the ‘classical’ genre category. Does this necessarily mean

that human annotators are bad at tracking metrical structure of classical music? Or

does it mean that the musical concepts underlying the task annotators have to complete

do not optimally apply to classical music? Annotators were asked to annotated metrical

level pulse rates, which implicitly assumes a somewhat steady underlying pulse. We

therefore hypothesise that some of the classical pieces were intractable simply because

they do not feature a steady underlying pulse or clear quasi-punctual onsets. However,

it does not mean that these pieces do not have a metrical structure. Indeed different

concept of metrical structure might be more relevant. Since some cases of intractability

reveal the limits of our conceptual model of metrical structure future work should then

consider alternative descriptions of the metrical structure that would fit musical pieces

that do not feature a clear steady pulse.

8.4 Closing words

The estimation of the metrical structure is now an active area of MIR research. In

most of the related works, the metrical structure is assumed either to be constant or

to only slowly vary (e.g. slow tempo drifts, or local inconsistencies). The detection of

metric modulations is comparatively rarely addressed. In contrast, in this thesis we have

been concerned with taking a number of steps towards the automatic detection of metric

modulations. We hypothesise that one of the reasons for the lack of works addressing

the detection of metric modulation is the absence of appropriate dataset. In a bid to

overcome this barrier, we created a publicly available dataset for the evaluation of metric

modulation detection systems. With the aim of designing a method that would be as

general as possible, we proposed an blind scenario in which we formulate the detection

of metrical structure as a segmentation problem and no prior knowledge of the metrical



Conclusion 237

structure nor the metric modulations is assumed. We then proposed an unsupervised

approach to address this task.

There is substantial scope for expanding on the work presented in this thesis. The major

avenues for future research that could be derived from our results are outlined in Section

8.3. Some of them consist in technical or methodological improvements of the frameworks

used for detecting metric modulations (e.g. improving the location of modulations).

On the other hand, potential future research may concern more fundamental models of

musical concepts, such as onsets. This is motivated by the fact that the limitations of

these concepts are inherited by the methods that they underpin. Therefore, examining

further existing concepts or devising new concepts is a necessary step to overcome these

limitations.

Another aspect that may be of interest for future work but was not considered in this

thesis is the applications of metric modulation detection. Like many other MIR tasks, in

may be useful for applications in computational musicology or the management, naviga-

tion and discovery of large music collections. Regarding a metric modulation as of similar

nature as some other MIR features, such as chords, structural segmentation or tempo, we

envision that it would naturally integrate in systems employing MIR for computational

musicology and database navigation. Creative applications may also be considered. For

instance in systems designed for automatic sequencing or mashup creation. There already

exist research endeavours and industrial applications of such systems. In the current state

of the art, the transitions are typically generated by choosing two (or more) tracks hav-

ing similar rhythmic attributes. Adding the capability for handling metric modulations

would then enable the production of wider variety of transitions, potentially producing

interesting rhythmic effects.

Although the task of metric modulation detection is currently seldom considered in

current research, we view it as an exciting opportunity for development of field of MIR.

This thesis presents an effort to progress in that direction and we hope to see more work

carried out on this topic in the future.
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Metric Modulations Dataset

Tracklist

Trackname Artist Release ISRC

2 + 2 = 5 Radiohead Hail To The Thief GBAYE0300801

Another Day Paul McCartney Wings Greatest GBCCS0700020

Band On The Run Paul McCartney

and Wings

All The Best (US

Version)

GBCCS0700034

I Want It All

(Single Version)

Queen The Miracle

(Deluxe

Remastered

Version)

GBUM71029624

Live and Let Die Paul McCartney

and Wings

Live and Let Die

Shankbon The Slackers Close my Eyes

Superjeilezick -

Original Version

Brings Best Of DEC680001342

The Lazarus Heart Sting ...Nothing Like

The Sun

USAM18700038

Tom Sawyer

(Album Version)

Rush Moving Pictures

(2011 Remaster)

USMR18180103

238
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Magical Mystery

Tour

The Beatles Magical Mystery

Tour
21st Century

Schizoid man

King Crimson In the Court of

Crimson King

Innuendo Queen Innuendo

Free Bird Lynyrd Skynyrd Family USMC17301722

Immediate Circle Catatonia Paper Scissors

Stone

GBAHT0105618

Killing In The

Name (Album

Version)

