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Distributed target tracking in wireless camera networks

Abstract

Distributed target tracking (DTT) is desirable in wireless camera networks to achieve scal-

ability and robustness to node or link failures. DTT estimates the target state via information

exchange and fusion among cameras. This thesis proposes new DTT algorithms to handle five

major challenges of DTT in wireless camera networks, namely non-linearity in the camera mea-

surement model, temporary lack of measurements (benightedness) due to limited field of view,

redundant information in the network, limited connectivity of the network due to limited commu-

nication ranges and asynchronous information caused by varying and unknown frame processing

delays. The algorithms consist of two phases, namely estimation and fusion. In the estima-

tion phase, the cameras process their captured frames, detect the target, and estimate the target

state (location and velocity) and its uncertainty using the Extended Information Filter (EIF) that

handles non-linearity. In the fusion phase, the cameras exchange their local target information

with their communicative neighbours and fuse the information. The contributions of this thesis

are as follows. The target states estimated by the EIFs undergo weighted fusion. The weights

are chosen based on the estimated uncertainty (error covariance) and the number of nodes with

redundant information such that the information of benighted nodes and the redundant infor-

mation get lower weights. At each time step, only the cameras having the view of the target

and the cameras that might have the view of the target in the next time step participate in the

fusion (tracking). This reduces the energy consumption of the network. The algorithm selects

the cameras dynamically by using a threshold on their shortest distances (in the communication

graph) from the cameras having the view of the target. Before fusion, each camera predicts the

target information of other cameras to temporally align its information with the (asynchronous)

information received from other cameras. The algorithm predicts the target state using the lat-

est estimated velocity of the target. The experimental results show that the proposed algorithms

achieve higher tracking accuracy than the state of the art under the five DTT challenges.
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Ŷi

k Fused target information matrix of Ci corresponding to its local time k
yi

k(l) Target information vector of Ci corresponding to its local time k
before starting the consensus iteration at k+ l

Yi
k(l) Target information matrix of Ci corresponding to its local time k

before starting the consensus iteration at k+ l
ỹi
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Chapter 1

Introduction

1.1 Motivation

Tracking is the process of estimating the locations of objects of interest (targets) across time. In

visual tracking, cameras process their captured frames with computer-vision algorithms to de-

tect the targets. The detected targets are represented using blobs [59], contours [88], bounding

boxes [44] or their centroid locations in the image plane. The image plane detections (measure-

ments) are often noisy or erroneous due to limitations in computer vision algorithms or scene

constraints such as low illumination and low image sensor quality. Moreover, a camera may not

detect the target all the time due to the directional sensing and/or occlusions [87]. To improve

the coverage and reliability of tracking, multiple cameras are used [25, 55, 58, 90]. Fusion of in-

formation from multiple cameras aims at improving the accuracy of tracking. This thesis focuses

on target tracking using wireless camera networks (WCNs).

Information fusion in WCNs can be centralised, decentralised or distributed [76]. In cen-

tralised fusion, all camera nodes send their local information to a fusion centre (FC) via single-

hop or multi-hop communications [82]. Due to the limited communication ranges of wireless

devices, routing protocols are used to establish multi-hop communication between each camera

and the FC. As the FC takes the responsibility of tracking, there is less processing load on the

cameras. In addition, FC has the entire information so the results are always optimal. The cen-

tralised fusion is vulnerable to node failures, especially the FC failure, and adding or removing

some cameras requires entire routing information to be updated (i.e. not scalable). Moreover,

1
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the network traffic is very high near to the FC causing communication failures. The decen-

tralised scheme [34] considers various FCs that collect and fuse information from nodes in their

neighbourhood. The allocation of nodes to FCs can be static [34] or dynamic [56]. To support

topology changes and scalability, dynamic decentralisation (or clustering) is preferred. Similar

to the centralised schemes, decentralised schemes are also vulnerable to node failures. Moreover,

the static schemes are not scalable. In distributed fusion [73], each node runs an identical peer-

to-peer algorithm to exchange information with other nodes. Flooding [23], consensus [65] and

token passing [37] are widely used distributed fusion schemes. Distributed information fusion

is desirable for target tracking in WCNs to achieve scalability and robustness to node or link

failures and aims to achieve comparable performance to centralised algorithms, where global

communications are assumed [76].

There exist five main challenges in distributed target tracking in WCNs: non-linearity, be-

nighted cameras, redundant information, asynchronous measurements and limited network con-

nectivity.

Non-linearity: Each camera estimates the target state (e.g. location on a reference plane)

corresponding to the capturing instant via filtering. The filter uses the previous knowledge of the

target, the measurement in the captured frame (if available), target motion model and the camera

measurement model. The target state dynamics on the reference plane and the corresponding

target measurements provided by the cameras (e.g. target coordinates in the image plane of each

camera) are non-linearly related to each other [36]. Hence, the target state estimation techniques

must consider the non-linear measurement model.

Benightedness: As the target moves in the scene, the set of cameras simultaneously detecting

the same target (viewing nodes) changes over time [C4]. Due to the limited field of view (FoV)

of the cameras, there are benighted nodes that do not have target measurements. Though the

cameras are physically close to the target they might not have measurements because of the

directional FoVs. See Figure 1.1. The thesis defines two types of benightedness: partial and

complete. If a camera has the knowledge of previous target state but no current measurement, the

thesis refers this as partial benightedness (p-benightedness) and the nodes are called p-benighted

nodes. If a camera does not have any information of target (e.g. the camera is newly added to

the network), the thesis refers this as complete benightedness (c-benightedness) and the nodes

are called c-benighted nodes. Information fusion should consider the benightedness such that
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Figure 1.1: A wireless camera network with two viewing cameras (coloured) and many benighted
cameras (white). The polygons represent the field of views of the cameras.

the c-benighted nodes do not affect the fusion result and the p-benighted nodes (nodes without

measurements) are weighted less compared to the viewing nodes (nodes with measurements).

Redundancy: If all the cameras have the same previous knowledge of the target, it results

in information redundancy in the network. The redundancy is proportional to the number of

cameras in the network. Though the cameras do not provide any new information, the redundant

information affects the fusion result (e.g. averaging). The distributed fusion must be done such

that the effect is mitigated.

Asynchronous measurements: Most multi-camera tracking algorithms assume that the

cameras in the network capture the frames synchronously [47, 50, 81, C3, C5]. However, this

is not the case in reality. Asynchronous captures are caused by unknown relative clock offsets

and processing delays generated by the local computer-vision pipeline. The inherent drifts in

the local clock frequencies of the nodes result in relative clock offsets [72]. The local clock

frequencies may drift between 1 and 100 parts per million (ppm) [27, 72]. While time synchro-

nisation protocols can estimate and compensate for the timing offsets, they significantly increase

the communication overhead and therefore energy consumption, thus reducing the network life-

time [32, 77]. The processing delays are significant due to the large amount of frame data to

be processed to produce object detections [18, 67, 68, 74]. The local frame-processing delays

are not negligible (≈40ms) and may vary from frame to frame and from camera to camera as

they depend on the frame size, scene complexity, processing capabilities of the node, the object
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detection algorithms used and the number of observed targets [68]. Additionally, there exist de-

lays in communication that depend on the number of participating nodes and the amount of data

exchanged [80, 83]. Even if delays are comparable among camera nodes, the local information

in a camera corresponds to the instant of capturing and not to the instant of transmission. While

fusion of synchronous information increases tracking accuracy [50, C5], when information is

exchanged asynchronously the accuracy may degrade significantly.

Limited connectivity: The viewing nodes might not be in communication range of each

other because of the limited communication ranges (see Figure 1.2). Such limited network con-

nectivity makes the information exchange and fusion among the viewing nodes challenging. The

thesis classifies WCN connectivity into three types: full connectivity where the communication

range of each camera is so high that any pair of cameras in the network are always single-hop

neighbours, full connectivity among viewing nodes where any two viewing nodes are always

single-hop neighbours, and limited connectivity where the communication ranges of the cameras

are very low and make even the viewing nodes multi-hop neighbours.

During distributed fusion in fully connected networks (e.g. when cameras are up to 100m

away from each other [87]) or in fully connected viewing nodes, the nodes receive and fuse

the target information from all viewing nodes in the network [22, C4]. Distributed fusion in

the case of limited connectivity can be done through consensus [50, C4]. Consensus algorithms

are distributed protocols that aim at reaching an agreement on a decision variable using itera-

tive peer-to-peer communication among the nodes [65]. Unlike other distributed fusion algo-

rithms [9,32,40,92], consensus-based algorithms do not require full connectivity among viewing

nodes nor prior knowledge of the routing tables [C4]. Average consensus (A-consensus) is a

widely used consensus algorithm for target tracking in wireless sensor networks (WSNs) [6, 35]

and WCNs [21, 50, C5]. A-consensus aims at having decisions at all nodes (e.g. target state)

to converge to their average. The Extended Kalman Consensus Filter (EKCF) [21] handles

non-linearity by using the Extended Kalman Filter (EKF) and limited connectivity by using A-

consensus. The Information Consensus Filter (ICF) [15] handles benightedness by weighting

the local state estimates based on the uncertainty and limited connectivity by using A-consensus.

A-consensus approaches require the knowledge of the maximum degree of connectivity. The

Iterative Covariance Intersection (ICI) [41] handles benightedness and limited connectivity with-

out requiring such knowledge and achieves better performance than ICF. There exist sequential
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Figure 1.2: A wireless camera network with two viewing cameras (coloured). The dotted circles
represent the communication range of the viewing cameras. The polygons represent the field of
views of the cameras. Key – rc: communication range, rv: viewing range.

and batch processing algorithms to handle asynchronous information [9]. The asynchronous

Consensus-based Distributed Target Tracking (aCDTT) [33] achieves consensus on the maxi-

mum certain state without performing fusion. These algorithms do not handle the remaining

challenges. Moreover, the consensus algorithms achieve consensus among all network nodes,

and therefore the total energy consumption for communication and computation increases with

the number of nodes (for a given number of viewing nodes) [C4]. Hence, along with the men-

tioned challenges, reducing the participation of non-viewing nodes and thereby the total energy

consumption in the network is also desirable because limited energy consumption is important

for any WSN and in particular, WCN [52].

1.2 Problem formulation

Consider a WCN consisting of N cameras represented by C =
{

C1,C2, ...,CN
}

to track a target

moving on a common ground plane. Each camera Ci (1 ≤ i ≤ N) consists of an image sensor,

a processor and a wireless communication module. Each camera Ci has a directional FoV with

viewing range rv and communication range rc (see Figure 1.2). Let N i be the set of cameras in

the communication range of Ci.

Let the target dynamics for a temporal interval ∆k be

xk = f (xk−∆k,∆k)+wk−∆k. (1.1)
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Here, xk = [xk yk ẋk ẏk]
> is the target state at k where [xk yk]

> and [ẋk ẏk]
> are the position and

velocity of the target at k on the ground plane, respectively, and n= 4 is the size of the state vector

xk. The function f (·) is the state transition function from k−∆k to k and wk−∆k is the process

noise which is assumed to be Gaussian with zero mean and covariance matrix Q(k−∆k,k). This

thesis considers the motion model f (·) to be linear (nearly constant velocity model) and is defined

by the state transition matrix F(k−∆k,k) and the process noise covariance matrix Q(k−∆k,k)

as in [9, 32, 40]:

xk = F(k−∆k,∆k)xk−∆k +wk−∆k. (1.2)

Here,

F(k−∆k,k) =

 I2 (∆k)I2

02 I2

 ,
Q(k−∆k,k) = q2

 d(∆k,3)I2 d(∆k,2)I2

d(∆k,2)I2 d(∆k,1)I2

 ,
(1.3)

where I2 and 02 are the 2×2 unit and zero matrices respectively, q is the process noise intensity

in the unit interval and d(∆k,b) = |∆k|b
b . The target is visible in at least one camera at any time

step k and it does not move more than 2rv between consecutive frame captures of cameras.

Let zi
k be the measurement of Ci corresponding to the target state xk. The measurement model

of camera Ci is defined as

zi
k = hi(xk)+vi

k, (1.4)

where vi
k is an additive Gaussian noise with zero mean and covariance Ri = σ2I2. Here σ is

the standard deviation of the measurement error. The function hi(·) is the state to measurement

transition function that encodes calibration information of Ci, and m = 2 is the size of the mea-

surement vector zi
k. If Ci captures a frame I i

k at its local time k, it performs target detection to

obtain the measurement zi
k. Let τ i

k be the corresponding frame processing time. At time step

k, only a subset of cameras, Vk, can view the target because of the directionality and limited

viewing range. If there are no viewing nodes at a time instant, the location is called blind region.

The thesis assumes that there are no blind regions. Let T be the desired inter-capturing period

for all cameras. In the synchronous case, the cameras capture frames at {0,T,2T, ...}. In the

asynchronous case, the cameras capture frames at different instants. Let α i j be the relative offset
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in the frame captures of Ci and C j. Note that α i j = 0 represents the synchronous captures of Ci

and C j.

The thesis assumes that the cameras are calibrated and there are no false measurements (i.e.

no false positive or false negative detections). The measurements are independent from cam-

era to camera. The cameras do not have information about the network or its neighbours such

as communication topology, routing tables, and vision graph (graph representing camera pairs

having overlapping FOVs). The thesis also assumes that each camera can communicate with all

cameras in its communicative neighbourhood without packet losses and communication delays.

The objective of this thesis is to make each viewing camera Ci ∈ Vk estimate the target state

x̂i
k corresponding to its capturing instant k by fusing the local and the other cameras information

under the presence of above mentioned challenges.

1.3 Contributions

The detailed contributions of the thesis are:

1. Information weighting for non-linear systems. This thesis performs weighted information

fusion in two stages. The first one is inter-camera information weighting, where each cam-

eras estimate is weighted based on the uncertainty [6, 15]. The weights are inversely pro-

portional to the error covariance of the estimates so the benighted nodes get lower weights.

If a camera does not have the target information, the error covariance is considered to be

infinite so the weight is zero. If an estimate so reliable that its error covariance is close

to zero, the estimate gets the highest weight. Note that the weights are normalised before

the fusion step. The second one is intra-camera information weighting where each camera

weights its prior information and the measurement information differently. Intra-camera

weighting handles redundancy by weighting less the redundant prior information compared

to the measurement information [50]. The weighting depends on the amount of redundancy,

i.e. number of nodes in the network. There are no state of the art methods that apply the two

stages in non-linear systems such as cameras. This thesis uses the Extended Information

Filter (EIF) that handles non-linearity to estimate the target state at each camera and apply

the information weighting on the estimates to handle benightedness and redundancy [C5].

2. Distributed selection and fusion of target location-based subnetwork. In the existing con-

sensus approaches, the entire network participates in consensus irrespective of the number
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of cameras having target measurement [50]. To reduce the participation of benighted nodes,

the thesis identifies dynamically a set of nodes in the neighbourhood of the viewing nodes,

achieve consensus only among these nodes and thereby reducing the energy consumption

of the network [C3]. This thesis considers only the nodes in the neighbourhood of viewing

nodes up to a certain number of hops. The number is decided based on the communication

and viewing ranges.

3. Information alignment via predictions. There are no works that deal with asynchronous

information fusion in distributed visual tracking. This thesis proposes an approach to avoid

fusion of asynchronous information where each camera predicts the target state estimate

corresponding to its capturing instant based on the received information that might cor-

respond to different time instants. After predicting the information of other cameras, the

camera fuses the temporally aligned local and the predicted target information and updates

the estimate corresponding to its capturing instant. This thesis uses the approach for the

networks with limited connectivity using average consensus framework [C2] and also for

the networks with full connectivity using batch fusion framework.

1.4 Organisation of thesis

This thesis is organised as follows.

Chapter 1: This chapter introduces the distributed tracking and the challenges of distributed

tracking in WCNs. This also presents the problem formulation.

Chapter 2: This chapter describes the state of the art on multi-camera tracking focussing on state

estimation, and centralised and distributed fusion of local state estimations.

Chapter 3: This chapter proposes the Extended Information Consensus Filter (EICF) and the

Extended Information Weighted Consensus Filter (EIWCF) that handle limited connectivity, non-

linearity, benightedness and redundancy. The simulations that evaluate their performance by

comparing with EKCF under the presence these challenges are also presented.

Chapter 4: This chapter proposes the Neighbour consensus (N-consensus) that dynamically

selects the consensus nodes. The chapter also presents the experimental performance comparison

of N-consensus with EICF and ICI under the presence of limited connectivity and benightedness.

Chapter 5: This chapter proposes the Average Consensus-based Asynchronous Filter (ACAF)

and the simulations that compare the performance of ACAF with ICF and aCDTT under the
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presence of limited connectivity, benightedness and asynchronous measurements. The simulation

considers simulated tracks as well as real tracks from the APIDIS dataset [1].

