
Loop-aware Audio Recording for the Web

Gerard Roma

Georgia Institute of

Technology

Atlanta, GA, USA

gerard.roma@gatech.edu

Anna Xambó

Georgia Institute of

Technology

Atlanta, GA, USA

anna.xambo@gatech.edu

Jason Freeman

Georgia Institute of

Technology

Atlanta, GA, USA

jason.freeman@gatech.edu

ABSTRACT
Music loops are audio recordings used as basic building
blocks in many types of music. The use of pre-recorded loops
facilitates engagement into music creation to users regard-
less of their background in music theory. Using online loop
databases also a↵ords simple collaboration and exchange.
Hence, music loops are particularly attractive for web audio
applications. However, traditional musical audio recording
typically relies on complex DAW software. Recording loops
usually requires consideration of musical meter and tempo,
and withstanding metronome sounds.
In this paper, we propose loop-aware audio recording as a
use case for web audio technologies. Our approach sup-
ports hands-free, low-stress recording of music loops in web-
enabled devices. The system is able to detect repetitions
in an incoming audio stream. Based on this information, it
segments and ranks the repeated fragments, presenting the
list to the user. We provide an example implementation,
and evaluate the use of the di↵erent MIR libraries available
in the web audio platform for the proposed task.

1. INTRODUCTION
Repetitive structures are ubiquitous in music. Repetition

is a particular trait of many electronic and computer mu-
sic genres, where humans can o✏oad the task of repeating
patterns to the machine. Since the appearance of digital au-
dio samplers, audio loops have been a prominent device for
music creation. Audio loops can be simply digital audio frag-
ments that are repeated, although often they contain some
sort of variation that creates a rhythm sensation. Loops are
sometimes extracted from existing music recordings to make
new compositions, simplifying the music creation process re-
gardless of the author’s background in conventional music
theory. In this sense, the use of audio loops has played an
important role in the democratization of music production
attributed to digital technology.

As basic collaborative building blocks, audio loops are par-
ticularly relevant to the emerging space of web-based music
creation. They are shared in online general audio databases

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

c� 2017 Copyright held by the owner/author(s).

such as Freesound1 [1], or specific loop databases like Loop-
erman.2 Loops are also commercially distributed in online
shops like Beatport.3

The work presented in this paper originates in the con-
text of Earsketch,4 an online Digital Audio Workstation
(DAW) developed to enhance computer science learning [5].
In Earsketch, users create musical compositions through pro-
graming, using a database of audio loops. The loops in the
database are originally recorded at di↵erent tempos, but a
time-stretching module is used to allow importing any of
them in the same composition while ensuring a consistent
tempo. This system has been used by more than 100, 000
Internet users, including students from 200 schools, to create
more than 80, 000 compositions, providing a good example
of how audio loops can help facilitating musical creativity
to a wide audience.

While indexing and retrieval of loop databases has been
addressed in the music information retrieval (MIR) [12] and
web audio [11] communities, the creation of loops is very
often considered from the point of view of synthesis and
computer-based tools, and little attention is paid to inter-
faces for capturing loops from the acoustic environment. In
this paper, we propose loop-aware audio recording as a use
case for collaborative audio. As an illustration, one could
envision a musician exploring ideas with a musical instru-
ment or other sound-producing device. In order to share an
idea as a loop, one would have to record and then edit the
recording to select the loop points. Alternatively, recording
into a DAW could involve selecting the appropriate meter
and tempo, and then using a metronome as a cue and record
some number of bars. This latter approach is the one cur-
rently used by Earsketch. In both cases, the creative explo-
ration would have to be interrupted in order to attend more
tedious tasks. Also, in many cases using a metronome is out
of question, as tempo variations are important for many mu-
sic styles.5 A metronome cue also requires an audio setup
that prevents its sound bleeding into the microphone (e.g.
headphones and potentially a directional microphone) which
a regular web user may not have. Our proposed solution is

