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The most fatal illusion is the settled point of view.

— Brooks Atkinson, theatre critic



Abstract

The study of scattering amplitudes in quantum field theories (QFTs) is equally impor-

tant for high energy phenomenology and for theoretical understanding of fundamental

physics. Over the last 15 years there has been an explosion of new techniques, inspired

by Witten’s celebrated twistor string theory [1]. The N = 4 super Yang-Mills the-

ory (SYM) provides a playground for applying and extending these methods, heavily

constrained by spacetime, internal and hidden symmetries.

Recently, Cachazo, He and Yuan proposed an algebraic construction of scattering am-

plitudes at tree level in various QFTs, based on the solution of certain scattering equa-

tions [2]. This formula was later extended to tree-level form factors of Tr(F 2
SD) in four

dimensional Yang-Mills theory [3]. In this thesis we show how this result may be natu-

rally supersymmetrised, and derived from a dual connected formulation. Moreover, we

relate our results to a geometric construction of form factors via the Grassmannian [4].

Finally, we argue that ambitwistor string theory provides a natural way to lift the result

to arbitrary dimensions, paving the way for loop-level results.

In complementary work, it was shown that the subleading soft behaviour of tree-level

amplitudes in gauge theory and gravity is universal [5–7]. This unexpected property

is related to extended symmetries of the theory acting at null infinity. Moreover, the

hidden structure provides additional information relevant for resummation of physical

observables. In this thesis, we extend the known results to one-loop level in N = 4

SYM, arguing that IR divergences introduce anomaly terms through finite order in the

regulator. We constrain these terms using dual superconformal symmetry, and derive

explicit formulae in the MHV and NMHV sectors.

This thesis contains documentation for two Mathematica packages, illustrating the

original calculations we have performed.
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Chapter 1

Introduction

The past 15 years have seen a flourishing of so-called on-shell methods for computing

scattering amplitudes. In many ways the motivation for this research is identical to

the analytic S-matrix programme of the 1960s [11]. A principal aim is to construct

compact representations of amplitudes based on central tenets of quantum field theory,

such as locality, unitarity, and gauge and global symmetries. One might hope that such

formulae expose interesting algebro-geometrical structures, shedding light on hidden

properties of QFT. Moreover, they should be designed to bypass the factorial complexity

associated with Feynman graph calculations.

There are several reasons why on-shell methods have succeeded where the analytic S-

matrix programme failed. Chief among these is the discovery of N = 4 SYM [12],

a mathematical playground nowadays widely regarded as the simplest renormalisable

QFT [13]. A related factor is the maturity of string theory, and its relation to N = 4

SYM via the AdS/CFT correspondence [14, 15]. Twistor theory has also played a

vital role, ever since Witten’s seminal paper [1]. At present the crowning achievements

can be pleasingly categorised as algebraic and geometric. The former is based on

the solution of scattering equations [16], while the latter involves measurements on

Grassmannians [17].

Of course, the S-matrix does not encode all the information in a QFT, expect perhaps in

quantum gravity [18]. Therefore it is important to ask whether on-shell methods extend

beyond merely constructing scattering amplitudes. Most obviously, one could consider

a matrix element between asymptotic states and an operator inserted at a spacetime

point, defining a form factor. More subtly, one could study the infrared behaviour of

amplitudes in various on-shell guises, crucial for generating accurate inclusive cross-

sections.
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CHAPTER 1. INTRODUCTION

index type

µ, ν, . . . SO(1, 3) Lorentz index

α, β, . . . SL(2;C) chiral spinor index

α̇, β̇, . . . SL(2;C) antichiral spinor index

a, b, i, j, . . . label external particles

J ∈ m, i ∈ p label subsets of particles

A,B, . . . SU(4) R-symmetry index

a, a′, . . . SU(2) R-symmetry index

A,B, . . . PSL(4|4;C) supertwistor index

I, J, . . . PSL(4;C) twistor index

Table 1: An inexhaustive summary of our index conventions.

In this thesis we shall expand the literature in both these cases, demonstrating that the

on-shell approach may be profitably employed. Our form factor results owe an intel-

lectual debt to [19], arguably the first attempt to understand scattering with operator

insertions in a modern framework. Our work on soft limits is largely inspired by [6], in

which the theoretical importance of subleading behaviour was first articulated.

We shall now review several topics of central revelance to our original arguments in

Chapters 2 and 3. In Section 1.1 we formally introduce N = 4 SYM, and comment on

several appealing properties. We then define scattering amplitudes and form factors,

and provide a detailed exposition of several on-shell methods. Section 1.3 fills a gap in

the literature for a pedagogical review of the scattering equations and related twistor

theories. We have found the following textbooks and papers particularly useful as

reference material, and cite them exactly once: [20–28].

Throughout this thesis we work in four dimensions and employ a mostly minus (+−−−)

metric signature, unless explicitly stated otherwise. Table 1 outlines our most common

index conventions for the convenience of the reader. Where there are conflicts, the

correct interpretation should be clear from the context.

1.1 N = 4 Super Yang-Mills Theory

We begin by introducing the sole theory of study in this thesis, N = 4 SYM. In a

sense this is a souped-up version of QCD, incorporating extra quark and scalar fields.

10



CHAPTER 1. INTRODUCTION

However, N = 4 SYM is a much simpler theory, bound by the strictures of supersym-

metry. In fact, it is the unique renormalisable maximally supersymmetric theory in

four dimensions that can be described with a Lagrangian. The requirement of renor-

malisability prohibits particles of spin > 1. Since massless supermultiplets contain N/2
states, the maximal allowed N is 4, providing 16 real supercharges.1 Uniqueness follows

from applying the additional constraints of extended supersymmetry to the well-known

restrictions on a N = 1 action, detailed in for example [29].

More explicitly, the unique massless supermultiplet in N = 4 is

(Aµ, λαA, λ̃
A
α̇ , φ

AB) , (1.1.1)

comprising a gauge field Aµ, fermions λαA and λ̃Aα̇ for A = 1, . . . 4, and complex scalars

φAB for A,B = 1, . . . 4. All fields are in the adjoint representation of a gauge group

SU(N). The indices A,B indicate non-trivial representations of R-symmetry, the

SU(4) rotation of supersymmetry generators among themselves. Clearly the gauge

field transforms in the singlet representation, while the fermions transform in the (anti-

)fundamental representation. The scalars transform in the adjoint representation, hence

represent 6 real degrees of freedom2. In particular we have

φAB = −φBA , φAB = φ
AB

. (1.1.2)

The Lagrangian density for N = 4 SYM is, using the conventions in (1.2.5),

L = Tr

(
−1

4
FµνF

µν + iλ̃Aα̇σ
αα̇
µ DµλαA −DµφABD

µφAB

−1

2
[φAB, φCD][φAB, φCD]− i

2
λαA[φAB, λαB]− i

2
λ̃Aα̇ [φAB, λ̃

α̇B]

)
, (1.1.3)

where we have absorbed all dependence on the coupling constant g into our definition

of the fields. The kinetic terms for gauge field and fermions and the minimal coupling

interaction between them are familiar features from QCD, while the third and fourth

term describe scalar electrodynamics.

The supersymmetry and R-symmetry we have discussed thus far are merely part of

the spacetime symmetry exhibited by N = 4 SYM. At the classical level, the theory

is superconformal invariant. In addition to the translations, boosts and rotations of

Poincaré symmetry, the supersymmetry generators QAα and Q̃α̇A and R-symmetry, the

1Of course, N = 3 supersymmetry is identical to N = 4 on-shell since CPT conjugation naturally
produces all supermultiplets in the latter from those in the former.

2The real scalars are commonly denoted φi for i = 1, . . . 6 and are related to the complex scalars in
the following way [30]. Let Υi = φi and Ξi = φi+3 for i = 1, 2, 3. Define 4× 4 antisymmetric matrices
Υij = −εijkΥk, Υi4 = −Υi and Ξij = εijkΞj , Ξi4 = Ξi. Then φAB = ΥAB + iΞAB .

11



CHAPTER 1. INTRODUCTION

action is invariant under dilatations, conformal boosts and conformal supersymmetries.

Together the generators define the graded Lie algebra su(2, 2|4).

We shall review relevant consequences of this large symmetry group in more detail in

Section 1.3. For now we confine ourselves to stating that the superconformal symmetry

survives in the full quantum theory. Indeed, the beta function of N = 4 SYM vanishes

to all orders of the coupling [31, 32], so the theory is ultraviolet (UV) finite. Hence

conformal symmetry is not broken by anomalies. Therefore, we shall have no need of

the renormalisation toolbox when calculating loop amplitudes. Note that form factors

of unprotected operators do require renormalisation in general – see for example [33].

We shall not encounter such complications.

In Section 1.2 we shall define our main objects of interest in N = 4 SYM, scattering

amplitudes and form factors. It is important to note that our definitions below aren’t

strictly meaningful for N = 4 SYM. Indeed, since the theory is conformal, the notion

of an asymptotic state is ill-defined. This problem manifests itself as infrared (IR)

divergences in observables. We may rectify this by introducing an IR regulator, when

required. Most commonly, one chooses to work in 4−ε dimensions, manifestly breaking

the conformal symmetry. This entails introducing a dimensionful parameter µ called

the regularisation scale, and requiring that all physical quantities are independent of

this parameter. For simplicity of notation, we set µ = 1 throughout this thesis, arguing

here that one may include it a posteriori via dimensional analysis. These subtleties do

not affect tree level calculations, but have an important role to play at one loop, as we

shall see in Chapter 3.

1.2 Scattering Amplitudes and Form Factors

The most general observable in a four dimensional quantum field theory (QFT) with

fields {φ, . . . , ψ} and Langrangian density L(φ, . . . , ψ) is the correlation function,3

〈0|Tφ(x1) · · ·φ(xn) · · ·ψ(y1) · · ·ψ(ym)|0〉

= lim
T→∞(1−iε)

∫
Dφ · · · Dψ φ(x1) · · ·φ(xn) · · ·ψ(y1) · · ·ψ(ym) exp

(
i
∫ T
−T d4x L

)
∫
Dφ · · · Dψ exp

(
i
∫ T
−T d4x L

) .

(1.2.1)

3Confusingly also referred to as a Green’s function in much of the literature. In general, only
the two-point correlation function of a free field theory is a right-inverse for a meaningful differential
operator, namely the Hamiltonian.

12



CHAPTER 1. INTRODUCTION

computing the expected value of a time-ordered product of operators in the (true inter-

acting) vacuum state |0〉. Mathematically, these are regarded as fundamental quantities

by virtue of the Wightman reconstruction theorem [34], which states that the correla-

tion functions of a QFT satisfying the Wightman axioms determine the theory up to

unitary equivalence. More pragmatically, correlation functions describe how quantum

fields co-vary, with measurable consequences for fields from cosmology to condensed

matter – see for example [35,36].

Of course, the most important observable in high-energy physics is the cross-section

presented by the scattering of particles. Theoretical predictions are typically deter-

mined in silico by libraries such as Sherpa [37] which perform phase space integration

over a scattering amplitude. The scattering amplitude is defined as the overlap be-

tween incoming and outgoing field quanta of definite momenta in the asympotic past

and future respectively. These are related to correlation functions by virtue of the cele-

brated LSZ reduction formula [38], quoted below for illustration in the case of a scalar

theory.

out〈p1 . . . pn|k1 . . . km〉in =
n∏
i=1

d4xie
ipi·xi(m2 − ∂xi)

m∏
j=1

d4yje
ikj ·yj (m2 − ∂yj )

× 〈0|Tφ(x1) · · ·φ(xn)φ(y1) · · ·φ(yn)|0〉 . (1.2.2)

In the amplitude each of the momenta pi and kj are constrained to be on-shell4, that

is satifying the constraints p2
i = m2 and k2

j = m2 where m is the mass of the field φ.

Henceforth we drop the subscripts on the asymptotic states.

For the remainder of this thesis, all fields we consider will be massless, with this prop-

erty protected by symmetry and so unaffected by quantum corrections. Our reasons

for this are threefold. Firstly, it is a convenient mathematical simplification, and in-

deed one embodied by the toy model N = 4 SYM which we introduced in Section 1.1.

Secondly, it is physically reasonable to neglect mass for high-energy processes, at least

for certain spin-1
2 particles. Indeed the mass term enters scattering amplitudes through

a propagator factor (K2 −m2)−1 where K is a sum of momenta. For sufficiently high

energy scattering, the K2 term generically dominates. In QCD processes at the LHC,

the gluons are already massless and the light quarks (up, down, charm and strange)

have negligable mass (. 1GeV) compared with the centre of mass energy of a typical

collision (& 1TeV). Thirdly, with the discovery of the Higgs, it is clear that mass

4The nomenclature arises from picturing the hyperboloid described by the condition in three di-
mensions. More specifically the asymptotic particles are assumed to satisfy the free-field equations of
motion, which necessarily imply the Klein-Gordan equation p2 = m2 in Fourier space for relativistic
theories.
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CHAPTER 1. INTRODUCTION

is an emergent property, and not of fundamental importance to the blueprints of our

universe.

A fundamental property of scattering amplitudes in relativistic field theories is their

adherence to crossing symmetry. Explicitly, the amplitude for a process is unchanged

upon replacing an incoming particle of momentum p with an outgoing antiparticle of

momentum −p. This is easily derived from the Feynman rules or directly from the

action of symmetry generators [39], with appropriate conventions for the analytic con-

tinuation of polarisation spinors. For massless particles, this entails flipping the helicity.

Without loss of generality, we may therefore restrict our attention to amplitudes with

all particles outgoing, viz.

An(1, . . . n) = 〈p1 . . . pn|0〉 . (1.2.3)

Form factors5 provide a bridge between completely on-shell amplitudes and completely

off-shell correlation functions. Intuitively, they describe the scattering of particles off a

quantum field localised in space. Mathematically we write

FOn (1, . . . , n, q) =

∫
d4x eiq·x〈p1 . . . pn|O(x)|0〉 , (1.2.4)

with O some product of operators in the theory. Such objects are phenomenologically

important as approximations to terms in on-shell scattering amplitudes. For example,

to calculate H → ggg cross-section, one may approximate the scattering amplitude by

a form factor of Tr(F 2) in the limit of large top quark mass [42]. Furthermore one can

even recover part of this QCD form factor from a calculation in N = 4 at two-loops [43].

Other processes for which form factors are typically employed include electron-positron

collision [44] and deep inelastic scattering [45]. Since crossing symmetry is essentially

a property of the asymptotic states, it remains valid for form factors.

When the couplings are small, it is convenient to calculate scattering amplitudes and

form factors perturbatively. In this thesis, we work exclusively in such a regime. The

traditional diagrammatic method is due to Feynman [46], and naturally expresses re-

sults order-by-order in couplings and ~. Each factor of ~ is associated with the ap-

pearence of a loop in a diagram, comprising an off-shell particle whose phase space

must be integrated over. By invoking Euler’s formula, one may show that for a fixed

number of external particles, amplitudes and form factors scale uniformly in ~ and

couplings. Therefore we shall not include any such explicit factors in the sequel; rather

5This arcane term appears to have originated in forestry [40] to describe the shape of a tree, more
precisely giving the ratio between the volume of a tree and that of a cylinder of the same diameter and
height. In the mid-twentieth century it was appropriated by physicists to denote the effective size and
shape of a target in a scattering experiment, as reviewed in [41].
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CHAPTER 1. INTRODUCTION

we shall distinguish between contributions by stating the numbers of external particles

and loops. Moreover, we shall refer to the leading order 0-loop term as tree level, as is

customary in the literature.

1.2.1 Colour Ordering

In this thesis we will focus exclusively on amplitudes and form factors in N = 4 SYM

with gauge group SU(N). All particles live in the adjoint representation of the gauge

group, hence their amplitudes are functions of traceless Hermitian generators T a and

structure constants fabc for a, b, c = 1, . . . N2−1. For concreteness, we choose a basis in

which

Tr(T aT b) = δab , fabc = − i√
2

Tr(T a[T b, T c]) , (1.2.5)

and recall the Fierz identity,6

(T a)ji (T
a)lk = δliδ

j
k −

1

N
δji δ

l
k . (1.2.6)

Combining these formulae, it is possible to organise amplitudes and form factors as a

sum of kinematic terms dressed with products of traces Tr(T a . . . T b), thus disentangling

the colour dependence. An argument of ’tHooft [47] establishes that each trace comes

with an additional factor of 1/N . Thus amplitudes and form factors admit a natural

decomposition into colour-ordered kinematic pieces, labelled by a trace structure and

a cyclic ordering of the external adjoint particles.

Henceforth we shall examine only the single-trace colour-ordered partial amplitudes

and form factors. Abusing notation, we refer to these as An and FOn respectively. From

a phenomenological viewpoint, we are making a leading order in N approximation.

