
Performance evaluation for
tracker-level fusion in video tracking

by

ObaidUllah Khalid

Bachelor in Computer Engineering 2004

Master in Network Engineering 2008

A dissertation submitted to

The School of Electronic Engineering and Computer Science

in partial fulfilment of the requirements for the Degree of

Doctor of Philosophy

in the subject of

Electronic Engineering

Queen Mary University of London

Mile End Road

E1 4NS, London, UK

November 2016

ii

I, ObaidUllah Khalid, confirm that the research included within this thesis is my own work,

that this is duly acknowledged below and my contribution indicated. Previously published mate-

rial is also acknowledged below.

I attest that I have exercised reasonable care to ensure that the work is original, and does

not to the best of my knowledge break any UK law, infringe any third party’s copyright or other

Intellectual Property Right, or contain any confidential material.

I accept that the College has the right to use plagiarism detection software to check the elec-

tronic version of the thesis.

I confirm that this thesis has not been previously submitted for the award of a degree by this

or any other university.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author.

Signature:

Date: 24th November, 2016

QMUL supervisor UNI-KLU supervisor Author

Professor Andrea Cavallaro Professor Bernhard Rinner ObaidUllah Khalid

Performance evaluation for tracker-level fusion in video tracking

Abstract

Tracker-level fusion for video tracking combines outputs (state estimations) from multiple

trackers, to address the shortcomings of individual trackers. Furthermore, performance evalua-

tion of trackers at run time (online) can determine low performing trackers that can be removed

from the fusion. This thesis presents a tracker-level fusion framework that performs online track-

ing performance evaluation for fusion.

We first introduce a method to determine time instants of tracker failure that is divided into

two steps. First, we evaluate tracking performance by comparing the distributions of the tracker

state and a region around the state. We use Distribution Fields to generate the distributions of

both regions and compute a tracking performance score by comparing the distributions using the

L1 distance. Then, we model this score as a time series and employ the Auto Regressive Moving

Average method to forecast future values of the performance score. A difference between the

original and forecast returns the forecast error signal that we use to detect tracking failure. We

test the method with different datasets and then demonstrate its flexibility using tracking results

and sequences from the Visual Object Tracking (VOT) challenge.

The second part presents a tracker-level fusion method that combines the outputs of multiple

trackers. The method is divided into three steps. First, we group trackers into clusters based on

the spatio-temporal pair-wise relationships of their outputs. Then, we evaluate tracking perfor-

mance based on reverse-time analysis with an adaptive reference frame and define the cluster

with trackers that appear to be successfully following the target as the on-target cluster. Finally,

we fuse the outputs of the trackers in the on-target cluster to obtain the final target state. The

fusion approach uses standard tracker outputs and can therefore combine various types of track-

ers. We test the method with several combinations of state-of-the-art trackers, and also compare

it with individual trackers and other fusion approaches.

iii

iv

Contents

Abstract iii

Acknowledgements viii

Published work ix

List of symbols x

1 Introduction 1

1.1 Motivation . 1

1.2 Problem definition . 8

1.3 Contributions . 10

1.4 Organisation of thesis . 11

2 State of the art 13

2.1 Introduction . 13

2.2 Visual tracking . 14

2.2.1 Target representation . 14

2.2.2 Deterministic and probabilistic tracking methods 15

2.2.3 Generative and discriminative tracking methods 18

2.2.4 Deep network-based tracking methods 19

2.2.5 Selected trackers . 21

2.3 Offline performance evaluation . 24

2.4 Online performance evaluation . 24

2.4.1 Trajectory-based performance evaluators 25

2.4.2 Feature-based performance evaluators 27

2.4.3 Hybrid performance evaluators . 30

2.4.4 Tracking failure detection . 30

v

2.5 Fusion for visual tracking . 31

2.5.1 Feature-level fusion . 32

2.5.2 Tracker-level fusion . 34

2.6 Discussion . 37

3 Tracking failure detection via forecasting 40

3.1 Introduction . 40

3.2 Tracking performance evaluation . 41

3.2.1 Background selection . 42

3.2.2 Distribution Fields . 42

3.2.3 Tracking performance score . 43

3.3 Detecting tracking failure . 45

3.3.1 Forecasting . 45

3.3.2 Tracking failure detection . 47

3.4 Experimental results and analysis . 48

3.4.1 Experimental parameters . 48

3.4.2 Evaluation measures . 49

3.4.3 Selected benchmark methods . 50

3.4.4 Tracking failure detection . 51

3.4.5 Results on the Visual Object Tracking dataset 54

3.4.6 Forecast accuracy . 55

3.5 Summary . 56

4 Clustering based approach to tracker-level fusion 58

4.1 Introduction . 58

4.2 Tracker clustering . 59

4.2.1 Tracklet correlation . 60

4.2.2 Partition generation . 62

4.2.3 Partition validation . 63

4.2.4 Split-Merge detection . 65

4.3 Adaptive time-reversed evaluation . 65

4.3.1 Time-reversed online evaluation . 66

vi

4.3.2 Performance score and reference frame update 67

4.3.3 Selection or update of the on-target cluster 68

4.4 Tracker-level fusion . 69

4.5 Experimental setup . 69

4.5.1 Experimental parameters . 70

4.5.2 Evaluation measures . 71

4.5.3 Selected benchmark methods . 71

4.6 Experimental analysis of tracker clustering . 72

4.6.1 Comparison of the proposed clustering with exhaustive search 72

4.6.2 Performance analysis of features . 73

4.7 Experimental analysis of the adaptive time-reversed evaluation 76

4.7.1 Performance analysis for motion . 76

4.7.2 Performance analysis of the Ire f update 77

4.8 Experimental analysis of tracking fusion framework 79

4.8.1 Combining trackers . 79

4.8.2 Comparison of the fusion methods . 82

4.8.3 Comparison with selected benchmark methods 83

4.9 Computational cost . 83

4.10 Summary . 85

5 Conclusions 88

5.1 Summary of achievements . 88

5.2 Future work . 89

Appendices 92

A Evaluation datasets 92

A.1 Introduction . 92

A.2 Tabular summary . 93

A.3 Target initializations . 96

Bibliography 98

Acknowledgments

This PhD Thesis has been developed in the framework of, and according to, the rules of the Erasmus

Mundus Joint Doctorate on Interactive and Cognitive Environments EMJD ICE [FPA n° 2010-0012]

with the cooperation of the following Universities:

Alpen-Adria-Universität Klagenfurt – AAU

 Queen Mary, University of London – QMUL

 Technische Universiteit Eindhoven – TU/e

 Università degli Studi di Genova – UNIGE

Universitat Politècnica de Catalunya – UPC

According to ICE regulations, the Italian PhD title has also been awarded by the Università degli Studi

di Genova.

Acknowledgements

I primarily want to thank my Parents. Their constant moral support and motivational advice has

helped me to get to the point where I am now. I want to thank my wife for her continual presence

and hard work during this phase of my life, for without her it would have been difficult for me to

achieve this milestone.

I want to thank my supervisors Professor Andrea Cavallaro and Professor Bernhard Rinner

for providing me with extremely useful and unique technical advice during these four years, and

especially for their patience. I will also like to thank Dr. Juan Carlos SanMiguel who helped

me during the initial stages of my PhD and was always available to provide me with useful advice.

I want to thank all my friends both in the smart cameras group (London) and pervasive com-

puting group (Klagenfurt) who worked with me and also for the unforgettable moments spent

together inside and outside the lab.

Finally, I will like to thank the Almighty for all the countless blessings in my life.

This work was supported by the EACEA, under the EMJD ICE Project.

viii

Published work
[J1] O. Khalid, J.C. SanMiguel and A. Cavallaro. Multi-Tracker Partition Fusion.

IEEE Transactions on Circuits and Systems for Video Technology, 2016. doi:

10.1109/TCSVT.2016.2542699

[C1] O.Khalid, A. Cavallaro and B. Rinner. Detecting tracking errors via forecasting. Proceed-

ings of British Machine Vision Conference,York, September 19-22, 2016.

Electronic preprints are available at: http://www.eecs.qmul.ac.uk/staffinfo/andrea/publications.html

ix

x

List of symbols

I Video sequence 8

It Image frame at time t 8

T Total number of frames in the video sequence 8

n Dimension of xk
t 8

[ut ,vt] Target position in target state xt 8

[wt ,ht] Target width and height in xt 8

F A single tracker 9

zt Observation taken by tracker F at time t 9

ςt−1 Target model determined by tracker F at time t−1 9

F Set of trackers 9

Fk Tracker k 9

K Total number of trackers 9

xk
t Target state estimated by tracker Fk at time t 9

yk
t Tracking performance score 9

f (.) Function for evaluating tracking performance 9

γx Information extracted using xk
t for evaluating tracking performance 9

γ Corresponding information against which γx is compared to determine yk
t 9

N Trackers that accurately track the target such that N ≤ K 9

g(.) Function for fusing tracking outputs 9

x∗t Final (fused) target state determined using the equal weighted fusion approach 9

x∗∗t Final (fused) target state determined using the performance-weighted fusion

approach

9

St Tracker-state region extracted from It using xk
t 42

Bt Background region extracted from It 42

~Ω∆t1 Average displacement and direction of the tracker computed over ∆t1 42

∆t1 Sliding temporal window for computing ~Ω∆t1 42

xi

[ût , v̂t] Estimated position of Bt 42[
ŵt , ĥt

]
Estimated width and height of Bt 42

d.e Ceil operation 42

dt(i, j,c,m) Distribution of St generated using colour based Distribution Fields 43

(i, j) Pixel location in St 43

c RGB feature channel index 43

m Layer index 43

M Total number of layers in dSt (i, j,c,m) 43

κ Size of each layer 43

∗ Convolution operation 43

hσ1 2-D Gaussian kernel with standard deviation σ1 43

d1
t Smoothed DF obtained by convolution of dSt (i, j,c,s) with hσ1 43

hσ2 1-D Gaussian kernel with standard deviation σ2 43

d2
t Final DF of St obtained by convolution of d1

St
with hσ2 43

ba
t Smaller regions of Bt 43

r2
a,t DF of each ba

t 43

ya
t L1 distance between d2

St
(i, j,c,m) and d2

ba
t
(i, j,c,m) 44

αc Weight assigned to each channel c 44

µc
St

Mean R, G, B values for St 44

µc
ba

t
Mean R, G, B values for ba

t 44

Y Time series of yt 45

(P,Q) ARMA orders 45

φ(p) AR polynomial used in the ARMA model 47

ϑ(q) MA polynomial used in ARMA model 47

β Constant used in the ARMA model 47

∆t2 Sliding temporal window over which the past values of yt are use to build the

Auto Regressive and Moving Average (ARMA) model

47

εt Estimation errors (residuals) computed as a difference between original (yt)

and estimated time series (ŷt)

47

ŷt Estimated value of yt obtained using the estimated parameters and ARMA

model at time t

47

xii

φ̂(p) Estimated AR polynomial used in the ARMA model 47

ϑ̂(q) Estimated MA polynomial used in ARMA model 47

β̂ Estimated constant used in ARMA model 47

l Forecast lead time (length) 47

ŷt+l Forecast time series over the forecast length l 47

ẽt+l Forecast error computed as a difference between original (yt) and forecast time

series (ŷt+l)

47

τ1 Threshold for detecting tracking failure 47

et+l Binary values of ẽt+l based on τ1 generated for tracker failure detection 47

δ e
t Tracking failure decision generated by the method, measured as |et+l− et+l−1| 47

Ot Tracking error measured as deviation from ground-truth (ideal) data 49

Ax
t Area in pixels of estimated (xt) target location 49

AGT
t Area in pixels of ideal target location 49

δ O
t Tracking failure decision generated using GT data, measured as

∣∣O′t −O′t−1

∣∣ 49

O′t Binary values of Ot generate for tracker failure detection 49

nT P Number of true positives (TP) 49

nFP Number of false positives (FP) 49

nT N Number of true negatives (TN) 49

nFN Number of false negatives (FN) 49

P Precision calculated as the ratio between nT P and (nT P +nFP) 49

R Recall calculated as the ratio between nT P and (nT P +nFN) 49

F F-score 49

FPR False positive rate calculated as the ratio between nFP and (nFP +nT N) 49

zt Generic variable used for representing |ẽt+l|, yt and the tracking performance

scores generated by the SOA methods

50

Z The complete time series representing zt 50

z′t Normalized values of zt between [0,1] 50

∆t3 Sliding temporal window for buffering data from future time instants 59

∆t4 Sliding temporal window for buffering data from past time instants 59

Oi, j
t Spatial area overlap of trackers F i and F j computed using their outputs xi

t and

x j
t , respectively

60

xiii

Ai
t Area in pixels of the bounding box generated by tracker F i 60

A j
t Area in pixels of the bounding box generated by tracker Fk 60

Oi, j
∆t3 Average spatial agreement score over ∆t3 between trackers F i and F j 60

~dk
t Directional feature of each Fk 60

ri, j
∆t3 Directional similarity score over ∆t3 between trackers F i and F j 60

ψ(λ ,ri, j
∆t3) Weighting function for normalizing ri, j

∆t3 between [0,1] 61

r̂i, j
∆t3 Weighted directional similarity score 61

λ Decay rate of weighting function ψ(λ ,ri, j
∆t3) 61

Ri, j
∆t1 Spatio-temporal pair-wise correlation score between trackers F i and F j 62

ω Weight to prioritize between Õi, j
∆t3 and ri, j

∆t3 in Ri, j
∆t1 62

Pp,t Single partition of F where |Pp,t | ∈ [1,K] 62

p Partition index 62

Ca
p,t Non-empty mutually disjoint cluster of trackers ∈ Pp,t 62

a Cluster index 62

H(ξ ∗(p)) HC based function that provides Pp,t using optimum distance threshold β ∗ 63

ξ ∗(p) Optimum (smallest) distance threshold value for selecting partition p 63

ξ A set ∈ [0,(1−Ri, j
∆t1)] containing Ri, j

∆t1 scores for all tracker pairs 63

S (Pp,t) Score of a partition Pp,t 63

Q
(
Ca

p,t
)

Score of a cluster Ca
p,t 64

P∗t Selected partition at time t based on maximum partition score S (Pp,t) 64

ν Total number of tracker-pair combinations 64

C∗t Selected on-target cluster at time t based on reverse-evaluation 65

lk
t Label ∈ {on-target,off-target} assigned to each Fk at time t 66

xk,−
t Target state estimated by reverse tracker k at frame t 66

Ire f Reference frame where results from forward and reverse tracker are compared 66

G(xk,−
re f ,x

∗
re f) Function for comparing results of the reverse tracker with the fused output 67

x∗re f State estimation obtained from the fused output at Ire f 67

xk,−
re f State estimation obtained from the reverse tracker at Ire f 67

θ k
t Similarity score between x∗re f and xk,−

re f , used for evaluating performance of Fk 67

Ax∗
re f Area in pixels of the bounding box generated by the fused output at Ire f 67

Ak,−
re f Area in pixels of the bounding box generated by the reverse tracker at Ire f 67

xiv

Muk
1

Motion of the coordinate u1 for tracker Fk computed over the temporal window

deltat4

67

Mk Motion of tracker Fk taken as the maximum of the motions of four individual

coordinates, top-left (uk
1,t ,v

k
1,t) and bottom-right (uk

2,t ,v
k
2,t)

68

Mx∗ Motion of fused output x∗t computed over the temporal window deltat4 68

τ2 Threshold for comparing performance (θ k
t) of trackers 68

y̌n
t Normalized weight of each tracker 69

OCa

t Overlap score for cluster Ca measured as the average of (1−Ot) of all trackers

in Ca

71

τ3 Threshold for comparing (1−Ot) and OCa

t to define on-target trackers and

cluster, respectively

71

OG Mean overlap score taken as the mean over the complete sequence 71

Chapter 1

Introduction

1.1 Motivation

Visual tracking within a single-target tracking framework refers to estimating the state of the tar-

get over time (trajectory) in a video sequence, by achieving a congruence between a pre-defined

model of the target and measurements at each time step. The state of the target can either be the

position, shape, area, size, velocity, orientation or a combination of these properties of the target.

It has become an important component within the field of computer vision and is widely used in

numerous applications such as video surveillance, traffic monitoring, human computer interac-

tion, video indexing, object-based video compression, motion analysis and activity recognition

over the past years. However, the video data used pose numerous challenges such as changes in

appearance, illumination (Figure 1.1), scale (Figure 1.2), velocity and orientation (Figure 1.3) of

the target, partial or full occlusions (Figure 1.4) and background clutter (Figure 1.5). Moreover,

challenges such as motion blur, sudden changes in target motion and low quality camera sen-

sors (e.g. low frame rate or low resolution) further increases the complexity of the data analysed.

A wide variety of tracking algorithms such as methods based on the Kalman Filter (KF) [66], Par-

ticle Filter (PF) [109] and the Mean Shift (MS) [32] have been proposed to tackle the different

challenges. Despite these recent developments, no single method can provide flawless results for

all challenges [125]. For example a tracker might perform better under occlusions, it might lose

fast moving objects. On the other hand another tracker might perfectly handle changes in illumi-

nation but the presence of similar coloured background might cause the tracker to fail. Tracking

1

Chapter 1: Introduction 2

(a)

(b)

Figure 1.1: Example of colour variations of the target due to illumination variations: (a) low
background lightning, (b) strong background lightning.

failure can be defined as target loss during tracking (drifts away from the target) [72], and can be

quantified when the amount of area overlap between the estimated and Ground Truth (GT) (ideal)

position of the target is zero [72,114,C1]. Automatic recovery from a tracking failure is difficult

and most tracking algorithms do not explicitly detect tracking failures.

One possible solution to the problem can be combining different visual trackers within a

fusion framework where each method has a complementary failure mode. Fusion in visual track-

ing enables combining information from multiple sources (features or trackers) to improve the

overall tracking performance. This fusion may occur either at feature-level or at tracker-level.

Feature-level fusion methods combine multiple features within a single tracking framework to

create robust target representations [7,43,68,91,92,94,127,135,151,153,162]. However, due to

variable dimensionality and ranges of different features, adaptation methods are needed to inte-

grate new features [76]. Tracker-level fusion methods implicitly combine features by fusing the

outputs of multiple trackers [16, 49, 59, 74, 76, 118, 168, J1]. Tracker-level fusion can either be

performed in a sequential manner [96,118,124] where the output of a tracker is fed as input to the

Chapter 1: Introduction 3

(a)

(b)

Figure 1.2: Example of scale changes due to the target moving away from the field of view of
camera: (a) target area at closer distance, (b) target area at farther distance.

next tracker, in parallel [16,49,J1] where each tracker generates an individual output, by combin-

ing outputs of specific trackers [89,168] or by employing trackers that work in collaboration as a

single tracker [74]. However, a blind fusion scheme may not help in improving the overall results

as failing or low performing trackers may still reduce the tracking accuracy. An online perfor-

mance evaluation method that determines the accuracy of the features [91] or trackers [116] at

run time can be employed for performance weighting of the features [91] or trackers [49] within

the fusion framework. Such methods can be used to correct [16] or remove [J1] low performing

Chapter 1: Introduction 4

(a)

(b)

(c)

Figure 1.3: Example of changes in target orientation due to rotations at: (a) 0◦, (b) 90◦, (c) 180◦

trackers within the fusion framework.

Performance evaluation of a tracker refers to determining the tracking performance using

either an offline (GT based) or an online (GT free) technique. This performance can be quantified

as the accuracy i.e. the closeness of the estimated state to the ideal state [90] or the robustness

i.e. the number of times the tracker fails during tracking [73]. Offline performance evaluation

methods quantify the accuracy [77,125,154], the robustness [72] or a combination of both [98] by

measuring the error between the estimated state and GT data. Common measures of quantifying

this error include the distance between the estimated and GT positions [125] or the amount of

overlap between the estimated and GT states [154].

Chapter 1: Introduction 5

(a)

(b)

Figure 1.4: Example of an occluded target due to foreground objects: (a) partial occlusion, (b)
full occlusion.

Online performance evaluation methods estimate tracking accuracy [116,J1] or robustness [113,

114, C1] without using GT data and attempt to identify the on-target (successfully following the

target) trackers using current and past information only [155]. These methods can make use

of measures that are based on features, trajectories or a combination of both (hybrid). Feature

based measures that are dependent on specific trackers exploit the internal properties of the track-

ers such as the observation likelihood [74] or the spatial uncertainty of PF [16,116,151]. Feature

descriptors independent of the tracker are determined using the tracker output and estimate track-

ing performance by temporal comparisons of the descriptors [113] or by quantifying the ability

of the descriptor to discriminate the state from the surrounding background [C1]. Trajectory

based measures use tracker outputs to evaluate tracking performance. This can be achieved by

measuring the consistency of target velocity [123], comparing outputs of the tracker and the same

tracker running in time-reversed direction [149, J1] or by measuring the spatial closeness of the

Chapter 1: Introduction 6

Figure 1.5: Example of background clutter where the target to be tracked is not clearly distin-
guishable due to similar coloured background or other similar objects.

estimated states of multiple trackers in a fusion framework [49]. Hybrid approaches estimate

tracking accuracy by combining both feature and trajectory based evaluation measures [26,126].

These evaluation measures can then be exploited to determine the time instants of tracker fail-

ures. This can be accomplished by analyzing the temporal changes of the spatial uncertainty of

PF [114, 116] or by employing thresholds over the tracking accuracy score [113, 149, C1].

The primary objective of a tracker-level fusion framework is to combine the strengths of

multiple trackers that have different failure modes. All trackers are initialized on the same region

of the image (target) at the first frame as a single group (cluster). We define a cluster as a group

of trackers having state estimations within the same spatial region. However, due to the different

challenges present in the visual data, these trackers fail at different time instants and drift away

from each other. This results in the trackers forming multiple clusters at each time step. An

example tracking scenario with four trackers is presented in Figure 1.6. Using the outputs of the

trackers, these clusters can be identified by quantifying the correlation between pairs of trackers,

where a correlation can be defined as the spatial agreement between tracking outputs [49] or a

combination of both spatial and temporal agreements between tracking outputs [J1]. An online

performance evaluation method can be used to identify the cluster that is on-target i.e. correctly

following the target, while the remaining trackers can be discarded. The final target state can

then be determined by combining outputs from trackers within the on-target cluster. Current

State-Of-the-Art (SOA) approaches do not attempt to identify these clusters, and either use all

trackers within performance evaluation and fusion [16, 49] or select the one with the highest

performance score [74]. Using all trackers at each time instant results in redundant computations,

while selecting a single tracker may discard other trackers that are still on-target.

In this thesis, we present a parallel framework for tracker-level fusion that employs two sep-

Chapter 1: Introduction 7

arate online performance evaluation methods. In the first part of this work, we present an online

performance evaluation method that estimates tracking accuracy at each time instant using fea-

ture descriptors that are generated using outputs from the tracker only. The tracking accuracy

is quantified as the ability of the feature descriptors to discriminate the state from the surround-

ing background region. Then, we employ a forecasting technique to determine time instants of

tracking failure by applying a threshold over the accuracy score. We test the method using two di-

verse datasets and compare it against SOA tracking failure detection methods. Since the method

uses the outputs of a tracker (e.g. bounding boxes) only, it has been proposed for performance

evaluation of generic individual trackers. In the second part of this work, we make use of the

spatio-temporal correlation between pairs of trackers to determine the clusters of trackers. We

measure the spatial correlation as the amount of overlap between the trackers’ outputs, while the

temporal correlation is quantified as the directional similarity within a short temporal window.

We then make use of the time-reversed based performance evaluation method to determine the

accuracy of each individual tracker and select the on-target cluster. The time-reversed evaluation

method [149] however, imposes a heavy computational cost due to the requirement of running

the tracker in the reverse-direction across all the frames. To reduce the computational complexity

we propose an improvement to the time-reversed evaluation method by determining a stopping

criteria for the reverse analysis (the reference frame) which is adaptively determined and updated.

The performance evaluation of the trackers (at the reference frame) helps in the identification of

the on-target cluster that is propagated in time until the cluster changes. A change in the cluster

is defined as a split (i.e. tracker(s) leaving the cluster) or a merge (i.e. tracker(s) joining the

cluster). The propagation of the same cluster over time reduces the number of additional compu-

tations that would be required for evaluating the performance of each tracker at each time step.

The final target state is then estimated by combining the outputs from the trackers within the

selected on-target cluster. Fusion is performed using the equal weighted and performance-based

weighted approach, where the tracking accuracy computed in the first part of the work is used as

the performance weight of each individual tracker. We test the fusion framework with different

combinations of multiple SOA trackers and compare it with SOA fusion approaches.

Chapter 1: Introduction 8

#10 #42

(a) (b)

#73 #124

(c) (d)

Figure 1.6: The image illustrates the split and merge of trackers creating new clusters over time
in a video sequence. —: Tracker1; —: Tracker2; —: Tracker3; —: Tracker4. (a) Frame #10:
All trackers are part of a single cluster. (b) Frame #42: The trackers split into two clusters, when
Tracker4 fails due to an occlusion. (c) Frame #73: Tracker4 re-acquires the target and all four
trackers merge again into a single cluster. (d) Frame #124: Over time, the four trackers split into
three different clusters, where only Tracker3 and Tracker4 remain on-target.

1.2 Problem definition

Let I = {It}T
t=1 be a video sequence, where It is the frame at time t and T is the total number of

frames. Visual tracking refers to estimating the target state over time, where xt ∈ Rn defines the

target state and n represents the dimension of the state. xt can either include the position, velocity

and orientation [103] or the position and shape [42] of the target. Using n = 4 for example, the

target state can be defined as a bounding box i.e. by its 2-D position and size as:

xt = [ut ,vt ,wt ,ht], (1.1)

where ut , vt are the target position with respect to the horizontal and vertical axes, respectively

and wt and ht are its width and height, respectively. Furthermore, xt over time, {xt : 1 ≤ t ≤ T}

Chapter 1: Introduction 9

is the trajectory of the target. Let F(.) define the tracker that estimates xt over time as:

xt = F(xt−1,zt ,ςt−1), (1.2)

where zt is the measurement at time t, xt−1 and ςt−1 is the estimated state and the target model,

respectively at time t−1.

The objective of tracker-level fusion in video tracking is to combine outputs (state) of mul-

tiple trackers that may enable to overcome the limitations of each individual tracker. Let F ={
Fk
}K

k=1 be a set of K trackers, where Fk is the kth tracker and the target state estimated by

tracker Fk is represented as xk
t . It is desirable to work with standard tracking outputs such as

a bounding box [42, 143, 166] or a bounding ellipse [102, 103] to make the framework generic

towards all type of trackers. Using xk
t the performance of the tracker at run time can be evaluated

as:

yk
t = f (γx,γ), (1.3)

where f (.) defines the performance evaluation function, yk
t is the tracking performance score for

Fk, γx is the information extracted using xk
t and γ is the corresponding information against which

γx is compared to determine yk
t . γx may be derived from trajectories [49, J1] or features extracted

from It using xt [113,C1]. Similarly, γ can be extracted from additional trajectories generated by

other trackers [149], background features [C1] or the same features extracted at the previous time

step, t−1 [113]. Values for yk
t are dependent on the information (trajectories or features) used to

derive γx and γ , where yk
t may have ranges ∈ [0,1] [49, J1] or ∈ [0,∞] [116, 149] indicating the

confidence of Fk in tracking the target.

Such performance evaluation can enable to estimate failed trackers i.e. the ones having an

inaccurate estimation of the target state. Failing trackers can be discarded and the outputs from

the remaining N (such that N ≤ K) trackers can be combined to estimate the final target state as:

x∗t = g({xn
t }N

n=1), (1.4)

or

x∗∗t = g({xn
t }N

n=1,y
k
t), (1.5)

Chapter 1: Introduction 10

where g(.) is the fusion function and x∗t or x∗∗t is the final target state determined either by an

equal weighted or a performance-based weighted fusion approach, respectively.

1.3 Contributions

This thesis presents a parallel framework for combining the outputs of multiple trackers to im-

prove the overall tracking accuracy. The first part introduces an online performance evaluation

method that is used to determine tracking failure and for performance weighting of the trackers

during fusion. While in the second part of this work we introduce a clustering based approach

for tracker-level fusion that estimates the final target state by combining outputs from on-target

trackers only. The detailed contributions of the framework are:

1. State-background discrimination approach for tracking accuracy estimation. We provide a

generic approach for estimating tracking accuracy. Since the approach uses standard track-

ing outputs, it can be applied to any kind of tracker. The approach compares the regions

defined by the tracker state and the background region around the state to estimate track-

ing accuracy over time. Using motion information from short-term trajectories, the method

first computes and extracts a larger background region around the target state. Then us-

ing Distribution Fields (DF) [122], distributions of both the state and background region

are generated, which are then compared using the L1 distance to estimate tracking accu-

racy [C1].

2. Tracking failure detection via forecasting. To determine when the tracker fails, we apply

a forecasting approach on the track accuracy score (obtained from the state-background

discrimination approach). We select Auto Regressive Moving Average (ARMA) [22] as

the forecasting model, that predicts future values of the track accuracy score using current

and past information only. Then the difference between the original and forecast values

generates the forecasting error signal. Tracking failures are highlighted within the fore-

cast error signal as significant changes which are detected using an experimentally derived

threshold [C1].

3. A clustering approach to tracker level fusion. We introduce a clustering approach to identify

different groups (clusters) of trackers within the tracker-level fusion framework [J1]. We

determine pair-wise spatio-temporal correlation between trackers based on their estimated

states and then employ the hierarchical clustering-based approach to determine the possible

Chapter 1: Introduction 11

clusters. This allows us to determine different clusters of trackers at each time instant and

then only use the cluster that is on the correct target. Existing methods to tracker-level

fusion [16, 49, 74] do not exploit this information and instead work with all the trackers at

each time instant.

4. An improved reverse-analysis method to online tracker evaluation. After determining the

clusters, we employ an online performance evaluation method to determine the on-target

cluster. The performance evaluation method is based on the time-reversed analysis ap-

proach that estimates tracking accuracy by comparing results of the tracker with the results

of the same tracker running in the reverse time direction [149]. This comparison is per-

formed at a reference frame (first frame of the sequence where the target is initialized using

GT data [149]). However, the constraint of running the tracker in reverse direction up until

the first frame of the sequence imposes a heavy computational cost, especially when it is

employed for online evaluation of the tracker. We adaptively update and move the refer-

ence frame forward in time by employing the motion information of the tracker trajectory.

