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Abstract

Network structures can encode information from datasets that have a natural repre-

sentation in terms of networks, for example datasets describing collaborations or social

relations among individuals in science or society, as well as from data that can be mapped

into graphs due to their intrinsic correlations, such as time series or images. Developing

models and algorithms to characterise the structure of complex networks at the micro

and mesoscale is thus of fundamental importance to extract relevant information from

and to understand real world complex data and systems. In this thesis we will inves-

tigate how modularity, a mesoscopic feature observed almost universally in real world

complex networks can emerge, and how this phenomenon is related to the appearance of

a particular type of network motif, the triad. We will shed light on the role that motifs

play in shaping the mesoscale structure of complex networks by considering two special

classes of networks, multiplex networks, that describe complex systems where interac-

tions of different nature are involved, and visibility graphs, a family of graphs that can

be extracted from the time series of dynamical processes. This thesis is based on the
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Chapter 1

Introduction

1.1 Complex network structures

Network Science [1–3] aims to study complex systems observed in nature, society and

technology with the idea of representing the interactions and the interacting entities

involved as a network structure of nodes and links and analysing the structure to extract

relevant information on the system.

Far from being confused with applied graph theory this field of science has gathered

and integrated over the last 20 years scientists and ideas from mathematics, physics, com-

puter science, biology, sociology, economy and many other disciplines and has become

unique and highly interdisciplinary. One of the reasons of its success is that during the

development of Network Science, thanks to the advances in technology, information and

computing, there has been a parallel progress in the volume of data collection, storage

and availability in all different areas of science and society, and scientists soon realised

that many of these datasets have a natural representation in terms of networks.

For example we can think at the World Wide Web, at social networks such as Twitter of

Facebook, at collaboration networks between co-authors of scientific papers from Science

or Nature or between actors co-starring in the movies we can find online on the IMDb

database; at the connectome, the complete map of synaptic connections between neu-

rons, of the C. elegans worm; at the air transportation network and at urban systems;

at the money transfers between banks; at the interactions of the genes and proteins in

the cell. All these networks have something in common: they all show a structure that

is far from being similar to the one of a regular lattice or to the one of a random graph,

a graph where the links between nodes are put at random, and we call these network

structures ‘complex’.

1



Chapter 1. Introduction 2

Developing models and algorithms to characterise complex networks has been and is

still a fundamental challenge to analyse and extract relevant information from network

datasets and to gain insights for understanding real world complex systems. It becomes

even more relevant when we think that networks can be used as a general mathemat-

ical framework to analyse any kind of data that can be mapped into a graph due to

some intrinsic correlations, such as, for example, complex signals, time series and multi-

dimensional data.

Much of the information from a network can be gained by looking at the local pro-

prieties of the network such as the node degree (number of connections) or the node

clustering coefficient, the number of triangle each node closes, or the average degree of

the node’s neighbours [1, 3]. Nevertheless some of the properties that mostly characterise

complex network structures are mesoscopic, that means that are properties observed not

at the scale of the single nodes and not at the scale of the overall network. One of

these features are called network motifs [4, 5]. They are patterns of interconnections

which appear in complex network structures with a probability much higher than in

random networks. They are found in networks from biochemistry, neurobiology, ecology

and technology and they represent small repeated and conserved evolutionary devices,

thus building blocks of complex network structures. The concept of motifs was first

introduced in 2002 [4] by Milo and collaborators who studied the presence of motifs in

different typology of biological and engineering networks and realised that motifs can be

used to define universal classes of networks.

The other important structural feature observed in almost all real world networks in

nature is their inherent simple modular structure that means they can be separated

into units or ‘modules’ that are coherent subgraph associated to distinct functions in

the case of biological and technological networks or to organisational structures in the

case of social systems. Modularity appears to be one of the fundamental organising

principles for all complex networks we find in nature, going from metabolic [6, 7] and

cellular networks [8, 9] to neural networks [10] to ecological and social networks [11–13],

and modular structure and community structure have become synonymous of mesoscale

structure in network literature.

It’s interesting to notice that from a network perspective motifs and modules are defined

in similar way: clustered in a graph theory sense. We can distinguish the two only by

emphasising small size and recurrence for motifs and larger size for modules, and modules

can be considered overlapping and functionally significant subnetworks with a structure

probably dominated by interconnected motifs [14, 15].

In what follows we will discuss how these two mesoscale properties are related to each

other and in particular the role that motifs play in characterising complex network struc-
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tures at the mesoscale for different families of networks: standard networks, multiplex

networks and visibility graphs.

1.2 Multiplex architectures

Multiplex networks [16, 17] are a family of networks that describe a large number of

complex systems where interactions of different nature are involved. Multiplex networks

are formed by a set of N nodes, the interacting elements of the system, connected through

M different networks (layers), each one describing the connections for a specific type of

interaction (see Figure 1.1). Multiplex networks have been first proposed for modelling

social networks [18], where the same set of individuals are connected by different types of

social ties (friendship, collaboration, family tie, etc.), or can communicate via different

means of communication (email, mobile phone, chat, Facebook, etc.). Nevertheless the

limitation of understanding complex biological and technological systems through single-

layer networks has been gradually and increasingly pointed out through a series of works

in which multiplex networks have been used to model a larger set of data including

transportation networks [19, 20], scientific and actor collaboration networks [20, 21],

biological networks in the cell or in the brain [22–25], complex infrastructures, and

economical networks. Multiplex networks encode significant more information than the

network which includes all the interactions of the multilayer network compressed in one

single layer without distinguishing the nature of the links. It is intuitively clear that if we

want to understand traffic congestion phenomena in the London public transportation

system we have to consider simultaneously many network layers which describe tube

lines, bus lines and railways lines, or if we want to gain knowledge of the cell functions

we need to integrate information from different layers of interaction, such as, for example,

the protein-protein interaction network, the signalling network, the metabolic network

and the transcription network.

As a consequence of this, one the most pressing challenge in multiplex network theory

is devising algorithms and numerical methods to extract relevant information from these

network structures, and one way to do that is by exploiting the ubiquitous structural

correlations that are found in multiplex networks.

For example the study of the overlap of the links [26] in the different layers of a

multiplex network has been conducted for systems as different as in-silico societies [27],

multilayer airport networks [28] or citation-collaboration networks [21], and provides

information that cannot be extracted if the single layers are taken in isolation and that

is fundamental for the understanding of the dynamical processes taking place at the level
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Figure 1.1: A multiplex network structure formed by a set of four nodes and three layers.
Multiplex networks are often used in the case in which the same set of nodes is connected
by links indicating the different types of interactions. The links of the same type form
the layers of the multiplex network, for example a social network can be represented by
a multiplex in which the same set of individuals can interact via phone, email or post.

of the aggregated network [19, 21].

If we consider the nodes in a multiplex we can measure in how many of the layers

they are connected or ‘active’ and study the the heterogeneous of the nodes’ activity in

different layers [20, 22], and in general we can extract relevant information by measuring

the correlations between the local properties of the same node in different layers.

We will see in Chapter 2 that it is possible to gain important and unique information

from multiplex networks from their mesoscopic structure by looking at the structural

correlations between the communities in different layers [29, 30].

1.3 Visibility graphs

In recent years different methods [31–35] have been introduced to map the structure and

underlying dynamics of a given time series into an associated graph representation, with

the scope of exploiting tools and concepts proper of the modern network science [2, 3, 36]

in the traditional task of time series analysis [37, 38], thus building a bridge between the
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two fields.

The family of visibility graphs comprehends special graphs that can be extracted

from time series by means of the so called visibility algorithms and allow to analyse the

structure of the series through the tools developed in the graph/complex network theory.

Let {x(ti)}i=1..N be a time series of N data. The natural visibility algorithm [39]

assigns each datum of the series to a node in the natural visibility graph (NVG). Two

nodes i and j in the graph are connected if it is possible to draw a straight line from the

point x(ti) to the point x(tj) that stays above any intermediate data point x(tk) (see

Figure 1.2). Hence, node i and node j are connected nodes if the following geometrical

criterion is fulfilled within the time series:

x(tk) < x(ti) + (x(tj)− x(ti))
tk − ti
tj − tk

. (1.1)

It is easy to check that the associated graph extracted from a time series through

this algorithm, is always:

(i) connected: each node sees at least its nearest neighbours (left-hand side and right-

hand side).

(ii) undirected: a criterium for the directionality of the links is not provided by the

algorithm.

(iii) invariant under affine transformations of the series data: the visibility criterium is

invariant under rescaling of both horizontal and vertical axis, as well as under horizontal

and vertical translations.

(iv) “lossy”: partial information regarding the time series is inevitably lost in the

mapping-compression process. Indeed the network structure is completely determined

by the binary adjacency matrix and, for example, two periodic series with the same

period would give the same visibility graph, despite being quantitatively different.

In order to understand the geometric interpretation of the visibility graph, let us

focus on a periodic series. It is straightforward that its visibility graph is a concatena-

tion of a motif: a repetition of a pattern (see Figure 1.2). Now, which is the degree

distribution P (k) of this visibility graph? Since the graph is just a motif’s repetition,

the degree distribution will be formed by a finite number of non-null values, this number

being related to the period of the associated periodic series. This behaviour reminds us

the Discrete Fourier Transform (DFT), which for periodic series is formed by a finite

number of peaks (vibration modes) related to the series period. Using this analogy, we

can understand the visibility algorithm as a geometric (rather than integral) transform.

Whereas a DFT decomposes a signal in a sum of (eventually infinite) modes, the visibil-
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Figure 1.2: Illustrative sketch of the visibility algorithm. In the top a periodic time
series is plotted while in the bottom the corresponding graph generated through the
visibility algorithm is shown. Each datum in the series corresponds to a node in the
graph, such that two nodes are connected if their corresponding data heights fulfil the
visibility criterion of equation 1.1. Taken from [39].

ity algorithm decomposes a signal in a concatenation of graph’s motifs, and the degree

distribution simply makes a histogram of such ‘geometric modes’. While the time series

is defined in the time domain and the DFT is defined on the frequency domain, the visi-

bility graph is then defined on the ‘visibility domain’. We will see in Chapter 3 that the

visibility algorithm is able to distinguish between stochastic and chaotic series whereas

a generic DFT fails to capture the presence of nonlinear correlations in time series (such

as the presence of chaotic behaviour).

A more simple, alternative criterion for the construction of the visibility graph is

defined as follows: let {xi}i=1..N be a time series of N data. The so called horizontal

visibility algorithm [40] assigns each datum of the series to a node in the horizontal

visibility graph (HVG). Two nodes i and j in the graph are connected if one can draw

a horizontal line in the time series represented with bars from xi to xj that does not

intersect any intermediate data height (see Figure 1.3 for an illustration). Hence, i and j

are two connected nodes if the following geometrical criterion is fulfilled within the time

series:

xi, xj > xn for all n such that i < n < j (1.2)

The resulting HVG is always a subgraph of the NVG associated to the same time
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series (see Figure 1.3). The HVG graph will also be (i) connected, (ii) undirected, (iii)

invariant under affine transformations of the series and (iv) “lossy”. Some concrete

properties of these graphs can be found in [40–42].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.2

0.4

0.6

0.8

1

b)a)
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0
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0.4

0.6

0.8

1

Figure 1.3: Schematic of two families of visibility algorithms. (a): natural visibility
algorithm applied to 20 data points of a periodic time series (top) and the corresponding
Visibility Graph (VG) (bottom); each datum in the series corresponds to a node in the
graph and two nodes are connected if their corresponding data heights show mutual
visibility (Eq. 1.1). (b): horizontal visibility algorithm applied to the same series (top)
and the corresponding Horizontal Visibility Graph (HVG) (bottom); each datum in
the series corresponds to a node in the graph and two nodes are connected if their
corresponding data heights show horizontal visibility (Eq. 1.2). Taken from [43].

In Chapter 3 we will focus on the mesoscale structure of visibility graphs, in particular

we will introduce the sequential visibility graph motifs, small subgraphs that can be

detected along the Hamiltonian path and that can be used to distinguish and classify

time series structure and dynamical processes of different nature.



Chapter 2

Triads’ formation in networks and

emergence of modular structure

2.1 Defining and detecting modules

One of the most relevant feature of networks representing real complex systems is the

community (or modular) structure, i.e. the organization of nodes into clusters, with

many links joining nodes of the same cluster and comparatively few links joining nodes

of different clusters [44]. In the same cluster (or module) nodes likely share common

properties and/or play similar roles within the network.

In biological networks such as metabolic, cellular or neural networks the modules can

be seen as coherent subsystems performing distinct functions [8, 10]. We can think

for example of groups of co-expressed genes in gene regulatory networks, proteins in

the cytoskeleton forming supra-molecular structures such as microtubules via physical

interactions, or cortical areas of the brain performing different cognitive or motor func-

tions [9, 10]. In social networks the communities can be friendship circles or groups of

people sharing common interests or doing activities together, and they reflect, in general,

the self-organisation of individuals in order to optimise some task performance [12].

Detecting communities is a very hard problem, not yet satisfactorily solved despite

the huge effort of a large interdisciplinary community of scientists who has been working

on it over the past few years [44]. The fundamental question is that no rigorous definition

of community exists in graph theory. Usually a community is defined as a subset of nodes

inside the graph which are more densely linked together when compared to the rest of

the network [44, 45]. The limitations of such a definition become clear when we try to

8



Chapter 2. Triads’ formation in networks and emergence of modular structure 9

apply it to specific network structures, for example to networks consisting of multiple

disconnected components or to bipartite (multipartite) networks in which there are two

(multiple) disjoint sets of nodes and links between nodes may occur only if the nodes

belong to different sets, making necessary to define clusters of nodes in the same set

differently.

For this reason different algorithms have been developed during the last decades

based on different principles [44–46]. Until 2002 the traditional way of detecting network

communities has been the hierarchical clustering [13, 47]. Hierarchical clustering is based

on the idea of assigning certain weights to the nodes of a network that describe how close

or similar the nodes are; then nodes are grouped iteratively into clusters, weights between

clusters are calculated and clusters are clustered together till all nodes are grouped in just

one cluster. In this sense the core this method is (I) to find an appropriate similarity

measure between the nodes to perform the iterative clustering algorithm and (II) to

specify a rule to determine at which level of the clusters’ hierarchy one finds the optimal

partition of nodes into communities.

In 2002 Girvan and Newman proposed an algorithm [13] based on the idea that links

connecting highly clustered communities have an higher edge betweenness, where edge

betweenness is defined as the number of shortest paths between pairs of nodes that run

through that link [3], and the shortest path between two nodes is the shortest sequence

of links which is needed to jump from one of the two to the other. The algorithm

proceeds in an iterative way by calculating at each iteration step the edge betweenness

of all links inside the network, and by identifying and removing the links with highest

betweenness. The iterated removal of links with highest betweenness eventually causes

the initial connected network to gradually split into more and more separate clusters.

In 2004, again Girvan and Newman [48] introduced the quality function Q, modularity,

as a stopping criterion for their algorithm. The modularity definition is based on the

intuitive idea that random networks do not exhibit community structure. Thus if we

think of having an arbitrary partition of a network in nc communities with m links we

can write

Q =
1

2m

∑
i,j

(
aij −

kikj
2m

)
δ(ci, cj) (2.1)

where ci is the community assignment of the generic node i and the Kronecker symbol δ

is selecting only the nodes joining the same community; Q is thus summing up for each

cluster c the differences between the actual fraction of links found inside that cluster
1
2m

∑
i,j a

c
ij and the expected fraction of links one would have found in the case of a

random network 1
2m

∑
i,j

kci k
c
j

2m ( indeed the probability for two generic nodes i and j to

be connected in a random network is pij =
kikj
<k> =

kikj
2m ).

If the network does not exhibit community structure, or if the partitions are allocated
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without any regard to the underlying structure, the expected number of intra-community

links
∑

i,j a
c
ij equals

∑
i,j

kci k
c
i

2m in each cluster and Q = 0. In general Q is strictly less than

1 and can be positive or negative if we found respectively more or less intra-community

links than expected in the random null model.

Soon after the Girvan and Newman paper, optimization of modularity has rapidly

become per se the essential element of many clustering methods [44]. The Louvain

algorithm developed in 2008 is a heuristic method based on an iterative optimization

of modularity starting from an arbitrary partition of the network into clusters, and it

outperforms all other known community detection methods based on the same idea in

terms of computational time [49].

Although modularity is the first rigorous essential ingredient for the theoretical com-

prehension of clustering in networks the fundamental assumption for which a random

network exhibits very small values of modularity is not completely true: it has been

shown that it is possible for a random network to find a partition which gives high val-

ues of modularity due to the fluctuations in the link distribution [50].

For this reason the development of others algorithms not based on modularity opti-

mization is of great importance. Currently the one which is thought to be the best is

Infomap [44, 51]. This algorithm uses the probability flow of random walks on a network

as a proxy for the actual information flows in the real system and decompose the network

into modules by compressing a description of the probability flow. The result is a map

that both simplifies and highlights the regularities in the structure of the network and

their relationships (see Figure 2.1).

Despite the fact that on empirical cases some detection algorithm works better than

others, the field of community detection remains open and it is often an hard task to

prove in general that one algorithm can outperform another.

In the following we will try to understand how communities in real evolving networks

can emerge during their evolution and which are the mechanism responsible for the com-

munity formation. To this aim we will introduce the mechanism none as triadic closure

and we will give a brief historical overview of the scientific literature that has focused on

this mechanism.

2.2 The triadic closure mechanism

Triadic closure in network science can be defined as the general mechanism by which a

node establishes a connection with a neighbour of a node it is already connected with.

From a network topology point of view the triadic closure mechanism characterises the
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Figure 2.1: The Infomap algorithm detects communities by compressing the description
of information flows on networks to reveal important mesoscopic structures. A random
walker (orange trajectory) explores the network (A) and a unique code is assigned to
every node in the network (B) based on the number of times the walker has visited
the node (Huffman code). This code is then compressed to obtain a coarse grained
description of the network (C). (Taken from [51])

evolution of a network with the formation of triangles or triads, motifs of three nodes all

connected with each other.

The importance of the triads as relational structures was first recognized by soci-

ologists long before the development of modern network theory. In 1908 George Sim-

mel [52, 53], tried to develop a theory of triads by studying the social interactions in

groups of three individuals, where each member seeks to control the others, and may

differ in ‘strength’, an additive mathematical quantity specifying the ability to control a

weaker member or to get controlled by a stronger one (see Figure 2.2). Simmel’s social

experiments revealed a universal tendency of triads to become a coalition of two against

one. The German sociologist also suggested that his theory of the triads can be gener-

alised to situations in which interacting units represent groups of individuals, and thus is

applicable at different scales of social interaction, an idea that interestingly anticipates

somehow the concepts of hierarchy and hierarchical modularity proper of the the modern

network theory.

In the 50’s sociologists continued to study triads and, thanks to the introduction of

sociograms in the late 30’s, graphs describing social interactions between individuals,

they combined the analysis of triads with the network description of social interactions.

In 1953 A. Rapoport [54, 55] studied the process of spreading of information through

a population. By the analysis of some data he observed that the measured spread

velocity in the network of communication between people couldn’t be obtained by simply

considering a random network model, but it could have been explained by assuming a
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Figure 2.2: Theory of coalitions into triads (taken from [53]). Each of the three individu-
als A,B and C can use his/her strength (size of the node) to seek control over the others.
Despite different possible scenarios of strength distribution often a coalition (directed
links) of two individuals against one emerges.

socio-structural bias for which “the likely contacts of two individuals who themselves have

been in contact are expected to be strongly overlapping”. He thus suggested experimental

procedures to test the statistical properties of the acquaintance net of the population,

and his paper can be considered the first work on the geometry of social networks.

At the end of the 90’s the modern theory of complex networks began. It was recog-

nized that networks can describe systems of very diverse origin, from nature, society and

technology [1, 56, 57] and that those systems can be characterized by a number of general

network properties. The feature that received most attention in the literature was the

distribution of the degree (the number of neighbours of a node), which is highly skewed,
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with a tail that can be often well approximated by a power law [58]. Such property

indeed explains a number of striking characteristics of complex networks, like their high

resilience to random failures [59] and the very rapid dynamics of diffusion phenomena,

like epidemic spreading [60]. To explain board degree distributions the first proposed

(and still commonly accepted) mechanism is preferential attachment [61], introduced by

Barabási and Albert in 1999. In their (BA) growing network model, new nodes set links

with existing nodes with a probability proportional to the degree of the latter. This way

the rate of accretion of neighbours is higher for nodes with more connections, and the

final degrees will be distributed according to a power law.

The study of large social systems revealed, on the other hand, the presence of a surpris-

ingly high number of triangles in the corresponding networks [62–64] and it was soon

realized that models of social networks must have been able to reproduce high values of

the clustering coefficient. The small world model (WS) proposed by Watts and Strogatz

in 1998 [62] was able to do that. In the WS model one starts by considering a ring

lattice of order n with each node connected with all the others within a lattice distance

k, then according to a certain probability p each connection is rewired uniformly at ran-

dom. Since the model is an interpolation between a regular lattice p = 0 and a random

network p = 1 it inherits two important features, namely the high clustering proper of

the lattice and the short diameter proper of the random network.

The problem was that none of the two models is able to reproduce together board degree

distribution, missing in the WS model, and high clustering coefficient, missing in the BA

model. One of the early purposes for which triadic closure was introduced in models of

evolving networks was to go beyond the limits of the BA model and of the WS model

taken alone. The model by Holme and Kim [65] introduced in 2002 is a variant of the BA

model able to generate scale free networks with high clustering. The new node joining

the network sets a link with an existing node, chosen with a probability proportional to

the degree of the latter, just like in the BA model. To incorporate the high clustering,

the other m − 1 links of the new node are attached with a probability Pt to a random

neighbour of the node which received first link, forming a triad, and with a probability

1− Pt to another node chosen with preferential attachment. The parameter Pt controls

the process of triad formation, and by varying it it is possible to tune the level of clus-

tering into the network, while the degree distribution is always a power law.

With the similar spirit of trying to unify the ‘small-worldness’ and ‘scale-freeness’ David-

sen et al. [66] proposed in the same year a model of acquaintance network that was able to

reproduce values of high clustering and short path length (diameter), and to interpolate

between networks with scale free and exponential degree distribution, both of which were

observed in real social networks. In their network model with fixed number of nodes,

at each time step, one randomly chosen node introduces two of his random neighbours
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to each other, a link is made between these two neighbours and thus a triad is formed.

Instead in the case that the chosen node has only one neighbour, it establishes a link

with a randomly chosen node. Then with a certain probability PD a randomly chosen

node is removed along his connections (individual who dies) and a new node (individual

who is born) enters the network connecting with a random chosen node. The parameter

PD < 1 determines the separation between the temporal scales of the social relations

and of the death-birth event: for PD << 1 the triad formation dominates the Poissonian

death process and the degree distribution is scale free while for large value of PD the

opposite is true and the distribution becomes a stretched exponential. The importance of

the model proposed by Davidsen et al. resides in the dynamical explanation it provides

of the small world topology, and in the fact that this explanation can be be found in a

local mechanism such as triadic closure.

The locality nature of triadic closure has been indeed the second important charac-

teristic that increased the interest of network scientists for this mechanism. The BA

model’s philosophical implication is that whenever we have a growing network which

grows according to an effective preferential attachment process, then the resulting degree

distribution is power law. However the model in its details presents a problem that makes

it difficult to generalize to all real networks’ scenarios: if the new node links preferentially

to nodes with high degree this implies that the new node must possess all the information

regarding the degree of the nodes already in the network, meaning that explicit preferen-

tial attachment is not a local rule. In 2001 Dorogovtsev et al. [67] implemented a model

of a growing scale free network in which preferential attachment arises naturally without

any rule depending explicitly on the nodes’ degree. The model, that in graph theory can

be described as an evolving simplicial complex [68], is the simplest model of scale free

network. One starts by considering a closed triad as the starting network and, at each

time step of the evolution, adds a new node which connects to both ends of a randomly

chosen link, as reported in Figure 2.3, closing in this way another triangle. Thus this

network evolves throughout a continuous aggregation of triads to its structure. Since the

probability for a node in the network to be one end of the chosen link is proportional to

its degree, the attachment is preferential. The interesting implication of this model is

that triadic closure is the the simplest implicit mechanism of preferential attachment.

Soon after in 2003 Vázquez [69] discussed various local mechanisms of network evolu-

tion generating power law degree distributions, high clustering and degree correlations.

Starting from the assumption that in social graphs if two nodes have a common neighbour

have also more chances to get connected, he proposed a connecting nearest neighbors

model where pairs of nodes having a common neighbour are connected by a potential

edge. At each time step of the network evolution (1) with probability 1 − PV a new
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Figure 2.3: In the simplest model of growing scale free network proposed by Dorogovtsev
et al. [67], the network evolves through a continuous aggregation of triangles. Taken
from [67].

node is linked to a random chosen node in the network and potential edges are estab-

lished between the new node and all the neighbours of the chosen one; (2) a random

chosen potential edge becomes an edge with probability PV . Vázquez understood that

the triadic closure mechanism in the variant enforced in its model also induces an effec-

tive preferential attachment because although new nodes connects to an existing node

at random, the potential edges favour nodes with higher degree in acquiring links when

triads are subsequently closed. In other words, if a node has high degree then it has more

chances of acquiring a potential link because the probability that one of his neighbours

is randomly chosen by new nodes increases with its degree. Vázquez [69] claimed that

the model yields always power law degree distributions, that is not correct in general as

we will see in detail in the next Section, and the reason is that if the growing network

exhibits degree correlations the probability of acquiring links is not linearly proportional

to the node’s degree. The same wrong conclusions on the power law nature of the degree

distribution was presented later by Jackson and Rogers [70], who studied a similar model

of social network formation where individuals make new connections in two ways: uni-

formly at random (random links) and via local search to ‘friends of their friends’ (triadic

closure).

Finally, the third reason, perhaps the most important, for which the triadic closure

mechanism has received lot of attention in the scientific literature resides in its ability

to explain the dynamical emergence of modularity in network systems.
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In the contest of social networks the connection between triadic closure and communi-

ties has been understood slowly and never really formalized through an extended and

comprehensive analysis of the various models that we could consider joining the class

of triadic closure models. The ones who first realised this connection were Jin, Gir-

van and Newman with a work published in 2001 [71] were they proposed a model of

social network evolution with fixed number of nodes where (1) links between individuals

happen preferentially when there is the presence of a mutual friend, (2) the number of

friends of each individual is limited, and (3) the friendship connections can decay over

time. They observed a clearly defined community structure in the evolved network,

although the resulting network was not in the form of a single connected component

and some communities were formed by isolated clusters of individuals. They found that

links between different communities were the ones more likely to decay in time, while

communities were characterized by high density of ‘triangles’ with long-lasting links, a

clue that communities were produced and reinforced by the acquaintance mechanism.

Despite triadic closure was firstly recognized as a possible mechanism of communities’

formation, the many ingredients in the social dynamics made this acquaintance network

model quite specific and diverted the attention form the potentiality of the mechanism

alone. In 2006 Toivonen et al. [72] found that community structure emerges from a sim-

ple model of network growing through a mixture of global search via random attachment

and local search through triadic closure, a model quite similar to the ones proposed by

Vázquez and Jackson and Rogers, which incorporates the two simplest fundamental pro-

cesses shaping the topology of social networks and that inspired later an analogous model

for weighted networks [73]. They attributed the emergence of the observed significant

community to the interplay between the two processes. They pointed out that triadic

closure tends to enlarge existing communities because when the triangles start to be

formed in regions with high density of links they also tend to be confined there. Instead

the random links made by new nodes tends to form bridges between communities. In

a certain sense they wrote about the emergence of communities but they never really

explained how communities originate. We will explain the mechanism of the emergence

in detail in the next Section.

Before concluding we have have to say that although social networks represent the

contest in which the triad formation has the most intuitive interpretation in terms of

acquaintance, triadic closure can be considered a ‘universal’ mechanism in the sense that

it can be observed in a variety of different real complex systems under different forms.

For example in the contest of technological networks the triadic closure is a direct

consequence of what is often called the copying mechanism [74, 75]. If we consider the

evolution of the World Wide Web, new pages are usually created by making a copy of
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the hyperlinks of other pages. A single copying process can form either closed triads, if

the copied hyperlinks refer to pages hyperlinked in turn, or otherwise open triads that

later could become closed thanks to other mechanisms. It’s intuitively clear that the

reiteration of the copying mechanism alone is a powerful tool for the formation of triads.

Analogously in a network of scientific citations, where nodes represent papers and directed

links represent citation from a paper to another, authors who publish a new article usu-

ally cite a paper along with the relevant papers that they find in its bibliography. Popular

in this sense is the model of growing network by copying (GNC) proposed by Karpivsky

and Redner [75]. The network is directed and it grows by addition of one link at a time.

New nodes randomly select a target node and connect to it (outgoing link), as well as

to all ancestor nodes of the target node (neighbours to which the target node points ).

Thus if new nodes choose only the root node as the target, the resulting network is a

star graph. In the opposite scenario, if the target node is always the most recent node

added in the network the copying mechanism generates a complete graph.

