
Nü Soundworks:

Using spectators smartphones as a distributed network of

speakers and sensors during live performances.

David Poirier-Quinot
UMR STMS

IRCAM-CNRS-UPMC
Sorbonne Universités

Paris, France
david.poirier-quinot@ircam.fr

Benjamin Matuszewski
CICM/Musidance EA1572,

Université Paris 8,
UMR STMS

IRCAM-CNRS-UPMC
Sorbonne Universités

Paris, France
benjamin.matuszewski@ircam.fr

Norbert Schnell
UMR STMS

IRCAM-CNRS-UPMC
Sorbonne Universités

Paris, France
norbert.schnell@ircam.fr

Olivier Warusfel
UMR STMS

IRCAM-CNRS-UPMC
Sorbonne Universités

Paris, France
olivier.warusfel@ircam.fr

ABSTRACT
This paper presents the Nü framework. The objective of
the framework is to provide composers with a tool to con-
trol web-based audio processes on spectators smartphones
during live performances. Connecting their devices to a web-
page broadcasted by the performer’s laptop, spectators be-
come part of the composition: from simple sound sources to
active musicians. From a Max based interface, the performer
can then control the behaviours of conceptual units, referred
to as Nü modules, designed for live composition (distributed
room reverb, granular synthesis, etc.). Each module is com-
posed of a pair of JavaScript classes – one for the client,
another for the server – relying on the Web Audio API for
audio processing, and OSC messages for parameters con-
trol. Nü is an open source project based on the Soundworks
framework.

1. INTRODUCTION
The notion of web browser has vastly evolved since the

“hypertext interpreters” of the 1990s. Constantly pushed
forward by an ever changing Internet, web browsers have
become versatile platforms for interactive multimedia appli-
cations. Amongst their many features, audio processing has
come a long way since the first <bgsound> tag used for au-
dio playback. In 2015, the W3C1 released the first version
of the Web Audio API (Application Programming Interface)

1 W3C website: https://www.w3.org

Licensed under a Creative Commons Attribution 4.0 International License (CC BY

4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

c� 2017 Copyright held by the owner/author(s).

[8]. This standardised API was designed to provide web de-
velopers with cross-platform audio processing tools (mixing,
filtering, etc.) that would match modern game engines.

Much research and development have been achieved since
concerning web-based audio design and applications. Close
to the problem at hand, studies addressing the question of
audio rendering on spectators devices for live performances
have been published in [2, 10, 4]. The interfacing of web-
based applications with music creation software as been
studied as well, see for example the Csound based imple-
mentation detailed in [9]. The framework discussed herein
pairs a Max2 (visual programming language) interface with
the Soundworks framework3 [6], to provide composers with a
versatile solution for the design of live performances relying
on spectators devices.

Soundworks is a JavaScript (JS) framework designed to
create collaborative and collective audiovisual web-based
experiences. A typical Soundworks experience will lead
users to actively participate in an audio performance with
their smartphone, through interaction paradigms defined by
the designer. Soundworks is based on web APIs, serving
web-pages to clients via a NodeJS4 server. The core of
the framework implements basic data exchanges and con-
nection routines. Features common to most experiences
(load audio files, synchronise devices clocks, etc.) are pack-
aged as Soundworks services. The ambition of the Sound-
works framework is to allow developers and composers to
focus on user experience and interaction design rather than
JavaScript implementation. Experiences can be either de-
ployed as web pages or Cordova applications5. The latter
is required to access bluetooth communications and micro-
phone inputs on most modern devices.

2 Max website: https://cycling74.com/products/max
3 Soundworks git: github.com/collective-soundworks
4 NodeJS website: https://nodejs.org
5 Cordova website: https://cordova.apache.org



Figure 1: Simplified architecture of the Nü framework. The behaviour of Nü players is controlled from a
Max graphic interface (OSC Controller), based on OSC messages forwarded by the Nü server. The whole
framework relies on Soundworks: the Nü player class extends the Soundworks Client class, the Nü server is
a Soundworks Server, etc. Each Nü module is self-contained and defines its own OSC API. A given module
on the player’s side will only exchange data with its counterpart on the server. Inter-module interactions are
defined from the OSC controller.

The Nü framework is based on Soundworks. It has been
designed to allow composers and performers to create expe-
riences involving the audience smartphones. Experiences are
created based on the Max programming environment rather
than on Javascript routines. Nü applications range from us-
ing spectators’ devices as a distributed network of speakers,
to creating clusters of interactive and sound-capable devices
connected to one another.

