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HIGHLIGHTS

• The proposed method effectively cancels complicated interference which can be strong,

nonstationary, and have frequencies close to that of signal of interest.

• The proposed method facilitates a valid detection of the NQR signal severely polluted by

interference.

• The proposed method performs better than general frequency selective methods of interfer-

ence cancellation.

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Detecting NQR signals severely polluted by interference

Weihang Shao,1 Jamie Barras,1 Kaspar Althoefer,1, 2 and Panagiotis Kosmas1

1Department of Informatics, King’s College London∗

2School of Electronic Engineering and Computer Science, Queen Mary University of London

(Dated: March 29, 2017)

Abstract

Nuclear Quadrupole Resonance (NQR) signal detection can be severely obstructed by interference in

real life settings, especially when the interference is strong, nonstationary, and its frequencies are close

to that of the NQR signal. A novel algorithm is proposed to effectively remove (or reduce) interference

components in the data and facilitate a valid detection of the NQR signal. The proposed method exhibits

better performance compared to the previously proposed ETAML and FETAML algorithms, when applied

to both simulated and measured data. Importantly, the present algorithm directly operates on the original

primary data, without requiring any secondary data (NQR signal-free data) for acquiring prior knowledge

of the interference.
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I. INTRODUCTION

Quadrupolar nuclei can resonate when probed by external electromagnetic (EM) waves, leading

to an EM response known as the nuclear quadrupole resonance (NQR) signal [1]. Taking advan-

tage of this physical phenomenon, NQR signal detection can be used to identify the presence of

substances containing quadrupolar nuclei. As a result, this technique has been applied to problems

such as landmine and drug detection, medicine authentication, and oil drilling, etc. [2–4], in order

to detect the quadrupolar nuclei which always exist in compounds of the objects of interest (such

as the 14N of trinitrotoluen (TNT) in landmines). Several of the NQR signal parameters, such

as frequency, signal damping time, and echo decay time depend on the source substance. These

parameters can be estimated and used to identify the existence of the NQR signal.

In recent years, algorithms based on least squares estimation or maximum likelihood theory

[2, 5, 6] have shown good performance in NQR detection applications. Unfortunately, the NQR

signal is usually weak relative to the total received signal. A straightforward strategy to increase

the signal-to-noise ratio (SNR) is to repeat measurements and sum up the data, taking advantage of

the fact that the NQR signal will add coherently as opposed to radio-frequency (RF) interference

and stochastic noise. However, this approach is limited since the time for data collection is usually

prohibitively long for real life applications such as humanitarian demining or security checking.

In a traditional NQR data recording system, one needs to let the system fully relax before per-

forming the next data collection. This may take quite a long time, particularly for the detection of

substances with long spin-lattice relaxation time. For NQR response signals which decay rapidly

with time, the system can record useful data for a very short time and ignore the remaining re-

laxation time. Based on this observation, a technique called pulsed spin locking sequences [7, 8]

or ”echo train” was proposed to improve the method’s efficiency by maintaining the intensity of

the NQR signal. Its principle is to echo the NQR signal periodically, so that the NQR signal can

almost restore its intensity at each echo except for suffering a weak decay which depends on the

quality of the ”echo train” system. The system can therefore record sufficiently long data before

full relaxation. This technique has already been a crucial part of most current NQR signal detec-

tion systems. The well-known ETAML (echo train approximate maximum-likelihood) algorithm

is based on the ”echo train” premise [9].

In NQR signal detection, interference can be a very serious obstruction from detecting the

NQR signal of interest. Interference may include effects due to impurities of the NQR sample or
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the detection hardware, but is mostly due to the background environment (primarily signals due

to radio transmission), and is hard to be shielded against in outdoor measurements. Interference

cancelation is therefore never an easy task. Usually, one needs secondary data (NQR signal-

free data) to acquire knowledge of the interference, in order to accurately target and cancel the

interference in the primary data. A recent algorithm called EPIC has been proved to be very useful

for removing interference, in cases where the interference is extremely strong and shares the same

frequency with the NQR signal of interest [10]. However, the algorithm requires secondary data

which should be strictly synchronous with the primary data and is very difficult to acquire in

practice. One way to acquire such data is to use a multi-channel detector [11, 12], where one

channel measures the primary data while the others measure the interference and noise at the same

time. This multi-channel method can be efficient in cancelling interference, but is a challenging

task for real life measurements. For example, channel gains can hardly be the same, and the

phase of the data received by different channels may not be equal [13, 14]. To cancel interference

from NQR data, a frequency selective method is often used which can be coupled with ETAML

algorithm yielding the frequency-selective ETAML (FETAML) algorithm [6, 9]. This method

selects the frequency components inside the NQR bands for the data by doing Discrete Fourier

transformation (DFT), and excludes the other frequency components.