Last, in network biology, the fundamental mechanism which leads to triadic closure

is called duplication − divergence and has been successfully implemented in models of

growing networks to explain the evolution of the proteome, the network describing the

physical interactions between the proteins in the cell [69, 76–79]. When the genome is

duplicated, a single gene can undergo a mutation and starts to code for a protein which

will be similar to the one originally coded one (before the mutation) but not exactly

the same. From a network biology perspective we could say that this new protein will

inherit almost the same set of physical interactions of the protein coded by the original

gene. Thus in a network model of the proteome the evolution determined by a gene’s

mutation can be represented as the duplication of a node, representing the original

protein, along with all its connections, and the deletion and eventually the creation of

some links (divergence), representing the lost of some interactions and the acquisition

of new ones due to the mutation in the protein itself (see Figure 2.4). It is easy to

figure that this biological version of the copying easily leads to the closure of triads in

the network evolution. Using this model Pastor-Satorras, Smith and Solé determined

the two average probabilities respectively of deletion of interactions and of appearance

of new ones in the proteome of the S.cervisiae by tuning the exponent of the power-law

degree distribution of the model to the value measured experimentally. They also found

that for those values of the probabilities more than 40 % of the nodes in the network

model become disconnected, consistently with the experimental observation that 50 % of

duplicated genes lose their function after the duplication and the other half experience

functional divergence. Later Solé and Valverde realized that this model of biological

network show spontaneous emergence of modularity in its structure. They suggested

that random mutations, which lead to duplication−divergence, are able to explain alone
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duplication 

divergence 

Figure 2.4: In the duplication-divergence model a node (black arrow) is chosen to be
duplicated along with its connections. Then its links are removed with a certain proba-
bility δ and new links are created with probability α.

the modularity observed everywhere in biological systems. Moreover, being modularity

a result of biological evolution, they suggested that evolution itself results from the inner

complexity of the system: modularity structure emerge without any use of any explicit

parameters, such as fitness, or of any external environmental pressure, proper or other

classes of models [9], in an opposite perspective to the one of Kashtan et al. [80] who

showed that modularity can emerge in a logical network circuit when it evolves under a

modular changing environment (modular varying logic tasks).

The truth is that in the duplication − divergence model the role of the environment

is actually hidden in those values of the probabilities that determine the deletion and

addition of interactions. Nevertheless the important and interesting debate of whether

modularity arises in biological systems because of internal complexity generated by small

random processes or because of the external pressure of the environment is still open.

All the examples seen reveal the universal character of the triadic closure process

and its crucial role in shaping the mesoscale structure of a variety of different real-world

networks. In the next Section we will discuss under which conditions the triadic closure

models are able to generate communities and how the communities originate. We will

incorporate in a model of network growth driven by triadic closure the idea of fitness

through a node parameter η quantifying the different degree of ability of each node

to attract and connect new links during the evolution, and we we will show how the

distribution of the fitness of the nodes importantly affect the evolution and the size

distribution of the communities.
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2.3 Emergence of community structure in an evolving net-

work model

2.3.1 The basic model including triadic closure

We begin with what is possibly the simplest model of network growth based on triadic

closure. The starting point is a small connected network of n0 nodes and m0 ≥ m links.

The basic model contains two ingredients:

• Growth. At each time a new node is added to the network with m links.

• Proximity bias. The probability to attach the new node to node i depends on the

order in which the links are added.

The first link of the new node is attached to a random node i1 of the network. The

probability that the new node is attached to node i1 is then given by

Π[0](i1) =
1

n0 + t
. (2.2)

The second link is attached to a random node of the network with probability

1 − p, while with probability p it is attached to a node chosen randomly among

the neighbours of node i1. Therefore in the first case the probability to attach to

a node i2 6= i1 is given by

Π[0](i2) =
(1− δi1,,i2)

n0 + t− 1
, (2.3)

where δi1,i2 indicates the Kronecker delta, while in the second case the probability

Π[1](i2) that the new node links to node i2 is given by

Π[1](i2) =
ai1,i2
ki1

, (2.4)

where aij is the adjacency matrix of the network and ki1 is the degree of node i1.

• Further edges. For the model with m > 2, further edges are added according to

the “second link” rule in the previous point. With probability p, and edge is added

to a random neighbour without a link of the first node i1. With probability 1− p,
a link is attached to a random node in the network without a link already. A total

of m edges are added, 1 initial random edge and m− 1 involving triadic closure or

random attachment.
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Figure 2.5: Basic model. One link associated to a new node i is attached to a randomly
chosen node j, the other links are attached to neighbours of j with probability p, closing
triangles, or to other randomly chosen nodes with probability 1− p.

In Figure 2.5 the attachment mechanism of the model is schematically illustrated.

For simplicity we discuss here the case m = 2. In the basic model the probability

that a node i acquires a new link at time t is given by

1

t

(2− p) + p
∑
j

aij
kj

 . (2.5)

In an uncorrelated network, where the probability pij that a node i is connected to a

node j is pij =
kikj
〈k〉n (n being the number of nodes of the network), we might expect that

the proximity bias always induces a linear preferential attachment, i.e.∑
j

aij
kj
∝ ki, (2.6)

but for a correlated network this guess might not be correct. Therefore, assuming, as

supported by the simulation results (see Figure 2.6), that the proximity bias induces a

linear or sublinear preferential attachment, i.e.

Θi = p
∑
j

aij
kj
' ckθi , (2.7)
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with θ = θ(p) ≤ 1 and c = c(p), we can write the master equation [81] for the average

number nk(t) of nodes of degree k at time t. from the simulation results it is found that

the function θ(p) is an increasing function of p for m = 2. Moreover the exponent θ is

also an increasing function of the number of edges of the new node m. Assuming the

scaling in Eq. 2.7, the master equation for m = 2 reads

nk(t+ 1) = nk(t) +
2− p+ c(k − 1)θ

t
nk−1(t)(1− δk,2)−

2− p+ ckθ

t
nk(t) + δk,2. (2.8)

In the limit of large values of t, we assume that the degree distribution P (k) can be

found as nk/t→ P (k). So we find the solution for P (k)

P (k) = C
1

3− p+ ckθ

k−1∏
j=1

(
1− 1

3− p+ cjθ

)
, (2.9)

where C is a normalization factor. This expression for θ < 1 can be approximated in the

continuous limit by

P (k) ' D 1

3− p+ ckθ
e−(k−1)G(k−1,θ,c) , (2.10)

where D is the normalization constant and G(k, θ, c) is given by

G(k, θ, c) = −θ 2F1

(
1,

1

θ
, 1 +

1

θ
,− ckθ

3− p

)
+θ 2F1

(
1,

1

θ
, 1 +

1

θ
,− ckθ

2− p

)
+ log

(
1− 1

3− p+ ckθ

)
. (2.11)

In this case the distribution is broad but not power law. For θ = 1, instead, the distri-

bution can be approximated in the continuous limit by a power law, given by

P (k) ' D 1

(3− p+ ck)1/c+1
, (2.12)

where D is a normalization constant. Therefore we find that the network is scale free

only for θ = 1, i.e. only in the absence of degree correlations. In order to confirm the

result of our theory, we have extracted from the simulation results the values of the

exponents θ = θ(p) as a function of p. With these values of the exponents θ = θ(p),

that turn out to be all smaller than 1, we have evaluated the theoretically expected

degree distribution P (k) given by Eq. 2.10 and we have compared it with simulations

(see Figure 2.7), finding optimal agreement.
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Figure 2.6: Scaling of Θ = 〈Θi〉ki=k, the average of Θi, performed over nodes of degree
ki = k, versus the degree k. This scaling allows us to define the exponents θ = θ(p)
defined by Eq. 2.7. The figure is obtained by performing 100 realizations of networks of
size n = 100 000.

We remark that this model has been already studied in independent papers by

Vázquez [69] and Jackson [70], who claimed that the model yields always power law

degree distributions. Our derivation for m = 2 shows that this is not correct, in general,

and in particular it is not correct when the growing network exhibits degree correlations,

in which case we do not expect that the probability to reach a node of degree kA by

following a link is proportional to kA. When the network is correlated we always find

θ < 1, i.e. the effective link probability is sublinear in the degree of the target node.

We note however, that the duplication model [75, 77, 78], in which every new node is

attached to a random node and to each of its neighbor with probability p, displays at

the same time degree correlations and power-law degree distribution.

We also find that the model spontaneously generates communities during the evo-

lution of the system. To quantify how pronounced communities are, we use a measure
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Figure 2.7: Degree distributions of the basic model, for different values of the parameter
p. The continuous lines indicate the theoretical predictions of Eq. 2.10, the symbols the
distributions obtained from numerical simulations of the model. The figure is obtained
by performing 100 realizations of networks of size n = 100 000.

called embeddedness, which estimates how strongly nodes are attached to their own clus-

ter. Embeddedness, which we shall indicate with ξ, is defined as follows:

ξ =
1

nc

∑
c

kcin
kctot

, (2.13)

where kcin and kctot are the internal and the total degree of community c and the sum

runs over all nc communities of the network. If the community structure is strong, most

of the neighbours of each node in a cluster will be nodes of that cluster, so kcin will be

close to kctot and ξ turns out to be close to 1; if there is no community structure ξ is close

to zero. However, one could still get values of embeddedness which are not too small,

even in random graphs, which have no modular structure, as kcin might still be sizeable

there. To eliminate such borderline cases, we introduce a new variable, the node-based

embeddedness, that we shall indicate with ξn. It is based on the idea that for a node to

be properly assigned to a cluster, it must have more neighbours in that cluster than in
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any of the others. This leads to the following definition

ξn =
1

n

∑
i

ki,in − kmax
i,ext

ki
, (2.14)

where ki,in is the number of neighbours of node i in its cluster, kmax
i,ext is the maximum

number of neighbours of i in any one other cluster and ki the total degree of i. The sum

runs over all n nodes of the graph. For a proper community assignment, the difference

ki,in− kmax
i,ext is expected to be positive, negative if the node is misclassified. In a random

graph, and for subgraphs of approximately the same size, ξn would be around zero. In a

set of disconnected cliques (a clique being a subgraph where all nodes are connected to

each other), which is the paradigm of perfect community structure, ξn would be 1.

In Figure 2.8a we show a heat map for ξn as a function of the two main variables

of the model, the probability p and the number of edges per node m, which is half

the average degree. Communities were detected with non-hierarchical Infomap [51] in

all cases. Results obtained by applying the Louvain algorithm [49] (taking the most

granular level to avoid artefacts caused by the resolution limit [82]) yield a consistent

picture. All networks are grown until n = 50 000 nodes. We see that large values of ξn

are associated to the bottom left portion of the diagram, corresponding to high values

of the probability of triadic closure and to low values of degree. So, a high density of

triangles ensures the formation of clusters, provided the network is sufficiently sparse.

In Figure 2.8b we present an analogous heat map for the average clustering coefficient

C, which is defined [62] as

C =
1

n

∑
i

∑
j,k

aijajkaki
ki(ki − 1)

(2.15)

where aij is the element of the adjacency matrix of the graph and ki is again the degree

of node i. Figure 2.8b confirms that C is the largest when p is high and m is low, as

expected.

The mechanism of formation and evolution of communities is schematically illustrated

in Figure 2.9. When the first denser clumps of the network are formed (a), out of random

fluctuations in the density of triangles newly added nodes are more likely to close triads

within the protoclusters than between them (b). As more nodes and links are added,

the protoclusters become larger and larger and their internal density of links becomes

inhomogeneous, so there will be a selective triadic closure within the denser parts, which

yields a separation into smaller clusters (c). This cycle of growing and splitting plays

repeatedly along the evolution of the system.
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Figure 2.8: Heat map of node-based embeddedness (a) and average clustering coefficient
(b) as a function of p and m for the basic model. Community structure (higher embed-
dedness and clustering coefficient) is pronounced in the lower left region when m is not
too large (sparse graphs) and when the probability of triadic closure p is very high. For
each pair of parameter values we report the average over 50 network realizations. The
white area in the upper right corresponds to systems where a single community, consist-
ing of the whole network, is found. Here one would get a maximum value 1 for ξn, but
it is not meaningful, hence we discard this portion of the phase diagram, as well as in
Figures 2.11 and 2.12.

(a) (b) (c)

Figure 2.9: Schematic illustration of the formation and evolution of communities. Initial
inhomogeneities in the link density make more likely the closure of triads in the denser
parts, that keep growing until they become themselves inhomogeneous, leading to a split
into smaller communities (different colors).
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Figure 2.10: Evolution of node-based community embeddedness ξn along the growth of
the network. The curves refer to the extreme cases of absence of triadic closure (lower
curve), yielding a random graph without communities, and of systematic triadic closure
(upper curve), yielding a graph with pronounced community structure. For the latter
case, we magnify in the inset the initial portion of the curve, to highlight the sudden
drops of ξn, indicated by the arrows, which correspond to the breakout of clusters into
smaller ones.

In Figure 2.10 we show the time evolution of the node-based embeddedness ξn during

the growth of the system, until 500 nodes are added to the network, m = 2. We consider

the two extreme situations p = 0, corresponding to the absence of triadic closure and

p = 1, where both links close a triangle every time and there is no additional noise. In the

first case (green line), after a transient, ξn sets to a low value, with small fluctuations;

in the case with pure triadic closure, instead, the equilibrium value is much higher,

indicating strong community structure, and fluctuations are modest. In contrast with the

random case, we recognize a characteristic pattern, with ξn increasing steadily and then

suddenly dropping. The smooth increase of ξn signal that the communities are growing,

the rapid drop that a cluster splits into smaller pieces: in the inset such breakouts are

indicated by arrows. Embeddedness drops when clusters break up because the internal

degrees ki,in of the nodes of the fragments in Eq. 2.14 suddenly decrease, since some of

the old internal neighbours belong to a different community, while the values of kmax
i,ext are

typically unaffected.
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Figure 2.11: Heat map of node-based embeddedness (a) and average clustering coefficient
(b) as a function of Pt and m for the model by Holme and Kim [65]. For each pair of
parameter values we report the average over 50 network realizations. The white area in
the upper right corresponds to systems where a single community, consisting of the whole
network, is found, which is not interesting. The diagrams look qualitatively similar to
that of the basic model (Figure 2.8), with highest embeddedness and clustering coefficient
in the lower left region.

To show that the emergence of the community structure by triadic closure is not

model-dependent we will analyse two other different models of evolving network enforcing

triadic closure.

The first one is the model by Holme and Kim [65], already introduced in Section 2.2,

where we have a growing networks in which new nodes sets a link with an existing node,

chosen with a probability proportional to the degree of the latter, and other m − 1 by

attaching with a probability Pt to a random neighbour of the node which received the

most recent preferentially-attached link, otherwise with a probability 1− Pt to another

node chosen with preferential attachment. By varying Pt it is possible to tune the level

of clustering into the network, while the degree distribution is the same as in the BA

model, i.e. a power law with exponent −3, for any value of Pt. In Figure 2.11 we show

the same heat map as in Figure 2.8 for this model, where we now report the probability

Pt on the y-axis. Networks are again grown until n = 50 000 nodes. The picture is very

similar to what we observe for the basic model.

The second one is the networked society model by Marsili et al. [83], which is not based

on a growth process. The model is a model for temporal networks [84], in which the

links are created and destroyed on the fast time scale while the number of nodes remains
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constant. The starting point is a random graph with n nodes. Then, three processes

take place, at different rates:

1. any existing link vanishes (rate λ);

2. a new link is created between a pair of nodes, chosen at random (rate η);

3. a triangle is formed by joining a node with a random neighbour of one of his

neighbours, chosen at random (rate ξM ).

In our simulations we start from a random network of n = 50 000 nodes with average

degree 10. The three rates λ, η and ξM can be reduced to two independent parameters,

since what counts is their relative size. The number of links deleted at each iteration is

proportional to λM , where M is the number of links of the network, while the number

of links created via the two other processes is proportional to ηn and ξMn, respectively.

The number of links M varies in time but in order to get a non-trivial stationary state,

one should reach an equilibrium situation where the numbers of deleted and created

links match. A variety of scenarios are possible, depending on the choices of the param-

eters. For instance, if ξM is set equal to zero, there are no triads, and what one gets

at stationarity is a random graph with average degree 2η/λ. So, if η � λ, the graph is

fragmented into many small connected components. In one introduces triadic closure,

the clustering coefficient grows with ξM if the network is fragmented, as triangles con-

centrate in the connected components. Moreover the model can display a veritable first

order phase transition and in a region of the phase diagram displays two stable phases:

one corresponding to a connected network with large average clustering coefficient and

the other one corresponding to a disconnected network. Interestingly, if there is a dense

single component, the clustering coefficient decreases with ξM . The degree distribution

can follow different patterns too: it is Poissonian in the diluted phase, where the system

is fragmented, and broad in the dense phase, where the system consists of a single com-

ponent with an appreciable density of links. In Figure 2.12 we show the analogous heat

map as in Figure 2.8 and 2.11, for the two parameters λ and ξM . The third parameter

η = 1. We consider only configurations where the giant component covers more than a

half of the nodes of the network. The diagrams are now different because of the different

role of the parameters, but the picture is consistent nevertheless. The clustering coeffi-

cient C is highest when the ratio of λ and ξM lies within a narrow range, yielding a sparse

network with a giant component having a high density of triangles and a corresponding

presence of strong communities.
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Figure 2.12: Heat map of node-based embeddedness (a) and average clustering coefficient
(b) as a function of the rates λ and ξM for the model by Marsili et al. [83] (η = 1).
For each pair of parameter values we report the average over 50 network realizations.
The white area in the upper right corresponds to systems where a single community,
consisting of the whole network, is found, which is not interesting. These diagrams have
better communities (higher embeddedness and clustering coefficient) towards the upper
right, different from those in Figures 2.8 and 2.11, because of the different meaning
and effect of the parameters. However, there is a strong correspondence between high
clustering coefficient and strong community structure, as in the other models.

2.3.2 The triadic closure model including fitness of the nodes

We now introduce a variant of the basic model, where the link attractivity depends on

some intrinsic fitness of the nodes [85, 86]. We will assume that the nodes are not all

equal and assign to each node i a fitness ηi representing the ability of a node to attract

new links. We have chosen to parametrize the fitness with a parameter β > 0 by setting

ηi = e−βεi , (2.16)

with ε chosen from a distribution g(ε) and β representing a tuning parameter of the

model. We take

g(ε) = (1 + ν)εν , (2.17)
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with ε ∈ (0, 1). When β = 0 all the fitness values are the same, when β is large small

differences in the εi cause large differences in fitness. For simplicity we assume that the

fitness values are quenched variables assigned once for all to the nodes. As in the basic

model without fitness, the starting point is a small connected network of n0 nodes and

m0 ≥ m links. The model contains two ingredients:

• Growth. At time t a new node is added to the network with m ≥ 2 links.

• Proximity and fitness bias. The probability to attach the new node to node i1

depends on the order in which links are added.

The first link of the new node is attached to a random node i1 of the network

with probability proportional to its fitness. The probability that the new node is

attached to node i1 is then given by

Π[0](i1) =
ηi1∑
j ηj

. (2.18)

For m = 2 the second link is attached to a node of the network chosen according to

its fitness, as above, with probability 1− p, while with probability p it is attached

to a node chosen randomly between the neighbours of the node i1 with probability

proportional to its fitness. Therefore in the first case the probability to attach to

a node i2 6= i1 is given by

Π[0](i2) =
ηi2(1− δi1,i2)∑

j 6=i1 ηj
, (2.19)

with δi1,i2 indicating the Kronecker delta, while in the second case the probability

Π[1](i2) that the new node links to node i2 is given by

Π[1](i2) =
ηi2ai1,i2∑
j ηjai1,j

, (2.20)

where aij indicates the matrix element (i, j) of the adjacency matrix of the network.

• Further edges. For m > 2, further edges are added according to the ‘second link’

rule in the previous point. With probability p an edge is added to a neighbour of

the first node i1, not already attached to the new node, according to the fitness

rule. With probability 1− p, a link is set to any node in the network, not already

attached to the new node, according to the fitness rule.
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For simplicity we shall consider here the case m = 2. The probability that a node i

acquires a new link at time t is given by

e−βεi

t

(2− p) + p
∑
j

aij∑
r ηrajr

 . (2.21)

Similarly to the case without fitness, here we will assume, supported by simulations, that

Θi = p
∑
j

ηjaij∑
r ηrajr

' ckθ(ε)i , (2.22)

where, for every value of p, θ = θ(ε) ≤ 1 and c = c(ε).

We can write the master equation for the average number nk,ε(t) of nodes of degree

k and energy ε at time t, as

nk,ε(t+ 1) = nk,ε(t)

+
e−βε[2− p+ c(ε)(k − 1)θ]

t
nk−1,ε(t)(1− δk,2)

−e
−βε[2− p+ c(ε)kθ(ε)]

t
nk,ε(t) + δk,2g(ε) . (2.23)

In the limit of large values of t we assume that nk,ε/t→ P ε(k), and therefore we find

that the solution for P ε(k) is given by

P ε(k) = C(ε)
1

1 + e−βε[2− p+ c(ε)kθ(ε)]

×
k−1∏
j=1

{
1− 1

1 + e−βε[2− p+ c(ε)jθ(ε)]

}
, (2.24)

where C(ε) is the normalization factor. This expression for θ(ε) < 1 can be approximated

in the continuous limit by

P ε(k) ' D(ε)
e−(k−1)G[k−1,ε,θ(ε),c(ε)]

1 + e−βε[2− p+ c(ε)kθ(ε)]
, (2.25)
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where D(ε) is the normalization constant and G(k, ε, θ, c) is given by

G(k, ε, θ, c) = −θ2F1

(
1,

1

θ
, 1 +

1

θ
,− ckθ

2− p+ eβε

)
+θ2F1

(
1,

1

θ
, 1 +

1

θ
,− ckθ

2− p

)
+ log

(
1− 1

1 + eβε

2−p+ckθ

)
. (2.26)

When θ(ε) = 1, instead, we can approximate P ε(k) with a power law, i.e.

P ε(k) ' D(ε)
[
1 + e−βε (2− p+ c(ε)k)

]− e−βε
c(ε)
−1
. (2.27)

Therefore, the degree distribution P (k) of the entire network is a convolution of the

degree distributions P ε(k) conditioned on the value of ε, i.e.

P (k) =

∫
dεP ε(k) . (2.28)

As a result of this expression, we found that the degree distribution can be a power

law also if the network exhibits degree correlations and θ(ε) < 1 for every value of ε.

Moreover we observe that for large values of the parameter β the distribution becomes

broader and broader until a condensation transition occurs at β = βc with the value

of βc depending on both the parameters ν and p of the model. For β > βc successive

nodes with maximum fitness (minimum value of ε) become ‘superhubs’, attracting a

finite fraction of all the links, similarly to what happens in Ref. [85]. In Figure 2.13 we

see the degree distribution of model, obtained via numerical simulations, for different

values of β. The continuous lines, illustrating the theoretical behaviour, are well aligned

with the numerical results, as long as β < βc.

In Figure 2.14 we show the heat map of ξn and C for the model, as a function of

the parameters p and β. The number of edges per node is m = 2, and the networks

consist of 50 000 nodes. Everywhere in this work, we set the parameter ν = 6. For

β = 0 all nodes have identical fitness and the model reduces itself to the basic model. So

we recover the previous results, with the emergence of communities for sufficiently large

values of the probability of triadic closure p, following a large density of triangles in the

system. The situation changes dramatically when β starts to increase, as we witness

a progressive weakening of community structure, while the clustering coefficient keeps

growing, which appears counterintuitive. In the analogous diagrams for m = 5, we see

that this pattern holds, though with a weaker overall community structure and lower

values of the clustering coefficient.



Chapter 2. Triads’ formation in networks and emergence of modular structure 33

10
0

10
1

10
2

10
3

10
4

10
5

10
−8

10
−6

10
−4

10
−2

10
0

k

P
(k

)

 

 

β=16
β=6
β=2
theory

Figure 2.13: Degree distribution of the model with fitness, for three values of the param-
eter β, which indicates the heterogeneity of the distribution of the fitness of the nodes.
Symbols stand for the results obtained by building the network via simulations, con-
tinuous lines for our analytical derivations. The figure is obtained by performing 100
realizations of networks of size n = 100 000 with ν = 6.

When β is sufficiently large, communities disappear, despite the high density of tri-

angles. To check what happens, we compute the probability distribution of the scaled

link density ρ̃ and the node-based embeddedness ξn of the communities of the networks

obtained from 100 runs of the model, for three different values of β: 0, 6 and 20. All net-

works are grown until 100 000 nodes. The scaled link density ρ̃ of a cluster is defined [87]

as

ρ̃ =
2lc

nc − 1
, (2.29)

where lc and nc are the number of internal links and of nodes of cluster c. If the cluster

is tree-like, ρ̃ ≈ 2, if it is clique-like it ρ̃ ≈ nc, so it grows linearly with the size of the

cluster. The distributions of ξn and ρ̃ are shown in Figure 2.16. They are peaked, but

the peaks undergo a rapid shift when β goes from 0 to 20. The situation resembles what

one usually observes in first-order phase transitions. The embeddedness ends up peaking
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Figure 2.14: Heat map of node-based embeddedness (a) and average clustering coefficient
(b) as a function of the probability of triadic closure p and the heterogeneity parameter
β of the fitness distribution of the nodes, for the model with fitness. The number of
new edges per node is m = 2. For each pair of parameter values we report the average
over 50 network realizations. When β = 0 we recover the basic model, without fitness.
We see the highest values of embeddedness in the lower left, while highest values of the
clustering coefficient are in the lower right. When β increases, we see a drastic change
of structure in contrast to the previous pattern: communities disappear, whereas the
clustering coefficient gets higher.

at low values, quite distant from the maximum 1, while the scaled link density eventually

peaks sharply at 2, indicating that the subgraphs are effectively tree-like.

What kind of objects are we looking at? To answer this question, in Figure 2.17

and 2.18 we display two pictures of networks obtained by the fitness model, for β = 0

and β = 20, respectively. The number of nodes is 2 000, and the number of edges per

node m = 2. The probability of triadic closure is p = 0.97, as we want a very favourable

scenario for the emergence of structure. The subgraphs found by our community

detection method (non-hierarchical Infomap, but the Louvain method yields a similar

picture) are identified by the different colors. The insets show an enlarged picture of the

subgraphs, which clarify the apparent puzzle delivered by the previous diagrams. For

the basic model β = 0 (Figure 2.17), the subgraphs are indeed communities, as they are

cohesive objects which are only loosely connected to the rest of the graph. The situation

remains similar for low values of β. However, for sufficiently high β (Figure 2.18), a

phenomenon of link condensation takes place, with a few superhubs attracting most of
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Figure 2.15: Same as Figure 2.14, but for m = 5. The picture is consistent with the case
m = 2, but communities are less pronounced.
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Figure 2.16: Probability distributions of the scaled link density ρ̃ (left) and node-
based embeddedness ξn (right) of the communities of the fitness model, for m = 2 and
β = 0, 6, 20. For each β-value we derived 100 network realizations, each with 100 000
nodes. We see that at β = 0, the detected communities satisfy the expectations of good
communities, while at β = 20 they do not.

the links of the network [85]. Most of the other nodes are organized in groups which are

“shared” between pairs (for m = 2, more generally m-ples) of superhubs (see figure).

The community embeddedness is low because there are always many links flowing out

of the subgraphs, towards superhubs. Besides, since the superhubs are all linked to

each other, this generates high clustering coefficient for the subgraphs, as observed in
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Figure 2.17: Picture of a network with 2 000 nodes generated by the fitness model, for
p = 0.97, m = 2 and β = 0. Since β = 0 fitness does not play a role and we recover
the results of the basic model. Colors indicate communities as detected by the non-
hierarchical Infomap algorithm [51].

Figure 2.14 and 2.15. In fact, the clustering coefficient for the non-hubs attains the

maximum possible value of 1, as their neighbours are nodes which are all linked to each

other.

These results show that triadic closure is alone capable to generate systems with all

the characteristic properties of complex networks, from fat-tailed degree distributions

to high clustering coefficients and strong community structure. Communities emerge

naturally via triadic closure, which tend to generate cohesive subgraphs around portions

of the system that happen to have higher density of links, due to stochastic fluctuations.
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Figure 2.18: Picture of a network with 2 000 nodes generated by the fitness model, for
p = 0.97, m = 2 and β = 20. The growing process is the same as in Figure 2.17, but the
addition of fitness changes the structural organization of the network. As seen in the
inset, node aggregations form around hub nodes with high fitness. Looking at the inset
we see that such aggregations do not satisfy the typical requirements for communities:
they are internally tree-like, and there are more external edges (blue or light gray) than
internal (red or dark gray) touching its nodes. In particular, internal edges only go from
regular nodes to superhubs.

When clusters become sufficiently large, their internal structure exhibits in turn link

density inhomogeneities, leading to a progressive differentiation and eventual separation

into smaller clusters (separation in the sense that the density of links between the parts

is appreciably lower than within them). This occurs both in the basic version of network

growth model based on triadic closure, and in more complex variants. The strength of

community structure is the higher, the sparser the network and the higher the probability

of triadic closure. We have also introduced a new variant, in that link attractivity

depends on some intrinsic appeal of the nodes, or fitness. Here we have seen that, when

the distribution of fitness is not too heterogeneous, community structure still emerges,

though it is weaker than in the absence of fitness. By increasing the heterogeneity of the

fitness distribution, instead, we observe a major change in the structural organization

of the network: communities disappear and are replaced by special subgraphs, whose
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nodes are connected only to superhubs of the network, i.e. nodes attracting most of the

links. Such structural phase transition is associated to very high values of the clustering

coefficient.



