
trackswitch.js: A Versatile Web-Based Audio Player for

Presenting Scientific Results

Nils Werner, Stefan Balke, Fabian-Robert Stöter, Meinard Müller, Bernd Edler

International Audio Laboratories Erlangen, Germany

nils.werner@audiolabs-erlangen.de

ABSTRACT
trackswitch.js is a versatile web-based audio player that en-
ables researchers to conveniently present examples and re-
sults from scientific audio processing applications. Based on
a multitrack architecture, trackswitch.js allows a listener to
seamlessly switch between multiple audio tracks, while syn-
chronously indicating the playback position within images
associated to the audio tracks. These images may corre-
spond to feature representations such as spectrograms or to
visualizations of annotations such as structural boundaries
or musical note information. The provided switching and
playback functionalities are simple yet useful tools for an-
alyzing, navigating, understanding, and evaluating results
obtained from audio processing algorithms. Furthermore,
trackswitch.js is an easily extendible and manageable soft-
ware tool, designed for non-expert developers and unexperi-
enced users. O↵ering a small but useful selection of options
and buttons, trackswitch.js requires only basic knowledge to
implement a versatile range of components for web-based
audio demonstrators and user interfaces. Besides introduc-
ing the underlying techniques and the main functionalities of
trackswitch.js we provide several use cases that indicate the
flexibility and usability of our software for di↵erent audio-
related research areas.

1. INTRODUCTION
In science, the publication of scientific results is an impor-

tant goal of research. However, most scientific publications
are often only comprehensible to the expert audience active
in the corresponding field of research. Additionally, being
almost exclusively print-only, even if the result may have a
very intuitive message, there is little possibility to present
an interactive visualization or auralization.

Recently, the reproducibility of research results has be-
come increasingly relevant [26]. For reproducible research,
authors publish not only a manuscript, but also their source
code, a dataset, or example files. In the most simple case
those additional resources would be o↵ered for download
as one big compressed archive. Just like publications, these
archives may be useful to other researchers familiar with the

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

© 2017 Copyright held by the owner/author(s).

Figure 1: Example of a basic trackswitch.js instance with
3 tracks, a visualization of the waveform, and a seekhead
indicating the current playback position.

topic, but o↵er no immediate and intuitive insights in the
data. Meanwhile, with the proliferation of high-speed in-
ternet access and the ever increasing possibilities of modern
web browsers, consumers and researchers have grown accus-
tomed to richer web applications and more interactive mul-
timedia experiences. However, to o↵er such rich multimedia
experiences, an increasing amount of technical knowledge is
required from the authors. Researchers who may want to
leverage these modern web features usually lack the train-
ing to work with the technologies required to create such
presentations.

A versatile, but simple to use and set up web audio player
is needed to allow researchers to easily present their results
and data interactively and in a meaningful way. To allow
comparative presentations, the player should be able to play
back and mix multiple audio tracks simultaneously. To allow
the combination with a wide range of visualizations, a flexi-
ble visualization widget should be o↵ered. To be suitable for
quick and comprehensible presentations, a simple and intu-
itive user interface should be leveraged. Lastly, to be usable
by developers with limited knowledge in web technologies, a
simple programming interface is required.

In this work, we present a tool that fulfills these require-
ments and has been successfully used many times to present
results from di↵erent fields in audio research: From com-
paring audio compression algorithms, to mixing and playing
back source separation results, to the visualization and au-
ralization of music annotation data.

The remainder of the article is structured as follows: In
Section 2, we outline related implementations and compare
their features to our requirements. In Section 3, we discuss
the technical aspects of the presented implementation and
give usage examples for developers. In Section 4, we present

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159076854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

selected published examples from varying research fields be-
fore finishing with a conclusion in Section 5.

2. RELATED WORK
There exist many tools that supply audio playback func-

tionalities in browsers. They can be roughly categorized
in toolkits, self-hosted special-purpose applications, general
video and audio players and lastly cloud-hosted commercial
services.