1
http://freesound.org

2
http://looperman.com

3
http://beatport.com

4
http://earsketch.gatech.edu

5As an illustration of the popular sentiment against the
metronome, consider the page about it at the online quote
compendium wikiquote, which contains more than 40 quotes
against it and only 5 in favor: https://en.wikiquote.org/

wiki/Metronome

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159076849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://freesound.org
http://looperman.com
http://beatport.com
http://earsketch.gatech.edu
https://en.wikiquote.org/wiki/Metronome
https://en.wikiquote.org/wiki/Metronome


to enhance the recorder to automatically segment and se-
lect repeated fragments. Our system is implemented using
web audio standards, allowing its use in mobile phones and
tablets. In addition to improving the process of capturing
loops with musical instruments, our system can also be used
to record repetitive sounds in the environment, such as ev-
eryday sounds or serendipitous music encounters.

2. DETECTING REPETITION
Self-similarity matrices (SSM) of audio spectrum frame

sequences are used often in MIR to identify patterns, par-
ticularly repetition. Early on in the history of MIR, Foote
and Uchihashi introduced the Beat Spectrum [2] as the av-
erage of the SSM diagonals. Peaks in the beat spectrum
represent repeated audio sequences.

Similar ideas based on SSMs have been used since then to
analyze music structure [8, 7]. For example, methods based
on SSMs have been used for chorus detection and music
thumbnailing [3, 6]. The idea was also applied to detection of
loops in music for creative applications [9], leading to index-
ing of loop databases [12]. However, samples extracted from
music recordings (especially where regular rhythms are used)
can be used as loops in new music regardless of whether they
were originally repeated. Here, instead of seeking repetition
in existing music recordings, we use repetition as a cue for
improving the usability of the recorder, considering that rep-
etition is often used for consolidating musical ideas.

Our system does not need to deal with the complexity of
music structure, since it is aimed at providing the building
blocks of the creative process. On the other hand we are
interested in interactive web-based applications, with the
possibility of mobile-based capture. At the same time, we
aim at detecting repetition in a wide variety of signals that
may be captured with web-enabled devices, including music
and environmental sound. For these reasons, our system
is based on simple and cost-e↵ective methods based on the
original beat spectrum. While similar ideas were used in [11]
for indexing loops in Freesound, in this paper we present a
purely client-side implementation based on web audio, and
include loop start detection, aimed at loop recording.

3. LOOP-AWARE RECORDING
The proposed workflow starts by analyzing incoming au-

dio using a short-time Fourier transform (STFT). Spectral
frames are summarized into features and the SSM is then
computed using cosine distance between all the feature vec-
tors of the sequence (Figure 1a). The beat spectrum is ob-
tained as the average of the diagonals of the SSM (Figure
1c). Peaks in this spectrum indicate repetitive periods in the
input signal. For multiple repetitions of the same sequence,
several peaks will be found (e.g. if it is repeated four times
there will be a peak for the length of the repeated sequence
and another one for the length of twice the sequence). As
the diagonals get shorter, fluctuation increases and the aver-
age is less reliable, often resulting in spurious peaks towards
the end. Since only periods of up to half the length of the
recording make sense, we only consider peaks in the first
half of the beat spectrum. We select the highest peak as the
best candidate for segmenting the audio recording.

The next problem is finding the start of the loop. This
can be determined by analyzing the diagonal corresponding
to the selected peak (Figure 1e). However, in the presence

of background sound, the diagonal can become significantly
noisier due to general similarities between audio frames. We
found that, in this case, they exhibit a characteristic flat
region after a sharp increase when audio starts repeating
(Figure 1f). After smoothing the signal, we detect the first
of such plateau regions when the second derivative is consid-
erably close to zero and the diagonal is above its median for
a certain minimum amount of frames. We experimentally
set this threshold to 200 ms.

Once the starting point and loop duration have been de-
termined, the frame sequence is split into loop candidates.
The number of loops is determined by the number of peaks
in the beat spectrum that have a harmonic relationship with
the first, given some error threshold. The next step is select-
ing the best one. We see this as a ranking problem, since the
user may always have some specific criterion. While rhyth-
mic accuracy features could be of interest depending on the
musical focus, we adopt a more general strategy by aggregat-
ing the frames of each candidate and computing similarities
between them. The list is then sorted according to the dis-
tance to the centroid, so that the most “typical“ candidate
is recommended first.