Furthermore, to determine tracking accuracy at the reference frame, we compare the results

of the reverse-tracker to the fused output at the reference frame [J1]. The performance eval-

uation method enables us to identify the on-target trackers and hence the on-target cluster.

5. Fusion of selected trackers. Existing tracker-level fusion methods estimate tracking accu-

racy for assigning performance-based weights to both on-target and failing trackers. And

the final target state is estimated by either combining outputs from all trackers [16,49] or by

selecting the tracker with the highest weight [74]. The strategy of combining outputs from

all trackers can however lower the overall tracking accuracy and the approach to using only

the best tracker can be a drawback where other trackers that can be on-target are discarded.

We propose an approach to fusion that combines outputs from the trackers only within the

on-target cluster, while the remaining (failing) trackers are discarded.

1.4 Organisation of thesis

The thesis is organised as follows:

Chapter 1: Introduction and motivation for this work, the problem formulation and the contri-

butions of this thesis.

Chapter 2: This chapter covers related works of visual tracking with definitions of different

Chapter 1: Introduction 12

types of visual tracking methods. Discussions on both the offline and online methods used

for performance evaluation of visual trackers. Definitions of methods used for fusion in

visual tracking and discussions on feature and tracker-level fusion techniques. Finally,

a discussion on the limitations of the fusion and online performance evaluation methods

concludes the chapter.

Chapter 3: An online performance evaluation technique used for evaluating tracking perfor-

mance and for determining the time instants when the tracker fails. Experimental analysis

and comparison with the state-of-the-art methods. The work in this chapter appears in [C1].

Chapter 4: The clustering approach used for determining the clusters of trackers using the rela-

tionships between tracking outputs. An online performance evaluation method based on the

adaptive time-reversed evaluation approach for determining the on-target cluster. Tracker

fusion method for combining the outputs of the trackers within the on-target cluster. The

experimental setup that is followed by experimental validation of each of the three parts:

the tracker clustering, adaptive time-reversed evaluation and tracker fusion. Experimen-

tal analysis of the computational cost of the complete method. The work in this chapter

appears in [J1].

Chapter 5: Summary of achievements and future research directions.

Chapter 2

State of the art

2.1 Introduction

Validating the quality of a tracker over time can help in determining when the performance of

the tracker declines. Estimating this quality at run time (without using any GT data) requires an

online performance evaluator [116,149] that can further be used to detect time instants where the

tracker fails [C1]. Tracking performance evaluation can then be employed within a fusion frame-

work where fusion involves combining multiple components (features or trackers) to improve the

over all tracking performance. This evaluation can help in either ranking [31], correcting [15] or

removing [J1] poor performing components during the fusion process. Fusion for visual tracking

can occur either at feature-level [68, 151] or at tracker-level [49, J1], where feature-level fusion

methods combine multiple features within a single framework, while tracker-level fusion meth-

ods combine the outputs generated by multiple tracking algorithms.

This chapter provides a review of the SOA in the field of visual tracking including methods

for performance evaluation and fusion within the visual tracking framework. A review on visual

tracking is covered in Section 2.2 and Section 2.3 covers the related work in offline performance

evaluation. Related work on online performance evaluation and tracking failure detection are

covered in Section 2.4. Section 2.5 covers the techniques of fusion for visual tracking, divided

into feature-level and tracker-level fusion. Finally, Section 2.6 provides a discussion on the state-

of-the-art and a comparison with our framework.

13

Chapter 2: State of the art 14

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Representation of the state of a target. (a) center point, (b) set of points, (c) bounding
box, (d) bounding ellipse, (e) contour, (f) silhouette, (g) part-based multiple patches, (h) skeleton.
Cropped image is taken from the gymnastics sequence of the VOT2014 dataset (Appendix A).
This figure is an adaptation of Figure 1 from [158].

2.2 Visual tracking

In general methods of visual tracking primarily differ based on target representation (shape),

the image features used, the appearance and the motion model, and the tracking environment.

Moreover, tracking methods can be categorized either into deterministic and probabilistic [171]

or into generative and discriminative [166] as explained below.

2.2.1 Target representation

A target can either be represented as a point (center position) or set of points [47], bounding

box [104], bounding ellipse [32, 103], contour, silhouette, part-based multiple patches [2, 42] or

object skeleton (see Figure 2.1), while its appearance is modelled by using features extracted

from the image.

Feature selection plays an important role in visual tracking, where an important property of a

visual feature is its ability to discriminate the target from the surrounding background. Low-level

features include colour (intensity values) [103,135], gradient (difference between intensity values

in one frame) [13] and motion-patterns (changes in intensity values over time) [121]. Colour or

intensity features are directly obtained from the pixels of the image and their low computational

Chapter 2: State of the art 15

cost makes them a desirable feature to exploit. Colour-based appearance models such as colour

histograms [32, 103] are robust to partial-occlusions and scale changes. However, colour-based

appearance models are sensitive to illumination changes, background clutter and can be mis-lead

by objects with similar colour properties [91]. In comparison to colour features, gradient features

are less sensitive to illumination variations and are primarily applied for edge detection [158].

Motion pattern-based methods such as optical flow [121] record the translation of each pixel

within a region and are used for motion-based segmentation and tracking applications. Combin-

ing multiple low-level features such as colour and gradient features [13, 91], colour and interest

points [47], colour and position [113] or colour and optical-flow [64] generates medium-level

features and makes the combination of the advantages of each individual low-level feature pos-

sible. The complete region or the orientation of the target are termed as high-level features that

can be generated by a combination of medium-level features [90].

The motion of the target over time is defined by a motion model that helps in predicting

the likely target position in the next frame. This prediction can be achieved by using different

models such as constant velocity [91], adaptive velocity [171], constant acceleration [163], Gaus-

sian [110] and affine motion [80,143]. Models based on the constant velocity or acceleration can

help in tracking occluded targets while the random walk model can be employed for targets that

do not have a predefined motion pattern. Employing models such as the affine motion model

that includes the position, scale, rotation, aspect ratio and the skew angle of the target bounding

box [143] can increase robustness to target rotations and changes in scale.

2.2.2 Deterministic and probabilistic tracking methods

Deterministic tracking methods usually look to minimize a cost function e.g. the Sum of Squared

Distance (SSD) [52] or the Bhattacharyya distance in a MS tracking framework [32, 102, 140].

The MS tracking framework, is one of the most commonly used deterministic approach that

works by minimizing the cost function (distance between the reference and the target model) and

tracks by searching in the neighbourhood of the target’s estimated position from the previous

frame. The standard MS tracker [32] models the target appearance using an m-bin histogram in

the colour (RGB) feature space:

q̂ = {qe}e=1,...,m ;
m

∑
e=1

qe = 1, (2.1)

Chapter 2: State of the art 16

where qe is the probability of feature e = 1, ...,m and is determined as:

qe =C
n

∑
i=1

k
(∥∥[u′i,v′i]∥∥2

)
δ [b([u′i,v

′
i])− e], (2.2)

where [u′i,v
′
i] are the pixel locations with total n pixels, k(.) is a Gaussian kernel, the function

b : Rm→ 1, ...,m maps the value of pixel at location [u′i,v
′
i] to index b([u′i,v

′
i]) of the correspond-

ing bin in the feature space, δ is the Kronecker delta and C is the normalization constant i.e.

∑
m
e=1 qe = 1. A target candidate at location [u,v] in the next frame is described by its histogram:

p̂ = {pe([u,v])}e=1,...,m ;
m

∑
e=1

pe = 1, (2.3)

and the probability of feature e in the target candidate is defined using the same kernel profile

k(.) but with a scale parameter h as:

pe([u,v]) =Ch

nh

∑
i=1

k

(∥∥∥∥ [u,v]− [ui,vi]

h

∥∥∥∥2
)

δ [b([ui,vi])− e], (2.4)

where [ui,vi] are the pixel locations with total nh pixels and Ch is the normalization constant. The

distance between the two distributions is determined as:

H(p̂, q̂) =
√

1−ρ[p̂, q̂], (2.5)

where

ρ[p̂, q̂] =
m

∑
e=1

√
pe([u,v])qe, (2.6)

is the Bhattacharyya coefficient. The search for the target’s new location in the current frame

starts from the target’s position in the previous frame [u0,v0] within a fixed-shape variable size

window. This search is based on the MS method that works to find the mode of the function

i.e. the one that maximizes the Bhattacharyya distance. The kernel is moved from the current

location [u0,v0] to the new location [u1,v1] as:

[u1,v1] =

∑
nh
i=1[ui,vi]wig

(∥∥∥ [u0,v0]−[ui,vi]
h

∥∥∥2
)

∑
nh
i=1 wig

(∥∥∥ [u0,v0]−[ui,vi]
h

∥∥∥2
) , (2.7)

Chapter 2: State of the art 17

where

wi =
m

∑
e=1

√
qe

pe([u,v])
δ [b([ui,vi])− e], (2.8)

is the weight and g(.) = −k′(.) is the derivative of k(.). A main advantage of the MS-based

trackers are their low computational complexity, however they can fail to track occluded or fast

moving targets.

Probabilistic (stochastic) methods formulate the process of target tracking as an estimation

problem i.e. estimating the state of the target over time using both the appearance and motion

models. The KF [66], the PF [16, 91, 103, 109, 171] and their variants [4] are the most widely

used approaches to probabilistic tracking. However KF-based tracking algorithms are limited

by their assumption of a Gaussian distribution and linear model for the target state and motion,

respectively. PFs also known as the sequential Monte Carlo (MC) method are the more popular

of the two approaches since they are able to deal with both non-Gaussian state and non-linear

motion models [4]. Based on the Bayesian formulation, the PF employs a two-step process to

track the target over time. The prediction step first recursively estimates the posterior distri-

bution p(xt |z1:t−1) of the target state (xt) using the motion model p(xt |xt−1) and the available

observations z1:t−1 as [16]:

p(xt |z1:t−1) =
∫

p(xt |xt−1)p(xt−1|z1:t−1)dxt−1. (2.9)

Then, using the observation at time t (zt), the second step updates the target state as:

p(xt |z1:t) =
p(zt |xt)p(xt |z1:t−1)

p(zt |z1:t−1)
, (2.10)

where p(zt |xt) is the observation likelihood. The posterior p(xt |z1:t) in a PF, is approximated

by a finite set of N particles [xt,i, p(zt |xt,i)]
N
i=1, where each particle state xt,i is weighted by its

likelihood p(zt |xt,i). However, a common problem with PF is degeneracy, where after a few

iterations, all but one particle will have negligible weights. To avoid this problem, the final

resampling step eliminates particles with smaller weights and replicates particles with higher

weights [4]. Increasing (decreasing) the number of particles can help in increasing (decreasing)

the performance of PF based tracking methods, however a larger number of particles also implies

a higher computational cost.

Chapter 2: State of the art 18

(a) (b) (c)

Figure 2.2: Representation of foreground (positive) and background (negative) image patches
used by tracking-by-detection methods to train/or update the classifier. (a) Single foreground and
multiple background patches, (b) multiple foreground and background patches, (c) bags of fore-
ground and background patches where each bag contains several image patches. Cropped image
is taken from the David sequence of the D1 dataset (Appendix A). This figure is an adaptation of
Figure 1 from [6].

2.2.3 Generative and discriminative tracking methods

Generative and discriminative tracking methods are two separate classes of online learning based

methods [156] that adapt to the target’s appearance changes by updating the target model over

time. Generative tracking methods typically work by learning a target model and then use the

model to find the best matching image region [51, 142, 143]. Discriminative tracking methods

commonly known as tracking-by-detection methods employ classifiers that discriminate the tar-

get from its surrounding background and search for the target within a specified region in the

next frame [5, 6, 57, 58, 62, 84, 166, 166].

Tracking-by-detection methods formulate the tracking problem as repeated detections over

time, where traditional approaches train a binary classifier to discriminate the target from the

background. Image patches extracted near the target (foreground) and some farther away (back-

ground) are used to train the classifier (see Figure 2.2) and are assigned labels (1 and 0). The

tracker searches for the target in each new frame within a local region around the previous target

location and the patch with the maximum classification score is selected as the new target loca-

tion. This patch is further used to update the appearance model and the remaining patches are

discarded. However, the appearance model over time can degrade if it is updated with a subop-

timal positive patch i.e. caused by an erroneous target estimation [6]. This can be handled by

using the multiple instance learning framework [137], where the image patches are presented as

bags (sets) of positive (foreground) and negative (background) samples (see Fig. 2.2) and each

Chapter 2: State of the art 19

individual bag is assigned a binary label [6]. Using bags of patches in comparison to a single

patch allows the method to train and update the classifier with less ambiguity [137]. Besides the

traditional binary classifiers, other tracking-by-detection methods may employ classifiers such as

those based on the structured output Support Vector Machine (SVM) [57, 132] or the correlation

filters [10, 36, 62, 84]. Instead of assigning binary labels to the patches, the structured output

SVM classifier (based on the structured learning approach) models the dependencies between

all the available patches [19]. Correlation filters enhance the discriminative ability of the classi-

fier by employing multiple negative samples [84]. However, these methods make use of signal

processing techniques instead of the costly convolution operations used by traditional tracking-

by-detection methods to keep the computational cost within bounds [130].

To further improve tracker stability and robustness, multiple weak classifiers can be combined

into a unified classifier, commonly known as the classifier ensemble framework [5, 8, 132, 161].

Employing AdaBoost for combination, the strong classifier distinguishes between pixels belong-

ing to the foreground and the background and generates a confidence map [5]. The target position

in the next frame is then estimated by finding the peak of the confidence map using MS [5]. More-

over, weak classifiers can be combined either using performance-based weighted approach where

the uncertainty of the classifier is used as its weight [8], or using an adaptive random subspace-

based approach that adaptively adjusts the classifier weights based on their performance [161].

Despite the advances, visual tracking is still a difficult task due to challenges such as par-

tial or full occlusions present in the tracking environment and different variations of the target.

Trackers that employ motion models [93, 143] or that represent the target as multiple part-based

patches [42] can handle occlusions better as compared to trackers that search for the target within

a particular region [102]. Variations in target can include rotation, abrupt motion and changes

in illumination, scale or pose. A tracker that uses colour information [103] may handle target

rotations and scale changes well, but may fail due to illumination changes and background clut-

ter. Combining colour features either with orientation [91] or texture [20] features can help the

tracker to tackle these challenges.

2.2.4 Deep network-based tracking methods

Traditional tracking approaches use hand-crafted features that are built for specific scenarios

and are unable to handle all the challenges associated with the tracking environment and the

target [164]. More recently deep networks, which typically use raw data (images) to generate

Chapter 2: State of the art 20

generic appearance representations, have gained considerable attention due to their improved per-

formance in computer vision applications such as image classification [30, 82] and visual track-

ing [48, 107]. Methods for visual tracking generally use convolutional neural networks (CNNs)

and recurrent neural networks (RNNs), where the former extracts features over the spatial do-

main and the latter has the capability to capture dependencies between features over the temporal

domain [44].

Higher (deep) layers of a neural network extract abstract features while the more detailed

features are better captured by the lower (shallow) layers of the network [44, 87, 144]. Fusing

features extracted from both deep and shallow layers, can allow the method to better handle

occlusions and avoid drift (caused by distractors) during tracking [87]. To reduce the compu-

tational complexity, a switch mechanism can also be employed to filter out redundant or noisy

feature maps and only combine the most relevant ones [144]. Moreover, tracking performance

can be further improved by fusing feature maps from both the spatial and temporal domains i.e.

from CNNs and RNNs, respectively [44]. Furthermore, multiple trackers using features extracted

from different layers of the network can be fused into a single strong tracker by combining their

decisions in a performance-based weighted fashion [107].

Lack of training data is one of the main obstacles in the use of deep networks for visual

tracking. Learning techniques based on standard classification tasks are not be applicable for

such training due to the variations across video sequences that may lead to classifying the same

object as foreground (target) in one sequence and as background in another sequence [97]. Multi-

Domain Network (MDNet) an online tracking method uses offline training to learn the shared

representation of targets from multiple annotated video sequences [97]. The method treats each

training sequence as a separate domain and iteratively trains each domain individually to learn

generic feature representations for visual tracking. A similar method uses a regression-based

approach and an offline training phase to determine the different variations of both the target

appearance and motion [60]. Since training a neural network is a slow process, methods that

employ offline training have the advantage of being computationally efficient in comparison to

methods that use online training. However, most existing neural network-based tracking meth-

ods address the deficiency of training data either by training online (from the first frame of the

sequence) [35, 78, 145, 164] or by adopting pre-trained models (such as ImageNet [112]) from

other tasks [37, 144]. Although visual tracking methods based on deep networks have proven to

Chapter 2: State of the art 21

Table 2.1: Summary of the selected trackers. KEY - ST: Spare-features based Tracker; AFT:
Adaptive Fragments-based Tracker; LOT: Locally Orderless Tracker; IVT: Incremental Visual
Tracker; AMS: Adaptive Mean Shift tracker; FCT: Fast Compressive Tracker; L1T: L1 Tracker;
LSST: Least Soft-threshold Squares Tracker; IPCA: Incremental Principal Component Analysis;
HSI: Hue Saturation Intensity; RGB: Red Green Blue.

Tracker Method Tracker
output Target state Model UpdateAppearance Motion

IVT [110]

probabilistic bounding
box

bounding box
intensity-based
sparse model Gaussian

incremental
update by IPCA

ST [143] occlusion-aware
incremental
update by IPCA

L1T [93] multiple bounding
boxes

appearance
model

LSST [142]
LOT [104] super pixels based

patches
HSI-based
feature vector

AFT [42] part-based bounding
boxes

intensity-based
histograms

uniform

FCT [166] discriminative multiple bounding
boxes

intensity and
Haar features

circular window
search

AMS [102] deterministic bounding
ellipse

bounding ellipse RGB-based
histogram

implicit from
data

none

be better than traditional tracking methods, the power of neural networks in visual tracking can

be further utilized by training them on large-scale visual tracking datasets.

2.2.5 Selected trackers

To test our framework, we consider eight different trackers that have varying tracking models

with different target representations, appearance models and motion models. Six of these track-

ers [42, 93, 104, 110, 142, 143] are based on the probabilistic framework (PF or its variants),

one [102] on the deterministic tracking framework (MS), while the eighth [166] employs the

tracking-by-detection approach. Our fusion framework uses only the outputs of the selected

trackers making the framework transparent to the kind of trackers used. The six probabilis-

tic trackers allows the method to take advantage of the particle filtering framework. Moreover,

using a tracking-by-detection method [166] allows the fusion framework to handle situations

where other trackers might fail (drift) due to distractors. We use the implementations publicly

made available by the authors. Table 2.1 presents a summary of the trackers.

The first tracker is the Sparse features-based Tracker (ST) [143] and is based on the PF

framework. Primarily motivated by the popularity of compressive sensing in visual processing,

the method uses concepts of sparse coding [167] to generate the target appearance model. Uti-

lizing both the sparse (intensity) features and the principal component analysis (PCA) subspace

representation, the target appearance model is updated online to handle partial occlusions and

Chapter 2: State of the art 22

(a) (b)

Figure 2.3: Target model based on multiple fragments, where each fragment is described by the
same feature set. (a) An explicit part-based model, (b) a model-free approach. This figure is an
adaptation of Figure 1(b) from [42])

illumination changes, while target motion is handled by employing the affine parameters. The

final target state is selected using the Maximum a Posteriori (MAP) formulation i.e selection of

the state from the set of hypothesized states with the highest likelihood.

The second tracker is the Adaptive Fragments-based Tracker (AFT) [42] which is based on

the PF framework and divides the target model into multiple image patches (fragments). The

method uses intensity histograms to model each image fragment, where these fragments are

chosen arbitrarily i.e. without any specific model (Figure 2.3) and contribute to tracking based on

their likelihood. The likelihood is computed by comparing the histograms of the image fragment

with that of the respective template fragment using the Bhattacharya distance. Since each image

fragment generates its own likelihood (confidence) value regarding the target’s location, a joint

likelihood of all the fragments is determined. Tracking is performed within a PF framework and

the final target state is estimated as the likelihood-weighted average of the hypothesized states.

The third tracker is the Locally Orderless Tracker (LOT) [104] which employs a joint spatial

and appearance model of the target. The method segments the target into super pixels [108],

where each super pixel is modeled by its center position and the average HSV-colour values.

Tracking is performed using a PF, where each particle state is weighted by its likelihood. The

likelihood of each particle state is computed by calculating the Earth Movers Distance (EMD) [111]

between the template patch and the observation patch. The final target state is determined as the

likelihood-weighted average of the hypothesized states. The fourth tracker is the Incremental

Visual Tracker (IVT) [110] that works by keeping an extended model of target appearances from

Chapter 2: State of the art 23

the past within a sliding temporal window. Employing intensity values as the feature space,

eigen images of the target are computed using incremental PCA. Tracking is performed using

a PF framework and a Gaussian distribution around the previous target position determines the

motion model. The likelihood of each hypothesized particle is determined by computing the

distance between the target and the template model. The hypothesized state with the minimum

score is selected as the final target state.

The fifth tracker is the scale and orientation Adaptive MS Tracker (AMS) [102], and extends

the original MS tracking framework [32] by handling the scale and orientation changes of the

target. The tracking algorithm utilizes RGB-colour histograms as features for the target model

and performs matching by comparing the target and template histograms using the Bhattacharya

distance. Target location in the next frame is obtained by estimating the mode of the function

that maximizes the Bhattacharya distance. The method handles scale and orientation changes of

the target by employing the zeroth-order and the second-order image moments, respectively.

The sixth tracker is the Fast Compressive Tracker (FCT) [166] with an appearance model

based on features extracted from the compressed domain [165]. The method formulates tracking

as a detection task and extracts multiple samples (image patches) of the foreground (positive) and

background (negative) to build the appearance model. A multi-scale vector is created for each

patch by convolving the patch with a set of rectangle filters at multiple scales. The method then

constructs a high-dimensional feature matrix by concatenating the individual vectors. Employing

the random projection technique [12], the method uses a spare random matrix to reduce (com-

press) the dimensionality of the feature matrix. Target position in the next frame is located by

searching within a circular window based on the previous target location. Tracking is formu-

lated as a binary classification task via a naive Bayesian classifier and the patch with the highest

classifier score is selected as the final target state.

The seventh tracker is the L1 Tracker (L1T) [93], that models the appearance of the target by

a sparse linear combination of target and trivial templates (set of unit vectors). Intensity values

of windows sampled near the target and non-target intensity values (trivial templates) form the

bases for a sparse representation, that is achieved by solving the L1-regularized least squares

problem. Assuming an affine motion model, tracking is performed within a PF framework by

solving the L1 minimization problem.

The eighth tracker is the Least Soft-Threshold Squares Tracker (LSST) [142], which is based

Chapter 2: State of the art 24

on the PF framework. The appearance model is based on the sparse features that are obtained via

the intensity values of the target. The LSS distance measures the dissimilarity between the target

and the template model, that is determined by minimizing the error between the two models via

linear regression. Using an affine motion model, the MAP formulation is used to determine the

final target state.

2.3 Offline performance evaluation

Methods for offline performance evaluation of tracking algorithms estimate tracking quality over

time using GT data [72, 98, 120, 125] by quantifying the accuracy or the robustness of a tracker.

The accuracy can be measured as the distance between the estimated and ideal positions [125]

or as the amount of overlap between the estimated and GT states [154]. Robustness measures

the number of times a tracker fails during tracking [72], where the tracker is re-initialized after

each failure. Furthermore, a weighted combination of the accuracy and robustness can be used to

generate a combined tracking performance score [98]. The VOT1 challenge provides a central-

ized benchmark for comparing different single target tracking algorithms. Moreover, surveys on

video tracking covering the different SOA tracking algorithms either present their details and cat-

egories in general [90,156,158] or conduct experimental analysis over large benchmark datasets

to assess their accuracy and robustness [72,77,125,154,155]. Although automatic GT annotation

tools exist [11,17], the annotations required can be extensive and expensive to produce for longer

sequences and therefore cannot be applied for online performance evaluation.

2.4 Online performance evaluation

Methods for online performance evaluation [113, 114, 116, 149, C1] use information from the

current and past time instants only and work without the requirement of any GT data. These

methods can be used for performance evaluation of specific trackers such as PF [114, 116] or

MS [117] based trackers or for generic tracking algorithms [27, 113, C1]. Moreover, online

performance evaluation methods can be used in fusion frameworks for accuracy-based feature

ranking [31], fine tuning tracking parameters [28], removing failing trackers [J1] or to correct

low-performing trackers [16]. In this thesis we discuss methods of online performance evaluation

as part of a framework to detect tracking failures (Chapter 3) and then to employ them within

1http://www.votchallenge.net/

http://www.votchallenge.net/

Chapter 2: State of the art 25

Table 2.2: State-of-the-art methods employed for online performance evaluation in visual target
tracking. Class (F/T) indicate whether the method has been applied to performance evaluation of
features or tracking algorithms. KEY- F: Feature; T: Tracker.

Ref. Category Evaluation method Features Class
F T

[38, 123]

Trajectory

Temporal comparison velocity 3

[49] Tracker motion + pair-wise correlation position and size 3

[149]
Time reversibility

state distribution 3

[69, 116, J1] position and state 3

[14] position 3 3

[7, 91]

Feature

Spatial uncertainty
colour and state distribution 3

[16, 114, 116] colour and intensity 3

[74, 160] Observation likelihood multiple 3

[43, 88, 127, 133] Democratic integration multiple 3 3

[41] Spatial difference along edges colour and motion 3

[31] Background discriminative power colour and intensity 3

[113, C1] Matching descriptors colour and position 3

[69, 105]
Hybrid

Time reversibility + temporal comparison colour and position 3

[116] Time reversibility + spatial uncertainty colour, position and size 3

[18, 25–28, 126, 150] Temporal comparison multiple 3

a tracker-level fusion framework (Chapter 4). This evaluation can either be performed using

trajectories (tracker output), features (internal or external to the tracker) or hybrid (combination

of both). Table 2.2 gives a summary of the different performance evaluation methods that employ

trajectories, features or both in a visual tracking framework.

2.4.1 Trajectory-based performance evaluators

Trajectory-based performance evaluators consider the physical properties of the target state such

as velocity [26, 38, 123], area (number of pixels within the bounding box) [26, 28, 126], motion

smoothness [115] or direction [18,26] or can use additional trajectories such as spatial agreement

between the output of a set of trackers [49] or compare results of the tracker with the same tracker

running in reverse direction [14, 69, 115, 149, J1].

Physical properties of the target state such as the target displacement, velocity, direction,

shape or area [26] can be used to evaluate tracking performance. Tracking performance is gener-

ally determined by measuring the temporal changes of these physical properties and comparing

them with different thresholds, where values higher than the threshold indicate a possible track-

ing failure [26, 38, 123]. For example, the target displacement between two consecutive frames

can either be compared to a fixed threshold [26] or to an adaptive threshold (i.e. the average target

displacement within a sliding temporal window) [123]. Similarly, tracking performance can also

be estimated by quantifying either the ratio of the target area or the direction of a moving target

between two consecutive frames and comparing them to pre-defined thresholds [18, 26]. How-

Chapter 2: State of the art 26

.

#1 #2 #9 #10

(a)

.

#1 #2 #27 #28

(b)

.

#1 #2 #38 #39

(c)

Figure 2.4: The time reversed evaluation approach [149]. For each frame where the tracker
runs in the forward direction, the same tracker is run in the backward direction up until the
reference (first) frame. - - -: Forward tracker; – – –: Reverse tracker. The figure shows the
reverse tracker initialised at frame (a) 10, (b) 28, and (c) 39.

ever, majority of these methods use fixed pre-defined thresholds [26, 115] that implicitly implies

strong assumptions on the moving direction, area and velocity of the target [18, 26, 123].

Within a tracker-level fusion framework, tracking performance is determined by combining

individual tracker quality and agreement between the trackers [49]. Individual tracker quality

is measured as the amount of overlap of the tracker output between two consecutive frames.

However, overlap of tracker outputs between consecutive frames can produce incorrect results

due to tracker drift (a wrong estimation from the tracker always returns a high performance score

even when the tracker has lost the target). Agreement between tracking outputs is computed as

the spatial pair-wise correlation score, however this can lead to misleading results in situations

where majority of the trackers perform badly.

Based on the time-reversible property of Markov chains [149], tracking performance is eval-

uated by using another tracker (reverse tracker) that runs in the reverse direction until a reference

frame in which the tracker under evaluation (forward) is assumed to be correct. The reference

frame is assumed to be the first frame, where the forward tracker is initialised by the GT. The

Chapter 2: State of the art 27

result from forward tracker at time t is used as the initialization for the reverse tracker, which

is then used to compute the tracking result of the reverse tracker at the reference frame. Tak-

ing the assumption that the forward and reverse distributions show similar statistical properties,

the results from the forward and reverse trackers at the reference frame are compared using the

Mahalanobis distance in a PF framework [149]. This method has been employed in various

scenarios such as using full length trajectories [69], shortened trajectories [116, J1], template

matching on a frame-by-frame basis [83] or for validating target scale changes in an MS track-

ing framework [140]. However, the method has two main drawbacks; first it is prone to tracker

drift where errors from forward tracker are accumulated by the reverse tracker and second the

computational complexity of the approach limits its use to real-time systems. An example of the

method is presented in Figure 2.4, showing three different time instants where the reverse tracker

is initialised. Figure 2.4 (a) and (b) present the scenario where the reverse tracker is initialised

with a correct estimation of the forward tracker and is therefore able to accurately estimate the

target’s position in the first frame. Whereas Figure 2.4 (c) indicates a scenario where the reverse

tracker is being initialised by an incorrect estimation and accumulates the errors generated by the

forward tracker.

2.4.2 Feature-based performance evaluators

Feature-based performance evaluators can make use of either tracker-independent features [113,

C1] or the internal properties of the trackers such as observation likelihood [74, 134], spatial un-

certainty of PFs [91,114,116], uncertainty of target distribution in a MS tracking framework [117]

or spatial differences along edges [41].

Tracker-independent features use the tracker output and extract image features based on the

tracker state. Using a five-dimensional descriptor based on the position information (two di-

mensions) and colour values (three dimensions), the target appearance structure is measured

via the covariance feature [113]. A temporal comparison of these covariance features is then

employed to measure the tracking performance. A similar approach measures tracker perfor-

mance by target-background discrimination [C1]. The method determines distributions of both

the target and a larger region around the tracker state using colour-based distribution fields [146].