Firstly, there are toolkits that allow the creation of
custom-made applications. As an example for such a toolkit,
Peaks.js [12] is a very robust and flexible software suite
that incorporates waveform rendering, waveform file for-
mats, playback control, and means to interact with wave-
forms. However, the software is missing multitrack playback
and is very complex to set up for a simple presentation. A
second toolkit is waveform-playlist [18]. It is a simpler, but
richly featured tool to display waveforms and interact with
multiple tracks at once, similar to a digital audio worksta-
tion (DAW). However, like many DAWs, the tool o↵ers too
many options and buttons to the user to be useful as a simple
presentation tool.

The second class of tools comprises several ready-made
applications designed for specific purposes. One such ap-
plication is MT5 [20], a multitrack player intended for
musicians which o↵ers multitrack playback, waveform and
spectrum visualizations, volume control, and track mixing.
Similar to waveform-playlist, MT5 o↵ers too many options
and buttons to be useful in our scenario. Other examples
for special-purpose applications are webMUSHRA [24] and
BeaqleJS [22] which are designed for web-based subjective
listening tests. They are specifically designed to not allow
mixing multiple tracks and usually contain participant re-
sponse forms to receive evaluation results.

Thirdly, there are general web multimedia players, e. g.
jPlayer [8], video.js [17], and plyr [13]. These players are
designed to play back one single audio or video file. They do
not o↵er multitrack playback. Lastly, cloud-based services
became more popular, e. g., Soundtrap [16], Audiotool [3] or
Amped [1]. They usually o↵er too many options and require
the user to create an account in order to work.
The only simple multitrack HTML audio player the au-

thors know of is webbasedHTMLplayer [11]. Unfortunately,
it has been unmaintained for years and uses the HTML5
audio tag which does not allow exact control over precise
synchronous playback or file preloading behavior of multiple
tracks at once. Because of all these individual shortcomings,
none of the currently available players is suitable to present
experimental results without being too hard to set up, too
complex to use or too limiting in its technical architecture.

3. TECHNICAL OVERVIEW
trackswitch.js combines several core web technologies

to function: HTML, JavaScript and cascaded stylesheets
(CSS). For reading audio files, mixing the resulting streams
and sending the audio output to the sound card, track-
switch.js uses the Web Audio API [19].

3.1 JavaScript Stack
In recent years, the JavaScript landscape has changed

tremendously, with the rate of change increasing year by
year. To accomplish recent development paradigms, many

gc y+

x1 g1

x2 g2

...

xk gk

Figure 2: Audio Engine Overview. x1, . . . , xk denote inputs,
g1, . . . , gk denote individual gain nodes, gc denotes common
gain node, y denotes output

modern JavaScript frameworks, such as React [14] or Angu-
larJS [2], ship with a large number of dependencies, require
intricate compilation pipelines, and generally demand very
in-depth expert knowledge from the developer.

On the other hand, as most researchers do not intend
to develop powerful web applications but require a com-
prehensible and low-maintenance way to present audio re-
sults, most of the advantages of these modern JavaScript
frameworks would not be useful to them. Secondly, many
websites in education were not designed as a web applica-
tion but often follow traditional, static web development
paradigms. So instead, a solution without dependency to a
specific framework and without a complicated development
pipeline is required. This is why the only two dependencies
for trackswitch.js are the very commonly used jQuery [9]
and Fontawesome [5], both of which have no third party
dependencies themselves. The two dependencies are either
likely to be already in use or can simply be included from a
content delivery network and can immediately be used.

3.2 Audio Engine
trackswitch.js makes use of the Web Audio API, an ad-

vanced programming interface (API) available in all modern
web browsers [7]. The Web Audio API allows for very pre-
cise synchronous playback of and switching between multiple
audio sources.