Chapter 3

Characterisation of mesoscopic

structures in multiplex networks

3.1 Communities in multiplex networks

In this Chapter we will focus on the mesoscopic structure of multiplex networks, net-

works that are formed by a set of N nodes interacting through M different layers, as

discussed in1.2. Indeed it has been observed that the communities on different layers of

a multiplex network typically overlap among each others, forming mesoscale structures

that span across the different layers. These multiplex communities have an intrinsic mul-

tiplex nature and to characterise their organisation and their emergence is central for

generalising the concept of community to multilayer networks [88, 89].

In the following Section we will discuss a methodology to to characterise the correla-

tions of multiplex networks at the mesoscopic scale, and to use this information in order

to build a network between the layers of multiplex datasets. In particular we propose an

information theory measure Θ̃S , able to define similarities between the layers of a mul-

tiplex respect to their mesoscopic structures. This similarity is more significant when

groups of nodes densely connected with each others are simultaneously present on differ-

ent layers, forming overlapping communities. We will apply the proposed methodology

to characterise the American Physical Society (APS) Collaboration Multiplex Networks

extracted from the APS dataset [90], that is formed by the authors of the APS papers,

and by layers corresponding to the Physics and Astronomy Classification Scheme (PACS)

codes [91]: two authors are linked on layer α if they have co-authored a paper with PACS

code corresponding to layer α and since the PACS codes are organized in hierarchical

39
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levels we will see that it is possible to construct two APS Collaboration Multiplex Net-

works corresponding to layers describing either the first or the second level of the PACS

hierarchy.

In Section 3.3 we address the problem of understanding how the multiplex community

structure can emerge in real world collaboration multiplex networks. We will propose a

simple model to explain the appearance, coexistence and co-evolution of communities at

the different layers of a multiplex. Our hypothesis is that the formation of communities

in collaboration networks is an intrinsically multiplex process, which is the result of the

interplay between an intra-layer triadic closure process and an inter-layer triadic closure

process. For instance, in the case of scientific collaborations, multiplex communities

naturally arise from the fact that scientists may collaborate with other researchers in their

principal field of investigation and with colleagues coming from other scientific disciplines.

Analogously, actors can prefer either to specialise in a specific genre or instead to explore

different (sometimes dissonant) genres, and these two opposite behaviours undoubtedly

have an impact on the kind of meso-scale structures observed on each of the layers of

of the system. The generative model we propose here mimics two of the most basic

processes that drive the evolution of collaborations in the real world, namely intra- and

inter-layer triadic closure, and is able to explain the appearance of overlapping modular

organisations in multi-layer systems. We will show that the model is able to reproduce

the salient micro-, meso- and macro-scale structure of different real-world collaboration

networks including the APS Collaboration Multiplex Network and the Multiplex Co-

starring Network of actors obtained from the Internet Movie Database (IMDb).



Chapter 3. Characterisation of mesoscopic structures in multiplex networks 41

3.2 Information theory to charaterise multiplex mesoscopic

structures: the Θ̃S indicator

Our goal here is to construct an information theory indicator function Θ̃S to characterise

the similarity in the mesoscopic structure of the layers of a multiplex network. This

indicator function is based on the entropy of network ensembles [92–95], a quantity which

plays a key role when inference problems are addressed using an unbiased information

theory approach [94, 95]. In this Section we define how the indicator function Θ̃S is

defined. We consider a multiplex network formed by N nodes i = 1, 2 . . . , N and M

layers α = 1, 2, . . . ,M . The structure of the multiplex network is characterised by M

adjacency matrices aα of elements aαij = 1 if node i is connected to node j in layer α, or

aαij = 0 otherwise. We indicate with kαi the degree of a node i on layer α, i.e. the number

of neighbours that node i has on α. The nodes having degree kαi = 0 in layer α, are the

isolated nodes, i.e. nodes that are not connected to any other node in the layer α, also

called [20] in the context of multilayer networks “inactive” nodes in layer α. Conversely

all the nodes with kαi > 0 are called “active” nodes in layer α.

We assume that each node i of layer α has a characteristic qαi ∈ {1, . . . , Qα}. The

quantity qαi can for example indicate the community to which the node i belongs. More

in general qαi can represent any feature of the nodes in layer α. Starting from this infor-

mation we can classify the nodes in Pα classes pαi ∈ {1, . . . , Pα} which take into account

at the same time the information about the degree of the nodes and their characteristic

qαi . This is the minimal assumption to capture the structure of networks with communi-

ties induced by the characteristics qα = {qαi }i=1,2...,N , and strong heterogeneities in the

degree. Considering only the partition induced by the characteristics would imply that

in the network we do not consider the structure induced by the degrees, which is clearly

not a viable option for broadly distributed networks.

Including other features of the nodes to define node classes could be a viable option.

In this case the characteristics qα will take into account different features which might

depend on the specific network under consideration. Therefore here we take the class

pαi to be a function of degree kαi and of the characteristic qαi , i.e. pαi = f(kαi , q
α
i ). The

block structure of the network induced by the classes pαi = f(kαi , q
α
i ) is described by

the matrices eα of elements eα(p, p′) indicating the total number of links on the layer α

between nodes of class p and nodes of class p′. We define the entropy Σkα,qα [92–95] of

a layer α as the logarithm of the number of graphs preserving the block structure eα in

a given layer. By considering the number of graphs preserving a given block structure,

we have that this entropy takes the simple expression,
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Σkα,qα = log

∏
p<p′

(
nαpn

α
p′

eα(p, p′)

)∏
p

(
nαp (nαp − 1)/2

eα(p, p)

) , (3.1)

where

eα(p, p′) =
∑
i,j

aαijδ [pαi (kαi , q
α
i ), p] δ

[
pαj (kαi , q

α
i ), p′

]
, (3.2)

for p 6= p′, and e(p, p), n(p) given respectively by

eα(p, p) =
∑
i<j

aαijδ [pαi (kαi , q
α
i ), p] δ

[
pαj (kαi , q

α
i ), p

]
, (3.3)

and

nαp =
∑
i

δ [pαi (kαi , q
α
i ), p] , (3.4)

with δ[x, y] indicating the Kronecker delta. The entropy Σkα,qα is a measure to assess

how much information is encoded in the constraint imposed to the network i.e. the

block structure eα. The smaller is the entropy the smaller is the number of networks

that share the block structure eα. Therefore the smaller is the entropy of an ensemble

the larger is the level of information encoded by the constraint. If for a given assignment

of the characteristics {qαi } the entropy is much smaller than in a random hypothesis

(when the characteristics are reshuffled randomly between the nodes), then the network

structure reflects the characteristic assignment {qαi } and thus the characteristics {qαi }
capture relevant information respect to the network structure. Following this argument

the quantity Θ proposed in [95], which is based on the entropy of network ensembles,

has been shown to be an unbiased indicator able to quantify the specificity of a generic

layer α to the assignment qαi . This information theory quantity is defined as:

Θkα,qα =
Eπ[Σkα,π(qα)]− Σkα,qα√

Eπ[(Σkα,π(qα) − Eπ[Σkα,π(qα)])2]
, (3.5)

where Eπ[...] is the expected value over random uniform permutations π(qα) of the node

characteristics qα in layer α.

Here we propose to use this quantity to compare the similarity between the different

layers in a multiplex network. Indeed we can consider the characteristics qβ of the nodes

in layer β as an induced feature of nodes in layer α and measure by the corresponding

indicator Θkα,qβ how much information the characteristics qβ contain respect to the node

structure of layer α. In particular the indicator Θkα,qβ is given by
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Θkα,qβ =
Eπ[Σkα,π(qβ)]− Σkα,qβ√

Eπ[(Σkα,π(qβ) − Eπ[Σkα,π(qβ)])
2]
. (3.6)

Therefore Θkα,qβ measures the specificity of the layer α respect to the particular set

qβ, which is the assignment of the characteristics of the nodes on layer β.

When one considers a single layer, the entropy is independent on the choice adopted

for classifying isolated (inactive) nodes in layers belonging to multiplex networks. In

fact, we can either group all the isolated nodes in a single class or each isolated node

in a different class, and the entropy value given by Eq. 3.1 does not change because the

isolated nodes have no links attached to them. Instead the indicator function Θkα,qα

might depend on this choice because its construction involves several reshuffling of the

characteristics of the nodes.

When comparing different layers of a multiplex network, the nodes that are active in

one layer might not be active in another layer. Nevertheless, the information carried by

the activity of the node might be significant. For example if two layers have very different

activity patterns, it might occur that the nodes inactive in one layer form a well defined

cluster in the other layer resulting in a very significant information that is important to

capture. Therefore to distinguish between nodes active and inactive in a layer it is a very

convenient choice to classify all the inactive nodes in one layer under a given common

characteristic. A similar type of argument can be made about connected clusters of small

sizes, which are “quasi-isolated” as the nodes belonging to connected clusters of size 2 or

3 etc. Depending on the number of such clusters it might be convenient to classify also

nodes in connected components of size 2 or 3 etc. into given common characteristics as

we will show in the next sections using the concrete examples of the APS Collaboration

Multiplex Networks. Here, if not stated otherwise, we will consider the case in which the

features qα indicates the community of the nodes in layer α and the characteristic pαi
takes a different value for each distinct pair (kαi , q

γ
i ) where kαi 6= 0, while all the nodes

with kαi = 0 form another class of nodes.

In order to compare the level of information carried in layer α by the community

structure in layer β, qβ, with the level of information carried by the proper community

structure, qα, we define the quantity

Θ̃α,β =
Θkα,qβ

Θkα,qα
. (3.7)

The quantity Θ̃α,β is a measure of how layer β is similar to α respect to the community
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Figure 3.1: Diagram showing the method. Panel a): We consider a layer α in a multiplex
network and we define the node classes pα = (kα, qα), where kα indicates the node
degrees and qα the node characteristics on the layer α. These classes induce a block
structure in the network specified by the number of links between the nodes of each
class and the number of links connecting the nodes in different classes. Panel b): The
entropy Σkα,qα given by Eq. 3.1 is calculated and compared with the entropy distribution
obtained in a random hypothesis, by performing random uniform permutations π(qα) of
the characteristics qα of the nodes and subsequently measuring the Σkα,π(qα) values. The
mean Eπ

[
Σkα,π(qα)

]
and standard deviation σπ

[
Σkα,π(qα)

]
of the entropy distribution is

thus calculated. The indicator function Θkα,qα measures the difference between Σkα,qα

and Eπ
[
Σkα,π(qα)

]
in units of σπ

[
Σkα,π(qα)

]
. Panel c): Given a second layer β, Θ̃α,β

characterizes the information about the structure in layer α, carried by the characteristics
of nodes in layer β. In order to define a symmetric indicator function of the similarity
between the layers α and β we define the indicator Θ̃S

α,β that symmetrizes the indicator

function Θ̃α,β.
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assignment q. If Θ̃α,β = 1 the community structure qβ, proper of layer β, carries the

same level of information for the structure of layer α as the community structure qα,

proper of the layer α. It is important to notice that the matrix Θ̃ in principle is not

symmetric. We can construct the symmetric measure Θ̃S
α,β by symmetrising the quantity

Θ̃α,β i.e. by defining

Θ̃S
α,β =

Θ̃α,β + Θ̃β,α

2
. (3.8)

This is a symmetric measure indicating how similar layer α and layer β are with

respect to their community structure. In Figure 3.1 we give a schematic summary of the

method used to construct the similarity measure Θ̃S
α,β.

In a given multiplex network, we can then analyse the entire symmetric matrix Θ̃S

measuring the similarity between the community structure of the layers. This matrix

characterises the entire multiplex network at the layer level, reducing the information

about the network structures to one matrix of similarity between the layers.

In the following Section we will first test this measure on multiplex network bench-

mark models with non trivial community structure, then in the subsequent Section we

will focus on characterising the APS Collaboration Multiplex Networks where the layers

are the collaborations networks of scientists using different PACS numbers.

In this paper we are mostly concerned about similarities in the community structure

of the layers of a multiplex network, nevertheless it has to be stressed that the proposed

approach and similarity measure Θ̃S
α,β is general and it can be used by considering any

available feature of the nodes related to the structure of the layers.

3.2.1 Testing Θ̃S on Benchmark Models

In order to validate on a well defined multiplex architecture our similarity measure Θ̃S

respect to the community structures of different layers of a multiplex network, we have

developed two benchmark models with communities. In particular we want to construct

benchmark multiplex network models with a controlled level of overlap between the

communities in different layers. Given in a generic multilayer the community assignment

qα of the nodes on each layer α, we define the community overlap as

Oc =
2

M(M − 1)

1

N
max
{π}


M∑
α<β

N∑
i=1

δ
[
qαi , π(qβi )

] , (3.9)
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where M indicates the total number of layers and N indicates the total number of nodes,

δ[x, y] indicates the Kronecker delta and the maximum is taken over all the permutations

π(qβ) of the label of the communities in layer β.

We define two benchmark models (see Figure 3.2) based respectively on the Girvan

and Newman (GN) [13] model and on the Lancichinetti - Forunato - Radicchi (LFR)

model [96], which are very well established benchmarks for single networks with com-

munities. The proposed benchmarks are designed to tune the overlap of communities

between different layers of simple multiplex networks having respectively homogeneous

or heterogeneous degree distribution and community size distribution.

For the first benchmark model, the Duplex Network GN model (DNGN) we construct

a duplex network (a multiplex network made of two layers) in which each layer is formed

by a GN network realisation. Therefore each of the layers is formed by N nodes divided

into 4 equal size clusters of size Nc.

The network in each layer is a random network in which each node has a probability

pin to link to nodes of its same community and a probability pout to link to nodes outside

its community. In particular we have chosen pin and pout in order to have for each node,

a mean degree 〈k〉 = 16 and a mean number of links outside the community given by

〈kout〉 = 4. The layers generated in this way have a well defined community structure and

they are essentially random respect to other network characteristics. The characteristic

qαi indicates the community to which a node i belongs on layer α = 1, 2. Here we consider

the possible correlations existing between the community assignment q
[1]
i and q

[2]
i in the

two layers. This community assignment allows us to tune in a control way the level of

overlap between the communities. In particular we label the nodes i = 1 . . . , N in layer

1 according to the following community assignment qαi ,

q
[1]
i =

⌈
i

Nc

⌉
. (3.10)

where the brackets dxe in the right end side of this expression indicate the ceiling function

of x. Therefore we have, for N = 128 and Nc = 32,

q1i =


1 for i ∈ [1, 32]

2 for i ∈ [33, 64]

3 for i ∈ [65, 96]

4 for i ∈ [97, 128]

.

The community assignment in layer 2 will not be in general the same of layer 1. In order

to model overlap of communities we perform a simple “shift” of the labels, parametrised
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with the parameter ρ > 0. In particular we take

q
[2]
i =


⌈
i−ρNc
Nc

⌉
if
⌈
i−ρNc
Nc

⌉
> 0

N
Nc

if
⌈
i−ρNc
Nc

⌉
= 0

.

In general the control parameter ρ takes values 0 ≤ ρ ≤ 0.5. If ρ = 0 there is no

“shift” between the layer partitions (they perfectly match); if ρ > 0 each community in

the first layer overlaps with the corresponding one in the second layer for a fraction of

nodes equal to (1− ρ) ·Nc; thus ρ ·Nc is the number of “shifted” nodes per community.

When ρ = 0.5, N = 128 and Nc = 32, we have

q2i =


1 for i ∈ [17, 48]

2 for i ∈ [49, 80]

3 for i ∈ [81, 112]

4 for i ∈ [1, 16] ∪ [113, 128]

.

Therefore ρ = 0.5 describes the maximum “shift” between the community of the two lay-

ers: each community in the first layer shares 16 nodes with its corresponding community

in the second layer. Given a value of ρ the overall community overlap in the network can

be easily calculated, being Oc = (1− ρ), and in the case of maximum “shift” we obtain

Oc = 0.5.

For the second benchmark model the Duplex Network LFR model (DNLFR), we have

taken a duplex network in which the single layers are constructed according to the LFR

model [96].

1. The network in the first layer is a LFR network, formed by Q communities. The

communities are labelled according to their size in descending order.

2. The network in the second layer is a LFR network with Q communities gener-

ated using the same parameters used for the network in the first layer. Addition-

ally we require that the network in the second layer satisfies a further condition,

which allows us to modulate the overlap between the communities in the two lay-

ers. Specifically, for each second layer candidate, we first label the communities

according to their size in descending order. Then we compare each of them to the

corresponding one in the first layer (panel B Figure 3.2). We calculate the number

of “shifted” nodes Ns given by the sum of the absolute values of the difference
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Figure 3.2: Schematic of the benchmark models DNGN and DNFLR. Panel (A). The
DNGN benchmark model: nodes on both layers (blue and red) are divided into four
communities of equal size Nc, labelled from 1 to 4. Each community of layer 1 overlaps
for a fraction of (1−ρ)·Nc nodes with its corresponding community in layer 2. Panel (B).
The DNLFR benchmark model: on each layer Q = 5 non homogeneous communities are
generated and labelled from 1 to 5 according to their size (left). For a given ρ the total
number of nodes which do not overlap between communities of the same label, Ns, has
values b(ρ−∆ρ) · Sminc ≤ Ns < b(ρ+ ∆ρ) · Sminc, where b...c is the floor function and
Smin is the minimum bound of the power-law distribution from which the community
sizes in the two layers are extracted.

between the corresponding communities sizes, i.e.

Ns =

Q∑
l=1

∣∣∣n[1]l − n[2]l ∣∣∣ , (3.11)

where nαl is the size of the community l in layer α. Finally we retain the candidate

network as the second layer of the duplex network only if

b(ρ−∆ρ) · Sminc ≤ Ns < b(ρ+ ∆ρ) · Sminc, (3.12)

where b. . .c is the floor function. Here ρ and ∆ρ are control parameters of the

benchmark model that modulate the overlap of the communities, and Smin in

Eq. 3.12 is the parameter that in the LFR model fixes the lower bound of the

community sizes. In this way if one considers a sufficient number of multiple
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realisations of the multilayer, and a sufficiently low value of ∆ρ, one gets

〈Ns〉 ' bρ · Sminc. (3.13)

3. Finally, the nodes are relabelled in both layers in order to allow the maximum

community overlap. In particular the labels are reassigned in such a way that the

common number of nodes in the communities that have the same label in the two

layers, is equal to the minimum of the two community sizes. (see Figure 3.2.)

Therefore the average community overlap of the benchmark network is dependent

on ρ and, for a significant number of realisations and low enough values of ∆ρ, is

given by

〈Oc〉 = 1− 〈Ns〉
N
' 1− bρ · Sminc

N
. (3.14)

In order to test the performance of the similarity measure Θ̃S , we apply this measure

to the two duplex network benchmarks, for different values of ρ. Since ρ modulates the

level of community overlap between the layers we expect that the similarity measure Θ̃S

is larger for lower value of ρ (corresponding to larger community overlap Oc between the

layers) and smaller for larger values of ρ (corresponding to smaller community overlap

Oc between the layers). In Figure 3.3 we show the dependence Θ̃S as a function of ρ for

the two proposed benchmark models. In both cases the displayed values Θ̃S are averaged

over 50 benchmark realisations.

For the DNGN benchmark, we considered N = 128, Nc = 32 and ρ ≤ 0.5. The

similarity measure Θ̃S is monotonically decreasing with ρ. For the DNLFR benchmark

the two single layers are generated according to the LFR algorithm with parameters

N = 600 (number of nodes) and Q = 5 (number of communities). The size of each

community is taken from a power-law distribution with lower bound Smin = 60, upper

bound Smax = 180, and power-law exponent τ1 = 1.5. inside the communities the

node degree distribution is also extracted from a power-law distribution with parameters

kmax = 50 (maximum degree), τ2 = 2.6 (power-law exponent), 〈k〉 = 16 (average degree).

For building the DNLFR network we used ∆ρ = 0.05 and ρ ≤ 0.95. Also in the case of the

DNLFR benchmark, where the size of the communities is heterogeneous, Θ̃S decreases

monotonically with ρ.

This result shows that in benchmark models in which the community overlap is

modulated by an external control parameter, Θ̃S decreases together with the community

overlap. Since in general measuring the community overlap involves an optimisation over

a permutation of the community assignment, measuring the community overlap can be

very costly numerically. In this situation calculating Θ̃S could instead give an alternative
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S

ρ

Figure 3.3: The similarity measure Θ̃S between the two layers of the DNGN (blue
diamonds) and DNFLR (orange circles) benchmark models is measured as a function
of the control parameter ρ. When ρ increases the total community overlap between
the layers decreases and Θ̃S decreases monotonically both in the case of homogeneous-
size communities (DNGN) and in the case of heterogeneous-size communities (DNFLR).
Each data point is averaged over 50 benchmark realisations. For the DNFLR model the
parameter ∆ρ was set to 0.05.

way to assess the similarity between the layers of a multiplex network.

In the following, using the concrete examples of the APS Collaboration Multiplex

Networks, we will compare the similarity measure Θ̃S to other existing measures intro-

duced to compare different community assignments in single layers.

3.2.2 The network between the layers of the APS Collaboration Mul-

tiplex Networks

In this Section, we use the similarity matrix Θ̃S to analyse the APS Collaboration Mul-

tiplex Networks. These multiplex networks are extracted from the APS collaboration

dataset [90] recording all the bibliometric information about the papers published in the

APS journals.

The network is formed by a set of N nodes representing the APS authors. Since there

is no agreement on disambiguation techniques for the author names, we have identified

each author with the initials of his/her first name and last name. The layers correspond

to different Physics and Astronomy Classification Scheme (PACS) codes [91] describing

the subject of the papers. Two authors are linked in a given layer α if they are co-authors

of at least one paper having the PACS number corresponding to layer α. Since PACS
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numbers are organised in a hierarchical way (the first digit of the number indicates the

general field of physics while the second digit specifies the ambit inside that field), we

have constructed two multiplex networks whose layers correspond respectively to the

first and second hierarchical level of the PACS codes. The APS Collaboration Multiplex

Network related to the first level of the hierarchy of PACS codes is made of M1 = 10

layers each one describing the collaboration network in a general field of physics. The

APS Collaboration Multiplex Network at the second level of the hierarchy is made of

M2 = 66 layers each one describing the collaboration network in a specific ambit of

physics (second level of the PACS code hierarchy).

In extracting the APS Collaboration Multiplex Networks we considered all the papers

until 2014 with less than ten co-authors. This threshold was introduced to exclude papers

coming from big collaborations that follow different statistical properties with respect to

the rest of the dataset. With this threshold, our dataset includes a consistent fraction

of the whole dataset (' 97% of the total number of papers) and a number of authors

N = 180, 539.

The layers of the APS Collaboration Multiplex Networks are characterised by a sig-

nificantly different activity pattern of the nodes. Moreover roughly 0.7% of nodes belong

to connected components of size 2 while only about 0.006% of the nodes belongs to

connected components of size 3. Therefore we consider here the case in which the char-

acteristics {qαi } indicate the community of the nodes in layer α and the class pαi of node

i in layer α takes a different value for each distinct pair (kαi , q
γ
i ) as long as the node

i is not isolated kαi > 0, and it belongs to a community of more than two nodes. All

the isolated nodes belong a the same class p̃. All the nodes belonging to a two-node

community belong to another class p̂.

Let us first characterise the mesoscale similarities between the M1 = 10 layers of

the APS Collaboration Multiplex Network in the main subjects of physics, described by

the first level of the PACS code hierarchy. The similarity matrix Θ̃S is constructed in

two different ways, using either the Informap community detection algorithm [97] and

the Louvain algorithm [49], and averaging in both cases over 350 random permutations

of the community assignments. For simplicity we will refer to these two matrices as

Infomap-Θ̃S and Louvain-Θ̃S . The two matrices are reported in Figure 3.4 in the form

of heat-maps. The patterns shown by the two heat-maps are very similar, denoting

that from a qualitatively point of view the measure Θ̃S is not affected by the choice of

the algorithm used to perform the community detection for the network under study.

We can observe that, in general, clusters in the APS Collaboration Multiplex Network

extend across multiple layers. As expected, layers describing collaborations in general or

interdisciplinary fields such as General Physics or Interdisciplinary Physics, which often
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involve people from different specific ambits of physics, show high values of Θ̃S respect to

several other layers while more specific fields, such as Gases&Plasma, show lower values

of Θ̃S respect to the other layers.

Given this similarity measure between the layers of the multiplex, one can build a

network of networks whose nodes represent the M1 = 10 networks of collaboration in

general fields of physics and whose weighted edges are the values Θ̃S
α,β and represent the

similarity between the M1 networks respect to their community structure. This network

of layers is thus a weighted fully-connected network showing itself a significant community

structure and revealing how the pattern of collaboration between scientists is organized

across different fields of physics. In order to characterise this community structure

between the layers of the multiplex network, we perform a hierarchical clustering analysis

starting from the dissimilarity matrix d of elements dα,β given by

dα,β = 1−
∣∣∣Θ̃S

α,β

∣∣∣ . (3.15)

Specifically, we use the average linkage clustering method which gave the best cophenetic

correlation coefficient compared to other clustering method [98–100]. According to the

average method the distance dc(C1, C2) between two clusters C1 and C2 is defined as the

average distance between all pairs of layers in the two clusters:

dc(C1, C2) =
1

N (C1)N (C2)

∑
α∈C1

∑
β∈C2

dα,β (3.16)

where N (Ci) indicates the number of layers in cluster Ci.

In Figure 3.4, together with the matrices Infomap-Θ̃S and Louvain-Θ̃S we show the

dendrograms resulting from the hierarchical clustering analysis of the respective dissim-

ilarity matrices Infomap-d and Louvain-d. In order to define an optimal partition of the

layers into communities, we looked for the agglomerative stage of the cluster hierarchy

at which the weighted modularity Q [101] is maximised, Q defined as:

Q =
1

〈η〉M

M∑
α 6=β

(∣∣∣Θ̃S
α,β

∣∣∣− ηαηβ
〈η〉M

)
δ [σασβ] , (3.17)

where σα labels the community in which layer α is, δ[x, y] indicates the Kronecker delta
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Figure 3.4: The similarity matrices of elements Θ̃S
α,β calculated respectively using the

Louvain and the Infomap community detection algorithms are plotted for the APS Col-
laboration Multiplex Network with the M1 = 10 layers indicating the collaboration
network at the first level of the PACS hierarchy. Each layer refers to a general field of
Physics (see Table 3-A for the legend of the layer acronyms). The dendrogram between
the layers is shown on the left of each matrix Θ̃S

α,β. The dashed line on top of the den-
drogram indicates the partition that correspond to the optimal value of the weighted
modularity given by Eq. 3.17).

and ηα, 〈η〉 are given respectively by

ηα =
∑
β 6=α

∣∣∣Θ̃S
α,β

∣∣∣ ,
〈η〉 =

1

M

∑
α

ηα. (3.18)

As shown in Figure 3.4 the optimal partition found is the same either when using the

Infomap algorithm or the Louvain algorithm to perform the community detection in the

layers of the multiplex. The analysis reveals that the first layers clustering together are

Condensed Matter I&II and Interdisciplinary Physics and they form the first block (green
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Acronym PACS Field

General-0 00 General

Particles-1 10
Physics of Elementary
Particles and Fields

Nuclear-2 20 Nuclear Physics

Ato&Mol-3 30
Atomic and Molecular
Physics

Classical-4 40

Electromagnetism, Optics,
Acoustic, Heat Transfer,
Classical Mechanics and
Fluid Dynamics

Gas&Pla-5 50
Physics of Gases, Plasmas
and Electric Discharges

Cond Mat I-6 60

Condensed Matter:
Structural,
Mechanical and Thermal
Properties

Cond Mat II-7 70

Condensed Matter:
Electronic Structure,
Electrical,
Magnetic and Optical properties

Interd-8 80
Interdisciplinary Physics and Related
Areas of Science and Technology

Geo&Astro-9 90
Geophysics,
Astronomy and Astrophysics

Table 3-A: The acronyms used in this study for the PACS number at the first level of
the PACS hierarchy, the corresponding PACS numbers and corresponding general fields
of Physics.

coloured box); the second block includes General Physics, Classical Physics, Atomic and

Molecular Physics (purple coloured box); in the third block Particles Physics, Nuclear

Physics and Geophysics&Astrophysics group together (cyan coloured box). The layer

related to Gases&Plasma Physics is isolated and can be considered as a block by itself.

Once revealed the block (community) structure an interesting issue is to characterise

the Minimal Spanning Tree (MST) that allows us to identify the layers which connect

the blocks together. Therefore we construct the MST using the dissimilarity measure d

defined in Eq. 3.15 calculated either using the Infomap or the Louvain clustering algo-

rithm. The two MSTs are identical (Figure 3.5) and this confirm the robustness of the

results with respect to the community detection algorithm used. We can see that the

collaboration layer of General Physics connects the three main blocks together.
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Block 1 Block 2 Block 3 Block 4

Cond Mat I-6
Cond Mat II-7
Interd-8

General-0
Ato&Mol-3
Classical-4

Particles-1
Nuclear-2
Geo&Astro-9

Gas&Pla-5

Table 3-B: Clusters between the M1 = 10 layers of the APS multiplex network corre-
sponding to the first level of the PACS hierarchy (see for the legend of the layer acronym
Table 3-A). The clusters have been obtained from the dendrograms shown in Figure 3.4,
cut in order to obtain the partition that optimises the weighted modularity Q defined in
Eq. 3.17.

General-0

Nuclear-1

 

Geo&Astro-9

Particle-2 Cond Mat II-7

Cond Mat I-6

Interd-8

Classical-4

Gas&Pla-5

Ato&Mol-3

Louvain  Infomap 

Figure 3.5: Minimal Spanning Tree (MST) using the dissimilarity measure d in the case
of Infomap-d dissimilarity (blue) and in the case of Louvain-d dissimilarity (ocher). The
block structure obtained with the hierarchical clustering analysis is also showed.