Mathematically speaking, we are working in the N → ∞ limit, which corresponds to

considering only planar Feynman diagrams. This simplification brings us in touching

distance of string theory by virtue of the AdS/CFT correspondence [14], and reveals

unexpected hidden symmetries which are particularly important in Chapter 3.

In this thesis, the restriction to single-trace terms is without loss of generality. Indeed,

we only consider amplitudes in N = 4 up to one loop, for which the full result can

be extracted from the single-trace contribution alone [48]. Moreover, our operator

insertions for form factors will be colour singlets comprising the Tr(φ2
12) supermultiplet.

Therefore the same conclusion holds for the tree-level form factors we encounter.

6Also known as a completeness relation, since it may be derived from the fact that the Lie algebra
su(N), augmented with the identity matrix, spans the vector space of N ×N anti-Hermitian complex
matrices.
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CHAPTER 1. INTRODUCTION

1.2.2 Spinor-Helicity Variables

There has been much progress in our understanding of amplitudes and form factors

in recent years, particularly in planar N = 4 SYM theory. The search for convenient

variables with which to describe scattering processes has been a guiding principle.

In particular, such variables should transform simply under relevant symmetries, and

transparently yield compact results where possible. The first step on this journey is

appropriate for any Lorentz invariant theory of massless particles, namely the adoption

of spinor-helicity variables.7

It is well-known that the Lie algebra of the Lorentz group is isomorphic to sl(2;C). One

may therefore put real representations of the Lorentz algebra in bijection with complex

representations of sl(2;C) ⊕ sl(2;C). The simplest non-trivial such representations

involve taking the direct sum of fundamental representation and a trivial representation

of sl(2;C). We call the vector space elements Weyl spinors and write

λα ≡ |λ〉α ∈
(

1

2
, 0

)
, λ̃α̇ ≡ |λ̃]α̇ ∈

(
0,

1

2

)
. (1.2.7)

for left-handed and right-handed spinors respectively. It is convenient to define lowering

and raising of indices as

λα ≡ 〈λ|α = εαβ|λ〉β , λ̃α̇ ≡ [λ̃|α̇ = εα̇β̇|λ̃]β̇ , (1.2.8)

where the antisymmetric ε tensors satisfy

εαβ = εα̇β̇ = −εαβ = −εα̇β̇ =

(
0 1

−1 0

)
, (1.2.9)

εαγε
γβ = εβγεγα = δβα , εα̇γ̇ε

γ̇β̇ = εβ̇γ̇εγ̇α̇ = δβ̇α̇ . (1.2.10)

Hence we find the complementary raising and lowering rules,

|λ〉α = εαβ〈λ|β , |λ̃]α̇ = εα̇β̇[λ̃|β̇ . (1.2.11)

The vector representation of the Lorentz group is isomorphic to the (1
2 ,

1
2) tensor repre-

sentation. We may express this unitary equivalence explicitly in terms of our favourite

basis of u(2) namely the generalised Pauli matrices,

σαα̇µ = (1, σi) , (1.2.12)

7We shall work in four dimensions, but similar constructions can be made in arbitrary dimension
by constraining spinors appropriately [49].
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where σi are the usual Pauli matrices. We define

qαα̇ = σαα̇µ qµ , (1.2.13)

with lowering performed according to

qαα̇ = εαβεα̇β̇q
ββ̇ . (1.2.14)

We may then observe that

εαβεα̇β̇p
αα̇qββ̇ = εαβεα̇β̇σ

αα̇
µ σββ̇ν pµqν = 2p · q , (1.2.15)

and in particular, by the combinatorial definition of the determinant,

det q = q · q . (1.2.16)

Therefore if p is a null vector, we may write

pαα̇ = λαλ̃α̇ ≡ |p〉α[p|α̇ , (1.2.17)

for some Weyl spinors λα and λ̃α̇ which must satisfy (λα)∗ = ±λ̃α̇ to ensure that

p is real.8 There is some freedom in choosing spinors satisfying these conditions,

namely

λα → e−iθλα , λ̃α̇ → eiθλ̃α̇ . (1.2.18)

This corresponds to the representation of the little group SE(2) on physically rea-

sonable states.9 The associated conserved charge is known as helicity, and is defined

by

h = −1

2

(
λα

∂

∂λα
− λ̃α̇ ∂

∂λ̃α̇

)
≡ −1

2

(
|λ〉 · ∂

∂|λ〉
+ |λ̃] · ∂

∂|λ̃]

)
, (1.2.19)

where spinor differentiation obeys

∂

∂|λ〉α
|λ〉β = δβα ,

∂

∂|λ̃]α̇
|λ̃]β̇ = −δα̇

β̇
. (1.2.20)

We conclude that angle (undotted) spinors carry helicity −1
2 while square (dotted)

spinors carry helicity +1
2 . By convention, every spinor carries mass dimension 1

2 .

8This requirement motivates the nomenclature that λα is holomorphic and λ̃α̇ is antiholomorphic.
9The little group [50] is the subgroup of Lorentz transformations that leave a vector p invariant,

namely translations and rotations. Näıvely for a massless quantum state of null momentum p, the
little group acts to continuously deform the helicity. Since we don’t observe massless particles with
continuous spin, we enforce additional constraints on physical states, so that the only freedom that
remains is (1.2.18).
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It is often convenient to employ complex momenta, allowing us to apply powerful

techniques from complex analysis. In this setting, we may remove the reality condition

below (1.2.17), so that the positive and negative helicity spinors are truly independent.

The little group phase shift (1.2.18) then naturally extends to a scaling symmetry

λ→ t−1λ, λ̃→ tλ̃ for t ∈ C. We shall assume complex momenta henceforth.

To illustrate the notation we rewrite (1.2.15) more compactly, for p null and q is arbi-

trary:

2p · q = 〈p|q|p] . (1.2.21)

It is surprisingly useful to observe that three arbitrary Weyl spinors must be linearly

dependent, leading to the Schouten identities,

〈i j〉〈k|+ 〈j k〉〈i|+ 〈k i〉〈j| = 0 , [i j][k|+ [j k][i|+ [k i][j| = 0 . (1.2.22)

We have motivated spinor-helicity variables as natural and fundamental quantities with

which to parameterise Lorentz invariant processes. They are also of great practical

benefit, since they seamlessly subsume the polarisation vectors of massless external

states in scattering amplitudes and form factors. For fermions, the relationship is

obvious. Recall that the Weyl equations in momentum space take the form,

σµαα̇pµψ
α = 0 , σαα̇µ pµψ̃α̇ = 0 . (1.2.23)

By construction, the spinors ψα = |p〉α and ψ̃α̇ = |p]α̇ satisfy (1.2.23), and thus comprise

the polarisation spinors of on-shell massless fermions.

For vector bosons we require arbitrary reference spinors µα and µ̃α̇ such that [µ̃ p] 6= 0

and 〈µ p〉 6= 0. This freedom reflects gauge invariance as embodied by the Ward identity

pµAµ = 0 where Aµ is the amplitude stripped of the polarisation vector εµ(p). The

correct identification turns out to be

εαα̇+ (p) =
√

2
|µ〉α[p|α̇

〈µp〉
, εαα̇− (p) =

√
2
|p〉α[µ|α̇

[pµ]
. (1.2.24)

To conclude, in spinor-helicity notation we may express any colour-ordered partial

scattering amplitude of massless particles i = 1, . . . n using only the data (λi, λ̃i, hi).

Moreover, we may use parity to determine the amplitudes with flipped helicity by

exchanging angle and square spinors.
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1.2.3 Superamplitudes and Super Form Factors

Just as Lorentz symmetry led us to an elegant choice of variables, so too does the

enormous supersymmetry of N = 4 SYM help us to compute scattering amplitudes

and form factors. Unlike for N = 1 supersymmetric theories, N = 4 SYM does

not admit a finite-dimensional off-shell superspace. Nevertheless, one can construct

an on-shell superspace [51] and a harmonic off-shell superspace incorporating certain

operators [52–54]. This trivialises the action of the supersymmetry generators QAα and

Q̃α̇A, leading to important simplifying constraints.

On-shell, the massless states of N = 4 SYM form a single supermultiplet, consisting

of 16 states. Each state may be labelled by the SU(4) R-symmetry indices A,B and

so forth. By introducing auxiliary Grassmann variables ηA we may combine the states

into a single superfield, viz.

Φ(p, η) = g+(p) + ηAλA(p) +
1

2
ηAηBφAB(p)

+
1

3!
ηAηBηCεABCDλ̃

D(p) +
1

4!
ηAηBηCηDεABCDg

−(p) . (1.2.25)

Any amplitude invariant under supersymmetry necessarily requires external particles to

appear in the combination (1.2.25). We term such an object a superamplitude An(Φi),

where we have introduced an additional index i = 1, . . . n which labels the particles.10

For comparison to less supersymmetric theories and ease of notation, it is often con-

venient to extract the component amplitudes associated with a given particle content.

This may be done by differentiating (or integrating) the superamplitude with respect

to the Grassmann variables associated with the desired states. For example:

An(g+
1 . . . g

+
n−2g

−
n−1g

−
n ) =

4∏
A=1

∂

∂ηAn−1

4∏
B=1

∂

∂ηBn
An(Φ1, . . .Φn)|ηkC=0 . (1.2.26)

We may immediately constrain the form of a superamplitude by requiring that it be

annihilated by the symmetry generators of N = 4 SYM. Invariance under SU(4) R-

symmetry immediately requires that the superamplitude is a polynomial in the Grass-

mann terms εABCDη
A
i η

B
j η

C
k η

D
l . Therefore the superamplitude naturally decomposes

into terms of Grassmann order 4(k+2) for integers −2 ≤ k ≤ n−2, in principle.

Before considering the action of the supersymmetry generators, it is instructive to recall

how translation invariances manifests itself at the level of amplitudes. In spinor-helicity

10We do not use different notation to distinguish superamplitudes from their components – this
should always be clear from the context.
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notation, the generator of global translations is the momentum operator,

Pαα̇ =
n∑
i=1

|i〉α[i|α̇ , (1.2.27)

which acts on amplitudes multiplicatively. In particular then, it must be solved by

imposing a delta function of momentum conservation as part of the amplitude, writ-

ing

An = δ(4)

(
n∑
i=1

|i〉α[i|α̇
)
× · · · . (1.2.28)

A similar result holds for form factors, where one must now include the additional off-

shell momentum associated with the operator insertion [54]. Given the universal nature

of this simplification, we shall freely omit the delta function of momentum conservation

in writing amplitudes where it is not absolutely necessary for logical clarity.

In on-shell superspace, the supersymmetry generators are represented as

QAα =

n∑
i=1

|i〉αηAi , Q̃α̇A = [i|α̇ ∂

∂ηAi
. (1.2.29)

The requirement that these annihilate the superamplitude is precisely the Ward identity

arising from supersymmetry of the path integral. The action of the holomorphic gen-

erator QAα is multiplicative, just like the momentum generator (1.2.27). By analogy,

we therefore impose a supermomentum conserving delta function,11

An = δ(4)

(
n∑
i=1

|i〉α[i|α̇
)
δ(8)

(
n∑
i=1

|i〉αηAi

)
× · · · , (1.2.30)

where n > 3. By virtue of the equivalence of integration and differentiation for Grass-

mann variables, the Grassmann delta function is merely a product of its arguments

for A = 1, . . . 4 and α = 1, 2. Hence, we observe that a superamplitude has minimal

Grassmann degree 8, corresponding to k = 0 in our decomposition above.

The sector with k = 0 is termed maximally helicity violating (MHV), because its purely

gluonic component amplitudes have the form g+ . . . g+g−g−. After applying crossing

symmetry, this corresponds to a process g−g− → g+ . . . g+g−g− which represents the

largest proportion of g+ which can be produced from two g− with non-zero amplitude

11There is an additional subtlety when n = 3. Three particle special kinematics implies that either
[i j] = 0 or 〈i j〉 = 0 for all i, j = 1, 2, 3. In the latter case, the QAα constraint becomes vacuous, and
the Q̃α̇A constraint may be solved by δ(4)([1 2]η3 + [2 3]η1 + [3 1]η2) courtesy of a Schouten identity.
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for a given total number of particles.12 This motivates a natural naming convention for

the degree 4(k+2) terms in the superamplitude – NkMHV amplitudes, where N stands

for next-to.

It is convenient to modify the definition of the helicity operator (1.2.19) such that

superamplitudes have uniform helicity 1 in all external legs. The appropriate alteration

is

h = −1

2

(
|λ〉 · ∂

∂|λ〉
+ |λ̃] · ∂

∂|λ̃]
− ηA ∂

∂ηA

)
. (1.2.31)

As a concrete example of an amplitude in N = 4 SYM, we quote the supersymmetric

version of the famous Parke-Taylor MHV amplitude at tree level [55]. This may be easily

derived by induction using the BCFW method reviewed in Section 1.2.5, starting with

the 3-point amplitude which is fixed by consistency conditions [56].

Atree,MHV
n =

δ(4)(P )δ(8)(Q)

〈1 2〉〈2 3〉 · · · 〈n 1〉
. (1.2.32)

We now desire to supersymmetrise form factors in N = 4. This requires us to promote

operators to superfields, at least in some limited sector. Recall that the standard pro-

cedure for constructing superfields involves introducing new Grassmann coordinates θAα

and θ̄α̇A for A = 1, . . . 4, extending spacetime to superspace. One then seeks to com-

bine operators as a polynomial in the Grassmann variables, such that the superalgebra

closes off-shell.

Given our success with the on-shell N = 4 supermultiplet, we are tempted to extend

this off-shell by adding further auxiliary variables. However, this näıve procedure turns

out to require infinitely many variables in general [57], and moreover there is no known

formulation of the resulting superfield. To proceed, we may restrict our attention to

supercurrents, which naturally admit an off-shell extension [58]. In particular we shall

consider the supermultiplet T containing the (improved) stress-tensor.

To construct this multiplet explicitly, we must first express the on-shell vector multiplet

as a superfield in the operators (1.1.1). Note that the Nair superfield (1.2.25) does not

suffice for our purposes, since it only encodes the creation operators of N = 4 SYM.

The resulting Grassmann field WAB, a function of superspace variables, is constrained

by Bianchi identities, reviewed in [59]. Compactly, the defining constraints take the

form,

DαCWAB = −2

3
δ

[A
C D

α
DW

B]D
, Dα̇(CWA)B = 0 , (1.2.33)

12At tree level, this result carries over to pure Yang-Mills. Indeed the tree-level gluon amplitudes
in pure Yang-Mills are identical to those in N = 4 SYM since the gluon couples to the gluinos and
scalars quadratically in (1.1.3), so amplitudes with only gluon external states can only involve gluinos
and scalars running in loops.
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where the supercovariant derivatives are defined by

DαA =
∂

∂θAα
+ iθ̄Aα̇

∂

∂xαα̇
+ igΓαA , D̄α̇A = − ∂

∂θ̄α̇A
− iθAα

∂

∂xαα̇
+ igΓ̄α̇A . (1.2.34)

with ΓαA and Γ̄α̇A spinor superconnections, required for gauge invariance. For the

remainder of the derivation we shall set g = 0. Indeed, one may argue that the gauge

dependent terms that arise for non-zero g don’t affect our conclusions, so long as the

operator we consider is gauge invariant [53].

In [60], it was shown that the Bianchi identities (1.2.33) imply the equations of motion

for N = 4 SYM. Therefore, to deviate off-shell we consider only the chiral half of the

theory by letting θ̄Aα̇ = 0. The surviving fields are the self-dual field strength FαβSD =

σαα̇µ σβνα̇F
µν , the chiral gluinos λAα and the scalars φAB. This additional restriction

breaks the second constraint, but allows us to solve the first one explicitly in harmonic

superspace [61].

The solution requires projecting the SU(4) R-symmetry onto a subgroup SU(2) ×
SU(2)×U(1), first argued for in [62]. We do this in a democratic manner by introducing

two SU(2) matrices u+a
A and u−a

′

A , oppositely charged under U(1), where a, a′ = 1, 2.

Explicitly the projection is

θ+a
α

..= u+a
A θAα , θ−a

′
α

..= u−a
′

A θAα . (1.2.35)

After projecting the superspace constraint, the only non-trivial equation is

∂

∂θ−a
′

α

W++ = 0 , (1.2.36)

where we define

εabW++ ≡W+a+b ..= u+a
A u+b

A WAB . (1.2.37)

We see that W++ is independent of the θ−a
′

α variables and thus constitutes a short

multiplet. In fact, it is annihilated by the chiral half of the supersymmetry generators,

hence is 1
2 -BPS. This property ensures that any function of W++ is immune from

UV divergences [63].13 By contrast, generic multiplets can develop anomalies, the

archetypal example being the Konishi multiplet [64].

Now we have constructed W++ we may determine the chiral part of the stress-tensor

multiplet as Tr(W++W++), according to [58]. The explicit field content of this mul-

tiplet was worked out in the abelian case by [65], by acting with the supersymmetry

13Strictly speaking, we must restrict to gauge invariant functions in the interacting theory, courtesy
of the discuss below (1.2.34).