4. EXPERIMENTS
We devised two experiments in order to determine the vi-

ability of the proposed approach. In the first experiment,
we compared general spectrum descriptors from two feature
extraction libraries available for web audio applications. In
the second experiment, we evaluated our approach for de-
termining the starting point of the loop. Both experiments
were developed as NodeJS programs and executed on a lap-
top computer for convenience.

4.1 Dataset
For both experiments, we collected a dataset by sampling

the loop library available in Earsketch. The library is com-
posed of two main collections, contributed by two authors,
totaling around 4,000 loops. Each collection is divided in
sample packs with a common style, which contain multi-
ple instruments each. We randomly chose two loops from
each pack, omitting those that started with silence (since
our method for loop start detection relies on acoustic fea-
tures of the signal). This resulted in a dataset of 217 loops
including many di↵erent instruments (e.g. drum set sounds,
synths, bass, guitar, piano...) and sound e↵ects. The files
were later processed for each of the experiments.

4.2 Loop period estimation
In the first experiment, we evaluated the use of the beat

spectrum for estimating repetitive periods. We processed
the dataset sounds by simply concatenating the samples
of each loop to produce an identical repetition. Most of
the excerpts contain two bars; in some cases the second
bar is an exact repetition, but in some others it may be a
variation, or part of a longer phrase. There are also cases
where shorter patterns are repeated along the two bars.
Thus, in addition to the original duration, we decided to
accept half and a quarter of it as valid loop points. We
consider the problem as a classification task, where the
loop period found for a given file is considered correct if
the distance to the ground truth is less than 20 ms. We
use accuracy, as the fraction of correctly classified loops, to
evaluate the algorithm.



(a) Self-similarity matrix (loop). (b) Self-similarity matrix (loop over background noise).

(c) Beat spectrum (loop) (d) Beat spectrum (loop over background noise, de-trended).

(e) Matrix diagonal for maximum peak (loop).

(f) Matrix diagonal for maximum peak (loop over background

noise).

Figure 1: Steps in the analysis of a bass loop, by itself and embedded in background noise.



Figure 2: Accuracy vs average processing time on a core i5
laptop for di↵erent features.

Beyond accuracy, we were also interested in computation
time. A trade-o↵ exists between the cost of computing fea-
tures from the spectrum and cost induced by the resulting
dimensionality. For large feature dimension, the SSM takes
very long to compute, so it is crucial to reduce the amount
of features.
Within this framework, we compared Mel-Frequency
Cepstral Coe�cients (MFCC) and bark bands as generic
spectral features, using two feature extraction libraries:
JS-Xtract [4] and Meyda [10]. Neither of the two libraries
include an STFT implementation for o✏ine processing,
since they are mainly designed to work for real-time
analysis with Web Audio API analyzer nodes or similarly
non-overlapping bu↵ers, so we adapted them to work with
a custom STFT implementation.6 We measured the time
for obtaining the estimate including feature extraction and
SSM calculation, but factoring out the time to compute the
magnitude spectrum. For JS-Xtract we tried several sizes
of bark bands and MFCC features. In the case of MFCC
the number of filters and cepstral coe�cients was the same.
Meyda does not implement bark bands as a feature, and
does not allow changing the number of coe�cients for
MFCC, so we used the standard 13 coe�cients from 40
bands and also 13 coe�cients from 13 bands. Figure 2
shows the result of the experiment.
Perhaps surprisingly, we found that just a few
bands/coe�cients su�ce to obtain a high accuracy,
while saving some processing time. In this sense, using
6 MFCC coe�cients would seem a good compromise.
Obviously, the cost of the SSM grows quadratically with the
length of the sequence, but using this setting, a recording
of 30 seconds was processed in around 3 seconds (durations
for the duplicated recordings ranged from 7 to 30 seconds,
averaging around 15 seconds). Hence it should be possible
to use this setting in an interactive system. A real-time
implementation would also be possible using a fixed time
window (implying a maximum loop length). Meyda MFCCs
were in general faster but less accurate than JS-Xtract’s.
We also found the latter to be more flexible.