The remainder of this paper is organised as follows. The
architecture of the Nü framework is presented in Section 2.
The audio units, or Nü modules, that compose the frame-
work are described in Section 3. Section 4 summarises the
current state of the framework and outlines its future devel-
opments.

Source code, use cases and documentation are available at:
https://github.com/ircam-cosima/soundworks-nu

2. FRAMEWORK ARCHITECTURE
This section details the architecture of the Nü framework,

illustrated in Figure 1. Nü is based on three core com-
ponents: a server, instances of players (i.e. web clients),
and a Max based OSC controller. The framework is organ-
ised around JavaScript classes referred to as Nü modules.
Each module handles a unique conceptual feature, such as
“visual feedback”, “sensor monitoring”, “distributed synthe-
siser”, etc.
The Nü server is a NodeJS HTTP (HyperText Transfer

Protocol) server extending the Soundworks Server class. It
typically runs on the performer’s laptop during the perfor-
mance, and acts both as a central processing unit and as
a bridge between the OSC controller and the players. The
OSC controller is a standalone Max patch, connected to the
server via OSC (Open Sound Control [11]). It relies on a set
of predefined OSC messages, referred to as the Nü OSC API,
to address the di↵erent Nü modules parameters. The term
Nü player refers to any device (smartphone, tablet, etc.)
connected to the default web-page served by the Nü server.
As for the server, the Nü player is an extended Soundworks
client. Each Nü module relies on a dedicated OSC API cou-
pled with two classes, one instantiated by the server, the
other by every player.
The design of a performance based on the Nü framework

typically starts with a prototyping session. At the early

stage of this prototyping, Nü players are instantiated in
browser windows emulating spectators devices, running on
the composer’s laptop. Figure 2 illustrates such a session,
involving 16 emulated devices for panned-based audio play-
back in a room (see Section 3.2). To assess the spatial ren-
dering of the composition, the audio output of each emulated
device can be virtualised on the performer’s laptop through
binaural rendering (see Section 3.9). Once the prototyped
application validated, the experiment can be deployed as is
for live performance. Browser windows are then replaced by
spectator devices (see Figure 3).

3. MODULES OVERVIEW
As mentioned above, each module relies on two classes:

one on server’s side, one on player’s. Parameters and meth-
ods of these classes are addressed from an OSC API. To each
module is associated a graphical user interface implemented
in Max for simple use-case illustration.

Nü modules all extend a base class, defining 1) general
OSC message routing, and 2) client-server parameters syn-
chronisation mechanisms. On the server side, upon recep-
tion of a message issued by the OSC controller, the routing
mechanism will distribute the message to the concerned Nü
module, based on the content of the OSC header. Messages
concerning only the Nü players are directly forwarded from
server to players.

A synchronisation mechanism has been designed for seam-
less integration of newly connected players to an ongoing
performance. Messages issued from the OSC controller con-
cerning all players are used to update the internal parame-
ters of a mockup player on the server. The mockup player
state is broadcasted to new players upon connection. To save
and restore the parameters of a given performance between
sessions, a per-module preset mechanism has been added to
the Max OSC controller.

The remainder of this section details the modules already
implemented in the framework. The objective is not so much
to list the framework features as to provide a global picture
of it’s overall ambition. Every module is self-contained and
can be used in parallel with others at any time during a
performance. Unless stated otherwise, all the sounds played
back by these modules are issued from audio files down-
loaded from the server upon player’s connection.



Figure 2: Screenshot of a prototyping session on
the composer’s laptop. (left) Browser windows em-
ulating Nü players. The screen hue of each player is
controlled by its audio output level (see Section 3.9).
(right) Nü OSC controller. Specific interface of the
“Nü Group” module described Section 3.2 . The
mini-room display at the bottom allows to define
the sound position in the array of Nü players, along
with its spread on neighbouring players (radius of
the white circle).

3.1 Nü Main
The Main module handles context synchronisation be-

tween the Max OSC controller and the server. It forwards
players ID and coordinates, registered in the server, to the
OSC controller (see mini-map Figure 2). A mechanism sim-
ilar to the mockup player mentioned above ensures that any
upstream parameter modification made on the Max con-
troller is forwarded to the server upon connection. The Nü
Main module also implements a callback for clock synchro-
nisation between both JS and Max context. Amongst other
things, this shared clock allows for synchronised audio ren-
dering over both Nü players speakers and a full scale loud-
speaker setup.