As shown in Figure 2, each individual audio source is con-
nected to one individual gain node, which is used for mixing
or switching between sources. The outputs of these gain
nodes are all connected to one common gain node, which
is used for temporarily lowering overall volume while seek-
ing to prevent clicking. This common gain node is in turn
connected to the audio output sink.

Because in many cases high fidelity audio examples are
required, all audio sources are expected to be either uncom-
pressed or compressed at a high bit rate. As browser vendors
each only support an individual subset of all available audio
formats [10], audio sources can be defined to have multiple
input files in multiple di↵erent formats. The browser is in-
structed to pick any of the formats it supports and ignore
all other files of a source.

Secondly, due to the very nature of a multitrack player,
possibly a large list of files needs to be downloaded before
playback. This, together with the growing use of mobile
web browsers and mobile internet data plans, dictates that
preloading of audio files on page load should be avoided. In-

<link href= " trackswitch.css " rel= " stylesheet " />

<div class= " player ">

<!�� Seekable visualization image , with custom margins to set start and end of time axis ��>

<img class= " seekable " src= " waveforms_input.png " data�seek�margin�left="12.8"

data�seek�margin�right="9.8" />

<!�� First track , multiple sources for Browser compatibility ��>

<ts�track title= " Mixed signal ">

<ts�source src= " mixed.mp3 " type= " audio /mp3" />

<ts�source src= " mixed.wav " type= " audio /wav" />

</ts�track>

<!�� Second track , custom style ��>

<ts�track title= " Reference foreground signal " style= "background�color: # bfd8ee; ">

<ts�source src= " reference_f.mp3 " type= " audio /mp3" />

<ts�source src= " reference_f.wav " type= " audio /wav" />

</ts�track>

<!�� Third track , bold font face ��>

<ts�track title= " Estimated foreground signal " style= "background�color: # c5dfa3; font�weight:

bold; ">

<ts�source src= " est_f.mp3 " type= " audio /mp3" />

<ts�source src= " est_f.wav " type= " audio /wav" />

</ts�track>

</div >

<script type= "text/ javascript " src= " trackswitch.js "> </script >

<script type= "text/ javascript ">

$(document). ready (function () {

$(". player "). trackSwitch ();

});

</script >

Figure 3: Example trackswitch.js parameterization for Figure 1.

stead, a prominent button to enable each trackswitch.js in-
stance and to start preloading is shown to the user. While
preloading the audio files, an animation is shown while the
interaction elements remain locked. After all tracks have
finished loading, the user interface is unlocked and playback
can start.

3.3 Visualization Engine
To e↵ectively convey the message of scientific results,

many researchers make use of figures in their submitted pub-
lications. This means in many cases the researcher already
has figures prepared or knows how to create useful visualiza-
tions with already familiar tools. Hence, to allow as many
visualization types as possible without having to implement
and teach a new interface, no actual visualization primitives
need to be implemented in trackswitch.js. Instead, the re-
searcher is asked to prepare one or multiple image files to
be embedded in the player. These images can be created
using plotting tools, e. g., MATLAB, matplotlib, gnuplot or
any other plotting library that supports saving images.

Optionally, to highlight certain aspects in the visualiza-
tion, trackswitch.js can switch between multiple visualiza-
tion images, depending on which source is currently selected.
If required, an interactive seekhead can be overlaid over the
visualization images, to allow the user to intuitively jump to
time-positions annotated in the image.

3.4 User Interaction Options
By default, trackswitch.js shows a list of tracks, all of

which are played back simultaneously. Play, pause, and re-
peat buttons, as well as a seekhead and a timestamp display

are shown to the user. For each audio track, one list item
with the source title and toggles to mute or solo each track
is shown. Just like most modern DAWs, “solo” can be en-
abled for multiple tracks at once, while all other tracks are
implicitly muted.

While many experiments have common requirements for
modes of interaction with the user, some possibilities to en-
able or disable certain interaction features are required. To
this end, trackswitch.js supports the following modes:

1. nomute: Disable the mute-button for all tracks. Tracks
can only be soloed, but not muted individually.