6
https://github.com/g-roma/stft.js

4.3 Starting point estimation
We conducted a second experiment in order to analyze

how to find the starting point. Since we are interested in
capturing loops in uncontrolled recording conditions, our
problem is significantly di↵erent from that of existing MIR
works, where repetitive structures are sought in audio with
a stable polyphonic timbre. On the other hand, determining
the start of the loop in total silence is trivial.
In order to simulate a challenging recording condition, we
mixed the files from the previous experiment with environ-
mental sound from the DCASE2016 challenge dataset.7 The
loop was added at a random point in the background. This
tends to add a trend to the beat spectrum, so we subtracted
a moving median filter to remove it. We then computed the
SSM and beat spectrum, and estimated the starting point
from the diagonal corresponding to the maximum peak.
While conventional onset detectors could be used with low
noise conditions, the idea of using the diagonal is that non-
repetitive sounds from the same target source should not
trigger the start of a loop. We compared two approaches
based on the diagonal by computing, for each file, the dif-
ference between estimated and the ground truth position
in seconds. The first approach consists simply thresholding
the smoothed diagonal so that 25% of the data is above the
threshold. This approach has been used for musical audio
[6], where the acoustic conditions are generally more con-
trolled. In the presence of noise it approximates the start of
the loop but with mixed results. The second approach was
outlined in Section 3. With respect to the previous exper-
iment, we found in initial trials that using MFCC features
(which are known to be sensitive to noise) resulted in much
worse estimation, so we used 24 bark band features from
JS-Xtract.
Figure 3 shows box plots for the distribution of the di↵erence
between ground truth and estimated loop start. Clearly, the
proposed method gives better results than simple threshold-
ing: although there are many loops that are not detected
correctly, most of the points are around a median value of
40 ms. A more detailed plot of the distribution of errors
for our approach is shown in Figure 4. While listening to
the results, it became clear that loops that had been mixed
with indoor background noise were correctly localized, while
loops with louder outdoor noise (especially loops containing
noisy sounds such as drums) produced the worst errors. We
tried both approaches in an initial prototype (Section 5) and
found that in both cases for indoor usage the noise level al-
lows a good identification of the loop start in most cases.

5. IMPLEMENTATION
We implemented the ideas presented in this paper in a

JavaScript library and an initial demo prototype. The li-
brary is composed by a few classes for computation of SSMs
and beat spectrum, visualization and recording of loops, as
well as utility functions for smoothing, peak finding and
so on. The code heavily relies on the scijs8 collection of
JavaScript packages that implements basic linear algebra op-
erations and n-dimensional arrays in the style of the NumPy
library for Python.
The prototype allows trying di↵erent settings and visual-
izing the di↵erent signals involved. The application relies

7
http://www.cs.tut.fi/sgn/arg/dcase2016/

8
https://github.com/scijs

https://github.com/g-roma/stft.js
http://www.cs.tut.fi/sgn/arg/dcase2016/
https://github.com/scijs


Figure 3: Box plots for loop start detection using step de-
tection (plateau) vs thresholding.

on the MediaDevices interface, which at the time of this
writing is still not implemented in all major browsers, but
works in Firefox and Chrome. Incoming audio is recorded
using Recorder.js,9 and the analysis is performed at the end
of the recording using the STFT, SSM and BeatSpectrum
modules. Although web audio analyzer nodes do not provide
a reliable callback interval, the process could be improved by
using a ScriptProcessorNode and performing the analysis in
real time. After loop period identification and loop start es-
timation, the recorded audio is segmented at zero-crossings
near the start and end of the estimated loops, and a list of
segments is presented to the user. While a user evaluation
is out of the scope of this paper, our initial impressions were
very positive with respect to the viability of the proposed
use case. The system works best for loud and clear sounds
and sequences with rich frequency content, such as repeti-
tive speech or musical instruments. We plan to improve the
initial demo to allow maintaining a personal collection of
loops.
The current implementation can be obtained from GitHub:
https://github.com/g-roma/loopiness.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed a novel application of loop