This paper proposes a novel method to reduce or remove interference in the primary data di-

rectly, without using any secondary data. To illustrate our motivation to go beyond frequency

selective approaches, we have divided interference into three classes according to their locations

relative to the NQR frequency bands, as shown in Fig.1. In this figure, ”NQR bands” denote the

(very narrow) intervals where the NQR response occurs based on NQR theory (see Eq.(10) and

discussion in Section II-B) [15]. Relative to these NQR bands, we can consider three classes of

interference based on the proximity of their central frequency to the NQR bands. Class I, which is

the farthest and is relatively less important than the other two, can be successfully handled using a

frequency selective method [6, 9]. However, when the interference belongs to Class II or III, i.e., in

cases where the interference is close to or even coincident with the NQR signal, the components of

signal and interference overlap, and the signal is primarily covered by interference. Existing algo-

rithms including frequency selective methods will regard this portion of the interference as a part

of the signal, thereby compromising detection performance, as shown in Fig.2. On the contrary,

our proposed method can cancel Class II interference, which has a significant portion of its spec-

trum (but is not centered) inside the NQR bands. Our algorithm does not attempt to cancel Class
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FIG. 1. (Color online) A schematic of the locations of the three classes of interference (in spectrum form)

relative to the NQR frequency bands which are defined by the frequency ranges where the NQR signal

should appear according to NQR theory [1]. In this graph, fs denotes the sampling frequency of NQR data,

and d is the total number of NQR bands (frequencies) for the NQR signal.

FIG. 2. (Color online) A simple simulation test showing the perfect performance of the well known ETAML

and FETAML algorithms on ”noise only” NQR signal data, as well as their degradation when NQR data is

polluted by a single frequency interference which is very close to NQR band. The NQR signal in this case

has only one NQR band (frequency).

III interference, but this class includes uncommon cases of interference which are centered exactly

on the resonant frequencies of the NQR response and could be pertinently excluded/shielded in

practice. We note that Class II interference not only has a strong sidelobe effect on NQR signal,

but may also include strong components in multiple frequencies. The proposed algorithm can ef-
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fectively extract and remove Class I and Class II interference from NQR data facilitating a valid

NQR signal detection. It is based on operating in two stages, a first stage to cancel interference

in the data and then a second stage where the classical ETAML algorithm is applied to the pro-

cessed data. We have therefore coined the resulting algorithm as interference cancelation ETAML

(ICETAML), respectively.

In the next section, we introduce the theory of the new ICETAML algorithm. We then apply

the ICETAML algorithm in Section III to both simulated data and experimental data, and compare

the results to those obtained by the ETAML and FETAML algorithms. A summary of the main

results is given in the last section.

II. THE THEORY OF THE ICETAML ALGORITHM

A. The data model

Considering an echo train detection system, the NQR signal which consists of a total of d

components can be accurately modeled for the mth echo as [9]

ym(t) =

d∑

k=1

αke
− t+mµ

Te
k e
− |t−tsp |

T∗k
+ j2π f̌kt

, (1)

where t=t0,...,tN−1 is the echo sampling time with the symmetric center to be tsp, µ=2tsp is the

echo spacing, and αk, T e
k , T ∗k , and f̌k are the amplitude, echo train decay time, damping time, and

frequency of the kth component, respectively. Any data z which contains the NQR signal can be

divided into three parts: NQR signal y, noise n, and interference r, that is,

zm(t) = ym(t) + nm(t) + rm(t), (2)

for the mth echo, where it is assumed that the noise n is white Gaussian and the interference r

consists of several discrete single frequency components. If the sampling time for each echo is

t=t0, ..., tN−1, and the total echo number is M in a practical measurement, the entire data z can be

rewritten in vector form as

ZNM = YNM + NNM + RNM, (3)

where NNM and RNM are the noise and interference parts, respectively. The signal part YNM satis-

fies

YNM = [y1(t0) ... y1(tN−1) ... yM(t0) ... yM(tN−1)]T = QNMA, (4)
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where (.)T denotes the transpose, and A, QNM are the amplitude vector and phase matrix, respec-

tively, given by

A = [α1 α2 ... αd]T, (5)

and

QNM =



P1

P2

...

PM



, Pm =



g(1, 1,m) g(2, 1,m) ... g(d, 1,m)

g(1, 2,m) g(2, 2,m) ... g(d, 2,m)

... ... ... ...

g(1,N,m) g(2,N,m) ... g(d,N,m)



, (6)

where g(k, i,m) = e
− (ti−1+mµ)

Te
k
− |ti−1−tsp |

T∗k
+ j2π f̌kti−1

. QNM is a matrix of (N × M) arrays × d columns.