It then measures tracking performance by comparing the two distributions using the L1 dis-

tance [C1]. Tracker-independent methods have the advantage that they can be used with any

kind of tracker(s), since they only require the output of the tracker(s), but matching descriptors

Chapter 2: State of the art 28

over time can generate false positives and false negatives due to clutter or similarity between

descriptors.

By employing the features that are part of the trackers, properties such as the observation

likelihood [74, 160] are used to select the best tracker with the highest likelihood, or the spatial

uncertainty (spread of the particles) of the PFs can be used to either determine the performance

of a tracker [114, 116, 117], determine the best trackers [7, 16] or assign performance weights to

the features [91,151]. The spatial uncertainty of a PF is determined by computing the covariance

matrix Ct of its particle states [xt,i]
N
i=1 weighted by their respective likelihoods p(z|xt,i). The 2x2

normalized covariance matrix Ct for a two dimensional state xt = (ut ,vt) is given as [91]:

Ct =

 ∑
N
i=1 p(z|xt,i)(ut,i−û)2

∑
N
i=1 p(zt |xt,i)

∑
N
i=1 p(z|xt,i)(ut,i−û)(vt,i−v̂)

∑
N
i=1 p(z|xt,i)

∑
N
i=1 p(z|xt,i)(ut,i−û)(vt,i−v̂)

∑
N
i=1 p(z|xt,i)

∑
N
i=1 p(z|xt,i)(vt,i−v̂)2

∑
N
i=1 p(z|xt,i)

 , (2.11)

where û and v̂ are the average state vectors of the particles. The spatial uncertainty is then com-

puted as St =
D
√

det (Ct), where det(.) is the determinant of Ct and D is the dimensionality of

the state space. The spatial uncertainty has been employed in different situations, such as to

determine the performance of a single tracker [114, 116]. These methods normalise the uncer-

tainty values with the tracker state size and then employ sliding temporal windows with varying

lengths to evaluate tracker performance by analysing the temporal changes within the uncertainty

signal. Within a multi-tracker framework, spatial uncertainty of each tracker can either help in

switching to the best tracker [7] or computing a weighted sum of the tracking outputs [16]. When

combining multiple features within a single tracking framework the spatial uncertainty helps in

computing the performance of individual features, where the performance score is computed as

the reciprocal of the uncertainty [91, 151] and the likelihood of each feature is determined as the

distance from the target model histograms. However, methods based on the observation likeli-

hood or the uncertainty are limited to PF-based trackers. Furthermore, distractors (i.e. objects

with features similar to those of the target) may produce high likelihood values thus generating

misleading measurements. An example of using the spatial uncertainty for performance evalua-

tion is shown in Figure 2.5.

Tracking performance can also be evaluated using features that are not the internal proper-

ties of the tracker itself, but are internally embedded within the tracking framework. This can

either be achieved by using the target-background discrimination approach [31, 39, 41, 55, 56]

Chapter 2: State of the art 29

#10 #70 #83

#86 #90 #95

Frames
10 20 30 40 50 60 70 80 90 100

S
co

re

0

0.2

0.4

0.6

0.8

1
Spatialhuncertainty Ground-truthherror

Figure 2.5: Performance evaluation of the tracker LOT measured as its spatial uncertainty [91].
Sample tracking results and spatial location of particles are represented as red bounding box and
blue crosses for each frame, respectively. Ground-truth error is computed as the overlap score
described in Section 3.4.2.

or using distance based measures [23, 88, 127, 133]. For the target-background discrimination

approach, a two-class variance ratio method ranks features based on their ability to distinguish

the target from the background [31], the spatial differences of colour and motion features along

the object boundary determine tracking performance of each individual feature [41], or tracking

performance is measured by combining colour and contour features within a KF [55] or PF [56]

framework. Distance-based measures can be used to compute the minimum squared distance

between the reference and target histograms as the feature weight [23] or use the democratic

integration [133] in a PF framework [43,127] or an MS framework [88]. Democratic integration

provides a way to both evaluate performance and combine features, where the individual feature

result is compared to the agreed (fused) result allowing a higher weight to features that remain

consistent with the agreed result in the recent past. This is performed via a feedback loop, where

the fused result is fed back to each individual feature and performance weight of each feature

is determined by quantifying the degree of agreement between the results from the individual

feature and the fused output. This also allows the features to adaptively adjust their performance.

However, a drawback of the feedback loop is the tendency of adjusting to an incorrect estimation,

causing the features to adjust towards the wrong result.

Chapter 2: State of the art 30

2.4.3 Hybrid performance evaluators

Hybrid measures combine both trajectory and feature based performance evaluators to evalu-

ate tracking performance. For example, both the likelihood of the PF and the smoothness of

target velocity can be used to determine when the performance of the tracker deteriorates [38].

Moreover, the time-reversed evaluation approach can be jointly employed with spatial uncer-

tainty [116] or be combined with temporal difference of colour histograms in an equally weighted

approach [69, 105]. The temporal difference of colour histograms are also combined with shape

consistency and motion and direction smoothness to evaluate tracking performance [18]. Fur-

thermore, different sets of feature and trajectory-based performance evaluators can be combined

for determining either a global tracking performance score [26, 126, 150] or the optimal track-

ing parameters [25, 28]. These performance evaluators can be based on measuring either the

temporal similarity of the target’s appearance or the temporal consistency of the target’s shape,

velocity and area. Then a global tracking performance score can be determined by combining

the evaluators in a weighted average approach [26], in a weighted sum approach [150] or by

using a naive Bayes classifier [126]. The optimal parameters required for robust tracking can be

determined by evaluating tracking performance using a set of features that are based on colour

intensity differences between the target and background, target area, density of objects (i.e. sum

of areas of all objects within the scene) and the area overlap between objects [25, 28]. However,

these approaches are either dependent on pre-defined thresholds [26, 28, 126, 150] or require an

offline training phase to learn the optimal tracking parameters [25, 28].

2.4.4 Tracking failure detection

Failure detection refers to determining time instants at which the tracker fails by employing one

or more of the performance evaluation techniques discussed in Section 2.4.1-2.4.3. Employing

the spatial uncertainty of PFs [116], tracker failure is detected by analysing temporal changes

of the uncertainty signal over two separate sliding time windows that handle short-term and

long-term changes, respectively. The method employs a finite state machine to switch between

tracking failure and recovery modes, and detects failure using empirical thresholds. A similar

approach employs a change-detection approach to determine time instants of tracking failure

and models the changes of the uncertainty signal via a mixture of Gamma distributions [114].

However, approaches based on the spatial uncertainty are tracker-specific. Tracker-independent

Chapter 2: State of the art 31

methods use only the tracker state to either compute feature descriptors [113, C1] or to gener-

ate another tracker trajectory that runs in the time-reversed direction [149]. Tracking failure is

detected by employing thresholds over the tracking performance score generated by comparing

either the covariance features over consecutive frames [113], the target-background feature de-

scriptors at each time instant [C1] or the forward-reverse tracking results at a specific frame [149].

However, using experimentally derived thresholds [113, 116, 149, C1] may limit the methods to

specific trackers or visual data.

2.5 Fusion for visual tracking

Fusion enables the combining of data or information from multiple sources such that the result-

ing data is more accurate and useful in comparison to data obtained from any single source [71].

The field of visual tracking presents multiple challenges where each individual tracker is devel-

oped to handle particular sub-challenges [125]. Given that a visual tracker can fail under certain

challenges, the primary objective of fusion in visual tracking is to improve the overall tracking

performance.

Fusion in visual tracking can be applied at feature or tracker-level and the main objective of

both approaches is to compensate the failure of a single feature or tracker by using multiple com-

plementary features or trackers, respectively. Methods of feature-level fusion achieve this objec-

tive by combining multiple features in a single tracking method [43,62,127,151]. The combina-

tion is performed internally to generate a robust target appearance model allowing the tracker to

handle multiple visual challenges [91]. Tracker-level fusion combines the decisions (outputs) of

different trackers to achieve a similar task i.e. handle multiple visual challenges [16,49,118, J1].

The problem is formulated by estimating the relationships between the tracker outputs where

each single-feature tracker is modelled as a black box.

Fusion can be performed using simple combination rules such as the product [23, 76] or the

sum rule [16, 49, 151]. The product rule generally is effective for combining features that are

independent of each other (e.g. colour, edge and texture features [23]). Within a particle filter-

ing framework the product rule generates an overall likelihood function of the particle filter by

combining the likelihoods of the individual feature, where the contribution of the likelihood can

either be non-weighted [76] or weighted based on the individual feature performance [23]. The

sum rule combines outputs or decisions generated by different sources by assigning them equal

Chapter 2: State of the art 32

weights [9,13,79,J1] or weights according to their individual performances [16,49,91,127,151].

Moreover the sum rule in comparison to the product rule is less sensitive to clutter and occlu-

sions [151]. Other common techniques used for fusion include the interaction and sampling-

based [39, 74, 96] or correction-based approaches [118, 123]. Interaction and sampling-based

approaches achieve combination of multiple features [39, 96, 106] or trackers [74, 118, 124] that

share information (particles, observation likelihoods or state estimates) between each other to

improve the overall tracking performance. Correction-based approaches employ multiple track-

ers that work together to improve (correct) each others’ state estimations hence improving the

overall tracking performance [118, 124]. In the following subsections, we present and discuss

details of feature and tracker-level fusion methods.

2.5.1 Feature-level fusion

Fusion at feature level is generally carried out under a single tracker framework [91], where mul-

tiple visual features are combined together to improve target representation as compared to using

a single feature. Different sources with complementary performance working together generate

better results, where these sources could either be the features such as colour, texture, shape, mo-

tion, edges or points obtained from a single sensor or features obtained from different physical

sensors. A comprehensive survey on feature-level fusion for object tracking covers the fusion

aspect based on the feature acquisition sources i.e. from a single sensor (e.g. vision or thermal

cameras) and from multiple sensors (e.g. vision, thermal, laser, radio, stereo) [141]. In this sec-

tion we only consider fusion of features extracted from a single source (vision camera). The fea-

tures can be combined either without determining their performance (equal weighting) [13, 106]

or by determining their performance weights [31, 68, 91, 127] using the performance evaluators

as described in Section 2.4. Another approach to feature-level fusion allows the features to work

together by exchanging information with each other within a cooperative framework [39, 96]. A

summary of the state-of-the-art methods for feature level fusion is presented in Table 2.3.

One of the earliest approaches to feature level fusion combines colour histograms and in-

tensity gradients for head tracking by giving the features equal weights [13]. Being statistically

independent, the two features complement each other and provide a matching score, where the

final result is obtained by taking a direct sum of matching scores. A similar approach uses texture

descriptors and colour histograms with equal weights in a MS tracking framework [20]. How-

ever, methods where all features are given equal weight can generate incorrect results in case

Chapter 2: State of the art 33

Table 2.3: State-of-the-art methods used for feature level fusion in visual target tracking. Key
- FS: Full Search; PF: Particle Filter; KF: Kalman Filter; MS: Mean Shift; PHD: Probability
Hypothesis Density filter; IPCA: Incremental Principle Component Analysis [110]; SIFT: Scale-
Invariant Feature Transform.

Ref Tracking Target feature(s) Performance Evaluation Fusion method
[13] FS colour, intensity gradients none Linear sum
[96] KF, PF colour, contour none Interaction between filters
[20] MS colour, texture none Individual use
[88] MS colour, motion Democratic integration Democratic integration
[23] PF colour, edge, texture Feature likelihood Weighted product
[162] PF colour, IPCA Background discriminative power Weighted exponential function
[31] MS colour, intensity Background discriminative power Rank based feature selection
[133] FS colour, motion, contrast, shape, position Democratic integration

Weighted sum
[127] PF colour, intensity Democratic integration
[151] PHD colour, SIFT Spatial uncertainty
[91] PF colour, orientation Spatial uncertainty
[68] PF colour, intensity, texture Background discriminative power
[106] PF colour, motion, sound none

Partitioned sampling
[152] PF colour, shape none
[39] PF colour, edge, contours Background discriminative power Dynamic partitioned sampling

when one or more features become unreliable.

Assigning performance-based scores to the features allows the method to use those features

that are more reliable. Democratic integration has been widely used for both weighting and/or

combining different features within a tracking framework [88,127,133]. An advantage of demo-

cratic integration is its feedback loop, which allows features to improve their performance at

each time step based on the comparison between the result from each individual feature and the

combined result. The motion, colour, position, shape and contrast features are weighted using the

democratic integration approach and combined by a weighted sum of their probability densities

in a face tracking framework [133]. Using the same approach for performance evaluation and

fusion a self-organising method combines colour and intensity features for visual tracking [127],

while the approach of democratic integration can also be used to both weight and fuse colour and

motion cues within an MS tracking framework [88]. Features can also be fused by performance

weighting using either their likelihood [23] or their spatial uncertainty [91, 151]. Employing the

weighted product of likelihoods as the fusion approach, colour, texture and edge features are

combined under a Bayesian framework using feature likelihood as the performance score [23].

Similarly, the spatial uncertainty has been employed in a PF tracking framework to weight colour

and orientation features [91] and in a Probability Hypothesis Density (PHD) filtering framework

to weight colour and SIFT features [151], while fusion is carried out using the weighted sum rule.

However, using the likelihood or spatial uncertainty as feature weights can produce misleading

results if the tracker follows a distractor.

Chapter 2: State of the art 34

Another approach to feature-level fusion works by sharing information between the fea-

tures [96, 106, 152] . These methods integrate the features within the prediction step and the

interaction between features occurs during the tracking process. With four different filters (one

KF and three PF), colour and contour features are used together to track the target by separating

it from the background [96]. Each filter uses a specific feature to separately estimate the target

state, while also being dependent on the posterior of the feature returned by the previous filter.

Employing a partitioned sampling approach, colour features are combined with sound for tele-

conferencing and with motion for surveillance [106]. The sampling is a two layer process where

the likelihood of the sound or motion feature provides an approximate location of the target on

the first layer, while the colour feature improves the result on the second layer. Another approach

uses the colour and shape features where each receive priors from the other one [152]. Then each

feature draws its samples based on its own likelihood and the priors received from the other fea-

ture, hence increasing the likelihood of each feature. However these methods present the problem

of having a fixed order of the partitions, which can be solved by the Dynamic Partitioned Sam-

pling (DPS) approach [39]. DPS allows the order of the partitions to be dynamically changed

based on the performance weight of each feature. The method uses colour, edge and contours

as the features and weights the performance of each feature based on its ability to discriminate

the object from the background. The discriminative model (ability of the features to discriminate

the object from the background) can also be used to combine confidence maps of each individual

features [68]. The confidence maps of the colour, intensity and texture features are fused into a

single confidence map using the weighted sum rule [68]. The discriminative model can also be

used to rank and select the best features at run time [31].

2.5.2 Tracker-level fusion

An individual tracker can be designed to be robust against occlusions but might be unable to deal

with orientation changes of the target. Similarly another tracker could be robust against illumina-

tion and scale changes, but fail to handle background clutter. Therefore, the concept of combining

multiple trackers is to handle multiple visual challenges within a single framework. Trackers can

be combined under a cascade (sequential) [89,118,124] or in a parallel [49,59,76,J1] framework.

Trackers that are dependent on the output from another tracker or where a tracker is integrated

into another tracker [89] are categorized as cascade-based methods. Parallel frameworks for

tracker-level fusion allow the trackers to run independently and combine the outputs from each

Chapter 2: State of the art 35

tracker. Finally, tracker interaction and sampling based approaches [74] work in a cooperative

framework where the best tracker is chosen based on its performance. Table 2.4 gives a summary

of the different tracker-level fusion methods used for combining multiple trackers under a single

framework.

Sequential execution of multiple tracking algorithms requires that trackers are used in a spe-

cific order [118, 123, 124]. A tracking-by-detection approach, handles the problem of tracker

drift by combining a template-based tracker, an optical-flow based MS tracker and on-line ran-

dom forest tracker in a fall-back cascade [118]. Using a loop-back cascade another approach

uses two trackers (based on region and shape) and two detectors (head and motion) for people

tracking [124]. The four modules interact with each other having access to the output from other

modules, as well as to long-term tracking history. This approach however, limits the methods to

a specific trackers and order of execution which can be crucial if changed.

Parallel frameworks for tracker-level fusion generally consider the trackers as black boxes,

using only the outputs from each individual tracker and are not dependent upon the type of track-

ers employed in the framework. In a parallel framework, tracking algorithms can be combined

using their Probability Density Function (PDF) without evaluating their performance, where the

fused output is estimated as the product of the PDFs [76]. Performance evaluation of the trackers

within a parallel fusion framework makes it possible to either weight trackers [16,49,59], correct

weak trackers [16, 123] or remove failing trackers [J1]. Tracking outputs can then be combined

via the sum rule using either the trackers’ performance weights [16, 49] or equal weights [J1]. A

different approach to parallel tracker fusion can either make use of an additional detector within

the framework [139] or generate a shared pixel based representation using the individual tracking

outputs [59]. Employing an additional detector, the method estimates tracking performance and

combines the strengths of three different trackers within a Hidden Markov Model (HMM) frame-

work [139]. Tracking performance is measured by two different techniques; internal (dependent)

and external (independent) to the trackers used. Internal tracking performance is generated by the

trackers individually while external performance is measured by computing the distance between

the target and reference model histograms. Tracking outputs can also be fused by generating indi-

vidual tracking support sets that are then combined into a shared-pixel based representation [59].

Each support set is defined by the coordinates and corresponding likelihoods of the pixels con-

tained within the output of each tracker. The combination of the support sets is based on the

Chapter 2: State of the art 36

Table 2.4: State-of-the-art for tracker-level fusion. Key - S: Spatial; T: Temporal; C: Cascade;
P: Parallel; TM: Template Matching; ORF: Online Random Forest Tracker; MS: Mean Shift;
RT: Region Tracker; AST: Active Shape Tracker; PF: Particle Filter; EBT: Edge based Tracker;
FoT: Flock of Trackers [138]; ASMS: Scale Adaptive MST [140]; KCF: Kernelized Correlation
Filter [62]; FT: Fragments-based Tracker [2]; OBT: Online Boosting Tracker; SOBT: Semi-
supervised OBT; BSOBT: Beyond SOBT; SURFT: SURF-based Tracker; CHPF: Colour His-
togram PF; HPF: HOG-based PF; BT: Background-based Tracker; OFT: Optical flow-based
Tracker; STR: STRUCK Tracker [57, 58]; ASST: Adaptive Structural Sparse-based Tracker;
HOGHT: Hough Transform based tracker; BTT: Blending based Template tracker; MIL: Multi-
ple Instance Learning Tracker [6]; SB: SemiBoost; IVT: Incremental Visual Tracker [51]; IVTE:
IVT using Edge; ST: Sparse-based Tracker [143]; AFT: Adaptive FT [42]; LOT: Locally Or-
derless Tracker [104]; FCT: Fast Compressive Tracker [166]; AMS: Adaptive MST [102]; L1T:
L1-based Tracker [93]; LSST: Least Soft Squares threshold Tracker [142]; PDF: Probability
Density Function; HMM: Hidden Markov Model; GLAD: Generative model of Labels, Abilities
and Difficulties [148]; DN: Deep Network.

Ref Type Num. of
trackers Tracker(s) Performance

evaluation

Tracker
correlation Fusion method Fused

trackersS T
[118]

C

3 TM, ORF, MS none Correction

All

[124] 2 RT, AST none Interaction
[54, 89, 168] 2 PF, MS none Kernel-Bayesian
[76]

P

2 PF none Product of PDFs
[123] 3 RT, EBT none Correction
[139] 3 FoT, ASMS, KCF Histogram distance HMM
[169, 170] 6 FT, OBT, SOBT, BSOBT,

MIL, SURFT
Distance to fusion 3 GLAD

[49] 13 CHPF, HPF, MS, OBT,
SOBT, BSOBT, MIL, BT,
OFT, IVT, STR, ASST, L1T

Tracker motion 3

Weighted sum

[16] 2 PF Spatial uncertainty
[59] 3 HT, MS, BTT Distance to fusion
[107] 10 DN-based correlation filters Adaptive Hedge [29]
[79] 4 MIL, SB, IVT, IVTE Spatial disagreement 3 Democratic integration

Selected[74] 8
PF Likelihood Interaction and sampling[160] 4

[159] 4
[J1] 8 ST, AFT, LOT, IVT, FCT,

AMS, L1T, LSST
Time reversibility 3 3 Average

weighted sum rule, where the weight is determined by overlap of a tracker’s support set with the

fused support set. Parallel execution order allows to add, remove or re-order trackers if required,

hence is not limited by specific order or trackers. A hybrid approach that combines both parallel

and sequential execution, evaluates the performance of each tracker separately and then learns

which approach is useful for a given scenario [129]. Using the confidence scores of the features

within each tracker, the tracker with the highest score is selected in parallel execution whereas in

sequential order the first tracker with an expected error value below a fixed threshold is selected.

Besides combining the strengths of trackers in sequential or parallel orders, the Kernel-

Bayesian framework works by integrating a tracker into the framework of another tracker [24,

54, 89, 168]. The framework makes it possible to utilize the accuracy of the PF as well as the

low complexity of the MS tracker [89] by employing the MS tracker in the prediction stage for

Chapter 2: State of the art 37

improving the prediction for the PF [168]. This helps in reducing the computational complex-

ity of the conventional PF and improves reliability of the MS tracker. However, similar to the

sequential execution order, the Kernel-Bayesian framework is also limited to a specific type and

order of trackers.

Interaction and sampling based approaches are based on a probabilistic framework, where

multiple trackers interact with each other by sharing their information and are sampled to se-

lect an individual tracker according to the situation. Sampling the trackers based on their ap-

pearance and motion models via the Markov Chain Monte Carlo (MCMC) method, the trackers

further share information with each other while the appropriate tracker is selected based on its

likelihood score [74]. A similar approach employs the motion and the observation likelihood

models for tracker interaction and sampling, where the tracker with the highest likelihood is

selected [159, 160]. Using the Annealed PF (APF) and the Gaussian Process Dynamic Model

(GPDM) over a low-dimensional tracker, target motion models are utilised to sample both track-

ers [85]. The two trackers work by communicating and exchanging particles with each other.

The GPDM based tracker is trained to learn the motion models and therefore the sampler auto-

matically switches to the GPDM tracker for trained sequences, while it assigns a higher weight

to the APF for sequences that represent un-trained motions. The process of tracker interaction

makes it possible to prevent failing trackers from drifting [160], but sampling based approaches

can become computationally complex and expensive as the size of the state or number of trackers

increases. Other approaches to tracker-level fusion include learning and classifier-based meth-

ods [79,169], where labels (foreground/background) are assigned to image patches, while tracker

performance is measured either as the distance between the fused output and the output of each

tracker [169, 170] or as disagreement from other trackers [79].

2.6 Discussion

This chapter presented a review of the state-of-the-art in visual tracking, tracking performance

evaluation and fusion for visual tracking. The section for visual tracking covers different types

of tracking methods and details of the visual trackers employed for experimental evaluations of

our framework. Performance evaluation is divided into offline and online performance evaluation

methods, where a detailed discussion on trajectory, feature and hybrid-based online performance

evaluators, including tracking failure detection methods, is covered. Finally, fusion for visual

Chapter 2: State of the art 38

tracking covers both feature-level and tracker-level fusion methods.

Changes in the visual tracking environment as well as that of the target can reduce tracking

performance or cause tracker failure. However, fusion in visual tracking enables the combining

of multiple tracking algorithms in order to improve the overall tracking performance. Fusion at

feature-level uses multiple features to generate a target appearance model that is robust to the

challenges present in visual data [20, 91, 151]. Nonetheless, with increasing number and dimen-

sionality of features, the complexity of such methods increases. Tracker-level fusion methods

provide a less complex approach where outputs (decisions) from multiple trackers can be com-

bined in a cascade [118,124] or in a parallel [16,49,J1] fashion. Interaction and sampling based

approaches [74,85,159] provide another way of combining multiple trackers, where the trackers

share information and are sampled to select an individual tracker according to the situation. Cas-

cade-based approaches propose a dependence of trackers on each other where the output from

one tracker is used as input for the next tracker [118,124] or a tracker is integrated within another

tracker such as in the Kernel-Bayesian framework [54, 89, 168]. These methods imply the use of

either a specific execution order or specific trackers and are limited by the pre-definition of the

number of trackers. Interaction and sampling based methods [74, 85, 159] are based on the PF

framework, where multiple trackers work by sharing information (particles) with each other. Al-

though not limited to any specific execution order, these methods are restricted to the use of PFs.

Parallel-based approaches [16,49, J1] provide the flexibility to include or remove different types

of trackers when required and are not limited by the execution order since each tracker works

independently. The outputs from each tracker are then combined to estimate the final target state.

Furthermore, evaluating tracking performance at run-time (online) can provide additional

information to either assign performance-based weights during fusion [16, 49] or to select the

best performing one from a set of trackers [74]. These performance evaluators can make use

of the features [16, 113, 115, C1], the trajectories [49, 123, 149, J1], or a combination of both

(hybrid) [28, 38, 116]. Performance evaluators based on features such as the spatial uncer-

tainty [7,16,91] or the observation likelihood [74,159] make the evaluator dependent on specific

trackers (PFs). Trajectory-based performance evaluators using the physical properties of the tar-

get such as direction [18], velocity [123], area or shape [26] can restrict the methods to specific

visual data. The time-reversed evaluation [14, 69, 149] method evaluates performance by com-

paring outputs of the tracker (forward tracker) under evaluation with another tracker that runs in

Chapter 2: State of the art 39

the time-reversed direction until the reference frame i.e. where the forward tracker is assumed to

be correct. Albeit effective, this approach imposes a heavy computational cost as the first frame

is selected to be the reference frame, where the forward tracker is initialised by GT.

Moreover, these performance evaluators can be employed to detect tracking failures [113,

116], for example by employing empirical thresholds either over temporal changes of the spatial

uncertainty [114,116] or temporal comparisons of covariance descriptors [113]. Despite promis-

ing results for failure detection, the methods can either be restricted to specific trackers [114,116]

or can be limited to specific data due to the use of empirically derived thresholds [113]. Further-

more, the variable range of values over different trackers and visual data also limits the use of

these performance evaluators.

To address the above mentioned limitations of the SOA, we present a parallel framework for

tracker-level fusion. Due to the challenges involved, trackers can fail over time causing them to

drift away from the target and hence create different clusters (groups of trackers sharing simi-

lar spatial locations). Unlike the SOA methods that use all trackers for fusion [16, 49, 139] or

only select the best one [74, 159], our framework employs a clustering approach that determines

the clusters of trackers over time. The clustering approach makes use of short-term temporal

data (from preceding frames) to determine the pairwise spatio-temporal relationships between

trackers in order to determine the different clusters. Then using the time-reversed evaluation

approach we identify and discard failing trackers and use only the ones following the correct

target (on-target). In comparison to the time-reversed evaluation approach [149] that uses the

first frame as the reference frame, we adaptively update the reference frame forward in time to

limit the computational cost (Chapter 4). We combine the outputs from the on-target trackers

using a performance-based weighted approach, where tracker performance is determined using

a feature-based online performance evaluator (Chapter 3). The performance evaluator makes

use of features that are determined using standard tracker outputs making the method tracker-

independent [C1]. We first evaluate tracking accuracy over time by comparing distributions of

the image region defined by the tracker state and a larger region around the state. Then, we tem-

porally smooth the accuracy score using a forecasting approach which allows the accuracy score

to remain flexible over different trackers and visual data as demonstrated by the experimental

results in Section 3.4. Finally, we employ an experimentally trained threshold over the tracker

accuracy score to detect tracking failures.

Chapter 3

Tracking failure detection via forecasting

3.1 Introduction

Time instants at which a tracker fails can be estimated by validating the tracking performance

over time. Tracking performance at run time can be measured by using tracker-dependent fea-

tures such as the observation likelihood [74] or the filter uncertainty [16, 116]. Features inde-

pendent of the tracker make use of the tracking outputs to extract features such the covariance

descriptors [113] from the image. These techniques can then be employed to detect time instants

of tracking failure [113, 114, 116].

In this chapter, we propose a framework that first evaluates tracking performance by employ-

ing tracker-independent features. The method works on the state-background discrimination ap-

proach, where we use the tracker output to extract features of the state and the background region

around the state. Then, we determine distributions of the state and the background using Distribu-

tion Fields (DF) [100,122,146], where DF represents a smoothed histogram of the image region

composed of several layers (bins). We compare the state and background distributions to quantify

the similarity between the two regions, thus generating a track performance score. Raw (noisy)

values of the tracking performance score can have variable ranges for different sequences and

trackers, thereby limiting the SOA methods to specific sequences or trackers [113, 116]. To ad-

dress this problem and detect tracking failures, we model the score as a time series using the

Auto Regressive Moving Average (ARMA) model [22] and forecast future values of the time se-

ries. The difference between the original and the forecast generates a forecast error signal, which

40

Chapter 3: Tracking failure detection via forecasting 41

𝑍−1

𝑥𝑡
State region

selection

Background selection
𝑥𝑡−1

Generate state

distribution

Generate background

distribution

𝐼𝑡

B𝑡

𝐿1 distance

estimation

𝑑𝑡
2

𝑦𝑡

Background splitting

𝑏𝑡
𝑎

𝑎=1
4

𝑆𝑡

Buffer ∆𝑡1

Forecast

ො𝑦𝑡+𝑙

ǁ𝑒𝑡

𝜏1

Tracking error

detection
𝛿𝑡
𝑒



𝑟𝑎,𝑡
2

𝑍−𝑙

ො𝑦𝑡

Buffer ∆𝑡2

Figure 3.1: Block diagram of the proposed framework.

has a uniform range of values for any video data. We then detect significant changes (tracking

failures) within the forecast error signal using an experimentally derived threshold. The method

only uses tracking outputs xk
t as input to evaluate performance and detect failures, thus making

the approach generic to all trackers. We therefore remove the k superscript for the remainder of

this chapter. Figure 3.1 shows the block diagram of the proposed approach.

The framework of Detecting Tracking Failure using Forecasting (DTFF) is presented in this

chapter. The method for evaluating the performance of a tracker is presented in Section 3.2,

while the forecasting and failure detection methods are covered in Section 3.3. Experimental

setup, results and analysis for both failure detection and forecasting are covered in Section 3.4.