detection: loop-aware audio recording. We hope that the
proposed application will contribute to the development of
collaborative music making based on web technologies, by
allowing casual generation of music building blocks. We have
shown that the basic signal processing techniques that allow
the identification of loops can be implemented in interactive
web audio applications. At the same time, we have identi-
fied a novel challenge specific to the proposed application,
which is not usually addressed in MIR: the identification of
repetitive structures embedded in noisy backgrounds. While
further work is required for ubiquitous loop-aware recording,
we have presented an implementation that can be used in
indoor settings with typically low noise levels. As a next
step, we plan to conduct a user study, including an eval-

9
https://github.com/mattdiamond/Recorderjs

Figure 4: Histogram of deviations from the reference start-
ing point for the plateau method.

uation of di↵erent approaches for ordering the segmented
loops. We will also integrate this functionality in Earsketch
in order to improve the potential for collaboratively growing
the collection of audio loops.

7. ACKNOWLEDGEMENTS
The EarSketch project receives funding from the National

Science Foundation (CNS #1138469, DRL #1417835, DUE
#1504293, and DRL #1612644), the Scott Hudgens Family
Foundation, the Arthur M. Blank Family Foundation, and
the Google Inc. Fund of Tides Foundation.

8. REFERENCES
[1] F. Font and X. Serra. Tempo estimation for music

loops and a simple confidence measure. In Proceedings
of the 17th International Society for Music
Information Retrieval (ISMIR 2016), 2016.

[2] J. Foote and S. Uchihashi. The beat spectrum: A new
approach to rhythm analysis. In 2001 EEE
International Conference on Multimedia and Expo
(ICME 2001), 2001.

[3] M. Goto. A chorus-section detecting method for
musical audio signals. In Proceedings of the 2003 IEEE
International Conference on Acoustics, Speech, and
Signal Processing ICASSP’03), 2003.

[4] N. Jillings, J. Bullock, and R. Stables. Js-xtract: A
realtime audio feature extraction library for the web.
In Proceedings of the 17th International Society for
Music Information Retrieval (ISMIR 2016), 2016.

[5] B. Magerko, J. Freeman, T. Mcklin, M. Reilly,
E. Livingston, S. Mccoid, and A. Crews-Brown.
Earsketch: A STEAM-based approach for
underrepresented populations in high school computer
science education. ACM Transactions on Computing
Education (TOCE), 16(4):14:1–14:25, Sept. 2016.

[6] M. Müller, P. Grosche, and N. Jiang. A segment-based
fitness measure for capturing repetitive structures of
music recordings. In Proceedings of the 12th
International Society for Music Information Retrieval
(ISMIR 2011), pages 615–620, 2011.

https://github.com/g-roma/loopiness
https://github.com/mattdiamond/Recorderjs


[7] O. Nieto. Discovering structure in music: Automatic
approaches and perceptual evaluations. PhD thesis,
New York University, 2015.

[8] B. S. Ong. Structural analysis and segmentation of
music signals. PhD thesis, Universitat Pompeu Fabra,
2006.

[9] B. S. Ong and S. Streich. Music loop extraction from
digital audio signals. In Proceedings of the 2008 IEEE
International Conference on Multimedia and Expo
(ICME 2008), 2008.

[10] H. Rawlinson, N. Segal, and J. Fiala. Meyda: An
audio feature extraction library for the Web Audio
API. In Proceedings of the 1st Web Audio Conference
(WAC), 2015.

[11] G. Roma and X. Serra. Music performance by
discovering community loops. In Proceedings of the 1st
Web Audio Conference (WAC), Paris, France, 2015.

[12] S. Streich and B. S. Ong. A music loop explorer
system. In Proceedings of the 34th International
Computer Music Conference (ICMC2008), 2008.


	Introduction
	Detecting repetition
	Loop-aware recording
	Experiments
	Dataset
	Loop period estimation
	Starting point estimation

	Implementation
	Conclusions and future work
	Acknowledgements
	References