22



CHAPTER 1. INTRODUCTION

generators on supercurrents.14 It is useful to exhibit the lowest and highest order

Grassmann components,

Tr(W++W++) = Tr(φ++φ++) + · · ·+ 1

3
(θ+)4Lon-shell,chiral . (1.2.38)

We now have all the ingredients to define the super form factor of study in this thesis,

namely

F Tchiral
n (1, . . . n, q) =

∫
d4x d4θ+ e−iq·x−iγ

α
+aθ

+a
α 〈p1 . . . pn|Tchiral(x)|0〉 , (1.2.39)

where γα+a is the Fourier conjugate to θ+a
α . Observe that if we specify purely gluon

external states, the highest θ+ (lowest γ+) component of the super form factor at

tree level computes the phenomenologically interesting 〈g+ . . . g+g− . . . g−|TrF 2
SD(x)|0〉.

Henceforth we shall drop the superscript identifying the operator.

As for superamplitudes, we may obtain universal simplifications by examining the ac-

tion of the unbroken supersymmetry generators. These are represented as

Qα+a = γα+a −
n∑
i=1

|i〉αη+a,i , Qα−a =
n∑
i=1

|i〉αη−a,i , (1.2.40)

where we perform projection of lower indices with the conjugate SU(2) matrices ūA+a

and ūA−a. Since both act multiplicatively, we may immediately conclude that they must

be enforced by delta functions, and write

Fn = δ(4)

(
q −

n∑
i=1

|i〉[i|

)
δ(4)

(
γ+ −

n∑
i=1

|i〉η+i

)
δ(4)

(
n∑
i=1

|i〉η−i

)
× · · · . (1.2.41)

Like superamplitudes, super form factors admit an MHV classification, where NkMHV

super form factors have Grassmann degree 4(k+2). For amplitudes, we saw below

(1.2.24) that parity may be used to directly obtain Nn−k−2MHV from NkMHV be-

haviour. However, our restriction to a chiral operator breaks CPT invariance, so the

same is not true for the super form factors we consider. Indeed, generic super form fac-

tors are non-zero up to and including the maximally non-MHV k = n−2 level.15

Finally, we exhibit the formulae for tree level MHV and maximally non-MHV super

14A more modern construction might proceed via the representation theory of the superconformal
algebra, along the lines of [66].

15The parity conjugate denominators of (1.2.42) and (1.2.43) are not quite a coincidence. In fact, one
may relate MHV and maximally non-MHV super form factors via a Grassmann Fourier transform [54].
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form factors, first derived in [67]:

F tree,MHV
n =

δ(4)(P )δ(4)(Q+)δ(4)(Q−)

〈1 2〉〈2 3〉 · · · 〈n 1〉
, (1.2.42)

F tree,NmaxMHV
n = δ(4)(P )δ(4)(Q+)

∫ ( n∏
i=1

d4η̃i e
iηiAη̃

A
i

)
δ(4)

(∑n
j=1 λ̃j η̃

+
j

)
[1 2][2 3] · · · [n 1]

, (1.2.43)

where P now encodes the total momentum for form factors, as in the first term of

(1.2.41). In particular, the maximally non-MHV form factor of TrF 2
SD is given by the

(γ+)0 component,

η4
1η

4
2 · · · η4

n

q4

[1 2][2 3] · · · [n 1]
. (1.2.44)

These will be important ingredients in the BCFW and MHV diagram examples we

compute in Section 1.2.5 and 1.2.7.

1.2.4 Dual Superconformal Symmetry

In this section we shall focus exclusively on amplitudes in N = 4, although similar

ideas have been applied to form factors, for example in [67–69].

In Section 1.2.2, we used spinor-helicity to trivialise the null condition p2 = 0. In this

spirit it is natural to ask whether there exist variables that trivialise other constraints,

such as supermomentum conservation δ(4)(P )δ(8)(Q). To answer this question, we

picture momenta as vectors concatenated nose to tail. Momentum conservation then

ensures that these vectors define a closed polygon. The vertices of this polygon are

exactly the convenient dual variables we seek. Explicitly, the dual variables (xi, θi) are

defined by16 [70]

(xi − xi+1)α̇α = |i〉α[i|α̇ , (θi − θi+1)αA = |i〉αηAi , (1.2.45)

where supermomentum conservation provides the identifications xn+1 = x1 and θn+1 =

θ1. The true power of these variables is hardly apparent at first glance. To exhibit

it, we recall that gauge theories contain an observable which is associated with closed

polygons (and more general contours) by definition – the Wilson loop. It is a remarkable

fact that superamplitudes in N = 4 SYM may be computed as the expectation values

of supersymmetric Wilson loops, schematically

W =
1

N
Tr

[
P exp

(∮
A
)]

, (1.2.46)

16These variables are certainly not the same as the spacetime x and superfield θ we encountered
above. In the main text we disambiguate this notation where it is not already clear from the context.
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Figure 1: A pictorial representation of Alday-Maldecena duality, to be read clockwise from top
left. Starting with a scattering amplitude in planar N = 4 SYM at strong ’t Hooft coupling g2N ,
we may equivalently calculate the scattering of open strings in AdS space. After a T-duality,
this is equal to the area of a minimal surface ending on a boundary polygon. Back on the CFT
side, this may be computed as the expectation value of the Wilson loop (1.2.46).

whereA is a certain superconnection, and the contour is a polygon [71,72]. Furthermore

the identification of variables in this duality is precisely given by (1.2.45). Surprisingly,

this result was first motivated at strong coupling via string theory [73]. The argu-

ment follows from the AdS/CFT correspondence and T-duality as shown in Figure 1.

Subsequently the duality was established perturbatively in [74,75].

We may now exhibit a key benefit of the dual coordinates (x, θ). The Wilson loop trans-

forms covariantly under a superconformal symmetry acting in dual space. By virtue

of the Alday-Maldecena duality, the same is true for superamplitudes. Moreover, it

may be shown that this symmetry is distinct from the standard spacetime superconfor-

mal symmetry.17 Therefore the dual variables manifest a hidden dual superconformal

symmetry, which we may use to simplify calculations.

In Chapter 3, we will be particularly interested in one particular operator, namely the

dual conformal boost,

Kαα̇ =

n∑
i=1

(
xβiα̇〈i|α

∂

∂|i〉β
+ xi+1αβ̇|i]α̇

∂

∂|i]β̇
+ θAi+1α|i]α̇

∂

∂ηAi

)
. (1.2.47)

17For example, tree level pure Yang-Mills amplitudes are conformally invariant, but do not transform
with uniform weight for each external particle under dual conformal inversion.
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Under this transformation, tree amplitudes behave covariantly [76],

Kαα̇A
tree
n = −

( n∑
i=1

xiαα̇

)
Atree
n . (1.2.48)

At loop level the symmetry is anomalous, owing to divergences in the Wilson loop [77].

In particular the IR divergences of loop amplitudes correspond to the UV cusp di-

vergences of Wilson loops [78]. This provides us with a useful means to visualise the

entanglement between subleading soft behaviour and IR divergences at loop level, which

we shall discuss in Chapter 3.

The anomalous Ward identities calculated in [79,80] suffice to explain the BDS ansatz

for all-loop MHV amplitudes [81], which is correct up to a function of dual conformal

invariant cross-ratios. The explicit form of the one-loop anomaly was proved in [82],

giving

Kαα̇A
1-loop
n =

2

ε
cΓA

tree
n

n∑
i=1

xiαα̇
[
− (i− 1 i)

]−ε − A1-loop
n

n∑
i=1

xiαα̇ , (1.2.49)

valid through O(ε0), where (i j) ..= 2pi · pj , ε is an IR regulator, and

cΓ =
Γ(1 + ε)Γ2(1− ε)
(4π)2−εΓ(1− 2ε)

. (1.2.50)

The fundamental conformally invariant quantities are the cross-ratios,

uijkl =
x2
ikx

2
jl

x2
ilx

2
jk

, (1.2.51)

where we define xij = xi−xj . One may derive this fact by considering the action of the

special conformal generators on ratios of distances – see for example [83]. We will find

it convenient to single out a particular class of cross-ratios which appear frequently in

N = 4 superamplitudes, namely

uij =
x2
ij+1x

2
i+1j

x2
ijx

2
i+1j+1

. (1.2.52)

1.2.5 BCFW Recursion

The BCFW method for amplitudes [84,85] and form factors [54] is a convenient means

of constructing higher point and MHV degree quantities recursively. We shall review

the procedure at tree level without detailing the proof. For brevity we refer only
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F

1̂−

4+

q

2̂−

3−

Figure 2: The vanishing BCFW diagram in the calculation of F 1−2−3−4+

.

to amplitudes, but the method works identically for form factors of the stress-tensor

multiplet.

1. Perform an [i, j〉 shift by defining

[̂i| = [i|+ z[j| , |ĵ〉 = |j〉 − z|i〉 . (1.2.53)

2. Prove that the shifted amplitude Ân(z) does not have a pole at z =∞.

3. Draw all possible colour-ordered diagrams (indexed by I) involving two shifted

subamplitudes joined by a single shifted propagator of momentum P̂I .

4. For each diagram, solve for zI by setting P̂ 2
I = 0, and hence evaluate the left and

right shifted subamplitudes.

5. Determine the full amplitude as a sum,

Atree
n =

∑
I

Âleft(zI)
1

P 2
I

Âright(zI) . (1.2.54)

The supersymmetric version of this procedure [13,86] naturally produces dual conformal

invariant expressions called R-invariants [76]. We shall encounter such terms for NMHV

amplitudes in Section 1.3.4.

Instead of reviewing this well-known calculation, we illustrate the method with an

example recently computed in [10], which we shall require in Chapter 2. Explicitly, we

compute the n = 4, k = 1 form factor of TrF 2
SD at tree level with purely gluon external

states. We assign helicities as 1−2−3−4+ and perform a [1, 2〉 shift. It was proven

in [54] that the shifted amplitude is regular at infinity. In principle one can draw four

BCFW diagrams. However one of these immediately vanishes, depicted in Figure 2.
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Figure 3: The non-vanishing BCFW diagrams in the calculation of F 1−2−3−4+

.

Indeed the diagram contains a subamplitude,

〈2̂ 3〉3

〈P̂ 2〉〈3 P̂ 〉
, (1.2.55)

which must be evaluated on the support of the on-shell condition 〈2̂ 3〉[3 2] = 0. For

generic kinematics [3 2] 6= 0, so the diagram gives zero contribution. The remaining

diagrams are shown in Figure 3 and term-by-term yield the result,18

F 1−2−3−4+
= − 〈1 3〉4q4

s134〈1 4〉〈3 4〉〈3|q|2]〈1|q|2]
− 〈3|q|4]3

s124[1 2][1 4]〈3|q|2]
− 〈1|q|4]3

s324[3 2][3 4]〈1|q|2]
.

(1.2.56)

For completeness we explicitly calculate the first term. The sub form factor is maximally

non-MHV, thus evaluates to
q4

[2 P̂ ]2
, (1.2.57)

while the subamplitude is MHV,

〈1 3〉4

〈P̂ 3〉〈3 4〉〈4 1〉〈1 P̂ 〉
. (1.2.58)

Notice that the only shifted quantity appearing is the propagator P̂ . We eliminate this

by virtue of momentum conservation,

[2 P̂ ]〈P 3〉〈1 P̂ 〉[P 2] = [2|q|3〉〈1|q|2] , (1.2.59)

producing the desired result.

18Note that the result of [10] suffers from a typographical error in the numerator of the first term.
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1.2.6 Grassmannian and Link Representations

Choosing different valid shifts provides different BCFW representations of amplitudes

and form factors. Moreover, typically BCFW constructions generate terms with un-

physical poles,19 which cancel in the sum. The search for a unifying principle under-

pinning these properties leads to expressions for scattering amplitudes and form factors

as contour integrals over auxiliary Grassmannians [17, 87]. In such constructions, the

residues picked up at poles yield BCFW terms, with the equivalence of different repre-

sentations explained by the global residue theorem, which we review in Section 1.3.2.

The amplitude case was proven using on-shell diagrams in [88], while the form factor

expression remains a conjecture.

Explicitly the Nk−2MHV tree-level superamplitude may be written as an integral over

the Grassmannian G(k, n) of k-dimensional linear subspaces of Cn. This is a com-

pact smooth manifold, with coordinates given by full-rank k × n matrices cJa mod-

ulo GL(k;C) gauge transformations. The natural GL(k;C)-invariant expressions are

k × k minors (a1 · · · ak) obtained by taking the determinant of the submatrix formed

by columns a1, . . . ak. For an Nk−2MHV tree amplitude we write

An,k =

∫
dk×ncJa d2kρJ
|GL(k;C)|

δ(2n)(ρJcJa − λa)δ(2k)(cJaλ̃a)

(1 2 · · · k)(2 3 · · · k + 1) · · · (n 1 · · · k − 1)
. (1.2.60)

For practical calculations, it is convenient to gauge fix by forcing an k × k submatrix

to be the identity. This naturally partitions the set {1, . . . n} into indices J and i

corresponding to fixed and unfixed columns respectively. Then the Grassmannian is

described by link variables cJi where J labels the rows via the canonical order-preserving

bijection. In the sequel, we will often consider purely gluonic external states, where it

is natural to let i range over the positive helicity particles and J the negative helicity

ones. For example, to calculate the split helicity 1+2+3−4− amplitude, we could use

coordinates, (
1 0 c13 c14

0 1 c23 c24

)
. (1.2.61)

We shall denote the set of i by p and the set of J by m with p ∪ m = {1, . . . n}. We

may now derive the link representation of NkMHV tree-level superamplitudes,20

19Amplitudes are expected to have singular behaviour when sums of kinematic variables go on-shell,
reflecting the locality of the theory. Indeed this property is manifested by the local interaction and
propagator structure of Feynman diagrams. The appearance of poles outside such singular kinematic
regions is said to be unphysical.

20In this gauge fixing cJK = δJK . Therefore that
∏
J δ

(2)(cJaλ̃a) =
∏
J δ

(2)(cJK λ̃K + cJiλ̃i) =∏
J δ

(2)(λ̃J +cJiλ̃i). The procedure works similarly for the holomorphic delta functions, upon integrat-
ing out the ρJ spinors.
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An,k =

∮
dk×(n−k)cJi

(1 2 · · · k)(2 3 · · · k+1) · · · (n 1 · · · k−1)

×
∏
i∈p

δ(2)

(
λi −

∑
J∈m

cJiλJ

) ∏
J∈m

δ(2)

λ̃J +
∑
i∈p

cJiλ̃i

 δ(4)

ηJ +
∑
i∈p

cJiηi

 ,

(1.2.62)

where the contour is taken to enclose a subset of the poles corresponding to the desired

BCFW terms. Recently, there have been efforts to derive the contour from deeper prin-

ciples, for instance by interpreting the amplitude as the volume of a certain generalised

polytope called the amplituhedron – see for example [89,90].

To adapt these results to form factors, one introduces two auxiliary on-shell legs n+1

and n+2 with momenta summing to q. The Grassmannian representation for the

Nk−2MHV tree-level super form factor of the chiral stress tensor multiplet is then an

integral over G(k, n+2):

〈n+1 n+2〉2
∫

dk×(n+2)CJa d2kρJ
|GL(k;C)|

×
∑
ins

Ωn,k(C)δ2(n+2)(ρJcJa − λa)δ(2k)(cJaλ̃a)δ
(4k)(cJaηa)

(1 · · · k) · · · (n+ 2 · · · k − 1)
, (1.2.63)

where we define p̄ = p ∪ {n+1, n+2}, and the numerator factor is

Ωn,k(C) =
Y

1− Y
, Y =

(n+2−k · · ·nn+1)(n+2 1 · · · k−1)

(n+2−k · · ·nn+2)(n+1 1 · · · k−1)
. (1.2.64)

The sum is over certain insertions of {n+1, n+2} into {1, . . . n}. After gauge fixing

to the link representation, the contour required may be different for each term of the

sum. We shall see a consequence of this subtlety in Section 2.3. A conjectured off-shell

version of the amplituhedron [91] appeared during the preparation of this thesis, and

may provide an useful new perspective on such issues.

1.2.7 MHV Diagrams

MHV diagrams [92] provide an alternative recursive method for constructing amplitudes

and form factors, which can be computationally advantageous. As above, we review

the procedure at tree level without proof.21 For brevity we refer only to amplitudes,

21In the original paper, the rules were derived from twistor string theory, reviewed in Section 1.3.
Later, Risager found a more direct argument, based on similar ideas to BCFW [93].
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but the method works identically for form factors of any operator.22

1. Draw all possible colour-ordered diagrams (indexed by I) involving two MHV

subamplitudes joined by a single propagator of momentum PI .