In order to have a deeper understanding of the results previously found we now

consider the multiplex network of scientific collaborations where the layers are related

to the PACS code at the second level of the PACS hierarchy. For this multiplex network

we have calculated the similarity matrix Θ̃S between the M2 = 66 layers and found

the optimal partition into communities according to the score function Q, following an

analogous procedure to the one used previously for first level of the PACS hierarchy.

To calculate Θ̃S
α,β we have performed averages over 350 random permutations of the
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Figure 3.6: Hierarchical clustering of the APS Collaboration Multiplex Network in which
each layer represents a collaboration network in a specific area of physics, as described
by the second hierarchical level of the PACS code. We show the two dendrograms
obtained respectively from the Louvain-Θ̃S

α,β (left) and from the Infomap-Θ̃S
α,β (right).

In each dendrogram the communities found at the optimal partition (maximum of Q)
are represented as branches of the same colours.

community assignments.

In Figure 3.6 we plot the dendrograms resulting from the hierarchical clustering

analysis in the case of Louvain-d dissimilarity and Infomap-d dissimilarity. For each

dendrogram, the clusters found in the optimal partitions are represented as branches of

the same colours. When using the Louvain-d dissimilarity we obtain six clusters plus

some isolated layers. When using the Infomap-d dissimilarity we obtain four clusters plus

isolated layers. Nevertheless we observe that two of the clusters (the red and the violet

clusters) are identically the same in the two partitions. The other two clusters obtained

with the Infomap-d dissimilarity are each divided into two clusters when considering

the optimal partition using the Louvain-d dissimilarity. In particular the combination

of the green-yellow and green-blue clusters in the Louvain partition is identical to the

green cluster of the Infomap partition, while the combination of the orange and the

yellow clusters in the Louvain algorithm is identical to the brown cluster of the Infomap

partition.
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Figure 3.7: Optimal community structure of the layers of the APS Collaboration Network
in which each layer represents a collaboration network in a specific area of physics, as
described by the second hierarchical level of the PACS code. The four communities found
starting from the Infomap-Θ̃S

α,β matrix are represented by blue solid-line ovals. In the

partition obtained from the Louvain-Θ̃S
α,β two sub-communities (ocher dashed ovals) are

considered separate communities. These communities form the course-grained partition
into the three blocks found at the first hierarchical level of the PACS code (coloured
solid-line polygons). The nodes displayed in this figure correspond to a subset of 61
layers that are not isolated in the optimal partition in communities which optimises the
weighted modularity Q.

In Figure 3.7 we give an overview of the blocks hierarchy found. The four clusters

found in the Infomap-d optimal partition matrix are represented by solid-line ovals.

Dashed ovals split two clusters in two, according to the results obtained from the Louvain-

d optimal partition. The block structure at the first level of the PACS hierarchy is

shown using solid-line polygons. This method allows us to characterise with a bottom-
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Figure 3.8: The network between the layers of the APS Collaboration Multiplex Network
(with layers corresponding to the PACS code at the second level of the PACS hierarchy) is
displayed here for the two cases in which the Louvain-Θ̃S or the Infomap-Θ̃S similarity
matrix are used. The link weights represent the similarity between the community
structure of the two linked layers. The networks are obtained from the Θ̃S similarity
matrix by filtering out the links below a given threshold value. The threshold is chosen
to be the maximal value that ensures that in the filtered network each layer is connected
with at least one layer inside its own cluster. The architecture of the networks describes
the interplay between the collaboration networks and the organisation of knowledge in
physics. The community structure revealed by the hierarchical clustering analysis is
shown making use of the same colour scheme of Figure 3.6.

up method how the organisation of knowledge in physics is effectively perceived by

scientists while shaping their collaboration network. We observe that while the PACS

hierarchy clearly captures main features of the collaboration network, the analysis of

the Collaboration Multiplex Network at the second level of the PACS hierarchy clearly
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suggests a hierarchical organisation of these PACS numbers that is not equivalent to the

first level of the PACS hierarchy. Finally we used the information gained by this analysis

to construct the network of networks between the layers of the Collaboration Multiplex

Network at the second level of the PACS hierarchy. To this aim we have constructed

the weighted network determined by an opportune thresholding of the Louvain-Θ̃S or

Infomap-Θ̃S similarity matrix (see Figure 3.8). The threshold, is here given by the

minimum value of the similarity matrix Θ̃S that ensures that each layer is connected to

at least one other layer of its own cluster. From these networks, it is possible to appreciate

that, although the network between the layer of the Collaboration Mutliplex Network

is highly interconnected, the clusters found corresponds to layers much more similar

between themselves than with other layers outside their own cluster. Interestingly

this visualisation shows that the two clusters detected only by the Louvain algorithm,

[94, 96] and [29, 41, 52, 84], contain the nodes that act as bridges between the yellow-

green cluster and the red and the orange clusters. This might explain why the Louvain

algorithm identifies them as separate clusters.

3.2.3 Comparison of the results obtained with Θ̃S respect to other

similarity measures

In this Section we compare the results obtained from the analysis of the APS Collabo-

ration Multiplex Network using the Θ̃S indicator with results from other similarity mea-

sures commonly used to compare different network partitions [44] and with the ACTIV S

Index, an index able to capture the similarity of the layers of a multiplex due to the activ-

ity of the nodes. In particular, focusing on the highest level of the PACS hierarchy, we

compute the Normalized Mutual Information NMI [45], the Jaccard index J [102], the

Rand index R [103, 104] and the ACTIV IS Index for each pair of the M1 = 10 layers.

Given two network partitions X and Y , the Normalized Mutual Information NMI, is

defined as

NMI (X,Y ) =
2 [H(X)−H(X|Y )]

H(X) +H(Y )
, (3.19)

where H(X) = −
∑

x P (x) logP (x) is the entropy associated to the distribution P (x) of

sizes x of the clusters classified by the partition X; H(Y ) corresponds to the entropy asso-

ciated to the distribution P (y) of the sizes y of the clusters in the partition Y ; H(X|Y )

is the conditional entropy associated to the distribution of the community assignment

X conditioned on the distribution of the community assignment Y and is given by

H(X|Y ) = −
∑

x,y P (x, y) logP (x, y)/P (y), P (x, y) the distribution of the number of

nodes having community assignment x in partition X and y in partition Y .
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The Jaccard index J and the Rand Index R, are instead defined as

J (X,Y ) =
a11

a11 + a10 + a01
(3.20)

R (X,Y ) =
a11 + a00

a11 + a10 + a01 + a00
, (3.21)

where a11 is the number of pairs of nodes belonging to the same cluster in both partitions

X and Y , a00 is the number of pairs of nodes classified in different clusters in both the

X and Y partitions, and a10(a01) is the number of pair of nodes belonging to the same

cluster in X(Y ) but belonging to different clusters in Y (X).

Finally we define the Activity Similarity ACTIV IS Index between the layers α and

β of a multiplex network, which compares the activity patterns in different layers. This

index is given by

ACTIV IS = b11 + b00, (3.22)

where b11 are the fraction of nodes active in both layers and b00 are the fraction of nodes

inactive in both layers.

In Figure 3.9 we show the similarity matrices for the different measures and their

respective dendrograms, obtained with the same hierarchical clustering analysis dis-

cussed above for the Θ̃S case. Here the layer partitions are obtained using the Infomap

algorithm. When the modularity Q is optimized, the partition obtained with all these

alternative measures are different from the one obtained using the Θ̃S indicator function.

Moreover the partitions obtained are characterised by having at least 3 out of 10 layers

in separate clusters, resulting in significantly less relevant partitions. Moreover, by look-

ing at the dendrograms, we can see that none of the other measure is able to give the

optimal partition obtained with Θ̃S even by applying an arbitrary cut to the respective

dendrogram.

These results show clearly that the proposed indicator function Θ̃S based on infor-

mation theory, is not equivalent to previously defined similarity measures between parti-

tions. Moreover the method is not affected significantly by the choice we made for treat-

ing inactive nodes or nodes belonging to connected components of two nodes. Although

it might be a challenging technical problem to assess which of the similarity measures

proposed so far is the best, the similarity measure Θ̃S seems to be more relevant of

other similarity measures used in the literature when applied to the APS Collaboration

Multiplex Networks. In fact the partition obtained by using the similarity measure Θ̃S

reflect much more closely the general perception of the organisation of collaborations in

the physics community.
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a)

d

Figure 3.9: Other similarity measures used to hierarchically cluster the M1 = 10 layers of
the APS Collaboration Multiplex Network at the first level of the PACS hierarchy. The
similarity matrices and their respective dendrograms cutted at the partition optimising
the modularity Q (red-dashed line) are shown for the Normalized Mutual Information
(Panel a), Rand Index (Panel b), Jacquard Index (Panel c) and for the ACTIV IS
Index (Panel d). Layer partitions are obtained using the Infomap community detection
algorithm. None of the optimal partitions corresponds to the one obtained using Θ̃S to
measure similarities.

3.3 Emergence of multiplex communities in social collab-

oration networks

Here we investigate the multiplex nature of communities in collaboration networks and

we propose a simple model to explain the appearance, coexistence and co-evolution of
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communities at the different layers of a multiplex. Our hypothesis is that the formation

of communities in collaboration networks is an intrinsically multiplex process, which

is the result of the interplay between intra-layer and inter-layer triadic closure. For

instance, in the case of scientific collaborations, multiplex communities naturally arise

from the fact that scientists may collaborate with other researchers in their principal

field of investigation and with colleagues coming from other scientific disciplines. Anal-

ogously, actors can prefer either to specialise in a specific genre or instead to explore

different (sometimes dissonant) genres, and these two opposite behaviours undoubtedly

have an impact on the kind of meso-scale structures observed on each of the layers of

of the system. The generative model we propose here mimics two of the most basic

processes that drive the evolution of collaborations in the real world, namely intra- and

inter-layer triadic closure, and is able to explain the appearance of overlapping modular

organisations in multi-layer systems. We will show that the model is able to reproduce

the salient micro-, meso- and macro-scale structure of different real-world collaboration

networks, including the multi-layer network of co-authorship in journals of the American

Physical Society (APS) and the multiplex co-starring graph obtained from the Internet

Movie Database (IMDb).

3.3.1 Empirical analysis of multiplex collaboration network datasets

We start by analysing the structure of two multiplex collaboration networks from the

real world. The first multiplex is constructed from the APS co-authorship data set,

and consists of four layers representing four sub-fields of physics (respectively, Nuclear

physics, Particle physics, Condensed Matter I, and Interdisciplinary physics). In par-

ticular, we considered only scientists with at least one publication in each of the four

sub-fields, and we connected two scientists at a certain layer if they had co-authored at

least a paper in the corresponding sub-field. The second multiplex is constructed from

the Internet Movie Database (IMDb) and consist of four layers respectively representing

the co-starring networks of actors with at least one participation in four different genres,

namely Action, Crime, Romance, and Thriller movies. The basic structural properties

of each layer of the two multiplexes are summarised in Table 3-C (see Appendix A for

details about the datasets).

Since we are interested in assessing the role of intra- and inter-layer triadic closure in

the formation of meso-scale multiplex structures, we quantified the transitivity of each

layer through the clustering coefficient C defined by Eq. 2.15, which takes values in the

interval [0, 1]. We notice that the four layers of each data set have similar values of

clustering, ranging respectively in [0.24, 0.3] in the case of APS and in [0.56, 0.61] for
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APS N 〈k〉 C

Nuclear (N) 1238 4.75 0.27

Particle (P) 1238 4.66 0.30

Cond. Matt. I (CM) 1238 10.29 0.24

Interdisciplinary (I) 1238 7.37 0.26

IMDb N 〈k〉 C

Action (A) 55797 83.56 0.61

Crime (C) 55797 82.30 0.58

Romance (R) 55797 86.00 0.59

Thriller (T) 55797 77.75 0.56

Table 3-C: Basic properties of real-world multiplex collaboration networks. We report
the number of nodes N , the average degree 〈k〉 and the clustering coefficient C for each
layer of a subset of the APS and IMDb data sets. In particular, we focus on the multiplex
collaboration network of all scientists active in Nuclear, Particle, Condensed Matter I and
Interdisciplinary physics, and the multiplex collaboration network of all actors starring
in Action, Crime, Romance and Thriller movies. All the layers of APS have a clustering
coefficient C in the range [0.24, 0.30]. Conversely, the values of C of all the IMDb layers
are in the range [0.56, 0.61].

IMDb. As we will discuss in the following, by focusing on layers having comparable

clustering we will be able to perform a comparison between the structure of these real-

world multiplex networks and the proposed model in its simplest formulation.

The multiplex nature of communities in collaboration networks can be measured by

means of the normalised mutual information (NMI) defined by Eq. 3.19, which quantifies

the similarity between the partition in communities observed in two different layers

of a multiplex. The normalised mutual information takes values in [0, 1]. In general,

higher values of NMI correspond to more similar partitions. The values of NMI for each

pair of layers in APS and IMDb are shown in Figure 3.10. It is interesting to notice

that in general pairs of layers corresponding to related subjects or genres exhibit higher

values of NMI. This is for instance the case of Nuclear Physics and Particle Physics

in APS. Similarly, in the IMDb network we observe a higher similarity between the

communities at the three layers representing respectively Thriller, Crime and Action

genres. Conversely, the layer of Romance movies displays a different modular structure

from Crime and Action. Notice also that the level of similarity between the communities

of two layers can vary substantially, despite the four layers of each multiplex have roughly

the same clustering coefficient.
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Figure 3.10: Similarity of communities at the different layers of real-world collaboration
networks In each of the two graphs nodes represent the layers of the multiplex (APS on
the left and IMDb on the right) and the edges are coloured according to the value of the
normalised mutual information for the community decompositions at the corresponding
pairs of layers.

3.3.2 A model for evolving multiplex communities

In the following Section we introduce a model to grow collaboration networks with tun-

able multiplex community structure, able to reproduce the patterns observed in the

considered real-world systems. Let us consider for simplicity the case of a multiplex

with M = 2 layers, and assume that initially each layer consists of a clique of n0 nodes.

Then at each time step t a new node is added to the network, with m[1] edge stubs to

be connected on layer 1 and m[2] other stubs to be connected on layer 2. The multiplex

network grows according to the following rules:

• Layer selection. The newly arrived node i selects one of the two layers {1, 2}
uniformly at random. Let us label the first selected layer with the index a. The

first edge of i is connected to one of the existing nodes on that layer, chosen

uniformly at random, that we call na.

• Intra-layer triadic closure (I). The remaining m[a]-1 edges of node i on layer a are

attached with probability p[a] to one of the first neighbours of na, chosen uniformly

at random, and with probability 1 − p[a] to one of the nodes of layer a, chosen

uniformly at random.

• Inter-layer triadic closure. When all its m[a] edges on layer a have been created,

node i starts connecting on the other layer b with m[b] edges. The first link in layer

b is created with probability p∗ to the same node na, and with probability 1 − p∗

to one of the other nodes, chosen uniformly at random. The node to which this
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first link is attached is called nb.

• Intra-layer triadic closure (II). The remaining m[b]-1 links at layer b are attached

with probability p[b] to one of the first neighbours of nb chosen uniformly at random,

and with probability 1 − p[b] to one of the nodes at layer b, chosen uniformly at

random.

This general model has five parameters to be tuned, namely the number of new edges

m[1] and m[2] brought by each new node on each of the two layers, which determine

the average degree on each layer, and the three probabilities p[1], p[2], and p∗, which are

respectively responsible for the formation of intra- and inter-layer triangles. In fact, by

varying the parameters p[1] and p[2] we can tune the strength of the intra-layer triadic

closure mechanism, i.e the probability to form triangles on each of the two layers. In

particular, larger values of p[1] and p[2] will foster the creation of a larger number of

triangles in layer 1 and layer 2 respectively. Conversely, the parameter p∗ tunes the

inter-layer triadic closure mechanism, and in particular high values of p∗ correspond to

a higher probability that the neighbourhoods of node i at the two layers will exhibit

a certain level of overlap. These two simple attachment rules, namely intra-layer and

inter-layer triadic closure, aim to describe the real mechanisms characterising the evo-

lution of collaboration networks. We argue that, for instance, scientists do not tend to

collaborate with other scientists at random. Instead, they usually exploit the neighbour-

hoods of their collaborators in a specific field (intra-layer triadic closure). Similarly,

when opening themselves to new scientific fields, a researcher usually takes into account

the neighbourhoods of their past colleagues from previous collaborations in other fields

(inter-layer triadic closure). A schematic representation of the model is depicted in

Figure 3.11.

It has been recently shown [105] that in a single-layer network scenario the interplay

between random attachment and triadic closure leads to a network growth in which the

attachment probability (i.e., the probability for an existing node to receive one of the

new edges) is a sub-linear function of the degree, and produces networks with non-trivial

community structure, as long as the link density is not too high. In the multi-layer model

we propose, the further addition of an inter-layer triadic closure mechanism allows to

tune at will the overlap between the community structures at the different layers.
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Figure 3.11: Schematic representation of network growth with intra-layer and inter-layer
triadic closure. A newly arrived node i creates m[1] new edges on layer 1 and m[2] new
edges on layer 2. The new node starts by choosing at random one of the two layers
{1, 2}. We indicate the first chosen layer using the label a. a) The first link of the new
node is connected to one of the nodes of layer a, chosen uniformly at random and called
na (solid green line). Each of the remaining m[a] − 1 links is attached with probability
p[a] to a neighbour of the previously chosen node (intra-layer triadic closure) or with
probability 1− p[a] to one of the nodes at layer a, chosen uniformly at random (dashed
red lines). b) Afterwards, the new node starts connecting on the other layer b. The first
link on layer b is created to node na with probability p∗, or to one of the other nodes at
layer at random with probability 1− p∗. We call nb the first node to which i attaches on
layer b. c) Each of the m[b] − 1 remaining edges on layer b are attached with probability
p[b] to one of the neighbours of nb, and with probability 1 − p[b] to one of the nodes on
layer b, chosen uniformly at random.

Validation in a Simple Scenario

To assess the ability of the model to reproduce the organisation of communities in mul-

tiplex networks, we start by considering a simple scenario, i.e. the case in which the

layers of the multiplex have the same density (m[1] = m[2] = m) and the same clustering

coefficient (p[1] = p[2] = p). We show that this simplified version of the model is already

able to reproduce both the different levels of similarity between community structures

at different layers, and the microscopic patterns of intra-layer and inter-layer degree

correlations observed in the real-world collaboration multiplexes of APS and IMDb.

In Figure 3.12(a), we report the values of the clustering coefficient C (which, by con-

struction, does not depend on the parameter p∗) for several realisations of the model (see

Methods). As expected, the clustering coefficient of each layer is a linearly increasing

function of the parameter p, which tunes the strength of intra-layer triadic closure. This

means that, if we consider a real-world multiplex network whose layers have approxi-

mately the same value of clustering coefficient C, we can set the value of the parameter

p of the model accordingly. This is for instance the case of the four-layer multiplex net-

works of APS and IMDb constructed in the previous Section, where all the layers have
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Figure 3.12: Model calibration in a simple scenario. We show the values of p and p∗

extracted for the different pairs of layers of the four-layer collaboration networks of
APS and IMDb. (a) The clustering coefficient C depends exclusively on the parameter
p, which tunes intra-layer triadic closure. Since all the layers of those two multiplex
networks have comparable clustering coefficients, we are able to determine the value
of the parameter p in each of the two cases. (b) For each pair of layers, we can also
determine the value of the inter-layer triadic closure parameter p∗ by setting it equal to
the value which yields an organisation in communities characterised by a value of NMI
compatible with that observed in the real network.

comparable levels of clustering. We obtain p = 0.40 for APS and p = 0.85 for IMDb,

respectively.

In Figure 3.12(c) we show, as a colour-map, the values of NMI of the networks

obtained through the proposed model by using different combinations of the parameters

p and p∗ (see Methods). It is evident that, in spite of its simplicity, the model can

yield a quite rich variety of multiplex networks. In agreement with intuition, when

both p and p∗ are large one obtains multiplexes with higher values of NMI. In fact, in

this regime both the intra-layer and inter-layer triadic closure mechanisms are strongly

affecting the network evolution and, as a consequence, it is likely that the new node

joining the network will close a triad on both layers in the same region of the network.

As a consequence, each layer will have a strong community structure (large p) which is

pretty much correlated to the one present on the other layer, due to the large value of

inter-layer triadic closure p∗. Conversely, if the inter-layer parameter p∗ is small we will

obtain layers whose partitions in communities are poorly correlated when p is large (blue

region in the phase space of Figure 3.12, while the NMI is only marginally larger when
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Figure 3.13: Layers with similar or dissimilar community structures. We show the effect
of the value of the inter-layer triadic closure parameter p∗ on the multiplex community
structure. The two top layers show two typical realisations of the simplest version of the
network model with N = 50, m[1] = m[2] = 2 and p[1] = p[2] = 0.9. Nodes belonging
to the same community are given the same colour and are drawn close to each other.
The two layers at the bottom of each multiplex are obtained by setting, respectively,
p∗ = 0.9 (left) and p∗ = 0.1 (right). The nodes maintain the same placement in space on
the second layer, but are coloured according to the community they belong in that layer
(colours are chosen in order to maximise the number of nodes that have the same colour
in the two layers). It is evident that the community structures of the two layers on the
left, corresponding to p∗ = 0.9, are very similar, while the partition into communities of
the upper layer on the left panel is substantially different from the one observed in the
bottom layer of that multiplex.

p is very small (bottom-left corner of the phase space).

In Figure 3.13 we report two realisations of the multiplex network model with N = 50,

m[1] = m[2] = 2 and p[1] = p[2] = 0.9, respectively for p∗ = 0.9 (left) and p∗ = 0.1

(right). Nodes belonging to the same community are reported using the same colour,

and the colour chosen for each community in the second layer (bottom) corresponds to

the colour of the community in the first layer (top) for which the node overlap between the

communities is maximum. These two examples help explain the role of the parameter p∗

in shaping the inter-layer modular structure of the network. For p∗ = 0.9 (left panel) the

community structures of the two layers are closely matched (this situation corresponds

to the high values of NMI found in the top-right region of the heat-map in Figure 3.12),

while for p∗ = 0.1 (right panel) the communities at the two layers are uncorrelated (low

values of NMI in the top-left of the heat-map in Figure 3.12).
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Differently from the clustering coefficient C, the values of the normalised mutual

information NMI depend on both p and p∗. Having already determined a candidate

value of p for each multiplex by fitting the clustering coefficient of its layers, we can

determine the strength of the inter-layer triadic closure mechanism by fitting the NMI.

Remarkably, for any fixed value of p, the simplest formulation of our model is able to

reproduce all the values of NMI observed in the real-world networks by just tuning the

parameter p∗, with the exception of the pair Nuclear-Particle physics which is slightly

out of the plane with an NMI value of 0.81 (represented on the right border of the plane

which corresponds to NMI=0.79). We would like to note here that the model is able

to produce a remarkably wide range of values of NMI, which span the whole interval

[0.6, 0.9].

We further validate the model by showing that, using the inferred parameters (p,p∗),

we are able to reproduce quite well the patterns of degree-degree correlations observed

in the real-world collaboration multiplexes.

Indeed, for each pair of layers α and β we analysed:

1. the intra-layer degree correlations, by looking at the average degree 〈Knn[α]〉 of

the first neighbours on layer α of nodes having a certain degree k[α], as a function

of k[α];

2. the inter-layer degree correlations, by looking at the average node degree 〈k[β]〉 on

β given the degree k[α] on α;

3. the mixed degree correlations by looking at the average mixed node degree 〈Knn[β,α]〉
given the degree k[α] on α;

(see Methods for details). The results are shown in Figure 3.14 for some significant

examples. Dots represent the values measured on the real-world networks, while solid

lines correspond to the values obtained in the corresponding multiplex models. Symbols

with a hat (ˆ) indicate that the value of the considered variables, for both the model and

the data, have been normalised to the values of the corresponding configuration model to

allow a comparison (see Methods). It is interesting to notice that the model reproduces

quite well the three types of degree correlations in the IMDb multiplex, both in the case

of high p and high p∗ (Action, Thriller given Action) and the case of small p and small

p∗ (Action, Romance given Action). A quantitative comparison of the the power-law fits

of the curves is reported in Table 3-D. As an example from APS we consider Condensed

Matter I and Interdisciplinary physics (small p and high p∗). In this case we observe

marked differences in the correlations measured in the real-world network and in the

model network, for both 〈Knn[α]〉 and 〈Knn[β,α]〉. In particular, the model seems to
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Figure 3.14: Intra-layer, inter-layer and mixed assortativity in collaboration networks.
We show the intra-layer (a), inter-layer (b) and mixed (c) degree-correlations for couples
of layers of the IMDb and APS collaboration networks. Real data (dots) are compared
with the results of our model (solid lines) generated with the extracted values p and p∗.
The symbols (ˆ) indicate that the reported quantities (both for the model and the data)
have been normalised to the values observed in the corresponding configuration model.
As shown, the model is in general able to correctly capture the assortative trends of the
three different types of correlations. Very good agreement with the data is attained in
the case of the movie actor collaboration network. Less precise results are obtained for
the APS network, where we deal with a system of considerably smaller size.

overestimate degree correlations. These discrepancies are probably due to the relatively

small number of nodes (only 1238) in the considered data subset.

Although our intention was not to exactly reproduce all the features observed in

real-world collaboration multiplex networks, it is interesting to observe that the two

mechanisms of inter-layer and intra-layer triadic closure play an important role in deter-

mining the degree-degree correlations in such networks. We also notice that the degree

distributions of the layers in the synthetic networks are compatible with the stretched

exponential functional forms introduced and discussed in Ref. [105].

3.3.3 Model calibration for generic multiplex networks

We now discuss how to calibrate the model in the most general case in which the layers

might possibly have different edge density, i.e. m[1] 6= m[2], and different clustering, i.e.

p[1] 6= p[2]. As an example, we consider the co-authorship networks of the same four sub-

fields of physics (namely, Nuclear, Particle, Condensed Matter I and Interdisciplinary
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Layers’ pair 〈k[β]〉 〈Knn[β,α]〉
γdata γmodel γdata γmodel

Interd. given Cond. Matt. I 0.98 0.85 0.14 0.30
Thriller given Action 0.83 0.84 0.16 0.17
Romance given Action 0.89 0.87 0.30 0.27

Table 3-D: Quantitative comparison between the curves obtained from the model and
the data for the inter-layer degree correlations the and mixed degree correlations. The
curves have been fitted using a function of the form f(x) ∼ xγ ; the γ parameter is
reported for the corresponding curves in Figure 3.14.

physics) used to construct the four-layer APS multiplex (cf. Table 3-C and Figure 3.10).

However, we focus here on all two-layer multiplex networks obtained by combining two

networks at a time, so that, for instance, a node appears in the Nuclear-Particle (N-P)

multiplex network if the corresponding author has published papers in both sub-fields.

In general, the obtained multiplex networks are composed by layers with different edge

density and different clustering coefficients, as shown in Table 3-E, thus we need to set

separately the four parameters of the model p[1], p[2], m[1] and m[2].

We start by observing that the average degree of a synthetic layer is 〈k〉 ' 2m,

where m is the number of edge stubs connected by a newly arrived node, so that the

parameters m[1], m[2] of the model can be set respectively equal to
[
〈k[1]〉
2

]
and

[
〈k[2]〉
2

]
,

where 〈k[1]〉 and 〈k[2]〉 are the measured average degrees of the two layers (numbers

are approximated to the closest integers). Similarly, as we show in Figure 3.15(a), the

clustering coefficient C [α] of a layer α is univocally determined by p[α], as soon as m[α] is

fixed. In Figure 3.15(a) we show how the values of C [α] change as a function of p[α], for

different values of m[α]. Hence, the values of the intra-layer triadic closure parameters

p[1] and p[2] can be set in order to match the values of clustering coefficient observed in

each of the two layers. The only parameter yet to be determined is p∗. However, if we

set the values of m[1], m[2], p[1], and p[2] to match the densities and clustering coefficients

of the layers, we can then run the model for different values of p∗ and look for the one

which yields a value of NMI as close as possible to the one observed in the real two-layer

multiplex. This procedure is sketched in Figure 3.15 (b) for the six two-layer multiplexes

in APS.

In order to better understand the role of the different parameters, in Figure 3.15(c)

we report the values of NMI obtained from different realisations of the model with

m[1] = m[2] = m and p[1] = p[2] = p for m varying in [2, 3, ..., 10], and p varying in

[0, 0.1, ..., 1] at different values of p∗, [0.05, 0.5, 0.95], corresponding respectively to low,

intermediate and high inter-layer triadic closure strength. We see that the effect of the

increase in the link density m of the layers leads to a decrease in the similarity of their
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Figure 3.15: Model calibration. In panel a) we show the dependence of the clustering
coefficient C on the intra-layer triadic closure parameter p for different values of the
parameter m, which sets the layer’s average degree. In the multiplex consisting of the
layers Particle (P) and Condensed Matter I (CM), the average degree of each layer
corresponds, respectively, to m[1] = 3 and m[2] = 4. The value of p[1] and p[2] are
determined to match the clustering coefficients C [1] and C [2]. In panel b), after having
determined m[1], m[2], p[1] and p[2] for all the pairs of layers in the APS dataset, we run
the model with such parameters for different value of p∗ and infer, for each pair, the
value of the inter-layer triadic closure parameter p∗ yielding a value of NMI compatible
with that observed (see Table 3-C for layers’ acronyms). In panel c) we plot a heat-map
of the NMI as a function of p and m, respectively for low (0.05), intermediate (0.50)
and high (0.95) values of p∗ in the model with m[1] = m[2] = m and p[1] = p[2] = p. An
increase in the link density of the layers produces a less correlated community structure
in the two layers, even if the inter- and intra-layer triadic closure strengths are high.

community structures even for high values of p and p∗.