B. Review of the ETAML and FETAML algorithms

The ETAML algorithm [9] estimates the values of the parameters αk, f̌k, T ∗k , and T e
k , based on

maximum-likelihood theory. To do so, the amplitudes vector A in Eq. (5) is estimated as

Â = Q†NMZNM, (7)

where (.)† denotes the Moore-Penrose pseudo-inverse. Then, the likelihood function for f̌k, T ∗k ,

and T e
k can be written as

L( f̌k,T
∗
k ,T

e
k ) = ZH

NMQNMQ
†
NMZNM, (8)

where (.)H denotes the conjugate transpose. As α̂k are functions of f̌k, T ∗k , and T e
k , estimating the pa-

rameters αk, f̌k, T ∗k , and T e
k is equal to finding the f̌k, T ∗k , and T e

k values which satisfy |L|=max(|L|).
The search ranges for f̌k, T ∗k , and T e

k should respectively cover all the possible values of f̌k,

T ∗k , and T e
k under immediate environment conditions based on knowledge of NQR theory [15]. In

particular,

f̌k = ak − bkTemp, (9)

where Temp is the environment temperature, and ak and bk are coefficients which are determined

by the studied substance, respectively. If Temp has an average value Temp0 with an uncertainty

∆T , we have

f̌k ∈ [ f̌k0 − bk∆T, f̌k0 + bk∆T ], f̌k0 = ak − bkTemp0, (10)

which are called NQR bands and are used as the search range for f̌k in this paper.
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Once the values of parameters ( f̌k, T ∗k , T e
k ) are estimated, they can be substituted into the

ETAML test statistic [16]

T (ZNM) = (2NM − 1)
ZH

NMQNMQ
†
NMZNM

ZH
NMZNM − ZH

NMQNMQ
†
NMZNM

. (11)

By predetermining a threshold value γ, the NQR signal is deemed present if and only if T (ZNM)>γ,

and otherwise not. To reduce false alarms, an effective detection algorithm should produce large

T (ZNM) values when the NQR signal is present, and small ones otherwise.

The ETAML algorithm is very useful when interference in the data is limited. However, its

performance degrades if interference becomes very strong, non-stationary, and is very close to

the NQR signal’s frequency. To overcome some of these limitations, a variant of the ETAML

algorithm known as FETAML has been reported [9]. The FETAML algorithm is a combination of

ETAML and the frequency selective method.

As mentioned in the Introduction, the frequency selective method can cancel Class I inter-

ference (see Fig. 1) by dividing the NQR bands in a vector of J subbands, [ fs1 fs2 ... fsJ].

Performing a DFT for ZNM and QNM yields

(
Z̃JM, Q̃JM

)
=



VJ

VJ

..

VJ



(ZNM,QNM) , VJ =



1 e− j2π fs1/ fs .. e− j2π(N−1) fs1/ fs

1 e− j2π fs2/ fs .. e− j2π(N−1) fs2/ fs

.. .. .. ..

1 e− j2π fsJ/ fs .. e− j2π(N−1) fsJ/ fs



, (12)

where fs is the sampling frequency. By combining this method with ETAML, Eqs.(8) and (11)

become,

L̃(ωk,T
∗
k ,T

e
k ) = Z̃H

JMQ̃JMQ̃
†
JMZ̃JM,

T̃ (Z̃JM) = (2JM − 1)
Z̃H

JMQ̃JMQ̃
†
JMZ̃JM

Z̃H
JMZ̃JM − Z̃H

JMQ̃JMQ̃
†
JMZ̃JM

.
(13)

C. Interference cancelation by the ICETAML algorithm

As argued in the Introduction, it is critical to deal with Class II interference components, which

are centered outside but very close to the NQR bands. For this type of interference, which has sig-

nificant portion of its spectrum ”leaking” into the NQR bands and concealing the target response,

our algorithm operates in the frequency interval ”
[
− fs

2 ,
fs

2

]
-NQR bands” (see Fig. 1), marked as

8
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CI , where
[
− fs

2 ,
fs

2

]
should be the entire frequency band of complex digital data sampled at fre-

quency fs. To cancel the interference, the ICETAML algorithm first divides the data vector ZNM

into M parts, with each part containing a single echo, and then performs interference cancelation

for each part separately. The entire frequency band
[
− fs

2 ,
fs

2

]
, where fs is the sampling frequency,

is discretized to be [ f1, f2, ..., fK]. Thus, the mth part Zm is approximated as

Zm '
K∑

k=1

βke
j2π fkt, t = [t0, t1, ..., tN−1]T, (14)

where βk and fk denote the complex amplitude and the frequency of the kth component, respec-

tively.