3.2 Nü Groups
This module is a straightforward implementation of an au-

dio panner. Its Max patch is illustrated Figure 2, where the
composer can define the position of a sound in the network
of speakers formed by the Nü players. The underlying OSC
API and associated JS methods simply control the playback
of audio files. Besides start and stop, each audio file track
volume can be defined on a per-player basis. The playback is
synchronised throughout players based on the Soundworks
sync service [7, 3].

3.3 Nü Loop
The Loop module is a distributed sequencer. An N ⇥M

matrix in the Max controller is used to distributeN available
audio samples over M time steps. The sequencer period and
time step can each be modified on the fly, forwarded to the
players upon modification. Each player possesses its own
sequence matrix. Inter-player synchronisation is once more
based on the Soundworks sync service. Internal playback
and scheduling relies on the AudioBu↵erSourceNode of the
Web Audio API.

3.4 Nü RoomReverb

The RoomReverb module simulates the propagation of an
acoustic wave in a virtual room. Said room dimensions are
defined from the interface of the OSC Controller. Its walls
are “drawn” around the players, on a mini-map like the one
of Figure 2. The performer will then typically“emit”a sound
(i.e. click on the mini-map) at a given position in the room.
This position, along with the room dimensions are forwarded
to the server prior to any audio rendering. Based on a shoe-
box model [1], the server estimates the image sources asso-
ciated with the propagation in the room from that position.
From this list of image sources, the server computes an Im-
pulse Response (IR) for each player according to its position
in the virtual room. Each IRs is then sent to its associated
player. Upon IR reception, the player convolves it with au-
dio data loaded from an audio file, and stands ready for
audio rendering. But for player’s CPU, there is no limit on
the number of sounds that can be simultaneously emitted in
the room.

The audio rendering is triggered by a “rendez-vous” mes-
sage, broadcasted by the server when it receives the emission
position from the OSC controller. This message basically
defines a future point in time where every player should
start rendering its internal convolved audio bu↵er. Along
with room dimensions, room materials and scattering coef-
ficients can be defined, to modify the acoustics of the simu-
lated room. The propagation speed (m.s-1) and attenuation
(dB.m-1) can be defined as well to produce either realistic or
artificial (e.g. with negative propagation speed) reverbera-
tion patterns.

A time bound parameter allows to define whether the
propagation time is to be considered when tapping into the
input audio bu↵er. If set to zero, each IR tap will generate a
full copy of this audio bu↵er, with a time o↵set correspond-
ing to the tap delay, in the player’s output bu↵er. If set
to one, the propagation time of each specific tap (i.e. im-
age source) will define an initial reading o↵set for that tap
in the input audio bu↵er. This mechanism is depicted Fig-
ure 4. An associated“segment percentage”parameter allows
to define the duration of the audio bu↵er copied for each tap
relative to the duration of the input audio bu↵er.

3.5 Nü Path
The Path module has been designed to draw audio trajec-

tories through the network formed by the Nü players. The
trajectory is drawn on the same mini-map as for the previ-
ous modules. Drawing a trajectory on the OSC controller
defines a set of emission points in the room. This set is
sent to the server upon trajectory completion. Based on the
same image source logic as the RoomReverb module of Sec-
tion 3.4, the server will define a per-player IR based on these
emission points and the player position. On the player side,
the IR is convolved with an input audio bu↵er to generate
the local pattern for the current path.

The Path module relies on abstract emission points rather
than on players ID to define a trajectory. This allows to de-
fine trajectories independent from players position and even-
tual movements during the performance. As for the Room-
Reverb module, propagation speed, gain, time bound, and
segment percentage can be modified to alter the rendered
audio trajectory. Several path can be predefined, stored as
Max preset, and launched simultaneously during the perfor-
mance.



3.6 Nü Synth
The Synth module relies on the OscillatorNode of the Web

Audio API to implement a distributed synthesiser. Its OSC
API allows to attach each note of a midi keyboard in the
OSC controller to one or more players. Note volume, pe-
riodic waveform (square, sawtooth, harmonic coefs, etc.),
attack time, and release time can be defined on a per-player
basis.