It is interesting to notice that, although the generic version of the model depends on

five parameters, respectively accounting for layer density (m[1] and m[2]), triadic closure

(p[1] and p[2]), and inter-layer overlap of communities (p∗), the values of those parame-

ters can be easily set by measuring just the average degree and the average clustering
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coefficient of each layer, and the normalised mutual information between the community

structures at the two layers. Again, the good agreement between the synthetic networks

and the real-world datasets extends also to other structural properties, such as intra-

layer and inter-layer degree correlations, which were thought to have little or no direct

relation at all with triadic closure. These results suggest that triadic closure plays an

unexpectedly central role in determining the structural properties of real-world multiplex

collaboration networks.

Layer 1 Layer 2 N 〈k[1]〉 〈k[2]〉 C [1] C [2] NMI

Nuclear Particle 6572 6.88 7.46 0.56 0.56 0.83

Nuclear Cond. Matt. I 3828 4.53 7.20 0.43 0.34 0.71

Nuclear Interdisciplinary 2556 4.15 5.39 0.37 0.33 0.72

Particle Cond. Matt. I 3774 5.70 7.82 0.53 0.40 0.71

Particle Interdisciplinary 2502 4.82 5.66 0.49 0.39 0.74

Cond. Matt. I Interdisciplinary 27257 10.34 7.05 0.55 0.64 0.82

Table 3-E: Basic properties of duplex networks in APS. We consider all the possible mul-
tiplex networks with M = 2 layers obtained from combinations of the APS collaboration
networks corresponding to the four sub-fields Nuclear, Particle, Condensed Matter I and
Interdisciplinary Physics. For each duplex, we report the number of nodes N , the aver-
age degree on the two layers 〈k[1]〉 and 〈k[2]〉, and the values of the clustering coefficients
C [1] and C [2].



Chapter 4

Extracting network motifs from

time series

4.1 Motifs in time series

As discussed in 1.1 one of the most interesting concepts that has emerged in Network

Science is the one of network motifs [5]. These local topological features has proved

to be very useful for classifying large networks in areas as biochemistry, neuroscience

or ecology and for understanding the interplay between network’s local structure and

function [4, 5, 106, 107].

In the realm of time series analysis the concept of motif finds its natural counterpart

in the idea of recurring pattern, a small subsequence of data showing a characteristic

trend and occurring several times along the series [108, 109]. For example if we consider

electroencephalogram (EEG) time series showing the activity of populations of neurons

we can observe clinically meaningful patterns such as ‘alpha waves’ or ‘wicket spikes’

that are characteristic of the brain state (awakeness, sleep, lesions, etc.).

In [108] Lonardi et al. first defined the time series motifs as recurring subsequences (see

Figure 4.1) and proposed an algorithm to extract them. Given a series {xi}i=1..N and a

subsequence C = {xp, ...xp+n}n<N , one counts all the match subsequences of C, where

a match M is a subsequence M = {xq, ..., xq+n}n<N such that D(C,M) < R, D being

a generic distance and R a threshold radius. Then the most significant motif in the

series is the subsequence that has the highest count of non-trivial (q 6= p) matches and

in general the kth ranked motif has k matches.

74
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Figure 4.1: Time series motifs can be defined as recurrent characteristic patterns in the
dynamics, as proposed in [108]. Figure taken from [108].

From a physical point of view the main problem of this approach, apart from the

extraction algorithm which depends on an arbitrary parameter R > 0, is in the defini-

tion of motif itself. Let’s imagine two subsequences of n data which show exactly the

same trend but the values at each datum differ by a constant factor c. If D = nc > R

the algorithm will not match the two subsequences although they are probably the result

of a very similar underlying dynamical process.

To make things rigorous one needs somehow to symbolise the series by using some alpha-

bet that is able to capture relevant information from the data without dealing with the

values per se. The most interesting approach in this sense is based on the study of the

so called ordinal patterns [110], symbols that take into account only the relative rank

of the data inside time series subsequences. Let’s consider the case in which we want

to symbolise a time series by considering the relative rank of data in subsequences of

length two. Given the series {xi}i=1..N we consider all the possible pairs of consecutive

data {xt, xt+1} and we write {0, 1} if xt > xt+1 or {1, 0} if xt < xt+1. We have thus

at each time two possible ordinal symbols, namely {0, 1} and {1, 0}, that we can use

to map the original series into a symbols’ series, and in general by considering a subse-

quence of length n our new alphabet will have n! symbols. This method doesn’t take

into account the cases in which xt = xt+1, but the probability of finding two consecutive

data of exactly the same value in real-valued time series in close to zero and for practical

purposes a small amount of random noise can always be added to the series to get rid
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of repeating data without altering its nature. Taking local rank numbers instead of the

original values corresponds somehow to apply a kind of high-pass filter which removes a

possible trend and very low frequencies from the time series, and the symbols defined in

this way allow to derive analytically the probability of appearance of the ordinal patterns

of size n = 2, 3, 4, 5 for a variety of different dynamical processes [111]. Moreover [110] the

entropy of the of the n-length ordinal patterns sn, given by Hn = −
∑

sn p(s) log(p(s)),

where p(sn) are the frequency of appearance of the patterns, is a powerful indicator

for discriminating random dynamics [110, 112]. Indeed for any random dynamics, one

expects the distribution of the ordinal patterns to be uniform (p(sn) = 1/n!) and to give

maximal entropy Hn = log(n!), while a deterministic, regular behaviour in the series

will give a small value of H.

Ordinal patterns are a clear example of how informative a process of symbolisation of the

time series can become. In the following we will discuss the sequential visibility graph

motifs [43], small subgraphs extracted from visibility graphs that allow for a time series

symbolisation through network motifs. We will show that the statistics of the motif

sequence is an informative feature to describe different types of complex dynamics such

as chaotic and stochastic with different types of correlations and useful in the task of

classifying empirical time series. For large classes of dynamical systems, it is possible to

develop a theory to analytically compute the frequency of the visibility graph motifs.

4.2 Sequential visibility graph motifs

Let S = {x(t)}Tt=1 be a real-valued time series of T data. As previously discussed in 1.3

the natural visibility graph (VG) associated to S is a planar graph of T nodes, such that

(i) every datum x(i) in the series is related to a node i in the graph (hence the graph

nodes inherit a natural ordering), and (ii) two nodes i and j are connected by an edge if

any other datum x(k) where i < k < j fulfils the following convexity criterion:

xk < xi +
k − i
j − i

[xj − xi], ∀k : i < k < j

By construction, VGs are connected graphs with a natural Hamiltonian path given by

the sequence of nodes (1, 2, . . . , T ), whose topology is invariant under a set of basic

transformations in the series, including horizontal and vertical translations.

The horizontal visibility graph (HVG) associated to S is defined as a subgraph of the VG,

obtained by restricting the visibility criterion and imposing horizontal visibility instead.

In this case, two nodes i and j are connected by an edge in the HVG if any other datum



Chapter 4. Extracting network motifs from time series 77

Figure 4.2: Schematic of visibility graph motif detection. A time series is converted
into a visibility graph according to the visibility criterion (red arrow). A window of size
n = 4 slides along the Hamiltonian path of the visibility graph and detects at each step
a different VG motif.

x(k) where i < k < j fulfil the following ordering criterion:

xk < inf(xi, xj), ∀k : i < k < j

Such subgraph is indeed an outerplanar graph [113] and inherits some of the properties

of VGs. We can now introduce a new topological property of VG/HVG.

Definition (sequential VG/HVG n-node motifs). Consider a VG/HVG of N nodes, asso-

ciated to a time series of N data, and label the nodes according to the natural ordering

induced by the arrow of time (i.e. the trivial Hamiltonian path). Set n < N and consider,

sequentially, all the subgraphs formed by the sequence of nodes {s, s+ 1, . . . , s+ n− 1}
(where s is an integer that takes values in [1, N−n+1]) and the edges from the VG/HVG

only connecting these nodes: these are defined as the sequential n-node motifs of the

VG/HVG. This is akin to defining a sliding window of size n in graph space that initially

covers the first n nodes and sequentially slides, in such a way that for each window, one

can associate a motif by (only) considering the edges between the n nodes belonging to

that window (see Figure 4.2).

Note that, importantly, this definition differs from the one of a standard network motif

(which looks at the frequencies of appearance of all subgraphs of a given size, without

imposing any restriction on the nodes forming a given subgraph), as here it is required

that the labels of the nodes appearing in a motif are in strict sequential order -this is

consistent with the vertex ordering of the natural Hamiltonian path induced by con-

struction in the VGs/HVGs-. That is, in order to preserve in graph space the dynamical

information of the series, the n nodes of an n-size motif are taken in sequential order,

and only those edges that connect nodes from the motif are considered. For readability,

from now on we will call these simply VG/HVG motifs but the reader should not get
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confused and remind that these are not directly the standard notion of network motifs

computed on a VG/HVG. Some basic properties of these motifs are:

• Trivially, there is a total of N − n motifs (which can be the same motifs or not)

within each VG/HVG.

• Each motif is a subgraph of the original VG/HVG. Moreover, HVG motifs are out-

erplanar and have a trivial Hamiltonion path, thus HVG motifs are also HVGs [113].

As a result, there are only 6 admissible motifs of size 4, and 2 admissible motifs of

size 3 (see Table 4-A for an enumeration).

• Computational complexity: Computing motifs in both VG and HVG is extremely

efficient. If instead of exploring the motif occurrence in the structure of the adja-

cency matrix, one directly examines the set of inequalities reported in Table 4-A,

one directly has an algorithm that runs in linear time O(N) for HVG motifs. A

similar complexity is found for VG motifs [114].

As is done traditionally with network motifs [106], we can compare VG/HVGs associated

to different time series and dynamics by comparing the relative occurrence of each motif

inside a VG/HVG. In order to do that, we introduce the extension to the VG/HVG

realm of a significance profile:

Definition (VG/HVG motif profile Zn). Let p be the total number of admissible

VG/HVG motifs with n-nodes. Assign to each of these p motifs a label from 1 to p

(that is, choose an ordering for the motifs). The motif assigned with the label i will be

called a type-i motif. Then, we define the n-node VG/HVG motif significance profile Zn

(or simply HVG motif profile) of a certain time series of size N as the vector function

Zn : n ∈ N→ [Pn1 , . . . ,Pnp ] ∈ [0, 1]p whose output is a vector of p components, where the

i-th component, Pni , is the relative frequency of the type-i motif.

Several technical comments are in order:

• First, since Zn are n-dimensional real vectors, any Lp norm induces a natural

similarity measure (distance) between two graphs.

• Second, Zn has, by construction, unit L1-norm, as
∑p

i=1 |Pni | =
∑p

i=1 Pni = 1.

• Third, note that if one considers dynamical processes instead of individual time

series, then the estimated relative frequencies Pni for an individual realization of

the dynamical process converge for infinitely long series to the probabilities of
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type-i motif associated to the process. For the motif profile to be a well-defined

feature of a certain dynamical process, it needs to be self-averaging. We check this

property by estimating Zn for an ensemble of realizations of the process, computing

the mean 〈Pni 〉 and standard deviation
√
〈[Pni ]2〉 − 〈Pni 〉2 over this ensemble, and

checking that the standard deviation is small (meaning that a single realization

provides a good description of the average behaviour). As we will show below,

both VG and HVG motif profiles have very good self-averaging properties. In any

case, for every dynamical process considered in this work, instead of Pni we compute

〈Pni 〉 and
√
〈[Pni ]2〉 − 〈Pni 〉2, but for readability, from now on we will drop the 〈·〉

for the elements of the motif profile, as we found that for the size of the series used

in the numerical analysis,
√
〈[Pni ]2〉 − 〈Pni 〉2 was very small and hence Pni ≈ 〈Pni 〉.

• Fourth, note at this point that the definition of the VG/HVG motif profile is

different from standard profiles (significance profile, subgraph ratio profile) defined

in the literature [106], as in the latter case, they make use of a null model (ensemble

of randomised networks) to appropriately normalise each frequency. The rationale

for this normalization is that one wants to compare motif statistics across very

different networks (with different sizes and degree sequences), so variations in the

motif relative frequencies only due to size effects need to be removed to be able

to correctly compare across different networks. In the context of VG/HVG the

null model is not a randomised ensemble of the graph under study (which would

not yield a VG/HVG with high probability), but on the contrary, it should be

the VG/HVG of a randomisation of the time series under study. In other words,

normalisation in the case of VG/HVG profiles should deal with the motif statistics

of uncorrelated random series (i.i.d. white noise or surrogate series that preserve

certain structures) with similar probability densities than the series under study.

In the next Section we will prove that, in the case of HVGs (which will be the

family of visibility graphs under study), such null model has a universal motif

profile, independent of the probability density of the i.i.d. process. Therefore, it is

not necessary in this case to normalise each profile accordingly as this would only

yield a trivial, constant rescaling.

For illustration purposes, let n = 4, and consider two different dynamical processes:

(i) white Gaussian noise described by the map xt = ξ, where ξ are independent and

identically distributed (i.i.d.) Gaussian random variables ξ ∼ N [0, 1], and (ii) chaotic

dynamics given by the fully chaotic logistic map xt+1 = 4xt(1−xt). In order to estimate

the probability of appearance of each of the motifs, we have generated a time series of size

N = 104 data for both processes (sample time series can be seen in the top panels of figure

4.3), and we have computed the relative frequencies of each motif. Results, averaged
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Figure 4.3: Sample time series from (a) i.i.d. Gaussian white noise, (b) fully chaotic
logistic map, and (c) fully chaotic logistic map polluted with a certain amount of extrinsic
white noise are shown for illustrative purpose. Visibility graph motifs can be extracted
from these series to reveal differences in their intrinsic structure.

over an ensemble of 100 realizations, are shown in Figure 4.4 (error bars describing the

ensemble standard deviation are contained inside the symbols); in panel (a) we plot the

HVG motif profile, whereas in panel (b) we plot the VG profile. As we can see, in every

case the type-II motif is absent. The simple reason is that this profile is absent for

irregular (aperiodic) real-valued time series, by construction (see Table 4-A).

For the chaotic process, some other motifs are absent: this is related to forbidden

patterns arising in chaotic dynamics. More importantly, in both panels, the average

relative frequency of some motifs seems to be different for both dynamical processes,
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Figure 4.4: 4-node motif profiles Z4 associated to Gaussian white noise (red squares) and
to a fully chaotic logistic map (black stars) extracted respectively from HVG (panel a)
and VG (panel b). Each dot represents the relative frequency of a given motif, averaged
over an ensemble of 100 realizations of each process (time series of N = 104 data per
realization). Standard deviations of each motif relative frequency over the ensemble
are plotted as error bars, which are not visible as error bars fall inside the symbols.
We conclude that these motifs can be used to distinguish between deterministic and
stochastic dynamics.

enabling the possibility of using both HVG and VG motif profiles to distinguish amongst

different dynamical origins. In the following Sections we advance a theory to compute

the motif profile Zn in an exact way for different classes of dynamical systems.

4.3 Theory for sequential HVG motifs

In order to numerically explore and compute the frequency of each HVG motif, one

can generate the HVG associated to a given time series and count the presence of each

motif directly from the adjacency matrix. Here, however, we will show that it is not



Chapter 4. Extracting network motifs from time series 82

Motif label Motif type Inequality set

1 {∀(x0, x2), x1 > x0} ∪ {∀x0, x1 < x0, x2 < x1}
2 {∀x0, x1 < x0, x2 > x1}
1 {∀(x0, x1), x2 < x1, x3 < x2} ∪ {∀(x0, x3), x1 > x0, x2 > x1}
2 {∀x0, x1 < x0, x2 = x1, x3 > x2}
3 {∀x0, x1 < x0, x1 < x2 < x0, x3 < x2} ∪ {∀(x0, x3), x1 < x0, x2 > x0}
4 {∀x0, x1 > x0, x2 < x1, x3 > x2} ∪ {∀x0, x1 < x0, x2 < x1, x2 < x3 < x1}
5 {∀x0, x1 < x0, x1 < x2 < x0, x3 > x2}
6 {∀x0, x1 < x0, x2 < x1, x3 > x1}

Table 4-A: Enumeration of all 3 and 4-node motifs. Each motif can be characterized
according to a hierarchy of inequalities in the associated time series. Note that for real-
valued aperiodic dynamics the type-II 4-node motif has a null probability of occurrence
as the probability that two data in the time series repeat vanishes almost surely (if, on
the other hand, the series only take values from a finite set then this motif has a finite
probability). For the rest, the probability of each motif reduces to the measure of the
set of inequalities.

necessary to do that as, via the zero-order terms of a diagrammatic expansion recently

advanced [115], we can work out the motif occurrence directly from the exploration of

the time series, that enables motif computation in linear time. This will allow us to build

a theory by which the motif profiles can be computed exactly for a large set of classes

of dynamics that fulfil certain properties.

Let us consider a dynamical process H : R → R with a smooth invariant measure

f(x) that fulfils the Markov property, that means that conditional probabilities fulfil

f(xn|xn−1, xn−2, . . . ) = f(xn|xn−1), where f(xn|xn−1) is the transition probability dis-

tribution. Note that this concept has a clear meaning in random dynamical systems,

whereas for deterministic systems, say maps xt+1 = H(xt), the Markov property is also

trivially fulfilled with f(x2|x1) = δ(x2 − H(x1)), where δ(x) is the Dirac-delta distri-

bution. The key element is that for these processes, each HVG motif has a probability

of appearance as a subgraph that can directly be computed as the measure of a set of

ordering inequalities that take place in the time series. For instance, for n = 3 and n = 4,

probabilities associated to the appearance of a certain motif are based on integrals of

the form: ∫
f(x0)dx0

∫
f(x1|x0)dx1

∫
f(x2|x1)dx2 (4.1)

for n = 3, and ∫
f(x0)dx0

∫
f(x1|x0)dx1

∫
f(x2|x1)dx2

∫
f(x3|x2)dx3 (4.2)

for n = 4.

The range of integration and the shape of the conditional probabilities are particular

for each motif and each process, respectively. First, the range of integration fully deter-
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mines the motif. In Table 4-A we depict the conditions in the time series that have to be

fulfilled among n consecutive data x0, x1, . . . , xn−1 to yield a certain motif of size n in the

HVG, for n = 3, 4 (extension to arbitrary n is easy but gets cumbersome as n increases).

It can be proved quite easily that a given motif appears in an HVG if and only if these

ordering restrictions are fulfilled in the time series. These restrictions directly translate in

the integration range of the probabilities, we illustrate this principle in an example. The

first motif, Z4
1, according to Table 4-A is guaranteed when 4 consecutive values x0, x1, x2

and x3 are such that {∀(x0, x1), x2 < x1, x3 < x2} ∪ {∀(x0, x3), x1 > x0, x2 > x1}.
Accordingly, if x ∈ [a, b] ⊂ R, the probability of this event is

Z4
1 ≡ P4

1 =

∫ b

a
f(x0)dx0

∫ b

a
f(x1|x0)dx1

∫ x1

a
f(x2|x1)dx2

∫ x2

a
f(x3|x2)dx3+∫ b

a
f(x0)dx0

∫ b

x0

f(x1|x0)dx1
∫ b

x1

f(x2|x1)dx2
∫ b

a
f(x3|x2)dx3.

(4.3)

Analogous expressions can be found for the rest of the probabilities that form the motif

profile Z. These terms are nothing but the contributions to the degree distribution at

zero-order from a diagrammatic expansion in the number of hidden nodes [115]. From

a geometric point of view, the first motif will not appear in fast fluctuating signals and

hence deals with the degree of smoothness of a time series at short (order n) scales,

whereas the other motifs deal with certain fluctuation shapes. Accordingly, in those pro-

cesses where the degree of smoothness can vary -such as in fractional Brownian motion,

where the smoothness of the signal increases with the Hurst exponent- we would expect

that the first motif is particularly informative, whereas for fast-fluctuating series we

expect this motif to be less informative. Integrals accounting for the probabilities are

easy to deal with; in several cases these are exactly solvable, and in general one can

solve them up to arbitrary precision with any symbolic programming software. In what

follows we determine the motif profiles for i.i.d. (white noise), coloured noise with expo-

nentially decaying correlations, and deterministic chaos (fully chaotic logistic map). We

show that Z4 capture enough information to easily distinguish different processes and

thus represent excellent features for series classification.

Relation with ordinal patterns. At this point it is important to highlight the relation

between the probability of occurrence of a given HVG motifs and the probability of

occurrence of so called ordinal patterns [110, 111]. In the theory proposed by Bandt

and Pompe i [110] for the case of the embedding dimension equal to 4 one proceeds to

map each local time series segment of size 4 into an ordering symbol of 4 letters from

the alphabet {0, 1, 2, 3} (where the largest value maps to the letter 0, the second largest
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to 1, the third largest to 2, and the smallest to 3). There are 4! = 24 permutations,

defining 24 symbols (ordinal patterns) whose frequencies are then counted to measure

the so-called permutation entropy that acts as a complexity measure of the series [110].

Interestingly, the probability of occurrence of each HVG motif indeed reduces to the

probability of occurrence of a set of possible ordinal patterns (this is no longer the case

for VG motifs [114]). For instance, Z4
1 is the probability of finding any of the ordinal

patterns 0123, 1023, 1203, 1230, 2103, 2130, 2310, or 3210, and similarly the rest of the

motif probabilities can be linked to the probability of appearance of different sets of

ordinal patterns. Accordingly, HVG motifs indeed induce a particular partition of the

set of ordinal patterns. The HVG motif profile is thus intimately linked with the so called

permutation [112] that accounts for the histogram of ordinal patterns. On the other hand

VGs are not in general invariant under monotonic transformations in the series [116]

(note however they are invariant under linear ones), and they depend on the marginal

probability distribution of the time series. Thus they are are not an order statistic

and, accordingly, there is no obvious correspondence between n-OPs and VG n-motifs

and both approaches in principle represent two independent symbolization methods that

encode temporal information in a different way. It has to be remarked that both VG and

HVG motif analysis can be applied without requiring any further assumption to time

series taking values from finite sets (namely when P (xt = xt+1) 6= 0), while the ordinal

patterns approach -based uniquely on the ranking statistics- require further assumptions

in that case.

4.3.1 Random dynamics: i.i.d.

Let us start by considering time series generate by i.i.d. uniform random variables

ξ ∼ U [0, 1]. In this case we have a = 0, b = 1, f(x) = 1 and f(x|y) = f(x) ∀y, and

simply enough, probabilities defined by Eqs. 4.1 and 4.2 easily factorize. According to

Table 4-A, after a little bit of calculus we find

Z3 =

[
2

3
,
1

3

]
; Z4 =

[
8

24
, 0,

6

24
,

6

24
,

2

24
,

2

24

]
(4.4)

Note that these results are in perfect quantitative agreement with numerics performed

for finite size series (top panel of Figure 4.4); we will show in the next Subsection that

results for finite series converge quite fast to the (asymptotic) theory as the series size

increases. Interestingly, results indeed coincide despite the fact that the theoretical val-

ues were computed for uniform white noise (f(x) = 1), while the numerics in Figure 4.4

were performed on Gaussian white noise (where f(·) is the Gaussian function). This

suggests that i.i.d. may have a universal HVG motif profile, indeed independent of f(·).
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We now state and prove a theorem that actually guarantees this result.

Theorem 1. Consider a bi-infinite series of i.i.d. random variables extracted from a

continuous distribution f(x) with support (a, b), where a, b ∈ R. Then the probability of

finding n-node HVG motifs (with n = 3, 4) follows Eq. 4.4, independently of the shape

of f(x).

Proof. The proof is a constructive one. We only give here the explicit proof for P4
1, as

the proof for the rest of probabilities follow analogously. We rely on the cumulative distri-

bution function F (x), defined as
∫ x
a f(x′)dx′ = F (x), with properties F (a) = 0, F (b) = 1

and

f(x)Fn−1(x) =
dFn(x)

ndx
. (4.5)

We have

P4
1 =∫ b

a
f(x0)dx0

∫ b

a
f(x1)dx1

∫ x1

a
f(x2)dx2

∫ x2

a
f(x3)dx3+∫ b

a
f(x0)dx0

∫ b

x0

f(x1)dx1

∫ b

x1

f(x2)dx2

∫ b

a
f(x3)dx3

Using the properties of F (x), the first term above is then∫ b

a
f(x0)dx0

∫ b

a
f(x1)dx1

∫ x1

a
f(x2)dx2

∫ x2

a
f(x3)dx3 =∫ b

a
f(x0)dx0

∫ b

a
f(x1)dx1

∫ x1

a
f(x2)F (x2)dx2 =∫ b

a
f(x0)dx0

∫ b

a
f(x1)

F 2(x1)

2
dx1 =∫ b

a

f(x0)

6
dx0 =

1

6
,
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and analogously for the second term,∫ b

a
f(x0)dx0

∫ b

x0

f(x1)dx1

∫ b

x1

f(x2)dx2

∫ b

a
f(x3)dx3 =∫ b

a
f(x0)dx0

∫ b

x0

f(x1)(1− F (x1))dx1 =∫ b

a
f(x0)

[
1

2
− F (x0) +

F 2(x0)

2

]
dx0 =

F (x0)

2
− F 2(x0)

2
+
F 3(x0)

6

∣∣∣∣b
a

=
1

6
, (4.6)

hence P4
1 = 2/6 = 8/24, coinciding with the result for uniform and Gaussian series, and

being independent of f(x). The rest of the elements in Z4 are computed analogously. �

As a matter of fact, the independence from f(x) can be trivially extended for an arbi-

trary size of the motif n. This is intuitive so we only give here the strategy of a proof.

The main ingredient which is required for this independency to hold ∀n is that the limits

of the n-th integral are either the extremes of the distribution support a, b (where the

cumulative distribution F (x) take the constant values 0 and 1 respectively, and indepen-

dently of f(x)), or other variables x0 . . . xn−1. In this latter case, one can use iteratively

the property in Eq. 4.5 to solve these integrals up to the last one (in x0), whose range is

always (a, b) and where F (a) = 0, F (b) = 1 can be finally applied, to give a result which

will not depend on the precise shape of f(x).

According to theorem 1, Gaussian, uniform, power law, etc, uncorrelated random series

all have the same HVG motif profiles. As a by-product, for any kind of sufficiently long

time series {xt}Nt=1 where xt ∈ f(x) and f(x) is continuous, if we randomize (shuffle)

the time series, the motif profile of the randomized series is equal to Eq. 4.4. This is the

reason why, at odds with the standard definition of a network’s motif profile, for HVGs

we don’t need to rescale Z in any way to be able to compare across different time series

and dynamical process.

Another notable consequence of theorem 1 is that it guarantees that series for which Z4

differ (even in the case of sufficiently long time series) from Eq. 4.4 are not uncorrelated

random series. This suggests a simple test for randomness [40]. For instance, one can

use a Pearson’s χ2 hypothesis test, where the null hypothesis is that the observed time
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series of N data is random and uncorrelated (white noise). The test statistic is then

χ2 = (N − n)

p∑
i=1

[P4
i (observed)− P4

i (i.i.d.)]2

P4
i (observed)

(4.7)

χ2 upper-critical values with p − 1 degrees of freedom, for p = 6 (n = 4) are 11.07 and

15.086 at the 95% and 99% significance level (meaning that values of the χ2 larger than

11.07 suggest that the observed series is not random at the 95% significance level). More

rigorously, as type-II motif is forbidden for aperiodic dynamics, we have only p = 5

different motifs of size n = 4, so the χ2 upper-critical values should be considered for 4

degrees of freedom: 9.49 (95%) and 13.28 (99%).

4.3.2 Deterministic chaos: fully chaotic logistic map

As previously stated, deterministic maps xt+1 = H(x) are indeed Markovian, and for

these situations the conditional probability is simply f(x2|x1) = δ(x2 − H(x1)), where

δ(x) is the Dirac-delta distribution. Therefore Eqs. 4.1 and 4.2, combined with inequality

sets given in Table 4-A can be used to compute the motif profiles for different determin-

istic processes. In these cases, one has to deal with simple integrals of the form

∫ q

p
δ(x− y)dx =

{
1 y ∈ [p, q]

0 otherwise
(4.8)

While in principle any deterministic process can be studied, we are interested in complex

signals, so we focus on irregular, aperiodic dynamics. As a paradigmatic case, we tackle

the fully chaotic logistic map

H(x) = 4x(1− x), x ∈ [0, 1], f(x) =
1

π
√
x(1− x)

.

In this case, f(x) is the invariant measure that describes in a probabilistic way the

average time spent by a chaotic trajectory in each region of the attractor. Let us start

by considering Z3 := (P3
1,P3

2), for which

P3
1 =

∫ 1

0
f(x0)dx0

∫ 1

x0

δ(x1 −H(x0))dx1

∫ 1

0
δ(x2 −H2(x0))dx2,

P3
2 =

∫ 1

0
f(x0)dx0

∫ x0

0
δ(x1 −H(x0))dx1

∫ 1

x1

δ(x2 −H2(x0))dx2.

According to property in Eq. 4.8, the Dirac-delta integrals only have the effect of shrink-

ing the range of integration of x0. For instance, for P3
1, the integral in x1 requires
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Figure 4.5: Cobweb plot of the iterates of the fully chaotic logistic map H(x) = 4x(1−x).