Rage Against The

Machine

Rage Against The

Machine

USSM19200317

Old Dog The Slackers Close my Eyes

...And Justice For

All

Metallica ...And Justice For

All
Master of Puppets Metallica Master of Puppets

Spaceman Babylon Zoo The boy with the

X-ray eyes

Child In Time Deep Purple Deep Purple In

Rock

USWB19903563

Dracula Mountain Lightning Bolt Wonderful

Rainbow

US33K0404103

Geno - (Tribute to

Dexys Midnight

Runners)

Studio Allstars Music From Ashes

To Ashes Series 1

GBQRF0814853

Rapunzel Dave Matthews

Band

Listener Supported USRC19901243

Roundabout Yes The Family Tree FR6V80051479

Vernie Blind Melon Soup USCA29500710

Lucy in the sky

with Diamonds

The Beatles Sgt. Pepper’s

Lonely Hearts

Club Band
Eye of the

Beholder

Metallica ...And Justice For

All
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Music John Miles Decca Singles

1975-79
Bicycle Race

(Digital Remaster)

Queen The A-Z of Queen

Vol. 1

GBCEE0100116

Dazed And

Confused

Led Zeppelin Led Zeppelin

(Deluxe Edition)

USAT21300919

I Call Your Name

(Album Version)

The Mamas & The

Papas

Greatest Hits: The

Mamas & The

Papas

USMC16646370

I Me Mine The Beatles Let it Be

Phantom of the

Opera

Iron Maiden Iron Maiden GBAYE9801362

Back to Black Amy Winehouse Back to Black

Four Sticks Led Zeppelin Led Zeppelin IV

(Deluxe Edition)

USAT21300961

Midnight Rambler The Rolling Stones Let It Bleed USA176910070

Oily Way -

Original

Gong The World Of

Daevid Allen And

Gong CD2

USFB20608652

Sorry (To Be Me) Two Ton Shoe Figures... USHM80454265

I Want You (She’s

so heavy)

The Beatles Abbey Road

Cannabis (Album

Version)

Nino Ferrer Nino Ferrer FRZ017200250

Dear Jessie Madonna Like A Prayer USWB10002781

Hang on in There John Legend &

The Roots

Wake Up! USSM11002248

The Mirror Dream Theater Awake USEW29400071

Charlotte the

Harlot

Iron Maiden Iron Maiden GBAYE9801365

Some Velvet

Morning

Nancy Sinatra And

Lee Hazlewood

Nancy & Lee USASE0510172
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(You’re The) Devil

In Disguise

Elvis Presley The 50 Greatest

Hits

USRC16305834

Some Velvet

Morning

Lydia Lunch Shotgun Wedding GBBLY1300438

Words (Between

The Lines Of Age)

Neil Young Harvest USRE10900207

Harry’s

House-Centerpiece

Joni Mitchell Misses USEE10170377

One Rainy Wish The Jimi Hendrix

Experience

Axis: Bold As

Love

USQX90900762

All you Need is

Love

The Beatles Magical Mystery

Tour
Good Morning

Good Morning

The Beatles Sgt. Pepper’s

Lonely Hearts

Club Band
Uncle Albert /

Admiral Halsey

Paul McCartney RAM

Armageddon Blues Gary Willis Bent

Bye Bye Bye Scott Bradley’s

Postmodern

Jukdebox

PMJ and chill

The continuing

story of Bungalow

Bill

The Beatles the White Album

Happiness is a

warm Gun

The Beatles the White Album

Lie Dream Theater Awake

La Malinche Feu! Chatterton Ici le jour (a tout

enseveli)

Songs of Yesterday Free Songs of Yesterday

Grenade Scott Bradley’s

Postmodern

Jukdebox

Swing the Vote!
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Run to the Hills Iron Maiden The Number of the

Beast
Oops! ? did it

again

Scott Bradley’s

Postmodern

Jukdebox

Swipe right for

vintage

Smooth Criminal Patax Patax plays

Michael (a tribute)

They Don’t Care

About Us

Patax Patax plays

Michael (a tribute)

Love is Stronger

Than Justice

Sting Ten Summoner’s

Tales
The judge Twenty One Pilots Blurryface
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Descending PPK algorithm

The Descending counterpart of the ascending peak-picking kernel (PPK) described in

chapter 4 is given in pseudo-code below.