2. Compute the MHV subamplitudes as if PI were on-shell.

3. Make the replacement |PI〉 → PI |ξ] in each diagram, where |ξ] is an arbitrary

reference spinor.23

4. Determine the full amplitude as a sum,

Atree
n =

∑
I

AMHV
left (|ξ]) 1

P 2
I

AMHV
right (|ξ]) . (1.2.65)

As an example, we compute the n = 5, k = 1 tree level form factor of Tr(F 2
SD) with the

helicity assignment 1−2−3−4+5+. The MHV diagrams required are depicted in Figure

4. The first one yields the term,

− 〈2 3〉3〈1|q|ξ]2

s2345〈3 4〉〈4 5〉〈5|1 + q|ξ]〈3|1 + q|ξ]
. (1.2.66)

We have evaluated the full result using Mathematica, and employ it for numerical

checks in Section 2.5.

1.2.8 Unitarity and The Symbol

In the previous sections, we detailed methods for recursively computing tree-level am-

plitudes and form factors. It is both phenomenologically and theoretically important

to consider loop corrections. Both BCFW [94–96] and MHV diagrams [97] admit loop-

level generalisations, particularly useful for constructing loop integrands. However,

some properties of a QFT (such as anomalies) typically only appear after regularisa-

tion and integration. Here we review two methods for constructing and manipulating

such integrated quantities. In this section we shall consider only superamplitudes.

A well-known consequence of the unitarity of the S-matrix is the optical theorem.

In the Cutkosky formulation [98], this relates discontinuities across branch cuts in

loop amplitudes to products of lower loop amplitudes produced by taking pairs of

22The validity of MHV diagrams for higher dimensional operators is particularly useful, since one
might expect singular behaviour for z →∞ under BCFW shifts.

23The only restriction is that |ξ] may not be proportional to the antiholomorphic spinor of a negative
helicity external leg.
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Figure 4: The eleven MHV diagrams required to calculate F 1−2−3−4+5+

.
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Figure 5: The Feynman diagram defining a generic two-mass easy box function.

propagators on-shell, a procedure known as cutting. In principle, given a sufficiently

small basis of scalar integrals, the unitarity cuts suffice to determine the full loop

amplitude by comparing coefficients. In a landmark paper [48] this technique was

shown to work for one-loop MHV amplitudes in N = 4 SYM. Explicitly the result

is24

A1-loop
n = Atree

n

∑
channels

F 2me , (1.2.67)

where F 2me are generically scalar integrals called two-mass easy box functions, defined

by the φk theory Feynman diagram depicted in Figure 5, where k can be any integer

greater than 2.

As we hinted at in Section 1.1, amplitudes involving the propagation of massless par-

ticles suffer from IR divergences at loop level. To evaluate the integrals in (1.2.67), we

must regularise these divergences, typically by moving to 4− 2ε dimensions. We view

ε as an IR regulator. Upon integrating, one arrives at

F 2me(K,L) = − 1

ε2
[
(−s)−ε + (−t)−ε − (−K2)−ε − (−L2)−ε

]
+ Li2

(
1− K2

s

)
+ Li2

(
1− K2

t

)
+ Li2

(
1− L2

s

)
+ Li2

(
1− L2

t

)
− Li2

(
1− K2L2

st

)
+

1

2
log2

(s
t

)
,

(1.2.68)

where P and Q denote the momenta of massive corners and (s, t) are defined by

(vertical, horizontal) cuts respectively. We must also include degenerate cases in the

sum, where one or both of the massive corners become massless. These are given

24Here and elsewhere in this thesis we neglect a factor of cΓ as defined in (1.2.50).
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by

F 0m = − 1

ε2
[
(−s)−ε + (−t)−ε

]
+

1

2
log2

(s
t

)
+
π2

2
,

F 1m(K) = − 1

ε2
[
(−s)−ε + (−t)−ε − (−K2)−ε

]
+ Li2

(
1− K2

s

)
+ Li2

(
1− K2

t

)
+

1

2
log2

(s
t

)
+
π2

6
.

(1.2.69)

The technique was extended to construct one-loop NMHV superamplitudes in [99],

demonstrating that these may be written in terms of dual superconformal R-invariants

and V -functions.25 These quantities are most conveniently expressed in momentum

twistor variables, so we shall delay providing explicit examples until Section 1.3.

In physical processes, IR divergences arising from loop integrations cancel against soft

and collinear divergences from lower loop amplitudes upon computing the cross-section

[103, 104].26 This cancellation suggests that such divergences take a universal form,

independent of the number of particles and helicity configuration. For example, the IR

divergent terms for one-loop amplitudes in N = 4 SYM take the form [105],

− 1

ε2

n∑
i=1

(
−(i i+ 1)

)−ε
, (1.2.70)

up to a factor of Atree
n , where (i j) ..= (pi + pj)

2.

Having constructed loop-level superamplitudes, we now consider a method for their

manipulation and simplification. The symbol [106] is a powerful way to represent

transcendental functions, converting functional relations to algebraic identities. More

specifically, it is a map taking transcendental functions to tensor products of their

rational arguments. In particular,

Sym [log(Ra) log(Rb)] = Ra ⊗Rb +Rb ⊗Ra , (1.2.71)

Sym [Li2(1−Ra)] = −Ra ⊗ (1−Ra) . (1.2.72)

The target space is defined modulo the identifications,

RaRb ⊗RcRd = Ra ⊗Rc +Rb ⊗Rc +Ra ⊗Rd +Rb ⊗Rd , (1.2.73)

constant⊗Ra = Ra ⊗ constant = 0 , (1.2.74)

Ra ⊗ (Rb)
−1 = (Ra)

−1 ⊗Rb = −Ra ⊗Rb . (1.2.75)

25A general formula for one-loop NMHV gluon amplitudes was already known [100]. The proof of
dual conformality for arbitrary n was completed in [101,102].

26Each external carries a factor of ~ by virtue of the commutation relation [a, a†] = ~, so the power
counting agrees.
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As an example, we use the symbol to compute a version of the one-loop MHV super-

amplitude first derived in [9], inspired by partial results in [107,108]. The finite part27

of a two-mass easy box may compactly be defined as [97]

F 2me,fin(P,Q, s, t) = Li2(1− aP 2) + Li2(1− aQ2)−Li2(1− as)−Li2(1− at) , (1.2.76)

where

a =
P 2 +Q2 − s− t
P 2Q2 − st

. (1.2.77)

It is convenient to write the momentum invariants in terms of differences of dual mo-

menta,

P 2 = x2
i+1j , Q2 = x2

ij+1 , s = x2
ij , t = x2

i+1j+1 . (1.2.78)

We evaluate the symbols,

Sym
[
Li2(1− aP 2)

]
= a⊗ (P 2Q2 − st) + P 2 ⊗ (P 2Q2 − st)

− a⊗ (s− P 2)(P 2 − t)− P 2 ⊗ (s− P 2)(P 2 − t) ,

Sym
[
Li2(1− aQ2)

]
= a⊗ (P 2Q2 − st) +Q2 ⊗ (P 2Q2 − st)

− a⊗ (s−Q2)(Q2 − t)−Q2 ⊗ (s−Q2)(Q2 − t) ,

Sym [Li2(1− as)] = a⊗ (P 2Q2 − st) + s⊗ (P 2Q2 − st)

− a⊗ (P 2 − s)(Q2 − s)− s⊗ (P 2 − s)(Q2 − s) ,

Sym [Li2(1− as)] = a⊗ (P 2Q2 − st) + t⊗ (P 2Q2 − st)

− a⊗ (P 2 − t)(Q2 − t)− t⊗ (P 2 − t)(Q2 − t) .

(1.2.79)

The first and third terms in each symbol cancel in the sum defining the symbol of

F 2me,fin. The second terms combine to yield

P 2Q2

st
⊗ (P 2Q2 − st) =

x2
ij+1x

2
i+1j

x2
ijx

2
i+1j+1

⊗ (x2
i+1jx

2
ij+1 − x2

ijx
2
i+1j+1) . (1.2.80)

It is convenient to write the fourth terms in dual variables,

P 2 ⊗ (s− P 2)(P 2 − t) = x2
i+1j ⊗ (x2

ij − x2
i+1j) + x2

i+1j ⊗ (x2
i+1j − x2

i+1j+1) , (1.2.81)

Q2 ⊗ (s−Q2)(Q2 − t) = x2
ij+1 ⊗ (x2

ij − x2
ij+1) + x2

ij+1 ⊗ (x2
ij+1 − x2

i+1j+1) , (1.2.82)

s⊗ (P 2 − s)(Q2 − s) = x2
ij ⊗ (x2

i+1j − x2
ij) + x2

ij ⊗ (x2
ij+1 − x2

ij) , (1.2.83)

t⊗ (P 2 − t)(Q2 − t) = x2
i+1j+1 ⊗ (x2

i+1j − x2
i+1j+1) + x2

i+1j+1 ⊗ (x2
ij+1 − x2

i+1j+1) .

(1.2.84)

To produce the complete finite part of the amplitude we must sum over all distinct

27The finite part of the box function is defined to be the part of (1.2.68) without explicit dependence
on ε. Note that this does not capture the full O(ε0) behaviour.
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boxes. This corresponds to summing over all i and j not adjacent and dividing by a

factor of 2. We now apply this procedure to the symbols (1.2.80)–(1.2.84) to exhibit

hidden cancellations.

Consider for fixed i the telescoping sum,∑
j 6∈{i−1,i,i+1}

Aij+1 −Aij = Aii−1 −Aii+2 . (1.2.85)

We may employ this formula to find the contribution of (1.2.81)–(1.2.84) to the full

symbol. The resulting term is ∑
i

Sym
[
log2(x2

ii−2)
]
. (1.2.86)

We now massage (1.2.80) into a form we can integrate, writing

x2
ij+1x

2
i+1j

x2
ijx

2
i+1j+1

⊗ (x2
i+1jx

2
ij+1 − x2

ijx
2
i+1j+1) = uij ⊗ (1− uij) + uij ⊗ x2

ijx
2
i+1j+1 . (1.2.87)

We immediately identify the first term as the symbol of −Li2(1−uij). The second term

expands to give neatly paired contributions,

x2
ij+1 ⊗ x2

ij + x2
i+1j ⊗ x2

i+1j+1 + x2
ij+1 ⊗ x2

i+1j+1 + x2
i+1j ⊗ x2

ij

− x2
ij ⊗ x2

ij − x2
i+1j+1 ⊗ x2

i+1j+1 − x2
ij ⊗ x2

i+1j+1 − x2
i+1j+1 ⊗ x2

ij .
(1.2.88)

Performing the sum over non-adjacent i and j we find that∑
i

∑
j 6∈{i−2,i−1,i,i+1}

Sym
[
log(x2

ij) log(x2
ij+1)

]
+
∑
i

∑
j 6∈{i−1,i,i+1,i+2}

Sym
[
log(x2

ij) log(x2
i+1j)

]
−
∑
i

∑
j 6∈{i−1,i,i+1}

Sym
[
log(x2

ij) log(x2
i+1j+1)

]
−
∑
i

∑
j 6∈{i−1,i,i+1}

Sym
[
log(x2

ij) log(x2
ij)
]
.

(1.2.89)

Combining the terms (1.2.86) and (1.2.89), integrating the symbol28 and dividing by 2

yields

∑
i

1

2

∑
j 6∈{i−2,i−1,i,i+1,i+2}

log(x2
ij) log(uij) + log(x2

ii−2) log

(
x2
i+1i−2

x2
i+1i−1

) . (1.2.90)

28For the uninitiated, this is a colloquial term for inverting the map which projects transcendental
functions onto their symbols. The inverse is unique up to rational terms, which one usually fixes either
by symmetry arguments or by considering explicit examples.
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We finally split our expression for the finite part of the amplitude into generic terms,

1

2

∑
i

∑
j 6∈{i−2,i−1,i,i+1,i+2}

(
−Li2(1− uij) + log x2

ij log uij
)
, (1.2.91)

and edge cases, ∑
i

log(x2
ii−2) log

(
x2
i+1i−2

x2
i+1i−1

)
. (1.2.92)

Note that the edge cases comprise the full finite part of the amplitude at five-point,

which we have verified by comparison with [48].

Finally, we may naturally incorporate the universal IR divergent terms (1.2.70), yielding

an expression for the full MHV superamplitude,

A1-loop
n

Atree
n

=
1

2

∑
i

∑
j 6∈{i−2,i−1,i,i+1,i+2}

(
−Li2(1− uij) + log x2

ij log uij
)

+
∑
i

log(x2
ii−2) log

 x2
i+1i−2

x2
i+1i−1

√
x2
ii−2

 .

(1.2.93)

We shall make use of this formula in Chapter 3.

1.2.9 Soft Limits

In the previous sections, we have concentrated entirely on constructing convenient

representations for superamplitudes and super form factors. However, it is also useful

to study particular properties of such quantities, especially if the behaviour happens

to be universal, in the sense we described above (1.2.70). The soft limits of amplitudes

are a good example of this phenomenon.

Leading soft divergences were first studied at tree level in QED [109], and subsequently

determined in gravity [110] and Yang-Mills theories [111]. The resulting factorisation

was shown to be universal, in accordance with our expectation that IR singularities

should cancel in inclusive cross-sections. It is natural to ask whether similar properties

hold at subleading soft order. This question was answered in the affirmative long ago

for QED [112, 113]. However, the analogous results in gravity and Yang-Mills theories

were derived only recently [5–7].

There are both theoretical and practical reasons underpinning the current interest in

subleading soft theorems. Näıvely one might argue that the subleading soft behaviour is
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mathematically unimportant, since it is not divergent.29 However, this is phenomeno-

logically misleading. Indeed, a central problem in collider physics is to manage the large

logarithms arising from the cancellation of IR divergences, which threaten to invalidate

perturbation theory. Typically, one generates accurate predictions by resumming the

large terms, making use of their universal properties. In this context, information

about next-to-soft terms can reduce the theoretical error of certain observables – see

for example [114].

From a theoretical perspective, subleading soft theorems may be viewed as Ward iden-

tities for symmetries acting at null infinity [115–117]. In gauge theory, the symmetry

is locally a Kac-Moody algebra, while in gravity it is described by the extended BMS

group [118]. This has inspired two dimensional holographic CFTs reproducing single

soft [119, 120] and multi-soft [121] factorisation from current correlators, and related

string models [122,123]. Moreover, Hawking et al. used similar ideas to propose a novel

solution to the black hole information paradox [124].

It is clearly important to ask whether universal behaviour prevails at one-loop level. It

has been known since the early days that leading soft behaviour does not get renor-

malised in gravity [110]. This good IR behaviour intuitively arises from the dimension-

ful coupling in the Einstein-Hilbert action [125]. Leading soft behaviour is universally

renormalised in QED [126] and QCD [127, 128]. Much less is known about the sub-

leading soft theorems at loop level, particularly in Yang-Mills theory. In Chapter 3,

we extend the partial results [129–131] through finite order in the IR regulator, and to

higher point amplitudes, finding evidence for a limited form of universality.

Henceforth, we shall focus exclusively on soft gluon limits in N = 4 SYM.30 We briefly

review the standard results, in preparation for further calculations in Chapter 3. Con-

sider the holomorphic soft limit of a positive-helicity gluon n+ in an n-particle ampli-

tude,

|n〉 → δ|n〉 , |n]→ |n] , pn → δpn . (1.2.94)

Clearly this is related by the little group transformation (1.2.18) to the democratic

soft scaling of holomorphic and antiholomorphic spinors. In common with much of the

recent literature, we find it convenient to use the holomorphic soft scaling, since then

the subleading behaviour appears as a divergent term in δ.

In this section, and in Chapter 3, it will be important to distinguish between ampli-

tudes written with and without the momentum conservation delta function. We let

29This argument is not quite watertight. Indeed, we shall see in Chapter 3 that the subleading soft
terms include divergent log δ contributions at loop level.

30Note that soft theorems can also be formulated for gluinos and scalars [132], but the subleading
behaviour for these particles is suppressed relative to gluons. Therefore, we do not consider such cases
in this thesis.
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An denote an n-particle colour-ordered superamplitude, including the aforementioned

delta function. Then expanding in δ one has, at tree level [7],

Atree
n →

(
1

δ2
S(0) +

1

δ
S(1)

)
Atree
n−1 , (1.2.95)

where S(0) and S(1) are given by

S(0) =
〈n− 1 1〉

〈n− 1 n〉〈n 1〉
, (1.2.96)

S(1) =
|n]

〈n− 1 n〉
· ∂

∂|n− 1]
+
|n]

〈n 1〉
· ∂

∂|1]
. (1.2.97)

Note that these operators are antisymmetric about particle n. This is enforced, since

colour-ordered n-point amplitudes obey a reflection symmetry in particle labels up to

a factor of (−1)n.