H(x0) > x0, whereas the integral in x2 simply requires H2(x0) ∈ [0, 1]. While the latter

inequality is fulfilled for all x0 ∈ [0, 1] (and thus has no effect), the former one requires

x0 ∈ [0, 3/4]. This can be easily seen from the cobweb plot of H(x) and its iterates (see

Figure 4.5): H(x) > x for x ∈ [0, 3/4]. Altogether,

P3
1 =

∫ 3/4

0
f(x0)dx0 = 2/3

On the other hand, motif normalization imposes P3
2 = 1/3. The same result is obviously

found if we compute P3
2 explicitly: in this case the integral in x1 requires H(x0) < x0,

which holds when x0 ∈ [3/4, 1], and the integral in x2 requires H2(x0) > x1 ↔ H2(x0) >

H(x0). Looking at the cobweb plots, this final condition is met in two subintervals, so

the intersection with the first condition yields a final interval x0 ∈ [3/4, 1], for which

P3
2 =

∫ 1

3/4
f(x0)dx0 = 1/3,

as expected. These results coincide with those found for i.i.d. series, meaning that

Z3 doesn’t capture enough structure to distinguish both processes. Let us proceed in

an equivalent way to compute Z4 = (P4
1, . . . ,P4

6). It becomes evident that integrals

associated to xn deal with the cobweb plots of H(x),H2(x), . . . ,Hn(x). Accordingly,

these integrals are ultimately related with the structure of fixed points of Hn(x), and

with the solutions of equations of the form Hr(x) = Hs(x) for some r and s. We only

have algebraic closed expressions for the fixed points of H(x) → {0, 3/4} and H2(x) →
{0, 5−

√
5

8 , 3/4, 5+
√
5

8 } (for n ≥ 3, Hn(x) is a polynomial of order larger or equal to 6 and

according to Abel-Ruffini’s theorem, the set of fixed points does not have in general an

algebraic expression, however we can compute them up to arbitrary precision). Other

values of interest include the roots of H3(x) = H2(x), and specially the largest one

x = 1/2 +
√

3/4.
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Let us show how to compute one of these motif probabilities. For instance,

P4
5 =

∫ 1

0
f(x0)dx0

∫ x0

0
δ(x1 −H(x0))dx1

∫ x0

x1

δ(x2 −H2(x0))dx2

∫ 1

x2

δ(x3 −H3(x0))dx3

(4.9)

which reduces to

P4
5 =

∫ q

p
f(x0)dx0,

where [p, q] can be hierarchically obtained as:

H(x0) < x0 ∩ [0, 1]⇒ x0 ∈ [3/4, 1];

H2(x0) < x0 ∩H2(x0) > H(x0) ∩ [3/4, 1]⇒ x0 ∈ [5+
√
5

8 , 1];

H3(x0) > H2(x0) ∩ [5+
√
5

8 , 1]⇒ x0 ∈ [xp, 1], where xp is the second largest root fulfilling

H3(xp) = H2(xp), i.e xp = 1/2 +
√

3/4. Altogether,

P4
5 =

∫ 1

1/2+
√
3/4

1

π
√
x0(1− x0)

dx0 =
1

π
B[

1
2
+
√
3

4
,1
](1

2
,
1

2

)
=

1

6
(= 4/24)

(where B is the incomplete Beta function), which is indeed quite different from the result

found for i.i.d., P4
5(i.i.d.) = 2/24.

Similar arguments can be used to obtain analytically the rest of probabilities (explicit

computations can be found in Appendix B), finding

Z3 =

[
2

3
,
1

3

]
; Z4 =

[
8

24
, 0,

4

24
,

8

24
,

4

24
, 0

]
(4.10)

Comparing this set of motif probabilities with the result for i.i.d. (Eq. 4.4), we can

conclude that Z4 distinguishes the fully chaotic logistic map from a purely uncorrelated

stochastic process. Note, of course, that a similar derivation can be performed in other

deterministic maps; in this sense the methodology is general (however one encounters

problems when the attractor has a fractal dimension, and one needs to carefully choose a

proper integration theory). These exact results are also in excellent quantitative agree-

ment with numerics performed in finite series (top panel of Figure 4.4), so convergence

to the theory with series size is quite fast, enabling its use in empirical cases. To be more

precise, in the next Subsection we make a study of how fast results for short time series

converge to the asymptotic theory as series size increases.
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a)

HVG Fully Chaotic Logistic Map
b)

HVG White Gaussian Noise
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Figure 4.6: The measured frequency of appearance rescaled by its theoretical value Φ is
plotted for each motif associated to Gaussian white noise (panel a) and to a fully chaotic
logistic map (panel b) in function of the time series size N ; results are averaged over
100 realisations. The curves oscillate with fast decreasing amplitude around the value
1 (for 29 the amplitude is less than 10−2) indicating fast asymptotic convergence of the
measured motif profile to the theoretical profile in both cases.

4.3.3 Convergence of finite series

In order to be more precise about the convergence speed of finite-size numerics to the

theory (which in rigour only holds for bi-infinite time series), we have computed for series

of size N the numeral estimate Z4(N) for both i.i.d. and the fully chaotic logistic map,

and compare it with the asymptotic values Z4. Results are plotted in Figure 4.6, where

we plot Φ(N ) = 〈Z4 (N )〉/Z4 as a function of the series size N (the average is with

respect to realizations). Results indicate that convergence to the asymptotic theory is

already reached for N � 104 (which is the conservative size that is used all over this

work).
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4.3.4 Stochastic processes with correlations

To round off the theory section, and to explore how results deviate from i.i.d. for

correlated stochastic processes, we consider coloured noise with exponentially decaying

correlations as described by the AR(1) process:x0 = ξ0

xt = rxt−1 +
√

(1− r2)ξt, t ≥ 1
(4.11)

where ξt ∼ N (0, 1) is Gaussian white, and r, 0 < r < 1 is a parameter that tunes the

correlation. The auto-correlation function C(t), which describes the correlation of the

position at xt0 and xt0+t decays exponentially C(t) = e−t/τ , where the characteristic

time τ = 1/ ln(r). In the limit r → 0, the correlations vanish and the process reduces to

a white noise signal. The limit r → 1 is more delicate, but intuitively in this limit the

process gets completely correlated and tends to be constant xt+1 = xt ∀t.
This is a family of models parametrized by the coefficient r. For 0 < r < 1, these models

are indeed Gaussian, Markovian and stationary, with a probability density f(x) and

transition probability f(x2|x1) aref(x) = exp(−x2/2)√
2π

f(x2|x1) = exp[−(x2−rx1)2/(2(1−r2))]√
2π(1−r2)

respectively. Since x are Gaussian variables they can vary in (−∞,∞). We focus on Z4

that we know gave good discriminatory results between i.i.d. and chaos. For illustration,

the first element reads

P4
1 =

∫ ∞
−∞

e
−x20
2

√
2π
dx0

∫ ∞
−∞

e
−(x1−rx0)

2

2(1−r2)√
2π(1− r2)

dx1

∫ x1

−∞

e
−(x2−rx1)

2

2(1−r2)√
2π(1− r2)

dx2

∫ x2

−∞

e
−(x3−rx2)

2

2(1−r2)√
2π(1− r2)

dx3+

∫ ∞
−∞

e
−x20
2

√
2π
dx0

∫ ∞
x0

e
−(x1−rx0)

2

2(1−r2)√
2π(1− r2)

dx1

∫ b

x1

e
−(x2−rx1)

2

2(1−r2)√
2π(1− r2)

dx2

∫ ∞
−∞

e
−(x3−rx2)

2

2(1−r2)√
2π(1− r2)

dx3

(4.12)

For any particular value of r, these integrals can be evaluated up to arbitrary precision

using Mathematica [117]. In table Table 4-B we report the theoretical values of Z4(r)

for r ∈ [0.02 − 0.99]. These are in perfect agreement with numerical simulations per-

formed on finite series of size N = 104 (ensemble averaged over 100 realizations) for

r = {0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}, as shown in Figure 4.7. As r > 0 the profiles deviate

from i.i.d. and thus, again, these features can easily distinguish between exponentially
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r P4
1 P4

2 P4
3, P4

4 P4
5, P4

6

0.02 0.3370 0 0.2482 0.0833
0.04 0.3406 0 0.2464 0.0833
0.06 0.3443 0 0.2446 0.0832
0.08 0.3478 0 0.2429 0.0831
0.1 0.3514 0 0.2412 0.0830
0.2 0.3690 0 0.2333 0.0822
0.3 0.3862 0 0.2260 0.0809
0.4 0.4030 0 0.2192 0.0793
0.5 0.4196 0 0.2130 0.0772
0.6 0.4359 0 0.2072 0.0748
0.7 0.4521 0 0.2018 0.0722
0.8 0.4681 0 0.1967 0.0692
0.9 0.4841 0 0.1920 0.0660
0.95 0.4919 0 0.1897 0.0643
0.97 0.4945 0 0.1888 0.0636
0.99 0.4973 0 0.1879 0.1879

Table 4-B: Theoretical values of Z4(r) for the AR(1) process evaluated at different values
of the coefficient r.
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r=0.999

theory
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Figure 4.7: HVG significance profile Z4 for AR(1) processes described by Eq. 4.11,
for different values of the correlation coefficient r. When r increases the appearance
probability of motif of type-I increases while the rest of probabilities decrease. This is
simply due to the fact that finding constant sequences xt+3 = xt+2 = xt+1 = xt becomes
more probable as r increases.

coloured and white noise.
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4.4 Theory for sequential VG motifs

We saw that the set of sequential VG motifs of size n, n ∈ [2, 3, ..., N ] is defined as the

set of all the Mn possible sub-graphs with n consecutive vertices along the Hamiltonian

path of a VG (similarly, the set of HVG motifs of size n is the set of all the Mh
n admis-

sible sub-graphs with n consecutive vertices along the Hamiltonian path of a HVG). For

n = 4, there are in principle a total of M4 = 8 possible motifs (see table 4-C for an

enumeration), although as we will show below the number of admissible ones is just six.

We use the notation Φm to indicate the probability of appearance of a certain VG motif

m (to make a distinction from the HVG motifs probabilities), and accordingly the VG

n-motif profile is Zn = [Φ1, . . . ,ΦMn ].

Let us consider again a time-discrete (deterministic or stochastic) dynamical process

xt+1 = H(xt, ξ), where ξ is a generic stochastic term, that fulfils the Markov property:

∀l f(xl|xl−1, xl−2, . . . ) = f(xl|xl−1), where f(xl|xl−1) is the transition probability distri-

bution and x ∈ (a, b). For deterministic processes f(xl|xl−1) = δ(xl − H(xl−1)) where

δ(x) is the Dirac-delta distribution where δ(x) is the Dirac-delta distribution:

∫ q

p
δ(x− y)dx =

{
1 y ∈ [p, q]

0 otherwise
(4.13)

and f(x) is a smooth invariant measure of the process H(x), whereas for stochastic

processes f(x) is simply the underlying probability density, i.e. the marginal distribu-

tion of the process. Our theory addresses the motif profile Z4, in what follows we split

this analysis in two cases, depend whether x is bounded or unbounded. In both cases,

each probability Φ4
m is computed formally using concatenated integrals which are for-

mally equivalent to Eq. 4.2, where the ranges of each integral are given according to

the convexity criteria defining the visibility rule, as opposed to the HVG case where

these were simply ordering criteria. Whereas in the case of unbounded variables the

inequality set will only take into account the visibility criteria within the motifs, in the

case of bounded variables the additional restriction of variables needing to be bounded

adds a layer of complexity as we will see. From now on, let {xl, xl+1, xl+2, xl+3} be four

arbitrary consecutive data (l ∈ [1, N − 3]).
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Label VG motif type Inequality set
1 {∀(xl, xl+1), xl+2 < 2xl+1 − xl, xl+3 < 2xl+2 − xl+1}
2 {∅}
3 {∀(xl, xl+1), xl+2 > 2xl+1 − xl, xl+3 <

3
2xl+2 − 1

2xl}
4 {∀(xl, xl+1), xl+2 < 2xl+1 − xl, 2xl+2 − xl+1 < xl+3 < 3xl+1 − 2xl}
5 {∀(xl, xl+1), xl+2 > 2xl+1 − xl, 32xl+2 − 1

2xl < xl+3 < 2xl+2 − xl+1}
6 {∀(xl, xl+1), xl+2 < 2xl+1 − xl, xl+3 > 3xl+1 − 2xl}
7 {∀(xl, xl+1), xl+2 > 2xl+1 − xl, xl+3 > 2xl+2 − xl+1}
8 {∅}

Table 4-C: The set of size-4 VG motifs are defined according to a set of relations between
4 consecutive data {xl, xl+1, xl+2, xl+3}, l ∈ [1, N − 3] in the time series.

4.4.1 Unbounded variable x ∈ (−∞,∞)

In the case of unbounded variables, it is easy to prove [43, 115] that in general

Φn
m =

∫
R
f(xl)dxl

∫ cm1 (xl)

dm1 (xl)
f(xl+1|xl)dxl+1 . . .

∫ cmn−1(xl,...,xl+n−2)

dmn−1(xl,...,xl+n−2)
f(xl+n−1|xl+n−2)dxl+n−1

(4.14)

where {cmi (·)}i=1,...,n−1 and {dmi (·)}i=1,...,n−1 are the set of functions which spec-

ify respectively the upper bound condition and the lower bound condition for the i-th

integral. As advanced, these conditions are directly related to the visibility criterion

(which in the VG case is a convexity relation) and a summary of those are are explic-

itly reported in table 4-C. For example, if we want to build motif 1 using 4 consec-

utive equispaced data, we need that, given the first two generic values xl, xl+1 (node

l always connected with node l + 1), the third datum xl+2 has to satisfy the rela-

tion xl+2 − xl+1 < xl+1 − xl → xl+2 < 2xl+1 − xl (node l + 2 connected with node

l + 1 but not with node l) and that the fourth datum xl+3 has to satisfy the relation

xl+3 − xl+2 < xl+2 − xl+1 → xl+3 < 2xl+2 − xl+1 (node l + 3 connected only with node

l + 2). The equivalence between each motif and its associated inequality set can be

proved rigorously also for the other motifs in an analogous way. First, note that for the

motifs 2 and 8 the inequality set is empty. This means that these motifs are actually not

admissible under the VG algorithm. In the case of motif number 2, note that this motif

was an admissible one for HVGs associated to discrete-valued series where the proba-

bility of finding equal consecutive data is finite. For VG, it is easy to prove that if the

bounding nodes share an edge, then either the left edge or the right edge will necessary

share an edge with one of the inner nodes, thus motif 2 is not a VG and is therefore not

occurring. Similarly, it is easy to prove that if a time series gives rise to a motif of type

8, then an edge would necessarily appear between the two bounding nodes, reducing this

to type 7. Accordingly, the number of admissible motifs is not 8 but 6, and thus the
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effective number of degrees of freedom associated to n = 4 VG motifs is Mn− 2− 1 = 5.

To better understand the application of the inequality set in the case of unbounded

variables, consider a white Gaussian process (xi ∈ (−∞,∞)) with

f(xi) =
exp(−x2i /2)√

2π
and f(xi+1|xi) = f(xi+1)

the probability of appearance of motif 1 in Table 4-C can be written explicitly as

Φ4
1 =

∫ ∞
−∞

e−
x20
2

√
2π
dx0

∫ ∞
−∞

e−
x21
2

√
2π
dx1

∫ 2x1−x0

−∞

e−
x22
2

√
2π
dx2

∫ 2x2−x1

−∞

e−
x23
2

√
2π
dx3. (4.15)

This integral cannot be solved in closed form but can be easily evaluated up to arbitrary

precision using symbolic computation, to obtain Φ4
1 ' 0.13386.

4.4.2 Bounded variables x ∈ [a, b]; a, b ∈ R; a, b <∞

In the case where x ∈ (a, b) where the bounds a, b ∈ R are finite, these restrictions in

turn induce further conditions on the lower and upper bounds of the integrals in Eq.4.14

which have the effect of splitting the overall integral in a sum of different integrals. For

illustrative purposes we start by considering a particular example. Consider a series

of i.i.d. uniform random variables xi ∼ U [a, b] with f(x) = (b − a)−1 and f(xi+1|xi) =

f(xi+1), and let us consider again Φ4
1. According to table 4-C, in principle the conditions

for the first two variables x0, x1 are ∀(x0, x1) ∈ [a, b]; for the third variable x2 the lower

bound condition becomes x2 > a but the upper bound condition will depend on the

function 2x1 − x0 which can take values in [2a− b, 2b− a] and thus we need to consider

three different cases:


2x1 − x0 > b =⇒ x1 ∈ ( (x0+b)2 , b], x2 ∈ [a, b]

a < 2x1 − x0 < b =⇒ x1 ∈ ( (x0+a)2 , (x0+b)2 ], x2 ∈ [a, 2x1 − x0]

2x1 − x0 < a {∅}

(4.16)

where the last case doesn’t contribute (as x2 > a is always fulfilled). Similarly for

each admissible choice of the variable x2 the bound conditions for x3 will produce an
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additional split:
2x2 − x1 > b =⇒ x2 ∈ ( (x1+b)2 , b], x3 ∈ [a, b]

a < 2x2 − x1 < b =⇒ x2 ∈ ( (x1+a)2 , (x1+b)2 ], x3 ∈ [a, 2x2 − x1]

2x2 − x1 < a {∅}

(4.17)

After a bit of algebra one finds

Φ4
1 =

1

(b− a)4

[ ∫ b

a
dx0

∫ b

(x0+b)
2

dx1

∫ b

(x1+b)
2

dx2

∫ b

a
dx3 + (4.18)

+

∫ b

a
dx0

∫ b

(x0+b)
2

dx1

∫ (x1+b)
2

(x1+a)
2

dx2

∫ 2x2−x1

a
dx3 +

+

∫ b

a
dx0

∫ (x0+b)
2

(2x0+b)
3

dx1

∫ 2x1−x0

(x1+b)
2

dx2

∫ b

a
dx3 +

+

∫ b

a
dx0

∫ (2x0+b)
3

(2x0+a)
3

dx1

∫ 2x1−x0

(2x1+a)
2

dx2

∫ 2x2−x1

a
dx3 +

+

∫ b

a
dx0

∫ (x0+b)
2

(2x0+b)
3

dx1

∫ (x1+b)
2

(x1+a)
2

dx2

∫ 2x2−x1

a
dx3

]
=

5

36
' 0.1389.

Two comments are in order. First, note that this result is different from the value for Φ4
1

for Gaussian white noise, that is, the results for white noise seems to be dependent on

the marginal distribution of the noise. This lack of invariance was expected as VG is not

an order statistic, and differs from the phenomenology found for HVG, where results for

white noise were universal (independent from the marginal distribution). This evidence

will be confirmed in the next sections. Second, this motif profile turns to be independent

from the bounding values a and b (where x ∈ [a, b]). This is due to the invariance

properties of VGs: if the random variable ξ ∼ U [0, 1], then a+(b−a)ξ ∼ U [a, b], and the

transformation ξ → a+ (b− a)ξ, when b > a, leaves the VG (and hence the VG motifs)

unaltered. This is indeed a peculiarity of the uniform distribution, in other words the

VG motif profile of white noise extracted from a bounded distribution generally depends

on the bounds of the distribution.

After a bit of algebra, we are able to translate the visibility and bounded variable

restrictions inside each motif into another set of inequalities, which we have reported in

table 4-D. In what follows we make use of this theory to compute the theoretical VG

motif profile for several dynamical processes.
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VG motif Inequality set

{xl ∈ [a, b], xl+1 ∈ [ (xl+b)2 , b], xl+2 ∈ [
(xl+1+b)

2 , b], xl+3 ∈ [a, b]}
{xl ∈ [a, b], xl+1 ∈ [ (xl+b)2 , b], xl+2 ∈ [

(xl+1+a)
2 ,

(xl+1+b)
2 ], xl+3 ∈ [a, 2xl+2 − xl+1]}

{xl ∈ [a, b], xl+1 ∈ [ (2xl+b)3 , (xl+b)2 ], xl+2 ∈ [
(xl+1+b)

2 , 2xl+1 − xl], xl+3 ∈ [a, b]}
{xl ∈ [a, b], xl+1 ∈ [ (2xl+a)3 , (2xl+b)3 ], xl+2 ∈ [

(xl+1+a)
2 , 2xl+1 − xl], xl+3 ∈ [a, 2xl+2 − xl+1]}

{xl ∈ [a, b], xl+1 ∈ [ (2xl+b)3 , (xl+b)2 ], xl+2 ∈ [
(xl+1+a)

2 ,
(xl+1+b)

2 ], xl+3 ∈ [a, 2xl+2 − xl+1]}
{∅}
{xl ∈ [a, b], xl+1 ∈ [a, (xl+b)2 ], xl+2 ∈ [ (xl+2b)

3 , b], xl+3 ∈ [a, b]}
{xl ∈ [a, b], xl+1 ∈ [a, (xl+a)2 ], xl+2 ∈ [ (xl+2a)

3 , (xl+2b)
3 ], xl+3 ∈ [a,

3xl+2−xl
2 ]}

{xl ∈ [a, b], xl+1 ∈ [ (2xl+b)3 , (xl+b)2 ], xl+2 ∈ [2xl+1 − xl, b], xl+3 ∈ [a, b]}
{xl ∈ [a, b], xl+1 ∈ [ (xl+a)2 , (2xl+b)3 ], xl+2 ∈ [ (xl+2b)

3 , b], xl+3 ∈ [a, b]}
{xl ∈ [a, b], xl+1 ∈ [ (2xl+a)3 , (2xl+b)3 ], xl+2 ∈ [2xl+1 − xl, (xl+2b)

3 ], xl+3 ∈ [a, 3xl+1 − 2xl]}
{xl ∈ [a, b], xl+1 ∈ [ (xl+a)2 , (2xl+a)3 ], xl+2 ∈ [ (xl+2a)

3 , (xl+2b)
3 ], xl+3 ∈ [a, 3xl+1 − 2xl]}

{xl ∈ [a, b], xl+1 ∈ [ (xl+b)2 , b], xl+2 ∈ [
(xl+1+a)

2 ,
(xl+1+b)

2 ], xl+3 ∈ [2xl+2 − xl+1, b]}
{xl ∈ [a, b], xl+1 ∈ [ (xl+b)2 , b], xl+2 ∈ [a,

(xl+1+a)
2 ], xl+3 ∈ [a, b]}

{xl ∈ [a, b], xl+1 ∈ [ (2xl+a)3 , (2xl+b)3 ], xl+2 ∈ [
(xl+1+a)

2 , 2xl+1 − xl], xl+3 ∈ [2xl+2 − xl+1, 3xl+1 − 2xl]}
{xl ∈ [a, b], xl+1 ∈ [ (2xl+b)3 , b], xl+2 ∈ [

(xl+1+a)
2 ,

(xl+1+b)
2 ], xl+3 ∈ [2xl+2 − xl+1, b]}

{xl ∈ [a, b], xl+1 ∈ [ (2xl+a)3 , (2xl+b)3 ], xl+2 ∈ [a,
(xl+1+a)

2 ], xl+3 ∈ [a, 3xl+1 − 2xl]}
{xl ∈ [a, b], xl+1 ∈ [ (2xl+b)3 , (xl+b)2 ], xl+2 ∈ [a,

(xl+1+a)
2 ], xl+3 ∈ [a, b]}

{xl ∈ [a, b], xl+1 ∈ [a, (xl+a)2 ], xl+2 ∈ [
(xl+1+2a)

3 ,
(xl+1+b)

2 ], xl+3 ∈ [
3xl+2−xl

2 , 2xl+2 − xl+1]}
{xl ∈ [a, b], xl+1 ∈ [ (2xl+a)3 , (2xl+b)3 ], xl+2 ∈ [2xl+1 − xl, (xl+1+b)

2 ], xl+3 ∈ [
3xl+2−xl

2 , 2xl+2 − xl+1]}
{xl ∈ [a, b], xl+1 ∈ [ (xl+a)2 , (2xl+a)3 ], xl+2 ∈ [ (2xl+a)3 ,

(xl+1+b)
2 ], xl+3 ∈ [

3xl+2−xl
2 , 2xl+2 − xl+1]}

{xl ∈ [a, b], xl+1 ∈ [a, (xl+a)2 ], xl+2 ∈ [
(xl+1+a)

2 , (xl+2a)
3 ], xl+3 ∈ [a, 2xl+2 − xl+1]}

{xl ∈ [a, b], xl+1 ∈ [ (xl+a)2 , (2xl+a)3 ], xl+2 ∈ [
(xl+1+a)

2 , (xl+2a)
3 ], xl+3 ∈ [a, 2xl+2 − xl+1]}

{xl ∈ [a, b], xl+1 ∈ [a, (2xl+b)3 ], xl+2 ∈ [
(xl+1+b)

2 , (xl+2b)
3 ], xl+3 ∈ [

3xl+2−xl
2 , b]}

{xl ∈ [a, b], xl+1 ∈ [ (2xl+a)3 , (2xl+b)3 ], xl+2 ∈ [a, 2xl+1 − xl], xl+3 ∈ [3xl+1 − 2xl, b]}
{xl ∈ [a, b], xl+1 ∈ [ (xl+a)2 , (2xl+a)3 ], xl+2 ∈ [a, 2xl+1 − xl], xl+3 ∈ [a, b]}
{xl ∈ [a, b], xl+1 ∈ [a, (xl+a)2 ], xl+2 ∈ [a,

(xl+1+a)
2 ], xl+3 ∈ [a, b]}

{xl ∈ [a, b], xl+1 ∈ [a, (xl+a)2 ], xl+2 ∈ [
(xl+1+a)

2 ,
(xl+1+b)

2 ], xl+3 ∈ [2xl+2 − xl+1, b]}
{xl ∈ [a, b], xl+1 ∈ [ (xl+a)2 , (2xl+a)3 ], xl+2 ∈ [2xl+1 − xl, (xl+1+a)

2 ], xl+3 ∈ [a, b]}
{xl ∈ [a, b], xl+1 ∈ [ (xl+a)2 , (2xl+a)3 ], xl+2 ∈ [

(xl+1+a)
2 ,

(xl+1+b)
2 ], xl+3 ∈ [2xl+2 − xl+1, b]}

{xl ∈ [a, b], xl+1 ∈ [ (2xl+a)3 , (2xl+b)3 ], xl+2 ∈ [2xl+1 − xl, (xl+1+b)
2 ], xl+3 ∈ [2xl+2 − xl+1,

(xl+1+b)
2 ]}

{∅}

Table 4-D: Sets of inequalities between 4 consecutive data {xl, xl+1, xl+2, xl+3}, l ∈
[1, N − 3] in a time series of length N which define the VG motifs of size 4 in the case
of bounded variables xi ∈ [a, b].

4.4.3 Fully chaotic logistic map

We start by considering the fully chaotic logistic map H(x) = 4x(1− x), x ∈ [0, 1], with

invariant density f(x) = 1

π
√
x(1−x)

. As this process is deterministic, it fulfils a trivial

Markov property such that f(x2|x1) = δ(x2 − H(x1)). The HVG motif profile for this

process was computed exactly in [43], here we compute the VG motif profile. Before

proceeding to compute each probability contribution, it is important to highlight a sub-

tle point. Since for this process x ∈ [0, 1] is bounded, in principle one should use the

inequality set depicted for bounded variables in Table 4-D. However, in this particular
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case it is actually not necessary to explicitly consider the restriction x ∈ [0, 1]. As we

will see in a moment, this is already taken into account implicitly in the computation

of each integral and therefore one can use the (simpler) inequality set for unbounded

variables given in table 4-C.

We start by computing Φ4
1:

Φ4
1 =

∫ 1

0
f(x0)dx0

∫ 1

0
δ(x1 −H(x0))dx1

∫ 2x1−x0

0
δ(x2 −H2(x0))dx2

∫ 2x2−x1

0
δ(x3 −H3(x0))dx3

which gives the following conditions:

H3(x0) < 2H2(x0)−H(x0)

H2(x0) < 2H(x0)− x0
which are satisfied for x0 ∈ [0.1743, 0.25]. Note at this point that the latter conditions

are also satisfied in other ranges, but we only consider those ranges that belong to [0, 1],

and this is indeed the reason why we don’t need to use in this case the inequality set for

bounded variables. We thus have

Φ4
1 '

1

π
B[0.1743,0.25]

(
1

2
,
1

2

)
' 0.0591

where B is the incomplete Beta function. As Φ4
2 = 0 by construction, we proceed by

calculating Φ4
3:

Φ4
3 =

∫ 1

0
f(x0)dx0

∫ 1

0
δ(x1 −H(x0))dx1

∫ 1

2x1−x0
δ(x2 −H2(x0))dx2

∫ 3
2
x2− 1

2
x0

0
δ(x3 −H3(x0))dx3

which gives the following conditions:

H3(x0) <
3
2H

2(x0)− 1
2H(x0)

H2(x0) > 2H(x0)− x0
which are satisfied for x0 ∈ [0.0522, 0.1743] ∪ [0.75, 0.929]. Therefore:

Φ4
3 '

1

π
(B[0.0522,0.1743]

(
1

2
,
1

2

)
+B[0.75,0.929]

(
1

2
,
1

2

)
) ' 0.289.