Chapter 6: This chapter proposes the Batch Asynchronous Filter (BAF) and the experimental

comparison with sequential and other batch methods. The experiments are conducted using real

tracks and cameras from the APIDIS dataset [1].

Chapter 7: Finally, this chapter summarises the thesis and presents the possible future research

directions.



Chapter 2

State of the art

This chapter presents the state of the art on state estimation and information fusion especially

focussing on challenges: non-linearity, benightedness, asynchronous measurements and limited

connectivity.

2.1 State estimation

Bayesian filter [20] running at each camera Ci estimates the target probability density function

(pdf) p(xi
k|zi

1:k) (hereafter referred as posterior) corresponding to its capturing instant k. The es-

timation process involves two steps, namely prediction and update. In the prediction step, a pre-

dicted posterior (hereafter referred as prior) is computed based on the posterior p(xi
k−T |zi

1:k−T )

corresponding to the previous capturing instant k− T and the state transition pdf p(xi
k|xi

k−T )

computed using f (·) as

p(xi
k|zi

1:k−T ) =
∫

p(xi
k|xi

k−T )p(xi
k−T |zi

1:k−T )dxi
k−T . (2.1)

Using the current measurement zi
k and the measurement model given by the function hi(·), the

target likelihood (hereafter referred as likelihood) p(zi
k|xi

k) is computed. In the update step, the

posterior is computed based on the prior and the likelihood using the Bayes’ rule as

p(xi
k|zi

1:k) =
p(zi

k|xi
k)p(xi

k|zi
1:k−T )∫

p(zi
k|xi

k)p(xi
k|zi

1:k−T )dxi
k

. (2.2)

10
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The recursion of (2.1) and (2.2) is initialised by p(xi
0|zi

0). The estimated pdf can be approximated

as a Gaussian pdf represented using its mean xi
k and covariance Pi

k as

xi
k = E{xk|zi

1:k}=
∫

xk p(xi
k|zi

1:k)dxk,

Pi
k = E{(xk−xi

k)(xk−xi
k)
>|zi

1:k}=
∫

xkx>k p(xi
k|zi

1:k)dxk.

(2.3)

The Kalman Filter (KF) is the optimal approximation of the Bayesian Filter for sequential es-

timation in linear Gaussian systems [46]. The modified versions of KF, such as the Extended

Kalman Filter (EKF) [2], the Unscented Kalman Filter (UKF) [45] and the Cubature Kalman Fil-

ter (CubKF) [3] are used to estimate in non-linear Gaussian systems. Particle Filter (PF) [24] also

deals with linear/non-linear non-Gaussian systems. The following sections briefly present two

filters, namely the Information Filter (IF) [15] and the Extended Information Filter (EIF) [60].

2.1.1 Information Filter

The Information Filter (IF) [15] is an alternative form of KF and uses the Fisher information ma-

trix (i.e. the inverse of the covariance of the state estimate error). If f (·) and hi(·) are linear func-

tions, there exists a state transition matrix F(k−∆k,k) such that f (xk−∆k,∆k) =F(k−∆k,k)xk−∆k

and a state-to-measurement transition matrix Hi such that hi(xk) = Hixk. If xi
k and Pi

k are the

state estimate and its associated error covariance estimate corresponding to the capturing instant

k of node Ci respectively, the IF [2] represents the local posterior as the information matrix

Yi
k = Pi

k
−1 and the information vector yi

k = Pi
k
−1xi

k. The IF at each node Ci computes the target

prior ([ȳi
k Ȳi

k]), likelihood (
[
ui

k Ui
k

]
) and thereby the local posterior corresponding to the captur-

ing instant k through a prediction step followed by an update step. The prediction step of IF

is:

Ȳi
k =

[
F(k−T,k)Yi

k−T
−1F(k−T,k)>+Q(k−T,k)

]−1

,

ȳi
k = Ȳi

kF(k−T,k)Yi
k−T
−1yi

k−T .

(2.4)

The update step of IF is:

yi
k = ȳi

k +ui
k,

Yi
k = Ȳi

k +Ui
k,

(2.5)

where ui
k = Hi>Ri−1zi

k and Ui
k = Hi>Ri−1Hi. If the camera Ci has no measurement of the target

(i.e. non-viewing camera), ui
k = 0n×1 and Ui

k = 0n×n. The prior is considered as the posterior
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at k. The use of IF is advantageous compared to KF because the computation complexity of the

update step in IF (2.5) is smaller than in KF.

2.1.2 Extended Information Filter

If f (·) or hi(·) or both are non-linear, EKF [2] can be used. EKF assumes linearity at the best

available state using the Taylor series approximation. EKF handles mild non-linearities where

the first-order approximations of Jacobians are available. The concept of IF can be applied to

EKF, resulting in EIF [60]. The prediction step of EIF is:

Ȳi
k =

[
J f ,x(k−T,k)Yi

k−T
−1J f ,x(k−T,k)>+J f ,w(k−T,k)Q(k−T,k)J f ,w(k−T,k)>

]−1

,

ȳi
k = Ȳi

k f (Yi
k−T
−1yi

k−T ),

(2.6)

where J f ,x(·) is the Jacobian of f (·) with respect to xi
k−T = Yi

k−T
−1yi

k−T and J f ,w(·) is the

Jacobian of f (·) with respect to wk−T . The update step of EIF is:

yi
k = ȳi

k +ui
k,

Yi
k = Ȳi

k +Ui
k,

(2.7)

where, ui
k and Ui

k are the information contribution terms (represent likelihood) defined as:

ui
k = Ji

h,x
>Ri−1

[zi
k−hi(x̄i

k)+Ji
h,xx̄i

k],

Ui
k = Ji

h,x
>Ri−1Ji

h,x.

(2.8)

Here, x̄i
k = Ȳi

k
−1

ȳi
k and Ji

h,x is the Jacobian of hi(·) with respect to x̄i
k.

The Homography matrix-based state to measurement transition function hi(·) of camera Ci is

as follows:

hi(xk) =

 H i(1,1)xk+H i(1,2)yk+H i(1,3)
H i(3,1)xk+H i(3,2)yk+H i(3,3)

H i(2,1)xk+H i(2,2)yk+H i(2,3)
H i(3,1)xk+H i(3,2)yk+H i(3,3)

=

 xp
zp

yp
zp

 . (2.9)

The values H i(1,1), ...,H i(3,3) are the elements of the homography matrix H i that maps the

ground plane with the image plane of Ci. The Jacobian of the homography-based measurement
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Information flow in fusion schemes. (a) Connectivity and field of views of given wire-
less camera network. (b) Centralised. (c) Dynamic clustering. (d) Token passing. (e) Flooding.
(f) Consensus. Key. FC: Fusion centre. CH: Cluster head. p: local posterior. Cameras viewing
the target are shown in colours. Blue lines: Communication links. Grey arrows: Information
flow.

model w.r.t x̄i
k is as follows:

Ji
h,x =

dhi(xk)

dx

∣∣∣∣
xk=x̄i

k

=

 H i(1,1)(zp)−(xp)H i(3,1)
z2

p

H i(1,2)(zp)−(xp)H i(3,2)
z2

p
0 0

H i(2,1)(zp)−(yp)H i(3,1)
z2

p

H i(2,2)(zp)−(yp)H i(3,2)
z2

p
0 0


∣∣∣∣∣∣∣
xk=x̄i

k

. (2.10)

2.2 Information fusion

The cameras produce different local estimates because of different and random noise levels of

the cameras. The estimates are fused to produce an estimate with a minimum possible error.

Fusion schemes define when and what information to share under specific communication archi-

tectures [17]. The fusion schemes share raw data (e.g. measurements) or decisions (e.g. estima-

tions) [86]. In the former case, measurements or features such as likelihoods are fused to obtain

the global estimate. In the latter case, local estimates are fused to get the global estimate. The

following sections describe how information is fused in wireless networks when using five differ-

ent fusion schemes, namely centralised fusion, flooding, token passing, consensus and dynamic



Chapter 2: State of the art 14

clustering (Figure 2.1). The schemes assume that the network routing tables are not available.

2.2.1 Centralised information fusion

There are two types of centralised fusion, namely centralised decision fusion and centralised

measurement fusion. In centralised decision fusion [71, 82], all viewing nodes send their local

posteriors to a FC for computing the global posterior. Let pi
k = p(xi

k|zi
1:k) be the local posterior

computed by camera Ci using a local Bayesian filter (e.g. EIF). Fusion of local posteriors is done

such that the weighted sum of Kullback-Leibler (KL) divergences of fusion result p̂F
k w.r.t. each

pdf pi
k, DKL(p̂F

k |pi), is minimised, i.e.

p̂F
k = arg inf

p

N

∑
i=1

π
i
kDKL(p|pi

k). (2.11)

The superscript F is used to indicate that the result is available at the FC. KL-divergence of a

pdf p w.r.t. a pdf q, DKL(p|q), indicates the loss of information when q is approximated as p. π i
k

in (2.11) indicates the weight given to pdf pi
k such that

0≤ π
i
k ≤ 1,

N

∑
i=1

π
i
k = 1. (2.12)

The weighted geometric mean of given pdfs satisfies (2.11) [6], i.e.

p(x̂F
k |Z1:k) =

N
∏
i=1

[
p(xi

k|zi
1:k)
]π i

k

∫ N

∏
i=1

[
p(xi

k|zi
1:k)
]π i

k dxi
k

. (2.13)

p̂F
k is called the Kullback-Leibler Average (KLA). If all the pdfs are given the same priority,

i.e. π i
k =

1
N ,∀C

i, (2.13) provides the unweighted KLA [6], otherwise, it provides the weighted

KLA [41]. Covariance intersection algorithms [31, 64] compute weighted KLA by selecting the

weights for the Gaussian pdfs such that the uncertainty in the resulting pdf is minimised. The

weights are computed based on the traces [64] or the determinants [31] of the covariances of the

pdfs.

The information form of the centralised decision fusion is as follows. All viewing nodes or all

the cameras send their local posteriors (yi
k and Yi

k) to a FC for computing the global posterior (ŷF
k

and ŶF
k ) [71, 82]. The weighted KLA of N Gaussian pdfs p(xi

k|zi
k) =N (xk : Yi

k
−1yi

k,Y
i
k
−1

),∀Ci
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with weights π i
k satisfying (2.12) is another Gaussian pdf p(x̂F

k |Z1:k)=N (xk : ŶF
k
−1

ŷF
k , Ŷ

F
k
−1

) [6,

7], where

ŶF
k =

N

∑
i=1

π
i
kYi

k,

ŷF
k =

N

∑
i=1

π
i
kyi

k.

(2.14)

The weights, π i
k, used during the fusion of posteriors vary depending on the fusion algorithm. Im-

proved Fast Covariance Intersection (IFCI) [31] computes the weights based on the determinants

of the information matrices and produces better fusion estimates than Fast Covariance Intersec-

tion [64]. The global state estimate and the corresponding error covariance can be calculated

using:

x̂F
k = ŶF

k
−1

ŷF
k ,

P̂F
k = ŶF

k
−1

.

(2.15)

Benighted cameras and the cameras with high measurement noise have uncertain estimates. KLA

weight less the information. The proof is as follows:

x̂F
k = ŶF

k
−1

ŷF
k =

[
N

∑
i=1

π
i
kYi

k

]−1[ N

∑
i=1

π
i
kyi

k

]
=

[
N

∑
i=1

π
i
kPi

k
−1

]−1[ N

∑
i=1

π
i
kPi

k
−1xi

k

]
. (2.16)

As each local estimate xi
k is weighted based on its uncertainty Pi

k, weighted or unweighted de-

cision fusion is robust to p-benightedness. A limitation of unweighted KLA is that it does not

consider c-benightedness whereas weighted KLA does. Another limitation of decision fusion is

that it considers the same prior multiple times during fusion. The likelihood is null for benighted

nodes so higher the number of benighted nodes higher the influence of priors on the decision

fusion result. As priors of all node are the same (because they are computed from the same pre-

vious global estimate), it is unnecessary to consider them again and again in the fusion. Due to

these redundant priors, the results of the decision fusion are not optimal.

In centralised measurement fusion, all the viewing nodes send their likelihoods (ui
k and Ui

k)

to a FC. The fusion step at the FC performs addition of the likelihood terms from of N nodes in
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the network as:

ŷF
k = ȳF

k +
N

∑
i=1

ui
k,

ŶF
k = ȲF

k +
N

∑
i=1

Ui
k.

(2.17)

As the prior is considered only once, the problem of redundant priors does not arise in measure-

ment fusion. Moreover, this handles also c- and p-benightedness.

The next section will introduce the corresponding distributed versions. The distributed fu-

sion schemes aim to produce either the centralised decision fusion result given in (2.14) or the

centralised measurement fusion result given in (2.17).

2.2.2 Distributed information fusion

In distributed fusion, each node exchanges its information with its communicative neighbours so

the connectivity of the networks plays a key role.

In flooding (or dissemination) [39,84] all the viewing nodes broadcast their local posterior to

all or to a subset of nodes (e.g. viewing nodes) in the network. If the network is fully connected

information is distributed in a single iteration of information exchange [53]. Some authors refer

this case as non-centralised fusion because each node acts as the FC in centralised case but is

not actually the centralised way. In the case of limited connectivity, flooding requires multiple

iterations of communications. In each iteration, each node sends its own and the previously

received information to its neighbours. Eventually, all participating nodes have the same set of

posteriors [22,23]. See Figure 2.1(e). Then, each participating node performs fusion, updates its

local posterior. For large networks with limited connectivity, flooding has high communication

cost, high processing cost and high memory requirements [69, C4]. This scheme is therefore

suitable for sharing low amounts of information when high connectivity exists among the nodes.

Token passing [37,38,70] is a sequential estimator in which viewing nodes form an aggrega-

tion chain (AC). Each node in the AC receives a partial posterior from the previous one, updates

this posterior using its local posterior and sends the result to the next node. The process finishes

when all AC nodes are visited once. The most informative node (decided based on the local

posterior and the global knowledge of the network) is selected as the next node [39]. The last

AC node provides the global posterior at the current time step. See Figure 2.1(d). Then, this

node initiates the AC for the next time step (often also becoming the first AC node). The se-

quential estimation and the transmission of high dimensional estimations such as PF posteriors
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cause latency [39]. Nastasi and Cavallaro [62] applied such a fusion scheme to smart camera

networks using distributed PFs assuming that viewing nodes can communicate with each other.

The scheme is suitable when cameras with overlapping FoVs are connected (i.e. fully connected

viewing nodes) or routing tables are provided.

In dynamic clustering, the viewing nodes negotiate locally and form clusters where a node is

selected as cluster head. The node generates the global posterior by fusing its own and received

posterior from the other cluster members. Static clusters can be created to track targets based on

their overlapping sensing regions [34] and might use more nodes per cluster than needed. In order

to cluster only the viewing nodes, dynamic clustering adapts the cluster membership depending

on the target location and the network topology. Medeiros et al. [56] proposed a dynamic clus-

tering technique to create multiple single-hop clusters of viewing nodes. As the target moves,

the clusters modify their members so that only viewing nodes are members of a cluster. See

Figure 2.1(c). EKF is used as the underlying filter for estimating the target state to handle non-

linearity in the measurement model. Here, inter-cluster data fusion is not supported. Each cluster

head sends the fused estimates to a base station where the final fusion step is performed simi-

larly to the centralised fusion. The formation and maintenance of clusters add communication

and computation overhead in the network [C4]. Iterative message exchange (or negotiation) is

required to select the cluster head and to propagate the cluster membership over time. In this case

cluster formation is a distributed process and fusion is a decentralised process. Cluster formation

and cluster-head selection add computation and communication costs and increase latency.

Reaching consensus means that all nodes have the same value(s) for the considered vari-

able(s) such as the target state [66, 84]. Consensus algorithms are distributed protocols that aim

at reaching an agreement on a decision variable (e.g. target state) using iterative peer-to-peer

communication among the nodes. Examples include agreement on average of local variables and

maximum (or minimum) of local variables. Average consensus aims at all nodes to converge to

the average of the local variables. Maximum (or minimum) consensus aims at all nodes to con-

verge to the maximum (or minimum) of the local variables. Each iteration of a consensus protocol

consists of two main steps, namely information exchange with communicative neighbours and

consensus update. Depending on the desired agreement type, the protocol defines what to ex-

change and how to update. Each node broadcasts its information (e.g. local state estimate) to its

neighbours. Each receiving node updates its information based on its own information and the re-
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ceived information. The updated information is again broadcasted to its neighbours. The process

of information exchange and update (consensus update) are done until the network reaches the

convergence on the target state. In each iteration, nodes exchange information with neighbours

and perform fusion using the average [6], gossip [5,12], maximum or minimum [30] approaches.