To perform practical calculations it is convenient to work with stripped amplitudes

An, where

An = An δ
(4)(Pn) , (1.2.98)

with Pn ..=
∑n

i=1 pi. Note that a stripped amplitude is ambiguous without a momentum

conservation prescription. One means of resolving this is by eliminating two antiholo-

morphic spinors |a] and |b] [6]. We may define such an elimination for any function f

of external kinematics as

f (ab),n =

∫
d|a]d|b] |〈a b〉| δ(4)(Pn) f , (1.2.99)

so that an unambiguous stripped amplitude may be written as A
(ab),n
n . Clearly it is

useful to have an explicit prescription for performing the integral in (1.2.99). We impose

the equalities,

|a] =
1

〈a b〉

n∑
i 6=a
〈b i〉|i], |b] =

1

〈b a〉

n∑
i 6=b
〈a i〉|i] . (1.2.100)

These relations are especially important when considering the soft behaviour at one

loop, which turns out to depend on the choice of |a] and |b].31

Taking the integrals through the derivatives in (1.2.95) proves the result for stripped

amplitudes,

Atree(ab),n
n →

(
1

δ2
S(0) +

1

δ
S(1)

)
A

tree(ab),n−1
n−1 , (1.2.101)

31In other words, it depends on how one implements momentum conservation, in a way similar to
stripped amplitudes.
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as found in [6] in the case of gravity.

In [129] Bern, Nohle and Davies argued for a statement equivalent to (1.2.95), namely

Atree
n → δ(4)(Pn)

(
1

δ2
S(0) +

1

δ
S(1)

)
Atree
n−1 , (1.2.102)

where the momentum conservation delta function sits in front of the soft operator. The

distinguishing property of this expression is that it features n-point momentum con-

servation on both sides. Many explicit examples have been calculated in the literature

demonstrating the equivalence of (1.2.95) and (1.2.102) and the issue was discussed

formally in [133]. One may verify this equivalence by Taylor expanding δ(4)(Pn) and

applying the chain rule to S(1)δ(4)(Pn−1).

We may easily write down the stripped amplitude version of (1.2.102); that is

Atree(ab),n
n →

[(
1

δ2
S(0) +

1

δ
S(1)

)
Atree
n−1

](ab),n

. (1.2.103)

This formulation has an advantage over (1.2.101) because it allows one to adopt the

following two step strategy to verify soft theorems:

1. Choose arbitrary forms for An and An−1 and determine

An −
1

δ2
S(0)An−1 −

1

δ
S(1)An−1 . (1.2.104)

2. Apply n-point momentum conservation and expand in δ, then one finds zero up

to O(δ0).

We emphasise that this approach leads to so-called feed-down terms from Taylor-

expanding the term [
− 1

δ2
S(0)Atree

n−1

](ab),n

, (1.2.105)

in (1.2.104), evaluated using (δ-dependent) n-point momentum conservation. In this

thesis we shall consider soft theorems only in the language of (1.2.102) and (1.2.103),

which is better suited to a loop-level generalisation.

At one-loop level, the leading soft behaviour is well-known [127, 128, 134]. Subleading

soft theorems for the infrared-divergent part of generic one-loop amplitudes were found

in [129]. Based on this, one may conjecture the one-loop extension to the subleading
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Figure 6: The four diagrams contributing to the infrared-divergent terms in the soft theorem
at one loop.

soft theorem,

A1-loop
n → 1

δ2

(
S(0)A1-loop

n−1 + S(0)1-loopAtree
n−1

)
+

1

δ

(
S(1)A1-loop

n−1 + S(1)1-loopAtree
n−1

)
,

(1.2.106)

where the leading soft factor is [127,128],

S(0)1-loop = S(0)F (0) , F (0) =

(
cΓ

ε2
πε

sin(πε)

)(
− 1

δ2

(n− 1 1)

(n− 1 n)(n 1)

)ε
, (1.2.107)

the infrared-divergent part of the subleading soft operator is [129]

S(1)1-loop
∣∣∣
div.

=
cΓ

ε2

[
1 + ε log

(
− 1

δ2

(n− 1 1)

(n− 1 n)(n 1)

)]
S(1)tree

+
cΓ

ε

[
[n− 1 n]

[n− 1 1]〈1 n〉
+

[2 n]

[2 1]〈1 n〉
− [1 n]

[1 n− 1]〈n− 1 n〉
− [n− 2 n]

[n− 2 n− 1]〈n− 1 n〉

]
,

(1.2.108)

and the notation is defined around (1.2.50). More generally we conjecture that the

subleading soft operator takes the form,

S(1)1-loop = F (1)S(1) + cΓZ . (1.2.109)

Here F (1) and Z are functions of external kinematics. We shall refer to Z as the sub-
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Figure 7: Two of the 3n−10 diagrams contributing to the finite terms in the soft theorem at
one loop.

leading soft anomaly. Note that Z is only defined up to a momentum conservation

prescription – it is frame dependent. Nevertheless it remains a useful and practical

quantity. Indeed we may immediately transform Z between frames using the elimina-

tion (1.2.100). In Section 3.2 we will fix F (1) and derive a differential constraint on Z.

Section 3.3 then provides explicit computations of Z for amplitudes in the MHV and

NMHV sectors. All of our results will be valid through finite order in ε.

From a Wilson loop perspective, one-loop amplitudes decompose into a sum of dia-

grams with one internal gluon. Evaluating each diagram requires a ultraviolet regulator

ε which corresponds exactly to the infrared regulator of the loop amplitude. Only dia-

grams in which a gluon attaches to a δ-dependent external momentum will contribute

to the one-loop soft anomaly.

It is useful to distinguish the diagrams in which the internal gluon connects adjacent

edges of the polygon. These have a ultraviolet cusp divergence, and in fact capture all

infrared-divergent terms in the amplitude [78]. This restriction limits the number of

diagrams required to analyse the infrared-divergent soft anomaly. In fact, choosing a

symmetric momentum conservation prescription eliminating (|n − 1], |1]) we see that

the four diagrams in Figure 6 suffice.

The remaining diagrams generate the finite parts of box functions [71,72,75]. Examples

are displayed in Figure 7. It is important to note a conceptual subtlety: although the

terms from these diagrams are independent of ε they still contribute to the subleading

soft anomaly. The large number of contributing diagrams makes finite order analysis

significantly harder; nevertheless in Section 3.3 we shall see surprising cancellations

leading to compact formulae.
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1.3 Twistors, Strings and Scattering Equations

In the previous section, we used Lorentz symmetry to motivate spinor-helicity variables,

supersymmetry to constrain amplitudes and form factors, and translation symmetry

to inspire dual coordinates. However, we have failed to exploit the two superconfor-

mal symmetries enjoyed by N = 4 SYM. We address this omission by introducing

supertwistors and momentum supertwistors, which transform in the fundamental rep-

resentation of superconformal and dual superconformal symmetry respectively.

The complexified32 superconformal group is locally isomorphic to PSL(4|4,C). There-

fore it is natural to define supertwistor space as P3 equipped with four additional

Grassmann coordinates. We denote a twistor33 in homogeneous coordinates by

ZA = (λα, µ̃
α̇, χA) . (1.3.1)

Penrose and Ferber [136, 137] determined the correct way to identify twistors with

complex chiral Minkowsi superspace variables, namely via the incidence relations,

µ̃α̇ = ixαα̇λα , χA = θAαλ
α . (1.3.2)

The bosonic relations have a beautiful geometric interpretation, summarised in Figure

8. In particular the conformal structure of spacetime, determined by its null cones, is

mapped onto the complex structure of twistor space, determined by its projective lines.

A priori it is not clear how to express functions on spacetime (such as amplitudes) in

terms of twistor variables. The dictionary is provided by the Penrose transform, which

we now review without supersymmetry.

1.3.1 Penrose Transform

The field configurations associated with on-shell massless fields naturally biject with

(Čech or Dolbeault) cohomology classes of functions on twistor space according to the

Penrose transform [138]. While the Čech representation is naturally associated with

topology, the Dolbeault version is closely tied to holomorphicity. The latter property is

more obviously advantageous for the computation of scattering amplitudes, so we shall

review the Dolbeault approach.

Recall that a complex manifoldM possesses an almost complex structure, allowing us

to split the complexified tangent bundle into holomorphic and antiholomorphic parts.

32The restriction to real spacetime coordinates requires additional conditions on twistor space, com-
prehensively reviewed in [135]. We sidestep this issue by using complex variables throughout.

33Henceforth we refer to supertwistors as twistors for brevity.
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Minkoswki space (C4) ←→ twistor space (P3)

Figure 8: The geometry of the bosonic twistor correspondence.

An (r, s)-form is defined to be a complexified (r+s)-form ω satisfying ω(V1, . . . Vr+s) = 0

unless r of the Vi are holomorphic and s are antiholomorphic. We note immediately

that the exterior dervative of an (r, s) form is the sum of an (r+1, s)-form and an

(r, s+1)-form, yielding the decomposition, d = ∂+ ∂̄. We may now define the Dolbeault

cohomology classes,34

Hr,s(M) = {ω : ∂̄ω = 0}
/
{ω : ω = ∂̄η} , (1.3.3)

where ω denotes an (r, s)-form onM. The bijection provided by the Penrose transform

may then be written:35

{on-shell massless fields of helicity
h

2
on C4}

←→ {f ∈ H0,1(P3) : f homogeneous of degree h− 2} , (1.3.4)

where we view f as a function of the bosonic part of the supertwistor homogeneous

coordinates ZA. Explicitly the transform may be performed via an integration,

φα1...αh(x) =
1

2πi

∫
P1

λα1 . . . λαhf(ixββ̇λβ, λβ) ∧ λγdλγ ,

φα̇1...α̇h(x) =
1

2πi

∫
P1

∂

∂µ̃α̇1

. . .
∂

∂µ̃α̇h
f(ixββ̇λβ, λβ) ∧ λγdλγ ,

(1.3.5)

over the projective line incident with the spacetime point x. Indeed it is then simple

34The selection of ∂̄ is convenientional, and without loss of generality, since complex conjugation
provides an isomorphism between the different definitions.

35Strictly speaking the transform is defined on suitably chosen open sets, rather than globally. Such
subtleties shall not be important for our purposes.
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to verify that the following field equations are satisfied,

∂α1α̇φ
α1...αh(x) = 0 for helicity +h/2 ,

∂αα̇1φ
α̇1...α̇h(x) = 0 for helicity −h/2 ,

∂αα̇∂
αα̇φ(x) = 0 for helicity 0 ,

(1.3.6)

by realising that ∂αα̇ = iλα
∂
∂µ̃α̇

, by virtue of the incidence relations (1.3.2). In fact,

this observation may be taken as a starting point for the twistor correspondence, re-

expressing it as a half-Fourier transform [1]. Similarly the fermionic coordinates ηAa for

on-shell amplitudes are Fourier conjugates of the supertwistor components χAa repre-

senting an asymptotic state a.36 This perspective provides the most natural means for

translating superamplitudes in spinor-helicity notation into twistor language. Strictly

speaking, the proof of equivalence is valid in split signature [139], but again complex

momenta render this subtlety irrelevant.

It is instructive to compute an explicit example, to illustrate the integration procedure,

taking inspiration from [140,141]. For simplicity we shall consider a scalar field, encoded

by the holomorphic twistor space (0, 1)-form of homogeneity −2,

f(Z) =
Z̄AdZ̄

A(
ZBZ̄B

)2 . (1.3.7)

Upon restricting to the projective line defined by x, the integral (1.3.5) gives

φ(x) =
1

π

∫
〈λdλ〉〈λ̄dλ̄〉
x2〈λλ̄〉2

, (1.3.8)

where λ̄α = (λ̄2,−λ̄1). The measure is nothing but the Fubini-Study metric on P1

in homogeneous coordinates. The integration hence gives the volume of a 2-sphere of

radius 1
2 , yielding

φ(x) =
1

x2
. (1.3.9)

which satisfies the wave equation away from x = 0. Of course, to describe external

particles in scattering processes we shall be interested in a particular class of on-shell

massless fields, namely the momentum eigenstates. By Fourier transforming the field

equations (1.3.6) we immediately see that these take the form,

φα1...αh
a (x) = λα1

a . . . λαha eip·x , φα̇1...α̇h
a (x) = λ̃α̇1

a . . . λ̃α̇ha eip·x , (1.3.10)

in agreement with our formulae in (1.2.23) and (1.2.24), where a labels the particles and

36It is common to abuse terminology and define the fermionic components of an external state twistor
to be ηAa . We use such a definition in Sections 1.3.2 and 2.1.
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pa = λaλ̃a. In twistor space, we define equivalent cohomology representatives,

Va(λ, µ̃) =

∫
C

dsa

sh−1
a

esa[µ̃λ̃a] δ̄(2)(λa − saλ) , (1.3.11)

for particles of helicity h/2, where δ̄(2) is a (0, 1)-form ensuring that Va is supported only

when λ projectively coincides with λa. Upon substitution into the integral formulae

(1.3.5), and integrating out sa to effect the constraint, the exponent automatically be-

comes ix·p and the prefactor is trivially the polarisation data encoded in (1.3.10).

1.3.2 From Twistor String Theory to Scattering Equations

In [142], Witten proposed that Yang-Mills amplitudes could be calculated using a topo-

logical string theory. More precisely, he demonstrated that certain N = 4 SYM ampli-

tudes localise on curves in supertwistor space P3|4 and conjectured that such a property

holds at all loops. In this formalism, to calculate an Nk−2MHV amplitude one must

integrate over the moduli space of curves of degree k − 1. In a sense this work was

the generalisation of Nair’s observation that tree-level MHV amplitudes in Yang-Mills

theory may be obtained from a two-dimensional Wess-Zumino-Witten model [51].

We motivate the theory by considering the twistor space representation of MHV am-

plitudes. We work in split signature (− − ++) where bosonic twistor space may be

regarded as the real manifold RP3. In this case the Penrose transform reduces to the

Witten half-Fourier transform, as we mentioned in Section 1.3.1. Therefore, to move

from momentum space to twistor space, we simply Fourier transform with respect to

the antiholomorphic spinors |j]. For MHV amplitudes all dependence on the antiholo-

morphic spinors lies in the momentum conserving delta function so we may write

AMHV
n (Z) = g(|i〉)

∫  n∏
j=1

d2|j]ei[jµj ]
 δ4(P ) . (1.3.12)

The delta function may be expressed as an ordinary Fourier integral,

δ4(P ) =

∫
d4x e−ixαα̇

∑
j |j〉α[j|α̇ . (1.3.13)

Substituting and exchanging the order of integration we find

AMHV
n (Z) = g(|i〉)

∫
d4x

 n∏
j=1

δ2(|µj ]α̇ + xαα̇|j〉α)

 . (1.3.14)

Hence in twistor space the kinematic variables are constrained to lie on a line. Under
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the twistor correspondence a line defines a point in Minkowski space. So we could view

MHV amplitudes as fundamental local interactions. This perspective leads directly to

the MHV diagram method we reviewed in Section 1.2.7.

These results are suggestive of an underlying string picture. According to Witten

the correct theory reproducing an SU(N) gauge theory is the topological B-model

on P3|4 with N D5-branes enriched by Euclidean D1-brane instantons wrapping all

holomorphic curves C. Witten showed that this configuration yields the right classical

equations of motion and gives an N = 4 SYM multiplet upon quantisation.

To extract scattering amplitudes we must examine the low energy effective action of

D1-D5 and D5-D1 strings in the presence of the background from D5-D5 strings.

Quantising the zero modes of the D1-D5 and D5-D1 strings yields fermion fields α and

β living on the D1. The zero modes of the D5-D5 strings contribute a gauge field E

and from string field theory one may derive the action,

S =

∫
C

dz β(∂ + E)α . (1.3.15)

The N = 4 SYM scattering amplitudes may now be computed as correlation functions

of fermionic currents J(z) = βα dz coupled to the gauge field E. We must also inte-

grate over all possible D1-instantons or equivalently over the moduli space of curves C.
Following [143] we write down the explicit formula,

An =

∫
dM

〈∫
C
J1E1 . . .

∫
C
JnEn

〉
, (1.3.16)

where dM is the holomorphic measure on the space of holomorphic curves of genus

0 and degree k − 1 for tree level Nk−2MHV processes. In [144], this quantity was

computed directly, providing a conjecture for the full tree level S-matrix ofN = 4 SYM.