Similarly for Φ4
4 we have

Φ4
4 =

∫ 1

0
f(x0)dx0

∫ 1

0
δ(x1 −H(x0))dx1

∫ 2x1−x0

0
δ(x2 −H2(x0))dx2

∫ 3x1−2x0

2x2−x1
δ(x3 −H3(x0))dx3

which gives the following conditions:

2H2(x0)−H(x0) < H3(x0) < 3H2(x0)− 2x0
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H2(x0) < 2H(x0)− x0
which are satisfied for x0 ∈ [0.25, 0.75], and therefore

Φ4
4 '

1

π
B[0.25,0.75]

(
1

2
,
1

2

)
' 0.3333

For Φ4
5 we have

Φ4
5 =

∫ 1

0
f(x0)dx0

∫ 1

0
δ(x1 −H(x0))dx1

∫ 1

2x1−x0
δ(x2 −H2(x0))dx2

∫ 2x2−x1

3
2
x2− 1

2
x0

δ(x3 −H3(x0))dx3

which gives the following conditions:
3
2H

2(x0)− 1
2x0 < H

3(x0) < 2H2(x0)−H(x0)

H2(x0) > 2H(x0)− x0
which are satisfied for x0 ∈ [0.927, 0.954], and thus

Φ4
5 '

1

π
(B[0.04568,0.05224]

(
1

2
,
1

2

)
+B[0.9239,0.9543]

(
1

2
,
1

2

)
' 0.0439

For Φ4
6 we have

Φ4
6 =

∫ 1

0
f(x0)dx0

∫ 1

0
δ(x1 −H(x0))dx1

∫ 2x1−x0

0
δ(x2 −H2(x0))dx2

∫ 1

3x1−2x0
δ(x3 −H3(x0))dx3

which gives the following conditions:

H3(x0) > 3H(x0)− 2x0

H2(x0) < 2H(x0)− x0
which are never satisfied and thus

Φ4
6 = 0.

For Φ4
7 we have

Φ4
7 =

∫ 1

0
f(x0)dx0

∫ 1

0
δ(x1 −H(x0))dx1

∫ 1

2x1−x0
δ(x2 −H2(x0))dx2

∫ 1

2x2−x1
δ(x3 −H3(x0))dx3

which gives the following conditions:

H3(x0) > 2H2(x0)−H(x0)

H2(x0) > 2H(x0)− x0
which are satisfied for x0 ∈ [0, 0.0457] ∪ [0.9544, 1], and thus

Φ4
7 '

1

π
(B[0,0.046]

(
1

2
,
1

2

)
+B[0.95,1]

(
1

2
,
1

2

)
) ' 0.2741

Finally, by construction Φ4
8 = 0. Altogether, we find the VG motif profile of a fully
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chaotic logistic map

Z4 =

[
0.0591, 0, 0.289, 0.3333, 0.0439, 0, 0.2741, 0

]
(4.19)

Note that while the result is in this case an approximation, our theory allows for numer-

ical estimates with arbitrary precision (the result is not exact because the location of

fixed points of the map is only approximate, although this approximation is arbitrarily

close to the true values).

4.4.4 Uniform white noise

For white uniform noise x(t) = ξ, ξ ∼ U [a, b] we have a probability density f(x) and

transition probability f(x2|x1) given by

f(x) =
1

b− a
, and f(x2|x1) = f(x2) (4.20)

In this case the computations are more cumbersome since we need to make use of the

inequality set for bounded variables described in Table 4-D. The mth component of Z4

is given by

Φ4
m =

∑
s

∫ ∞
−∞

e−
x20
2

√
2π
dx0

∫ cms1

dms1

e−
x21
2

√
2π
dx1

∫ cms2

dms2

e−
x22
2

√
2π
dx2

∫ cms3

dms3

e−
x23
2

√
2π
dx3 (4.21)

where the sum runs over all the set s of conditions dmsi , c
m
si which contribute to evaluate

the probability for motif m in Table 4-D. All the integrals can nonetheless be solved

analytically in closed form and give the following motif profile

Z4 =

[
5

36
, 0,

31

108
,

31

108
,

2

27
,

2

27
,

5

36
, 0

]
(4.22)

which differs from the one found for the chaotic logistic map.

4.4.5 Gaussian white noise

For standard white Gaussian noise x(t) = ξ, ξ ∼ N (0, 1) the probability density f(x)

and transition probability f(x2|x1) are given by

f(x) =
exp(−x2/2)√

2π
, and f(x2|x1) = f(x2) (4.23)
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The m component of Z4 is given by

Φ4
m =

∫ ∞
−∞

e−
x20
2

√
2π
dx0

∫ ∞
−∞

e−
x21
2

√
2π
dx1

∫ cm2

dm2

e−
x22
2

√
2π
dx2

∫ cm3

dm3

e−
x23
2

√
2π
dx3 (4.24)

where (dmi , c
m
i ) are now the top and bottom conditions for the variable xl+i in motif m

reported in Table for unbounded variables 4-C. The integrals can be evaluated numeri-

cally up to arbitrary precision and they give the following results

Z4 =

[
0.13386, 0, 0.2850, 0.2850, 0.0811, 0.0811, 0.13386, 0

]
(4.25)

At odds with what happens for HVG motifs [43], this result is different from the bench-

mark result for uniformly distributed white noise, thus there is not a universal VG motif

profile for white noise as previously anticipated.

4.4.6 Gaussian red noise

Gaussian colored (red) noise with exponentially decaying correlations [118] can be sim-

ulated using an AR(1) process:

xt = rxt−1 + ξ (4.26)

where ξ ∼ N (0, 1) is Gaussian white, and 0 < r < 1 is a parameter that tunes the

correlation. The auto-correlation function C(t) decays exponentially C(t) = e−t/τ , where

the characteristic time τ = 1/ ln(r). This model is Markovian and stationary, with a

probability density f(x) and transition probability f(x2|x1) given by [118]

f(x) =
exp(−x2/2)√

2π
, and f(x2|x1) =

exp[−(x2 − rx1)2/(2(1− r2))]√
2π(1− r2)

(4.27)

The m component of Z4 is given by

Φ4
m =

∫ ∞
−∞

e
−x20
2

√
2π
dx0

∫ ∞
−∞

e
−(x1−rx0)

2

2(1−r2)√
2π(1− r2)

dx1

∫ cm2

dm2

e
−(x2−rx1)

2

2(1−r2)√
2π(1− r2)

dx2

∫ cm3

dm3

e
−(x3−rx2)

2

2(1−r2)√
2π(1− r2)

dx3

(4.28)

where, again, (dmi , c
m
i ) are respectively the bottom and the top conditions for the variable

xl+i in motif m reported in table Table 4-C. Once we set the precise values of the

parameter r, the profile can be evaluated numerically up to arbitrary precision; here we
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Figure 4.8: Average (50 realisations) frequency of appearance Φ of VG motifs extracted
from the AR(1) processes described by Eq. 4.26, for different values of the correlation
coefficient r = [14 ,

1
2 ,

3
4 ] (only motifs with a non-null probability are shown). Error bars

are contained in the symbols; results are in very good agreement with the theoretical
expected value.

give the profile for three possible values r = 1/4, 1/2 and 3/4)

Z4
r= 1

4

=

[
0.14713, 0, 0.27028, 0.27028, 0.08259, 0.08259, 0.14713, 0

]
Z4
r= 1

2

=

[
0.15731, 0, 0.2595, 0.2595, 0.08316, 0.08316, 0.15731, 0

]
(4.29)

Z4
r= 3

4

=

[
0.16410, 0, 0.25258, 0.25258, 0.08332, 0.08332, 0.16410, 0

]

In all these examples, theoretical results are in very good agreement with the results

obtained from numerical simulations reported in Figure 4.8.

4.4.7 Noise characterisation

Differently from the HVG motifs, VG motifs statistics does not depend uniquely on

the ranking statistics of the data and therefore the VG motif profile could be able in

principle to discriminate white noises with different marginal distributions. In the latter

sections we have been able to distinguish between Gaussian and uniform white noise. In

Figure 4.9 we summarize the motif frequencies Φ4
m of VG motifs forming Z4, extracted
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from i.i.d. series with different marginals:

Uniform→ xi ∈ [0, 1]; f(xi) ∼ 1

Gaussian→ xi ∈ (−∞,∞); f(xi) ∼
exp(−x2i /2)√

2π

Power-law→ xi ∈ [1,∞); f(xi) ∼ x−ki , k = 2.5

Exponential→ xi ∈ [0,∞); f(xi) ∼ exp(−kxi), k = 2.5

(4.30)

In every case we extract series of 105 data. The universal profile obtained for HVG is also

plotted for comparison. As expected, motif profiles are different for different marginals.

Motifs which are symmetric respect to reflection (3 and 4, 5 and 6) occur with equal

probabilities, differently from the case of chaotic time series such as the logistic map

(Eq. 4.19) (indeed an i.i.d time series and the same series reversed respect to time are

both random and share the same marginal distribution).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
uniform i.i.d.
Gaussian i.i.d.
power−law i.i.d.
exponential i.i.d.
HVG i.i.d.

Φ

Figure 4.9: (Average frequency of appearance Φ of VG and HVG motifs extracted from
i.i.d. series of N = 105 with different marginal distributions; VG motifs are not related
with the ranking statistics of the data and able to discriminate the different types of
noise.

According to the values obtained for the components of Z4 in the preceding cases,

one can extract some preliminary heuristic conclusions:

• Φ1, Φ7 seems to encode information on the marginal distribution of the process as

well as its autocorrelation structure.

• Φ2 is null as this motif is not a VG. This is at odds with the HVG case, where this

is an admissible motif provided the probability of finding consecutive equal data
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in the series is finite (e.g. for discrete-valued series).

• The motifs associated to the pairs (Φ3,Φ4) (Φ5,Φ6) have an obvious mirror symme-

try: the motifs associated to Φ3 and Φ4 are isomorphic, the correct permutation

being 1 − 2 − 3 − 4 → 4 − 3 − 2 − 1 (the same holds for Φ5 and Φ6). As the

node labelling encapsulates time ordering, for any process which is statistically

time reversible [116], we expect these probabilities to be equal. Reversible pro-

cesses include linear stochastic processes (and both white and red noise belong

to this family), while non-invertible chaotic processes are usually time irreversible

(the fully chaotic logistic map is an example). Time irreversibility of the process

is therefore encoded in these terms.

• Φ8 = 0 as this is not a VG and therefore does not appear (not admissible).

• As we can notice no set of relation exists for the VG motif 2 and 8, meaning that

the two motifs are not allowed by natural visibility. However we have chosen to

present the motif profile as an 8-dimensional vector. This choice has been done

for the sake of the theoretical discussion, considering that it is not trivial to say a

priori if a certain motif is admissible by the natural visibility criterion. Also we

have included the null components of the VG motif profile for allowing a better

comparison with the HVG motif profile.

4.5 Time series classification via visibility graphs motifs

4.5.1 Robustness

In the preceding Section we have developed a general theory to compute explicitly the

motif profile of HVGs associated to a given type of dynamics. We have applied this

theory to find theoretical expressions in the case of white and coloured noise as well

as chaotic dynamics, and have shown that these predictions perfectly match the results

found in numerical simulations for reasonably short time series. The theory (which is

exact in the limit of infinite size series) is thus correct also in the case of short time series.

These are nonetheless only idealised models: empirical time series, however, even if they

comply to a particular dynamical system are usually polluted with measurement noise.

Therefore, before being able to apply this new technique to real world phenomena, we

need to assess its robustness and reliability against noise contamination. To do that, we

consider a situation where a chaotic time series is contaminated with different amounts

of white noise, and explore the ability of Z4 to detect the chaotic signal. Formally, we
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pollute a chaotic signal x(t) with uniform white noise ξ(a) and thus construct a noisy

chaotic signal Y (t) such that 
Yt = xt + ξ

xt = 4xt−1(1− xt−1)

ξ ∼ U [0, a], 0 ≤ a ≤ 1,

(4.31)

where a tunes the noise power. The noise-to-signal ratio of the signal Yt is defined as

NSR = σ2ξ/σ
2
Y (where σ2· denotes the variance of signal ·), thus NSR will increase mono-

tonically with a. For NSR � 1, the noise contamination is small. Any technique that

is able to distinguish Y (t) and ξ(t) for increasing values of NSR is said to be robust to

noise. For NSR = 1 the levels of the signal and the noise contamination are comparable

and for NSR > 1 the underlying chaotic signal is effectively hidden. Of course, when

a reaches a certain value it won’t be possible any more to distinguish the underlying

chaotic nature of the time series by looking at the motif profile. To estimate this thresh-

old we can use two different tests:

• The first test makes use of the (L1) distance in motif space between the signal and

the noise d(a) = |Z4(Y ) − Z4(iid)|. This is just a simple, motif-based similarity

metric between two graphs, that we use here to measure the similarity between

two series. Ideally, the threshold of distinguishability is the smallest value of a

for which d(a) = 0. However, in practice, as we are dealing with finite size series,

there will always be a small uncertainty associated to small finite-size deviations

from the theory. That is, if one estimates the Z4(iid) with an ensemble average of

m realizations of a finite random time series of N data, then for each element in

the profile, the standard deviation of the estimate P4
i will be a finite value (that

converges to zero as N and m increases). We define σ(Z4(iid)) as the vector where

the i-th term is such standard deviation, for the same values of N and m used in

the analysis of Y (t). Then, we define the uncertainty threshold a∗ as the smallest

value of a such that d(a) ≤ |σ(Z4(iid))| (intuitively, a∗ is the smallest value for

which we don’t know if the difference in the motif profile between the empirical

results and the theory are due to the fact that there is a chaotic signal underlying

the process, or just due to finite size effects).

• The second possibility is to use a Pearson’s χ2 hypothesis test such as Eq. 4.7 with

4 degrees of freedom, where the null hypothesis is that Y (t) (the observed series)

is just white noise (no hidden signal). In this latter case, we are not taking into

account the deviations associated to finite size effects in the profile of i.i.d., though.
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Figure 4.10: Robustness of motif profiles for chaotic series (fully chaotic logistic map)
polluted with white noise. Panel a): by increasing the amount of extrinsic noise
(parametrised by a) the distance in motif space between the noisy chaotic signal and
white noise decreases (see the text). The method is extremely robust as one can dis-
tinguish the noisy chaotic signal from pure white noise up to a noise-to-signal ratio
NSR ≈ 2.67. Panel b): the 4-node motif profile of the noisy chaotic signal Yt for differ-
ent degrees of noise contamination (a). Motifs III, IV, V and VI are the most informative
as they concentrate most of the profile variability.

If χ2 < 9.49, then we can’t reject the null hypothesis at the 95% significance level:

this is the limit of what we could call certain distinguishability.

For each value of the parameter a, we have simulated a time series of N = 104 steps

from the process Y (t), and results were ensemble averaged over m = 100 realisations.

In panel (b) of figure 4.10, we plot the motif profile as a function of a. It is interesting

to observe that the probabilities which vary most with a are related to types III, IV,

V and VI, while type-I seems to maintain approximately the same rate of appearance

(we will show later that this is not always the case). In the panel (a) of the same

figure we plot d(a). As expected, d(a) is a monotonically decreasing function of a, and

we find a∗ ≈ 1. Remarkably, this corresponds to a value of the noise to signal ratio

NSR ≈ 2.67. This is indeed confirmed by the Pearson χ2 test, where we found that

the limit for confidently rejecting the null hypothesis -certain distinguishability- is a ≈ 1

(i.e. NSR ≈ 2.67). These results prove that Z4 is indeed an extremely robust feature

with respect to measurement noise contamination, hence useful for applications.

4.5.2 Principal component analysis

According to the last sections, we can conclude that the HVG Z4 is an informative fea-

ture of complex dynamics. Here we summarise and gather the findings on i.i.d., fully
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chaotic logistic maps (with and without noise contamination) and coloured noise, and we

complement those with additional chaotic maps (Ricker’s map, Cubic map, Sine map).

Each process is described by the six dimensional vector Z4 (although in practice this

space is 5-dimensional as P4
2 = 0). As this representation is obviously not very conve-

nient for readability, we have projected each point into a 2-dimensional space spanned

by the principal components of the data. We recall that Principal Component Analysis

(PCA) [119] is a common statistical procedure to perform dimensionality reduction on

data. It uses an orthogonal transformation to project our set of observations, originally

described in R6 -where each direction describes the probability of occurrence of a given

motif, this being possibly correlated among observations- into a lower dimensional sub-

space spanned by the so called principal components, obtained from the eigenvectors

of the dataset covariance matrix. These particular directions are such that (i) they

are orthogonal, (ii) the first principal component has the largest possible variance (that

is, accounts for as much of the variability in the data as possible), and each succeed-

ing component in turn has the highest variance possible under the constraint that it

is orthogonal to (i.e., uncorrelated with) the preceding components. If the data can be

efficiently projected in a lower dimensional space, then the eigenvalues associated to each

of the principal components sum up a large percentage of the data variability. In that

case, the projection is said to be faithful, and constitutes an accurate description of the

data.

To summarise, the following processes have been considered (for all of them, we have

estimated Z4 from a time series of N = 104 points, and have averaged this over 100

realisations):

• White noise (i.i.d.) with Gaussian, exponential, uniform and power-low probability

densities.

• Chaotic maps, in particular: Fully chaotic logistic map xt+1 = 4xt(1−xt), Ricker’s

map xt+1 = 20xte
−xt , Cubic map xt+1 = 3xt(1− x2t ), Sine map xt+1 = sin(πxt)

• Noisy logistic map with a = {0.2, 0.4, 0.6, 0.8, 1.0}

• Coloured noise for r = {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}

The projection into the space spanned by the first two principal components is shown

in Figure 4.11. Interestingly, these first two components capture about 98.3% of the

variability of the set of variables {Z4}. This means that motif probabilities are indeed

highly correlated, and as few as two real numbers per time series seem already enough

to describe them. The patterns related to the different processes in this 2-dimensional
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Figure 4.11: 2-dimensional projection obtained via Principal Component Analysis on Z4

for time series generated from different deterministic and stochastic processes: differ-
ent white noise series respectively with Gaussian, exponential, uniform and power low
(blue squares), chaotic maps (brown diamonds), noisy logistic map for different levels of
contamination (purple dots) and different stochastic correlated AR(1) processes (green
triangles). The relative weight of each motif in this projection principal components is
also plotted using red solid axes.

component space help visualize some of the results previously found and make interesting

considerations:

• All the i.i.d. processes have the same coordinates in the 2-dimensional space which

do not correspond to the coordinates of any other class of processes considered.

Indeed according to the theory, i.i.d. processes share the same Z4.

• Red solid axes describe the projection of each motif in this new basis (see also

table 4-E) and give an idea of which motif types are more related to different

processes, thus helping to interpret a particular trajectory in this space, as a given

process changes. For instance coloured noise which interpolates between white

noise (r → 0) and a constant series (r → 1) projects into a straight line-like

trajectory, departing from the i.i.d. coordinates and following the direction where

type-I motif increases as r increases. Analogously, as the noise level a increases the

noisy logistic map interpolates between the fully chaotic logistic coordinate and

i.i.d. following a specific path.

• The distance in this space between i.i.d. and the (a = 1)-noisy logistic map gives
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First Component Second Component

0.814 0.2114
-8.6e−18 1.5e−16

-0.2506 -0.5670
-0.4926 0.4030
-0.1569 0.4608
0.0852 -0.5090

Table 4-E: Weights of each motif in the 2-dimensional projection of the set of all dynam-
ical processes analysed (i.i.d. white noise, coloured noise with exponentially decaying
correlations, chaotic maps, noisy chaotic logistic map).

us a rough idea of the distinguishability or coarse-graining distance, a lower bound

below which any two processes cannot be distinguished.

We conclude that Z4 is a highly informative and robust feature, which in principle could

be used to assess similarities and differences across empirical complex signals. To test

this hypothesis, in the final section we will explore this idea and will show that clustering

of complex physiological processes is possible with this simple feature.

4.6 Unsupervised learning: disentangling meditative from

other relaxation states using HVG motif profiles from

heart rate time series

It is well-known that meditation has a measurable effect on well-being. In particular,

neuroscience has shown that meditation promotes EEG high-amplitude gamma syn-

chronisation [120], or increases sustained attention [121] among others effects on the

brain [122]. In this final section we explore, via a HVG motif profile analysis, if one

can distinguish purely meditative states from general states of relaxation by only look-

ing at a single physiological indicator: the heart rate series [123, 124]. This analysis is

based on experiments performed in a former publication [125]. Data are freely available

online [126].

4.6.1 Data

Data are collected for five different groups of healthy subjects [125]:

• The first group of 4 subjects (two women and two men in the age range 20-52)

were expert Kundalini Yoga meditators. Their heart rate was recorded for approx-
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imately fifteen minutes before the Yoga practice (pre-meditative state) and for

approximately one hour during the breathing and chanting exercises (meditative

state) (a total of 8 time series);

• The second group comprised 8 Chinese Chi Meditation practitioners, (five women

and three man in the age range 26-35) relatively novice in the practice. The

heart rate of the subjects was recorded for approximately five hours during the

pre-meditation (pre-meditative state) and for approximately one hour during the

meditation session (meditative state)(a total of 16 time series).

To better compare the pre-meditation and meditation states, three healthy, non-meditating

control groups were considered from a database of retrospective electrocardiogram (ECG)

signals:

• a spontaneous breathing group of 13 subjects (eight women and five men in the

age range 25-35) during sleeping hours (general relaxation state) (a total of 13 time

series);

• a group of 9 elite triathlon athletes (six women three men, age range 21-55) in the

pre-race period during sleeping hours (general relaxation state) (a total of 9 time

series);

• a group of 14 subjects (nine women and five men, age range 20-35) during supine

metronomic breathing at 0.25 Hz (a total of 14 time series);

Sample time series from each group are plotted in Figure 4.12. In the original study the

authors addressed the frequency spectra and observed prominent heart rate oscillations

in the time series recorded during the two meditation practices with a peak in the range

0.025-0.35 Hz, and an overall variability of these series with respect to those from non-

meditative states.

4.6.2 Unsupervised clustering based on HVG motif profiles

The total dataset is made of a total of 60 time series (60 observations). A priori, we

assume that each series is a different process. For each subject and state, we extract

from the heart beat series the corresponding Z4 (detailed results are put in an appendix).

As a first analysis, we only consider the expert meditators (first group) performing two

different tasks and we explore if Z4 can disentangle the two tasks. Results are shown

in panel (a) of figure 4.13. In PCA space, we have 8 points scattered over the subspace
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Figure 4.12: Sample heart rate time series from patients in meditative and non-
meditative states.
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spanned by the first two principal components. These aggregate more than 99% of the

data variance and is thus a faithful projection. Interestingly, already a visual inspection

clusters the 4 subjects in the meditative state (red circles, right hand side of the plane)

from those in the pre-meditative state (green squares). A simple k-means algorithm [119]

with k = 2 correctly distinguishes the two states by assigning different clusters to both

states (a black dotted oval is depicted with the purpose of visualizing the result of the

k-means clustering).

In a second step, we consider the second group, formed now by novice Chi meditators

before and during the practice. We repeat the analysis in the panel (b) of Figure 4.13.

Again the first two principal components capture more than 99% of the variability of the

motifs considered. The scores related to the first principal component are very close to

the ones found for the Yoga data subset (see appendix). For this meditation technique

however it is not that easy to perfectly distinguish pre-meditative from meditative state

clusters: the partition obtained with the k-means algorithm with input k = 2 (visualized

by the black dotted line) contain ‘false meditators’ and ‘false non-meditators’. In order

to quantify the performance of the clustering we use the so called purity coefficient [127]

defined by:

purity =
n1m + n0n

n1m + n0m + n0m + n1n
(4.32)

where n1m is the number of meditators in the cluster 1, which is defined as the cluster

where most of the meditators are found; n0m is the number of meditators in the cluster 0,

which is defined as the cluster where most of the non-meditators are found (‘false non-

meditators’); n1n is the number of non-meditators in the cluster 1 (‘false meditators’);

n0n is the number of non-meditators in the cluster 0. Purity takes value in [0, 1] and was

measured for the different partitions reported in Figure 4.13 (see Table 4-F); in this case

we found purity ' 0.83. Now, as in this experiment the subjects were inexperienced Chi

meditators, it is plausible that some of them were not able to concentrate of perform the

task adequately, what would put their motif profile mixed amongst the pre-meditative

state subjects. As we can see in the figure, there is some evidence of finding the ‘false

non-meditators’ intertwined among non-meditators, but not the ‘false meditators’ inter-

twined among meditators.

We then perform the same analysis by considering data from the first two groups (Yoga

group and the Chi group) altogether. Here we also aim at distinguishing meditative from

pre-meditative states, however this is in principle much more delicate and problematic as

we have different subjects performing different tasks. The results are reported in panel (c)
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Figure 4.13: 2-dimensional Principal Component space of Z4 extracted from heart rate
time series of subjects performing different tasks. (a) 4 Yoga meditators recorded during
meditation (red dots) and during pre-meditation (green squares). The k-means algo-
rithm (black dotted line) correctly assigns each of the 8 observations into the correct
cluster. (b) 8 Chi meditators recorded during meditation (magenta triangles) and dur-
ing pre-meditation (blue reverse triangles). The k-means algorithm correctly 12 out of
16 observations, however in this case subjects were novice meditators, hence clusters are
not that well defined (see the text). (c) The two clusters found by the k-means algorithm
correctly clusters the points related to Yoga meditation and Yoga pre-meditation, and 12
out of 16 points related to different Chi meditators (black dotted line). (d): although the
k-means clustering (small panel on the top right) fails to precisely distinguish a cluster
related to meditation from a cluster related to non-meditation, all the meditation points
are surprisingly well separated from the all remaining points, on the right side of the
plane.

of Figure 4.13, and are consistent with the first two analysis conducted before. In PCA

space, the first two principal components still capture more than 99% of the data vari-

ability (scores are reported in the appendix). k-means correctly clusters together most of

the pre-meditative states and distinguishes them from the meditative states (Yoga and
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Panel a Panel b Panel c Panel d

1 0.83 0.75 0.81

Table 4-F: Purity measures [127] of the k-means clustering analysis depicted in the four
panels of Figure 4.13: yoga meditators (panel a), chi meditators (panel b), yoga and chi
meditators (panel c) and all states (panel d).

Chi-style), with purity= 0.75. There are two clear ‘false non-meditators’ which seem

to correspond to two novice Chi meditators that falsely fall in the non-meditation state

despite they were supposedly performing meditation. The two ‘false meditators’ are not

mixed among the meditators but placed in the boundary of the cluster, meaning that a

refined clustering algorithm would very likely do a better job. On the other hand, it is

worth highlighting that meditators show lower scattering than non-meditators, and are

placed at the right hand side of the plane. Among these, Chi meditators (the experienced

subjects) appear even more towards the right hand side in the PCA plane. According

to the motif scores (appendix), one can conclude that meditation promotes the onset of

type-I motifs, that is to say, generates a relative decrease of high-frequency heart rate

fluctuations.

Finally, in panel (d) of Figure 4.13 we show the results for the analysis of the whole data

set (the projection in PCA space still gathers more than 94% of the data variability).

Here we have highly heterogeneous subjects performing totally different tasks, which

somehow can be classified into ‘meditative’ and ‘non-meditative’ states. In the inset panel

of the same figure, each observation is labelled according to the result of k-means (crosses

for non-meditative and dots for meditative states). Despite the heterogeneity of subjects,

the purity of the partition obtained is high (' 0.81), and most of the observations

associated to the meditative state concentrate towards the right hand side of the PCA

plane (which, again according to the scores, corresponds to an over-contribution of type-I

motif). We conclude that meditative practices leave a unique physiological fingerprint

in the heart rate time series of its practitioners, which can be distinguished from other

relaxation techniques and states such as metronomic breathing or sleeping by using the

HVG motif profile of each time series. This is a remarkable result, taking into account

that this profile only consists of a vector of 6 numbers (actually 5 as P4
2 = 0) per

observation.
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4.7 Comparison of the performance in classification tasks

between HVG and VG motifs

When dealing with empirical time series, the practitioner usually faces two different but

complementary challenges, namely (i) the size of the series and (ii) the possible sources

of measurement noise. The first challenge can be a problem when the statistics to be

extracted from the series are strongly affected by finite-size effects, whereas for the sec-

ond one needs to evaluate the robustness of those statistics against noise contamination.

For a statistic or feature extracted from a time series to be not just informative but

useful one usually requires that statistic or feature to be robust against both problems:

it needs to have fast finite-size convergence speed and to be robust against reasonably

large amounts of additive noise.

In [43] it has been already shown that the HVG motif profile has good convergence

properties respect to the series size N and it is also robust respect to noise contamination.

Here we explore these very same problems for the case of the VG motif profile and we

make a detailed comparison of its performance with the HVG motif profile in a range of

situations.

4.7.1 Convergence properties for finite size series

In general, due to finite size effects, the estimated value of any feature deviates from its

asymptotic value. For classical features such as the mean or the variance of a distribu-

tion, these deviations are bounded and vanish with series size with a speed quantified by

the central limit theorem. The estimation of the motif frequencies can be quantitatively

affected by finite-size fluctuations and one can even observe missing motifs (motifs with

estimated frequency Φ = 0) which are not actually forbidden by the process but have

not appeared by chance. This situation can be overemphasized in the presence of certain

types of measurement noise.