See Figure 2.1(f). Consensus schemes operate at two time scales: collecting measurements and

performing iterations between consecutive measurement collections [69]. The advantages of this

scheme are robustness to node failures (similar to other distributed approaches) and the avail-

ability of global posterior at all nodes. Moreover, this scheme does not require routing protocols

or knowledge about nodes (e.g. observation models or FOVs), the network (e.g. communication

graph), thus coping with topology changes and link failures. The communication and compu-

tation costs are high as all nodes (viewing and not viewing) exchange their local estimates and

perform fusion [C4].

Multiple FCs exist in all schemes except centralised fusion. All nodes operate similarly in

consensus, whereas only viewing nodes operate in flooding, token passing and dynamic cluster-

ing. Token passing and dynamic clustering require negotiation among nodes (prior to fusion)

to decide whom to pass the token to and to propose cluster-head candidates, respectively. If

there is no direct communication among the viewing nodes, dynamic clustering forms multiple

single-hop clusters, flooding requires several iterations, and token passing needs routing tables

for multi-hop communication. In the case of limited connectivity, consensus is the only way to

perform information fusion without requiring knowledge of the network so this thesis focuses

its research on consensus approaches to solve the above mentioned challenges. The following

section presents the state of the art on consensus-based tracking assuming synchronous captures.

2.3 Consensus-based tracking

2.3.1 P-benightedness

The distributed Kalman Consensus Filter (KCF) [66] computes local estimates (xi
k) via KFs. KCF

performs the averaging of the local state estimates by weighting the viewing and the benighted

nodes equally so KCF [21, 73] does not handle p-, c-benightedness and redundancy. The Gener-

alised KCF (GKCF) [48] and the ICF [6] deal with the p-benightedness by weighting the state

estimates based on their uncertainty so they achieve higher estimation accuracy than KCF. ICF

makes the network with limited connectivity converge to the unweighted KLA of the local esti-
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mates [6, C5]. ICF performs the A-consensus on the local state information (yi
k,Y

i
k). The initial

consensus terms are yi
k(0) = yi

k and Yi
k(0) = Yi

k. The subscript k(l) indicates that the information

corresponds to k before starting the consensus iteration at k+ l. Each node Ci that is running

ICF exchanges its posterior (yi
k(l),Y

i
k(l)) with communicative neighbours where benighted nodes

send either null posterior (0,0) (if c-benighted) or predicted posterior [50] (if p-benighted) as

information. Each node Ci executes a consensus step as:

yi
k(l+γ) = yi

k(l)+ c ∑
C j∈N i

(y j
k(l)−yi

k(l)), (2.18)

where γ is the periodicity of consensus iterations. The same process is applied to Yi
k(l). The

values c can be set to guarantee the convergence to the average of the initial estimates of all

nodes after L iterations [65]. The weights (c) used in the consensus update affect the convergence

rate [85]. The speed of convergence to the posterior average depends on the connectivity of the

network. The number of edges connected to a node in a communication graph is called the

degree of the node. Maximum-degree weights and metropolis weights are two types of weights

used to achieve average consensus [84]. Metropolis weight selection requires the knowledge of

the communication graph whereas the maximum-degree weight selection do not need any global

knowledge of the communication graph. Let ∆max be the maximum degree of instantaneous

communication graph, selecting c ∈
(

0, 1
∆max

)
as the weight, guarantees the convergence [65].

If ∆max is not available, the weight c = 1
N̂−1

guarantees convergence to the average, where N̂ is

the upper bound of the number of nodes in the network. This is because 0 < 1
N̂−1

< 1
∆max

. The

larger the value of c the faster the convergence. However, if the value is equal or more than

∆max, the average consensus algorithm becomes unstable. The constraint of the convergence to

the average is that the underlying communication graph must be connected and the collection of

infinitely occurring communication graphs must be jointly connected [84]. Asymptotically, the

nodes converge to their average as

ŷi
k = lim

l→∞
yi

k(l) =
1
N

N

∑
i=1

yi
k,

Ŷi
k = lim

l→∞
Yi

k(l) =
1
N

N

∑
i=1

Yi
k,

(2.19)
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which is the unweighted KLA as in (2.14) [71]. If the number of c-benighted nodes (cameras

having no knowledge of the target information) is B, the consensus result should be

ŷi
k =

1
N−B

N

∑
i=1

yi
k,

Ŷi
k =

1
N−B

N

∑
i=1

Yi
k.

(2.20)

Hence, ICF handles p-benightedness but not c-benightedness. The communication cost of ICF

is higher than KCF because in each consensus iteration, KCF exchanges only the state estimate

whereas ICF exchanges also the corresponding error covariance encoded in the information ma-

trix.

2.3.2 C-benightedness

ICI converges to the weighted KLA of the initial estimates and outperforms ICF in estimation

accuracy [41]. Such weighted averaging results in optimal fusion estimates when the nodes are

uncorrelated [6]. ICI achieves consensus using the initial terms yi
k(0) = yi

k and Yi
k(0) = Yi

k. Each

node Ci executes the consensus step as:

yi
k(l+γ) = ∑

C j∈{Ci⋃N i}
wi, j

k y j
k(l), (2.21)

where wi, j
k is the weight given to C j by Ci based on the covariance information of all neighbours.

The traces [64] or determinants [31] of the information matrices are considered. wi, j
k = 0 if C j is

a c-benighted node. The c-benighted nodes get zero weight so they do not affect the fusion. The

same process is applied to Yi
k(l). The advantage of ICI is that it does not require the knowledge

of the maximum degree ∆max of the underlying communication graph whereas A-consensus ap-

proaches such as KCF, ICF and GKCF do. ICI guarantees convergence but not to the centralised

weighted KLA as in (2.14).

The Batch Covariance Intersection (BCI) [75] converges to the centralised weighted KLA by

using A-consensus approach in ICI framework. BCI works similarly to bridge consensus. Bridge

consensus [16] performs distributed scalar averaging in the presence of c-benighted nodes. The

weight is zero for the c-benighted nodes and one for the non benighted nodes. It achieves con-

sensus on the average of the values and average of the weights in parallel. The ratio between the

average of values and the average of weight produces the average of the non-benighted nodes val-
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ues. BCI applies the same concept to local posteriors, considers their uncertainty in the weights

and performs the A-consensus (similar to (2.18)) on the initial terms yi
k(0) = wi

kyi
k, Yi

k(0) = wi
kYi

k

and vi
k(0) = wi

k. Asymptotically, they converge to

lim
l→∞

yi
k(l) =

1
N

N

∑
i=1

wi
kyi

k,

lim
l→∞

Yi
k(l) =

1
N

N

∑
i=1

wi
kYi

k,

lim
l→∞

vi
k(l) =

1
N

N

∑
i=1

wi
k.

(2.22)

BCI computes the weighted KLA estimate in (2.14) as:

ŷi
k =

[
lim

l→∞
yi

k(l)

][
lim

l→∞
vi

k(l)

]−1

=

[
1
N

N

∑
i=1

wi
kyi

k

]−1[
1
N

N

∑
i=1

wi
k

]
=

N

∑
i=1

π
i
kyi

k,

Ŷi
k =

[
lim

l→∞
Yi

k(l)

][
lim

l→∞
vi

k(l)

]−1

=

[
1
N

N

∑
i=1

wi
kYi

k

]−1[
1
N

N

∑
i=1

wi
k

]
=

N

∑
i=1

π
i
kYi

k.

(2.23)

As the weights wi
k are selected based on the trace or determinant of the information matrix, wi

k = 0

if Ci is a c-benighted node. The c-benighted nodes get zero weight so they do not affect the fusion.

The consensus estimate in (2.23) is independent of the number of nodes and benighted nodes and

hence BCI is not affected by the presence of c-benighted nodes. Due to the third consensus term,

BCI has higher communication cost than ICF and ICI. Moreover, as BCI uses the A-consensus

approach, it requires the knowledge of ∆max. ICI and BCI handle p- and c-benightedness but not

redundant priors that cause cross-correlation among the nodes [50].

2.3.3 Redundant priors

The Information-Weighted Consensus Filter (IWCF) extends the ICF and handles also the redun-

dancy via proper relative weighting of the priors and likelihoods before initiating the consensus

iterations [8, 19, 43, 50, C5]. The weight depends on the number of nodes because the number of

redundant priors is equal to the number of nodes. The consensus terms of IWCF are initialised

as

yi
k(0) = N

(
ȳi

k
N

+ui
k

)
= ȳi

k +Nui
k,

Yi
k(0) = N

(
Ȳi

k

N
+Ui

k

)
= Ȳi

k +NUi
k,

(2.24)
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so that the average of the states is equivalent to the centralised estimate given in (2.17). The value

N in (2.24) indicates the number of redundant priors in the network. The average consensus is

performed (similar to (2.18)) on yi
k(0) and Yi

k(0) . Asymptotically, all nodes’ estimates converge

to their average estimate as

ŷi
k = lim

l→∞
yi

k(l) =
1
N

N

∑
i=1

ȳi
k +

N

∑
i=1

ui
k,

Ŷi
k = lim

l→∞
Yi

k(l) =
1
N

N

∑
i=1

Ȳi
k +

N

∑
i=1

Ui
k.

(2.25)

C-benighted nodes neither have the priors (i.e. ȳi
k = 0n×1 and Ȳi

k = 0n×n) nor likelihoods (i.e.

iik = 0n×1 and Ii
k = 0n×n). In the presence of B c-benighted nodes, the number of redundant priors

is N−B, so the desired result is

ŷi
k =

1
N−B

N

∑
i=1

ȳi
k +

N

∑
i=1

ui
k,

Ŷi
k =

1
N−B

N

∑
i=1

Ȳi
k +

N

∑
i=1

Ui
k.

(2.26)

As 1
N < 1

N−B , IWCF underweights the priors in the presence of c-benighted nodes, which is a

drawback of IWCF.

Similarly to the IWCF, the Hybrid Consensus on Measurements - Consensus on Information

(HCMCI) [8] handles p-benightedness and redundancy of the priors. HCMCI achieves con-

sensus on the prior and the likelihood in parallel and appropriately weighs the consensus prior

and the consensus likelihood. HCMCI is equivalent to IWCF but requires double the cost of

communication because of two parallel consensus algorithms. IWCF and HCMCI achieve bet-

ter estimation accuracy than KCF, GKCF, ICF and ICI. ICF, IWCF and HCMCI do not handle

c-benightedness. The Distributed Hybrid Information Fusion (DHIF) [79] is robust to p- and

c-benightedness, and redundancy. DHIF exchanges priors and likelihoods in parallel (similarly

to HCMCI). The weights used for fusion of priors are chosen based on the relative uncertainties

(similarly to ICI) so c-benighted nodes do not affect the result. The likelihoods are fused using

a summation. The method uses a single iteration so there are no redundant priors. On the other

hand, the asymptotic properties of consensus are lost.
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2.3.4 Non-linearity

All the above mentioned algorithms use KF or IF for local state estimation. EKCF [21] uses

the EKF for local state estimation. Similar to KCF, EKCF does not handle benightedness and

redundancy. The EICF and EIWCF are similar to ICF and IWCF respectively but they use EIF

for local state estimation to handle non-linearity in the measurement model [C5]. There exist

also consensus algorithms that use PF [69] for non-linear and non-Gaussian systems.

2.3.5 Asynchronous captures

All the above consensus-filters work only in synchronous settings. There exist average consensus-

based methods that work with asynchronous communications [10,13,14,29,57,89] and dynamic

changes in the consensus variable [51]. However, they cannot be applied to distributed asyn-

chronous tracking as they do not consider the continuously changing dynamics of the consensus

variable (the target state in this case). aCDTT is a maximum consensus-based approach that

makes the network converge to the most certain state among the local and received estimates [33].

If multiple cameras produce different estimates having the same uncertainty, a tie-break rule is re-

quired to select the consensus state. To handle the tie-break in the distributed framework, nodes

have to exchange the source node ID of each state along with the state information. Because

aCDTT does not fuse local information of the cameras, it does not reduce the uncertainty on

the state. Moreover, the nodes may update their local estimates with the selected estimate that

might correspond to a different time instant. aCDTT guarantees convergence only if the num-

ber of consensus iterations is at least the diametre of the network. The diametre of a network

is defined as the shortest distance (in hops) between the most distant nodes. However, there is

no mechanism that specifies how all the nodes agree that a sufficient number of consensus iter-

ations are performed. The advantage of average consensus over maximum consensus is that in

average consensus the nodes fuse the information instead of selection and thereby reducing the

uncertainty of the local states.

2.4 Distributed asynchronous tracking

This section presents the state of the art on asynchronous tracking in fully connected networks.

Distributed asynchronous tracking can be performed using sequential [92] or batch methods [9].

These sequential and batch methods assume full connectivity among all the nodes [9, 33, 92] or
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Figure 2.2: The timeline of the sequential fusion. KEY – Ci: camera i, the grey arrows indicate
the communication.

at least among the nodes that observe the target simultaneously [40] and perform non-centralised

fusion. However, WCNs do not guarantee such full connectivity so the methods cannot always

be applied always.

2.4.1 Sequential methods

In sequential methods, the nodes estimate the target state not only when they have measurements

but also when they receive target information from other nodes (see Figure 2.2). As nodes esti-

mate the target location corresponding to their capturing instants or the instants of reception from

other nodes, they might not correct their estimates corresponding to their capturing instants using

the information received from other nodes. In the sequential methods, each node broadcasts its

measurement to all other nodes in the network [9, 92] or only to its neighbours [40]. Each node

estimates the target state corresponding to its own sampling instant as well as at every instant in

which the measurements of other nodes are received. In the Sequential Asynchronous Kalman

Filter (SAF) [92], the nodes obtain the measurements and exchange the information with all other

nodes. When a node receives a measurement (own or from another node), it computes the esti-

mate corresponding to the reception instant using the received measurement. The limitations of

SAF are: SAF does not consider the processing delays. SAF considers the reception instant of

the information as the capturing instant of the sender and estimates the target states correspond-

ing to the reception instants. As the processing delay is significant in camera networks, SAF

does not perform well in camera networks, i.e. the accuracy of the estimates corresponding to

the reception instants decreases if the processing delays are not considered into account during

the estimation. This is because the received estimates correspond to a different instant (capturing
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Figure 2.3: The timeline of the batch fusion. KEY – Ci: camera i, the grey arrows indicate the
communication.

instant of the senders) than the reception instant. The estimation at the receiver takes place at the

reception instants and results in less accurate estimates. The SAF is extended to model and esti-

mate the delays (SAF-ED) [40]. Distributed Asynchronous Particle Filter (DAPF) [40] is another

sequential method. Unlike SAF, SAF-ED and DAPF consider the processing delays. The nodes

exchange the local state information. When a node receives state information from another node,

it estimates the delay and thereby the sampling instant corresponding to the received informa-

tion. If the sampling instant of the received information is older (earlier) than its local sampling

instant, the node predicts the received information corresponding to the local sampling instant.

If the local sampling instant is older than the sampling instant of the received information, the

local information corresponding to the sampling instant of the received information is predicted.

Finally, the temporally aligned information is fused. The limitation of SAF, SAF-ED and DAPF

is that the fusion result corresponds to the sampling instant of the latest senders so only the global

posterior corresponding to the latest sampling instant is available. The nodes do not correct the

local estimates corresponding to their capturing instants.

2.4.2 Batch methods

In batch methods, the nodes estimate the target state only when they have measurements and dur-

ing the estimation, they consider also the information received from other nodes (see Figure 2.3).

In batch methods, each node broadcasts its measurement to all other nodes in the network. Each

node estimates the target state corresponding only to its own sampling instant using its own mea-

surement and the most recently received measurements from other nodes [9]. Batch methods

have less processing load compared to the sequential methods because of the less number of esti-
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mations [32]. However, there are no batch methods that consider processing delays in fusion till

now. Consensus-based methods such as aCDTT also update the estimate corresponding to the

capturing instant so this thesis considers also them as batch methods.

Except in DAPF and aCDTT, in all other sequential and batch methods, nodes exchange

measurements. In the case of camera networks, the measurement model is different for each

camera. Moreover, the measurement noise might be varying and depends on the target-to-camera

distance. Hence, these methods require transmission of calibration information (measurement

model and the instantaneous measurement noise model) along with the measurements. Even if

the models are static, it is necessary that all the cameras must have the knowledge of the models

to avoid transmission but it limits the scalability of the network. To save the communication

cost and to provide scalability, some multi-sensor fusion architectures [42] prefer the exchange

of local posteriors. DAPF is one among them.