Finally, Section 3.5 summarizes the chapter.

3.2 Tracking performance evaluation

Using the estimated target state xt at each frame It , we evaluate tracking performance by per-

forming background analysis. Background analysis is generally employed in foreground de-

tection [21] and tracking-by-detection [6, 57, 58] approaches. Foreground detection approaches

generate over time a background model to separate moving objects from the scene [21]. Back-

ground subtraction techniques have been employed as the simplest way to model the background,

while more recent approaches employ statistical, cluster or estimation models [21]. Tracking-by-

detection approaches track the target by employing local search regions around the estimated

state from the current time instant [6, 45], typically using a sliding window approach [58]. This

local region can either be circular with a certain radius [6,58] or rectangular [45,75,99] with the

size of rectangular region being larger than the target size. However, using a circular shape [6,58]

as the search region can limit the methods to sequences where object size is larger than the circle

radius.

We employ a tracking-by-detection approach and extract a larger background region around

Chapter 3: Tracking failure detection via forecasting 42

the target state. Then, we generate distributions of both the state and background region using

colour DF [146] and compare the two distributions to generate the tracking performance score.

In the following subsections, we first explain the method for background region selection that is

followed by an overview of colour DFs and their use in generating the distributions. The final

subsection explains how the tracking performance score is computed.

3.2.1 Background selection

Using past motion and position information of the state over a sliding temporal window, we select

in It the background region Bt around the state region St defined by xt . Bt encloses both the state

and its surrounding background.

To select Bt , we first predict the target position in the next frame. We use past information

over a short sliding temporal window, ∆t1, to determine the average displacement and the direc-

tion of movement of the target (Figure 3.2(a)). Let ~Ω∆t1 be the directional feature of a tracker [3],

which represents both the average displacement and direction of the target over ∆t1 and is com-

puted as:

~Ω∆t1 =
1

∆t1

t−1

∑
t′=t−∆t1

[ut′+1−ut′ ,vt′+1− vt′], (3.1)

where the position of the target in It is predicted as [ût , v̂t] = [ut−1,vt−1]+~Ω∆t1 . The background

region Bt , centred at [ût , v̂t] with width and height of ŵt = wt−1 + d(wt−1 +ht−1)/4e and ĥt =

wt−1+d(wt−1 +ht−1)/4e [45], respectively, where d.e defines the ceil operation, is then selected

from frame It .

3.2.2 Distribution Fields

DFs have been employed for background subtraction [40, 128] as well as for tracking [46, 100,

122,146], and combine the power of histograms and intensity gradients to preserve both visual in-

formation and the spatial structure of the image region [146]. Composed of several layers (bins),

a DF is a collection of probability distributions where each distribution defines the probability

of a pixel taking the feature value (e.g. color intensity). Having dimensionality of 2+C, a DF

is represented as a matrix where the first two dimensions represent the width and height of the

image and while the feature space is indexed via the other C dimensions [122]. For example,

using the gray-scale intensity as the feature space yields a 3-dimensional DF. We determine the

Chapter 3: Tracking failure detection via forecasting 43

distributions of the two regions using colour DF [146]. Using the RGB feature space results in a

4-dimensional DF, one for each channel of the image region.

Let dt(i, j,c,m) be the DF, where i = 1, ...,ht and j = 1, ...,wt define the pixel location in St ,

c ∈ {R, G, B} is the feature channel and m = 1, ...,M is the index of the layer. A DF is generated

in three steps. The first step explodes the image into multiple layers (Figure 3.2(c)) resulting in a

Kronecker delta function at each pixel location:

dt(i, j,c,m) =


1 if d St(i, j,c)

κ
e= M,

0 otherwise,

(3.2)

where κ , the size of each layer, is the ratio between the maximum feature value (e.g. 255 for an

RGB channel) and M. Although in a larger representation, dt(i, j,c,m) contains the same infor-

mation as contained in the original image (St). The second step spatially spreads the information

in dt(i, j,c,m) by convolving dt(i, j,c,m) with a 2-D Gaussian kernel hσ1 over m as:

d1
t (m) = dt(m)∗hσ1 , (3.3)

where σ1 is the standard deviation of hσ1 and ∗ is the convolution operation. Finally, to better

handle small variations in brightness and subpixel motion [122] d1
t (m) is convolved with a 1-D

Gaussian kernel hσ2 (with standard deviation σ2) over (i, j,c) (Figure 3.2(d)) as:

d2
t (i, j,c) = d1

t (i, j,c)∗hσ2 . (3.4)

To compare the DF of Bt with d2
t (i, j,c,m), we divide Bt into four smaller and equally sized

regions ba
t , where a = 1, ...,4, having width wt and height ht (Figure 3.2(b)). Then, using the

same feature space, a distribution for each ba
t (r2

a,t(i, j,c,m)) is computed using Eqs. (3.2) - (3.4),

where St , dt , d1
t and d2

t are replaced by ba
t , ra,t , r1

a,t and r2
a,t , respectively.

3.2.3 Tracking performance score

The two distributions can be compared using different distance measures such as the L1, Bhat-

tacharya or Mahalanobis distance. Since L1 computes the difference at each pixel location (i, j),

it can provide higher discrimination between the two distributions. We use the L1 distance to

Chapter 3: Tracking failure detection via forecasting 44

. . . .

Ω∆𝑡1

𝐼𝑡−∆𝑡1 𝐼𝑡−1 𝐼𝑡
𝑆𝑡

𝑏𝑡
𝑎

𝑎=1
4

𝑑𝑡

𝑟𝑎,𝑡 𝑎=1

4

𝑑𝑡
2

𝑟𝑎,𝑡
2

𝑎=1

4

(a) (b) (c) (d)

B𝑡

Figure 3.2: Background and state region selection. (a) xt−∆t , ..., xt−1 (enclosed in the blue
bounding boxes) and motion information ~Ω∆t1 over a sliding temporal window ∆t1; (b) back-
ground region Bt (enclosed in the red bounding box) and state region St (enclosed in the yellow
bounding box) are selected from frame It and Bt is further split into smaller regions {ba

t }4
a=1;

(c)-(d) distributions of Bt and St represented with colour DF [146].

compare d2
t (i, j,c,m) and r2

a,t(i, j,c,m) on each channel as:

ya
t =

1
wt ht M ∑

c∈{R,G,B}

(
αc

ht

∑
i=1

wt

∑
j=1

M

∑
m=1

∣∣d2
t (i, j,m)− r2

a,t(i, j,m)
∣∣) , (3.5)

where |.| denotes the absolute value. We normalise the distance by the height and width of the

state and the number of layers. The weight αc assigned to each channel is computed as:

αc =

∣∣∣µc
St
−µc

ba
t

∣∣∣
∑

c∈{R,G,B}

∣∣∣µc
St
−µc

ba
t

∣∣∣ , (3.6)

where µc
St

and µc
ba

t
are the mean R, G, B values for St and ba

t , respectively. Weighting the colour

channels allows us to exploit the most discriminative one(s) when comparing the two distribu-

tions.

The overall tracking performance score yt is determined by quantifying the similarity be-

tween Bt and St as:

yt =
1
4

4

∑
a=1

ya
t , (3.7)

where low (high) values of yt indicate similarity (dissimilarity) between Bt and St .

Chapter 3: Tracking failure detection via forecasting 45

3.3 Detecting tracking failure

We detect tracking failure by employing time series analysis to model Y = {yt}T
t=1 as a univariate

discrete time series for forecasting. yt can only estimate the tracking performance at each t, where

tracking failures and noise generate significant and small changes, respectively in Y. The noise

can be generated by noisy video data and therefore the range of Y can vary for different video

data. We model Y using a forecasting model to minimize noise and to generate a signal that has

a uniform range of values for all video data. In the following section we discuss the forecasting

and the failure detection methods.

3.3.1 Forecasting

Forecasting has been employed for multiple applications within the domain of economics [136],

environment [70], medicine, politics and other fields [131, 147]. It deals with the prediction

of future events either in the short-term or the long-term period. A forecasting model makes

use of the past information and a forecasting model, where the model is used to determine the

patterns within the time series and the relationships between the past and current values. Then,

using the estimated parameters and the forecasting model, future values of the time series are

predicted over the forecast lead time. Finally, a difference between the original time series and

its forecast generates the forecast error signal. Forecasting methods such as moving average

models [63] have flat forecast functions and generally do not take past information into account.

ARMA models [22] are built using past data and forecast using both past and present data. State-

space models, such as the KF, require the model of the time series to be known beforehand for

forecasting [50]. SVM [119] and neural network models [50] are more complex than ARMA for

forecasting. A comprehensive survey of time series forecasting is presented in [50]. We employ

ARMA to model Y, where the difference between the forecast and the original returns a re-scaled

signal, highlighting only the significant changes (tracking failure).

We next describe the general ARMA model and the forecasting approach which is then used

for detecting tracking failure. ARMA(p,q) models are defined by their auto regressive (AR)

and moving average (MA) orders p = 0, ...,P and q = 0, ...,Q, respectively. Determining the

right model requires identification of P and Q that can be achieved by simpler methods such

as by visually inspecting the behavior of the Auto Correlation Function (ACF) and Partial Auto

Correlation Function (PACF) plots of Y or by employing statistical tests such as the Akaike and

Chapter 3: Tracking failure detection via forecasting 46

#430 #450 #452 #456

(a)

0 200 400 600
Frames

0

0.5

1

(b)

0 200 400 600
Frames

0.035

0.055

Q
ua

lit
y

sc
or

e original forecast

(c)

0 200 400 600
Frames

0

.005

.01

(d)

Figure 3.3: Example for track performance evaluation with forecasting using the results produced
by tracker DSST [34,36] on the VOT2014 sequence basketball. The tracker is re-initialised after
a failure at frame 452. (a): Tracking results. Red, yellow and green represent Bt , St and the
ground-truth state, respectively. (b) Tracker performance measured as Ot (Section 3.4.2); (c)
original yt and its forecast ŷt+l; (d) forecast error signal |ẽt |. The tracking failure at frame 452 is
reflected as a significant change within |ẽt |.

Bayesian Information Criteria [50]. The behavior of the ACF and PACF plots of a time series can

help determine the values of P and Q of the ARMA model. The ACF of an AR(p) process goes

to zero at an exponential rate (tails-off), while the PACF cuts off (becomes zero) after order P.

Conversely, the ACF of an MA(q) process cuts off after order Q, while the PACF tails-off [22].

The general form of an ARMA(p,q) model is given as:

yt =
P

∑
p=0

φ(p) yt−p +
Q

∑
q=0

ϑ(q) εt−q +β , (3.8)

Chapter 3: Tracking failure detection via forecasting 47

where, β is a constant; φ(p) and ϑ(q) are the AR and MA polynomials, with orders p and q

respectively, and εt = ŷt − yt is termed as the residual (estimation error) [22].

Using P,Q and the past values of yt within a sliding temporal window ∆t2, ŷt : the es-

timated values (obtained by fitting the forecast model to yt) are determined using Eq. (3.8)

by replacing yt , φ(p), ϑ(q) and β , with the estimated parameters ŷt , φ̂(p), ϑ̂(q) and β̂ , re-

spectively. The parameters (φ̂(p), ϑ̂(q) and β̂) can be recursively estimated using techniques

such as the conditional least squares or the maximum likelihood methods [22]. Using the pa-

rameters Ψ =
{

P,Q, φ̂(p), ϑ̂(q), β̂
}

forecasts are recursively computed over the forecast lead

time l ≥ 1 at time t as:

ŷt+l =


∑

P
p=0 φ̂(p) ŷt+l−p +∑

Q
q=0 ϑ̂(q) εt+l−q + β̂ for l < Q,

∑
P
p=0 φ̂(p) ŷt+l−p + β̂ otherwise,

(3.9)

where εt is replaced by zeros for l > Q, because it has not occurred yet [22]. The forecasting

error ẽt+l = yt+l− ŷt+l determines the accuracy of a forecasting approach [50]: low (high) values

indicate good (bad) forecasts. Note that the estimation error (εt): difference between the orig-

inal (yt) and the estimated values (ŷt) is different from the forecasting error (ẽt+l): difference

between the original (yt) and forecasts (ŷt+l) [95].

3.3.2 Tracking failure detection

We then determine time instants of tracking failure by employing the absolute values of forecast

error |ẽt+l|. Since the values of ŷt+l are dependent on past values of yt between t−∆t2 and t, |ẽt+l|

temporally smooths yt . A tracking failure is represented by a significant change in the value of yt

that is then detected by et+l as:

et+l =


1 if |ẽt+l| ≥ τ1,

0 otherwise,

(3.10)

where the threshold τ1 is determined experimentally. Finally, if δ e
t = et+l− et+l−1, then δ e

t = 1

indicates when a tracking failure first occurs.

Chapter 3: Tracking failure detection via forecasting 48

3.4 Experimental results and analysis

This section presents an experimental analysis of the DTFF framework. We employ a hetero-

geneous dataset for testing purposes to evaluate the efficiency of DTFF in detecting time in-

stants when the tracker fails. Using the ST tracker (Section 2.2.5), we test the method over the

D1 dataset and selected sequences from the Object Tracking Benchmark (OTB)1 dataset (Ap-

pendix A). Finally, to demonstrate the flexibility of the DTFF framework in detecting track-

ing failures, we test the approach by using tracking results from four different trackers: DSST,

SAMF, KCF, PLT 14 over the Visual Object Tracking (VOT) dataset from the VOT2014 chal-

lenge2. Further details and target initializations of the datasets are presented in Appendix A.

First, we present the details of the experimental parameters, the evaluation measures and

the SOA methods used within the framework in Section 3.4.1, Section 3.4.2 and Section 3.4.3,

respectively. Experimental results and analysis for tracking failure detection over the OTB and

VOT datasets are presented in Section 3.4.4 and 3.4.5, respectively. Finally, we present results of

forecasting accuracy in Section 3.4.6.

3.4.1 Experimental parameters

Model building and parameter estimation of the framework is achieved using the MATLAB built-

in arima and estimate functions, respectively. As finding the best fit for Y is out of the scope of

this work, we choose the values of P=Q=1 by visually inspecting the ACF and PACF plots of Y

based on their properties as explained in Section 3.3.1. The temporal window ∆t1 = 10 provides

an optimal value to encode the average target displacement and direction. The standard deviation

of the 2-D Gaussian kernel is set to σ1 = 1 and 2 for the u and v directions, respectively, and

σ2 = 0.625 for the 1-D Gaussian kernel as in [122], while the number of layers, M = 32 provides

a better discrimination between background and target distributions. Using the dataset D1 we

perform an empirical analysis to determine the optimal values of ∆t2, l and τ1. For determining

the optimal amount of past data required to build the forecast model we change ∆t2 values as 10

and 20. The forecast lead time is varied as l = 5, 10, 25, 50 to determine the performance for

both short-term and long-term forecasts. Finally, the threshold τ1 was varied between 0.003 and

0.009 with a step size 0.001. Based on the results obtained on dataset D1, we find that the best

results were obtained by using ∆t2 = 20, l = 5 and τ1 = 0.004. Using these values, we further test

1http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
2http://www.votchallenge.net/vot2014/index.html

http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
http://www.votchallenge.net/vot2014/index.html

Chapter 3: Tracking failure detection via forecasting 49

the approach over both OTB and VOT datasets (Appendix A).

3.4.2 Evaluation measures

In order to measure tracking performance, we measure the deviation from the GT as the overlap

score Ot between the tracker output xt and GT annotation as [114]:

Ot = 1− 2|Ax
t
⋂

AGT
t |

|Ax
t |+ |AGT

t |
, (3.11)

where Ax
t and AGT

t represent the area in pixels of the estimated, xt , and GT target locations,

respectively; |Ax
t
⋂

AGT
t | is their spatial overlap in pixels. Ot ∈ [0,1] and values close to 0 (1)

indicate high (low) tracking performance.

For measuring the performance of DTFF in detecting tracking failures, time instants when

Ot changes from success (Ot < 1) to failure (Ot = 1) are determined by the GT transitions,

(δ O
t = O′t −O′t−1, if O′t−1 = 0 and O′t = 1, otherwise δ O

t = 0), where O′t is determined as [114]:

O′t =


1 if Ot = 1,

0 if Ot < 1.

(3.12)

We use the number of true positives (nT P), false positives (nFP), false negatives (nFN) and true

negatives (nT N) to measure the performance of DTFF in detecting tracking failures. For DTFF

nT P (nFN) indicate whether the decisions, δ e
t , of the proposed method correspond correctly (in-

correctly) to the tracking failure decisions generated by δ O
t . Similarly, a correct (incorrect) match

of the tracking success decisions between δ e
t and δ O

t is determined by nT N (nFP). A tolerance

window of ±5 frames is used to match δ e
t with each δ O

t . Using nT P, nFP, nT N and nFN , we then

compute the precision, P = nT P
(nT P+nFP)

, the recall, R = nT P
(nT P+nFN)

, the F-score = 2. P.R
P+R , and the

false positive rate FPR = nFP
nFP+nT N

[125]. Values for the F-score close to 1 (0) indicate high (low)

accuracy.

For evaluating the accuracy of the forecasting model employed within DTFF, the forecast

error ẽt (Section 3.3) and its root mean squared error [65] are the most common measures. How-

ever due to their scale dependence, we employ a scale independent measure known as the mean

absolute scaled error MASE [65]:

Chapter 3: Tracking failure detection via forecasting 50

MASE =
1
T

T

∑
t=1

(∣∣∣∣∣ ẽt
1

T−1 ∑
T
t=2 |yt − yt−1|

∣∣∣∣∣
)
. (3.13)

We use the mean absolute percentage error MAPE = 1
T ∑

T
t=1 (|ẽt/yt | ·100) to compute the per-

centage error. High (low) values of both MAPE and MASE indicate high (low) forecasting

accuracy.

DTFF employs a forecasting model to smooth out values of the tracking performance score

yt , giving DTFF the advantage to be flexible over different datasets and trackers. Let a generic

zt represent |ẽt |, yt or the tracking performance scores generated by the SOA methods, and Z =

{zt}T
t=1 be the corresponding time-series. We normalise each zt as:

z′t =
zt −min(Z)

max(Z)−min(Z)
, (3.14)

to enable the comparison of variations of the corresponding values over the whole dataset.

3.4.3 Selected benchmark methods

We compare DTFF for detecting tracking failure with two variations of the proposed approach:

RAW and NAIVE; one SOA method for tracker failure detection: Covariance Features (CovF) [113]

and two SOA feature descriptors employed for video tracking: RGB Histograms (RgbHist) and

RGB+LBP Histograms (RLHist) [101].

For NAIVE, we change the forecasting model to Naive [50] that detects tracking failures

by forecasting values of yt equal to the last observed value (ŷt+l = yt). The threshold value

for the method is set by varying the threshold values between 0.002 and 0.007 with a step size

of 0.001 over D1 where the threshold value = 0.004 returns the best results and is selected for

testing. For RAW, we remove the ARMA forecasting model and use raw yt values. Value of the

threshold = 0.039 for failure detection is determined varying the values of the threshold between

0.025 and 0.045 with a step size of 0.001 over dataset D1.

We replace our DF based feature with other SOA features i.e. CovF [113], RgbHist and RL-

Hist [101] for failure detection within our state-background discrimination framework. CovF [113]

employs a 5-dimensional target descriptor based on the colour and position values to determine

tracking performance. For failure detection, the threshold for CovF is set to 2.3 as used in [113].

RgbHist generates histograms based on the colour feature (RGB), while RLHist is based on his-

Chapter 3: Tracking failure detection via forecasting 51

Table 3.1: Comparison of tracking failure detection performance in terms of precision (P), recall
(R), F-score (F) and false positive rate (FPR). The results are presented as total values over the
OTB dataset. The best results are indicated by bold font. The last row shows the mean±standard
deviation of z′t . Key — DTFF: Detecting Tracking Failure using Forecasting; NAIVE: failure de-
tection by forecasting yt via the Naive forecasting model [50]; RAW: failure detection using raw yt

values; CovF: Covariance Features [113]; RgbHist: RGB Histogram [101]; RLHist: RGB+LBP
Histogram [101].

DTFF NAIVE RAW CovF RgbHist RLHist
P .110 .111 .122 .087 .083 .078
R .714 .667 .405 .714 .595 .667
F .191 .190 .188 .155 .146 .140

FPR .037 .035 .019 .048 .042 .051
µ±σ .17±.18 .15±.17 .60±.23 .30±.17 .67±.16 .61±.16

tograms generated by combining both the RGB and local binary patterns (LBP) features. RgbHist

and RLHist are employed to generate a tracking performance score and then the threshold = 0.88

value for both methods is selected by varying the threshold values between 0.80 and 1.00 with a

step size of 0.01.

For DTFF, NAIVE and CovF the tracking failure is detected for values above their respective

thresholds, while for RAW, RgbHist and RLHist for values below their respective thresholds.

3.4.4 Tracking failure detection

We first compare DTFF with NAIVE and RAW, and then with CovF, RgbHist and RLHist on the

OTB dataset. While the values of yt vary across sequences (see Figure 3.4(a)-(d)), forecasting

enables us to generate a signal with the same range of values for the whole dataset. In CarDark

an illumination variation and background clutter cause a tracking failure between frames 270 and

280, while in Crossing a tracking failure occurs due to scale variations. RAW achieves lower P

than DTFF and NAIVE (Table 3.1), which detect these failures with their respective forecasting

approaches. RAW achieves a lower FPR and hence a better P than DTFF and NAIVE, because

for sequences where the tracker fails to re-acquire the target after a failure, the values of yt fall

below the threshold. However, since the tracker is not stopped (or re-initialised), yt generates

false significant changes, which are recorded as tracking failures by DTFF and NAIVE (see

Figure 3.4(b) and (d)). Since NAIVE forecasts values at time t for the complete forecast lead

time (l), it may suppress some of the false significant changes (false positives) of yt resulting in

a better P than DTFF. However, this behaviour also results in a lower R for NAIVE. The R of

DTFF outperforms that of RAW and NAIVE by 76% and 7%, respectively, hence DTFF achieves

a better F-score.

Chapter 3: Tracking failure detection via forecasting 52

0 50 100 150 200 250
0

0.5

1

Frames
0 50 100 150 200 250

10-3

0

3

6

0 50 100 150 200 250

y
t

.03

.035

.04

threshold

1

0 50 100 150 200
0

0.5

1

0 50 100 150 200
0

.025

.05

Frames
0 50 100 150 200
0

.005

.015

threshold

1

(a) (b)

20 40 60 80 100
0

0.5

1

20 40 60 80 100
0.01

0.02

0.03

0.04

Frames
20 40 60 80 100

0
.005

.015

.025

1

threshold

0 100 200 300 400
0

0.5

1

0 100 200 300 400
.02

.04

Frames

0 100 200 300 400
0

.0025

.01

threshold

1

(c) (d)

Figure 3.4: Example of variation of the tracking performance score, yt , for (a) CarDark, (b)
CarScale, (c) Crossing, (d) Doll. Top row: tracker performance measured as Ot . Middle row:
tracking performance score yt (blue line). Bottom row: forecast error |ẽt | (blue line). τ1 and
‘threshold’ are used to detect time instants when the tracker fails for DTFF and RAW, respectively.

Chapter 3: Tracking failure detection via forecasting 53

#250 #270 #282 #292

0 50 100 150 200 250

O
t

0

0.5

1

0 50 100 150 200 250

S
c
o
re

10-3

0

5 DTEF 1

Frames
0 50 100 150 200 250

S
c
o
re

0

2

CovF threshold

Frames
0 50 100 150 200 250

S
c
o
re

0.8

.9

1
RgbHist RLHist threshold

#250 #270 #282 #292

0 50 100 150 200 250

O
t

0

0.5

1

0 50 100 150 200 250

S
c
o
re

10-3

0

5 DTFF 1

Frames
0 50 100 150 200 250

S
c
o
re

0

2

CovF threshold

Frames
0 50 100 150 200 250

S
c
o
re

0.8

.9

1
RgbHist RLHist threshold

Figure 3.5: Example of tracking performance scores for CarDark. First row: Sample tracking
results: the red, yellow and green bounding boxes represent Bt , St and the ground-truth state,
respectively. Second row: tracker performance measured as Ot (left) and |ẽt+l| score measured
with DTFF (right). Third row: tracking performance score measured with CovF (left); and
tracking performance score measured with RgbHist and RLHist (right).

DTFF outperforms CovF, RgbHist and RLHist in terms of F-score, giving an overall im-

provement of 23%, 31% and 36% compared to CovF, RgbHist and RLHist, respectively. CovF,

RgbHist and RLHist have a variable range of values over the dataset that leads to false positive

and false negative tracking failure decisions. Although CovF detects the same number of tracking

failures as DTFF, a lower P results in lower F-score. RgbHist and RLHist are affected by these

variations in terms of R. Furthermore, CovF, RgbHist and RLHist have similar failure modes to

DTFF since their descriptors use colour as their primary feature. CovF achieves better results

than RgbHist and RLHist, possibly because it uses position information as well, while RLHist

improves over RgbHist, possibly due to the additional LBP features. Sample results for sequence

CarDark and Doll are shown in Figure 3.5 and Figure 3.6, respectively.

DTFF generates false positive tracking failure decisions when RAW generates significant

changes after a tracker has failed. Furthermore, DTFF fails to detect tracking failures when

RAW does not generate a change in yt due to background clutter (in Liquor and MountianBike),

occlusions (in Jogging), sudden background lighting changes (in Singer1) and fast target rotation

and background clutter (in MotorRolling).

Chapter 3: Tracking failure detection via forecasting 54

#440 #450 #457 #470

0 100 200 300 400

O
t

0

0.5

1

0 100 200 300 400

S
c
o
re

0

.005

.01 DTFF 1

Frames
0 100 200 300 400

S
c
o
re

0

2

4
CovF threshold

Frames
0 100 200 300 400

S
c
o
re

0.6

0.8

1

RgbHist RLHist threshold

Figure 3.6: Example of tracking performance scores for Doll. First row: Sample tracking results:
the red, yellow and green bounding boxes represent Bt , St and the ground-truth state, respec-
tively. Second row: tracker performance measured as Ot (left) and |ẽt+l| score measured with
DTFF (right). Third row: tracking performance score measured with CovF (left); and tracking
performance score measured with RgbHist and RLHist (right).

3.4.5 Results on the Visual Object Tracking dataset

Finally, we analyse the flexibility of DTFF via an experimental comparison with other methods

using results from four trackers (DSST [34, 36], SAMF [81], KCF [62], PLT 14 [61]) and se-

quences from the VOT2014 challenge [73] (see Table 3.2). Note that VOT re-initialises trackers

after failure (Ot=1): the tracker is stopped for the subsequent five frames and then is re-initialised

with GT. In order to compensate for the missing tracking results, we keep for these five frames

the same tracking result obtained when the tracker fails. The re-initialisation of the trackers al-

lows DTFF to reduce its FPR and to achive a better F-score than RAW. Overall, DTFF improves

by 51% and 94% in terms of F-score over both RAW and NAIVE, respectively. Using the forecast

error signal allows DTFF to detect tracking failures that are not detected by RAW. DTFF detects

more tracking failures than CovF, RgbHist and RLHist, and achieve the best R values for all the

four trackers and a better F-score for trackers DSST and PLT 14, indicating that the threshold,

τ1, is applicabile to various datasets. However, RgbHist and RLHist achieve a better F-score for

KCF and SAMF, respectively, due to a smaller FPR. All the approaches achieve their best results

for DSST followed by KCF, SAMF and PLT 14.

Furthermore, we display results with three decimal digits to better compare the performance

of the methods. Rounding to two decimal digits converts most FPR results equal. For e.g. in

Chapter 3: Tracking failure detection via forecasting 55

Table 3.2: Comparison of tracking failure detection performance in terms of precision (P), recall
(R), F-score (F) and false positive rate (FPR). The results are presented as total values over the
whole VOT2014 dataset. The best results are indicated by bold font. The last row for each tracker
shows the mean±standard deviation of z′t . Key — DSST: Discriminative Scale Space Tracker [34,
36]; KCF: Kernelized Correlation Filter [62]; SAMF: Scale Adaptive KCF tracker [81]; PLT 14:
Pixel based LUT Tracker [61]; DTFF: Detecting Tracking Failure using Forecasting; NAIVE:
failure detection by forecasting yt via the Naive forecasting model [50]; RAW: failure detection
using raw yt values; CovF: Covariance Features [113]; RgbHist: RGB Histogram [101]; RLHist:
RGB+LBP Histogram [101].

DSST SAMF
DTFF NAIVE RAW CovF RgbHist RLHist DTFF NAIVE RAW CovF RgbHist RLHist

P .154 .124 .080 .077 .136 .135 .118 .078 .053 .059 .106 .126
R .700 .326 .395 .465 .488 .651 .488 .220 .244 .342 .415 .488
F .252 .180 .135 .132 .213 .224 .190 .115 .087 .100 .168 .200

FPR .016 .010 .020 .024 .013 .018 .015 .011 .018 .022 .014 .014
µ±σ .18±.17 .16±.16 .54±.19 .35±.17 .66±.16 .62±.14 .18±.17 .16±.16 .54±.19 .34±.17 .64±.16 .63±.13

KCF PLT 14
DTFF NAIVE RAW CovF RgbHist RLHist DTFF NAIVE RAW CovF RgbHist RLHist

P .158 .095 .070 .093 .183 .145 .065 .057 .041 .029 .016 .045
R .535 .256 .302 .419 .488 .395 .435 .304 .478 .217 .130 .261
F .243 .138 .114 .152 .266 .213 .113 .096 .076 .051 .028 .076

FPR .012 .010 .017 .017 .009 .010 .014 .012 .025 .017 .019 .015
µ±σ .16±.16 .16±.16 .55±.18 .36±.17 .68±.15 .64±.13 .19±.17 .17±.16 .57±.19 .41±.17 .61±.17 .61±.15

Table 3.2 under the DSST tracker, the results for DTFF, RAW, CovF and RLHist round to 0.02

while for NAIVE and RgbHist to 0.01, making it difficult to compare performance. Using two

decimal digits for P, R and F-score does not have the same effect, however, we use three decimal

digits to keep a uniformity of results. On the contrary using four instead of three does not cause

any significant difference between the results.