2. nosolo: Disable the solo-button for all tracks. Tracks
can only be muted, but not soloed individually.

3. radiosolo: By default clicking solo on multiple
sources will enable them all. After enabling radiosolo

only one source will be allowed to be active at any given
time.

4. onlyradiosolo: Combines nomute and radiosolo.

5. repeat: To improve ease of use, especially for very
short audio examples, the repeat toggle can be enabled
by default.

3.5 Stylesheet
The trackswitch.js widget is designed to be responsive.

The width of player, visualization, and track list continu-
ously adapt to changes of the screen width. For narrow
screens, like mobile touch devices, all interactive elements,

like playback control buttons, grow in size to allow comfort-
able usage. The entire stylesheet contains a reset-stylesheet
and is prefixed with a custom widget class to minimize leak-
age of CSS attributes into trackswitch.js and out of track-
switch.js into other elements. Each track allows setting cus-
tom CSS styles in the parameter markup. This allows high-
lighting single sources in the player widget. As an example
see Figure 3.

3.6 Parameterization
All individual track parameters are set in the document

markup. The player is wrapped by any HTML element, in-
side which each track is defined as a ts-track element with
common attributes like title, style or a custom visualization
image. Inside each track there can be one or more ts-source

elements, which point to audio files and have an optional me-
dia type attribute. Global options like those in Section 3.4
are set in the constructor call of the JavaScript routines. As
an example, please refer to Figure 3, which shows the pa-
rameterization to reproduce the trackswitch.js player from
Figure 1.

3.7 Source Code Release
The source code for trackswitch.js will be released on

GitHub1. trackswitch.js itself comprises a single JavaScript
file and a single CSS file, minified versions of both exist for
turnkey use. Also, packages for Node.js package manager
(npm) will be released.

4. APPLICATION EXAMPLES
In the following section we will highlight use cases

from several di↵erent audio research fields in which track-
switch.js has successfully been used to present results.

4.1 Sound Source Separation
Sound source separation describes the task of separating

an acoustic mixture into its original components. It is known
that humans can easily accomplish this task, however, it is
very challenging for machines. Sound source separation is a
very active field of research, as the problem is only partly
solved until today.

When presenting new methods to address the source sep-
aration problem, one way to assess the separation perfor-
mance is to use objective evaluation measures such as pro-
posed in [27]. Computed scores from these tools, however,
do not necessarily correlate with human auditory perception.
Therefore, it is still common to present audio separation re-
sults along with the objective scores.

Presenting source separation results typically yields in
three classes of audio tracks per example: Sound Mix-
ture, target source (also known as reference), and estimated
source. Listeners typically switch between these three tracks
to assess the quality of a given source separation result. Fur-
thermore, since many source separation algorithms deal with
linear mixtures, trackswitch.js’s ability to mix tracks enables
the user to reconstruct the mixture by summing up the es-
timated source tracks. Figure 4 shows how trackswitch.js is
used to present source separation results generated by a re-
cently developed music source separation approach [4] based
on [25]. By using trackswitch.js’s nomute, users are able to

1https://github.com/audiolabs/trackswitch.js

(a) Spectrogram visualization for mix.

(b) Spectrogram visualization for vocals.

(c) Spectrogram visualization for background.

Figure 4: Application of trackswitch.js for sound source sep-
aration. Toggling the “solo” buttons switches the tracks or
mixes them if multiple tracks are selected.

individually mix any combination of tracks for easier com-
parison. In addition, the linked spectrogram representation
switches according to the selected audio track so that users
can also visually inspect the separation performance.