2.5 Discussion

Distributed tracking algorithms aim to achieve the same tracking accuracy as their correspond-

ing centralised tracking algorithms. In both distributed and centralised fusion algorithms, the

local state estimates should be weighted based on their uncertainty. Any Bayesian filter uses the

previous knowledge of the target state (predicted posterior). Ideally, the previous knowledge is

the same at a capturing instant irrespective of the number of cameras so the previous knowledge

should be considered only once per capturing instant though multiple measurements are avail-

able from multiple cameras. This redundancy is handled by appropriately weighting the previous

knowledge and the new measurements. There are many works that perform distributed fusion of

probability density functions in WSNs and WCNs. The sets of challenges handled by each of

them are different. Table 2.1 summarises the state of the art. Distributed tracking in WCN must

handle non-linear camera measurement model and processing delays that result in asynchronous

captures. The remaining challenges are common for all types of WSNs. In the case of limited

connectivity, consensus is the only way to perform information fusion without requiring knowl-

edge of the network so consensus approaches are required to solve the above mentioned chal-

lenges. The maximum consensus-based approaches do not perform fusion whereas A-consensus

or ICI methods perform information fusion. A major drawback of consensus is that the entire

network participates in consensus irrespective of the number of cameras in the network. In the
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Table 2.1: Challenges handled by state of the art methods for distributed fusion of probability
density functions

Reference
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[73] (Song) X
[39] (Hlinka) X
[62] (Nastasi) X
[21] (Ding) X X
[11] (Bhuvana) X X
[56] (Medeiros) X X
[48] (Kamal) X X
[6] (Battistelli) X X X
[41] (Hlinka) X X
[75] (Sun) X X
[81] (Wang) X X
[49, 50] (Kamal) X X X
[79] (Wang) X X X
[47] (Kamal) X X X X
[54] (Liu) X X X X
[8] (Battistelli) X X X X
[7] (Battistelli) X X X
[92] (Zhu) X
[33] (Giannini) X X
[40] (Hlinka) X X X
[9] (Beaudeau) X

Chapter 3 ( [C5]) X X X X
Chapter 4 ( [C3]) X X X
Chapter 5 ( [C2]) X X X
Chapter 6 ( [C1]) X X

case of very large WCN, where a small set of cameras can view the target at a time, consensus

results in spending lot of energy for computation and communication. It is desirable to limit the

number of cameras participating in consensus. Moreover, there are no consensus-based fusion

methods that perform asynchronous tracking till now. In the sequential asynchronous tracking

methods, the nodes do not update their local estimates corresponding to the capturing instants

using the received information. In contrast, in the batch methods, the nodes collect all the in-

formation from their neighbours and fuse it to update the local estimates corresponding to the

capturing instants. Different nodes have different target measurements. Different nodes might

have also different priors so exchange of local state information (posterior) rather than measure-

ment information (likelihood) is desirable to consider the differences in priors along with the
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measurements. However, there are no batch methods that perform asynchronous tracking by

exchanging the local state information (posteriors).



Chapter 3

Distributed Extended Information Filter1

This chapter proposes two new consensus-based distributed tracking algorithms for camera net-

works namely, the Extended Information Consensus Filter (EICF) and the Extended Information

Weighted Consensus Filter (EIWCF) to handle the four challenges, namely non-linearity, limited

connectivity, benightedness and redundancy. To handle non-linearity, each camera running the

distributed filters use EIF to compute the target pdf. To handle limited network connectivity, the

distributed filters use A-consensus approach. To handle benightedness, they compute KLA of

the local pdfs using A-consensus. KLA of the local pdfs is a pdf which is a result of weighted

fusion that gives less weight to the benighted nodes than the viewing nodes. As the number of

redundant priors is equal to the number of nodes in the network, EIWCF weights the priors such

that only one prior is considered in the fusion result. The following sections present in detail the

two new filters EICF and EIWCF.

3.1 Extended information consensus

This chapter applies weighted averaging to EIF and propose two distributed filters for tracking

targets in WCNs, EICF1 and EICF2, which compute the local information, yi
k and Yi

k, differently.

EICF1 runs at each node Ci and computes the local information values, yi
k and Yi

k, based on

1This chapter is completely taken from [C5].

29
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their own respective measurement information, ui
k and Ui

k:

yi
k = ȳi

k +ui
k,

Yi
k = Ȳi

k +Ui
k,

(3.1)

and then exchange the values yi
k and Yi

k with neighbours to achieve average consensus.

EICF2 computes local information values, yi
k and Yi

k, based on its own measurement infor-

mation and also that of neighbouring nodes:

yi
k = ȳi

k + ∑
C j∈{Ci∪N i}

u j
k,

Yi
k = Ȳi

k + ∑
C j∈{Ci∪N i}

U j
k.

(3.2)

EICF2 reaches convergence faster than EICF1, at the cost of additional communication to send

the measurement information terms. Hence, EICF2 is recommended when sufficient communi-

cation resources are available.

The iterative information exchange between neighbours results in redundancy which causes

correlation among the nodes’ estimates. Hence, the EICF results are sub-optimal because of such

correlation among the individual node estimates. In the update step of a filter (see (2.7)), the two

terms involved are the priors, ȳi
k and Ȳi

k, and the measurement information about the target, ui
k

and Ui
k. The prior information is the result of the prediction on previous estimates, yi

k and Yi
k,

which are computed after consensus. Hence, the redundancy always lies in the prior information

terms, ȳi
k and Ȳi

k.

3.2 Extended information weighted consensus

Via proper weighting of prior and measurement information, IWCF mitigates the problem of

redundancy [50]. By applying the concept of IWCF to EIF, This chapter proposes a non-linear

distributed filter called the Extended Information Weighted Consensus Filter (EIWCF). Here the

prior information is weighted by 1/N and the consensus proposals are prepared as:

yi
k(0) =

1
N

ȳi
k +ui

k,

Yi
k(0) =

1
N

Ȳi
k +Ui

k.

(3.3)
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After achieving consensus on the terms (after L iterations), the results are multiplied by N:

ŷi
k = Nyi

k(Lγ),

Ŷi
k = NYi

k(Lγ).

(3.4)

Here, γ is the periodicity of consensus iterations. These estimates are not affected by non-

linearity, naivety and redundancy. However, EIWCF requires the knowledge of the number of

nodes in the network (see (3.3) and (3.4)) whereas EICF1 and EICF2 do not. If sufficient com-

munication resources to receive neighbours’ measurement information, u j
k and U j

k, are available,

EICF2 achieves faster convergence than EICF1.

3.3 Cost analysis

3.3.1 Computation cost

The number of scalars operations performed by a node is taken as its computational cost S [4].

The computational cost, S, of EKCF is:

SEKCF = 11n3 +6n2 +4n+17+3nm+2nm2

+mn2 +2m+d
(

n2

2
+

5n
2

)
+Ln(2+d),

(3.5)

where L and d represent the number of consensus iterations involved and degree of the node,

respectively; n is the size of the state vector and m is the size of the measurement vector. The

computation cost of EICF1 is:

SEICF1 =
25n3

3
+4n2 +

5n
3
+2nm2 +mn2 +5nm

+m+n+17+L
(

d(n2 +3n)+
3n2

2
+

n
2

)
.

(3.6)

The computation cost of EICF2 is:

SEICF2 =
25n3

3
+4n2 +

5n
3
+2nm2 +mn2 +5nm+m

+n+17+L
(

d(n2 +3n)+
3n2

2
+

n
2

)
+d
(

3n
2
+

n2

2

)
.

(3.7)
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Figure 3.1: Computation cost at a camera node Ci vs. number of consensus iterations. Com-
parison of the computation cost of the Extended Kalman Consensus Filter (EKCF) [21], the
Extended Information Consensus Filter1 (EICF1), the Extended Information Consensus Filter2
(EICF2) and the Extended Information Weighted Consensus Filter (EIWCF).

Similarly, the computation cost of EIWCF is:

SEIWCF =
25n3

3
+6n2 +

11n
3

+2nm2 +mn2

+5nm+m+n+17+L
(

d(n2 +3n)+
3n2

2
+

n
2

)
.

(3.8)

EICF2 has d · (n+ n2/2+ n/2) more computations than EICF1 because of the ∑u and ∑U

operations in (3.2). EIWCF has 2(n+n2) more operations than EICF1 because of the additional

multiplications with N and 1/N as shown in (3.3) and (3.4).

Figure 3.1 presents the number of computations for each filter with respect to the number

of consensus iterations for a state vector of size n = 5 and degree d = 2 (here degree refers to

the number of communicative neighbours of each node). EKCF has a higher computation cost

at lower numbers of consensus iterations because of its more complex update step. By increas-

ing the number of consensus iterations, the computations required for handling the covariance

information of new information filters significantly increase and surpass the cost of EKCF.

3.3.2 Communication cost

The number of scalars transmitted by a node is taken as its communication cost Ŝ. For EKCF,

this cost is relatively low because only the state vector is exchanged in each iteration. In the first

iteration of EKCF, each node sends the measurement information terms, ui
k and Ui

k, and the prior
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state vector to its neighbours. Hence the number of scalars, Ŝ, transmitted by each node is:

ŜEKCF = n+
n(n+1)

2
+Ln, (3.9)

where L is the number of consensus iterations considered. EICF1 exchanges the local estimate,

the information vector and the corresponding uncertainty matrix, the information matrix, in each

iteration. Hence the communication cost is:

ŜEICF1 = L
(

n+
n(n+1)

2

)
. (3.10)

EICF2 exchanges the same information as EICF1 but during the first iteration the measurement

information, ui
k and Ui

k, is also sent to neighbours. Hence the communication cost is:

ŜEICF2 = n+
n(n+1)

2
+L

(
n+

n(n+1)
2

)
. (3.11)

Because of the additional ui
k and (the upper triangle of) Ui

k terms, it has an additional communi-

cation cost of n+ n(n+ 1)/2 scalars. EIWCF exchanges the local estimate, information vector,

and the corresponding uncertainty matrix, information matrix, in each iteration. Hence the com-

munication cost is:

ŜEIWCF = L
(

n+
n(n+1)

2

)
. (3.12)

As the covariance matrices are symmetric only the upper triangular matrix elements are trans-

ferred while sending information matrices Ui
k and Yi

k, the cost is n(n+1)/2 instead of n2.

Figure 3.2 presents the number of scalars needed to be transmitted by each node for each

filter with respect to the number of consensus iterations considered.

3.4 Simulations

3.4.1 Setup

This chapter compares the new distributed non-linear filters EICF1, EICF2 and EIWCF with the

state of the art filter EKCF [21] and the Centralised Extended Information Filter (CEIF) that uses

measurement information from all nodes and estimates the target state according to (2.17). As a

performance measure, this chapter uses the mean error defined as the L2−norm between the true

and estimated target position after a given number of consensus iterations [50] (i.e. between xk
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Figure 3.2: Communication cost at a camera node Ci vs. number of consensus iterations. Com-
parison of the computation cost of the Extended Kalman Consensus Filter (EKCF) [21], the
Extended Information Consensus Filter1 (EICF1), the Extended Information Consensus Filter2
(EICF2) and the Extended Information Weighted Consensus Filter (EIWCF).

and x̂i
k). This chapter analyses the faster convergence to the CEIF results.

A simulated target moving in a 500m×500m area which is under observation of N = 9 cam-

eras with overlapping FoVs is considered. The FoV of each camera is assumed to be a square

region of 200m×200m. The target follows the motion model given by (1.2) and (1.3) with q= 10.

The measurement model of the cameras follows (1.4). The state to measurement transition

function hi(·) follows (2.9) with σ2 = 60, i.e the standard deviation of measurement error is

σ = 7.7pixels. The homography matrix values of each camera are taken from one of the cameras

of the APIDIS dataset [1] whose values are:

H i =


397.2508 95.2020 287280

51.7437 396.9189 139100

0.0927 0.1118 605.2481


.

(3.13)

This chapter performs the experiments for two types of network connectivity. The first type

is limited connectivity with a low average network degree equal to 2 (see Figure 3.3(c)) assuming

a very limited communication range for the nodes. The second type considers full connectivity

where the degree is higher than the previous case (see Figure 3.3(d)). The communication range

is larger and each node communicates with more than two nodes. This setup assumes direct

communication between cameras with overlapping FoVs. For each connectivity type, Nt = 20

target trajectories are generated (see Figure 3.3(a)), where each track is estimated using M = 10

Monte-Carlo simulation runs. These two cases are necessary to analyse accuracy or speed of
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(a) 20 Trajectories (b) 9 cameras and their field of views

(c) Limited connectivity (d) Full connectivity

Figure 3.3: The simulation setup with a wireless camera network tracking 20 trajectories. Cam-
eras are located in a 500m×500m area and are represented as C1, ..,C9. Their FoVs are repre-
sented by 200m×200m coloured square regions and, the connectivities among them are shown
using the blue lines.

convergence with a varying degree of connectivity. The experiments are conducted assuming

γ = 1.

3.4.2 Results

Figure 3.4(a) presents the mean tracking error of the filters for the network shown in Fig-

ure 3.3(c). Figure 3.4(b) shows the same results with a focus on the new filters. Figure 3.5(a)

presents the mean tracking error of the filters with the setup shown in Figure 3.3(d). Figure 3.5(b)

shows the same results with a focus on the new filters. By analysing the tracking error with

different filters (Figure 3.4(a) and Figure 3.5(a)), it can be observed that the newly developed

distributed filters perform better than EKCF. EICF2 converges to the optimal centralised esti-

mate faster than EICF1 because EICF2 considers neighbours information also. Both EICF1 and

EICF2 outperform EKCF, but still the performance of EIWCF is higher compared to EICF1 and
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(a) (b)

Figure 3.4: Comparison of accuracy for limited connectivity shown in Figure 3.3(c). The com-
pared filters are the Extended Kalman Consensus Filter (EKCF) [21], the Extended Information
Consensus Filter1 (EICF1), the Extended Information Consensus Filter2 (EICF2) and the Ex-
tended Information Weighted Consensus Filter (EIWCF). Figure 3.4(b) is zoom of Figure 3.4(a)
with a focus on the proposed filters EICF1, EICF2 and EIWCF.

EICF2, which do not take the redundancy into account. Only EIWCF converges to the optimal

centralised estimate because the prior information (which holds redundant data) and the mea-

surement information are weighted properly to avoid the effect of redundancy. It can also be

observed that, with the increase in degree of connectivity, the speed of convergence increases for

all filters (see Figure 3.4(a) and Figure 3.5(a)).

3.5 Summary

This chapter proposed the Extended Information Consensus Filter (EICF) by combining the Ex-

tended Information Filter (EIF) and Information Consensus Filter (ICF). The proposed filter per-

forms weighted averaging while addressing the problem of naive nodes and non-linearity. The

information matrix that represents the uncertainty of each estimated state is used as its weight.

As benighted nodes or nodes with high measurement noise levels produce more uncertain esti-

mates so their estimates get lower weights compared to that of the viewing nodes. To overcome

the redundancy problem, it also proposed the Extended Information Weighted Consensus Filter

(EIWCF) by combining the Extended Information Filter (EIF) and Information Weighted Con-

sensus Filter (IWCF). EIWCF handles naivety, redundancy and non-linearity, and achieves faster

convergence by properly weighting prior and measurement information. However, it requires the

knowledge of the number of nodes in the network. To consider only one prior out of N priors,

each node’s prior is weighted less such that the fusion results are as if one prior is used. The
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(a) (b)

Figure 3.5: Comparison of accuracy for full connectivity shown in Figure 3.3(d). The compared
filters are the Extended Kalman Consensus Filter (EKCF) [21], the Extended Information Con-
sensus Filter1 (EICF1), the Extended Information Consensus Filter2 (EICF2) and the Extended
Information Weighted Consensus Filter (EIWCF). Figure 3.5(b) is zoom of Figure 3.5(a) with a
focus on the proposed filters EICF1, EICF2 and EIWCF.

performance of the EICF and the EIWCF is analysed via simulated WCNs. The results show that

the proposed approaches outperform the EKCF and, with additional communication and compu-

tation cost, they converge to the centralised result. The proposed algorithms involve the exchange

of both the state and the corresponding error covariance so they have higher communication costs

than the state of the art consensus algorithms that involve the exchange of the state vector only.

Similarly, As the proposed algorithms process also the uncertainty information, they have higher

computation costs than the state of the art consensus algorithms that process the state vector only.