This has become known as the connected formulation and determines the Nk−2MHV

superamplitude in supertwistor variables as

An,k =

∫
d4k|4kA dnσ dnξ

|GL(2;C)|

n∏
a=1

δ(4|4)(Za − ξaP(σa))

ξa(σa − σa+1)
. (1.3.17)

where P : P1 → P3|4 is a holomorphic curve of degree k − 1 with supermoduli Ar
describing the embedding of the string into twistor space, explicitly

P(σ) =
k∑

J=1

AJ σJ−1 , (1.3.18)

and the ξa are auxiliary variables. Equation (1.3.17) is closely related to the Grass-
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mannian formula (1.2.60). We may see this in two complementary ways, depending on

whether we gauge fix the Grassmannian. Firstly, we may rewrite (1.3.17) as [145]

An,k =

∫
dk×(n−k)cJi U(cJi)

∏
i∈p

δ(2)(λi − cJiλJ)
∏
J∈m

δ(2|4)(λ̃J + cJiλ̃i, ηJ + cJiηi) ,

(1.3.19)

where we have employed the summation convention, and we define

U(cJi) =

∫
dnσ dns

|GL(2;C)|

n∏
a=1

1

sa(σa − σa+1)

∏
i∈p,J∈m

δ

(
cJi −

sJsi
σJ − σi

)
. (1.3.20)

This provides an expression for the amplitude precisely in terms of the cJi link variables

appearing in the gauge fixed formula (1.2.62). We shall fully explain a generalisation of

the derivation, appropriate for form factors, in Chapter 2. Secondly, we may transform

all supertwistors in (1.3.17) back to momentum space, yielding

An,k =

∫
dnσ dnξ d2kρ

|GL(2;C)|

n∏
a=1

1

ξa(σa − σa+1)

×
k∏

J=1

δ(2)

(
n∑
a=1

ξaσ
J−1
a λ̃a

)
δ(4)

(
n∑
a=1

ξaσ
J−1
a ηa

)
n∏
a=1

δ(2)

(
ξaλ(σa)− λa

)
, (1.3.21)

where we define the rational map,

λ(σ) =
k∑

J=1

ρJσ
J−1 . (1.3.22)

Starting with the manifestly gauge invariant Grassmannian integral (1.2.60), we may

immediately obtain (1.3.21) by applying the Veronese map,

CJa = ξa σ
J−1
a , (1.3.23)

which embeds G(2, n) into G(k, n).

We may now reinterpret the connected formulation as an integral over rational maps

from the Riemann sphere to momentum space, producing the celebrated CHY formu-

lation of N = 4 SYM amplitudes. First we express the integral (1.3.21) in a manifestly

parity symmetric form [144,146,147],

An,k =

∫
dnξ dnξ̃ dnσ d2kρd2k̃ρ̃d2kχd2k̃χ̃

|GL(2;C)|

×
n∏
a=1

[
δ(1)

(
ξaξ̃a −

1∏
b 6=a(σa − σb)

)
1

σa − σa+1
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× δ(2)
(
λ̃a − ξ̃aλ̃(σa)

)
δ(2)

(
η̃Ra − ξ̃aη̃(σa)

)
δ(2)

(
λa − ξaλ(σa)

)
δ(2)

(
ηLa − ξaη(σa)

)]
,

(1.3.24)

where k̃ = n − k, the χ and χ̃ are two-component Grassmann moduli, ηa = (ηLa , η
R
a )

and the η̃a are the Fourier conjugates. The rational maps are defined by

λ(σ) =
k∑

J=1

ρJσ
J−1 , λ̃(σ) =

k̃∑
J̃=1

ρ̃J̃σ
J̃−1 ,

η(σ) =

k∑
J=1

χJσ
J−1 , η̃(σ) =

k̃∑
J̃=1

χ̃J̃σ
J̃−1 .

(1.3.25)

In [148], Cachazo, He and Yuan suggested rewriting the bosonic delta functions as a

single term,
n∏
a=1

δ(4)

(
ka −

∮
a

k(σ)dσ∏n
b=1(σ − σb)

)
, (1.3.26)

where the contour encloses only the pole σ = σa and the rational map k(σ) is defined

by

k(σ) = λ(σ)⊗ λ̃(σ) . (1.3.27)

In this language (1.3.24) manifestly expresses the scattering amplitude as an integral

over the moduli space of rational maps from the Riemann sphere to momentum space.

Moreover, since k(σ) is a simple tensor we have k(σ)2 = 0 so P1 maps to the null cone

in momentum space. This suggests another underlying twistor string theory, which we

review in Section 1.3.3.

The delta function (1.3.26) implies a set of constraints known as the scattering equa-

tions, which we may readily derive. Trivially we have for a = 1, . . . n

k(σa) = ka
∏
b6=a

(σa − σb) . (1.3.28)

By the definitions (1.3.25) and (1.3.27) we see that k(σ)2 is a non-monic polynomial of

degree 2n − 4, so its vanishing constrains 2n − 3 variables. These are most profitably

expressed as conditions at the marked points σa, namely

k2(σa) = 0 and k(σa) · k′(σa) = 0 . (1.3.29)

The former yields n on-shell conditions for the external particles, k2
a = 0. The latter

49



CHAPTER 1. INTRODUCTION

generates n− 3 independent scattering equations,

fa(σ, k) =
∑
b 6=a

ka · kb
σa − σb

= 0 , (1.3.30)

where the counting arises by observing that (1.3.30) is invariant under the action of

a PGL(2;C) gauge symmetry on the worldsheet.37 The scattering amplitude is then

naturally expressed as a sum over the (n − 3)! solutions to these equations, providing

an purely algebraic mechanism for calculating amplitudes.38

The integrand in (1.3.24) is rather unwieldy. In principle we could obtain a simpler

formula by integrating out the moduli and auxiliary variables, then specialising to gluon

amplitudes. Perhaps counterintuitively, it is also convenient to sum over Nk−2MHV

levels. This computation yields an ansatz of the form,39

An =

∮
dnσ

dω
J

n∏
a=1

1

σa − σa+1
�
�
��
n∏
a=1

1

fa(σ, k)
. (1.3.31)

where J is a Jacobian factor and we have defined the slashed product,40

�
�
��
n∏
a=1

= (zi − zj)(zj − zk)(zk − zi)
∏

a6=i,j,k
, (1.3.32)

and the invariant measure on the Möbius group PGL(2;C),

dω =
dzrdzsdzt

(zr − zs)(zs − zt)(zt − zr)
. (1.3.33)

By virtue of Möbius symmetry, the result is independent of the choices i, j, k, r, s, t.

Henceforth we shall make the choice {i, j, k} = {r, s, t} elementwise, allowing us to fix

σi, σj and σk to arbitrary distinct values. In [2], the Jacobian was determined explicitly

based on the requirements of gauge invariance, permutation invariance and appropriate

Möbius transformation. Explicitly J is given by the reduced Pfaffian ��Pf(Ψn) of the

37This symmetry is exactly the induced action of the GL(2;C) redundancy in (1.3.24) on the pro-
jectivisation of C2.

38The number of solutions is perhaps most transparent from the Dolan-Goddard form of the scattering
equations [149], comprising equations ei of degree i for 1 ≤ i ≤ n−3 with generically distinct solutions.

39We have followed the notation of [150] and expressed the delta functions in the form of a contour
integral. The contour should be taken to enclosed exactly the poles associated with the simultaneous
vanishing of the fa.

40This is alternatively notated with a prime symbol in the literature. We prefer the slash, which
carries appropriate connotations of cancellation.
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2n× 2n antisymmetric matrix,

Ψn(z, k, ε) =

(
A B

−B> D

)
, (1.3.34)

with entries,

Aab =
ka · kb
za − zb

, Dab =
εa · εb
za − zb

, Bab =
εa · kb
za − zb

, Baa = −
∑
c 6=a

εa · kc
za − zc

, (1.3.35)

where a 6= b and 1 ≤ a, b ≤ n. The reduced Pfaffian is defined by

��Pf Ψn = 2
(−1)a+b

za − zb
Pf Ψ

/a,/b
n , (1.3.36)

where Ψ
/a,/b
n denotes the (2n − 2) × (2n − 2) submatrix of Ψn obtained by deleting the

ath and bth rows and columns. For completeness we observe that the Pfaffian obeys

det Ψn = (Pf Ψn)2. In Appendix A we document a Mathematica package which may be

used to verify the formula (1.3.31) for low values of n by explicitly solving the scattering

equations in an equivalent polynomial form due to Dolan and Goddard [149].

Remarkably, scattering amplitudes in many theories besides Yang-Mills admit represen-

tations as sums over solutions to the scattering equations – see for example [151]. The

simplest possibility is to consider double partial amplitudes in φ3 theory with gauge

group U(N)×U(Ñ), as first observed in [152]. In this case the Pfaffian factor is absent.

We conclude this section by explicitly computing A5(1 2 3 4 5 | 1 2 3 4 5) in this theory,

to illustrate how a global residue theorem may be used to avoid solving the scattering

equations directly. We shall apply this technique again in Chapter 2.

We expect our answer to correspond to the sum of planar tree diagrams with momentum

ordering (k1, . . . k5). From the Feynman rules this is seen to be

A5 =
1

s23s234
+

1

s34s234
+

1

s23s45
+

1

s345s34
+

1

s345s45
, (1.3.37)

where si1...ir = (pi1 + · · · + pir)
2. We choose (i, j, k) = (r, s, t) = (1, 2, 5) and evaluate

the CHY formula,

A5 =
1

4
(z2 − z5)2

∮
1

f3(z, k)f4(z, k)

dz3dz4

(z2 − z3)2(z3 − z4)2(z4 − z5)2
. (1.3.38)

Using the Möbius symmetry we may choose the gauge z1 =∞, z2 = 1, z5 = 0 and the
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amplitude reduces to

A5 =
1

4

∮
1

f3(z, k)f4(z, k)

dz3dz4

(1− z3)2(z3 − z4)2z2
4

. (1.3.39)

To manifest the singularity structure it is convenient to define

ga(z) = fa(z, k)
∏
c 6=1,a

(za − zc) =
∑
b 6=1,a

ka · kb
∏

c 6=1,a,b

(za − zc) , (1.3.40)

and substituting into (1.3.39) yields

A5 = −1

4

∮
z3(1− z4)dz3dz4

g3g4z4(1− z3)
. (1.3.41)

Abusing notation we write z = z3 and w = z4 to arrive at the integral,

A5 = −1

4

∮
z(1− w)dzdw

g3g4w(1− z)
, (1.3.42)

where g3 and g4 are explicitly

g3(z, w) = k3 · k2z(z − w) + k3 · k4z(z − 1) + k3 · k5(z − 1)(z − w) , (1.3.43)

g4(z, w) = k4 · k2w(w − z) + k4 · k3w(w − 1) + k4 · k5(w − 1)(w − z) . (1.3.44)

It only remains to evaluate the integral. Recall that the contour is defined to enclose

only the poles ai arising when g3 = g4 = 0. Näıve complex analysis tells us to sum

the residues of the integrand at each ai. By a generalisation of the residue theorem it

suffices to sum the residues at poles bi not arising from g3 = g4 = 0. This turns out to

be a computationally easier task.

We first review the calculation procedure for multivariate residues, following [153].

Consider a holomorphic differential form,

ω =
h(z)dz1 ∧ · · · ∧ dzn
t1(z) . . . tn(z)

, (1.3.45)

and suppose a is a simultaneous zero of all the ti with h(a) 6= 0. We define the residue

of ω at a by

res(ω)a =

(
1

2πi

)n ∮
ω , (1.3.46)

where the contour encloses a and no other singularities. We say that a residue is

non-degenerate if the Jacobian at a is non-zero, viz.

J(a) = det

(
∂ti
∂zj

)∣∣∣∣
z=a

6= 0 . (1.3.47)
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This may be viewed as the multivariate version of a simple pole. Analogously to the

single variable case we evaluate a non-degenerate residue as

res(ω)a =
s(a)

J(a)
. (1.3.48)

For degenerate residues we can always introduce regulators which separate the multiple

poles. We are then free to apply (1.3.48). One can also tackle the non-degenerate case

head on using Gröbner bases [154], but we shall not have need of such technology.

We may now state the global residue theorem precisely. Suppose that the simultaneous

zeroes of the ti form a discrete set Z. If deg(h)+n < deg(t1)+ · · ·+deg(tn) then∑
a∈Z

res(ω)a = 0 . (1.3.49)

We may apply these results to our integral (1.3.42). Indeed the integrand is of the form

(1.3.45) with t1 = wg3, t2 = (1 − z)g4 and s = z(1 − w). Let us denote by R(α, β)

the sum of residues when α = β = 0. Clearly the bound needed for the global residue

theorem is satisfied so we may write

A5 = R(g3, g4) = −R(g3, 1− z)−R(w, g4)−R(w, 1− z) . (1.3.50)

We start with the obviously non-degenerate caseR(w, 1−z). Applying (1.3.48) gives

R(w, 1− z) = − 1

4k3 · k2k4 · k5
= − 1

s23s45
. (1.3.51)

A quick computation shows that R(w, f4) is degenerate. We regulate the problem by

modifying the integrand to yield∮
w(1− z)dzdw

g3g4(w − δ)(1− z)
. (1.3.52)

The residue can now be evaluated in Mathematica and after taking the δ → 0 limit we

obtain

R(w, g4) = − 1

s345

(
1

s34
+

1

s45

)
. (1.3.53)

A similar procedure determines that

R(g3, 1− z) = − 1

s234

(
1

s23
+

1

s34

)
. (1.3.54)

Collating our results we find exact agreement with (1.3.37).
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1.3.3 From Ambitwistor String Theory to Scattering Equations

The ambitwistor string [155] is a chiral infinite-tension version of the RNS string, liv-

ing inside the space of complexified null geodesics, known as ambitwistor space. The

scattering amplitudes of the ambitwistor string yield particularly compact forms of

field theory amplitudes in various theories, depending on the matter content on the

worldsheet. We swiftly review elements of the construction, relevant for arguments in

Chapter 2. For our purposes, it suffices to focus on the bosonic construction, indicating

appropriate supersymmetrisations where necessary.

Recall that the phase space action yielding Hamilton’s equations may be written,

S[x, p] =

∫
p dx−H(x, p) dt . (1.3.55)

where H denotes the Hamiltonian. Hence, we may write the phase space version of the

worldline action for a massless particle as

S[x, p] =

∫
pµdx

µ − e

2
pµp

µdτ , (1.3.56)

where e(τ) is an auxiliary field, required for reparameterisation invariance, and pµ =

e−1ẋµ is the conjugate momentum. Note that pµ coincides with the total momentum,

since the theory is free. The gauge transformations are given by

δξX
µ = ξPµ , δξPµ = 0 , δξe = dξ , (1.3.57)

and e is easily seen to be a Lagrange multiplier enforcing the null condition p2 = 0.

From (1.3.56) we may obtain the bosonic ambitwistor string action by complexify-

ing both the worldsheet and the target space. Moreover, we require the model to be

chiral, with the action involving only derivatives ∂̄, similar to Witten’s construction.

Therefore we arrive at

S[X,P ] =
1

2π

∫
Pµ∂̄X

µ − e

2
PµP

µ , (1.3.58)

where we interpret Xµ as a map from the worldsheet to ambitwistor space, Pµ as a

(1, 0)-form, and e as a tangent-bundle-valued (0, 1)-form41. This action may be appro-

priately supersymmetrised, and the resulting theory has critical dimension 10.

41For concreteness, recall that a (p, q) form may be written ω = f(z, z̄)(dz)p(dz̄)q in some coordinates
(z, z̄) on the worldsheet, where f is an arbitrary (not necessarily holomorphic or anti-holomorphic)
smooth function.
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We shall now restrict our attention to four dimensions, where quantum anomalies ren-

der the theory inconsistent.42 Nevertheless, if we remain at tree level, ambitwistor

string scattering amplitudes yield correct and compact expressions for field theory am-

plitudes [156]. As a first motivation, we note that ambitwistor space in four dimensions

has a convenient parameterisation as a quadric inside the Cartesian product of twistor

spaces P3 × (P3)∗, where the second factor is the dual projective space. Thus we may

immediately bring to bear the power of the Penrose transform.

More explicitly, let us coordinatise the Cartesian product by a pair of twistors (Z,W ),

then ambitwistor space is the submanifold given by ZAWA = 0. We may write the action

(1.3.58) in terms of (Z,W ) by using the incidence relations (1.3.2) and identifying (P3)∗

with P3. The result is

S =
1

2π

∫
WA∂̄Z

A − ZA∂̄WA + aZAWA . (1.3.59)

where we interpret W and Z as
(

1
2 , 0
)
-forms and a as a (0, 1)-form enforcing the target

space constraint. To calculate string scattering amplitudes, we require vertex operators

representing the external states. These are given by the pullback of (1.3.11) onto the

quadric defining ambitwistor space. There are two options, reflecting the two overlying

twistor spaces, the dual being

Ṽa(λ̃, µ) =

∫
C

dsa

sh−1
a

esa〈µλa〉 δ̄(2)(λ̃a − saλ̃) . (1.3.60)

Operators (1.3.11) and (1.3.60) turn out to represent helicity ±h/2 particles respec-

tively. For non-abelian gauge theories, we must additionally include a colour factor J

for each particle. This takes the form of a Lie algebra valued current, permitted to flow

on the worldsheet. More explicitly we may construct the current using N free complex

fermions ψi and SU(N) generators T a, viz.

Ja(σ) =
i

2
T aij : ψi(σ)ψ̄j(σ) : , (1.3.61)

where i, j are fundamental representation indices and a is an adjoint representation

index. To work in N = 4 SYM, one may introduce an additive term of the form χAη
A
a

in the exponent of each vertex operator, along the lines suggested by Witten [142].