3.7 Nü Grain
This module relies on a granular synthesiser, distributed

on synchronised Nü players. On the players side, the mod-
ule implements a basic granular synthesiser. At startup, the
module splits an input audio file into segment bu↵ers. The
duration of these segments depends on a “relative duration”
parameter defined from the OSC controller. Once started,
the synthesiser plays one segment per “period”, the dura-
tion of which is defined from the OSC controller as well.
The played segment is selected based on an “energy” value,
defined as the summed output of the device acceleration sen-
sor on all three axis. The greater the energy, the louder the
selected audio segment.

Players synthesisers are synchronised in time. Their en-
ergy vector can be partially or fully overwritten by the
server, based on a 0 to 1 value issued from the OSC con-
troller. This mechanism allows to use the Nü Grain module
either as a unique granular synthesiser which output is ren-
dered over the players speakers, or as an ensemble of gran-
ular synthesisers each playing its own patterns based on a
common pulsation.

3.8 Nü Stream
The Stream module is used for live synchronised streaming

of audio data from the Max OSC controller patch to the Nü
players. This module requires the Max patch and the Nü
server to run on the same machine.

Nü Stream takes any audio stream generated by the Max
patch and writes it as audio file chunks to the disk. The
server reads these chunks and sends the associated raw au-
dio data to the players. A timestamp is prepended to each
audio data packet for synchronised playback across players.
A“rendez-vous”time o↵set, defined from the OSC controller,
is used to anticipate data transmission delay. A player re-
ceiving a chunk of audio data after its due playback time
will simply discard it.

Designed for dynamic sound design and DAW-based
streaming (Digital Audio Workstation) during Nü sessions,
this module heavily depends on the bandwidth of the net-
work at hand. Regardless of the network capacity, a mini-
mum delay is to be expected between audio stream emission
and playback time, due to the rendez-vous mechanism.

3.9 Nü Output
The Nü Ouptut module acts as a global mixing unit down-

stream of all Nü modules. The audio output of each module
is routed to the input (simple GainNode) of this module
rather than to the default audioContext.destination of the
Web Audio API.

The Output module allows to define players master out-
put volume. It implements callbacks on both player and
server sides for player-wise recording of a Nü audio session,
triggered from the OSC controller. During a recording ses-
sion, each player stores the audio data streamed through its

Figure 3: Live performance reproducing the sce-
nario prototyped in Figure 2.

Output module into an internal audio bu↵er, while still ren-
dering said output on its speakers. At session’s end, each
player uploads its recorded bu↵er to the server that adds
them up and writes the resulting audio bu↵er to the disk.

During virtual prototyping sessions (i.e. device-less, see
the introduction of Section 3), the spatialisation mode of the
Output module allows to spatialise the audio output of each
emulated player. This binaural spatialisation, based on the
JSAmbisonic library [5], relies on the player hypothetical
position in the room to spatialise its audio stream. This
mode is activated from the OSC controller, from which can
also be defined the position of a virtual listener relative to
the emulated players. The spatialisation, coupled with room
IRs of the JSAmbisonic library, can be used to assess the
spatial audio distribution of a given Nü performance over
headphones.

3.10 Nü Probe
The Probe module has been designed to access player’s

sensor data from the OSC controller. Devices acceleration,
orientation, and touch data can be uploaded to the server for
direct forwarding to the OSC controller on a per-player ba-
sis. There is no limitation to the number of simultaneously
“probed” players but for the available network bandwidth.
A throttle mechanism is implemented to limit the amount of
data streamed from the activated players, based on threshold
parameters for all three acceleration, orientation and touch
values.

Streamed to the OSC controller, sensor data can be used
to control the framework modules as would any composer’s
input. The acceleration data of a subset of players can for
example be used to control the Nü Grain (see Section 3.7)
energy parameters of there neighbours.

3.11 Nü Controller experience
The Controller experience resembles the Probe module in

that it also grants access to a device’s sensor data in the Max
OSC Controller. The Controller is however an independent
Soundworks experience, on equal footing with the Nü player
experience, published by the server on a di↵erent port from
the default client (i.e. player). The Controller experience
is dedicated to sensors streaming, instantiating none of the
other Nü modules. Unlike the Probe module, the Controller
constantly streams device sensors data, and cannot be de-
activated from the OSC controller. It has been designed to
be used on performer controlled devices rather than on the



Figure 4: Illustration of the time bound mechanism of the RoomReverb module. (left) Estimated room IR
at a given player position. (center) The full input audio bu↵er is added to the audio output for each IR tap.
(right) A read o↵set is defined based on tap delays and time bound value. The time bound value can be
continuously defined in [0, 1] to create di↵erent artificial reverberation e↵ects.

spectator’s. As for the Probe module, the Controller expe-
rience can be used to address the parameters of other Nü
modules or to control Max audio processing routines.