Chapter 4

Neighbour Consensus Filter1

This chapter presents N-consensus, an algorithm that reduces the cost of the consensus process

for distributed visual target tracking without compromising on tracking accuracy. N-consensus

reduces the number of nodes involved in the consensus process. N-consensus fuses target pos-

teriors computed by viewing nodes (i.e. the cameras viewing the same target) only and limits

the number of nodes participating in consensus to those within a specified number of hops from

the viewing nodes. Hops are the connections the target information passes through to reach one

node from another node in the network. The number of connections is called the hop distance

or hop count. Two viewing cameras are separated by at most the sum of their viewing ranges

so the maximum possible hop count that guarantees the shortest communication path between

two viewing nodes is used as the threshold to allow participation in consensus. A node that is

in the threshold hop distance from any of the viewing nodes is allowed to participate in consen-

sus. The neighbourhood of a target is defined based on the hop distance from its viewing nodes.

N-consensus achieves consensus only in the neighbourhood.

4.1 Target neighbourhood identification

The Neighbouring nodes (N-Nodes) of the target at time step k, Nk, include all nodes that are

viewing the target at the current time step, current viewing nodes, Vk, and the nodes that might

view the target at the next time step, future viewing nodes, Vk+ . Nodes other than N-Nodes are

inactive nodes, Ik and they do not participate in the consensus process. The inactive nodes that are

1This chapter is completely taken from [C3].

38
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Figure 4.1: Illustration of the consensus neighbourhood (Black) of a target. A network of wireless
camera nodes, the field of views (blue) of four nodes, viewing range, rv, communication range
(dotted grey), rc, of two current viewing nodes (green) are shown. Here rc and rv are the physical
distances.

single-hop neighbours of N-Nodes act as border between the N-Nodes and the remaining inactive

nodes by not transmitting any information. This chapter calls them sink nodes, Sk, because they

always receive information (from N-Nodes) but they do not send it. The relation between C, Nk,

Vk, Vk+ , Ik and Sk is as follows:

C = Vk
⋃

Vk+︸ ︷︷ ︸
Nk

⋃
Ik and Sk ⊆ Ik. (4.1)

A constraint for using N-consensus is that the N-Nodes of a target must be connected at any time

step.

Ideally, the future viewing nodes include the nodes having overlapping FoVs with all the

current viewing nodes. However, nodes are unaware of the FoV information of other nodes so

this chapter considers all nodes that are located within twice the viewing range, 2rv, distance

from each current viewing node as future viewing nodes. This chapter selects the value 2rv

because the maximum possible physical distance between two nodes with overlapping FoVs is

2rv [52], and a current viewing node passing information to all nodes within 2rv guarantees that

the information is available at all current and future viewing nodes. Figure 4.1 shows a scenario

where the number of current viewing nodes is 2. The N-Nodes (nodes within 2rv distance from
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the current viewing nodes) are surrounded by a red boundary.

4.2 Distributed neighbourhood fusion

Relative distances among the nodes are required to check if a node is within 2rv distance from

any of the current viewing nodes. As the physical locations of the nodes are unknown, the

relative distance between two nodes can be approximated either using hop counts [26] or using

radio signal strength [63]. This chapter uses the former and perform iterative limited-multi-hop

search [61] to identify Vk+ . The maximum possible hop distance between a future viewing node

and its nearest current viewing node D̂ = d2rv

rc
e. This chapter uses this value as the threshold to

identify future viewing nodes, which include 1-hop, 2-hop, ..., D̂-hop neighbours of each current

viewing node. Note that this chapter considers current viewing nodes as 0-hop neighbours of

themselves. Consensus is achieved among the Nk nodes (N-Nodes). Note that, for various rc and

rv values D̂ varies as:

D̂ > 2, if rc < rv and

D̂ =


2, if rv ≤ rc < 2rv,

1, if rc ≥ 2rv.

(4.2)

At each time step, current viewing nodes initialise their hop distance, DH
i,k, to zero and com-

pute the local posterior,
(
yi

k,Y
i
k

)
, using EIF [60] to handle the non-linearities. Each non-viewing

node (node with no target measurement) identifies itself as an inactive node and initialises its

hop distance Di
k to infinity and its local posterior to null, i.e.yi

k = 0n×1 and Yi
k = 0n×n. (Fig-

ure 4.2(a)). Current viewing nodes initiate the iterative process of information exchange and

consensus update.

During the information exchange step, all identified N-Nodes send messages containing their

local posterior,
(
yi

k,Y
i
k

)
, and hop distance, Di

k, to all their neighbours. If C j is the neighbour of

Ci, the maximum possible hop distance of C j from the current viewing nodes is one more than

the hop distance of Ci from the current viewing nodes. Hop distance proposal of a node C j is

defined as its hop distance computed by incrementing the hop distance received from a neighbour

C j by one. Each receiving node within the communication range increments the received hop

distance by one (i.e. Di
k +1) and uses the value as a hop distance proposal made by the sender.

The hop distance of C j before receiving the message from Ci is called its local hop distance. The

receiving nodes update their hop distances to the minimum of their local hop distance and the
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(a) Initial state (b) l = 1

(c) l = 2 (d) l = 3,4, ...,L

Figure 4.2: Illustration of N-consensus when the threshold hop distance D̂ = 2. Black: consensus
region, blue: connectivity among the nodes, brown: information flow, green: current viewing
nodes, grey: future viewing nodes, red: sink nodes, white: inactive nodes. (a) Initially, only the
current viewing nodes identify themselves as N-Nodes. (b), (c) In each consensus iteration (l ≤
D̂) the neighbourhood of already known N-Nodes identify themselves as future viewing nodes
based on their hop distances (shown next to each node). (d) During l = 3, the neighbourhood of
known N-Nodes at 3-hop distance (Di

k > D̂) identify themselves as sink nodes. The nodes status
does not change when l > 3.

hop distance proposals (made by their neighbours). Vk+ and Sk are updated based on the new

hop distances.

In the consensus update step, all identified N-Nodes fuse their local posteriors with the re-

ceived posteriors using the IFCI algorithm [31] as follows:

[yi
k(l) Yi

k(l)] =

 ∑
Ci′∈Ni

k

wi′
k(l)y

i′
k(l−1) ∑

Ci′∈Ni
k

wi′
k(l)Y

i′
k(l−1)

 , (4.3)

where
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wi′
k(l) =

∣∣∣∣∣ ∑

C j′∈Ni
k

Y j′

k(l−1)

∣∣∣∣∣+
∣∣∣∣Y i′

k(l−1)

∣∣∣∣−
∣∣∣∣∣ ∑

C j′∈Ni
k

Y j′

k(l−1)−Y i′
k(l−1)

∣∣∣∣∣
∑

C j∈Ni
k

[∣∣∣∣∣ ∑

C j′∈Ni
k

Y j′

k(l−1)

∣∣∣∣∣+
∣∣∣∣Y j

k(l−1)

∣∣∣∣−
∣∣∣∣∣ ∑

C j′∈Ni
k

Y j′

k(l−1)−Y j
k(l−1)

∣∣∣∣∣
] . (4.4)

Here
∣∣∣∣·∣∣∣∣ represents determinant and l is the iteration index and Ni

k is the set of all N-Nodes in the

communication range of Ci at k. N-consensus algorithm is more complex than A-consensus and

trace based ICI because of the computation of determinants.

In iterations l = 1,2, ..., D̂, future viewing nodes that are 1-hop, 2-hop, ..., D̂-hop neighbours

are identified. When l = D̂+1, sink nodes are identified. When l > D̂+1, the sets Vk,Vk+ ,Ik,Sk

do not change.

Between two time steps, L consensus iterations are run. Figure 4.2 illustrates the N-consensus

iterations with an example. When using fewer iterations than the threshold (i.e. L < D̂), the pos-

terior might not be available at all future viewing nodes. For example, in Figure 4.2(b), l = 1 and

D̂= 2, all 1-hop neighbours are identified but 2-hop neighbours are not yet identified so the target

posterior is not available at the 2-hop neighbours. In the next time step, if the target enters the

FoV of any 2-hop neighbour, the EIF running at the node fails to compute the posterior because

the posterior from the previous time step is not available. Hence, N-consensus cannot perform

tracking unless a minimum of L = D̂ iterations is used. Running the consensus algorithm for D̂

iterations ensures the identification of all N-Nodes and for D̂+1 iterations ensures the informa-

tion exchange by all the N-Nodes. For example, in Figure 4.2, though all N-Nodes are identified

during iteration l = 2 (Figure 4.2(c)), some neighbouring N-Nodes started exchanging informa-

tion during iteration 3 (Figure 4.2(d)). N-consensus ensures that the node having a measurement

at k but not at k− 1 holds the posterior from k− 1 because the node must have participated in

consensus at k−1 as a future viewing node.

4.3 Simulations

The thesis compares the performance of four fusion algorithms, namely centralised fusion us-

ing Improved Fast Covariance Intersection (CCI) [31], distributed fusion using A-consensus

(AC) [C5], Iterative Covariance Intersection (ICI) [41] and the proposed N-consensus (NC) using

numerical simulations.

The thesis uses as performance measures accuracy and communication cost. At each time



Chapter 4: Neighbour Consensus Filter7 43

step, the average of the position estimates of all the N-Nodes is considered as the estimated target

position. Accuracy is the Euclidean distance between the estimated target positions and the cor-

responding ground-truth positions on the ground plane. Communication cost can be evaluated

either as the total number of scalars transmitted in the network or as energy consumption for

their transmission and reception. The energy spent not only depends on the number of scalars (or

the number of bits) transmitted but also on the communication range of each transmitting node.

The energy is calculated by summing transmission energy Et = Eeb+apr2
c and receiving energy

Er = Eeb, where Ee is the electrical energy (Joules/bit) used for running transmitter or receiver

components, a is the power amplification (Joules/bit/m2) required to guarantee acceptable re-

ceived signal strength within the communication range rc and, b is the number of bits transmitted

or received [78].

4.3.1 Setup

Let the WCN contain 256 homogeneous cameras that monitor a 500m×500m area. Each camera

has a (directional) viewing range rv = 50m and 90o FoV. The position and FoV of each camera

are kept constant (Figure 4.3(a)). The motion model of the target is as given by (1.2) and (1.3)

with q = 10.

This chapter uses Nt = 20 trajectories (Figure 4.3(b)) for performance analysis. Each trajec-

tory is estimated using M = 10 Monte-Carlo simulations. The measurement model of the cameras

follows (1.4). The state to measurement transition function hi(·) follows (2.9) with σ2 = 60, i.e

the standard deviation of measurement error is σ = 7.7pixels. The values H i(1,1), ...,H i(3,3)

are the elements of the homography matrix H i and are taken from one of the cameras of APIDIS

dataset6 as:

H i =


397.2508 95.2020 287280

51.7437 396.9189 139100

0.0927 0.1118 605.2481

 . (4.5)

At each time step, the local posteriors (to be fused) are estimated by EIF running at each node.

Both in A-consensus and ICI, non-viewing nodes use predicted posteriors as their local posteriors

and 0.65
∆max

as the weight of each neighbour’s information for A-consensus update assuming that

each camera knows the maximum degree (∆max) of the underlying communication graph [65].

The tracking experiment is conducted by considering the communication range rc of each node

6http://sites.uclouvain.be/ispgroup/index.php/Softwares/APIDIS, last accessed February 2015.
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Figure 4.3: Simulation setup. (a) Wireless camera network surveilling a 500m×500m area using
cameras C1, ...,C256. Each camera has a Field of View (FoV) of 50m×50m on the ground plane
(black). (b) Sample trajectories used in the experiments with their starting points (green) and
ending points (red). (c) and (d) N-Nodes at time step 30 of the bold track shown in (b) when the
communication range of nodes are rc = 30m (D̂ = 5) and rc = 150m (D̂ = 1), respectively. The
viewing cameras and their FoVs are shown in green.
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Figure 4.4: Communication cost analysis. (a) The average percentage of nodes participating
in consensus for the two rc values (30m and 150m). Average communication cost in terms of
(b) number of scalars transmitted and (c) energy (Joules) spent. The algorithms are Iterative
Covariance Intersection (ICI) [41] and the proposed Neighbourhood-consensus (NC). Note that
the results of ICI for the two rc values overlap. As the results of Average Consensus (AC) [C5]
are the same as ICI, they are not reported here.

(a) (b) (c)

Figure 4.5: Accuracy analysis when the communication range, rc, of the nodes is (a) 30m and
(b) 150m. The algorithms are: Centralised fusion using IFCI (CCI) [31], distributed fusion using
Average Consensus (AC) [C5], Iterative Covariance Intersection (ICI) [41] and the proposed
Neighbourhood-consensus (NC). (c) is the zoom of (a) and (b) with a focus on NC.

as 30m (< rv) and 150m (> 2rv). This chapter analyses the accuracy and communication cost of

tracking the 20 trajectories for a different number of consensus iterations, L in both cases.

4.3.2 Results

The hop distance thresholds D̂ = d 2rv
rc
e are 5 and 1 when the rc values are 30m and 150m, re-

spectively. The N-Nodes in each case are shown in Figure 4.3(c) and 4.3(d). More nodes are

identified as N-Nodes for rc = 150m compared to rc = 30m because the higher communication

range turns more nodes to be 1-hop (future viewing nodes) and 2-hop neighbours (sink nodes).

N-Nodes are not completely identified until D̂ iterations, so for rc = 30m the percentage of N-

Nodes increases for iterations 1 to 5 and from the 5th iteration the value does not change. Note
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that the increment is not linear and depends on the number of newly identified future viewing

nodes in each iteration. Figure 4.4(a) shows the percentage of nodes participating in consensus

in ICI and N-consensus. By using N-consensus, the number of participating nodes is reduced to

approximately 35%.

Each transmission of N-consensus involves a message containing information vector yi
k, in-

formation matrix Yi
k and hop distance. The target state vector size is n = 4 and the information

matrix is symmetric. To reduce the number of scalar transmissions this chapter sends only the

upper triangular values, i.e. 10 scalars. Hence, the posterior (yi
k,Y

i
k) contains 14 scalars each

of which is a 32-bit floating point number. The hop distance is a 16-bit integer. Therefore, each

N-consensus message contains (14×32)+(1×16) = 464 bits. The values of Ee and a are con-

sidered as 50nJ and 0.1nJ/b/m2, respectively. As only the N-Nodes participate in consensus,

the number of transmissions is smaller than that of ICI and A-consensus in which all nodes par-

ticipate. The total communication cost is therefore smaller in N-consensus than that of ICI and

A-consensus. As the N-Nodes are more for rc = 150m than for rc = 30m, the number of scalars

transmitted are also more for rc = 150m than for rc = 30m (Figure 4.4(b)) of N-consensus. The

energy consumption is also smaller in N-consensus than that of ICI and A-consensus. While the

number of scalars transmitted by ICI (and A-consensus) is the same for the two communication

ranges, the energy spent is different because of the different transmission ranges. As one would

expect, N-consensus with rc = 30m consumes less energy than N-consensus with rc = 150m and

ICI (and A-consensus) with both the communication ranges (Figure 4.4(c)) because of the smaller

number of N-Nodes and the lower transmission range. The communication cost of A-consensus

and ICI are the same so the cost of A-consensus is not shown in Figure 4.4.

As mentioned earlier, N-consensus cannot perform tracking until all N-Nodes are identified

so tracking is not feasible when using consensus iterations less than D. For rc = 30m, until the 5th

iteration the error is not available (Figure 4.5). For rc = 150m, D = 1 so tracking is performed for

all the iterations used. The N-consensus estimate achieves faster convergence to the centralised

estimate compared to the other algorithms. The error computed using CCI is 4.9m. N-consensus

with rc = 150m spends 0.34J energy for 2 iterations and has a mean error 5.0m, whereas N-

consensus with rc = 30m spends 0.26J for 20 iterations and has a mean error 5.1m.
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4.4 Summary

This chapter proposed N-consensus, an algorithm for achieving consensus on target posteriors

among only a set of Neighbouring Nodes (N-Nodes) of the target. N-Nodes include current

viewing nodes (0-hop neighbours) and future viewing nodes (1-hop, 2-hop, ..., D̂-hop neigh-

bours). N-consensus selects D̂ based on the viewing and the communication ranges of the nodes.

Consensus update fuses posteriors using the covariance intersection algorithm to avoid the neces-

sity of topology information and provides better fusion estimates. Experimental results show that

the proposed N-consensus approach provides better accuracy and requires fewer communication

resources compared to average consensus and iterative covariance intersection. The advantages

of reducing the communication cost are as follows. transmitting less information in the network

not only reduces the energy consumption but also results in better channel utilisation. It also

reduces communication delays because the channel is more time available to access. In the case

of battery powered cameras, reduction of communication and computation costs increases the

lifetime of the network. Unlike other consensus approaches, in N-consensus, the target state

is available at N-Nodes only so non N-Nodes (inactive nodes) cannot take decisions about the

target.