3.4.6 Forecast accuracy

Results over the OTB dataset for forecasting accuracy are presented in Fig. 3.7. The results

indicate that with increasing forecast lead time (l), forecasting accuracy decreases. Furthermore,

the results also indicate that NAIVE is able to achieve overall best results for both ∆t2=10 and

20. The scaling factor in MASE Eq. 3.13 (based on naive forecast model), provides Naive an

upper edge on other forecasting models. Furthermore, Naive uses the original values (yt) for the

entire l allowing it achieve better forecast accuracy. However, Naive is generally employed as a

benchmark against other forecasting models and not considered for forecasting since it may not

efficiently utilize past information [1]. Comparing DTFF (ARMA) with Drift and EWMA for

longer l, EWMA overall achieves better results. However, since the proposed approach performs

better with shorter l, we see that DTFF achieves better results for both MAPE and MASE for

Chapter 3: Tracking failure detection via forecasting 56

l5 10 25 50

M
A
P
E

6

9

12

15 DTFF Naive Drift EWMA

l5 10 25 50

M
A
P
E

6

9

12

15 DTFF Naive Drift EWMA

(a) (b)

l5 10 25 50

M
A
S
E

1

2

3

4 DTFF Naive Drift EWMA

l5 10 25 50

M
A
S
E

1

2

3
DTFF Naive Drift EWMA

(c) (d)

Figure 3.7: Comparison of forecast accuracy for selected forecasting approaches measured as
mean absolute percentage error (MAPE) and mean absolute scaled error (MASE) for varying
forecast lead times l. MAPE for (a) ∆t2 = 10 (b) ∆t2 = 20; MASE for (c) ∆t2 = 10 (d) ∆t2 = 20.

shorter l. In summary, simple forecasting models that do not extrapolate minor or major changes,

may in some cases outperform better models that identify and extrapolate these changes in the

time series data.

3.5 Summary

This chapter presented a formulation for detecting tracking failures using a forecasting model.

First, we evaluate the performance of the tracker by employing a state-background discrimi-

nation approach. This is achieved by determining distributions of both the state region and a

larger background region around the target state. A comparison of the two distributions returns

the tracking performance score. The score reflects the tracking failures as significant changes,

while small changes reflect noise generated due to the noisy video data. To suppress noise and

detect only the significant changes, we model the tracking performance score using a forecast-

ing approach. We employ the ARMA forecasting model to generate short-term forecasts (future

values) of the tracking performance score. Then, a difference between the original and forecast

values generates the forecast error signal, that is used to detect tracking failures by employing

an experimentally determined threshold. Values of the forecast error signal above the threshold

reflect a tracking failure. We demonstrate the effectiveness of the method by testing it over two

different datasets and five different trackers. We also perform experimental comparison with two

variations of the proposed method and three SOA methods.

Furthermore, to weight each tracker during the fusion process (Section 4.5), we use the track-

ing performance score based on the state-background discrimination approach. Assigning per-

Chapter 3: Tracking failure detection via forecasting 57

formance based weights to tracker during the fusion process may help the fusion process in

improving the overall tracking accuracy in comparison to the equal weighted fusion approach.

Chapter 4

Clustering based approach to tracker-level fusion

4.1 Introduction

Fusion for visual tracking can be performed at feature or tracker-level [151]. Feature-based ap-

proaches fuse multiple features in a single tracking framework to adapt to appearance changes [7,

43,62,127,151]. Tracker-level fusion combines the output of multiple trackers either in a sequen-

tial (cascade) manner [96, 118, 124], using outputs from specific trackers [89, 168], employing

likelihood-based fusion [74], in parallel [49] or with a correction framework [16]. Online per-

formance evaluation of the trackers or features prior to fusion can help to increase tracking accu-

racy, where this performance evaluation identifies the best performing trackers or features at run

time [116]. Performance can be estimated using features such as the filter uncertainty [16, 91]

and likelihood [74] or by using properties of the trajectories such as target velocity [123] and

correlation between tracking outputs [49].

In this chapter we present a tracker-level fusion framework that combines the outputs of se-

lected trackers in parallel. A block diagram of the framework is presented in Figure 4.1. Using

the outputs (xk
t) of each tracker (Fk), we group the trackers hierarchically based on their agree-

ment in estimating the target state in terms of spatial location and direction of movement over a

short temporal window ∆t3 (Tracklet correlation). This agreement is quantified by the correla-

tion scores (Ri, j
∆t3) between pairs of trackers F i and F j. Using these spatio-temporal scores, we

generate the partition hypothesis {Pp,t}K
p=1 to determine the groups (clusters) of trackers that are

within the same region (Partition generation). After determining the best partition P∗t (Partition

58

Chapter 4: Clustering based approach to tracker-level fusion 59

…

𝑥𝑡
1

Partition

validation

ℙ𝑝,𝑡 𝑝=1

𝐾

ℙ𝑡
∗

𝐼𝑡
State

selection

𝐹1

ℂ𝑡
∗

…

𝑥𝑡
𝑘

𝑥𝑡
𝐾

𝐹𝑘

𝐹𝐾

Partition

generation
Fusion

…

Tracklet

correlation

buffer Δt3

………

Reverse

evaluation

buffer Δt4
ℙ𝑡−1
∗

Split-

Merge

detection
𝑧−1

𝕐𝑡 𝑥𝑡
𝑛

𝑛=1
𝑵

𝑥𝑡
∗𝑅∆𝑡3

𝑖,𝑗

𝑅∆𝑡3
1,2

𝑅∆𝑡3
𝐾−1,𝐾

…
…

……

Figure 4.1: Block diagram of the proposed approach to fuse the output of K trackers.

validation), we identify the on-target (successfully following the target) cluster C∗t . This identifi-

cation is achieved using an online performance evaluator (Reverse evaluation) that uses reverse-

tracking [149] over a sliding temporal window ∆t4. Such evaluation requires standard tracking

outputs (e.g. bounding boxes), thus providing a generic evaluator across all trackers. Finally, the

outputs from the on-target cluster C∗t are fused to estimate the final target state (x∗t) (Fusion). C∗t

is propagated over time until a split or merge is detected (Split-Merge detection), which happens

when trackers leave or join the cluster C∗t , respectively. The framework employs two temporal

windows ∆t3 and ∆t4 (Figure 4.2), during which data is buffered from future and past time in-

stants, respectively. The temporal window used for determining the spatio-temporal agreements

makes the approach suitable for applications that can tolerate a short latency of ∆t3.

In this chapter, we first discuss tracker clustering method in Section 4.2, while the adaptive

time-reversed evaluation method is presented in Section 4.3. The fusion approach is discussed

in Section 4.4, which is followed by the experimental setup in Section 4.5. We then present the

experimental analysis of the three sections: tracker clustering, adaptive time-reversed evaluation

and fusion, in Sections 4.6, 4.7 and 4.8, respectively. Results and discussion on the computational

time of the framework are covered in Section 4.9. Finally, Section 4.10 summarizes the chapter.

4.2 Tracker clustering

Assuming that all the trackers are initialized with ground truth, the proposed framework starts

with a single cluster. However, over time trackers may fail due to the challenges involved in the

visual data and split into different clusters. To determine the changing configuration and number

of clusters, we measure the spatio-temporal agreement between pairs of trackers at each frame

It . These agreements are used to determine the partition hypotheses dividing the K trackers into

clusters and then to find the partition that best represents the spatio-temporal relationships among

the trackers.

Chapter 4: Clustering based approach to tracker-level fusion 60

𝑡 𝑡 + 𝑡3𝑡 − 𝑡4

Forward – tracklet correlationBackward – reverse evaluation

Fusion time

Figure 4.2: Temporal windows ∆t3 and ∆t4 employed by the proposed approach to account for
forward and backward data, respectively. Forward data are used to determine the relationships
among trackers via their trajectories (Section 4.2). Backward data are used to check tracker
performance via a time-reversed evaluator (Section 4.3).

4.2.1 Tracklet correlation

We combine spatial and temporal features of the short-term trackers’ trajectories (tracklets) to

obtain a set of pair-wise correlation scores Ri, j
∆t3 , for 1≤ i, j ≤ K with i 6= j; for pairs of trackers

F i and F j over a temporal window ∆t3. These scores quantify the agreement between F i and

F j by determining the amount of spatial overlap and the temporal direction of movement using

their tracking outputs xi
t and x j

t , respectively. The spatial agreement for F i and F j at frame It is

determined as:

Oi, j
t =

2|Ai
t
⋂

A j
t |

|Ai
t |+ |A

j
t |
, (4.1)

where Ai
t and A j

t are the sets containing the pixels of the bounding boxes generated by tracker F i

and F j, respectively, and |.| is the cardinality of a set. Oi, j
t ∈ [0,1] and a value of 1 (0) represents

a full agreement (disagreement). The spatial agreement over time is computed by averaging Oi, j
t

over ∆t3:

Oi, j
∆t3 =

1
∆t3

t+∆t3

∑
t

Oi, j
t . (4.2)

In order to estimate the agreement for motion direction, we compute a score ri, j
∆t3 using the

directional feature ~dk
t of each Fk [3] over ∆t3 that encodes the trajectory direction:

~dk
t =

(
uk

t+∆t3−uk
t ,v

k
t+∆t3− vk

t

)
. (4.3)

The directional similarity score ri, j
∆t3 is computed between F i and F j using the cosine similar-

ity:

ri, j
∆t3 = cos

(
(~di

t
~d j

t)/(|~di
t | |

~d j
t |)
)
, (4.4)

where ri, j
∆t3 ∈ [−1,1] and negative values represent (estimated) targets moving in opposite direc-

tions.

Chapter 4: Clustering based approach to tracker-level fusion 61

-1 -0.5 0 0.5 1

-1

-.5

0

.5

1

-1 -0.5 0 0.5 1

0

0.5

1

Figure 4.3: Weighting function ψ (top) and weighted directional score r̂i, j
∆t3 (bottom) for direc-

tional feature normalization using λ = 10.

The primary objective is to determine the correlation score Ri, j
∆t3 by combining Oi, j

∆t3 and ri, j
∆t3 .

Since Oi, j
∆t3 ∈ [0,1] and ri, j

∆t3 ∈ [−1,1], we aim to achieve a score Ri, j
∆t3 ∈ [0,1]. Furthermore, we

are interested in an agreement on the direction of motion and are primarily interested in values

0 ≤ ri, j
∆t3 ≤ 1. Values of ri, j

∆t3 between the interval −1 ≤ ri, j
∆t3 ≤ 0 represent trackers moving in

different directions. Thus ri, j
∆t3 is normalized to [0,1], without ignoring values between the interval

−1≤ ri, j
∆t3 ≤ 0.

We therefore define a weighted directional similarity score r̂i, j
∆t3 as:

r̂i, j
∆t3 = ψ(λ ,ri, j

∆t3) ri, j
∆t3 , (4.5)

where r̂i, j
∆t3 ∈ [0,1] and ψ ∈ [−1,1] is a weighting function that assigns a uniform weight to

0 ≤ ri, j
∆t3 ≤ 1, without ignoring values between the interval −1 ≤ ri, j

∆t3 ≤ 0. Such a function is

defined as:

ψ(λ ,ri, j
∆t3) =

 1 if 0≤ ri, j
∆t3 ≤ 1,

−eλ ri, j
∆t3 if −1≤ ri, j

∆t3 < 0,
(4.6)

where λ ∈ (0,∞) is the decay rate of ψ . Values of λ close to zero give smoother transitions for

ψ ∈ [−1,0] returning high values of r̂i, j
∆t3 for−1≤ ri, j

∆t3 ≤ 0. Whereas, high values of λ give abrupt

transitions for ψ ∈ [−1,0] returning values close to zero for r̂i, j
∆t3 when −1≤ ri, j

∆t3 ≤ 0. Figure 4.3

shows the relations between ri, j
∆t3 and r̂i, j

∆t3 (bottom graph) and between ri, j
∆t3 and ψ (top graph) for

λ = 10.

Chapter 4: Clustering based approach to tracker-level fusion 62

Ri, j
∆t3 is finally computed as follows:

Ri, j
∆t3 = ω Oi, j

∆t3 +(1−ω) r̂i, j
∆t3 , (4.7)

where ω ∈ [0,1] and is the weight employed to determine the influence of both Oi, j
∆t3 and r̂i, j

∆t3 in

Ri, j
∆t3 . High (low) values of ω prioritize the spatial overlap (trajectory direction), which can be

useful for short (long) ∆t3.

4.2.2 Partition generation

The spatio-temporal correlation scores between each pair of trackers, Ri, j
∆t3 are then used to deter-

mine the partitions at each time step, Pp,t , and hence the clusters (groups) within each Pp,t . A

single partition Pp,t of F is a collection of non-empty clusters Ca
p,t , a = 1, ..., |Pp,t | such that each

tracker in F is in exactly one Ca
p,t . This implies that all Ca

p,t are mutually disjoint and the union

of all Ca
p,t exhausts all of F (i.e. ∪Ca

p,t∈Pp,tCa
p,t = F) [53].

At each time step, K trackers can be grouped into multiple clusters Ca
p,t , forming a single

partition Pp,t , where |Pp,t | ∈ [1,K]. Let [.] represent a partition. For example, the initial condi-

tion, |Pp,t | = 1 implies that all trackers are in the same cluster i.e.
[{

F1,,Fk
}]

. Whereas,[{
F1
}
,,

{
Fk
}]

means that each tracker is a single cluster i.e. |Pp,t |= K.

Our aim is to hypothesize a set of partitions {Pp,t}Bp=1 to cluster the trackers. All possible

partitions Pp,t can be systematically enumerated with an exhaustive search [86]. The set size is

given by the Bell number B [33], which increases exponentially with K. For example, with K = 8

trackers B = 4140 partitions are generated. An example of the generated partitions and clusters

for two and three trackers is represented as a tree structure in Figure 4.4. The tree structure

illustrates that two possible partitions are generated for two trackers. However, increasing the

number of trackers to three increases the number of possible partitions to five.

To reduce the computational complexity, we use a greedy search that determines the most

plausible partitions for a given number of clusters. Since the optimum number and composition

of clusters is unknown, we take advantage of the hierarchical structure of the tracker relationships

to generate a set of partitions whose cardinality is at most K.

We use hierarchical clustering (HC) [67] as the greedy search algorithm that has a linear

relationship between the size of {Pp,t}K
p=1 and K, which significantly speeds up the search. Based

on the pair-wise correlation scores Ri, j
∆t3 between the trackers, a dendrogram is obtained which is

Chapter 4: Clustering based approach to tracker-level fusion 63

𝐹1

𝐹1, 𝐹2 𝐹1 , 𝐹2

𝐹1, 𝐹2, 𝐹3 𝐹1, 𝐹2 , 𝐹3 𝐹1, 𝐹3 , 𝐹2 𝐹1 , 𝐹2, 𝐹3 𝐹1 , 𝐹2 , 𝐹3

Figure 4.4: An illustration of increasing number of partitions with increasing trackers where [.]
and {.} represents a partition and cluster, respectively. Starting from one tracker (F1) on the top,
the number of possible partitions are two for two trackers (F1 and F2), that increase to five with
three trackers (F1, F2 and F3).

inspected by a divisive (top-down) approach to determine each partition Pp,t . The search starts

with the partition that groups all trackers in one cluster P1,t . Recursively moving down the tree, a

different Pp,t is generated at each level, with the final partition having each tracker in a separate

cluster PK,t . A partition Pp,t is obtained as:

Pp,t = H(ξ ∗(p)), (4.8)

where p = 1, ...,K and H(ξ ∗) is a HC-based function. H(ξ ∗(p)) provides a partition for each p

given the optimum distance threshold ξ ∗, which is determined as:

ξ
∗(p) = argmin

ξ

{J(ξ)} , (4.9)

where ξ ∈ {[0,(1−Ri, j
∆t3)] : i, j = 1, ...,K}. Figure 4.5(a) and Figure 4.5(c) show an example for

four trackers and the scores for their spatio-temporal relations, which are used to compute the

dendrogram illustrated in Figure 4.5(b).

4.2.3 Partition validation

After generating the set of partitions {Pp,t}K
p=1, the objective is to select the optimal partition P∗t ,

i.e. the partition that best represents the spatio-temporal relations among trackers. We therefore

define the score S (Pp,t) as:

S (Pp,t) =
1
|Pp,t |

|Pp,t |

∑
a=1

Q
(
Ca

p,t
)
, (4.10)

Chapter 4: Clustering based approach to tracker-level fusion 64

(a) (b)

(c)

𝑝 ℙ𝑝,𝑡 𝑄(ℂ𝑝,𝑡
𝑎) 𝑆(ℙ𝑝,𝑡)

1 [{𝐹1} {𝐹2} {𝐹3} {𝐹4}] [.165, .165, .165, .165] .66

2 [{𝐹1} {𝐹2, 𝐹3} {𝐹4}] [.12, .88, .14] .38

3 [{𝐹1, 𝐹4} {𝐹2, 𝐹3}] [.88, .86] .87

4 [{𝐹1, 𝐹2, 𝐹3, 𝐹4}] [.34] .34

(d)

Feature
Tracker pair (𝑖, 𝑗)

𝐹1, 𝐹2𝐹1, 𝐹3𝐹1, 𝐹4𝐹2, 𝐹3𝐹2, 𝐹4𝐹3, 𝐹4

𝑂∆𝑡3
𝑖,𝑗

.013 .00 .740 .766 .035 .017

Ƹ𝑟∆𝑡3
𝑖,𝑗

.029 .076 .984 .993 .135 .255

𝑅∆𝑡3

𝑖,𝑗
.021 .038 .862 .880 .085 .136

of Trackers
2 3 1 4

D
is

ta
n

c
e

0

0.5

1

1.5

Figure 4.5: (a) Tracking results for frame 9 of the MCTTR0205a sequence (TRECVID) —: F1;
—: F2; —: F3; —: F4. (b) The dendrogram obtained by hierarchical clustering. (c) Pair-wise
tracker correlations scores. (d) Hypothesized partitions and cluster scores, where P3,t has the
highest score.

where Q
(
Ca

p,t
)

is the score for a single cluster Ca
p,t ∈ Pp,t . S (Pp,t) determines the partition P∗t as:

P∗t = argmax
p
{S (Pp,t)} , (4.11)

where p = 1, ...,K and Q
(
Ca

p,t
)

is dependent upon the pair-wise relationship score Ri, j
∆t3 between

trackers F i and F j in Ca
p,t . The score Q

(
Ca

p,t
)

is computed as:

Q
(
Ca

p,t
)
=



1
ν

|Ca
p,t |

∑
i=1

|Ca
p,t |

∑
j=1

Ri, j
∆t3 if

∣∣Ca
p,t
∣∣> 1,

1− max
b∈1,...,|Pp,t |

(
Q
(
Ca

p,t
⋃
Cb

p,t

))
if

∣∣Ca
p,t
∣∣= 1,

(4.12)

where ν =

(∣∣Ca
p,t

∣∣
2

)
is the total number of tracker-pair combinations within the cluster. Since

a pair-wise score for a single tracker in a cluster,
∣∣Ca

p,t

∣∣= 1, cannot be obtained, we compute its

pair-wise scores with trackers in other clusters. Therefore Ca
p,t
⋃
Cb

p,t indicates the hypothetical

case where the tracker in Ca
p,t becomes part of cluster Cb

p,t , and b is any of the remaining clusters

within Pp,t (b 6= a).

When each tracker is a single cluster, i.e. |Pp,t |= K, each cluster score Q
(
Ca

p,t
)

is computed

as:

Q
(
Ca

p,t
)
= 1−Q

(
Cb

p,t

)
, (4.13)

where Cb
p,t is the cluster containing all trackers. Figure 4.5(d) shows the computed cluster and

Chapter 4: Clustering based approach to tracker-level fusion 65

𝑥𝑡
1 𝑥𝑡−∆𝑡4

1,−
𝜃𝑡
1

ℂ𝑡
∗

{𝐼𝑡−Δ𝑡4 …𝐼𝑡}

Reverse

tracking

Tracker

labelling

On-target

cluster

selection /

update

𝑙𝑡
1

𝑥𝑡−∆𝑡4
𝑗,−

𝜃𝑡
𝑗

𝑙𝑡
𝑗𝑥𝑡

𝑗

… …

𝐼𝑡 𝑥𝑡
∗

𝑥𝑡−Δ𝑡2
∗Buffer Δt4

Tracker

selection

… …

𝑥𝑡
1

𝑥𝑡
𝑘

𝑥𝑡
𝐾

…
…

𝕐𝑡

Performance

scoring

Figure 4.6: Block diagram of the reverse evaluation that identifies the on-target cluster C∗t .

partition scores, where P3,t achieves the highest score.

4.2.4 Split-Merge detection

After determining P∗t , we employ an online performance evaluation method to identify the on-

target cluster C∗t ∈ P∗t . We then propagate C∗t over time if no changes occur within C∗t , where

such changes indicate trackers leaving or joining C∗t . Thus, C∗t cannot be propagated to the next

time step and performance evaluation is required to identify trackers that may have lost the target

or recovered from a failure. At each time step t, we identify these changes via the split-merge

detection step by comparing the structure of P∗t and the partition at the previous time step, P∗t−1.

Then, we employ the online performance evaluation over a set of trackers Yt that are selected as:

Yt =

 C∗t−1 if P∗t−1 ≡ P∗t ,

F otherwise,
(4.14)

where the condition P∗t−1 ≡ P∗t checks the similarity between the number of clusters and their

members (i.e. trackers). When this condition is satisfied, an existing cluster Ca
t ∈ P∗t equivalent

to C∗t−1 is used at the current time step. However, in case of a split or merge, we evaluate the

complete tracker set F.

4.3 Adaptive time-reversed evaluation

We evaluate the performance of each tracker in the set Yt . This performance evaluation either

determines the on-target cluster C∗t from the partition P∗t or validates the on-target cluster de-

termined at the previous time step C∗t−1. We cast this problem as an online tracker performance

evaluation and employ the time-reversed evaluation approach [149] over a sliding temporal win-

dow ∆t4.

Chapter 4: Clustering based approach to tracker-level fusion 66

Let on-target and off-target be the labels that indicate whether a tracker is following the

target successfully or not, respectively. The goal of this performance evaluation is to identify the

successful trackers given the outputs xk
t and label them as:

xk
t→lk

t ∈ {on-target,off-target} . (4.15)

We assign lk
t to trackers by identifying the cluster with the on-target trackers C∗t = {Fn}N

n=1 ⊆ F

such that N ≤K. Trackers within C∗t are assigned lk
t = on-target, while the remaining trackers are

labeled as off-target. In the following section, we first review the reverse-based evaluation method

and then present our proposed improvements. A block diagram of the process is presented in

Figure 4.6.

4.3.1 Time-reversed online evaluation

Reverse-based evaluation [149] measures the performance of a tracker during runtime based on

the ability of the tracker to track the target in the time-reversed direction. For each frame where

the tracker is evaluated, a reversed-tracker (i.e. the same tracker operating in reverse time) is

used. Using the tracker output xk
t , as the initialization for the reverse-tracker xk,−

t , the output of

the reverse-tracker is obtained as:

xk,−
t−1 = Fk(xk,−

t ,zk
t ,ς

k
t), (4.16)

where xk,−
t−1 is the reverse-tracker output at time t − 1. Then the result of the reverse-tracker

and that of the tracker are compared to obtain a similarity score θ k
t (tracker performance score)

by means of the Mahalanobis distance between the likelihood distributions of the forward and

reverse target estimations. This comparison is performed at a certain time instant known as

reference frame (t = re f) Ire f . t = re f is the time instant where the tracker is known to be

on-target and is set as t = 1 [149], i.e. the frame (I1) where the target is initialized using GT.

This approach has two major limitations. First, the forward-reverse similarity uses the Ma-

halanobis distance that returns unbounded scores θ k
t ∈ [0,+∞), which can have different range

of values depending on the trackers employed in the fusion framework. Hence θ k
t may be inap-

propriate to compare the trackers to be combined. Second, running the reverse tracker until the

first frame implies an exponential growth in computational time. A faster approximation (less

computationally expensive) is proposed where Ire f is moved ahead in time based on fixed sized

Chapter 4: Clustering based approach to tracker-level fusion 67

temporal windows. However, using fixed size temporal windows to update Ire f results in the

reverse-tracker to accumulate errors over time, thus leading to drift [157]. For example, if the

tracker loses the target and gets locked on the background the forward-reverse similarity may

give high scores θ k
t , since the reverse-tracker is incorrectly initialized by the wrong tracker esti-

mations.

We address these shortcomings for reverse-tracking evaluation as described next.

4.3.2 Performance score and reference frame update

Reverse-tracking evaluates performance by comparing the outputs of the tracker and the reverse-

tracker at Ire f . To employ this approach within a tracker fusion framework, we use the fused

output determined at Ire f (x∗re f) as a common point of evaluation for all trackers.

First, we address the limitation of unbounded θ k
t scores by comparing the results of the

reverse-tracker with the fused output to obtain a θ k
t ∈ [0,1] as:

θ
k
t = G(xk,−

re f ,x
∗
re f), (4.17)

where xk,−
re f and x∗re f are the reverse-tracker and fused outputs at Ire f , respectively; G defines the

output similarity and is computed using Eq. 4.1 where Ai
t and A j

t are replaced by Ax∗
re f and Ak,−

re f ,

respectively. Ax∗
re f and Ak,−

re f are the sets containing the pixels of the bounding boxes of x∗re f and

xk,−
re f , respectively.

Then, for the limitation of the exponential growth of computational time when Ire f =1, we

update Ire f over time so that the computational cost is reduced and reverse-evaluation can be

applied to long sequences. We implement such update assuming that the fused output is on-

target and that the target has changed position from Ire f to the current frame It , thus making the

motion information useful for reverse-analysis.

The motion of bounding boxes is minimal when the tracker is on-target and the target is

static; or when the tracker drifts from the target and gets locked onto a static background region.

Because it is difficult to differentiate between these two situations, we analyze significant motion

changes of the trackers compared with their average motion. The maximum motion Mk is com-

puted over temporal window ∆t4 using Fk trajectory, and the top-left (uk
1,t ,v

k
1,t) and bottom-right

(uk
2,t ,v

k
2,t) coordinates of the bounding box. Motion for uk

1 over ∆t4 is computed as:

Chapter 4: Clustering based approach to tracker-level fusion 68

Muk
1
= 1

∆t4

t
∑

t′=t−∆t4

(
Muk

1,t′
−Muk

1,t′−1

)
. (4.18)

Motion for vk
1,t ,u

k
2,t and vk

2,t is computed using Eq. 4.18, where Muk
1

is replaced by Mvk
1
, Muk

2

and Mvk
2
, respectively. Mk = max(Muk

1
,Mvk

1
,Muk

2
,Mvk

2
) returns the maximum motion for Fk. The

motion of the fused output Mx∗ is determined as:

Mx∗ =
1

∆t4

t

∑
t′=1

(Mx∗t′
−Mx∗t′−1

), (4.19)

and is used as a common threshold to compare the motion of all trackers in the framework.

The performance of each tracker is computed using Eq. 4.17. To determine a single Ire f

for all trackers, we use max(Mk) and max(θ k
t) to select the best performing tracker for that

temporal window. Using both motion analysis and performance of the tracker, we adaptively

estimate and update Ire f . The value of Ire f is updated using the temporal window ∆t4 when tracker

performance (max(θ k
t)) and motion (max(Mk)) are above a threshold τ2 and Mx∗ , respectively.

Ire f remains unchanged otherwise and is determined as:

Ire f =


It−∆t4 ifmax(Mk)≥Mx∗andmax(θ k

t)≥ τ2,

Ire f otherwise,
(4.20)

where τ2 = 0.5 is the minimum tracker accuracy [125].

4.3.3 Selection or update of the on-target cluster

Reverse-evaluation identifies the on-target trackers by using the individual performance scores

θ k
t of trackers in Yt . Trackers with θ k

t ≥ τ2 are labeled as on-target, enabling the method to select

C∗t as the cluster Ca
t with all on-target trackers:

C∗t = {Ca
t ∈ P∗t : lk

t = on-target, ∀Fk
t ∈ Ca

t }. (4.21)

C∗t is propagated until the detection of a split or a merge (Section 4.2.4), which happens when

trackers leave or join the cluster C∗t , respectively. A split or merge indicates that some or all of

the on-target trackers may have failed. When such changes occur, all trackers are re-evaluated to

determine the new on-target cluster C∗t . One advantage of the propagating C∗t over time is that it

Chapter 4: Clustering based approach to tracker-level fusion 69

helps to reduce the computational load by avoiding to apply reverse-evaluation over all trackers

when they maintain their spatio-temporal relationships over time.

4.4 Tracker-level fusion

To determine the final target state (fused output), we combine the estimated outputs of the trackers

belonging to the on-target cluster C∗t . We employ both an equal weighted and a performance-

based weighted average of outputs approach. The tracking performance score yn
t , that is based

on the ability of the tracker to distinguish the target from the background (Section 3.2) is used as

the tracker weight. The equal weighted approach estimates the final target state x∗t as:

x∗t =
1
N

N

∑
n=1

xn
t . (4.22)

Using yn
t and the trackers belonging to C∗t , the final target state based on the weighted ap-

proach x∗∗t is determined as:

x∗∗t =
1
N

N

∑
n=1

y̌n
t xn

t , (4.23)

where y̌n
t is the normalized weight for each tracker n and is determined as:

y̌n
t =

yn
t

N
∑

n=1
yn

t

. (4.24)

4.5 Experimental setup

We evaluate the accuracy of the Tracker Partition Fusion (TPF) framework both in terms of

tracking accuracy and the accuracy in assigning the on-target and off-target labels to trackers and

clusters. We test the TPF framework over the dataset D1 (Appendix A) using eight trackers: ST1,

AFT2, LOT3, IVT4, FCT5, AMS6, L1T7 and LSST8 (Section 2.2.5) and use the publicly available

implementations of the authors.