Our purpose is then to pick out frequency components with strong interference and remove

them from Zm. For any frequency fk∈CI , the cost function for this frequency component can be

written as

C( f ) = min
β
||Z − F( f )β||22 = ||Z − F( f )F†( f )Z||22, (15)

where F( fk)=[e j2π fkt0 , ..., e j2π fktN−1]T is the Fourier vector for frequency fk. The smallest C(1), marked

as C(1)( fm1), should be corresponding to the strongest interference. This interference can be re-

moved from Zm as

Z(1)
m = Zm − F( fm1)F†( fm1)Zm. (16)

As Z(1)
m is acquired, it is necessary to check if there are other strong remaining interference com-

ponents. We herein define a threshold Th(Zm)=2S (Zm), where

S (Zm) =
1
N

N−1∑

k=0

∣∣∣∣∣∣∣

N−1∑

n=0

Zm(n)e− j2π kn
N

∣∣∣∣∣∣∣
, (17)

denotes the average spectrum intensity of the Zm. The ICETAML/ICFETAML algorithm cancels

all the interference frequency components whose spectrum intensities are higher than Th(Zm).

That is to say, if there is fk∈CI which satisfies

∣∣∣∣∣∣∣

N−1∑

n=0

Z(1)
m (n)e− j2π

n fk
fs

∣∣∣∣∣∣∣
> Th(Zm), (18)

then these strong interference components must be removed. Then, finding the minimal value of

the new cost function

C(2)( fk) = ||Z(1)
m − F( fk)F†( fk)Z(1)

m ||22, (19)

9
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yields the corresponding frequency fm2 which corresponds to one of the dominant interference

frequencies. To remove the interference components of fm1 and fm2 from Zm together, we have

Z(2)
m = Zm − [F( fm1) F( fm2)][F( fm1) F( fm2)]†Zm. (20)

where [F( fm1) F( fm2)] is formed by combining the vectors to the corresponding matrix.

Table: Iteration

i=1;

while

(∣∣∣∣∣∣
N−1∑
n=0

Z(i)
m (n)e− j2π

n fk
fs

∣∣∣∣∣∣ > Th(Zm)

)

i=i+1;

C(i)( fmi) = min
fk

[
||Z(i−1)

m − F( fk)F†( fk)Z
(i−1)
m ||22

]
;

Z(i)
m = Zm − [F( fm1) ... F( fmi)][F( fm1) ... F( fmi)]†Zm;

end

By applying this process iteratively, as shown in ”Table: Iteration”, the main interference com-

ponents ( fm1, fm2, ..., fml), i = 1, 2, ..., l, can be picked out by satisfying,

C(i)( fmi) = min
fk

[
||Z(i−1)

m − F( fk)F†( fk)Z(i−1)
m ||22

]
, (21)

and the ultimate interference-canceled data Z(l)
m

Z(l)
m = Zm − [F( fm1) F( fm2) ... F( fml)][F( fm1) F( fm2) ... F( fml)]

†Zm, (22)

is acquired, which satisfies

∣∣∣∣∣∣
N−1∑
n=0

Z(l)
m (n)e− j2π

n fk
fs

∣∣∣∣∣∣ ≤ Th(Zm), for ∀ fk∈CI . The physical significance of

Eq. (22) is explained in the Appendix. The value of Th(Zm) is set a little larger than the maxi-

mum noise spectrum intensity. According to our numerical tests, 2S (Zm) is a suitable choice for

Th(Zm) if noise level is not very high (or very low), see for example Fig. 3. Anyway, we can

determine Th(Zm) after scanning the exact spectrum of Zm. This threshold setting ensures that

the proposed algorithm cancels the dominant part of interference which is beyond the noise level,

so that residual interference after cancellation can be treated as noise signal. The iterative pro-

cess is thus terminated when the remaining interference and noise have comparable intensity, and

then the ICETAML algorithm converts to the classical ETAML algorithm applied to the remaining

”interference-free” data. In principle, the proposed interference cancelation method can also cou-

ple with FETAML. We accordingly call this combination ”ICFETAML”. It is worth investigating

10
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then whether ICFETAML, by utilizing the frequency selective method to cancel the remaining in-

terference, performs better than ICETAML. The performance of both ICETAML and ICFETAML

will be discussed in the following analysis of the algorithm’s performance.

III. THE PERFORMANCE OF THE ICETAML ALGORITHM

After a brief introduction to our NQR detection testbed and data acquisition method, this sec-

tion presents results for both simulated and experimental data which validate the ICETAML algo-

rithm and demonstrate its superior performance relative to the previously proposed ETAML and

FETAML algorithms.

A. Introduction to our NQR data

Our testbed examines detection of the 14N NQR signal due to sodium nitrite (NaNO2). To ac-

quire experimental data, we prepared two sealed plastic boxes which were both filled with silicone

oil and were buried under soil separately. All conditions are the same between the two boxes

except for the presence of a piece of solid NaNO2, which is suspended in the silicone oil in only

one of the boxes. Signal data in echo train mode is recorded by a spectrometer with a sampling

frequency fs = 1
16µs . Two data sets are acquired for each run/record, one with and one without the

NQR signal. The data signal comprises of N=128 sampling points (complex numbers) per M=32

echoes.