Chapter 5

Average Consensus-based Asynchronous Filter1

In the asynchronous case, the cameras capture frames at different instants. This chapter assumes

the asynchronism to be partial (as in [33]), where α is the upper bound of the relative capturing

offset (see Figure 5.1), i.e. α = αmax = max
i, j
{α i j}. Each camera knows T and α . This chapter

proposes an Average Consensus-based Asynchronous tracking Filter (ACAF) for WCNs. The

nodes perform information-alignment with respect to their capturing instant by predicting the

information of the neighbours. This chapter first presents the Bayesian formulation of the idea

and then present its implementation under Gaussian assumptions using the IF.

5.1 Bayesian asynchronous consensus

At the beginning of the fusion phase, each node Ci performs three predictions. The first predicts

the target pdf for k−α based on the computed local pdf p(xi
k|zi

1:k) (backward prediction) as

p(x̃i
k−α |zi

1:k) =
∫

p(x̃i
k−α |xi

k)p(xi
k|zi

1:k)dxi
k. (5.1)

This chapter uses k−α because other cameras in the network must have captured at most α

time steps earlier or at most α time steps later (partial asynchronism assumption). The second

prediction is based on the previously known pdf p(x̂i
k′ |zi

1:k′) (forward prediction) as

p(x̃i
k−α |zi

1:k′) =
∫

p(x̃i
k−α |x̂i

k′)p(x̂i
k′ |zi

1:k′)dx̂i
k′ . (5.2)

1This chapter is completely taken from [C2].

48
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Figure 5.1: Local clocks in partial asynchronism. Key – T : inter-frame capturing period, α:
amount of asynchronism.

The predicted pdfs p(x̃i
k−α
|zi

1:k) and p(x̃i
k−α
|zi

1:k′) are then compared and the one with the lowest

uncertainty is considered. This step helps to avoid over-prediction when a camera does not have

measurements due to an occlusion or the limited (directional) FoV. Let p(x̃i,∗
k−α
|zi

1:k) be the pdf

with lower uncertainty. The third predicts the pdf for the capturing instant k based on the certain

predicted pdf corresponding to k−α (forward prediction) as

p(x̃i
k(τ i

k)
|zi

1:k) =
∫

p(x̃i
k(τ i

k)
|x̃i,∗

k−α
)p(x̃i,∗

k−α
|zi

1:k)dx̃i,∗
k−α

. (5.3)

In other words, it predicts the target pdf for the same capturing instant k via backward and forward

predictions. The subscript k(l) is used to indicate that the information corresponds to k before

starting the consensus iteration at k+ l (l ≥ τ i
k). τ i

k is the estimation delay of Ci at k.

Camera nodes fuse these predicted pdfs p(x̃i
k(τ i

k)
|zi

1:k),∀Ci via distributed average consensus.

Let γ be the periodicity of the consensus iterations. Each node can compute the elapsed time

after an estimation phase and after each consensus iteration.

Each consensus iteration involves two predictions, one before the transmission and one after

the reception. Before transmission, each node Ci predicts the pdf for the transmission instant

k+ l based on the predicted pdf p(x̃i
k(l)|z

i
1:k) corresponding to the capturing instant k (forward

prediction) as

p(x̃i
k+l|zi

1:k) =
∫

p(x̃i
k+l|x̃i

k(l))p(x̃i
k(l)|z

i
1:k)dx̃i

k(l). (5.4)

The predicted pdf p(x̃i
k+l|zi

1:k) represents the opinion of the sender Ci at the transmission instant.
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The node Ci sends the predicted pdf p(x̃i
k+l|zi

1:k) to its neighbours N i.

If Ci receives a similarly predicted pdf p(x̃ j
k′′ |z

j
1:k′′) from C j at any local time k′′ after its

capturing instant (i.e. k′′ ∈ [k,k+ l]), it stores the received pdf in a buffer. During the consensus

update at k+ l, Ci predicts the pdf of C j for Ci’s capturing instant k based on the received pdf

(reverse prediction) as

p(x̃ j
k(l)|z

j
1:k′′) =

∫
p(x̃ j

k|x̃
j
k′′)p(x̃ j

k′′ |z
j
1:k′′)dx̃ j

k′′ . (5.5)

This predicted pdf represents the opinion of the sender C j for the capturing instant k of the

receiver Ci. Now, Ci fuses the temporally aligned pdfs p(x̃i
k(l)|z

i
1:k) and p(x̃ j

k(l)|z
j
1:k′′),∀C

j ∈ N i

as

p(x̃i
k(l+γ)|z

i
1:k) =

p(x̃i
k(l)|z

i
1:k)

c p(x̃ j
k(l)|z

j
1:k′′)

1−c∫
p(x̃i

k(l)|z
i
1:k)

c p(x̃ j
k(l)|z

j
1:k′′)

1−cdx̃i
k(l)

, (5.6)

where c is the weight given to the instantaneous pdf of the node. The fusion happens for all

the received neighbours’ pdfs. The fusion result is used in the next consensus iteration that

repeats (5.4), (5.5) and (5.6) at k+ l + γ .

Asymptotically, the fusion result converges to the KLA of the predicted local pdfs of all the

cameras, i.e.

p(x̃+k(∞)|z
+
1:k) =

N
∏
j=1

p(x̃ j
k(τ j

k )
|z j

1:k)
1
N

∫ N

∏
j=1

p(x̃ j
k(τ j

k )
|z j

1:k)
1
N dx̃ j

k(τ j
k )

. (5.7)

The superscript + (instead of a camera index) represents that the result is available at all cameras.

As each node Ci is aware of its own capturing instant, it replaces its contribution in the KLA,

i.e. the predicted local pdf p(x̃i
k(τ i

k)
|zi

1:k), with the actual local pdf p(xi
k|zi

1:k). This is the correction

step and is as follows:

p(x̂i
k|zi

1:k) =
p(x̃i

k(∞)|z
i
1:k)p(x̃i

k(τ i
k)
|zi

1:k)
− 1

N p(xi
k|zi

1:k)
1
N∫

p(x̃i
k(∞)|z

i
1:k)p(x̃i

k(τ i
k)
|zi

1:k)
− 1

N p(xi
k|zi

1:k)
1
N dx̃i

k(∞)

. (5.8)

To avoid the fusion of information corresponding to subsequent frame captures, a node termi-

nates its consensus phase if the time elapsed since the frame capture is T −α . Figure 5.2 shows

the block diagram of ACAF.

The next section derives an approximation of the above Bayesian fusion method under Gaus-
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Figure 5.2: Block diagram of ACAF running in each camera. The Switch is ON during the first
consensus iteration. Otherwise OFF.

sian assumptions.

5.2 Information Filter based asynchronous consensus

In the estimation phase, each node Ci computes the local pdf p(xi
k|zi

1:k) represented by (xi
k,P

i
k)

using the Information Filter [15]. Here, xi
k and Pi

k represent the minimum mean square error

estimate and the corresponding error covariance of the estimated target pdf p(xi
k|zi

1:k). The infor-

mation pair corresponding to the estimate (xi
k,P

i
k) is (yi

k,Y
i
k) = (Pi

k
−1xi

k,P
i
k
−1

).

In the fusion phase, each Ci performs backward prediction of the pair from k to k−α as

Ỹi
k−α|k =

(
F(k,k−α)Yi

k
−1F(k,k−α)>+Q(k,k−α)

)−1
,

ỹi
k−α|k = Ỹi

k−α|kF(k,k−α)
(

Yi
k
−1yi

k

)
;

(5.9)

and forward prediction of the pair from k′ to k−α as

Ỹi
k−α|k′ =

(
F(k′,k−α)Ŷi

k′
−1

F(k′,k−α)>+Q(k′,k−α)

)−1

,

ỹi
k−α|k′ = Ỹi

k−α|k′F(k
′,k−α)

(
Ŷi

k′
−1

ŷi
k′

)
.

(5.10)

Here, (ŷi
k′ , Ŷ

i
k′) is the information pair of the known pdf corresponding to k′ < k. As the certainty
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of a distribution is proportional to the trace of its information matrix, the information pair be-

tween (ỹi
k−α|k, Ỹ

i
k−α|k) and (ỹi

k−α|k′ , Ỹ
i
k−α|k′) with the higher trace is considered as the winning

pair (ỹi,∗
k−α

, Ỹi,∗
k−α).

Ci performs forward prediction of the pair from k−α to k as

Ỹi
k(τ i

k)
=
(

F(k−α,k)Ỹi,∗
k−α

−1
F(k−α,k)>+Q(k−α,k)

)−1
,

ỹi
k(τ i

k)
= Ỹi

k(τ i
k)

F(k−α,k)
(

Ỹi,∗
k−α

−1
ỹi,∗

k−α

)
.

(5.11)

Each consensus iteration at k+ l (l ≥ τ i
k) consists of four steps, namely forward prediction,

information alignment, fusion and correction. The forward prediction of the pair from k to k+ l

is performed as

Ỹi
k+l =

(
F(k,k+ l)Ỹi

k(l)
−1

F(k,k+ l)>+Q(k,k+ l)
)−1

,

ỹi
k+l = Ỹi

k+lF(k,k+ l)
(

Ỹi
k(l)
−1

ỹi
k(l)

)
.

(5.12)

Ci transmits the pair (ỹi
k+l, Ỹ

i
k+l) to its neighbours N i.

The second step is information alignment. Let k′′ ∈ [k,k+ l] be the local time instant when

Ci receives the pair (ỹ j
k′′ ,Ỹ

j
k′′) from C j. Ci predicts the information pair of C j for k via reverse

prediction as

Ỹ j
k(l) = F(k,k′′)>

(
Ỹ j

k′′
−1
−Q(k,k′′)

)−1
F(k,k′′),

ỹ j
k(l) = Ỹ j

k(l)F(k
′′,k)

(
Ỹ j

k′′
−1

ỹ j
k′′

)
.

(5.13)

In the information fusion step, the predicted pair
(

ỹi
k(l), Ỹ

i
k(l)

)
and the predicted pairs

(
ỹ j

k(l), Ỹ
j
k(l)

)
,∀C j ∈

N i are fused via the average consensus update as

Ỹi
k(l+γ) = Ỹi

k(l)+ c ∑
∀C j∈N i

(
Ỹ j

k(l)− Ỹi
k(l)

)
,

ỹi
k(l+γ) = ỹi

k(l)+ c ∑
∀C j∈N i

(
ỹ j

k(l)− ỹi
k(l)

)
.

(5.14)

Here, c ∈
(

0,
1

∆max

)
, where ∆max = max

∀Ci∈C

{
|N i|

}
.

The correction step replaces the initial predicted local information pair
(

ỹi
k(τ i

k)
, Ỹi

k(τ i
k)

)
with
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the actual local information pair
(
yi

k,Y
i
k

)
as

Ŷi
k = Ỹi

k(l+γ)−
Ỹi

k(τ i
k)

N
+

Yi
k

N
,

ŷi
k = ỹi

k(l+γ)−
ỹi

k(τ i
k)

N
+

yi
k

N
.

(5.15)

The state estimate x̂i
k and the corresponding error covariance P̂i

k are

x̂i
k = Ŷi

k
−1

ŷi
k, and P̂i

k = Ŷi
k
−1

. (5.16)

If the time elapsed since the capturing instant k is larger than T −α , then Ci terminates its fusion

phase. Otherwise, the same process, (5.12)-(5.15), is repeated using
(

ỹi
k(l+γ), Ỹ

i
k(l+γ)

)
as input,

i.e. l ← l + γ .

Note that when α = 0 (synchronous case), ICF and ACAF yield the same result but differ

in the type of information exchanged: ACAF exchanges predicted information corresponding to

k+ l, whereas ICF exchanges the actual information corresponding to k.

5.3 Simulations

This chapter compares the performance of ACAF, the proposed filter, with (i) ICF [6], which uses

average consensus assuming synchronous setting; (ii) aCDTT [33], which uses maximum con-

sensus in asynchronous settings; (iii) the distributed filter that computes the local state estimates

without fusion (No fusion); and (iv) a centralised filter (CEN) that assumes the FC is aware of the

capturing instants, i.e. the delays are known. CEN performs the proposed information alignment

at the FC.

ACAF requires fewer scalar transmissions than ICF and aCDTT. In particular, ACAF has

fewer transmissions than ICF because of the early termination of the consensus phase. In aCDTT,

each consensus iteration exchanges the instantaneous local estimate, the index of the camera

that generated the estimate and the label to distinguish information from subsequent estimation

phases. In contrast, only the local estimates are exchanged in ACAF and ICF.

5.3.1 Setup

This chapter uses for a WCN that monitors a 30m × 20m area using N = 7 static cameras whose

positions and FoVs are taken from the APIDIS dataset [1]. The validation is conducted for
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Experimental setup. (a) full connectivity, (b) limited connectivity, (b) FoVs of cam-
eras in full observability case, (d) FoVs of cameras in limited observability case (taken from
APIDIS), (e) Nt = 20 simulated tracks, (f) Nt = 10 real tracks (taken from APIDIS). The blue
rectangle is the region where the targets move.

full (Figure 5.3(a)) and limited connectivity (Figure 5.3(b)), for full observability of the cameras

(Figure 5.3(c)) and limited observability (Figure 5.3(d)), without estimation delays (τ i
k = 0, ∀Ci ∈

C) and with random estimation delays (τ i
k ∈ {0,1,2,3} , ∀Ci ∈C), and with known and unknown

motion models. Here, γ = 1 time step, T = 25 time steps and one time step ≈40ms. Fully
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connectivity is generated using the communication range of each node rc = 3000cm and limited

connectivity is generated using rc = 1800cm. The network connectivities are shown using the

blue lines in Figures 5.3(a) and 5.3(b). Full observability is generated by assuming that all

cameras have the same FoV and it covers beyond the entire court. The FoV is the coloured

rectangle in Figure 5.3(c). Limited observability is generated by considering the actual FoVs of

APIDIS cameras. The FoVs are the coloured polygons in Figure 5.3(d). To consider trajectories

with known motion model, this chapter generates Nt = 20 simulated trajectories with a known

motion model (Figure 5.3(e)) each 300 time-step long. The considered motion model is the

nearly constant velocity model given by (1.2) and (1.3) with q = 10. To consider trajectories with

unknown motion model, this chapter uses trajectories of Nt = 10 players given in the APIDIS

dataset each 1500 time-step long (Figure 5.3(f)). The measurement model of each camera Ci

follows (1.4). The state to measurement transition function hi(·) is considered to be linear and is

as follows:

hi(xk) = Hixk = [I2 02]xk, (5.17)

and σ2 = 60, i.e the standard deviation of measurement error is σ = 7.7cm. This chapter analyses

the mean tracking error with increasing asynchronism α . To let each camera complete its estima-

tion phase, α should be≤ T−τmax, with τmax = max
∀Ci∈C,∀k

{
τ i

k

}
= 3 time-steps. If D is the network

diameter, aCDTT requires at least D consensus iterations so α should be ≤ T − τmax−D. For

the limited connectivity (Figure 5.3(b)), D = 4 so this chapter chooses α ∈ [0,18]. This chapter

tracks each player t ∈ [1,Nt ] separately using M = 10 Monte-Carlo simulations. Each simulation

uses a different set of estimation delays and measurements. The mean tracking error (MTE),

defined as the mean of the Nt root mean square errors, is considered as the performance measure

and is as follows:

MTE =
1
Nt

Nt

∑
t=1

√√√√ 1
MN

M

∑
r=1

N

∑
i=1

1
|Ki,r,t | ∑

∀k∈Ki,r,t

||x̂i
k(r, t)−xt

k||22. (5.18)

Here, x̂i
k(r, t) is the estimated location of player t by camera Ci at k during the rth run, xt

k is the

corresponding ground truth location and Ki,r,t be the set of capturing instants of Ci during rth run

of tracking target t.
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Figure 5.4: Mean tracking error (MTE) with increasing asynchronism α . (a)-(h) Results with
simulated tracks. (i)-(p) Results with APIDIS tracks. (a)-(d) and (i)-(l) Results with full observ-
ability. (e)-(h) and (m)-(p) Results with limited observability. KEY – D: delay, ND: no delay,
FC: full connectivity, LC: limited connectivity. The compared algorithms are the distributed fil-
ter that does not fuse (No fusion), the centralised filter (CEN), the Information Consensus Filter
(ICF) [6], the asynchronous Consensus-based Distributed Target Tracking method (aCDTT) [33]
and the proposed Average Consensus-based Asynchronous Filter (ACAF).