We now have sufficient data to calculate the Nk−2MHV scattering amplitude,

An,k =

〈∫
dσ1 . . . dσn Ṽ1 . . . ṼkVk+1 . . . Vn

〉
, (1.3.62)

42It is possible that one could add further matter content to the theory and reduce the critical
dimension for loop-level consistency. This remains an open problem.
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as a correlator of vertex operators which may be inserted anywhere on the worldsheet.

We may express this as a path integral,

An,k =

∫
D(λ, λ̃, µ, µ̃)

|GL(2;C)|

∫ k∏
i=1

dσidsi
si

n∏
j=k+1

dzjdsj
sj

× exp

−[µ̃ ∂̄λ̃]− 〈µ ∂̄λ〉+

k∑
i=1

si〈µ λi〉δ̄(σ − σi) +

n∑
j=k+1

sj [µ̃ λ̃j ]δ̄(σ − σj)


× δ̄(2)(λ̃i − siλ̃(σi)) δ̄

(2)(λj − sjλ(σj)) 〈Ja1
1 · · · J

an
n 〉 , (1.3.63)

in the gauge a = 0, where we’ve used integration by parts on the action. Observe that

(µ, µ̃) only appear in the exponential, which is exactly linear in these variables. Hence

upon integrating out (µ, µ̃) we obtain functional delta functions, enforcing

∂̄λ =
k∑
i=1

siλiδ̄(σ − σi) , ∂̄λ̃ =
n∑

j=k+1

sj λ̃j δ̄(σ − σj) . (1.3.64)

Now integrating out (λ, λ̃) amounts to solving these equations. To do so, observe that

δ̄(z) is rigorously defined as

δ̄(z) = δ(x)δ(y)dz̄ =
1

2πi
∂̄

1

z
, (1.3.65)

where the second equality is a consequence of the two-dimensional Green’s function for

the Laplacian,

δ(x)δ(y) =
1

2π
∇2 log(

√
x2 + y2) . (1.3.66)

Therefore solving (1.3.64) is trivial, yielding

λ(σ) =

k∑
i=1

siλi
σ − σi

, λ̃(σ) =

n∑
j=k+1

sj λ̃j
σ − σj

. (1.3.67)

Finally we must deal with the current correlator. Recall that the only non-vanishing

Wick contraction between complex fermions takes the form,

〈ψi(σ1)ψ̄j(σ2)〉 =
δij

σ1 − σ2
. (1.3.68)

Therefore the current correlator evaluates to

〈Ja1
1 · · · J

an
n 〉 =

Tr (T a1 . . . T an)

(σ1 − σ2) · · · (σn − σ1)
+ · · · , (1.3.69)

where we have ignored multiple trace terms, since we work in the planar limit. Interest-
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ingly there exist ambitwistor string constructions which rigorously disallow multitrace

contributions [157]. With these equalities, the amplitude becomes

An,k =

∫
1

|GL(2;C)|

n∏
a=1

dσadsa
sa(σa − σa+1)

k∏
i=1

δ̄(2)(λ̃i − siλ̃(σi))
n∏

j=k+1

δ̄(2)(λj − sjλ(σj)) .

(1.3.70)

To make this expression slightly neater we may change to homogeneous coordinates on

the Riemann sphere, defining by a slight abuse of notation

σα =
1

s
(1, σ) , (i j) = σαi εαβσ

β
j . (1.3.71)

Rewriting in terms of these variables, and including the contributions from supersym-

metry sketched below (1.3.61) we arrive at43

λ(σ) =

k∑
i=1

λi
(σ σi)

, λ̃(σ) =

n∑
j=k+1

λ̃j
(σ σj)

, η(σ) =

n∑
j=k+1

ηj
(σ σj)

. (1.3.72)

Hence, the superamplitude may be expressed as44

An,k =

∫
1

|GL(2;C)|

n∏
a=1

d2σa
(a a+ 1)

k∏
i=1

δ̄(2|4)(λ̃j−λ̃(σj), ηj−η(σj))

n∏
j=k+1

δ̄(2)(λj−λ(σj)) .

(1.3.73)

This represents the full tree-level S-matrix of Yang-Mills theory in a remarkably com-

pact fashion, as a weighted sum over solutions to the rational scattering equations (also

known as the refined scattering equations),

k∑
i=1

λi
(σj σi)

= λj for j = k + 1, . . . , n ,

n∑
j=k+1

λ̃j
(σi σj)

= λ̃i ,

n∑
j=k+1

ηj
(σi σj)

= ηi for i = 1, . . . , k ,

(1.3.74)

where we have borrowed nomenclature from [159]. We note immediately that this

formula may be derived directly from the linked connected formulation (1.3.19) by in-

tegrating out the variables cJi using the delta functions in the definition of U . Moreover,

(1.3.74) may be viewed as a refinement of the scattering equations (1.3.30).45 Indeed

43We have rescaled λ and λ̃ by a factor of 1
s
, permitted since they are only projectively meaningful.

44Our superamplitudes have η0 for positive helicity and η4 for negative helicity gluons, which is the
opposite of the convention employed in [158].

45The number of solutions for given n, k is the Eulerian number
〈 n− 3
k − 2

〉
[160].
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applying partial fractions we find [159]

(
k∑
i=1

λisi
σ − σi

) n∑
j=k+1

λ̃jsj
σ − σj

 =
k∑
i=1

λi
σ − σi

n∑
j=k+1

λ̃jsisj
σj − σi

+
n∑

j=k+1

λ̃j
σ − σj

k∑
i=1

λisisj
σi − σj

,

=
k∑
i=1

λiλ̃i
σ − σi

+
n∑

j=k+1

λj λ̃j
σ − σj

,

(1.3.75)

and defining

pµ(σ) =

n∏
b=1

(σ − σb)
n∑
c=1

pµc
σ − σc

, (1.3.76)

we see that pµ(σ) is a simple tensor and pµ(σa) = ka
∏
b 6=a(σa − σb). These are exactly

the statements from which we derived the scattering equations in Section 1.3.2.

We conclude this section by extracting the 3-point MHV amplitude from (1.3.73). We

shall perform similar calculations for form factors in Chapter 2. We make the gauge

choice,

σ1 = (1, 0) , σ2 = (0, 1) , σ3 = (τ, σ) , (1.3.77)

so that

(1 2) = 1 , (2 3) = −τ , (3 1) = σ . (1.3.78)

The delta functions reduce to

δ̄(2)

(
λ̃1 +

λ̃3

σ

)
δ̄(2)

(
λ̃2 +

λ̃3

τ

)
δ̄(2)

(
λ3 −

λ1

σ
− λ2

τ

)
. (1.3.79)

The third delta function fixes

σ = −〈1 2〉
〈2 3〉

, τ =
〈1 2〉
〈1 3〉

. (1.3.80)

also contributing a Jacobian factor,∣∣∣∣∣λ1/σ
2 0

0 λ2/τ
2

∣∣∣∣∣
−1

=
σ2τ2

〈1 2〉
. (1.3.81)

The other two delta functions become

δ̄(2)

(
〈2 1〉λ̃1 + 〈2 3〉λ̃3

〈2 1〉

)
δ̄(2)

(
〈1 2〉λ̃2 + 〈1 3〉λ̃3

〈1 2〉

)

= δ̄(2)

(
〈2|P
〈2 1〉

)
δ̄(2)

(
〈1|P
〈1 2〉

)
= δ(4)(P )〈1 2〉2 , (1.3.82)
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where P is the total momentum. Hence (1.3.73) evaluates to

1

στ

σ2τ2

〈1 2〉
δ(4)(P )〈1 2〉2 = δ(4)(P )

〈1 2〉3

〈2 3〉〈3 1〉
, (1.3.83)

in agreement with (1.2.32).

1.3.4 Momentum Twistors

Thus far, we have used twistors as an inspiration for deriving formulae in momentum

space. However, it is often convenient to work directly with twistor variables, yielding

more compact expressions for conformally invariant quantities. In Chapter 3, we shall

find it useful to introduce twistor variables in the fundamental representation of dual

conformal symmetry. These are known as momentum twistors, and were first advocated

by Hodges [89]. We define

ZIi = (λαi , µ̃
α̇
i ) = (λαi , x

α̇β
i λiβ) , (1.3.84)

where I = (α, α̇) and we have made explicit the twistor correspondence with dual

space. Note that ZIi scales uniformly under the action of the little group, so mo-

mentum twistors are only projectively meaningful. The momentum twistors may be

readily supersymmetrised, along the lines of (1.3.2). More precisely, we could augment

(1.3.84) with new Grassmann variables χAi = ηβAi λiβ. In this thesis, we prefer to keep

ZIi bosonic, and explicitly indicate dependence on χAi where required. The on-shell

variables λ̃i and ηi can be regained using the relations [161,162],

λ̃i =
µ̃i−1〈i i+ 1〉+ µ̃i〈i+ 1 i− 1〉+ µ̃i+1〈i− 1 i〉

〈i− 1 i〉〈i i+ 1〉
,

ηi =
χi−1〈i i+ 1〉+ χi〈i+ 1 i− 1〉+ χi+1〈i− 1 i〉

〈i− 1 i〉〈i i+ 1〉
. (1.3.85)

The canonical dual conformal invariant quantity is the four-bracket,

〈i j k l〉 = εIJKLZ
I
i Z

J
j Z

K
k Z

L
l . (1.3.86)

Such objects obey various identities, which we employ liberally in Chapter 3. From the

definition (1.3.84) it is immediate that

〈i j − 1 j k〉 = 〈j − 1 j〉〈i|xijxjk|k〉 . (1.3.87)
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We trivially have a five term Schouten identity,

ZIa〈b c d e〉+ cyclic = 0 , (1.3.88)

which quickly yields a formula for computing intersections of projective lines and

planes,

(i j) ∩ (a b c) = Zi〈j a b c〉 − Zj〈i a b c〉 , (1.3.89)

(i j k) ∩ (a b c) = ZiZj〈k a b c〉+ ZjZk〈i a b c〉+ ZkZi〈j a b c〉 , (1.3.90)

where we’ve introduced the notation (a b) = Za ∧ Zb. Finally we have the important

relation,

〈x y (i j k) ∩ (a b c)〉 = 〈(x y) ∩ (a b c) i j k〉 , (1.3.91)

valid as a statement in homogeneous coordinates, where scale is important. To verify

this, first observe that it has the correct vanishing behaviour in the case of linear

dependence. Then it suffices to evaluate one non-vanishing example.

To illustrate the notation, we reproduce the expression for the NMHV tree amplitude

as a sum over dual superconformal R-invariants [70,76,99],

ANMHV,tree
n = AMHV,tree

n

∑
1<j−1<j<k−1

R1jk , (1.3.92)

which are most naturally defined in terms of momentum twistor variables [161], viz.

Rijk =
δ(4)

(
〈j − 1 j k − 1 k〉χAi + cyclic

)
〈i j − 1 j k − 1〉〈j − 1 j k − 1 k〉〈j k − 1 k i〉〈k − 1 k i j − 1〉〈k i j − 1 j〉

,

(1.3.93)

motivating the five-bracket notation,

Rijk = [i j − 1 j k − 1 k] . (1.3.94)

1.4 Outline of Thesis

The remainder of this thesis is structured in the following way.

In Chapter 2, we construct a number of CHY-inspired formulae for the form factor of

TrF 2
SD. In Section 2.1, we review the connected formulation for form factors presented

in [10] and derive from it an equivalent expression as a sum over solutions to the

rational scattering equations, first conjectured in [3]. We verify this formula with
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explicit computations using link variables in Section 2.2, noting an intriguing duality

with BCFW terms. We then indicate how this formula is related to the Grassmannian

representation and comment on a possible derivation from ambitwistor string theory.

In Section 2.5, we present a previously unpublished CHY formula for the tree-level form

factor of TrF 2 in pure Yang-Mills theory.

In Chapter 3, we consider the subleading soft gluon theorems at tree level and one loop.

We describe how conformal symmetry may be used to derive the universal operators

under mild assumptions, following Larkoski [163]. We then introduce a Larkoski method

based on constraints from dual conformal symmetry, and demonstrate how this may

be extended to loop level. In Section 3.3, we perform explicit calculations to determine

the subleading soft anomaly in the MHV and NMHV sectors, restating a conjecture

of [9] that universal breaks between helicity sectors, but holds within them. All our

results are valid through finite order in the infrared regulator.

Chapter 4 provides a summary of our conclusions, and a few brief suggestions for future

work. In Appendix A, we document two Mathematica packages we have developed,

which may be used to verify some of the original calculations we have undertaken.

Appendix B contains formulae required in Chapter 3.

61



Chapter 2

Scattering Equations and Form

Factors

In this chapter we conjecture various formulae computing the super form factor of the

chiral stress tensor supermultiplet, sometimes focussing on its lowest γ+ component.

Many of the results were previously presented in [10] and the expressions in Section 2.2

have some overlap with parallel work in [3,164]. The observations in 2.5 are incomplete

unpublished work, and are therefore more speculative.

2.1 Connected Prescription in Four Dimensions

We propose the following connected formula computing the Nk−2MHV tree level super

form factor of the TrF 2
SD supermultiplet (as defined in Section 1.2.3) in supertwistor

variables:

F (Za) = 〈ZxIZy〉2
∫

d4k|4kA dn+2σ dn+2ξ

|GL(2;C)|

×
∏
a=x,y δ

(4|4)(Za − ξaP(σa;A))

ξx ξy (σx − σy)2

n∏
a=1

δ(4|4)(Za − ξaP(σa;A))

ξa (σa − σa+1)
, (2.1.1)

where we describe the form factor insertion using two extra particles x and y, which

are related to the form factor momentum and supermomentum via

q = λxλ̃x + λyλ̃y , γ = λxηx + λyηy . (2.1.2)

As in Section 1.3.2, we take P(σ) to be a degree k − 1 curve in P3|4 with supermoduli

A. The prefactor is built using the infinity twistor I, and precisely evaluates to 〈x y〉2.
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All particle indices are defined modulo n, as usual. From (2.1.1) we may deduce a

supersymmetric generalisation of the form factor result in [165], translating our expres-

sion into a sum over solutions to the rational scattering equations (1.3.74). The proof

parallels closely that of [166,167].

We begin by dividing the n physical particles into two sets p and m containing k and

n−k particles respectively, just as we did in Section 1.2.6. Furthermore, we augment the

first set with the two auxiliary particles, defining p̄ = p ∪ {x, y}. When working with

gluon component amplitudes, it is convenient to assign gluons of positive (negative)

helicity to p̄ (m). This parallels the assignments made in [165], where the two auxiliary

particles are treated as positive helicity gluons. Henceforth we shall use the index

notation i ∈ p̄ and J ∈ m.

Clearly, to obtain a formula similar to (1.3.19) we desire to integrate over the moduli

A. The integral becomes trivial if we Fourier transform the supertwistors Zi to obtain

dual supertwistors Wi. In terms of these variables we have

F (Wi, ZJ) =

∫
d4k|4kA dn+2σ dn+2ξ

|GL(2;C)|

∏
J∈m δ

(4|4)(ZJ − ξJP(σJ))

ξx ξy (σx − σy)2
∏n
a=1 ξa (σa − σa+1)

×
〈

∂

∂Wx
I

∂

∂Wy

〉2 ∏
i∈p̄

exp
(
i ξiWi · P(σi)

)
, (2.1.3)

and we are left with exactly as many delta functions as moduli. Performing the integral

over A localises the degree k − 1 curve onto

P(σ) =
∑
J∈m

ZJ
ξJ

∏
K 6=J

σK − σ
σK − σJ

, (2.1.4)

and the integral becomes

F (Wi, ZJ) =

∫
dn+2σ dn+2ξ

|GL(2;C)|
1

ξx ξy (σx − σy)2

n∏
a=1

1

ξa (σa − σa+1)

×
〈

∂

∂Wx
I

∂

∂Wy

〉2

exp

(
i
∑

i∈p̄,J∈m
Wi · ZJ

ξi
ξJ

∏
K 6=J

σK − σi
σK − σJ

)
. (2.1.5)

We may simplify the integral by introducing new variables,

si = ξi
∏
K

(σK − σi) , s−1
J = ξJ

∏
K 6=J

(σK − σJ) , (2.1.6)

and spinor coordinates σα = s−1(1, σ), defining the notation (a b) = εαβσ
α
aσ

β
b . Our

63
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formula now reduces to

F (Wi, ZJ) =

∫
1

|GL(2;C)|
d2σx d2σy

(x y)2

×
n∏
a=1

d2σa
(a a+ 1)

〈
∂

∂Wx
I

∂

∂Wy

〉2

exp

(
i
∑

i∈p̄,J∈m

Wi · ZJ
(i J)

)
. (2.1.7)

Finally we may return to spinor variables by performing Witten’s half-Fourier trans-

form, recalling that in the language of footnote 36

Z = (λα, µ̃
α̇, ηA) , W = (µα, λ̃α̇, η̃A) , Z ·W = 〈λµ〉+ [µ̃λ̃] + η̃Aη

A . (2.1.8)

The exponential factor may be written

exp

(
i
∑

i∈p̄,J∈m

Wi · ZJ
(i J)

)
=
∏
i∈p̄

exp

(∑
J∈m

〈J µi〉
(i J)

) ∏
J∈m

exp

∑
i∈p̄

[µ̃J i] + η̃iAη
A
J

(i J)

 .