The fusion module is tested using both the equal weighted and the performance-based weighted

1http://faculty.ucmerced.edu/mhyang/project/tip13_prototype/TIP12-SP.htm
2http://web.cs.hacettepe.edu.tr/˜erkut/#publications
3http://www.eng.tau.ac.il/˜oron/LOT/LOT.html
4http://www.cs.toronto.edu/˜dross/ivt/
5http://www4.comp.polyu.edu.hk/˜cslzhang/FCT/FCT.htm
6http://www4.comp.polyu.edu.hk/˜cslzhang/SOAMST.htm
7http://www.dabi.temple.edu/˜hbling/code_data.htm
8http://202.118.75.4/lu/publications.html

http://faculty.ucmerced.edu/mhyang/project/tip13_prototype/TIP12-SP.htm
http://web.cs.hacettepe.edu.tr/~erkut/#publications
http://www.eng.tau.ac.il/~oron/LOT/LOT.html
http://www.cs.toronto.edu/~dross/ivt/
http://www4.comp.polyu.edu.hk/~cslzhang/FCT/FCT.htm
http://www4.comp.polyu.edu.hk/~cslzhang/SOAMST.htm
http://www.dabi.temple.edu/~hbling/code_data.htm
http://202.118.75.4/lu/publications.html

Chapter 4: Clustering based approach to tracker-level fusion 70

Table 4.1: Combinations of trackers used for each of the proposed approaches.

Proposed approach Selected Trackers
Non-weighted Weighted # of Trackers Combination

T PF∗3 T PF∗∗3 3 ST, AFT, LOT
T PF∗4 T PF∗∗4 4 ST, AFT, LOT, IVT
T PF∗5 T PF∗∗5 5 ST, AFT, LOT, IVT, FCT
T PF∗6 T PF∗∗6 6 ST, AFT, LOT, IVT, FCT, AMS
T PF∗7 T PF∗∗7 7 ST, AFT, LOT, IVT, FCT, AMS, L1T
T PF∗8 T PF∗∗8 8 ST, AFT, LOT, IVT, FCT, AMS, L1T, LSST

approach, and apply six different combinations of the eight selected trackers (Section 2.2.5). The

combinations and symbols used for both approaches are listed in Table 4.1. We use T PF∗3 only

for Section 4.6 and 4.7, while Sections 4.8 and 4.9 use all six configurations of each of the two

approaches.

This section presents the experimental setup required for evaluating the complete framework.

First, we present the details of the experimental parameters used within the framework in Sec-

tion 4.5.1, which is followed by details of the evaluation measures in Section 4.5.2 and details of

the SOA methods in Section 4.5.3.

4.5.1 Experimental parameters

TPF uses two temporal windows ∆t3 and ∆t4 to buffer data from the future and past time instants,

respectively. ∆t4 = 10 employed for the reverse-analysis provides a good speed-accuracy trade-off

as shown in [149] and its value is updated if the motion or the performance of trackers is below

the thresholds (Section 4.3.2). The second temporal window used for tracklet correlation is set to

∆t3 = 10 to keep an initial forward-backward symmetry for analysis, since no prior information

is available to define the importance of one over the other. To determine the influence of both

the spatial and temporal features Eq. 4.7 on the clustering approach, we test and compare results

for ω = 0,0.5 and 1, where ω = 0 (1) assigns complete weight to the spatial (temporal) feature.

ω = 0.5 ensures equal weighting of both the spatial and temporal features. For Eq. 4.5, we

heuristically found that λ ∈ [5,15] gives the desired ψ behaviour i.e. assign uniform weights

to 0 ≤ ri, j
∆t3 ≤ 1 and lower weights to −1 ≤ ri, j

∆t3 ≤ 0 (Section 4.2.1). We therefore use the mean

value i.e. λ = 10. Finally, the thresholds for determining tracking performance online (τ2) and

offline (τ3) are set to 0.5 as done previously [125].

To implement the hierarchical clustering approach (Section 4.2.2), we use the built-in MAT-

LAB cluster and linkage functions from the Statistics and Machine learning toolbox for Eq. 4.8

Chapter 4: Clustering based approach to tracker-level fusion 71

and Eq. 4.9, respectively. The linkage function is based on the nearest neighbor clustering ap-

proach.

4.5.2 Evaluation measures

We measure the performance of TPF in assigning the on-target and off-target labels to trackers

and clusters from the valid partition P∗t . We employ the GT information to compute the overlap

score for each cluster OCa

t by taking the average of (1−Ot) (Eq. 3.11) for the trackers within the

cluster. The on-target trackers are defined for (1−Ot) ≥ τ3 and OCa

t ≥ τ3 defines the on-target

cluster C∗t . We use nT P, nFP, nFN and nT N as defined in Section 3.4.2 to measure the performance

of TPF in assigning the on-target and off-target labels. For TPF, nT P (nFP) and nT N (nFN) are

the number of clusters or trackers correctly (incorrectly) labelled as on-target and off-target,

respectively. Using nT P, nFP, nT N and nFN we then compute the precision, P, the recall, R and

the F-score as defined in Section 3.4.2.

To compare TPF with the selected trackers and the SOA tracking methods, we measure the

tracking performance as mean overlap score (OG) over the complete sequence as:

OG =
1
T

T

∑
t=1

(1−Ot), (4.25)

where Ot is measured as the overlap score between the tracker output and the GT data (Eq. 3.11).

4.5.3 Selected benchmark methods

We compare the tracking performance of TPF with the eight selected trackers, two recent track-

ers: STRUCK (STR) [57, 58] and Kernelized Correlation Filters (KCF) [62]; and three SOA

tracker-level fusion approaches: Average fusion (AvgF), Symbiotic Tracker (SymT) [49] and

Visual Tracker Sampler (VTS) [74]. STRUCK [57, 58] is a tracking-by-detection approach that

employs SVMs with Gaussian kernels. We test the three features used by the method (Haar, raw

pixels and histograms) and report the results for histograms as they outperform Haar features and

raw pixels. KCF [62] employs correlation among filters based on histograms of oriented gradi-

ents features. AvgF combines the eight trackers by assigning equal weights to each tracker i.e.

without employing any performance evaluation. SymT estimates trackers’ relationships based

on their spatial agreement only, and individual tracker performance is based on displacements

between consecutive frames. SymT however does not employ any mechanism to determine if

Chapter 4: Clustering based approach to tracker-level fusion 72

K

1 2 3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f
P

a
rt

it
io

n
s

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ES PC

Figure 4.7: Comparison of methods to generate partitions {Pp,t}B
p=1 of K trackers. With ex-

haustive search (ES) B grows exponentially, while the proposed clustering (PC) is bounded by
B = K.

the trackers are on the right target and fuses the outputs of all trackers. We re-implement SymT

as described in [49] and generated results using the eight selected trackers. VTS combines two

motion and four appearance models to get eight trackers and then uses a likelihood-based tracker

performance score to select the output of the best tracker as the final output. STR9, KCF10 and

VTS11 are tested by using publicly available authors’ implementations.

4.6 Experimental analysis of tracker clustering

This section first presents a comparison of the proposed hierarchical clustering approach to the

exhaustive search approach for determining partitions of the trackers. Next, we compare our ap-

proach of combining both features (spatial and temporal) to using each feature individually (ei-

ther spatial or temporal) for determining the pair-wise tracker relationships.

4.6.1 Comparison of the proposed clustering with exhaustive search

Figure 4.7 compares the generated set of partitions {Pp,t}B
p=1 with an increasing number of track-

ers K for both approaches. The accuracy of the tracking results is equal as the proposed cluster-

ing (PC) and exhasutive search (ES) select the same valid partition. However, with ES the size

grows exponentially with an increasing K whereas PC keeps the size of {Pp,t}B
p=1 bounded with

9http://www.samhare.net/research/struck
10http://www.robots.ox.ac.uk/˜joao/circulant/index.html
11http://cv.snu.ac.kr/research/vtdvts/

http://www.samhare.net/research/struck
http://www.robots.ox.ac.uk/~joao/circulant/index.html
http://cv.snu.ac.kr/research/vtdvts/

Chapter 4: Clustering based approach to tracker-level fusion 73

Sequence number

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

P
19

P
20

P
21

P
22

O
G

0

.2

.4

.6

.8

1

ω= 0.5 ω= 1 ω= 0

Figure 4.8: Tracker accuracy OG using individual features, (ω = 1 for overlap and ω = 0 for
direction) and their equal combination (ω = 0.5) as used in Eq. 4.7.

respect to B = K.

4.6.2 Performance analysis of features

TPF combines the features Oi, j
∆t3 and r̂i, j

∆t3 to determine the pair-wise tracker correlation scores Ri, j
∆t3 .

Using either of the two features individually directly impacts Ri, j
∆t3 , which can lead to incorrect

estimation of the best partition P∗t and hence the on-target cluster C∗t . For e.g. using only

r̂i, j
∆t3 (i.e. ω = 0 in Eq. 4.7) leads to high Ri, j

∆t3 scores for a pair of trackers that move in the same

direction but are spatially far from each other. Similarly being dependent only on the similarity

of spatial location gives higher importance to tracker pairs with high values of Oi, j
∆t3 . Since no

feature is optimum for all situations, combining both features increases the overall performance

in comparison to using them individually. A comparison based on the tracking accuracy OG

of the three features is presented in Figure 4.8. Using ω = 0.5 allows the method to correctly

estimate P∗t and C∗t , hence improving the results globally in 60% of the sequences.

Based on the F-score, we present an accuracy comparison at both cluster and tracker-level

for assigning on-target and off-target labels in Table 4.2. At both tracker and cluster-level TPF

improves or has similar performance in comparison to using either of the features individually

in 60% of the sequences. Furthermore, at tracker-level the F-score improves by 5% (7%) when

using both features in comparison to using only the overlap (direction) feature. Similarly at

cluster-level an improvement of 6% (7%) is observed in comparison to the overlap (direction)

feature. The overall results indicate that on average the accuracy of combining both features

Chapter 4: Clustering based approach to tracker-level fusion 74

Table 4.2: Comparison of feature combinations for the proposed approach. Results show the
F-score at tracker-level and cluster-level, with different feature weights ω in Eq. 4.7.

Tracker-level Cluster-level
ω=0 ω=0.5 ω=1 ω=0 ω=0.5 ω=1

P1 .92 .90 .87 .94 .92 .89
P2 .98 .98 .97 .99 .99 .98
P3 .91 .92 .97 .87 .90 .98
P4 .87 .90 .94 .80 .87 .92
P5 .87 .90 .94 .93 .93 .99
P6 .44 .48 .45 .38 .42 .40
P7 .86 .78 .84 .99 .87 .87
P8 .88 .94 .93 .90 .97 .96
P9 .87 .81 .82 .99 .95 .84
P10 .46 .82 .37 .57 .90 .34
P11 .92 1 .94 1 1 .98
P12 .63 .77 .83 .60 .75 .83
P13 .88 .95 .87 .87 .98 .90
P14 .95 .96 .98 1 1 1
P15 .96 .97 .98 1 1 .99
P16 .81 .81 .93 .81 .88 1
P17 .52 .55 .56 .53 .67 .47
P18 .51 .93 .88 .60 .99 .96
P19 .98 .98 .98 1 1 1
P20 .95 1 .98 .97 1 1
P21 .95 .96 .96 .95 .98 .99
P22 .91 .95 .52 .99 1 .60

Mean .82 .88 .84 .85 .91 .86

increases in comparison to using single features.

We further extend the experimental analysis to determine the statistical significance of the

results achieved by using ω = 0.5 as opposed to ω = 0 or 1. We use the two sample Student’s

t-test assuming unequal variances to perform a significance test. We define processes X, Y1 and

Y2 as follows:

X : ω= 0.5, µX = 0.88 (tracker-level) or 0.91 (cluster-level),

Y1 : ω= 0, µY 1 = 0.82 (tracker-level) or 0.85 (cluster-level),

Y2 : ω= 1, µY 2 = 0.84 (tracker-level) or 0.86 (cluster-level).

Using results obtained from Y1 and Y2 as base-line, a standard significance value of 0.10

Chapter 4: Clustering based approach to tracker-level fusion 75

and the total number of sequences (twenty two) as the sample, we perform the significance test

on the results obtained from process X.

The first test that compares X with Y1 returns a p-value of 0.25 (more than the significance

value) and fails to reject the null hypothesis H0 under the following hypothesis:

H0 : µX = µY 1,

H1 : µX 6= µY 1.
(4.26)

where H0 is rejected (H1 is accepted) if X performs better than Y1.

A similar test compares X with Y2 using the hypothesis:

H0 : µX = µY 2,

H1 : µX 6= µY 2,
(4.27)

where H0 is accepted with a p-value of 0.49.

Furthermore, we also compare the two extremes of the data i.e. Y1 and Y2 using the same

test under the following hypothesis:

H0 : µY 2 = µY 1,

H1 : µY 2 6= µY 1,
(4.28)

where H0 is accepted with a p-value of 0.69.

We perform similar tests for the results obtained from ”cluster-level” that return similar test

results. When comparing with Y1, a p-value = 0.25 accepts H0 in favour of Y1, while a p-value

of 0.36 accepts H0 in favour of Y2. Comparing Y1 and Y2 returns a p-value of 0.87, hence

accepting H0. From the following results it can be implied that experiments on additional video

sequences can generate comparable results for X (ω = 0.5) in comparison to Y1 (ω = 0) and

Y2 (ω = 1). However, the smaller p-value for Y1 in comparison to Y2 casts doubt on the validity

of H0. Furthermore, the comparison between Y1 and Y2 reveals that neither of the two extreme

values (ω = 0, 1) are the best values as they might generate similar results. The inference based

on this significance test results indicates that the optimal value for ω can be found by performing

additional experiments and varying the value between 0.5 < ω < 1.

Chapter 4: Clustering based approach to tracker-level fusion 76

Table 4.3: F-score with (TPF) and without (TPF’) motion analysis for the three fused trackers
with the reference frame Ire f updated using motion analysis (Section 4.3). Key - ST: Sparse
Tracker, AFT: Adaptive Fragments based Tracker; LOT: Locally Orderless Tracker.

ST [143] AFT [42] LOT [104] Sequence mean
for all trackers

TPF’ TPF TPF’ TPF TPF’ TPF TPF’ TPF
P1 .92 .88 .96 .92 .94 .90 .94 .90
P2 1 1 1 .97 1 .97 1 .98
P3 .95 .99 .95 .91 1 .87 .97 .92
P4 .85 .94 .78 .95 .59 .74 .74 .88
P5 .81 .87 .94 .92 .61 .76 .79 .85
P6 .26 .41 .41 .60 .52 .43 .40 .48
P7 .53 .67 .74 .82 .63 .78 .63 .76
P8 .88 .87 .99 .94 1 .98 .95 .93
P9 .90 .72 .90 .78 .89 .91 .89 .80

P10 .88 .75 .91 .83 .88 .82 .89 .80
P11 1 1 1 1 1 1 1 1
P12 .57 .82 .61 .66 .46 .85 .55 .77
P13 .79 .98 .83 .96 .94 .92 .86 .95
P14 1 .98 .96 .95 .91 .94 .96 .96
P15 .99 .98 .96 .96 .95 .99 .97 .98
P16 .91 .85 .99 .86 .88 .73 .93 .81
P17 .51 .54 .80 .40 .88 .48 .73 .47
P18 .29 .33 .05 .87 .08 1 .14 .73
P19 1 1 1 1 1 .95 1 .98
P20 1 1 .97 .99 1 1 .99 1
P21 .94 .88 1 1 1 .99 .98 .96
P22 .92 .96 .81 .97 .92 .86 .88 .93

Tracker
mean

.81 .83 .84 .87 .82 .86 .83 .85

4.7 Experimental analysis of the adaptive time-reversed evaluation

This section presents an experimental evaluation of the definition of the adaptive reference frame

for online performance analysis (Section 4.3.2). We first compare our approach of employing

motion analysis for determining the adaptive reference frame to the case of not using motion

analysis. Then, we compare our approach of adaptively updating the reference frame with the

original approach where the reference frame is updated with out any prior knowledge [149].

4.7.1 Performance analysis for motion

Table 4.3 compares the proposed approach with and without motion analysis (TPF and TPF’,

respectively) to update Ire f , in terms of the F-score for selecting the on-target trackers. Results

for P4-P7 indicate the case when trackers might lose the target due to background clutter and

Chapter 4: Clustering based approach to tracker-level fusion 77

get fixed on the background. Since TPF’ is unable to detect this situation in P4, it determines

the trackers to be always on-target. TPF improves TPF’ by 10%, 22% and 25% for ST, AFT

and LOT, respectively (19% mean improvement). For P5, P6 and P7 TPF improves performance

by 8%, 20% and 20%, respectively. P12 remains occluded between frames 29-39 where ST

loses the target and becomes locked on to foreground objects being labeled as on-target by TPF’,

whereas AFT and LOT are labeled as off-target. Using motion, TPF improves by 44%, 8%

and 85% (40% mean improvement). For P18, ST loses the target at frame 7 due to similar

background. TPF’ assumes ST to be on-target, while AFT and LOT are labeled as off-target.

TPF uses motion to correctly label AFT and LOT as on-target achieving an overall improvement

of 420% in comparison to TPF’. ST remains on-target for the first 6 frames of the sequence;

where TPF incorrectly labels it off-target in 5 out of the 6 frames, hence resulting in lower values

for TPF. For P17, the target does not move for most of the sequence. ST and AFT lose the target

at frame 45 due to similar background, and form a cluster. Due to the stationary target, TPF

assumes the ST-AFT cluster to be on-target resulting in incorrect labels for all trackers, hence

decreasing performance by 35%. Globally, TPF improves TPF’ by 2%, 4% and 5% for ST, FT

and LOT, respectively.

4.7.2 Performance analysis of the Ire f update

As opposed to using fixed-sized temporal windows as done in the original approach (OA) [149],

TPF employs both motion analysis and performance evaluation of trackers to adaptively update

Ire f . This allows TPF to minimize tracker drift, hence improving its performance in the identifi-

cation of the on-target trackers. Figure 4.9 compares the proposed update for the reference frame

Ire f with the OA. The average result for three trackers (ST, AFT, LOT) is presented in terms of

the overlap score OG between the GT and the existing forward estimation in Ire f obtained by

OA and TPF. TPF improves OA in 16 out of 22 sequences. Ire f is updated only when tracker(s)

are found to be on-target. For instance, all three trackers fail between frames 95-110 for P4.

TPF is able to accurately detect this scenario and does not update Ire f after frame 110, whereas

OA keeps moving Ire f forward in time, thus accumulating tracker errors. For P9 and P21, OA

achieves higher accuracy since all of the three trackers are able to track the target throughout the

sequences. For P15 and P16 TPF achieves similar tracking accuracy to OA, where the camera

moves with the target allowing all the trackers to remain on-target for most part of the sequence.

Chapter 4: Clustering based approach to tracker-level fusion 78

Ta
bl

e
4.

4:
M

ea
n

ov
er

la
p

sc
or

e
co

m
pa

ri
so

n
in

te
rm

so
fO

G
(t

en
in

de
pe

nd
en

tr
un

s)
.K

ey
-S

T:
Sp

ar
se

Tr
ac

ke
r[

14
3]

,A
FT

:A
da

pt
iv

e
Fr

ag
m

en
ts

ba
se

d
Tr

ac
ke

r[
42

];
L

O
T:

L
oc

al
ly

O
rd

er
le

ss
Tr

ac
ke

r[
10

4]
;I

V
T:

In
cr

em
en

ta
lV

is
ua

lT
ra

ck
er

[1
10

];
FC

T:
Fa

st
C

om
pr

es
si

ve
Tr

ac
ke

r[
16

6]
;A

M
S:

M
ea

n
Sh

if
tT

ra
ck

er
[1

02
];

L
1T

:
L

1
Tr

ac
ke

r[
93

];
L

SS
T:

L
ea

st
So

ft
-t

hr
es

ho
ld

Sq
ua

re
sT

ra
ck

er
[1

42
];

A
vg

F:
A

ve
ra

ge
Fu

si
on

;S
ym

T:
Sy

m
bi

ot
ic

Tr
ac

ke
r[

49
];

V
T

S:
V

is
ua

lT
ra

ck
er

Sa
m

pl
er

[7
4]

;
ST

R
:S

T
R

U
C

K
[5

7,
58

];
K

C
F:

K
er

ne
liz

ed
C

or
re

la
tio

n
Fi

lte
rT

ra
ck

er
[6

2]
.

Fu
se

d
tr

ac
ke

rs
Pr

op
os

ed
ap

pr
oa

ch
es

Se
le

ct
ed

st
at

e-
of

-t
he

-a
rt

N
on

-w
ei

gh
te

d
fu

si
on

W
ei

gh
te

d
fu

si
on

ST
A

FT
L

O
T

IV
T

FC
T

A
M

S
L

1T
L

SS
T

T
P

F
∗ 3

T
P

F
∗ 4

T
P

F
∗ 5

T
P

F
∗ 6

T
P

F
∗ 7

T
P

F
∗ 8

T
P

F
∗∗ 3

T
P

F
∗∗ 4

T
P

F
∗∗ 5

T
P

F
∗∗ 6

T
P

F
∗∗ 7

T
P

F
∗∗ 8

A
vg

F
Sy

m
T

V
T

S
ST

R
K

C
F

P1
.6

5
.7

0
.6

4
.6

4
.1

4
.7

2
.2

0
.2

2
.7

2
.7

0
.5

3
.6

7
.6

7
.5

0
.7

2
.7

2
.5

6
.6

9
.6

5
.5

0
.2

5
.3

5
.2

4
.7

5
.2

1
P2

.8
0

.7
6

.7
9

.8
2

.5
8

.2
3

.8
2

.5
0

.8
1

.8
0

.7
8

.7
4

.7
4

.7
3

.8
2

.8
3

.7
8

.7
7

.7
0

.7
4

.4
0

.6
5

.7
7

.6
8

.8
7

P3
.4

0
.7

0
.7

3
.5

7
.4

0
.4

7
.7

9
.7

5
.7

0
.6

8
.7

4
.7

0
.8

2
.8

2
.7

1
.6

6
.7

3
.7

4
.8

0
.8

0
.7

8
.8

1
.7

7
.7

8
.8

5
P4

.3
5

.4
3

.2
5

.2
6

.4
1

.3
0

.2
3

.3
1

.4
1

.4
1

.4
1

.4
2

.4
2

.4
2

.4
2

.3
8

.3
8

.4
4

.4
4

.4
4

.3
0

.3
3

.3
7

.3
9

.6
4

P5
.8

1
.8

2
.3

1
.6

4
.3

9
.3

9
.3

8
.7

5
.7

6
.7

1
.5

1
.7

0
.4

7
.5

7
.7

7
.7

0
.4

7
.6

7
.4

5
.5

5
.6

4
.7

2
.5

9
.6

8
.8

5
P6

.1
2

.1
4

.1
0

.1
3

.1
0

.2
9

.3
1

.1
0

.1
3

.1
2

.1
2

.1
2

.1
3

.1
2

.1
3

.1
4

.1
3

.1
1

.1
3

.1
1

.1
2

.1
2

.1
4

.1
3

.1
0

P7
.9

1
.7

9
.7

8
.9

1
.8

1
.8

1
.9

2
.9

3
.8

5
.8

6
.8

1
.8

5
.8

5
.8

9
.8

5
.8

8
.8

3
.8

7
.8

7
.8

7
.8

9
.8

9
.8

5
.8

0
.8

3
P8

.6
3

.7
2

.7
8

.4
3

.0
4

.6
0

.5
5

.4
1

.7
7

.7
7

.7
1

.6
5

.6
3

.5
8

.7
6

.7
8

.7
5

.6
4

.6
3

.5
6

.4
7

.6
2

.7
8

.7
4

.6
7

P9
.7

5
.7

4
.8

9
.8

1
.7

4
.7

5
.8

9
.8

3
.7

7
.8

3
.8

1
.8

0
.8

1
.8

2
.7

8
.8

4
.8

2
.8

1
.8

1
.8

3
.8

4
.8

4
.9

2
.8

2
.7

4
P1

0
.1

1
.1

5
.7

4
.1

1
.4

4
.7

0
.1

2
.1

2
.7

7
.7

5
.5

5
.4

8
.3

7
.7

6
.7

7
.7

4
.5

4
.4

8
.3

9
.7

4
.1

2
.1

2
.1

4
.9

1
.1

1
P1

1
.7

5
.7

4
.9

1
.8

1
.7

5
.1

2
.9

0
.9

2
.8

6
.8

5
.8

3
.7

7
.8

0
.8

2
.8

7
.8

5
.8

4
.7

8
.8

1
.8

3
.6

9
.9

0
.8

4
.5

4
.7

6
P1

2
.3

6
.5

2
.2

5
.3

5
.6

3
.3

3
.2

5
.3

5
.5

5
.4

0
.3

9
.4

0
.3

7
.3

5
.5

4
.3

8
.3

5
.4

0
.3

7
.3

4
.3

0
.3

3
.3

6
.2

8
.2

7
P1

3
.6

0
.6

3
.4

2
.5

5
.6

7
.4

8
.5

1
.5

2
.7

1
.6

3
.7

0
.6

8
.6

1
.6

7
.7

2
.6

0
.6

9
.7

1
.6

2
.6

6
.5

3
.5

5
.5

6
.6

9
.4

4
P1

4
.8

7
.6

8
.7

9
.8

5
.7

8
.7

3
.7

8
.8

7
.8

6
.8

3
.8

2
.7

6
.8

2
.7

6
.8

4
.8

1
.8

2
.7

4
.8

0
.7

4
.8

2
.8

3
.8

5
.8

2
.8

2
P1

5
.7

4
.8

0
.7

8
.7

4
.7

7
.6

1
.9

0
.8

9
.8

1
.7

6
.7

9
.7

8
.8

1
.8

2
.8

0
.7

9
.7

7
.7

8
.8

1
.8

2
.8

2
.8

3
.7

8
.6

9
.7

9
P1

6
.7

8
.7

9
.7

4
.5

6
.7

8
.8

0
.7

1
.9

2
.7

4
.8

5
.8

3
.8

2
.8

2
.8

9
.7

3
.8

6
.8

5
.8

1
.8

2
.8

8
.7

0
.7

7
.8

6
.7

8
.7

9
P1

7
.2

6
.2

2
.6

5
.3

7
.2

0
.3

1
.5

3
.2

8
.2

6
.3

7
.3

1
.3

0
.4

0
.3

6
.2

7
.4

1
.3

5
.3

0
.3

9
.3

6
.4

3
.4

1
.2

4
.1

6
.8

4
P1

8
.4

2
.3

3
.8

7
.1

0
.8

5
.7

9
.6

9
.8

6
.8

6
.8

9
.8

7
.8

1
.8

0
.8

5
.8

7
.8

8
.8

5
.7

7
.7

8
.8

5
.2

8
.3

8
.8

7
.8

4
.1

2
P1

9
.8

6
.8

1
.7

7
.8

7
.8

7
.5

6
.7

8
.8

6
.8

9
.8

7
.8

7
.9

0
.8

9
.8

9
.8

7
.8

8
.8

3
.9

0
.8

9
.8

9
.8

7
.8

8
.8

0
.7

6
.8

9
P2

0
.9

0
.7

9
.8

5
.8

9
.8

9
.5

8
.8

4
.7

9
.8

8
.8

5
.8

6
.8

5
.8

6
.8

5
.8

5
.8

5
.8

2
.8

5
.8

6
.8

5
.8

3
.8

5
.8

7
.7

8
.9

0
P2

1
.7

5
.7

3
.8

4
.6

7
.7

3
.7

8
.8

3
.8

3
.7

7
.7

9
.7

7
.7

3
.8

4
.7

4
.8

0
.7

6
.8

0
.7

4
.8

4
.7

5
.7

8
.7

9
.8

5
.7

5
.7

4
P2

2
.5

2
.4

2
.3

6
.5

2
.6

8
.8

0
.8

1
.1

3
.4

3
.5

4
.5

0
.5

1
.5

2
.5

0
.4

4
.5

2
.5

3
.5

1
.5

1
.4

8
.4

3
.5

4
.3

7
.1

3
.1

3
M

ea
n

.5
7

.6
1

.6
5

.5
7

.5
8

.5
5

.6
2

.6
0

.7
0

.6
9

.6
6

.6
6

.6
6

.6
7

.7
0

.6
9

.6
6

.6
6

.6
5

.6
6

.5
6

.6
1

.6
2

.6
3

.6
1

Chapter 4: Clustering based approach to tracker-level fusion 79

Sequence number

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
10

P
11

P
12

P
13

P
14

P
15

P
16

P
17

P
18

P
19

P
20

P
21

P
22

O
G

0

.2

.4

.6

.8

1

Proposed ∆ W = 20 ∆ W = 10 ∆ W = 5

Figure 4.9: Comparison of Ire f selected by the proposed approach and the original approach
based on fixed temporal windows ∆W = 5,10,20.

4.8 Experimental analysis of tracking fusion framework

This section presents an experimental comparison of the TPF framework in terms of the tracking

accuracy measured as the mean overlap score OG (Eq. 4.25) over the complete sequence. We first

present a discussion on the comparison of the TPF framework with the selected trackers, which

is then followed by a discussion on the experimental results of the two fusion approaches (equal

weighted and weighted). Finally, we discuss performance comparison of the TPF framework

with the selected benchmark fusion and tracking methods. Table 4.4 presents results of the se-

lected (fused) trackers, equal weighted fusion: T PF∗3T PF∗8 , weighted fusion: T PF∗∗3T PF∗∗8

and the selected benchmark methods.

4.8.1 Combining trackers

A comparison of the six TPF configurations (T PF∗3 , ...,T PF∗8) in Table 4.4 shows that T PF∗3 is

the best and average tracking accuracy decreases with increasing number of trackers. There are

two main reasons for this accuracy drop. First, low performing trackers in the on-target cluster

decrease the overall tracking accuracy when fused using the average approach. This is indicated

by results for P7, P9 and P15, where all trackers are on-target for most of the sequence. This can

be further validated by a comparison of results with AvgF (Table 4.4) for these sequences. Sec-

ond, the number of splitting and merging of clusters increases as we include more trackers, thus

increasing the chances of wrong reverse-analysis evaluations. For P1, the target undergoes occlu-

sions between frames 75-95. FCT, L1T and LSST lose the target due to occlusion, however FCT

Chapter 4: Clustering based approach to tracker-level fusion 80

(a deterministic tracker) achieves the best performance score during this interval, reducing the

overall accuracy. Results for T PF∗5 and T PF∗8 indicate this scenario. Similarly for P10, a drop in

accuracy of T PF∗5 , T PF∗6 and T PF∗7 occurs when the target undergoes occlusions between frames

20-35. All trackers lose the target at frame 20. However, LOT and AMS regain the target. The

target remains stationary from frame 45 till the end of the sequence. This scenario allows failed

trackers to achieve a higher performance score during reverse-analysis, hence reducing the track-

ing accuracy. TPF removes low-performing trackers to improve the overall tracking accuracy.