5.3.2 Results

The tracking error increases as the asynchronism increases irrespective of the delays, observabil-

ity and connectivity (Figure 5.4). In the synchronous case (α = 0), the accuracy of ACAF is

equivalent to ICF irrespective of the delays, observability and connectivity. In the asynchronous

case (α > 0), ACAF achieves better tracking accuracy than aCDTT and ICF irrespective of the

delays, observability and connectivity. The tracking error of ACAF is upper bounded by the

tracking error of the distributed filtering that does not perform fusion. This is because ICF fuses



Chapter 5: Average Consensus-based Asynchronous Filter10 57

the information without information alignment. Moreover, there is a risk of fusing the informa-

tion corresponding to subsequent frames. aCDTT does not perform fusion at all. In addition,

aCDTT assigns a local estimate corresponding to a time instant to different other time instants.

In the case of full observability, it is better to avoid fusion instead of using ICF and aCDTT ir-

respective of the delays and connectivity (Figure 5.4(a)- 5.4(d), 5.4(i)- 5.4(l)). This is because

ICF fuses asynchronous information without information alignment and aCDTT assigns highly

certain information all the times. Both worsen the accuracy. In the case of limited observabil-

ity, nodes that cannot view the target predict the target information. If there is no fusion, the

nodes cannot correct their predicted estimates and result in maximum tracking error irrespective

of delays and connectivity (Figure 5.4(e)- 5.4(h), 5.4(m)- 5.4(p)). When asynchronism is high,

the tracking error of ACAF increases significantly. This is because the higher the asynchronism,

the lower the duration of the fusion phase, thus leading to an insufficient number of consensus

iterations for convergence.

5.4 Summary

This chapter proposed an Average Consensus-based Asynchronous tracking Filter which can deal

with asynchronous capture and delayed processing that are typical in WCNs. ACAF temporally

aligns the data via predictions before fusion using the known states corresponding to the reception

instants. Each camera predicts the target information of other cameras at its capturing instant.

The proposed method achieves better tracking accuracy and uses less communication bandwidth

than state-of-the-art methods in the asynchronous case. The state of the art methods include

a maximum consensus-based approach aCDTT and an average consensus-based approach ICF.

aCDTT does not perform fusion and selects the estimate with less uncertainty among the asyn-

chronous estimates as the consensus estimate. ICF performs fusion but does not handle the

asynchronism. The results show that it is better to avoid fusion instead of fusing asynchronous

estimates in the case of full observability. In the case of limited observability, the non-viewing

nodes have predicted estimates so fusion is necessary to correct the predictions. ACAF performs

fusion using average consensus and handles asynchronism via temporal information alignment.

Irrespective of the network connectivity, observability and presence of delays ACAF has always

better tracking accuracy compared to aCDTT and ICF.



Chapter 6

Batch Asynchronous Filter1

This chapter proposes the Batch Asynchronous Filter (BAF), a distributed fusion scheme for

fully connected wireless cameras, that handles non-linearity, benightedness and asynchronism.

The chapter assumes that each camera has the knowledge of the maximum relative offset αmax =

max
i, j
{α i j}, and the maximum and minimum processing delays τmax = max

i,k
{τ i

k} and τmin =

min
i,k
{τ i

k}. The chapter first presents the Bayesian formulation of the idea and then present its

implementation under Gaussian assumptions using the IF.

6.1 Bayesian asynchronous fusion

In the estimation phase, Ci runs a local Bayesian filter to compute the target probability density

function (pdf) p(xi
k|zi

1:k) using the known pdf p(x̂i
k′ |zi

1:k′) corresponding to its previous capturing

instant k′, the state transition pdf p(xi
k|xi

k′) and the likelihood function p(zi
k|xi

k). As the local

pdfs are asynchronous, the filter performs two prediction operations, one before the transmission

and one after the reception, to temporally align the pdfs. Information alignment is the process

of finding the target pdfs of all cameras corresponding to the same instant which is the capturing

instant of the fusing camera. If target pdf of a camera corresponds to a different time step, the pdf

corresponding to capturing instant is computed by predicting based on its latest pdf that contains

target latest location and velocity.

1This chapter is completely taken from [C1].
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The node Ci predicts the pdf at the transmission instant k+ τ i
k (first prediction) as

p(x̃i
k+τ i

k
|zi

1:k) =
∫

p(xi
k+τ i

k
|xi

k)p(xi
k|zi

1:k)dxi
k. (6.1)

The predicted pdf represents the opinion of Ci about the target state at the transmission instant.

The node Ci broadcasts the predicted pdf p(x̃i
k+τ i

k
|zi

1:k) to all other nodes C j ∈ C\
{

Ci
}

. Ci

receives similar pdfs from other nodes. Figure 6.1 shows the timeline of the proposed approach.

In the fusion phase, the cameras perform a batch fusion in which each camera fuses the

received pdfs from other cameras to update its local pdf. The filter defines a time window Ki
k =

[k−α1,k + α2] where α1 = αmax − τmin and α2 = αmax + τmax. This is because k−α1 and

k+α2 are the earliest and the latest possible reception instants respectively. Hence, the camera

Ci enters the fusion phase at k+α2 and considers only the pdfs received in the time window Ki
k

for fusion. Let k′′ ∈Ki
k be a reception instant of pdf p(x̃ j

k+τ
j

k
|z j

1:k) from C j. Ci considers the pdf

as p(x̃i
k′′ |z

j
1:k). Ci predicts the pdf of C j at its capturing instant k (second prediction) based on the

received pdf p(x̃i
k′′ |z

j
1:k) as

p(x̃i
k|z

j
1:k) =

∫
p(xi

k|x̃i
k′′)p(x̃i

k′′ |z
j
1:k)dx̃i

k′′ . (6.2)

This predicted pdf p(x̃i
k|z

j
1:k) is considered as the opinion of C j at capturing instant k of Ci. As

the local pdf p(xi
k|zi

1:k) and the predicted pdfs p(x̃i
k|z

j
1:k),∀C j ∈ C\

{
Ci
}

correspond to the same

time instant (capturing instant k of Ci), Ci now fuses the pdfs by computing their Kullback-Leibler

Average (KLA) [6] as

p(x̂i
k|zi

1:k) =

p(xi
k|zi

1:k)
1
N

N
∏

j=1, j 6=i
p(x̃i

k|z
j
1:k)

1
N

∫
p(xi

k|zi
1:k)

1
N

N

∏
j=1, j 6=i

p(x̃i
k|z

j
1:k)

1
N dx

. (6.3)

Figure 6.2 illustrates the information of the nodes after the information alignment and before the

fusion. Note that the duration of the frame capture and the fusion phase are negligible compared

to the processing delay τ i
k.

To avoid fusing information from subsequent estimation phases, the consequent captures
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Figure 6.1: The timeline of the batch asynchronous fusion. KEY – Ci: camera i, τ i
k: processing

delay of Ci at k, τmax,τmin: maximum, minimum processing delays in the network, αmax: max-
imum relative offset, α1 = αmax− τmin, α2 = αmax + τmax, T = α1 +α2: inter-capturing period,
Ki

k = [k−α1,k+α2]: time window corresponding to the capturing instant k of Ci, p(x̃i
k+τ i

k
|zi

1:k):

transmitted target pdf of Ci. The grey arrows indicate the communication.

must be well separated. To achieve this, the cameras capture their next frames after

T = (αmax− τ
min)︸ ︷︷ ︸

α1

+(αmax + τ
max)︸ ︷︷ ︸

α2

. (6.4)

Note that the inter-capturing period increases with the relative offsets and the processing delays.

If τmin, τmax and αmax are unknown, selection of α1 and α2 creates trade-off between accuracy

and inter-capturing period.

Each node Ci can compute the minimum mean square error estimate of the pdf x̂i
k and the

corresponding error covariance P̂i
k as

x̂i
k =

∞∫
−∞

xi
k p(x̂i

k|zi
1:k)dxi

k,

P̂i
k =

∞∫
−∞

(xi
k− x̂i

k)(x
i
k− x̂i

k)
T p(x̂i

k|zi
1:k)dxi

k.

(6.5)

The cameras compute the image plane location ẑi
k of the target using the x̂i

k and the known

calibration data.

6.2 Information Filter based batch asynchronous fusion

Based on the Bayesian asynchronous fusion described above, the Batch Asynchronous Filter

(BAF), is derived for a linear and Gaussian system using the Information filter. The information
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Figure 6.2: Camera information flow with the proposed batch-based asynchronous fusion. Filled
circles indicate local pdf of Ci at its capturing instant k (p(xi

k|zi
1:k)). Hollow circles with the same

colour indicate the opinion of Ci at the capturing instants of other cameras. Hollow circles in the
same column indicate the opinion of other cameras C j ∈C\Ci (the corresponding predicted pdfs)
at the capturing instant k of Ci (p(x̃i

k|z
j
1:k)). The nodes fuse the temporally aligned information,

i.e. column wise.

form of the estimate (x̂i
k, P̂

i
k) is

ŷi
k = P̂i

k
−1

x̂i
k,

Ŷi
k = P̂i

k
−1

.

(6.6)

The Information filter assumes that the target follows a constant velocity model given by (1.2)

and (1.3) with q = 10.

In the estimation phase, each camera Ci computes the information pair (yi
k(i),Y

i
k(i)) using

the Information Filter [15] that uses the previous known information pair (ŷi
k−T , Ŷ

i
k−T ) and the

current local measurement zi
k. Ci predicts the target information at the transmission instant k+τ i

k

as

Ỹi
k+τ i

k
(i) = (F(k,k+ τ

i
k)Y

i
k(i)
−1F(k,k+ τ

i
k)
>
+Q(k,k+ τ

i
k))
−1,

ỹi
k+τ i

k
(i) = Ỹi

k+τ i
k
F(k,k+ τ

i
k)
(

Yi
k(i)
−1yi

k(i)
)
.

(6.7)

Then, Ci sends the predicted information
(

ỹi
k+τ i

k
(i), Ỹi

k+τ i
k
(i)
)

to all cameras at k+ τ i
k.

Let k′′ ∈Ki
k be the time instant when Ci received the information pair

(
ỹ j

k+τ
j

k
( j), Ỹ j

k+τ
j

k
( j)
)

from C j. Ci considers the information as
(

ỹi
k′′( j), Ỹi

k′′( j)
)

.

In the fusion phase (at k+α2), Ci predicts the information of C j, ∀C j ∈ C, corresponding to
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Figure 6.3: Block diagram of BAF running in each camera Ci. Key: p(x̂i
k′ |zi

1:k′) - posterior pdf
of Ci corresponding to k′. I i

k - frame captured by Ci at k. p(xi
k′ |zi

1:k′) - local posterior pdf of Ci

corresponding to k. p(x̂i
k|zi

1:k) - posterior pdf of Ci corresponding to k after fusion phase. τ i
k -

processing delay of the frame captured by Ci at k.

its capturing instant k as

Ỹi
k( j) =

(
F(k′′,k)Ỹi

k′′( j)
−1

F(k′′,k)>+Q(k′′,k)
)−1

,

ỹi
k( j) = Ỹi

k( j)F(k′′,k)
(

Ỹi
k′′( j)

−1
ỹi

k′′( j)
)
.

(6.8)

The KLA of the Gaussian pdfs can indeed be obtained by the average of the information terms [6].

Hence, the next step is for Ci to update its local information corresponding to its capturing instant

k as

Ŷi
k =

1
N

(
Yi

k(i)+
N

∑
j=1, j 6=i

Ỹi
k( j)

)
,

ŷi
k =

1
N

(
yi

k(i)+
N

∑
j=1, j 6=i

ỹi
k( j)

)
.

(6.9)

Figure 6.3 shows the block diagram of BAF.

Each camera knows it local processing delay τ i
k. If this knowledge is transmitted to the other

nodes, they can know when the sender has captured the frame. By exploiting this information,

this chapter also proposes an alternative that transmits the local information
(
yi

k(i),Y
i
k(i)
)

to all

cameras at k+ τ i
k without prediction and also the local processing delay τ i

k.
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Let k′′ ∈ Ki
k be the time instant when Ci received the information pair

(
y j

k( j),Y j
k( j)

)
and

τ
j

k from C j. As the filter assumes no communication delay, Ci considers the information as(
ỹi

k′′−τ
j

k
( j), Ỹi

k′′−τ
j

k
( j)
)

.

In the fusion phase (at k+α2), Ci predicts the information of C j, ∀C j ∈ C, corresponding to

its capturing instant k as

Ỹi
k( j) =

(
F(k′′− τ

j
k ,k)Ỹ

i
k′′−τ

j
k
( j)
−1

F(k′′− τ
j

k ,k)
>
+Q(k′′− τ

j
k ,k)

)−1
,

ỹi
k( j) = Ỹi

k( j)F(k′′− τ
j

k ,k)
(

Ỹi
k′′−τ

j
k
( j)
−1

ỹi
k′′−τ

j
k
( j)
)
.

(6.10)

The next step is for Ci to update its local information corresponding to its capturing instant k as

Ŷi
k =

1
N

(
Yi

k(i)+
N

∑
j=1, j 6=i

Ỹi
k( j)

)
,

ŷi
k =

1
N

(
yi

k(i)+
N

∑
j=1, j 6=i

ỹi
k( j)

)
.

(6.11)

The KLA of the Gaussian pdfs can indeed be obtained by the average of the information terms [6].

Note that due to the additional transmission of local delay knowledge the communication cost is

1 scalar higher compared to the previous approach. As this approach avoids one prediction, the

estimation accuracy is higher. Figure 6.4 shows the block diagram of BAF with delay transmis-

sion.

The comparisons of BAF with the sequential methods SAF [92] and SAF-ED [40] are as

follows. In SAF, the nodes exchange measurements and are aware of the measurement models of

all the nodes. In BAF and SAF-ED, the nodes exchange their local estimates so the nodes need

not know the measurement models of all the nodes. This provides network scalability. In SAF

and SAF-ED, the global estimate of a node corresponds to the instant of the last measurement

reception. In BAF, the global estimate of a node corresponds to its capturing instant. Unlike

SAF, BAF and SAF-ED consider processing delays.

6.3 Simulations

6.3.1 Setup

This chapter compares the proposed Batch Asynchronous Filter (BAF) with six methods. They

are the Maximum Consensus-based Asynchronous Filter (MCAF) [33], the Average Consensus-
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Figure 6.4: Block diagram of BAF (with delay transmission) running in each camera Ci. Key:
p(x̂i

k′ |zi
1:k′) - posterior pdf of Ci corresponding to k′. I i

k - frame captured by Ci at k. p(xi
k′ |zi

1:k′)
- local posterior pdf of Ci corresponding to k. p(x̂i

k|zi
1:k) - posterior pdf of Ci corresponding to k

after fusion phase. τ i
k - processing delay of the frame captured by Ci at k.

based Asynchronous Filter (ACAF) [C2], the Sequential Asynchronous Filter that does not

consider delays (SAF) [92], the Sequential Asynchronous Filter with estimated delays (SAF-

ED) [40], the Batch Asynchronous Filter (BAF) [9] and the distributed filter without fusion (No

fusion).

For a fair comparison, this chapter uses the same inter-capturing period T , defined by (6.4),

for all the algorithms. SAF-ED uses the ground truth delay knowledge for the estimated delays.

This chapter uses the APIDIS dataset [1], which is captured with N = 7 cameras whose positions

and FoVs are known. The FoVs are limited (Figure 6.5(b)) and only a subset of the cameras can

view a target at a given time. The camera network monitors a 30m×20m basketball court. This

chapter considers the trajectories of Nt = 10 players whose ground plane ground truth is known

for a duration of 1500 time steps (Figure 6.5(c)). Each time step corresponds to 40ms. This

chapter simulates the asynchronous captures and processing delays by skipping some frames.

As the motion models of the targets are unknown, this chapter uses the nearly constant velocity

model given by (1.2) and (1.3) with q = 10.

The measurement model of each camera Ci follows (1.4). The state to measurement transition
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(a) Fully connected N = 7 cameras (b) Positions and field of views

(c) Nt = 10 APIDIS Trajectories

Figure 6.5: Illustration of the validation setup in terms of camera viewpoints and target trajectory
on a common ground plane.

function hi(·) is considered to be linear and is as follows:

hi(xk) = Hixk = [I2 02]xk, (6.12)

and σ2 = 60, i.e the standard deviation of measurement error is σ = 7.7 pixels.