For the studied substance under our lab conditions, the NQR signal has only one resonant

frequency f̌'1.0365MHz, with the parameters T ∗ and T e in Eq. (1) satisfying T ∗'1.74ms, and

T e'88ms, respectively. In addition, b in Eq. (9) is 600Hz/Kelvin, and the lab temperature un-

certainty ∆T is about 0.8Kelvin. The real frequency band of the data is
[
fc − fs

2 , fc +
fs

2

]
, where

fc denotes the frequency center of our signal modulation. The algorithm can effectively treat the

frequency band of the recorded data as
[
− fs

2 ,
fs

2

]
. Particularly, we let fc ' f̌ , so that the modulated

NQR band is [−b∆T,+b∆T ] (see Eq. (10)).

In our calculations, we set the search step for the NQR band as b∆T
10 ('48Hz), which is also used

as the grid step size of [ fs1 fs2 ... fsJ] for calculating Eq. (12). The search ranges of T ∗ and

T e are set to be [1.74ms × 0.01, 1.74ms × 10.01] and [88ms × 0.01, 88ms × 10.01] which already

cover all the possible T ∗ and T e values under our lab conditions according to NQR theory [15],

11
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with the search steps being 1.74ms
100 and 88ms

100 , respectively. Moreover, the search step for the CI is set

to be fs

10N ('48Hz) in the ICETAML and ICFETAML.

We note that both IC and ETAML/FETAML steps of the combined ICETAML/ICFETAML al-

gorithms are based on optimization searches that are computationally intensive, with ETAML/FETAML

requiring a multi-parameter search. For all the cases in this paper, the search steps for both IC

and ETAML/FETAML are constant and small enough the ensure accurate results. In practice,

this strategy may lead to long calculating times, and thus advanced optimum search methods

such as the conjugate gradient method [17] should be applied to ensure accuracy and reasonable

computational cost.

Based on the above physical considerations, we have generated simulated data which models

possible experimental data with different types of interference. We present first results from these

datasets, followed by application to experimental data acquired in our lab.

B. Simulated data test I: stationary interference case

We created a simulated dataset, which consists of 500 Monte Carlo runs. In this set, the ampli-

tude of the NQR signal is set as α=1, whereas the noise is zero-mean Gaussian white noise with

variance D=2.25. The signal to noise ratio (SNR) can be calculated as,

SNR = 20 lg

(
π

4
· α

2

D

)
, (23)

and is equal to -9dB which is very close to the SNR of our experimental data. The simulated

interference contains nine stationary components.

r(t) =

9∑

i=1

8e j2π fit+ jϕi , N fi/ fs = 1.5, 1.6, 1.7, 2.0, 2.1, 2.3, 2.8, 3.0, 3.2,

where all the initial phases ϕi vary randomly among the runs. The nine components are all very

close to the NQR band. In particular, by defining df= fs/N (' b∆T ) to be the resolution of spec-

trum, the NQR band is approximately [−df,+df], and the distance between interference and NQR

band is only 1.5df (frequency of the first component)-df=0.5df. In order to test the efficiency of

our cancellation method, the first echo Z1 of a data containing NQR signal is shown in Fig.3. It

is seen that the ICETAML/ICFETAML algorithm is useful for removing the interference and it

almost restores the data to be at the ”NQR signal + white noise” level. As a result, the receiver

12
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FIG. 3. (Color online) The performance of the present interference cancelation method for the simulated

”Data Test I”. ”DFT” denotes Discrete Fourier transformation. The upper subplot is zoomed into the

interval around the NQR band. Z1 is a part of simulated data which contains NQR signal, as well as strong

and stationary interference whose frequencies are all very close to the NQR signal frequency. For this

dataset, SNR=-9dB. All the interference frequency components with intensities larger than the threshold

Th(Z1) (where Th(Z1)/2 is the average spectrum intensity of the Z1) are cancelled.

FIG. 4. (Color online) The ROC curves obtained by ICETAML and ICFETAML algorithms, and the previ-

ously reported ETAML and FETAML algorithms for the simulated ”Data Test I”.

13
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FIG. 5. (Color online) The ROC curves obtained by ICETAML for the simulated ”Data Test I” of different

SNRs.

operating characteristic (ROC) curves of the ICETAML and ICFETAML algorithms clearly outer-

perform those of the ETAML and FETAML algorithms, as shown in Fig.4. In particular, Figure 4

demonstrates that strong interference causes the ETAML to perform poorly, even when combined

with the frequency selective method (FETAML). On the contrary, the ICETAML and ICFETAML

algorithms are very effective in cancelling interference leading to accurate NQR detection. We

note that the combination of the frequency selective method and the proposed interference cance-

lation method has little impact in this case, as evidenced by the similarity in the ROC curves of

the ICFETAML and ICETAML algorithms.