4.2 Drum Decomposition
This application demonstrates the usage of track-

switch.js in the context of score-informed separation and
restoration of drum sound recordings. The goal of this
scenario is to decompose drum solo recordings (especially
breakbeats) into their constituent drum sound events cor-
responding to di↵erent instruments such as snare drum,
kick drum, and cymbals. Figure 5 shows the algorithmic
output of separated drum sounds applied to the famous
“Amen Break” from the song“Amen, Brother”by“The Win-
stons” [21]. This example consists of seven tracks with the
original song as the first track, followed by di↵erent decom-
position results. The corresponding visualization of the re-
sults consists of sheet music, spectral, and temporal repre-
sentations of the decomposed sources. By allowing only one
track being active at a time, the user is able to compare the
di↵erent separated drum tracks to the original drum sound
mixture, while the seekhead indicates the current playback
position. Additional examples can be found on the accom-
panying website [15].

4.3 Ethnomusicology
The analysis of recorded audio sources has become in-

creasingly important in ethnomusicological research. Such
audio material may contain important cues on performance
practice, information that is often lost in manually generated
symbolic music transcriptions. In this application, track-

Figure 5: Presenting results obtained from applying audio
decomposition techniques to the “Amen Break”. The player
comprises 7 tracks with several visualizations including sheet
music, spectral, and temporal representations of the decom-
posed sources. Furthermore, trackswitch.js’s seekhead func-
tionality is used to indicate the current playback position.

switch.js is used to make audio material as well as various
annotations publicly available for a musically relevant audio
collection that consists of more than 100 three-voice poly-
phonic Georgian chants [23]. The corpus was enriched with
manual annotations of the voices’ fundamental frequencies
(F0) and subsequently used in the experiments. On the
accompanying website [6], segment boundary annotations
as well as the F0-annotations for each of the songs have
been made available in a simple CSV format. Furthermore,
trackswitch.js is used provide a direct access to visualizations
and sonifications of the F0-trajectories. As an example, Fig-
ure 6a shows the music recording“The Angels in the Heaven”
(ID 002) with its corresponding spectrogram. When switch-
ing to the second track, the spectrogram is overlaid with
the manual boundary segmentation and F0-annotations, see
Figure 6b. Furthermore in this track, the left channel con-
tains the original music recording and the right channel con-
tains a sonification of the manual F0-annotations. This al-
lows researchers to conveniently explore and interact with
the audio material and the annotations.

5. CONCLUSION
In this work, a simple but flexible multi track player for

presenting scientific audio results on the web has been in-
troduced. We compared existing implementations to our
requirements and concluded that none of them fits our pro-
file. After discussing the technical implementation details of

(a) Spectrogram visualization.

(b) Spectrogram and annotation visualization.

Figure 6: Example player instance, 2 tracks, with spec-
trogram visualization. Fundamental fundamental frequency
annotation in second figure is only shown if second track is
selected.

our solution we presented a few examples from a wide range
of audio research where trackswitch.js has successfully been
used. trackswitch.js will be released as open source software
to the public.

6. ACKNOWLEDGMENT
The authors would like to thank Bastien Liutkus for his

work on webbasedHTMLplayer [11], which was the inspira-
tion for this project. Also, we thank Jack Hallybone for his
extensive work on integrating the WebAudio API, general
playback smoothness and seekable images.

The International Audio Laboratories Erlangen are a joint
institution of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (FAU) and the Fraunhofer-Institut für Integrierte
Schaltungen IIS.

7. REFERENCES
[1] Amped Studio. https://ampedstudio.com/. Accessed:

2017-04-06.
[2] AngularJS. https://angularjs.org/. Accessed:

2017-04-06.
[3] Audiotool, produce music online.

https://www.audiotool.com/. Accessed: 2017-04-06.
[4] Common fate transform for supervised source

separation. https://www.audiolabs-erlangen.de/
resources/2017-SISEC-COMMONFATE. Accessed:
2017-04-06.

[5] Font Awesome, the iconic font and CSS toolkit.
https://jquery.com/. Accessed: 2017-04-06.