Following an approach analogous to the one followed for the forbidden ordinal patterns

in [128–130], we first perform a test to study the decay of missing motifs with the series

size both in stochastic uncorrelated and correlated processes. In Figure 4.14 panel a) we

plot 〈R(N)〉, the average number of missing motifs in a series of size N in the case of

Gaussian white noise and coloured (red) Gaussian noise (for the red noise we consider

the AR(1) process with r = 0.5 discussed in section III). For both types of noise 〈R(N)〉
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decays exponentially to zero and already with a series of about 80-100 data points we

can exclude the possibility of detecting missing motifs (for both HVG and VG) due to

finite size fluctuations even in the case of correlated noise.
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Figure 4.14: Robustness of VG and HVG motif statistic respect to finite series size
effects, in the case of Gaussian white noise and coloured (red) Gaussian noise. Panel (a):
Semi-log plot of the average number of missing motifs 〈R〉 vs series size N (each point is
an average over 300 realisations of the corresponding process). 〈R〉 decays exponentially
to zero, meaning that for N ∼ 100 we can already exclude the possibility of detecting
missing motifs due to finite size fluctuations for both types of noise. Panel (b): Log-log
plot of the average distance 〈d〉 (see the text) between the observed motif profile and
the theoretical profile as a function of the series size N (results are averaged over 300
realisations). 〈d〉 decreases as a power-law for all the processes considered.

As a second analysis, we explore the convergence speed of the estimated motif profile of

uncorrelated and correlated stochastic series and of chaotic series (fully chaotic logistic

map) of size N to the asymptotic profile solution given in section III. To do this we define

the distance between the estimated 4-motif probabilities Φ̂4
m(N) and the asymptotic
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value Φ4
m = limN→∞ Φ̂4

m(N). We use `1 norm and accordingly define

d(N) =
∑
m

|Φ̂4
m(N)− Φ4

m| (4.33)

In Figure 4.14 panel b) we show the trend of d(N) in log-log scale (results are averaged

over 300 realizations). The average distance appears to decrease like a power-law for all

the processes considered, in agreement with a central-limit-theorem-like argument: since

d quantifies the deviation between the estimated values (from a sample series of finite

size N) and the exact (asymptotic) values of the motif frequencies, when the size of the

sample series N increases, the deviation of the estimated mean values reduces, and d

must converge to zero as 1/
√
N (deviations vanish as a power law of the sample size).

For a series of N = 103 points 〈d(N)〉 is less than 5 · 10−2 and the average distance 〈dm〉
for each of the single components is less than 10−2 (not shown). These results suggest

that VG and HVG motif profiles have very good convergence properties and are thus

robust against finite size fluctuations.

4.7.2 Robustness against measurement noise

To test and compare the robustness of VG and HVG motif profiles when the effect

of noise contamination combines with the finite size fluctuations we consider the fully

chaotic logistic map dynamics xt polluted with measurement (additive) noise ηt
Xt = xt + ηt

xt = 4xt−1(1− xt−1)

ηt = rηt−1 +
√
αξt, ξt ∈ N (0, 1)

(4.34)

in the two cases where ηt is respectively white Gaussian noise (r = 0) or colored Gaussian

noise (r = 0.5). For both cases α ∈ [0, 1] is the parameter which tunes the noise-to-signal

ratio (NSR) of the process defined as

NSR(α) =
σ2[
√
αξ]

σ2[x]
(4.35)

where σ2[
√
αξ] and σ2[x] are respectively the theoretical variance of the white Gaussian

noise
√
αξ and the theoretical variance of the dynamics (signal) x (note that with this

definition we are underestimating the NSR in the case of correlated noise where σ2[η] =

σ2[
√
αξ]/(1−r2) ). The robustness of the observed motif profile Φ̂4

i [X(N,α)] for a single

realization of the process with given N and α can be defined as the distance between
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this profile and the theoretical profile Φ4
i [η(α)] of the noise η for the given α.

δ(N,α) =
∑
m

|Φ̂4
m[X(N,α)]− Φ4

m[η(α)]|. (4.36)

With such definition we expect δ(N,α)� 0 for low values of the NSR (dominant signal,

Φ̂4
m[X(N,α)] ' Φ4

m[x]) and δ(N,α) ' 0 for high values of the NSR (dominant noise,

Φ̂4
m[X(N,α)] ' Φ4

m[η]). Furthermore, δ(N,α) is affected by finite size effects: if we

assume to have few realizations Nr of the process X of small series size N , then we

expect the variance σ2(δ(N,α)) calculated over the realizations to be high. In particular

we have to consider that a resolution limit δ0 exists, such that when 〈δ(N,α)〉Nr = δ0

we cannot say any more if the distance we measured is discriminating the signal x from

the noise η or it is simply due to finite-size effects of the contamination noise η. We

define this threshold δ0 as the sum of the standard deviations of the estimated profile

components Φ̂4
m[η] given Nr realizations of the noise process alone

δ0(N,α) =
∑
m

√
〈(Φ̂4

m[η(N,α)]− 〈Φ̂4
m[η(N,α)]〉Nr)2〉Nr (4.37)

It is thus convenient to work with the relative distance 〈δ〉Nr/δ0; when 〈δ〉Nr/δ0 ≤ 1

we say that the resolution limit for the process X(N,α) -given its Nr realizations- is

reached, and 〈δ〉Nr is not any more a reliable indicator.

In Figure 4.15 panel a) we show the quantity 〈δ〉/δ0 averaged over 300 realizations of

the process X for different levels of contamination NSR=[0, 0.2, 0.4, . . . , 8] at fixed size

N=6400=100 · 26 (notice that for N ≥ 100 the missing motifs are not found any more)

respectively for white Gaussian noise and coloured Gaussian noise and for the HVG and

the VG motif profile. The red solid line plotted in the figure represents the resolution

limit threshold for the process. We can see that the HVG and the VG motif profiles

are more robust respect to noise contamination when this noise is correlated. In this

situation the HVG motif profile seems to perform better than the VG motif profile, while

in the case of uncorrelated Gaussian noise the VG profile seems in turn slightly more

robust than the HVG profile.

The last step of this robustness analysis is to consider the usual situation where only

very few realizations (often a single one) of the same process are available. Our aim

is to define a useful indicator θ which estimates for any given value of the size N the

maximum amount of noise contamination level for which a measure δ computed with

only one realization of the process X can be considered reliable. We define this to be



Chapter 4. Extracting network motifs from time series 119

the value of the NSR such that 〈δ〉 − σ(δ) = δ0, and thus

θ(N) = {NSR(α) : 〈δ(N,α)〉 − σ(δ(N,α)) = δ0}. (4.38)

θ(N) measures (in units of noise-to-signal ratio) the (statistical) reliability of the motif

profile extracted form a single time series of size N of the signal x in the presence of

measurement noise η.

In Figure 4.15 (panel a) we plot θ(N = 6400) for white Gaussian noise in the case of VG

by considering the 〈δ〉/δ0 curve marked by orange squares and by taking the smallest

value of NSR for which the statistical error range allows to measure values of δ/δ0 equal or

smaller than the value of the resolution limit threshold (this value of NSR is highlighted

in figure using a blue box). Wee find θ ' 2.2, meaning that when working with a single

time series of the process X with size N = 6400, the 〈δ〉 distance measured by using

the VG motif profile is reliable up to a level of white Gaussian noise contamination α

such that NSR(α) ' 2.2. In Figure 4.15 (panel b) we report the estimated value of θ

for the VG and HVG motif profiles in the case of white Gaussian noise and correlated

Gaussian noise in function of the series size N=100 · 2, 100 · 22, . . . , 100 · 27 (maximum

noise contamination level considered was NSR(α)=8). We can see that the motif profile

is in general a robust measure respect to the combined effect of measurement noise and

finite size: working with a single time series of only 3000 points of the process X we

can extract both the VG and the HVG motif profiles and expect those features to be

informative respect to the underlying chaotic signal x up to a level of measurement noise

for which NSR=1.5 in the case of uncorrelated Gaussian noise and NSR=3 in the case

of correlated Gaussian noise.

Also and as observed before (Figure 4.11 panel b)), given the case of white Gaussian noise

contamination the VG motif profile (orange squares) seems to perform slightly better

than the HVG motif profile (green circles). For colored Gaussian noise the situation is

the opposite and the HVG motif profile (reversed gray triangles) performs much better

(almost a gap of one unit of NSR forN > 1600) than the VG motif profile (blue triangles).

For both types of visibility graphs the motif profile is systematically more robust when

polluted with colored noise than with white noise. This is probably due to the fact that

white noise breaks up the correlation structure of the signal faster (respect to the size

N) than correlated noise.
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Figure 4.15: Robustness of HVG and VG motif profiles respect to measurement noise.
Panel a) the average distance between the motif profile extracted from the polluted
chaotic dynamics X (see Eq. 4.34) and the theoretical motif profile of the noise, nor-
malized by the resolution limit threshold δ0 for different level of contamination NSR
(noise-to-signal ratio) at fixed size N=6400. When the curves reach the resolution limit
(horizontal line) we cannot consider any more the motif profile informative about the
underlying chaotic dynamics due to the noise effects. Panel b) the estimated values of the
measure θ in function of the time series size N indicating the maximum amount of NSR
for which the motif profile extracted form a single realization of the process X is reliably
informative respect to the chaotic signal. The HVG and the VG motif profiles are more
robust respect to noise contamination when the noise is correlated (red Gaussian). In
this situation the HVG motif profile seems to perform better than the VG motif profile,
while in the case of uncorrelated Gaussian noise the VG profile seems in turn slightly
more robust than the HVG profile.
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Conclusion

Much of the information encoded in a network can be extracted from its mesoscopic

structure by looking at the properties of motifs and modules or communities of nodes.

Modularity is indeed a universal properties of the mesoscale structure of real world com-

plex networks. To explain the emergence of the community or modular structure in

real world evolving networks we have considered the simplest growing network model

enforcing the mechanism of triadic closure, for which simple three nodes’ motifs, the

triangles, are formed by new nodes joining the network during its evolution. We have

shown that triadic closure is alone capable to generate systems with all the characteristic

properties of complex networks, from fat-tailed degree distributions to high clustering

coefficients and strong community structure. Communities emerge naturally via triadic

closure, which tends to generate cohesive subgraphs around portions of the system that

happen to have higher density of links, due to stochastic fluctuations. When the modules

become sufficiently large, their internal structure exhibits in turn link density inhomo-

geneities, leading to a progressive differentiation and eventual separation into smaller

modules (separation in the sense that the density of links between the parts is apprecia-

bly lower than within them). This occurs both in the basic version of network growth

model based on triadic closure, and in more complex variants. The strength of commu-

nity structure is the higher, the sparser the network and the higher the probability of

triadic closure. We have discussed a new variant of the model, in that link attractivity

depends on some intrinsic appeal of the nodes, or fitness and we have seen that, when

the distribution of fitness is not too heterogeneous, community structure still emerges,

though it is weaker than in the absence of fitness. By increasing the heterogeneity of the

fitness distribution, instead, we observe a major change in the structural organization

of the network: communities disappear and are replaced by special subgraphs, whose

nodes are connected only to superhubs of the network, i.e. nodes attracting most of the

121
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links. Such structural phase transition is associated to very high values of the clustering

coefficient.

The evolving network model enforcing triadic closure has been generalized to the case

of multiplex network structures, where nodes can be connected on different layers (net-

works) describing different types or levels of interactions. This generalization is relevant

if we consider that multiplex networks are ubiquitous and systems as different as social

networks, transportation networks or cellular and brain networks require a multilayer

description. In particular, an interesting aspect exhibited by multiplex social collabora-

tion networks is that their mesoscopic structure usually displays cohesive communities

spanning more than a single layer of interaction.

This multi-level communities’ organization can be revealed by using an indicator function

Θ̃S , based on the entropy of network ensambles, that is able to measure the mesoscopic

similarities between the layers of a multiplex network. This indicator has been used to

analyse the APS Collaboration Multiplex Network at the two levels of the PACS hier-

archy, providing a bottom-up approach to identify how the organization of knowledge

in physics is reflected in the structure of collaboration networks. The same APS Co-

authorship Multiplex Network together with the IMDb Co-starring Multiplex Network

have been analysed to test the generalised model. Interestingly the simplest version of

the proposed model of growing multiplex network, based just on the interplay between

intra- and inter-layer triadic closure, is actually able to explain much of the complexity

observed in the micro- meso- and macroscopic structure of multidimensional collabora-

tion networks in the different fields of science and movies, including not just the clus-

tering but also intra- and inter-layer degree correlation patterns and the correspondence

between the community structures at difference layers. Such levels of accuracy in repro-

ducing the features of real-world systems have been obtained without the introduction

of ad-hoc ingredients and the results suggest that, despite the apparent differences in the

overall dynamics driving scientific cooperation and movie co-starring, triadic closure is a

quite generic mechanism and might indeed be one of the fundamental processes shaping

the mesoscale structure of multi-layer collaboration systems.

Finally we have seen that the motif formation also plays a important role in character-

ising the mesoscopic structure of particular types of network architectures, the visibility

graphs, that result from mapping time series associated to a general dynamical processes

into a graph. The theory of visibility graphs allows to describe and characterise time

series and dynamics using the tools from graph theory and network analysis. The motif

formation in the visibility graphs is intrinsically related with the characteristic trajec-

tories of the dynamical process in its phase space. Thus if we look at the mesoscale

structure of VGs, we can detect sequentially along the characteristic Hamiltonian path
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small subgraphs, that we call sequential visibility graph motifs, which are highly infor-

mative about the time series structure and its underlying dynamics.

We have advanced a mathematically sound theory by which the HVG motif profile of

large classes of stochastic and deterministic dynamics can be computed exactly. Interest-

ingly, under the HVG framework, graph motifs are in direct correspondence with ordinal

patterns [110]. This means, for instance, that the theory developed here can be exported

to find rigorous results on the permutation entropy [131] and permutation spectra [112]

of different dynamical systems. In the same vein, one could import concepts and ideas

from ordinal patters to the context of visibility graphs. For instance, one can define an

HVG motif entropy Sn = − 1
n

∑
Zni log(Zni ) and explore its similarities with the permu-

tation entropy. More generally, the relation (and possible equivalences) between ordinal

pattern analysis (so called permutation complexity [110]) and horizontal visibility graph

analysis should be studied in more depth.

We have shown that the motif statistic is surprisingly robust, in the sense that it allows

to distinguish amongst different dynamics even when the signals are polluted with large

amounts of measurement noise, enabling its use in practical problems. As an application,

we have tackled the problem of disentangling meditative from general relaxation states

from the HVG motif profiles of heartbeat time series of different subjects performing dif-

ferent relaxation tasks. We have been able to provide a positive, unsupervised solution

to this question by applying standard clustering algorithms on this simple feature.

We have extended the theory for exactly computing the motif profile to the realm of

NVGs, for which the previous amount of known exact results was practically null. We

have been able to give a closed form for the 4-node VG motif profile associated to

general one dimensional deterministic and stochastic processes with a smooth invariant

measure or continuous marginal distribution, for the cases where the variables belong to

a bounded or unbounded interval. In the case where the time series is empirical and one

does not have access to the underlying dynamics, the methodology still provides a linear

time (O(N), as for HVGs) algorithm to estimate numerically such profile. VG motifs

have similar robustness properties as HVG, yet they depend on the marginal distribu-

tion of the process and as such yield different profiles for different marginals. This is at

odds with the results found for HVGs, where the motif profiles did not depend on the

marginals as they behave as an order statistic. Thus the deep similarity between HVG

motifs and the so called ordinal pattern analysis -which holds mainly due to the fact

that HVG is an order statistic- vanishes for VG motifs. This suggests that VG motifs

provide different information than HVG ones and therefore stand as a complementary

tool for time series description and classification, specially relevant when the marginals

play a role in the analysis.
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Future perspectives

Complex systems are always fascinating. From the cell, the smallest unit of life, to the

brain, to societies, to the entire biosphere. Every scientist would like to have an answer

to the question “How do they work?”. Network Science has not provided the answer yet,

but thanks to its simple and powerful idea of describing those systems as networks has

been the field who has contributed the most during the past two decades in shedding

light on their principles and mechanisms, and has done that across all the disciplines of

Natural Science.

I feel I have been very fortunate during the course of my Ph.D. in focusing my research

on the mesoscopic structure of complex networks, on the emergence and evolution of

communities and on network motifs. They all are important universal concepts in the

theory of complex networks and their understanding helped me a lot in appreciating the

interdisciplinarity, the beauty and the reasons of the success of this theory.

Working on multiplex networks, which is the most recent and promising advance

in the field, has been very stimulating. Finding how communities can emerge in this

network structures, that are a natural representation for the many complex systems

in real world showing co-existence of interactions of different nature, has been very

stimulating. However, what the ‘multiplex nature’ of communities is and how can be

defined has still not been satisfactory elucidated and I think that future efforts to address

this question should go in the direction of characterising the multiplex communities at

the level of the links rather then at the level of the nodes, as ‘multi-link communities’.

On the other hand the idea of studying the mesoscale structure of visibility graphs

via sequential motifs seems very promising for the analysis of time series and complex

signals, because of the computational efficiency of the method, of its tractability and

of its deep relation with important concepts in the theory dynamical systems such as

ordinal patterns and permutation entropy. In this perspective I think that it would

be interesting for future research to understand whether predictive algorithms could

be defined using motif-based indicators for forecasting time series behaviour. In this

direction it would be fundamental to study the higher order statistics of motif correlations

along the Hamiltonian path of visibility graphs.

With these ideas in mind I will continue my investigation of complex networks and

of their structures, that, to some extent, encodes the ‘mystery of complexity’ itself.



Appendix A

Methods for the analysis of

multiplex social collaboration

networks

Data sets. – We considered data from the APS and the IMDb collaboration networks.

The APS collaboration data set is available from the APS website

http : //journals.aps.org/datasetsinthe

in the form of XML files containing detailed information about all the papers published

by all APS journals. The download is free of charge and restricted to research purposes,

and APS does not grant to the recipients the permission to redistribute the data to

third parties. We parsed the original XML files to retrieve, for each paper, the list of

authors and the list of PACS codes. The PACS scheme provides a taxonomy of subjects

in physics, and is widely used by several journals to identify the sub-field, category and

subject of papers. We used the highest level of PACS codes to identify the ten main

sub-fields of physics, and we considered only the papers published in Nuclear physics,

Particle physics, Condensed Matter I and Interdisciplinary physics, respectively associ-

ated to high-level PACS codes starting with 1 (Particle physics), 2 (Nuclear physics), 6

(Condensed Matter I) and 8 (Interdisciplinary physics). We focused only on the authors

who had at least one publication in each of the four sub-fields [20]. The co-authorship

network of each of those four sub-fields constitutes one of the four layers of the APS

multiplex. In particular, two authors are connected on a certain layer only if they have

co-authored at least one paper in the corresponding sub-field. In the construction of

the collaboration network of each sub-field we purposely left out papers with more than
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ten authors, which represent big collaborations whose driving dynamics might be more

complex than just triadic closure.

The IMDb data set is made available at the website

ftp : //ftp.fu− berlin.de/pub/misc/movies/database/

for personal use and research purposes. The data set comes in the form of several

compressed text files, and we used those containing information about actors, actresses,

movies and genres. We focused only on the co-starring networks of four movie genres,

namely Action, Crime, Romance, and Thriller [20], obtained by merging information

about participation of actors and actresses to each movie. In particular, two actors are

connected by a link on a given layer (genre) only if they have co-starred in at least one

movie of that genre. We considered only the actors who had acted in at least one movie

of each of the four genres. We chose to restrict our analysis to just four layers for both

the APS and the IMDb data set, which allowed us to consider the simplest formulation

of our model, in which all the layers have the same clustering coefficient C. The use of

the APS and the IMDb data sets does not require any ethical approval.

Synthetic multiplex networks. — We created synthetic networks according to our

multi-layer network model by starting, on each layer, from a seed graph consisting of

a triangle of nodes and simulating the intra- and inter-layer triadic closure mechanism

for N = 20000 nodes, for different values of the parameters p and p∗. For each pair of

values (p, p∗) we computed the mean clustering coefficient C on each single layer and the

normalised mutual information NMI of the community partitions of the two layers over

30 different realisations. As observed from simulations, once the parameters (p, p∗) are

fixed, the values of NMI and C do not vary substantially as the order N of the network

increases. Notice that since the most simple formulation of the model we have set an

identical value of p on both layers, the two layers will end up having the same clustering

coefficient (up to small finite-size fluctuation).

Degree correlations. — We study the assortativity of real multiplex collaboration

networks in terms of intra-layer, inter-layer and mixed degree correlations. The trend

for intra-layer correlations is analysed by mean of the function 〈K [α]
nn(k[α])〉, that is the

average degree of the nearest neighbours on layer α of a node with given degree k[α] on

that layer. In particular, 〈K [α]
nn〉 is obtained as an average of K

[α]
nn,i over all nodes with the

same degree k[α]. The node term can be computed as K
[α]
nn,i =

∑
j 6=i a

[α]
ij k

[α]
j

k
[α]
i

, where a
[α]
ij are

the entries of the adjacency matrix at layer α. Since such measure considers only a layer

at a time, the layer index here is not strictly necessary but will be kept for symmetry with

the other coefficients. It is interesting to notice that, in absence of intra-layer degree cor-
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relations, 〈K [α]
nn(k[α])〉 is a constant, while 〈K [α]

nn(k[α])〉 is an increasing (resp., decreasing)

function of k[α] if assortative (resp., disassortative) degree correlations are present. To

quantify inter-layer degree correlations we considered the quantity 〈k[β](k[α])〉 [20, 132],

that is the average degree on layer β of a node with degree k[α] on layer α. Again,

〈k[β](k[α])〉 will be an increasing function of k[α] if nodes tend to have similar degrees

on both layers (assortative inter-layer correlations), while 〈k[β](k[α])〉 will decrease with

k[α] if a hub on one layer will preferentially have small degree on the other layer, and

vice-versa. Finally, we measured the presence of mixed correlations through the function

〈K [β,α]
nn (k[α])〉, that is the average degree on layer β of the nearest neighbours on layer

β of a node with degree k[α] on layer α [133]. In analogy with the case of intra-layer

correlations, the node term is K
[β,α]
nn,i =

∑
j 6=i a

[β]
ij k

[β]
j

k
[α]
i

. We remark here that there exists

another possible definition of mixed correlations coefficient, which considers the nearest

neighbours of a node on layer α rather then β (see Ref. [133] for details). The results

for the alternative definition of mixed correlations are analogous to those observed for

〈K [β,α]
nn (k[α])〉 and are not shown in the text.

In general, correlation functions might be affected by the degree sequence at each layer

of the multiplex. In the simple scenario considered at first, however, we do not fit the

parameter m from the data, to reduce as much as possible the complexity of the model.

Instead, in order to still perform an accurate comparison between the synthetic multiplex

networks constructed by our model and the real ones, in a second step we divided all the

correlation functions by their (constant) value expected in the corresponding configura-

tion model network. The correct normalisation for the intra-layer correlation function is
〈(k[α])2〉
〈k[α]〉 [134], while for the inter-layer correlation function we have to divide 〈k[β](k[α])〉

by 〈k[β]〉. Finally, the mixed correlation function is correctly normalised by 〈(k
[β])2〉
〈k[α]〉 .
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Explicit computation of the HVG

motif profile for the fully chaotic

logistic map

• P4
1

P4
1 =

∫ 1

0
f(x0)dx0

∫ 1

0
δ(x1 −H(x0))dx1

∫ x1

0
δ(x2 −H2(x0))dx2

∫ x2

0
δ(x3 −H3(x0))dx3+∫ 1

0
f(x0)dx0

∫ 1

x0

δ(x1 −H(x0))dx1

∫ 1

x1

δ(x2 −H2(x0))dx2

∫ 1

0
δ(x3 −H3(x0))dx3

the first integral on the right gives the following conditions:

H3(x0) < H2(x0)

H2(x0) < H(x0)

which are never satisfied. The second integral gives:

H2(x0) > H(x0)

H(x0) > x0

which are satisfied for x0 ∈ [0, 1/4]. Thus

P4
1 =

1

π
B[0, 14 ]

(
1

2
,
1

2

)
=

1

3
(= 8/24).

• P4
2 = 0 since the probability of having H2(x0) = H(x0) is of zero measure.
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• P4
3

P4
3 =

∫ 1

0
f(x0)dx0

∫ x0

0
δ(x1 −H(x0))dx1

∫ x0

x1

δ(x2 −H2(x0))dx2

∫ x2

0
δ(x3 −H3(x0))dx3+∫ 1

0
f(x0)dx0

∫ x0

0
δ(x1 −H(x0))dx1

∫ 1

x0

δ(x2 −H2(x0))dx2

∫ 1

0
δ(x3 −H3(x0))dx3

In the first term:

H(x0) < x0 ⇒ x0 ∈ [3/4, 1]

H2(x0) > H(x0) ∩H2(x0) < x0 ∩ [3/4, 1]⇒ x0 ∈ [5+
√
5

8 , 1]

H3(x0) < H2(x0) ∩ [5+
√
5

8 , 1] ⇒ x0 ∈ [5+
√
5

8 , 12 +
√
3
4 ] Analogously for the second

term,

H(x0) < x0 ⇒ x0 ∈ [3/4, 1]

H2(x0) > x0 ∩ [3/4, 1]⇒ x0 ∈ [3/4, 5+
√
5

8 ]

Altogether,

P4
3 =

1

π
B

[3/4, 1
2
+
√
3
4
]
(1/2, 1/2) =

1

6
(= 4/24)

• P4
4

P4
4 =

∫ 1

0
f(x0)dx0

∫ 1

x0

δ(x1 −H(x0))dx1

∫ x1

0
δ(x2 −H2(x0))dx2

∫ 1

x2

δ(x3 −H3(x0))dx3+∫ 1

0
f(x0)dx0

∫ x0

0
δ(x1 −H(x0))dx1

∫ x1

0
δ(x2 −H2(x0))dx2

∫ x1

x2

δ(x3 −H3(x0))dx3

the first integral on the right gives the following conditions:

H3(x0) > H2(x0)

H2(x0) < H(x0)

H(x0) > x0

which are satisfied for x0 ∈ [1/2, 3/4]. The second integral gives:

H2(x0) < H3(x0) < H(x0)

H2(x0) < H(x0)

H(x0) < x0

which are satisfied for x0 ∈ [1/2 +
√

3/4, 1]. Thus

P4
4 =

1

π

[
B[ 12 ,

3
4 ]

(
1

2
,
1

2

)
+B[

1
2
+
√
3

4
,1
](1

2
,
1

2

)]
= 8/24.

• P4
5
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P4
5 =

∫ 1

0
f(x0)dx0

∫ x0

0
δ(x1 −H(x0))dx1

∫ x0

x1

δ(x2 −H2(x0))dx2

∫ 1

x2

δ(x3 −H3(x0))dx3

gives the following conditions:

H3(x0) > H2(x0)

H(x0) < H2(x0) < x0

which are satisfied for x0 ∈ [1/4 +
√

3/4, 1] and

P4
5 =

1

π
B[

1
4
+
√
3

4
,1
](1

2
,
1

2

)
=

1

6
(= 4/24).

• P4
6

P4
6 =

∫ 1

0
f(x0)dx0

∫ x0

0
δ(x1 −H(x0))dx1

∫ x1

0
δ(x2 −H2(x0))dx2

∫ 1

x1

δ(x3 −H3(x0))dx3

gives the following conditions:

H3(x0) > H(x0) > H2(x0)

H(x0) < x0

which are never satisfied for the H(x) map (this is indeed based on the fact that the

pattern xi > xi+1 < xi+2 is indeed a forbidden pattern in the orbit of H(x).Hence

P4
6 = 0.

P4
5 =

∫ 1

1/2+
√
3/4

1

π
√
x0(1− x0)

dx0 =

1

π
B[

1
2
+
√
3
4
,1
](1

2
,
1

2

)
=

1

6
(= 4/24)



Appendix C

Motif profiles for all subjects in

the empirical study

In Figure C.1 we give an overview of the HVG 4-node motif profiles, measured for

the different subjects in the different states. Interestingly, the motif that shows more

variability in each of the given states is the one related to the type-1 motif, which we

have seen to play a minor role in the case of the chaotic dynamics polluted with noise.

The scores of the two components in terms of motifs are reported in Tables ??, and

as expected the highest contribution to the first component (0.874) is given by motif of

type 1.

Yoga Chi
First Component Second Component First Component Second Component
0.874 0.0346 0.871 0.171
-0.029 -0.203 -0.023 -0.239
-0.379 0.074 -0.376 0.207
-0.204 0.731 -0.272 0.666
-0.043 0.01 -0.048 -0.173
-0.219 -0.647 -0.152 -0.631

Table C.1: Principal component scores obtained from PCA considering the Yoga medi-
tators data subset (left) and the Chi meditators data subset (right).
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Figure C.1: HVG motif significance profile Z4 obtained by analysing heart rate time
series form different groups of subjects in different states: a) 8 Chi meditators before the
meditation practice; b) 4 Yoga meditators before the meditation practice; c) 11 subjects
during sleeping; d) same 8 Chi meditators of a) during the meditation practice; e) same 4
Yoga meditators of b) during the meditation practice; f) 9 elite athletes during sleeping;
g) 14 subjects during metronomic breathing at 0.25 Hz.

Chi&Yoga All States
First Component Second Component First Component Second Component
0.874 0.08 0.881 0.133
-0.027 -0.181 0.007 0.073
-0.378 0.089 -0.315 0.477
-0.235 0.714 -0.294 0.4
-0.045 -0.039 -0.13 -0.58
-0.188 -0.664 -0.15 -0.503

Table C.2: Principal component scores obtained from PCA considering the subset data
of Yoga and Chi meditators together (left) and and considering all data set (right).
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