Results for P3, P10, P13, P18 and P19 indicate that TPF outperforms all trackers. Furthermore

TPF has similar performance to the best performing tracker(s) for the other sequences except for

P6, P12, P17 and P22. T PF∗3 achieves an overall improvement of 23%, 15%, 8%, 23%, 21%,

27%, 13% and 17% in OG in comparison to the individual trackers ST, AFT, LOT, IVT, FCT,

AMS, L1T and LSST respectively. Moreover, all other TPF configurations (T PF∗4 ,...,T PF∗8) also

achieve better results as compared to all individual 8 trackers.

Figure 4.10 compares tracker accuracy using OG values for selected sequences. The target

in P2 changes its pose, causing AMS and L1T to lose the target between frames 80-90. Both

failing trackers at this point are discarded by TPF. Performance of FCT and LSST drops grad-

ually after frame 130 due to background clutter. The performance of T PF∗7 drops at frame 140

where the output is corrupted by low performing trackers (FCT and LSST), which are incorrectly

determined as on-target, while other TPF configurations make use of the best performing track-

ers. For P4, all trackers lose the target between frames 60-110. All TPF configurations identify

and achieve accuracy close to the best performing tracker (AFT). However TPF fails when all

trackers are off-target. P21 undergoes scale changes as it moves away from the camera. OG for

all TPF configurations drops after frame 80, since all trackers remain on-target and form a single

cluster. After frame 130, OG for ST and IVT drops significantly since they cannot handle scale

changes. However these trackers are discarded by TPF, while the performance for T PF∗7 further

improves as a better performing tracker (L1T) is added in the framework.

Furthermore, to determine the statistical significance of the results obtained from the pro-

posed approaches we use the two sample Student’s t-test assuming unequal variances. From each

of the three (fused trackers, non-weighted fusion and weighted fusion), we select the best (LOT,

T PF∗3 and T PF∗∗3 , respectively) and worst performing methods (AMS, T PF∗7 and T PF∗∗7 , re-

spectively) and compare results obtained from the fusion methods to the selected trackers. We

Chapter 4: Clustering based approach to tracker-level fusion 81

Frame0 50 100 150 200 250

.25

0.5

0.75

1

O
G

Frame0 50 100 150 200 250

.25

0.5

0.75

1

O
G

(a) (a)

Frame
0 50 100 150 200
0

.25

.5

.75

1

O
G

Frame
0 50 100 150 200

0

.25

.5

.75

1

O
G

(b) (b)

Frame0 50 100 150

.25

0.5

0.75

1

O
G

Frame0 50 100 150

.25

0.5

0.75

1

O
G

(c) (c)

Figure 4.10: OG scores for trackers and TPF configurations under analysis for selected sequences.
(a) Students-P2, (b) CAVIAR-P4, (c) MITTraffic-P21. Left row: Trackers; —: ST; - - -: AFT;
—: LOT; - - -: IVT; —: AMS; - - -: FCT; —: L1T; —: LSST. Right row: TPF configurations;
—: T PF∗3 ; - - -: T PF∗4 ; —: T PF∗5 ; - - -: T PF∗6 ; —: T PF∗7 ; - - -: T PF∗8 .

apply the significance test to the results obtained from T PF∗3 , T PF∗7 , T PF∗∗3 and T PF∗∗7 using

the following experimental settings: the results from AMS and LOT are used as baseline, the

total sample is the total number of sequences (i.e. twenty two) and 0.10 is used as the standard

significance value.

The first test compares T PF∗3 with AMS and returns a p-value of 0.03 (less than the signifi-

cance value) and rejects the null hypothesis H0 in favour of T PF∗3 under the following hypothesis:

H0 : µT PF∗3 = µAMS,

H1 : µT PF∗3 6= µAMS.
(4.29)

where H0 is rejected (H1 is accepted) if T PF∗3 performs better than AMS. The same hypothesis

tests T PF∗3 with LOT (by replacing µAMS with µLOT in Eq. 4.29) and a p-value of 0.48 accepts

H0.

Chapter 4: Clustering based approach to tracker-level fusion 82

The following hypothesis:

H0 : µT PF∗7 = µAMS,

H1 : µT PF∗7 6= µAMS.
(4.30)

compares T PF∗7 with AMS and a p-value of 0.12 accepts H0 in favour of AMS. Replacing µAMS

with µLOT in Eq. 4.30, T PF∗7 is then compared with LOT and a p-value of 0.89 accepts the H0.

To compare the weighted fusion methods (T PF∗∗3 and T PF∗∗7) against AMS and LOT, similar

hypothesis are used where T PF∗3 and T PF∗7 are replaced by T PF∗∗3 and T PF∗∗7 in Eqs. 4.29

and 4.30, respectively. H0 is rejected (accepted) with a p-value of 0.02 (0.47) when T PF∗∗3

is compared with AMS (LOT) and is accepted with p-values of 0.13 and 0.93 when T PF∗∗7 is

compared with AMS and LOT, respectively.

The results from the significance test highlight the primary objective of the fusion framework

i.e. to obtain better or equal tracking accuracy to the best tracker. The results for all four fusion

methods indicate that they would achieve similar results to the best tracker (LOT) if additional

experiments are performed. The results also highlight the second objective of the framework i.e.

using a performance evaluation method to give lesser weight to bad performing trackers. H0 is

rejected when AMS is compared to T PF∗3 and T PF∗∗3 and is accepted with a low p-value (casting

a doubt on the validity of H0) in comparison to T PF∗7 and T PF∗∗7 .

4.8.2 Comparison of the fusion methods

Table 4.4 compares the two fusion methods. Results indicate that T PF∗∗3T PF∗∗8 achieve sim-

ilar accuracy to T PF∗3T PF∗8 in terms of OG, suggesting that including a performance-based

weight to the fusion approach does not improve the overall tracking accuracy. The main rea-

son for having similar results for both approaches highlights the fact that TPF selects only the

on-target trackers instead of using results from all trackers. Since performance-weight is based

on a state-background discrimination approach and C∗t contains trackers that have a high spatial-

correlation at each frame, the performance-weight of all trackers remain similar to each other.

This indicates that the weight of a highly accurate tracker can be similar to a lesser accurate

tracker since they share the same spatial region. Moreover, this also highlights the efficiency

of the clustering approach that is able to correctly identify clusters of trackers that have a high

spatio-temporal correlation over time.

Chapter 4: Clustering based approach to tracker-level fusion 83

4.8.3 Comparison with selected benchmark methods

Table 4.4 compares the TPF configurations and the related SOA. AvgF and SymT have been

tested using the eight trackers. STR is the best for P1 and P10, achieving the best average results

among the selected SOA approaches. KCF achieves the best results for P2, P3, P4, P5, P17 and

P20. However, it is unable to handle occlusions as shown for P10, P12 and P22. SymT fails to

determine a low performing tracker, hence reducing the overall tracking accuracy. It achieves

good performance when most of the trackers are accurate as indicated by results for P7 and P15.

TPF on the other hand is able to use the best performing trackers and the overall accuracy is

not dependent on the percentage of good trackers. VTS performs relatively well and shows the

best results for P8, P9 and P21. However, it fails for P1 and P10 due to occlusions, and for

P17 and P22 due to similarly coloured background. Although the state-of-the-art approaches

outperform some employed trackers (ST, IVT, FCT and AMS, see Table 4.4), T PF∗3 shows an

overall improvement of 23%, 15%, 13%, 11% and 15% in OG in comparison to AvgF, SymT,

VTS, STR and KCF, respectively.

Sample tracking results for some sequences are shown in Figure 4.13 and Figure 4.14 where

it can be seen that TPF correctly discards wrong trackers as they start to fail due to tracking

challenges. For clarity we only present comparisons between T PF∗3 and the SOA. Examples

in Figure 4.13(a)-(b) show that all trackers correctly follow the target at the beginning of the

sequence. As target occlusions are more frequent, only STR is able to perform similarly to

T PF∗3 as seen in frame 230 for P1 (Figure 4.13(a)) and frame 145 for P10 (Figure 4.13(b)).

Figure 4.14(a) shows an example where none of trackers obtain accurate position estimations

after an illumination change (frames 117 and 192) and the best trackers (KCF, STR and T PF∗3)

achieve low accuracy. Figure 4.14(b) depicts the situation where only T PF∗3 is able to adapt to

changes in target scale and occlusions whereas all the compared trackers fail, as seen in frame

85.

4.9 Computational cost

Figure 4.11 presents the cost for the trackers, tracker clustering (Section 4.2) and on-target clus-

ter identification (Section 4.3) in terms of average computational time. The cost of the fusion

stage is negligible and therefore ignored. The framework has been implemented and tested on

MATLAB2014b on an Intel(R) core(TM) i5-3570, 3.4GHz CPU with 8GB RAM on windows

Chapter 4: Clustering based approach to tracker-level fusion 84

3 4 5 6 7 8

Number of trackers

10-3

10-2

10-1

100

A
ve

ra
ge

 T
im

e
(S

ec
/F

ra
m

e)

Trackers Tracker Clustering On-target cluster identification Total

Figure 4.11: Average computational time for the stages of the proposed approach. For each
configuration, the average is computed over the complete dataset and the total number of trackers.

Sequences

 P1 P2 P3 P4 P5 P6 P7 P8 P9
P10

P11
P12

P13
P14

P15
P16

P17
P18

P19
P20

P21
P22

P
er

ce
nt

ag
e

of
 T

ra
ck

er
s

20

40

60

80

100

TPF
3

TPF
4

TPF
5

TPF
6

TPF
7

TPF
8

Figure 4.12: Percentage of trackers used by the proposed approach for different tracker combi-
nations.

7 (64-bit). The cost of the trackers considers running in parallel the trackers to fuse and depends

on the employed approaches, being heavily influenced by the slowest tracker (LOT). The com-

putational time for tracker clustering slightly increases with the number of trackers. Since on-

target cluster identification uses reverse-analysis, the computational time becomes dependent on

the trackers in the on-target cluster C∗t and the tracking challenges present in the sequence. This

trend is also highlighted by the overall cost for the TPF configurations presented in Table 4.5,

where T PF∗3 achieves the best computational cost. Figure 4.12 shows the average number of

trackers used by TPF, highlighting its advantage to cluster trackers, and using only the ones

Chapter 4: Clustering based approach to tracker-level fusion 85

Table 4.5: Computational cost of the trackers and the proposed approach (TPF) measured as
frames per second (FPS). Key - ST: Sparse Tracker, AFT: Adaptive Fragments based Tracker;
LOT: Locally Orderless Tracker; IVT: Incremental Visual Tracker; FCT: Fast Compressive
Tracker; AMS: Mean Shift Tracker; L1T: L1 Tracker; LSST: Least Soft-Threshold Squares
Tracker.

Fused Trackers Proposed approaches

ST [143] AFT [42] LOT [104] IVT [110] FCT [166] AMS [102] L1T [93] LSST [142] T PF∗3 T PF∗4 T PF∗5 T PF∗6 T PF∗7 T PF∗8
FPS 50.1±0.1 5.9±4.0 0.3±0.1 48.1±1.4 8.0±6.2 108.0±31.2 7.7±1.7 3.4±0.6 2.5±4.8 0.3±0.4 0.2±0.3 0.2±0.1 0.1±0.1 0.1±0.1

on-target for the various TPF combinations.

4.10 Summary

We presented an approach to dynamically select and combine the results of successful (i.e. on-

target) trackers in a tracker-level fusion framework. The proposed approach determines relation-

ships between trackers by analyzing the position and direction of their estimated states. These

spatio-temporal features are combined to estimate pair-wise tracker correlation scores that deter-

mine clusters of similarly performing trackers over time. An adaptive online evaluator identifies

the trackers that are on-target and propagates them over time until a split or merge of this group

(cluster) of trackers is detected. The final target state is estimated by fusing the outputs from the

trackers that are in the on-target cluster.

The framework is demonstrated using six different combinations that involve eight different

trackers [42, 93, 102, 104, 110, 142, 143, 166] over a diverse dataset involving 22 sequences. The

proposed approach of using two features (spatial overlap and temporal direction) within the clus-

tering framework improves performance in comparison to only using either one of the features.

Moreover, the proposed adaptive time-reversed evaluation improves the original approach [149]

by using motion analysis and tracker performance to temporally update the reference frame. Fi-

nally, by using only the trackers within the on-target cluster for fusion, the proposed framework

is able to outperform state-of-the-art methods and the combined trackers.

Chapter 4: Clustering based approach to tracker-level fusion 86

#10 #10

#60 #40

#112 #110

#230 #145

a b

Figure 4.13: Sample tracking results for (a) Students-P1, (b) PETS-P10. - - -: TPF; - - -:
STRUCK; —: VTS; - - -: SymT; —: AvgF; —: KCF.

Chapter 4: Clustering based approach to tracker-level fusion 87

#4 #10

#63 #30

#117 #60

#192 #85

a b

Figure 4.14: Sample tracking results for (a) CAVIAR-P4 and (b) PETS-P12. - - -: TPF; - - -:
STRUCK; —: VTS; - - -: SymT; —: AvgF; —: KCF.

Chapter 5

Conclusions

5.1 Summary of achievements

In this thesis we present an approach to improve the overall tracking accuracy by fusing the

outputs of multiple video trackers that track the same target. However, when combining mul-

tiple trackers within the same framework, some of the trackers may fail due to the challenges

present within the video data. Failing trackers can cause the overall tracking accuracy to drop

and furthermore, can be a computational burden within the fusion framework. In this thesis we

therefore address different problems regarding tracker-level fusion within a single target tracking

framework.

The first problem deals with the online performance evaluation of video trackers without

being dependent upon the type of tracker. Combining trackers within a fusion framework may

require the performance evaluation of each tracker. Performance evaluation helps in determining

low-performing trackers that can either be given less weight or be discarded from the fusion.

Having a performance evaluator dependent on the type of tracker may limit the fusion framework

to specific trackers. We present an approach that is tracker-independent and determines feature

descriptors using tracking outputs only to evaluate the tracking performance. The method uses

a state-background discrimination approach to determine the similarity (dissimilarity) of the two

regions, which indicates low (high) performance of the tracker.

The second problem involves using tracking performance scores that have varying range of

values for different datasets or trackers. We model the tracking performance score as a time

88

Chapter 5: Conclusions 89

series and employ a forecasting function that estimates future values of the performance score.

The difference between the original and forecast values returns the forecast error signal which

has a uniform range of values for the different datasets and trackers used to test the approach.

Then, using the forecast error signal we determine time instants when the tracker fails.

Our third problem is concerned with finding the trackers (from a group of trackers) that are

on the correct target within the fusion framework. The current SOA approaches to tracker-level

fusion either use all trackers for fusion or select only the best performing tracker to estimate

the final target state. Our clustering approach to tracker fusion enables us to determine different

groups of trackers that may form when some trackers fail due to challenges within the video

data. We achieve this by estimating the spatio-temporal relationships between the outputs of

the trackers. Then, we use an adaptive time-reversed evaluation approach to identify the on-

target cluster i.e. the cluster which follows the correct target. We then fuse the outputs from the

selected trackers (part of the on-target cluster) to estimate the final target state. To further reduce

the computational load of a tracker-level fusion framework, we propagate the on-target cluster

over time until trackers leave or join this cluster. This allows us to reduce the computational

cost during the performance evaluation and the fusion by using trackers only within the on-target

cluster.

The computational cost of the original time-reversed evaluation approach [149] is our fourth

problem. The method evaluates tracking performance by comparing results of the tracker with

that of another tracker running in time-reversed direction at a specified reference frame (i.e.

where the tracker is known to be on target). Using the first frame of the sequence as the refer-

ence frame imposes a heavy computational cost, making the method [149] infeasible for longer

sequences. We address this problem by adaptively moving the reference frame forward in time

by using information based on the motion of the target state and the performance of the trackers.

5.2 Future work

The following section presents the possible future research directions of the thesis.

1. The method of detecting tracking failure employs a state-background discrimination ap-

proach. The position for the background is estimated in the one time step ahead in the

future. This can be changed to estimating the position of the background in the future

within a certain temporal window. This can allow the method to predict tracking failure in

Chapter 5: Conclusions 90

advance and help the tracker to self-correct when the failure occurs.

2. The method of detecting tracking failure employs features that are dependent upon the

colour space, hence making the approach limited to visual challenges such as background

clutter, sudden illumination changes or fast target motion. Combining other features such as

gradient-based or those based on motion patterns can improve the robustness of the method

towards such challenges.

3. The method of detecting tracking failure employs an experimentally determined threshold.

The experimental results highlights that the threshold can be applied to different trackers

and different sequences, however, a threshold-free approach is desirable. Determining the

model of the forecast error signal or using methods such as the forecast tracking signal [50]

can be employed to remove dependence over thresholds. A forecast tracking signal moni-

tors the forecasts made with respect to the originals and indicates when there are unexpected

changes within the forecast values.

4. The method of detecting tracking failure also presents an approach to measure tracking

accuracy and robustness (failure) without using any ground truth data. This information

can be combined to generate a new measure similar to Combined Tracking Performance

Score (CoTPS) [98]. CoTPS is an offline performance evaluation method (i.e. based on GT)

and combines tracking accuracy and robustness to generate a unified score for measuring

tracking performance.

5. The clustering-based tracker fusion approach has been tested on a single target tracking

framework. The method can also be extended to a multi-target tracking (MTT) framework

where information from multiple trackers can be employed to improve tracking accuracy.

However, such a method will also need to handle the various issues of a MTT framework

that include data association as well as detection, initiation and termination of targets in a

detection-based MTT method.

6. The proposed fusion approach can also be applied to a convolutional network-based (deep

learning) framework. A single strong tracker can be built by fusing the outputs of multiple

trackers that use features extracted from different layers of the network [107]. However,

combining outputs from all trackers may cause the overall tracking accuracy to drop due to

failing trackers. The proposed fusion approach first employs a clustering-based method to

determine the different groups of trackers and then identifies the on-target group using an

Chapter 5: Conclusions 91

online performance evaluator. The clustering-based method combined with a performance

evaluator can be used to further improve the tracking accuracy of the deep learning-based

fusion method.

7. The method for determining tracking performance based on reverse-tracking employs an

adaptive reference frame. Since the method is based on motion analysis, the approach of

moving the reference frame forward in time cannot differentiate between two situations i.e.

(i) the tracker is on-target and the target is static; (ii) the tracker drifts from the target and

gets locked onto a static background region. The performance of the approach of moving

the reference frame forward in time can be further improved by employing methods of

foreground-background discrimination to differentiate between the two situations.

8. Based on statistical analysis performed in Section 4.6.2, further experiments can be per-

formed to determine the optimal value of ω (Eq. 4.7) that may help to improve the perfor-

mance of the clustering method.

Appendix A

Evaluation datasets

A.1 Introduction

To evaluate the approaches discussed in the thesis we use three different datasets selected from

the SOA. The datasets cover both indoor and outdoor sequences containing multiple tracking

challenges that include partial and full occlusions, background clutter, target rotation including

changes in scale, pose, motion and illumination of the target and include five target types, namely

person, faces, vehicles, animals and others.

For the first dataset D1, 22 sequences (3580 frames) was considered from the following

datasets: Students1, CAVIAR2, PETS (20093 and 20014), LTDT5, TRECVID20096, MIT Traf-

fic7, David8 and AVSS20079. The second dataset OTB that includes 20 sequences (6600 frames)

has been taken from the Object Tracking Benchmark [155]. Sequences David (300:500), Doll

(1:500), Girl (1:210), Liquor (1:750) and Woman (1:150) (first frame:last frame), are used with

reduced number of frames since the tracker fails to recover the target after this point. Dataset

VOT, 25 sequences (10200 frames) has been used from the VOT2014 challenge 10.

We use the dataset D1 for testing TPF and determining the optimal parameters for DTFF.
1http://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
2http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
3http://www.cvg.reading.ac.uk/PETS2009
4http://www.cvg.reading.ac.uk/slides/pets.html
5http://www.micc.unifi.it/LTDT2014
6http://trecvid.nist.gov/trecvid.data.html#tv09
7http://www.ee.cuhk.edu.hk/˜xgwang/HBM.html
8http://www.cs.toronto.edu/˜dross/ivt/
9http://www.avss2007.org/

10http://www.votchallenge.net/vot2014/dataset.html

92

http://graphics.cs.ucy.ac.cy/research/downloads/crowd-data
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
http://www.cvg.reading.ac.uk/PETS2009
http://www.cvg.reading.ac.uk/slides/pets.html
http://www.micc.unifi.it/LTDT2014
http://trecvid.nist.gov/trecvid.data.html#tv09
http://www.ee.cuhk.edu.hk/~xgwang/HBM.html
http://www.cs.toronto.edu/~dross/ivt/
http://www.avss2007.org/
http://www.votchallenge.net/vot2014/dataset.html

Appendix A: Evaluation datasets 93

DTFF is then tested over dataset OTB, while further validation is performed using the VOT2014

challenge dataset. Table A.1, A.2 and A.3 describes the sequences for datasets D1, OTB and

VOT, respectively. The target initialization for D1, OTB and VOT are included in Figure A.1,

Figure A.2 and Figure A.3, respectively.

A.2 Tabular summary

Table A.1: Sequences used in the experiments. KEY - BC: background clutter; P: pose variations;
O: occlusions; I: illumination variations; S: scale variations; M: motion variations.

Dataset Sequence name Target Size Total Challenges
Class Target Frame Frames

Students
P1

University Students

Person

21 x 75
720 x 576

250 BC, P, O, I
P2 22 x 69 250 BC, P, I
P3 25 x 61 165 P, I

CAVIAR

P4 Browse WhileWaiting1 50 x 24

384 x 288

200 P, I
P5 OneLeaveShopReenter1Front 16 x 56 195 P, I, S, BC
P6 OneLeaveShopReenter2front 14 x 50 300 P, I, S, BC
P7 ThreePastShop2cor 56 x 142 170 P, I, S

PETS

P8 S2.L2 walking 14 x 50

768 x 576

140 P, I, S, BC
P9 PETS2001 Dataset 1 Vehicle 56 x 142 150 P, I, S
P10 S2.L1 walking Person 22 x 68 150 BC, I,S
P11 PETS2001 Dataset 1 Vehicle 72 x 56 180 S, M
P12

S2.L1 walking Person
72 x 56 90 O, M

P13 72 x 56 150 M, O, P
P14 72 x 56 110 S, M

LTDT P15 NissanSkylineChase Vehicle 37 x 21 640 x 275 300 I, M, S
David P16 David Indoor Face 91 x 116 320 x 240 130 I, S, M, BC

AVSS2007 P17 Abandoned baggage

Person

60 x 240 720 x 576 200 P, I

TRECVID
P18

MCTTR0205a
72 x 226

720 x 576
50 P, I, BC

P19 64 x 204 40 P, I, BC
P20 64 x 204 40 I, M, BC

MIT Traffic
P21 MV2 001

Vehicle
34 x 26 720 x 480 160 I, S, M

P22 MV2 006 70 x 36 720 x 576 160 O, I, M

Appendix A: Evaluation datasets 94

Table A.2: Selected sequences from the Object Tracking Benchmark (OTB) dataset [155] used
in the experiments. KEY - I: illumination variation; BC: background clutter; S: scale variations;
O: occlusions; P: pose changes; MB: motion blur.

Sequence name
Target Size Total

Challenges
Class Target Frame Frames

CarDark
Vehicle

29 x 23 320 x 240 300 I, BC
CarScale 42 x 26 640 x 272 250 S, O, P
Couple

Person
25 x 62 320 x 240 140 S, P, BC

Crossing 17 x 50 360 x 240 120 S, P, BC
David Face 64 x 78 320 x 240 200 I, S, O

David3 Person 35 x 131 640 x 480 230 O, P, BC
Doll Other 32 x 73 400 x 300 500 I, S, O, P

FaceOcc1 Face 114 x 162 352 x 288 890 O
Girl

Person
31 x 45 128 x 96 210 S, O, P

Jogging 25 x 101 352 x 288 305 O, P
Liquor Other 73 x 210 640 x 480 750 I, S, O, MB, P, BC

MotorRolling
Vehicle

122 x 125 640 x 360 165 I, S, MB, P, BC
MountainBike 67 x 56 640 x 360 230 P, BC

Singer1
Person

87 x 290 624 x 352 350 I, S, O, P
Singer2 67 x 122 624 x 352 365 I, P, BC
Subway 19 x 51 352 x 288 175 O, BC
Tiger1 Other 76 x 84 640 x 480 355 I, O, MB, P

Walking
Person

24 x 79 768 x 576 410 S, O
Walking2 31 x 115 384 x 288 500 S, O
Woman 21 x 95 352 x 288 150 I, S, O, MB, P

Appendix A: Evaluation datasets 95

Table A.3: Sequences from the Visual Object Tracking (VOT) 2014 challenge [73] used in the
experiments. KEY - BC: background clutter; P: pose variations; O: occlusions; I: illumination
variations; S: scale variations; M: motion variations; CM: camera motion.

Sequence name
Target Size Total

Challenges
Class Target Frame Frames

ball Other 45 x 45 320 x 240 600 S, M, CM
basketball

Person
31 x 113 576 x 432 725 O, M, CM, S, BC

bicycle 18 x 48 320 x 240 270 O, M, S, CM
bolt 3 x 68 640 x 360 350 M, CM
car Vehicle 43 x 27 640 x 272 250 O, M, S, CM

david Face 82 x 96 320 x 240 770 I, CM, S, M
diving Person 37 x 162 400 x 224 220 M, S, CM
drunk Vehicle 105 x 91 508 x 336 1210 M, S

fernando
Animal

83 x 217 640 x 480 290 O, M, I, CM, S, BC
fish1 46 x 8 460 x 259 435 M, S, CM
fish2 78 x 81 640 x 360 310 O, M, S, CM, BC

gymnastics Person 41 x 124 320 x 180 205 M, S, CM
hand1

Other
43 x 45 320 x 240 245 S, M

hand2 47 x 53 320 x 240 265 S, M
jogging Person 26 x 102 352 x 288 305 O, S, M, CM

motocross Vehicle 106 x 145 640 x 360 165 S, M, CM, BC
polarbear Animal 50 x 71 640 x 360 370 S, M, CM
skating Person 35 x 88 768 x 360 400 S, M, O, CM, I
sphere Other 87 x 90 480 x 360 200 S, M, I, CM

sunshade Face 37 x 51 352 x 288 170 S, M, I, CM
surfing Person 19 x 47 320 x 240 280 M, I, CM
torus Other 49 x 50 320 x 240 265 M, S
trellis Face 68 x 73 320 x 240 570 S, M, I, CM
tunnel

Person
54 x 87 360 x 480 730 S, M, I, CM

woman 29 x 103 352 x 288 600 S, M, O, CM

Appendix A: Evaluation datasets 96

A.3 Target initializations

Figure A.1: Target initializations for dataset D1.

Appendix A: Evaluation datasets 97

jogging

Figure A.2: Target initializations for dataset OTB

Figure A.3: Target initializations for dataset VOT2014

Bibliography

[1] S. Abosedra and H. Baghestani. On the predictive accuracy of crude oil futures prices.

Energy Policy, 32(12):1389 – 1393, Aug 2004.

[2] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the integral

histogram. In IEEE International Conference on Computer Vision and Pattern Recognition,

pages 798–805, 17-22 Jun 2006.

[3] N. Anjum and A Cavallaro. Multifeature object trajectory clustering for video analysis. IEEE

Transactions on Circuits and Systems for Video Technology, 18(11):1555–1564, Nov 2008.

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for

online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing,

50(2):174–188, Feb 2002.

[5] S. Avidan. Ensemble tracking. In IEEE International Conference on Computer Vision and

Pattern Recognition, pages 494–501, 20-25 Jun 2005.

[6] B. Babenko, M.H. Yang, and S. Belongie. Visual tracking with online multiple instance

learning. In IEEE International Conference on Computer Vision and Pattern Recognition,

pages 983–990, 20-25 Jun 2009.

[7] V. Badrinarayanan, P. Perez, F. Le Clerc, and L. Oisel. Probabilistic color and adaptive multi-

feature tracking with dynamically switched priority between cues. In IEEE International

Conference on Computer Vision, pages 1–8, 14-21 Oct 2007.

[8] Q. Bai, Z. Wu, S. Sclaroff, M. Betke, and C. Monnier. Randomized ensemble tracking. In

IEEE International Conference on Computer Vision, pages 2040–2047, 1-8 Dec 2013.

[9] C. Bailer, A. Pagani, and D. Stricker. A superior tracking approach: Building a strong

tracker through fusion. In Proceedings of European Conference on Computer Vision, pages

170–185, 6-12 Sep 2014.

[10] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. S. Torr. Staple: Complemen-

tary learners for real-time tracking. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 1401–1409, 27-30 Jun 2016.

98

99

[11] S. Bianco, G. Ciocca, P. Napoletano, and R. Schettini. An interactive tool for manual,

semi-automatic and automatic video annotation. Computer Vision and Image Understanding,

131:88–99, Feb 2015.

[12] E. Bingham and H. Mannila. Random projection in dimensionality reduction: Applica-

tions to image and text data. In Proceedings of the International Conference on Knowledge

Discovery and Data Mining, pages 245–250, 26-29 Aug 2001.

[13] S. Birchfield. Elliptical head tracking using intensity gradients and color histograms. In

IEEE International Conference on Computer Vision and Pattern Recognition, pages 232–

237, 25 Jun 1998.

[14] T.A. Biresaw, M.S. Alvarez, and C.S. Regazzoni. Online failure detection and correction

for bayesian sparse feature-based object tracking. In IEEE International Conference on

Advanced Video and Signal based Surveillance, pages 320–324, 30 Aug-2 Sep 2011.

[15] T.A. Biresaw, A. Cavallaro, and C.S. Regazzoni. Correlation-based self-correcting tracking.

Neurocomputing, 152(1):345–358, Mar 2015.

[16] T.A. Biresaw, A. Cavallaro, and C.S. Regazzoni. Tracker-level fusion for robust bayesian vi-

sual tracking. IEEE Transactions on Circuits and Systems for Video Technology, 25(5):776–

789, May 2015.