[6] Interactive fundamental frequency estimation with
applications to ethnomusicological research.
https://www.audiolabs-erlangen.de/resources/MIR/

2017-GeorgianMusic-Erkomaishvili. Accessed:
2017-04-06.

[7] Javascript API features browser support chart.
http://caniuse.com/#feat=audio-api. Accessed:
2017-04-06.

[8] jPlayer, HTML5 audio & video for jQuery.
http://www.jplayer.org/. Accessed: 2017-04-06.

[9] jQuery, write less, do more. https://jquery.com/.
Accessed: 2017-04-06.

[10] Media formats supported by the html audio and video
elements. https://developer.mozilla.org/en-US/docs/
Web/HTML/Supported media formats. Accessed:
2017-04-06.

[11] multitrackHTMLPlayer, automatic various multitrack
audio player. https:
//github.com/binarymind/multitrackHTMLPlayer.
Accessed: 2017-04-06.

[12] Peaks.js, browser-based audio waveform visualization.
http://waveform.prototyping.bbc.co.uk/. Accessed:
2017-04-06.

[13] plyr, a simple, accessible HTML5 media player.
https://plyr.io/. Accessed: 2017-04-06.

[14] React, a javascript library for building user interfaces.
https://facebook.github.io/react/. Accessed:
2017-04-06.

[15] Reverse engineering the amen break – score-informed
separation and restoration applied to drum recordings.
https://www.audiolabs-erlangen.de/resources/MIR/
2016-IEEE-TASLP-DrumSeparation. Accessed:
2017-04-06.

[16] Soundtrap, make music online.
https://www.soundtrap.com/. Accessed: 2017-04-06.

[17] Video.js, the player framework. http://videojs.com/.
Accessed: 2017-04-06.

[18] waveform-playlist, multitrack web audio editor and
player with canvas waveform preview.
https://github.com/naomiaro/waveform-playlist.
Accessed: 2017-04-06.

[19] Web Audio API, w3c working draft 08 december 2015.
https://www.w3.org/TR/webaudio/. Accessed:
2017-04-06.

[20] M. Bu↵a, A. Hallili, and P. Renevier. MT5: a HTML5
multitrack player for musicians. In WAC 1st Web
Audio Conference January 26-28, 2015 - IRCAM &
Mozilla Paris, France, Paris, France, May 2015.
IRCAM & Mozilla Paris.

[21] C. Dittmar and M. Müller. Reverse engineering the
amen break – score-informed separation and
restoration applied to drum recordings. IEEE/ACM
Transactions on Audio, Speech, and Language
Processing, 24(9):1531–1543, 2016.

[22] S. Kraft and U. Zölzer. Beaqlejs: Html5 and javascript
based framework for the subjective evaluation of audio
quality. In Linux Audio Conference, Karlsruhe, DE,
2014.

[23] M. Müller, S. Rosenzweig, J. Driedger, and
F. Scherbaum. Interactive fundamental frequency
estimation with applications to ethnomusicological
research. In Proceedings of the AES International
Conference on Semantic Audio, Erlangen, Germany,
2017.

[24] M. Schoe✏er, F.-R. Stöter, B. Edler, and J. Herre.
Towards the next generation of web-based
experiments: a case study assessing basic audio
quality following the ITU-R recommendation BS. 1534
(MUSHRA). In 1st web audio conference, Paris,
France, 2015.

[25] F. Stöter, A. Liutkus, R. Badeau, B. Edler, and
P. Magron. Common fate model for unison source
separation. In International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Shanghai,
China, 2016.

[26] P. Vandewalle, J. Kovacevic, and M. Vetterli.
Reproducible research in signal processing. IEEE
Signal Processing Magazine, 26(3):37–47, May 2009.

[27] E. Vincent, R. Gribonval, and C. Fevotte.
Performance measurement in blind audio source
separation. IEEE Transactions on Audio, Speech, and
Language Processing, 14(4):1462–1469, July 2006.