In addition, it is worth analyzing the influence of SNR on ICETAML’s performance. For this

purpose, let’s first assume the ETAML algorithm being applied to interference-free data, and con-

sider SNR0 to be the minimal SNR for a valid detection by ETAML. If data is polluted by interfer-

ence, a valid detection by ICETAML would require (in the best case scenario) an SNR no smaller

than SNR0, since ICETAML transforms to ETAML after interference cancellation. In practice, a

residual interference after applying Eq. (22) will be presented in the signal, and will be added to

the original noise, leading to an SNR lower than SNR0. The stronger or the more complicated the

interference is, the larger is this residual, and the higher is the SNR required for a valid detection

by ICETAML. To study further the impact of noise, we have plotted ROC curves for different

SNR values in Fig.(5). Naturally, performance degrades as the SNR decreases. The effect of

the remaining interference on SNR is illustrated by comparing performance when ICETAML is
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applied (for the same SNR=10dB) to the original and a simplified interference dataset obtained

by deleting components N fi/ fs=1.7, 2.0, 3.0, and 3.2 (upper dash vs. short dash dotted line in

Fig.5). The plot also illustrates that the impact of non-perfect interference cancellation becomes

stronger for very low SNRs (e.g. -37dB), for which an interference-free ETAML exhibits superior

performance than the ICETAML algorithm.

C. Simulated data test II: nonstationary interference case

FIG. 6. (Color online) The performance of the present interference cancelation method for the simulated

”Data Test II”. ”DFT” denotes Discrete Fourier transformation. The upper subplot is zoomed into the

interval around the NQR band. Z1 is a part of simulated data which contains NQR signal, as well as strong

and nonstationary interference whose frequencies are all very close to the NQR signal frequency. For this

dataset, SNR=-9dB. All the interference frequency components with intensities larger than the threshold

Th(Z1)/2 (where Th(Z1)/2 is the average spectrum intensity of Th(Z1)/2) are cancelled.

”Nonstationary” interference occurs if its frequency, phase, or amplitude varies with time.

Detection in the presence of nonstationary interference is much more complicated, as a general

Fourier transformation can only infer the average spectrum of a nonstationary signal within a cer-

tain time interval but is unable to capture its true time-varying spectrum. To test performance of

the ICETAML algorithm for nonstationary interference, we replaced two stationary interference
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FIG. 7. (Color online) The ROC curves obtained by ICETAML and ICFETAML algorithms, and the previ-

ously reported ETAML and FETAML algorithms for the simulated ”Data Test II”.

components with two nonstationary ones in the simulated data of the former subsection. The

simulated interference is written as

r(t) =

7∑

i=1

8e j2π fit+ jϕi +

2∑

i=1

8e j2π fnonit+ jϕi , N fi/ fs = 1.6, 1.7, 2.0, 2.1, 2.3, 3.0, 3.2,

fnoni = (1.5 + 1.0t × fs/(NM)) × fs/N, (2.8 − 0.5t × fs/(NM)) × fs/N,

where all the initial phases ϕi vary randomly among the runs. The interference cancelation result is

plotted in Fig.6. We see that, although the ICETAML algorithm cancels nonstationary interference

according to its average spectrum, it exhibits good robustness with respect to the time-varying in-

terference characteristics. The related ROC curves are shown in Fig.7. Compared to those in Fig.4,

the ICETAML’s performance slightly deteriorates in this case, which confirms that detection in the

presence of nonstationary interference is more challenging than in the case of stationary interfer-

ence. As for the previous case, ICFETAML and ICETAML have again similar performance.

D. Simulated data test III: ”remote interference” case

A third scenario which merits investigation involves cancellation of ”remote interference” on

the data, that is, interference with spectrum that is at some distance from the NQR signal (the

”Class I” interference in Fig. 1). In particular, we are interested in investigating whether the
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FIG. 8. (Color online) The performance of the present interference cancelation method for the simulated

”Data Test III”. ”DFT” denotes Discrete Fourier transformation. The upper subplot is zoomed into the

interval around the NQR band. Z1 is a part of simulated data which contains NQR signal, as well as

strong and nonstationary interference with distant frequencies from the NQR band. For this dataset, SNR=-

9dB. All the interference frequency components with intensities larger than the threshold Th(Z1)/2 (where

Th(Z1)/2 is the average spectrum intensity of Th(Z1)/2) are cancelled.