The random processing delays of each camera are

τ
i
k ∈ U

{
τ

min,τmax} , ∀Ci ∈ C. (6.13)

Similarly, the random relative offsets among camera Ci and C j are:

α
i j ∈ U {0,αmax} , ∀Ci,C j ∈ C, i 6= j. (6.14)

This chapter uses τmin = 0 and single iteration of information exchange per measurement.
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Table 6.1: Comparison of tracking errors on the image plane for the distributed filter that never
fuses (No fusion), the Maximum Consensus-based Asynchronous Filter (MCAF) [33], the Aver-
age Consensus-based Asynchronous Filter (ACAF) [C2], the Sequential Asynchronous Kalman
Filter (SAF) [92], the Sequential Asynchronous Filter with estimated delays (SAF-ED) [40]
and the proposed Batch Asynchronous Filter (BAF). The data refer to the error in pixels when
τmax = 4 and αmax = 4 using M = 100 Monte-Carlo runs.

Algorithm mean std max min
No fusion 20.6 17.2 247.9 0.016
MCAF 20.6 17.2 247.9 0.016
ACAF 20.4 17.0 234.9 0.012
SAF 16.2 13.7 242.7 0.002
SAF-ED 13.8 11.9 178.4 0.005
BAF (proposed) 12.1 9.9 127.4 0.002

Assuming the inter-camera target association information to be known, this chapter tracks

the Nt = 10 players using M = 10 independent Monte-Carlo simulation runs. Each run uses a

different set of processing delays
{

τ i
k

}
, relative offsets α i j and measurements

{
zi

k

}
.

Let Ki,r ⊂ [1,1500] be the set of capturing instants of Ci during rth run and P i
k ⊂ [1,Nt ] be

the set of players in the FoV of Ci at k. This chapter defines as performance measure the average

root mean square error (ε) of Nt players’ locations on the image planes of the cameras:

ε =

√√√√ 1
MN

M

∑
r=1

N

∑
i=1

1
|Ki,r| ∑

∀k∈Ki,r

1
|P i

k|
∑
∀t∈P i

k

||ẑi
k(r, t)−ζ

i,t
k ||22. (6.15)

Here, ẑi
k(r, t) is the estimated location of player t in the image plane of camera Ci at k during the

rth run and ζ
i,t
k is the corresponding image plane ground truth. This chapter analyses the error ε

with increasing level of relative offset αmax for fixed processing delays. This chapter considers

with zero delay (τmax = 0) and with non-zero delay τmax = 3. This chapter also analyses with

increasing level of processing delay τmax for fixed relative offset levels. This chapter considers a

synchronous clocks case αmax = 0 and an asynchronous clocks case αmax = 6.

6.3.2 Results

Without processing delays (τmax = 0) and asynchronism (αmax = 0), this chapter identifies two

groups with similar performance: BAF and SAF-ED; and ACAF and SAF (Figure 6.6(b), 6.7(b)).

In the asynchronous case (αmax > 0) with (τmax > 0) and without (τmax = 0) processing

delays, BAF outperforms all other methods irrespective of the delays (Figure 6.6(b), 6.7(d) and

Figure 6.6(d), 6.7(d)). Unlike BAF, the sequential methods (SAF and SAF-ED) do not correct
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Figure 6.6: Average Root Mean Square tracking Error (ε) with varying degrees of relative offset
αmax and processing delay τmax. The algorithms under analysis are the Maximum Consensus-
based Asynchronous Filter (MCAF) [33], the Average Consensus-based Asynchronous Filter
(ACAF) [C2], the Sequential Asynchronous Kalman Filter (SAF) [92], the Sequential Asyn-
chronous Filter with estimated delays (SAF-ED) [40], the Asynchronous Batch Filter (ABF),
the proposed Batch Asynchronous Filter (BAF) [9] and the distributed filter without fusion (No
fusion).

the estimates corresponding to the capturing instants using the delayed information.

In the synchronous case (αmax = 0) with processing delays (τmax > 0), BAF outperforms

all other methods except SAF-ED (Figure 6.7(b)). This is because the accuracy of the KLA
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Figure 6.7: Average Root Mean Square tracking Error (ε) with varying degrees of relative offset
αmax and processing delay τmax. The algorithms under analysis are the Maximum Consensus-
based Asynchronous Filter (MCAF) [33], the Average Consensus-based Asynchronous Filter
(ACAF) [C2], the Sequential Asynchronous Kalman Filter (SAF) [92], the Sequential Asyn-
chronous Filter with estimated delays (SAF-ED) [40], the Asynchronous Batch Filter (ABF) [9],
the proposed Batch Asynchronous Filter (BAF) and the distributed filter without fusion (No fu-
sion).

estimate decreases if the uncertainty of the pdfs increase. In BAF, the information of other

cameras undergoes two predictions thereby reducing the uncertainty. One by the sender C j from

its capturing instant k to its transmission instant k+ τ
j

k and the second my the receiver Ci from
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the reception instant k+ τ
j

k to its capturing instant k. In SAF-ED, based on the known delay, the

receiving node realises that the captures are synchronous so there is no prediction just the fusion.

However, the performance of SAF-ED depends on the correctness of the estimated delays. If a

node has no view of the target because of its limited FoV, in ACAF and MCAF the node sends

predicted target information. However, in SAF, SAF-ED and BAF, nodes send information only

when they have the target observations, otherwise, they do not send any information. This avoids

the presence of redundant priors and hence the tracking accuracy of SAF, SAF-ED and BAF is

not affected by the limited FoVs. In the case of synchronous captures 6.7(b), the performance of

ABF and BAF is the same.

In all the asynchronous cases (αmax > 0), BAF outperforms ACAF and MCAF, because in

ACAF the nodes do not consider the information received before their capturing instants and

in MCAF nodes do not fuse the information but select the most certain information that might

correspond to a different time step. In the case of asynchronous captures 6.6(b) and 6.6(d), ABF

has the highest error among all because ABF fuses asynchronous information without temporal

alignment.

In the case of delays (τmax > 0), it is better to skip fusion instead of using MCAF (Fig-

ure 6.6 (b)-(e)). Note that the errors are always upper-bounded by the error with no fusion.

As in camera networks processing delays are always present, BAF is a good choice when the

network is fully connected.

When the network is with limited connectivity ACAF is the best choice but in ACAF the time

window of the nodes start from their capturing instants so the information received prior to the

capture is discarded. To handle the problem, in ACAF each node sends its information multiple

times between consequent captures such that the neighbours receive the information after their

capturing instants. This increases not only the communication cost but also the inter-capturing

period.

Table 6.1 show the results of the specific case (M = 100 runs) when both processing delays

and relative offsets are present, and τmin = 0, τmax = 4, αmax = 4. The inter-capturing period

is T = 12. The proposed approach has the smallest error in terms of mean, standard deviation,

maximum and minimum values. The errors are high in the captured frames if the targets change

their direction in the 12 time steps time window of the capturing instant. The prediction of

target information is done based on the previously known target velocity. If the target changes
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its direction during the time window, considering the velocity corresponding to the previous

capturing instant reduces the prediction accuracy and thereby the tracking accuracy. Hence, the

errors are high if the target changes direction in the window.

6.4 Summary

This chapter presented a batch method for asynchronous tracking in fully connected WCNs

where each camera predicts the target information of other cameras to temporally align it with its

local information. The cameras consider and process only the information received in time win-

dows around their local capturing instants. Importantly the proposed method considers the infor-

mation received both before and after its capturing instants. Moreover, the proposed method cor-

rects the local estimates with respect to their capturing instants by fusing the temporally aligned

information. The inter-capturing period is affected by the upper bounds of the relative offsets

and the processing delay. In asynchronous cases, the proposed tracking approach outperforms

state-of-the-art methods in terms of image-plane error at the cost of additional communication of

local processing delay knowledge. The state of the art algorithms include two sequential meth-

ods, two consensus methods and a batch method. The sequential methods do not correct the local

estimates based on the received information. The consensus methods require multiple iterations

of information exchange to converge to the KLA of the temporally aligned local estimates. The

state of the art batch method does not consider processing delays and assumes that the received

target information corresponds to the reception instant. Hence, as the asynchronism increases the

tracking accuracy of the state of the art batch method decreases.



Chapter 7

Conclusions

7.1 Summary of achievements

This thesis focussed on distributed tracking in wireless camera networks (WCNs) and addressed

the challenges of non-linearity, limited connectivity, limited observability that cause benighted-

ness, redundant information in the network, and varying and unknown processing delays that

produce asynchronous information. The thesis proposed five distributed tracking algorithms for

WCNs, namely the Extended Information Consensus Filter (EICF), the Extended Information

Weighted Consensus Filter (EIWCF), Neighbour consensus filter (N-consensus), the Average

Consensus-based Asynchronous Filter (ACAF) and the Batch Asynchronous Filter (BAF). Each

filter handles a subset of the challenges. EICF, EIWCF, N-consensus and ACAF use consen-

sus framework so they work with any type of network connectivity whereas BAF works only

with fully connected networks. In all the algorithms, each node iteratively performs two phases,

namely estimation and fusion. The estimation phase computes the measurement (pixel coor-

dinates of the target) from the captured frame. The Information Filter (IF) or the Extended

Information Filter (EIF) estimates the target state and the corresponding error covariance (that

represents the uncertainty of the state estimate) using the measurement and the previous estimate.

The fusion phase performs information exchange and information fusion.

EICF performs average consensus-based (A-consensus) fusion. EICF weights the estimates

of each node based on its uncertainty and solves the problem of benightedness. Nodes view-

ing the target get higher weights as their error covariance is lower than that of non-viewing
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nodes. This concept is called weighted averaging [71, 84] and is used in ICF [15]. EICF handles

non-linearity by using the EIF for local state estimation. The concept of weighted averaging is

applied to EIF to handle benightedness along with non-linearity. The redundant prior knowledge

is handled by weighting the redundant information less than the obtained measurement infor-

mation [50]. The EIWCF is also an A-consensus approach that extends EICF by adding such

weighting. EICF solves the problems of non-linearity and benightedness without requiring the

knowledge of the number of nodes in the network. However, EIWCF requires the knowledge

of the number because the redundancy is proportional to the number of nodes in the network.

When the number of nodes is available, EIWCF can be used to solve the redundancy problem

along with non-linearity and benightedness at almost the same communication and computation

cost as EICF. Both algorithms use EIF as the underlying filter to deal with non-linearity and

employ A-consensus as the fusion scheme to support the limited network connectivity. Exper-

imental results show that the two algorithms outperform the accuracy of the Extended Kalman

Consensus Filter (EKCF) (that do not perform information weighting) at the expense of higher

communication and computational costs, especially when more consensus iterations are used.

A-consensus such as EICF and EIWCF approaches require the knowledge of the maximum

degree of the network to achieve convergence. Moreover, all the nodes in the network participate

in consensus. N-consensus dynamically identifies a reduced set of nodes in the neighbourhood

of the viewing nodes and achieves consensus only among these nodes. The set includes all nodes

that are viewing the target at the current time step and the nodes that might view the target at the

next time step are included. N-consensus uses covariance information and achieves better con-

sensus estimates in the selected subnetwork. To handle non-linearities in the system, the thesis

employed the EIF at each node for local state information. In addition to handling the benighted-

ness and non-linearity, the N-consensus reduces the number of nodes involved in the consensus

process, thereby reducing the energy consumption of the network without compromising on the

tracking accuracy.

ACAF is an A-consensus approach that handles asynchronous measurements. In ACAF

nodes perform information-alignment with respect to their capturing instants by predicting the

information of their neighbours. The information of the sending node is predicted by a receiv-

ing node with a time-reversed operation. The nodes discard the information received before the

frame capture and terminate their fusion phase before any other node captures the next frame.
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The termination criterion is decided based on its local processing time.

BAF tackles the problem of target tracking accounting for processing delays in fully con-

nected WCNs when the cameras exchange data asynchronously. Similar to ACAF, in BAF, the

nodes predict the target state estimates corresponding to the end time instant of their estimation

phases and the predicted local estimates are transmitted to all other nodes. If a node receives

the target state information from any node, it stores the value in a buffer along with the recep-

tion time. A time window is defined around the capturing instant. At the end of the window,

the node enters the fusion phase. In the fusion phase, based on the received information in the

window, the node predicts the target state estimate corresponding to its capturing instant. This

predicted information is considered as the opinion of the sender about the target. After predicting

the information of all the senders, the node fuses the temporally aligned local target information

and the predicted target information of the senders and updates its estimate corresponding to the

capturing instant. The thesis used IF in both ACAF and BAF so they do not handle non-linearity.

EICF and EIWCF are preferred in the case of small WCNs where the diameter of the network

is in the order of 10 hops. Note that if the number of cameras is not available, EIWCF can not

be applied EICF is the only option. N-consensus is preferred in the case of large WCNs where

the network diameter is in the order of more than or equal to 100 hops where many cameras

do not need the target information all the time. If the processing delays are so high that the

cameras might not capture synchronously, ACAF and BAF should be used instead of EICF,

EIWCF and N-consensus. If the network is fully connected, BAF produces better accuracy than

all the algorithms. In the case of limited network connectivity, BAF cannot be used whereas

others can be used and ACAF produces better tracking accuracy than EICF, EIWCF and N-

consensus.

7.2 Future work

ACAF and BAF can be used in the non-linear systems by replacing the IF with the EIF. All

the proposed algorithms can be extended by using other advanced non-linear filters such as

UKF [45], CubKF [3] and PF [24].

The optimal set of future viewing nodes includes only the nodes having overlapping FoVs

with all the current viewing nodes. The proposed N-consensus considers more nodes as future

viewing nodes than the optimal case because the selection process considered only the viewing



Chapter 7: Conclusions 74

range but not the viewing direction. As a future work, N-Nodes could be selected based on a

distributively computed vision graph [28] to generate the optimal to save resources. Vision graph

contains all the cameras as vertices. There exists an edge between two cameras only if their

FoVs are overlapped. They are called vision neighbours. If the target is in the FoV of a cam-

era, it is possible that it will enter the FoV of the camera with overlapping FoV so the vision

neighbours of the current viewing nodes are the only future viewing nodes. Another possible

improvement is to replace the hop distances by relative physical distances between nodes. The

distances can be computed based on the signal strength of the messages received [91]. With this

approach, the value of threshold becomes a physical distance which is twice the visual sensing

range. The proposal distances are computed by incrementing by the relative physical distance

between the sender and the receiver computed using received signal strength (instead of incre-

menting by one). As the threshold is independent of communication range, the algorithm will

support heterogeneous communication ranges.

The thesis assumed that there are no communication delays in the channel. In reality, there

could be significant communication delays (comparable to processing delays). Future work could

involve modelling and estimating the delays to aid predictions in batch and consensus frame-

works. This was already done in a sequential framework [40]. Moreover, packet losses in wire-

less channel are common. Future work could study the impact of packet losses on distributed

target tracking.

The work of this thesis covers single target tracking and assumed that there are no false

positive detections. Handling false detections and multiple targets can be done using data as-

sociation techniques. The Joint Probabilistic Data Association-based distributed target tracking

algorithm [47] performs intra-camera association to deal with multiple targets and false detec-

tions. However, it does not perform inter-camera association and does not handle asynchronism.

Moreover, in reality, the number of targets is unknown and also varying so a mechanism to sup-

port dynamic track initialisation and termination should be added. Future work could focus on

these limitations.
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[23] P. M. Djurić and L. Geng. Non-centralized target tracking in networks of directional sen-

sors. In Proc. of the IEEE Aerospace Conf., pages 1–6, Mar 2011.

[24] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. Miguez.

Particle filtering. IEEE Signal Processing Mag., 20(5):19–38, Sep 2003.

[25] S. L. Dockstader and A. M. Tekalp. Multiple camera tracking of interacting and occluded

human motion. Proc. of the IEEE, 89(10):1441–1455, Oct 2001.

[26] X. Dong and M. C. Vuran. Vision graph construction in wireless multimedia sensor net-

works. In Proc. of the IEEE Global Telecommunications Conf., Miami, FL, USA, Dec

2010.

[27] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using refer-

ence broadcasts. In Proc. of the Symp. on Operating Systems Design and Implementation,

volume 36, pages 147–163, Dec 2002.

[28] L. Esterle, P. R. Lewis, X. Yao, and B. Rinner. Socio-economic vision graph generation

and handover in distributed smart camera networks. ACM Trans. on Sensor Networks,

10(2):20:1–20:24, 2014.

[29] L. Fang and P. J. Antsaklis. Information consensus of asynchronous discrete-time multi-

agent systems. In Proc. of the American Control Conf., pages 1883–1888, Jun 2005.

[30] S. Farahmand, S. I. Roumeliotis, and G. B. Giannakis. Set-membership constrained parti-

cle filter: Distributed adaptation for sensor networks. IEEE Trans. on Signal Processing,

59(9):4122–4138, Sep 2011.

[31] D. Franken and A. Hupper. Improved fast covariance intersection for distributed data fusion.

In Proc. of the 8th Int. Conf. on Information Fusion, Jul 2005.
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