Algorithm 4 Descending Peak-picking kernel: K′(ωj ,M)

Require: ωj is the level under analysis andM, the metrical structure candidates
1: while ωj

ωj−1
/∈ N do

2: ωj−1 ← ωj−2

3: ωq ← ωj−1

4: if ωq−1

ωj
∈ N then

5: if ωq
ωq−1

/∈ N then
6: M1 ←M
7: M2 ←M
8: ωj ← ωq
9: (ωj ,M1)← K′(ωj ,M1) . call peak-picking kernel

10: M← {M,M1}
11: ωj ← ωq−1

12: (ωj ,M2)← K′(ωj ,M2) . call peak-picking kernel
13: M← {M,M2}
14: else
15: append ωj−1 toM
16: ωj ← ωj−1

17: else
18: append ωj−1 toM
19: ωj ← ωj−1

return ωj ,M

243
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Derivation of update rules for

Lβ-S-β-NMF

C.1 Majorisation-Minimisation and β-divergence

Given a non-negative matrix V ∈ RM×N NMF seeks to find W ∈ RM×K and H ∈ RK×N

such that their product approximates V:

V ≈WH (C.1)

The β-divergence [242]:

C(β)
β (v|z) =

vβ

β(β − 1)
+
zβ

β
+
vzβ−1

β − 1
(C.2)

is a well known generalised cost function for solving this task.

Majorisation-minimisation methods are employed to derive monotonic NMF algorithms

[141, 243]. These are effected through the use of an auxiliary function G(h|ĥ) which has

the properties:

G(h|ĥ) ≥ C(h) (C.3)

G(h|h) = C(h) (C.4)

244
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where ĥ is referred to as an auxiliary variable. In practice, ĥ is the value of h at the

current iteration. These properties guarantee that optimisation of the auxiliary function

results in optimisation of the original function. An auxiliary function for the β-divergence

is given in [141]. For values of 0 < β < 1, the range of interest here, the β-divergence

is composed of a convex and concave function, i.e. C =
^
C +

_
C , and it is shown that the

auxiliary function is similarly composed [141, 243]:

G(h|ĥ) =
^
G (h|ĥ) +

_
G (h|ĥ) (C.5)

It is also stated that the β-divergence auxiliary function is separable in each element i.e.

G(H|Ĥ) =
∑
k,n

G(hk,n|ĥk,n) (C.6)

As seen above (C.2), the third term of the β-divergence is convex, for which Jensen’s

inequality is used to derive an auxiliary function relative to H:

G(hk,n|ĥk,n) = aHk,nhk,n where aHk,n =
∑
m

wm,kvm,nz
β−2
m,n (C.7)

where Z = WH. Similarly, relative to W:

G(wm,k|ŵm,k) = aWm,kwm,k where aWm,k =
∑
n

vm,nz
β−2
m,n hk,n (C.8)

The second term in (C.2) is concave, and is majorised using Taylor expansion, which

gives the auxiliary function relative to H:

G(hk,n|ĥk,n) =
bHk,n

1− β ĥk,n
(
hk,n

ĥk,n

)β−1

where bHk,n =
∑
m

wm,kz
β−1
m,n (C.9)

and relative to W:

G(wm,k|ŵm,k) =
bWm,k
1− β ŵm,k

(
wm,k
ŵm,k

)β−1

where bWm,k =
∑
n

zβ−1
m,n hk,n (C.10)

Meanwhile, the first term in (C.2) is constant in terms of W and H and can be ignored

in the optimisation.
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C.2 Auxiliary function for proposed penalty

Let us define the matrix Y ∈ RK×N :

[Y ]k,n = hk,n × ‖wk‖2 (C.11)

The considered penalty is given as:

C(β)
p (Y) =

1

β

∑
n

‖yn‖ββ =
1

β

∑
k,n

yβk,n =
1

β

∑
k,n

hβk,n × ‖wk‖β2 =
∑
k,n

C(β)
p (yk,n) (C.12)

Two separate auxiliary functions need to be derived for this penalty, one with respect to

H and one with respect to W. For the activation update, consider that the dictionary

is normalised and is not updated in the iteration; in which case:

‖wk‖ = ‖ŵk‖ = 1 ∀k (C.13)

The element-wise cost function is then given as:

C(β)
p (yk,n) =

hβk,n
β

(C.14)

Since we only consider here cases where 0 < β < 1, the above term is concave. Therefore,

an auxiliary function for the penalty can be derived using the Taylor expansion :

Gβp (yk,n|Ĥ) = hk,nĥ
β−1
k,n + cst (C.15)

with gradient:
dGβp (yk,n|Ĥ)

dhk,n
= ĥβ−1

k,n (C.16)