FIG. 9. (Color online) The ROC curves obtained by ICETAML and ICFETAML algorithms, and the previ-

ously reported ETAML and FETAML algorithms for the simulated ”Data Test III”.
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frequency selective method can cancel this type of interference if there is weak overlap between

the NQR signal and the interference spectrum. To this end, we have simulated new interference as

r(t) =

15∑

i=1

10e j2π fit+ jϕi +

3∑

i=1

10e j2π fnonit+ jϕi ,

N fi/ fs = 4.7, 4.8, 4.9, 5, 5.1, 9.8, 9.9, 10, 10.1, 10.2, 14.9, 15, 15.1, 15.2, 15.3,

fnoni =(5.7 − 0.8t × fs/(NM)) × fs/N, (10.5 − 0.6t × fs/(NM)) × fs/N,

(14.4 + 0.7t × fs/(NM)) × fs/N,

where all the initial phases ϕi vary randomly among the runs. Performance in this case is shown

in Fig.8, which confirms that the overlap with the NQR signal is weak and that the ICETAML and

ICFETAML algorithms manage to cancel this interference. It is evident from the ROC curves in

Fig.9 that the frequency selective method fails in this case, while the ICETAML and ICFETAML

algorithms output very good results. These results suggest further advantages of our algorithm

relative to simple frequency selective methods, which cannot deal with all kinds of ”Class I”

interference.

E. Simulated data test IV: interference spread in a wide range of frequencies

The aforementioned three simulating cases have already confirmed the superior performance

of the ICETAML algorithm relative to previous methods. An additional simulating case is present

here in order to test if ICETAML works well for situations where strong interference of Classes I

and II are both present in the signal. The simulated interference in this case has a wide range of

frequencies,

r(t) =

9∑

i=1

5e j2π fit+ jϕi +

7∑

i=1

5e j2π fnonit+ jϕi , N fi/ fs = 1.5, 1.6, 1.7, 2.0, 2.1, 2.3, 2.8, 3.0, 3.2,

fnoni =(1.5 + 1.0t × fs/(NM)) × fs/N, (4 − 0.3t × fs/(NM)) × fs/N,

(5.7 − 0.8t × fs/(NM)) × fs/N, (14.4 + 0.3t × fs/(NM)) × fs/N

(25.5 + 0.3t × fs/(NM)) × fs/N, (−13 − 0.7t × fs/(NM)) × fs/N

(−25 − 0.9t × fs/(NM)) × fs/N,
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FIG. 10. (Color online) The performance of the present interference cancelation method ”Data Test IV”.

”DFT” denotes Discrete Fourier transformation. The upper subplot is zoomed into the interval around the

NQR band. Z1 is a part of simulated data which contains NQR signal, as well as strong and stationary (or

nonstationary) interference with wide range frequencies. For this dataset, SNR=10dB. All the interference

frequency components with intensities larger than the threshold Th(Z1)/2 (where Th(Z1)/2 is the average

spectrum intensity of Th(Z1)/2) are cancelled.

FIG. 11. (Color online) The ROC curves obtained by ICETAML and ICFETAML algorithms, and the

previously reported ETAML and FETAML algorithms for the simulated ”Data Test IV”.
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where all the initial phases ϕi vary randomly among the runs. A higher SNR is needed for effec-

tively cancelling this complicated interference, based on the analysis of the SNR’s influence on

ICETAML’s performance at the end of Section III-B. We let the noise variance D in this case be

0.25, which leads to SNR=10dB (see Eq. (23)). The results of interference cancelation and ROC

curves are in Fig.10 and Fig.11, respectively, which suggest that the proposed algorithm can be

applied to NQR data polluted by general strong and complicated interference with a wide range

of frequencies. Moreover, we have performed additional numerical studies which have confirmed

that the proposed ICETAML algorithm can successfully cancel interference with more frequency

components.

F. Experimental data test

FIG. 12. (Color online) The performance of the present interference cancelation method for our experimen-

tal dataset. ”DFT” denotes Discrete Fourier transformation. The upper subplot is zoomed into the interval

around the NQR band. Z1 is a part of experimental data which contains the NQR signal, as well as strong

and nonstationary interference with frequencies mainly located very close to the NQR signal frequency. The

SNR is about -10dB for the experimental data. All the interference frequency components with intensities

larger than the threshold Th(Z1)/2 (where Th(Z1)/2 is the average spectrum intensity of Th(Z1)/2) are

cancelled.
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FIG. 13. (Color online) The ROC curves obtained by ICETAML and ICFETAML algorithms, and the

previously reported ETAML and FETAML algorithms for the experimental dataset of Fig.12.