[17] T.A. Biresaw, T. Nawaz, J. Ferryman, and A. Dell. ViTBAT: Video tracking and behavior

annotation tool. In IEEE International Conference on Advanced Video and Signal based

Surveillance, 24-26 Aug 2016.

[18] J. Black, T. Ellis, and P. Rosin. A novel method for video tracking performance evaluation.

In Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation

of Tracking and Surveillance, pages 125–132, Oct 2003.

[19] M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output

regression. In Proceedings of European Conference on Computer Vision, pages 2–15, 12-18

Oct 2008.

[20] F. Bousetouane, L. Dib, and H. Snoussi. Improved mean shift integrating texture and color

features for robust real time object tracking. The Visual Computer, 29(3):155–170, Mar

2013.

100

[21] T. Bouwmans. Traditional and recent approaches in background modeling for foreground

detection: An overview. Computer Science Review, 11:31–66, May 2014.

[22] G.E.P. Box, G.M. Jenkins, and G.C. Reinsel. Time series analysis: Forecasting and control.

Wiley, 4 edition, Jun 2008.

[23] P. Brasnett, L. Mihaylova, D. Bull, and N. Canagarajah. Sequential monte carlo tracking by

fusing multiple cues in video sequences. Image and Vision Computing, 25(8):1217 – 1227,

Aug 2007.

[24] C. Chang, R. Ansari, and A. Khokhar. Multiple object tracking with kernel particle filter.

In IEEE International Conference on Computer Vision and Pattern Recognition, pages 566–

573, 20-25 Jun 2005.

[25] D.P. Chau, J. Badie, F. Brémond, and M. Thonnat. Online tracking parameter adaptation

based on evaluation. In IEEE International Conference on Advanced Video and Signal based

Surveillance, pages 189–194, 27-30 Aug 2013.

[26] D.P. Chau, F. Bremond, and M. Thonnat. Online evaluation of tracking algorithm perfor-

mance. In International Conference on Crime Detection and Prevention, pages 1–6, 3 Dec

2009.

[27] D.P. Chau, F. Bremond, M. Thonnat, and E. Corve. Robust mobile object tracking based

on multiple feature similarity and trajectory filtering. In The International Conference on

Computer Vision Theory and Applications, pages 569–574, 5-7 Mar 2011.

[28] D.P. Chau, M. Thonnat, F. Bremond, and E. Corve. Online parameter tuning for object

tracking algorithms. Image and Vision Computing, 32(4):287–302, Apr 2014.

[29] K. Chaudhuri, Y. Freund, and D. Hsu. A parameter-free Hedging algorithm. In Inter-

national Conference on Neural Information Processing Systems, pages 297–305, 5-8 Dec

2009.

[30] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for texture recognition and segmen-

tation. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3828–3836,

7-12 Jun 2015.

[31] R.T. Collins, Y. Liu, and M. Leordeanu. Online selection of discriminative tracking features.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1631–1643, Oct

2005.

101

[32] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 25(5):564–577, May 2003.

[33] J.H. Conway and R Guy. The Book of Numbers. Copernicus, Springer Science and Business

Media, 1 edition, 1996.

[34] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg. Accurate scale estimation for robust

visual tracking. In Proceedings of the British Machine Vision Conference, 1-5 Sep 2014.

[35] M. Danelljan, G. Hager, F. S. Khan, and M. Felsberg. Learning spatially regularized cor-

relation filters for visual tracking. In IEEE International Conference on Computer Vision,

pages 4310–4318, 13-16 Dec 2015.

[36] M. Danelljan, G. Hager, F. S. Khan, and M Felsberg. Discriminative scale space tracking.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016.

[37] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg. Beyond correlation filters: Learn-

ing continuous convolution operators for visual tracking. In Proceedings of European Con-

ference on Computer Vision, pages 472–488, 11-14 Oct 2016.

[38] A. Doulamis. Dynamic tracking re-adjustment: a method for automatic tracking recovery in

complex visual environments. Multimedia Tools and Applications, 50(1):49–73, Oct 2010.

[39] S. Duffner, J. Odobez, and E. Ricci. Dynamic partitioned sampling for tracking with dis-

criminative features. In Proceedings of the British Machine Vision Conference, 7-10 Sep

2009.

[40] A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background subtrac-

tion. In Proceedings of European Conference on Computer Vision, pages 751–767, 26 Jun-1

Jul 2000.

[41] C.E. Erdem, B. Sankur, and A.M. Tekalp. Performance measures for video object segmen-

tation and tracking. IEEE Transactions on Image Processing, 13(7):937–951, Jul 2004.

[42] E. Erdem, S. Dubuisson, and I. Bloch. Fragments based tracking with adaptive cue integra-

tion. Computer Vision and Image Understanding, 116(7):827 – 841, Jul 2012.

[43] E. Erdem, S. Dubuisson, and I. Bloch. Visual tracking by fusing multiple cues with context-

sensitive reliabilities. Pattern Recognition, 45(5):1948–1959, May 2012.

[44] H. Fan and H. Ling. SANet: Structure-aware network for visual tracking. CoRR,

abs/1611.06878, 2016.

102

[45] J. Fan, X. Shen, and Y. Wu. What are we tracking: A unified approach of tracking and

recognition. IEEE Transactions on Image Processing, 22(2):549–560, Feb 2013.

[46] M. Felsberg. Enhanced distribution field tracking using channel representations. In IEEE

International Conference on Computer Vision Workshops, pages 121–128, 1-8 Dec 2013.

[47] P. Gabriel, J. B. Hayet, J. Piater, and J. Verly. Object tracking using color interest points.

In IEEE International Conference on Advanced Video and Signal Based Surveillance, pages

159–164, 15-16 Sep 2005.

[48] J. Gao, T. Zhang, X. Yang, and C. Xu. Deep relative tracking. IEEE Transactions on Image

Processing, PP(99):1–1, 2017.

[49] Y. Gao, R. Ji, L. Zhang, and A. Hauptmann. Symbiotic tracker ensemble towards a uni-

fied tracking framework. IEEE Transactions on Circuits and Systems for Video Technology,

24(7):1122–1131, Jul 2014.

[50] J.G. Gooijer and R.J. Hyndman. 25 years of time series forecasting. International Journal

of Forecasting, 22(3):443 – 473, Jul 2006.

[51] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust track-

ing. In Proceedings of European Conference on Computer Vision, pages 234–247, 12-18 Oct

2008.

[52] G.D. Hager and P.N. Belhumeur. Efficient region tracking with parametric models of ge-

ometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20(10):1025–1039, Oct 1998.

[53] P.R. Halmos. Naive Set Theory. Springer Science and Business Media, 1960.

[54] B. Han, Y. Zhu, D. Comaniciu, and L.S. Davis. Visual tracking by continuous density prop-

agation in sequential bayesian filtering framework. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 31(5):919–930, May 2009.

[55] Z. Han, Q. Ye, and J. Jiao. Online feature evaluation for object tracking using kalman filter.

In International Conference on Pattern Recognition, pages 1–4, 8-11 Dec 2008.

[56] Z. Han, Q. Ye, and J. Jiao. Combined feature evaluation for adaptive visual object tracking.

Computer Vision and Image Understanding, 115(1):69 – 80, Jan 2011.

[57] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M. M. Cheng, S.L. Hicks, and P.H.S. Torr.

103

Struck: Structured output tracking with kernels. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38(10):2096–2109, Oct 2016.

[58] S. Hare, A. Saffari, and P.H.S. Torr. Struck: Structured output tracking with kernels. In

IEEE International Conference on Computer Vision, pages 263–270, 6-13 Nov 2011.

[59] M. Heber, M. Godec, M. Ruther, P. Roth, and H. Bischof. Segmentation-based tracking by

support fusion. Computer Vision and Image Understanding, 117(6):573–586, Jun 2013.

[60] D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep regression

networks. In Proceedings of European Conference on Computer Vision, pages 749–765,

11-14 Oct 2016.

[61] C.K. Heng, S. Yokomitsu, Y. Matsumoto, and H. Tamura. Shrink boost for selecting multi-

lbp histogram features in object detection. In IEEE International Conference on Computer

Vision and Pattern Recognition, pages 3250–3257, 23-28 Jun 2012.

[62] J.F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-speed tracking with kernel-

ized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,

37(3):583–596, Mar 2015.

[63] C. C. Holt. Forecasting seasonals and trends by exponentially weighted moving averages.

International Journal of Forecasting, 20(1):5–10, Jan 2004.

[64] W. Hu, X. Zhou, W. Li, W. Luo, X. Zhang, and S. Maybank. Active contour-based visual

tracking by integrating colors, shapes, and motions. IEEE Transactions on Image Processing,

22(5):1778–1792, May 2013.

[65] R.J. Hyndman and A.B. Koehler. Another look at measures of forecast accuracy. Interna-

tional Journal of Forecasting, 22(4):679–688, Oct 2006.

[66] D-S. Jang, S-W. Jang, and H. Choi. 2D human body tracking with structural kalman filter.

Pattern Recognition, 35(10):2041–2049, Oct 2002.

[67] F. Jiang, Y. Wu, and A.K. Katsaggelos. A dynamic hierarchical clustering method for

trajectory-based unusual video event detection. IEEE Transactions on Image Processing,

18(4):907–913, Apr 2009.

[68] H. Jiang, J. Li, D. Wang, and H. Lu. Multi-feature tracking via adaptive weights. Neuro-

computing, 207:189–201, Sep 2016.

104

[69] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Automatic detection of

tracking failures. In International Conference on Pattern Recognition, pages 2756–2759,

23-26 Aug 2010.

[70] R.G. Kavasseri and K. Seetharaman. Day-ahead wind speed forecasting using f-arima mod-

els. Renewable Energy, 34(5):1388–1393, May 2009.

[71] B. Khaleghi, A. Khamis, O.F. Karray, and N.S. Razavi. Multisensor data fusion: A review

of the state-of-the-art. Information Fusion, 14(1):28–44, Jan 2013.

[72] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fernandez, G. Nebehay,

F. Porikli, and L. Cehovin. A novel performance evaluation methodology for single-target

trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11):2137–

2155, Nov 2016.

[73] M. Kristan, R. Pflugfelder, A. Leonardis, et al. The visual object tracking VOT2014 chal-

lenge results. In Proceedings of European Conference on Computer Vision, Workshop on

Visual Object Tracking Challenge, pages 191–217, 6-12 Sep 2014.

[74] J. Kwon and K. Lee. Tracking by sampling and integrating multiple trackers. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 36(7):1428–1441, Jul 2014.

[75] D-Y. Lee, J-Y. Sim, and C-S. Kim. Visual tracking using pertinent patch selection and

masking. In IEEE International Conference on Computer Vision and Pattern Recognition,

pages 3486–3493, 23-28 Jun 2014.

[76] I. Leichter, M. Lindenbaum, and E. Rivlin. A general framework for combining visual

trackers: the black boxes approach. International Journal of Computer Vision, 67:343–363,

May 2006.

[77] A. Li, M. Lin, Y. Wu, M.H. Yang, and S. Yan. NUS-PRO: A new visual tracking challenge.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2):335–349, Feb 2016.

[78] H. Li, Y. Li, and F. Porikli. Deeptrack: Learning discriminative feature representations

online for robust visual tracking. IEEE Transactions on Image Processing, 25(4):1834–1848,

Apr 2016.

[79] Q. Li, X. Wang, W. Wang, Y. Jiang, Z. Zhou, and Z. Tu. Disagreement-based multi-system

tracking. In Proceedings of Asian Conference on Computer Vision, pages 320–334, 5-9 Nov

2012.

105

[80] X. Li, W. Hu, Z. Zhang, X. Zhang, and G. Luo. Robust visual tracking based on incremental

tensor subspace learning. In IEEE International Conference on Computer Vision, pages 1–8,

14-21 Oct 2007.

[81] Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In

Proceedings of European Conference on Computer Vision, pages 254–265, 6-12 Sep 2014.

[82] L. Liu, C. Shen, and A. van den Hengel. The treasure beneath convolutional layers: Cross-

convolutional-layer pooling for image classification. In IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 4749–4757, 7-12 Jun 2015.

[83] R. Liu, S. Li, X. Yuan, and R. He. Online determination of track loss using template inverse

matching. In International Workshop on Visual Surveillance, pages 17–24, 17 Oct 2008.

[84] S. Liu, T. Zhang, X. Cao, and C. Xu. Structural correlation filter for robust visual tracking.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 4312–4320, 27-30

Jun 2016.

[85] Y. Liu, J. Cui, H. Zhao, and H. Zha. Fusion of low-and high-dimensional approaches by

trackers sampling for generic human motion tracking. In International Conference on Pattern

Recognition, pages 898–901, 11-15 Nov 2012.

[86] J.F. Lucas. Introduction to Abstract Mathematics. Rowman and Littlefield, 2 edition, 1990.

[87] C. Ma, J. B. Huang, X. Yang, and M. H. Yang. Hierarchical convolutional features for

visual tracking. In IEEE International Conference on Computer Vision, pages 3074–3082,

7-13 Dec 2015.

[88] J. Ma, C. Han, and Y. Yang. Visual tracking based on adaptive multi-cue integration. In

International Conference on Information Fusion, pages 1737–1742, 6-9 Jul 2009.

[89] E. Maggio and A Cavallaro. Hybrid particle filter and mean shift tracker with adaptive tran-

sition model. In IEEE International Conference on Acoustics Speech and Signal Processing,

pages 221–224, 23 Mar 2005.

[90] E. Maggio and A. Cavallaro. Video Tracking: Theory and Practice. Wiley, 1st edition,

2011.

[91] E. Maggio, F. Smerladi, and A. Cavallaro. Adaptive multifeature tracking in a particle

filtering framework. IEEE Transactions on Circuits and Systems for Video Technology,

17(10):1348–1359, Oct 2007.

106

[92] A. Makris, D. Kosmopoulos, S. Perantonis, and S. Theodoridis. A hierarchical feature

fusion framework for adaptive visual tracking. Image and Vision Computing, 29(9):594–

606, Aug 2011.

[93] X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse representa-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11):2259–2272,

Nov 2011.

[94] K. Meshgi, S. Maeda, S. Oba, S. Skibbe, Y. Li, and S. Ishii. An occlusion-aware parti-

cle filter tracker to handle complex and persistent occlusions. Computer Vision and Image

Understanding, 150:81–94, Sep 2016.

[95] D.C. Montgomery, C.L. Jennings, and M. Kulahci. Introduction to Time Series Analysis

and Forecasting. Wiley Series in Probability and Statistics. Wiley, 2011.

[96] F. Moreno-Noguer, A. Sanfeliu, and D. Samaras. Dependent multiple cue integration for ro-

bust tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(4):670–

685, Apr 2008.

[97] H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual track-

ing. In IEEE Conference on Computer Vision and Pattern Recognition, pages 4293–4302,

27-30 Jun 2016.

[98] T. Nawaz and A. Cavallaro. A protocol for evaluating video trackers under real-world

conditions. IEEE Transactions on Image Processing, 22(4):1354–1361, Apr 2013.

[99] H.T. Nguyen and A.W.M. Smeulders. Robust tracking using foreground-background tex-

ture discrimination. International Journal of Computer Vision, 69(3):277–293, 2006.

[100] J. Ning, W. Shi, S. Yang, and P. Yanne. Visual tracking based on distribution fields and

online weighted multiple instance learning. Image and Vision Computing, 31(11):853–863,

Nov 2013.

[101] J. Ning, L. Zhang, D. Zhang, and C. Wu. Robust object tracking using joint color-

texture histogram. International Journal of Pattern Recognition and Artificial Intelligence,

23(07):1245–1263, Feb 2009.

[102] J. Ning, L. Zhang, D. Zhang, and C. Wu. Scale and orientation adaptive mean shift track-

ing. IET Computer Vision, 6(1):52–61, Jan 2012.

107

[103] K. Nummiaro, E. Koller-Meier, and L. Van Gool. An adaptive color-based particle filter.

Image and Vision Computing, 21(1):99–110, Jan 2003.

[104] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan. Locally orderless tracking. International

Journal Computer Vision, 111(2):213–228, Jan 2014.

[105] P. Pan, F. Porikli, and D. Schonfeld. A new method for tracking performance evaluation

based on a reflective model and perturbation analysis. In IEEE International Conference on

Acoustics Speech and Signal Processing, pages 3529–3532, 19-24 Apr 2009.

[106] P. Perez, J. Vermaak, and A. Blake. Data fusion for visual tracking with particles. Pro-

ceedings of the IEEE, 92(3):495–513, Mar 2004.

[107] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M. H. Yang. Hedged deep tracking.

In IEEE Conference on Computer Vision and Pattern Recognition, pages 4303–4311, 27-30

Jun 2016.

[108] X. Ren and J. Malik. Learning a classification model for segmentation. In IEEE Interna-

tional Conference on Computer Vision, pages 10–17, 13-16 Oct 2003.

[109] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman filter: particle filters for

tracking applications. Artech House, Boston, London, 2004.

[110] D.A. Ross, J. Lim, R. Lin, and M. Yang. Incremental learning for robust visual tracking.

International Journal of Computer Vision, 77(1):125–141, May 2008.

[111] Y. Rubner, C. Tomasi, and L.J. Guibas. The earth mover’s distance as a metric for image

retrieval. International Journal of Computer Vision, 40(2):99–121, Nov 2000.

[112] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition

challenge. International Journal of Computer Vision, 115(3):211–252, Dec 2015.

[113] J.C. SanMiguel and A. Calvo. Covariance-based online validation of video tracking. IEEE

Electronics Letters, 51(3):226–228, Feb 2015.

[114] J.C. SanMiguel and A. Cavallaro. Temporal validation of particle filters for video tracking.

Computer Vision and Image Understanding, 131(1):42–55, Feb 2015.

[115] J.C. SanMiguel, A. Cavallaro, and J.M. Martinez. Evaluation of on-line quality estimators

for object tracking. In IEEE International Conference on Image Processing, pages 825–828,

26-29 Sep 2010.

108

[116] J.C. SanMiguel, A. Cavallaro, and J.M. Martinez. Adaptive online performance evaluation

of video trackers. IEEE Transactions on Image Processing, 21(5):2812–2823, May 2012.

[117] J.C. SanMiguel, A. Cavallaro, and J.M. Martinez. Standalone evaluation of deterministic

video tracking. In IEEE International Conference on Image Processing, pages 1353–1356,

30 Sep-3 Oct 2012.

[118] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. PROST: Parallel robust on-

line simple tracking. In IEEE International Conference on Computer Vision and Pattern

Recognition, pages 723–730, 13-18 Jun 2010.

[119] N.I. Sapankevych and R. Sankar. Time series prediction using support vector machines:

A survey. IEEE Computational Intelligence Magazine, 4(2):24–38, May 2009.

[120] T. Schlogl, C. Beleznai, M. Winter, and H. Bischof. Performance evaluation metrics for

motion detection and tracking. In International Conference on Pattern Recognition, pages

519–522, 23-26 Aug 2004.

[121] T. Senst, V. Eiselein, and T. Sikora. Robust local optical flow for feature tracking. IEEE

Transactions on Circuits and Systems for Video Technology, 22(9):1377–1387, Sep 2012.

[122] L. Sevilla-Lara and E. Learned-Miller. Distribution fields for tracking. In IEEE Inter-

national Conference on Computer Vision and Pattern Recognition, pages 1910–1917, 16-21

Jun 2012.

[123] K. Shearer, K.D. Wong, and S. Venkatesh. Combining multiple tracking algorithms for

improved general performance. Pattern Recognition, 34(6):1257–1269, Jun 2001.

[124] N. Siebel and S. Maybank. Fusion of multiple tracking algorithms for robust people track-

ing. In Proceedings of European Conference on Computer Vision, pages 1–15, 28-31 May

2002.

[125] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah. Visual

tracking: An experimental survey. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(7):1442–1468, Jul 2014.

[126] C. Spampinato, S. Palazzo, and D. Giordano. Evaluation of tracking algorithm perfor-

mance without ground-truth data. In IEEE International Conference on Image Processing,

pages 1345–1348, 30 Sep-3 Oct 2012.

109

[127] M. Spengler and B. Schiele. Towards robust multi-cue integration for visual tracking.

Machine Vision and Applications, 14(1):50–58, Apr 2003.

[128] C. Stauffer and W.E.L. Grimson. Learning patterns of activity using real-time tracking.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):747–757, Aug 2000.

[129] B. Stenger, T. Woodley, and R. Cipolla. Learning to track with multiple observers. In IEEE

International Conference on Computer Vision and Pattern Recognition, pages 2647–2654,

20-28 Jun 2009.

[130] M. Tang and J. Feng. Multi-kernel correlation filter for visual tracking. In IEEE Interna-

tional Conference on Computer Vision, pages 3038–3046, 7-13 Dec 2015.

[131] J.W. Taylor and P.E. McSharry. Short-term load forecasting methods: An evaluation based

on european data. IEEE Transactions on Power Systems, 22(4):2213–2219, Nov 2007.

[132] M. Tian, W. Zhang, and F. Liu. On-line ensemble svm for robust object tracking. In Asian

Conference on Computer Vision, pages 355–364, 18-22 Nov 2007.

[133] J. Triesch and C.V.D Malsburg. Democratic integration: Self-organized integration of

adaptive cues. Neural Computing, 13(9):2049–2074, Sep 2001.

[134] N. Vaswani. Additive change detection in nonlinear systems with unknown change pa-

rameters. IEEE Transactions on Signal Processing, 55(3):859–872, Mar 2007.

[135] H. Veeraraghavan, P. Schrater, and N. Papanikolopoulos. Robust target detection and

tracking through integration of motion, color, and geometry. Computer Vision and Image

Understanding, 103(2):121–138, Aug 2006.

[136] H.D. Vinod and P. Basu. Forecasting consumption, income and real interest rates from

alternative state space models. International Journal of Forecasting, 11(2):217–231, Jun

1995.

[137] P. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object detection. In

Proceedings of Neural Information Processing Systems, pages 1419–1426, 4-9 Dec 2006.

[138] T. Vojir and J. Matas. The enhanced flock of trackers. In Registration and Recognition in

Images and Videos, pages 113–136. Springer Berlin Heidelberg, 2014.

[139] T. Vojir, J. Matas, and J. Noskova. Online adaptive hidden markov model for multi-tracker

fusion. Computer Vision and Image Understanding, 2016.

110

[140] T. Vojir, J. Noskova, and J. Matas. Robust scale-adaptive mean-shift for tracking. Pattern

Recognition Letters, 49:250–258, Nov 2014.

[141] G.S. Walia and R. Kapoor. Recent advances on multicue object tracking: a survey. Artifi-

cial Intelligence Review, 46(1):1–39, 2016.

[142] D. Wang, H. Lu, and M. Yang. Least soft-threshold squares tracking. In IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition, pages 2371–2378, 23-28

Jun 2013.

[143] D. Wang, H. Lu, and M-H. Yang. Online object tracking with sparse prototypes. IEEE

Transactions on Image Processing, 22(1):314–325, Jan 2013.

[144] L. Wang, W. Ouyang, X. Wang, and H. Lu. Visual tracking with fully convolutional

networks. In IEEE International Conference on Computer Vision, pages 3119–3127, 7-13

Dec 2015.

[145] L. Wang, W. Ouyang, X. Wang, and H. Lu. STCT: Sequentially training convolutional net-

works for visual tracking. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 1373–1381, 27-30 Jun 2016.

[146] Y. Wang, H. Chen, S. Li, J. Zhang, and C. Gao. Object tracking by color distribution fields

with adaptive hierarchical structure. The Visual Computer, pages 1–13, Nov 2015.

[147] M. Wasif and J.F. Schmidt. Autoregressive integrated model for time synchronization

in wireless sensor networks. In ACM International Conference on Modeling, Analysis and

Simulation of Wireless and Mobile Systems, pages 133–140, 2-6 Nov 2015.

[148] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movellan. Whose vote should count

more: Optimal integration of labels from labelers of unknown expertise. In International

Conference on Neural Information Processing Systems, pages 2035–2043, 5-8 Dec 2009.

[149] H. Wu, A.C. Sankaranarayanan, and R. Chellappa. Online empirical evaluation of tracking

algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1443–

1458, Aug 2010.

[150] H. Wu and Q. Zheng. Self-evaluation for video tracking systems. In Proceedings for the

Army Science Conference, 29 Nov-2 Dec 2004.

[151] J. Wu, S. Hu, and Y. Wang. Adaptive multi-feature visual tracking in a probability-

hypothesis-density filtering framework. Signal Processing, 93(11):2915–2926, Nov 2013.

111

[152] Y. Wu and T.S. Huang. A co-inference approach to robust visual tracking. In IEEE

International Conference on Computer Vision, pages 26–33, 7-14 Jul 2001.

[153] Y. Wu and T.S. Huang. Robust visual tracking by integrating multiple cues based on

co-inference learning. International Journal of Computer Vision, 58:55–71, Nov 2002.

[154] Y. Wu, J. Lim, and M. Yang. Object tracking benchmark. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 37(9):1834–1848, Sep 2015.

[155] Y. Wu, J. Lim, and M-H. Yang. Online object tracking: A benchmark. In IEEE Inter-

national Conference on Computer Vision and Pattern Recognition, pages 2411–2418, 23-28

Jun 2013.

[156] H. Yang, L Shao, F. Zheng, L. Wang, and Z Song. Recent advances and trends in visual

tracking: A review. Neurocomputing, 74(18):3823–3831, Nov 2011.

[157] M. Yang, Y. Wu, and G. Hua. Context-aware visual tracking. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 31(7):1195–1209, Jul 2009.

[158] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing Surveys,

38(4), Dec 2006.

[159] J. H. Yoon, M. H. Yang, and K.J. Yoon. Interacting multiview tracker. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 38(5):903–917, May 2016.

[160] J.H. Yoon, D.Y. Kim, and K.J. Yoon. Visual tracking via adaptive tracker selection with

multiple features. In Proceedings of European Conference on Computer Vision, pages 28–41,

7-13 Oct 2012.

[161] Z. Yu, L. Li, J. Liu, and G. Han. Hybrid adaptive classifier ensemble. IEEE Transactions

on Cybernetics, 45(2):177–190, Feb 2015.

[162] Y. Yuan, S. Emmanuel, W. Lin, and Y. Fang. Visual object tracking based on appearance

model selection. In IEEE International Conference on Multimedia and Expo Workshops,

pages 1–4, 15-19 Jul 2013.

[163] Y. Zhai, M.B. Yeary, S. Cheng, and N. Kehtarnavaz. An object-tracking algorithm based

on multiple-model particle filtering with state partitioning. IEEE Transactions on Instrumen-

tation and Measurement, 58(5):1797–1809, May 2009.

[164] K. Zhang, Q. Liu, Y. Wu, and M. H. Yang. Robust visual tracking via convolutional

112

networks without training. IEEE Transactions on Image Processing, 25(4):1779–1792, Apr

2016.

[165] K. Zhang, L. Zhang, and M-H. Yang. Real-time compressive tracking. In Proceedings of

European Conference on Computer Vision, pages 864–877, 7-13 Oct 2012.

[166] K. Zhang, L. Zhang, and M-H.. Yang. Fast compressive tracking. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 36(10):2002–2015, Oct 2014.

[167] S. Zhang, H. Yao, X. Sun, and X. Lu. Sparse coding based visual tracking: Review and

experimental comparison. Pattern Recognition, 46(7):1772 – 1788, Jul 2013.

[168] X. Zhang, W. Hu, H. Bao, and S. Maybank. Robust head tracking based on multiple cues

fusion in the kernel-bayesian framework. IEEE Transactions on Circuits and Systems for

Video Technology, 23(7):1197–1208, Jul 2013.

[169] B. Zhong, H. Yao, S. Chen, R. Ji, T. Chin, and H. Wang. Visual tracking via weakly

supervised learning from multiple imperfect oracles. Pattern Recognition, 47(3):1395–1410,

Mar 2014.

[170] B. Zhong, H. Yao, S. Chen, R. Ji, X. Yuan, S. Liu, and W. Gao. Visual tracking via weakly

supervised learning from multiple imperfect oracles. In IEEE International Conference on

Computer Vision and Pattern Recognition, pages 1323–1330, 13-18 Jun 2010.

[171] S.K. Zhou, R. Chellappa, and B. Moghaddam. Visual tracking and recognition using

appearance-adaptive models in particle filters. IEEE Transactions on Image Processing,

13(11):1491–1506, Nov 2004.

	Abstract
	Acknowledgements
	Published work
	List of symbols
	Introduction
	Motivation
	Problem definition
	Contributions
	Organisation of thesis

	State of the art
	Introduction
	Visual tracking
	Target representation
	Deterministic and probabilistic tracking methods
	Generative and discriminative tracking methods
	Deep network-based tracking methods
	Selected trackers

	Offline performance evaluation
	Online performance evaluation
	Trajectory-based performance evaluators
	Feature-based performance evaluators
	Hybrid performance evaluators
	Tracking failure detection

	Fusion for visual tracking
	Feature-level fusion
	Tracker-level fusion

	Discussion

	Tracking failure detection via forecasting
	Introduction
	Tracking performance evaluation
	Background selection
	Distribution Fields
	Tracking performance score

	Detecting tracking failure
	Forecasting
	Tracking failure detection

	Experimental results and analysis
	Experimental parameters
	Evaluation measures
	Selected benchmark methods
	Tracking failure detection
	Results on the Visual Object Tracking dataset
	Forecast accuracy

	Summary

	Clustering based approach to tracker-level fusion
	Introduction
	Tracker clustering
	Tracklet correlation
	Partition generation
	Partition validation
	Split-Merge detection

	Adaptive time-reversed evaluation
	Time-reversed online evaluation
	Performance score and reference frame update
	Selection or update of the on-target cluster

	Tracker-level fusion
	Experimental setup
	Experimental parameters
	Evaluation measures
	Selected benchmark methods

	Experimental analysis of tracker clustering
	Comparison of the proposed clustering with exhaustive search
	Performance analysis of features

	Experimental analysis of the adaptive time-reversed evaluation
	Performance analysis for motion
	Performance analysis of the Iref update

	Experimental analysis of tracking fusion framework
	Combining trackers
	Comparison of the fusion methods
	Comparison with selected benchmark methods

	Computational cost
	Summary

	Conclusions
	Summary of achievements
	Future work

	Appendices
	Evaluation datasets
	Introduction
	Tabular summary
	Target initializations

	Bibliography