3.12 Nü Display
The Display module allows to control simple visual feed-

back routines on players screens. Besides messages and in-
structions display, the Display can be used to define, on a
per-player basis, active and idle background colours from
the OSC controller. When this visualisation mode is en-
abled, the hue of a player screen will oscillate between its
active and idle colours, based on its audio output level. This
hue value, defined on a 0 (idle) to 1 (active) scale, is defined
from the summed ByteFrequencyData of an AnalyserNode
of the Web Audio API, attached to the Nü Output mod-
ule (see Section 3.9). The Analyser min/max frequencies,
its dB range, and output multiplier can be defined from the
OSC controller. All these parameters can be defined on a
per-player basis to create di↵erent ambiance or instruction
set through the players network.

4. CONCLUSION
This paper presented the Nü framework. Based on the

Soundworks framework, Nü has been designed for composers
to control web-based audiovisual processes on spectators
smartphones during live performances.

Nü relies on the Web Audio API for audio processing on
client’s end while its server runs in a NodeJS context. The
Nü server, typically running on the composer’s laptop, pub-
lishes a web-page to which spectators can connect their de-
vice. Once connected, devices become part of the composi-
tion as Nü players: from simple sound sources to interactive
musicians. The composer can control the behaviour of basic
conceptual audio units, or Nü modules, to produce audio and
visual e↵ects through the players network from a Max based
OSC controller. A set of control OSC messages has been de-
signed for each module, allowing for a code-free composition
environment from the Max interface. The framework has
been designed so that Nü modules can easily be modified
and new ones created to further support composers needs.

Future work mainly involves the use of the framework in
live performances. Extensive tests are planned to assess each
module requirements in terms of network bandwidth for real-

time interaction and rendering on a given population of Nü
players. Out of the scope of the current project, the in-
tegration of an accurate indoor location technique to the
framework would benefit some of the implemented modules.

5. ACKNOWLEDGMENTS
Soundworks Nü has been developed as a joint e↵ort be-

tween both ISMM and EAC teams at IRCAM - Centre Pom-
pidou, in the scope of the CoSiMa research project6 sup-
ported by the French National Research Agency (ANR-13-
CORD-0010).

6. REFERENCES
[1] J. B. Allen and D. A. Berkley. Image method for

e�ciently simulating small-room acoustics. The
Journal of the Acoustical Society of America,
65(4):943–950, 1979.

[2] A. Bundin. Concert for smartphones. In WAC Web
Audio Conference. Georgia Institute of Technology,
2016.

[3] J.-P. Lambert, S. Robaszkiewicz, and N. Schnell.
Synchronisation for distributed audio rendering over
heterogeneous devices, in html5. In WAC Web Audio
Conference. Georgia Institute of Technology, 2016.

[4] J. Madhavan, Nihar Snyder. Constellation: A musical
exploration of phone-based audience interaction roles.
In WAC Web Audio Conference. Georgia Institute of
Technology, 2016.

[5] A. Politis and D. Poirier-Quinot. Jsambisonics: A
Web Audio library for interactive spatial sound
processing on the web. In Interactive Audio Systems
Symposium, York, UK, pages 1–8, 2016.

[6] S. Robaszkiewicz and N. Schnell. Soundworks–a
playground for artists and developers to create
collaborative mobile web performances. In WAC Web
Audio Conference, 2015.

[7] N. Schnell, V. Saiz, K. Barkati, and S. Goldszmidt. Of
time engines and masters an API for scheduling and
synchronizing the generation and playback of event
sequences and media streams for the Web Audio API.
In WAC, 2015.

6 CoSiMa website: http://cosima.ircam.fr



[8] B. Smus. Web Audio API: Advanced Sound for Games
and Interactive Apps. ” O’Reilly Media, Inc.”, 2013.

[9] R. Vinay, Ashvala Boulanger. Building interactive
systems with websockets and csound. In WAC Web
Audio Conference. Georgia Institute of Technology,
2016.

[10] B. Walker, William Belet. Cross-town tra�c 2.0. In
WAC Web Audio Conference. Georgia Institute of
Technology, 2016.

[11] M. Wright, A. Freed, et al. Open soundcontrol: A new
protocol for communicating with sound synthesizers.
In ICMC, pages 1–4, 1997.