We acquired experimental data consisting of a total of 140 runs. In our lab where our ex-

periments were performed, background electrical instruments/appliances and mobile signals can

act as interference to NQR detection, but other significant sources of interference such as radio

signals are at lower level than in outdoor experimental settings. Therefore, in order to gener-

ate additional interference that would account for more challenging experimental conditions, we

generated an EM wave with a sinusoidal envelope line and a slow time-varying frequency being

located very close to NQR band. Nearby electrical instruments/appliances and mobile signals in

the background were also present in the experimental data, but were relatively weak and located

far from NQR band (please see Fig.12 for more details). The interference cancelation result and

ROC curves are displayed in Figs.12 and 13, respectively. It is clearly shown that the present inter-

ference cancelation algorithm is effective, and successfully reduces the interference effect. From

the ROC curves, the advantage of the ICETAML and ICFETAML over the ETAML and FETAML

algorithms is also evident. These preliminary experimental results suggest that the ICETAML

algorithm can improve significantly NQR detection in real-life settings.

Finally, the ICFETAML does not have again distinct advantages over ICETAML, similar to our

simulated results. This means that our proposed method of cancelling interference is robust and

effective without the need to combine it with a frequency selective method.
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IV. CONCLUSION

This paper presents a novel interference cancelation method which can enhance NQR signal de-

tection. The method can be coupled with the classical ETAML algorithm resulting in the formula-

tion of the so-called ICETAML algorithm. When data are severely polluted by strong interference,

the ETAML algorithm and its modified version FETAML (which is a combination of ETAML and

a frequency selective interference cancelation method) degrades, while the ICETAML algorithm

can effectively cancel interference and improve NQR signal detection significantly. In particu-

lar, the paper’s results show that the ICETAML algorithm exhibits excellent performance when

applied to simulated data or experimental data, even in cases where interference is very strong,

nonstationary, and has frequencies which are very close to that of NQR signal.

V. APPENDIX

To discuss the physical significance of Eq. (22), we start by noting that,

G† = [F( fm1) F( fm2) ... F( fml)]
† = [FT

1 FT
2 ... FT

l ]T, (24)

where F1, F2, ...,Fl are 1×N vectors which should satisfy

FiF( fm j) = δi j, (25)

where δi j is 1 if i= j, or 0 otherwise. Thus, we have

Z(l)
m =

I −
l∑

i=1

F( fmi)Fi

 Zm, (26)

where I is the unit matrix. Three main conclusions can be derived: (1). The extracted interference

GG†Zm is orthogonal with Z(l)
m , the rest part of Zm.

(
GG†Zm

)H (
Zm − GG†Zm

)
= ZH

mGG
† (I − GG†

)
Zm = 0. (27)

(2). All the frequency components of the extracted interference components, Vi=F( fmi)FiZm,

i=1,2,...,l, are approximately orthogonal with each other. Assuming the sampling is uniform, that

is, ti=(i − 1)dt, i=1,2,...,N, where dt is the time interval of sampling, we have

F( fmi)
HF( fm j) =

N∑

k=1

e− j2π( fmi− fm j)(k−1)dt =
e− jπ( fmi− fm j)Ndt

e− jπ( fmi− fm j)dt

sin(π( fmi − fm j)Ndt)

sin(π( fmi − fm j)dt)
, (28)
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so that

F( fmi)
HF( fmi) = N, i = 1, 2, ..., l,

∣∣∣F( fmi)
HF( fm j)

∣∣∣ � N, i , j.
(29)

According to Eq.(29), it can be derived that

∣∣∣VH
i V j

∣∣∣ =
∣∣∣∣ZH

mFH
i

(
F( fmi)

HF( fm j)
)

F jZm

∣∣∣∣ � VH
i Vi, i , j. (30)

(3). To some approximation, extracting interference does not take away any information of the

NQR signal or any other frequency components of Zm. As the energy of Z(l)
m can be written as

E(l)=
(
Z(l)

m

)H
Z(l)

m , we have

E(l) =
(
Zm − GG†Zm

)H (
Zm − GG†Zm

)

= ZH
mZm − ZH

mGG
†Zm = ZH

mZm − ZH
mGG

†GG†Zm

= ZH
mZm −

(
GG†Zm

)H
GG†Zm,

(31)

where ZH
mZm and

(
GG†Zm

)H
GG†Zm are the enegry of the data Zm and the extracted components

from Zm, respectively. In fact, based on Eqs. (29) and (30), we have

(
GG†Zm

)H
GG†Zm =


l∑

i=1

F( fmi)FiZm


H 

l∑

i=1

F( fmi)FiZm



'
l∑

i=1

ZH
mFH

i F( fmi)
HF( fmi)FiZm

=

l∑

i=1

VH
i Vi,

(32)

which means that we can approximately consider that the energy of each extracted frequency

component does not contain the energy of any other frequency component in Zm. To summarize,

as the main frequencies of the interference are known approximately, using Eq. (22) to cancel

interference will not distort the information of the NQR signal.
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