For the dictionary update, it is considered that the activations are constant i.e. H = Ĥ

and the dictionary is normalised before the update, i.e. ‖ŵk‖ = 1. The cost function

can then be written:

C(β)
p (Y) =

1

β

∑
k

[
‖wk‖β2

∑
n

ĥβk,n

]
(C.17)
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which is not separable relative to the individual dictionary elements wm,k. In order

to create a separable auxilary function, an alternative majorisation using the weighted

arithmetic-geometric inequality, similar to [144] is employed:

(av + bw)
1

v+w ≤ va+ wb

v + w
(C.18)

Setting a = ‖wk‖22, b = ‖ŵk‖22, v = β,w = 2− β, leads to:

‖wk‖β2 ≤
β

2

‖wk‖22
‖ŵk‖2−β2

+

(
1− β

2

)
‖ŵk‖β2 =

β

2

∑
m

w2
m,k + cst (C.19)

which leads to the separable auxiliary function, given ‖wk‖2 = 1:

G(β)
p (wm,k|Ŵ) =

∑
m,k

w2
m,k

∑
n

ĥβk,n =
∑
m,k

ŵ2
m,k

(
wm,k
ŵm,k

)2∑
n

ĥβk,n (C.20)

C.3 Deriving the updates

The total penalised cost function is then given as:

C(β)
Sβ (V|W,H) = C(β)

β (V|Z) + λC(β)
p (Y) (C.21)

The auxiliary function is similarly composed. Relative to H this can be stated as:

G(hk,n|ĥk,n) = aHk,nhk,n +
1

1− β b
H
k,nĥk,n

(
hk,n

ĥk,n

)β−1

+ λhk,nĥ
β−1
k,n (C.22)

Taking the gradient and setting to zero:

dG(hk,n|ĥk,n)

dhk,n
= aHk,n − bHk,n

(
hk,n

ĥk,n

)β−2

+ λĥβ−1
k,n = 0 (C.23)

gives:
ak,n + λĥβ−1

k,n

bk,n
=

(
hk,n

ĥk,n

)β−2

(C.24)
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which is exponentiated by 1
β−2 to give:

hk,n

ĥk,n
=

[
ak,n + λĥβ−1

k,n

bk,n

] 1
β−2

=

[
bk,n

ak,n + λĥβ−1
k,n

] 1
2−β

(C.25)

which is written in matrix form as:

H←− H�
[

WT [V � [WH][β−2]]

WT [[WH][β−1]] + λH[β−1]

][ 1
2−β

]
(C.26)

where � denotes element-wise multiplication, X[.] denotes element-wise exponentiation

and the division is also element-wise.

In terms of W, the auxiliary function can be stated as

G(wm,k|ŵm,k) = aWm,kwm,k +
bWm,k
1− β ŵm,k

(
wm,k
ŵm,k

)β−1

+ λŵ2
m,k

(
wm,k
ŵm,k

)2∑
n

ĥβk,n (C.27)

Unlike the case of H, a further majorisation step is required in order to make this

optimisation more malleable. This follows the approach of [227], using Lemma 1 therein,

whereby the first term of (C.27) is majorised in order to have a common multiplier as the

third term. In particular, the first term can be rewritten as aWm,kwm,k = aWm,kŵm,k
wm,k
ŵm,k

to which the identity can be applied:

wm,k
ŵm,k

− 1 ≤ 1

2

[(
wm,k
ŵm,k

)2

− 1

]
(C.28)

giving the majorisation:

aWm,kwm,k ≤ aWm,kŵm,k
(
wm,k
ŵm,k

)2

+ cst. (C.29)

The term on the right of (C.29) can then be substituted into (C.27), before taking the

gradient and setting to zero in a similar fashion to taken and set to zero similar to (C.23)

above, leading to:

aWm,k

(
wm,k
ŵm,k

)
+ λŵm,k

(
wm,k
ŵm,k

)∑
n

ĥβk,n = bWm,kŵm,k

(
wm,k
ŵm,k

)β−2

(C.30)
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Setting [Ψ]m,k =
∑

n ĥ
β
k,n and dividing both sides by

(
wm,k
ŵm,k

)
gives:

aWm,k + λŵm,k[Ψ]m,k = bWm,kŵm,k

(
wm,k
ŵm,k

)β−3

(C.31)

which can be manipulated similar to (C.24), (C.25), (C.26) leading to the multiplicative

update:

W←−W �
[

[V � [WH][β−2]]HT

[[WH][β−2]]HT + λ[W �Ψ]

][ 1
3−β

]
(C.32)
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