(2.1.9)

Following [168], we observe that

∏
i∈p̄

exp

(∑
J∈m

〈J µi〉
(i J)

)
=
∏
i∈p̄

∫
d2λi e

〈i µi〉 δ(2)(λi − λ(σi)) , (2.1.10)

where the scattering function λ(σ) is defined by an appropriate generalisation of (1.3.72).

One may obtain similar expressions for Fourier transforms with respect to λ̃α̇ and η̃A.

Hence we find

F (λa, λ̃a) = 〈x y〉2
∫

1

|GL(2;C)|
d2σx d2σy

(x y)2

n∏
a=1

d2σa
(a a+ 1)

×
∏
i∈p̄

δ(2)(λi − λ(σi))
∏
J∈m

δ(2|4)(λ̃J − λ̃(σJ), ηJ − η(σJ)) , (2.1.11)

This is a supersymmetric version of the form factor conjecture presented in [165]. By

performing in reverse the same steps of this proof, one can of course derive the connected

prescription for form factors (2.1.1) from the rational scattering equation formula.

2.2 Verifying the Rational Formula

In this section we provide explicit calculations verifying the formula (2.1.11). We first

argue that (2.1.2) encodes the correct dependence on γ+. Then, by explicitly solving the

rational scattering equations, we demonstrate agreement with known results from [54]
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for all maximally non-MHV form factors. Next, we argue that calculations are more

natural in link variables, using these to prove the all-point MHV case. Finally, we

examine the simplest component NMHV form factor, employing the global residue

theorem to expose a duality with BCFW recursion.

To make a connection with the supermomentum conservation delta functions, we con-

tract the variables η with the harmonic matrices ū+ and ū−a to yield fermionic contri-

butions, ∏
J∈m

δ(2)

η+J −
∑
i∈p̄

η+i

(J i)

 ∏
J∈m

δ(2)

η−J −∑
i∈p̄

η−i
(J i)

 . (2.2.1)

The first factor certainly implies the constraint,

δ(4)

∑
J∈m

η+JλJ −
∑
i∈p̄

∑
J∈m

η+iλJ
(J i)

 = δ(4)

(
n∑
a=1

η+aλa − η+xλx − η+yλy

)
, (2.2.2)

on the support of the holomorphic delta functions. Now invoking (2.1.2) yields exactly

the γ+ dependent delta function implied by the supersymmetry Ward identities in

(1.2.41). Similarly, one may extract the universal dependence on η−a from the second

factor, recalling that γ− = 0. Note that our identification of γ+ is identical to that

found later in [164].

2.2.1 Maximally Non-MHV Sector

We explicitly evaluate the maximally non-MHV n = k case. Solving the rational

scattering equations is trivial here, since they are linear in the (i J)−1 variables. The

delta functions are

n∏
J=1

δ(2|4)

(
λ̃J −

λ̃x
(J x)

− λ̃y
(J y)

, ηJ −
ηx

(J x)
− ηy

(J y)

)

δ(2)

(
λx −

n∑
J=1

λJ
(x J)

)
δ(2)

(
λy −

n∑
J=1

λJ
(y J)

)
. (2.2.3)

To proceed we must fix the GL(2;C) redundancy. There is a canonical choice of gauge,

namely

σx = (1, 0) , σy = (0, 1) . (2.2.4)

The antiholomorphic delta functions enforce

(J x) =
[x y]

[J y]
, (J y) =

[y x]

[J x]
. (2.2.5)
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Note that the integration
∫

dn+2σ may be equivalently performed over the combinations

appearing in (2.2.5) in this gauge (up to a possible sign) because contraction with σn+1

and σn+2 exactly picks out the spinor components. In solving the δ functions as above,

we gain the Jacobian factor,
n∏
J=1

(J x)2(J y)2

[x y]
. (2.2.6)

To evaluate the integrand we need to write (a a+1) in terms of combinations appearing

in (2.2.5). We have, courtesy of Schouten identities,

(a a+ 1) = (a y)(x a+ 1)− (x a)(a+ 1 y) . (2.2.7)

Now we examine the two remaining bosonic delta functions, observing that they com-

bine to yield momentum conservation, viz.

δ(2)

(
[y x]λx +

∑n
J=1[y J ]λJ

[y x]

)
δ(2)

(
[x y]λy +

∑n
J=1[x J ]λJ

[x y]

)
= [x y]2δ(4)(P ) ,

(2.2.8)

where P denotes the total momentum. We now have all the ingredients required to

evalute the super form factor. Substituting (2.2.5) and performing some light algebraic

manipulations yields

Fmax non-MHV =
q4

[1 2] · · · [n 1]

n∏
J=1

δ(4)
(
ηJ +

[J y]

[y x]
ηx +

[J x]

[x y]
ηy

)
δ(4)(P ) . (2.2.9)

At first glance, it is not at all obvious that this agrees with the known result (1.2.43).

In [10], we verified that the (γ+)0 component evaluates to (1.2.44). Here, we go one

step further, and check that the full supersymmetric formulae precisely agree. First

observe that

n∑
J=1

λJηJ =

n∑
J=1

λJ [J y]

[y x]
ηx +

λJ [J x]

[x y]
ηy = λxηx + λyηy , (2.2.10)

by virtue of momentum conservation, establishing the supermomentum conservation

constraint we already knew would hold from (2.2.2). Hence it suffices to prove that

∫
d4γ+

q4

[1 2] · · · [n 1]

n∏
j=1

δ(4)
(
ηj +

[j y]

[y x]
ηx +

[j x]

[x y]
ηy

)

=

∫ ( n∏
i=1

d4η̃i e
iηiAη̃

A
i

)
δ(4)

(∑n
j=1 λ̃j η̃

+
j

)
[1 2][2 3] · · · [n 1]

. (2.2.11)
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Starting with the left hand side, we project with the harmonic matrices, and eliminate

ηx and ηy in favour of γ+, yielding

∫
d4γ+

q4

[1 2] · · · [n 1]

n∏
j=1

δ(2) (η−j) δ(2)

(
η+j −

[j|q|γ+〉
q2

)
. (2.2.12)

Moving to Fourier space the integral becomes

∫
d4γ+ exp

qαα̇γα+
q2

n∑
j=1

η̃+
j λ̃

α̇
j

 q4

[1 2] · · · [n 1]
, (2.2.13)

which is exactly the integrand on the right hand side of (2.2.11), upon performing the

integral over γ+ and picking up the Jacobian q−4.

It is interesting to contrast the remarkable simplicity of this derivation with the orig-

inal calculation presented in [169], which required a more significant amount of work.

Likewise, the equivalent computation in the Grassmannian formulation [87] required

the numerical evaluation of some complicated momentum twistor expressions. Never-

theless, we shall see in Section 2.3 that the Grassmannian integral trivially reduces to

the formula (2.1.11) in this sector and beyond.

2.2.2 Link Variables and MHV Sector

In the previous section, we observed that the rational scattering equations were linear

in (i J)−1 for maximally non-MHV configurations. This motivates us to introduce the

link variables,46

ciJ =
1

(i J)
, (2.2.14)

where the first and second index run over the sets p̄ and m, respectively. The identi-

fication is achieved by introducing 1 =
∫

dciJ δ (ciJ − 1/(iJ)). Doing so, we can recast

(2.1.11) as

F = 〈x y〉2
∫ ∏
i∈p̄,J∈m

dciJ U(ciJ)
∏
i∈p̄

δ(2)(λi − ciJλJ)
∏
J∈m

δ(2|4)(λ̃J + ciJ λ̃i, ηJ + ciJηi) ,

(2.2.15)

where

U(ciJ) =

∫
1

|GL(2;C)|
d2σxd2σy

(x y)2

n∏
a=1

d2σa
(a a+ 1)

∏
i∈p̄,J∈m

δ
(
ciJ −

1

(i J)

)
. (2.2.16)

46Our convention here is the transpose of that in Section 1.2.6, following the notation of [166].
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There are several reasons why it is interesting to study the link representation form

(2.2.15). Firstly, it has the advantage of linearising momentum conservation in terms of

the ciJ variables. Secondly, the quantity U(ciJ) defined in (2.2.16) is easily computable

for any k. Finally, it was shown in [166] that by using the global residue theorem, one

can arrive at an alternative representation of the amplitudes which precisely matches

BCFW diagrams, thus establishing a direct connection between the twistor-string rep-

resentation of amplitudes and on-shell recursion relations. We will see that the same is

also true for our representation of form factors in Section 2.2.3.

In performing calculations, we shall always use the canonical gauge-fixing (2.2.4), so

that

U(ciJ) =

∫ n∏
a=1

d(x a) d(y a)

(a a+ 1)

∏
i∈p̄,J∈m

δ
(
ciJ −

1

(i J)

)
. (2.2.17)

As above, we obtain all other required brackets via the Schouten identity,

(x y)(a b) = (x a)(y b)− (x b)(y a) . (2.2.18)

In (2.2.17) we have 2n integration variables and k(n + 2 − k) delta functions, which

means that U(ciJ) contains (k−2)(n−k) delta functions after integration. In (2.2.15),

four of the Grassmann-even delta functions enforce momentum conservation, leaving 2n

delta functions and k(n+2−k) variables ciJ to integrate over. This leaves (k−2)(n−k)

integration variables, which we denote by τ . Thus (2.2.15) can be written as

F = J 〈x y〉2 δ(4)
(
q −

n∑
a=1

pa

)∫
d(k−2)(n−k)τ U(ciJ)

∏
J∈m

δ(4)(ηJ + ciJηi) , (2.2.19)

for some ciJ(τ) linear in τ , and an appropriate Jacobian J .

We shall illustrate the link variable method by proving that (2.2.19) computes the MHV

super form factor correctly. Abusing notation, we set m = {J,K}. We start by writing

the integrand as

n∏
a=1

1

(a a+ 1)
=

1

(J − 1 J)(J J + 1) (K − 1 K)(K K + 1)

n∏
a6=J−1,J,K−1,K

1

(a a+ 1)
.

(2.2.20)

Now introducing factors of (J K) and using the Schouten identity (2.2.18) gives

1

(a a+ 1)
=

(J K)

(a J)(a+ 1 K)− (a K)(a+ 1 J)
. (2.2.21)
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On the support of the delta functions this becomes

caJ ca+1K caK ca+1 J

cxy;JK ca a+1;JK
, (2.2.22)

where we have defined the notation,

cab;JK = caJ cbK − caK cbJ . (2.2.23)

To solve the delta functions, we change variables from (x a) and (y a) to (i J), incurring

a Jacobian (J K)n−2. The Jacobian factor from solving the delta functions is then

c−2
xJ c

−2
xK x

−2
yJ c

−2
yK

cJ−1 J cJ J+1 cK−1K cKK+1 cJ−1K cJ+1K cJ K−1 cJ K+1

×
n∏

a6=J−1,J,K−1,K

1

caJ ca+1 J caK ca+1K
(2.2.24)

After significant cancellations, we are left with

UMHV =
1

(cxy;JK)2 cJ−1K cJ+1K cJ K−1 cJ K+1

n∏
a6=J−1,J,K−1,K

1

ca a+1;JK
. (2.2.25)

Now solving the chiral delta functions in (2.2.15), we find that

ciJ =
〈i K〉
〈J K〉

, ciK =
〈i J〉
〈K J〉

, (2.2.26)

for all i ∈ p̄. In performing this integration, we gain another Jacobian 〈J K〉−n.

As in the maximally non-MHV case, the antichiral delta functions combine to yield

momentum conservation. On the support of (2.2.26), the fermionic delta functions

become

δ(4)

(
ηJ〈J K〉+ ηi〈i K〉

〈J K〉

)
δ(4)

(
ηK〈K J〉+ ηi〈i J〉

〈K J〉

)
= 〈J K〉−4δ(4)(Q+)δ(4)(Q−) ,

(2.2.27)

encoding supermomentum conservation. We finally arrive at

FMHV =
1

〈1 2〉 · · · 〈n 1〉
δ(4)(P )δ(4)(Q+)δ(4)(Q−) , (2.2.28)

in agreement with (1.2.42).
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2.2.3 1−2−3−4+ and Relation to BCFW

We now examine a component form factor, namely extracting the (γ+)0 behaviour by

working with purely gluonic external states. More specifically, we shall perform an

NMHV calculation, exposing an interesting parallel with BCFW recursion. We choose

I = {1, 2, 3} and i = {4, x, y}, whence (2.2.17) reads

U1−2−3−4+
=

∫ 4∏
a=1

d(x a) d(y a)

(a a+ 1)

3∏
J=1

δ
(
cxJ −

1

(xJ)

)
δ
(
cyJ −

1

(y J)

)
δ
(
c4J −

1

(4 J)

)
.

(2.2.29)

With nine delta functions and eight integrations, there is one delta function remaining

after all integrations are carried out. The integrations over (xJ) and (y J) are straight-

forward, and one can then choose to solve the two delta functions involving (4 1) and

(4 2), producing a Jacobian, and insert this solution into the remaining delta function

for (4 3). Collecting all terms from this process, one finds that

U1−2−3−4+
=

cx2 cy2

c42 cxy;21 cxy;23
δ(S123;4xy) , (2.2.30)

where, following the notation introduced in [166], we define

Sijk;lmn
..= cmi cmj clk cnk cln;ij − cni cnj clk cmk clm;ij − cli clj cmk cnk cmn;ij . (2.2.31)

Following (2.2.19), the form factor can be obtained by integrating out the remaining

delta function. We have performed this calculation using Mathematica, and found

that the result agrees numerically with (1.2.56). However, the resulting expression has

a considerable number of terms, and so is not particularly enlightening for analytic

study. Fortunately, there is a more efficient way to derive the final result which avoids

solving the constraint of δ(S123;4xy) altogether. As in Section 1.3.2, we appeal to the

global residue theorem, by reinterpreting
∫

dτ as a contour integral.

More explicitly we may write

F 1−2−3−4+
=

∮
dτ

cx2 cy2

c42 cxy;21 cxy;23

1

S123;4xy
, (2.2.32)

where the contour surrounds only the poles at S123;4xy(τ) = 0. By the global residue

theorem, we may equivalently compute the result in terms of the other poles of the

integrand, namely the simple zeros of c42(τ), cxy;21(τ) and cxy;23(τ). The corresponding
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residues are

F42 = − 〈1 3〉4 q4

s134 〈1 4〉 〈3 4〉 〈3|q|2] 〈1|q|2]
,

Fxy;21 = − 〈3|q|4]3

s124 [1 2] [1 4] 〈3|q|2]
,

Fxy;23 = − 〈1|q|4]3

s324 [3 2] [3 4] 〈1|q|2]
,

(2.2.33)

and the complete result is obtained by adding the three terms,

F 1−2−3−4+
= F42 + Fxy;21 + Fxy;23 . (2.2.34)

It is notable that each term in (2.2.33) depends on px and py only through the combi-

nation px + py = q. Moreover, each term is a rational function of external kinematics.

Interestingly, these two properties do not hold for the four terms arising from the so-

lutions of the scattering equation S123;4xy = 0, and are only recovered in the sum over

the four solutions.

Perhaps more remarkably, each term in (2.2.33) corresponds to a BCFW diagram for a

[1 2〉 shift, analogously to the amplitude case, as discussed in [166]. Specifically, observe

that the sum in (2.2.34) corresponds, term by term, to the sum given by the BCFW

expansion of the form factor in Figure 3.

2.3 Relation to the Grassmannian

In Section 1.2.6, we saw that the NkMHV super form factor of the chiral stress tensor

multiplet admits a representation as a Grassmannian integral,47,

Fn,k = 〈n+1 n+2〉2
∫

dk×(n+2)CJa d2kρJ
|GL(k;C)|

×
∑
ins

Ωn,k(C)δ(2(n+2))(ρJcJa − λa)δ(2k)(cJaλ̃a)δ
(4k)(cJaηa)

(1 · · · k) · · · (n+ 2 · · · k − 1)
, (2.3.1)

where the numerator factor is

Ωn,k(C) =
Y

1− Y
, Y =

(n+2−k · · ·nn+1)(n+2 1 · · · k−1)

(n+2−k · · ·nn+2)(n+1 1 · · · k−1)
. (2.3.2)

47In this section we will set m = {1, . . . , k}, p = {k+1, . . . , n} and {x, y} = {n+1, n+2} for conve-
nience. Recall that the sum is over certain insertions of {n+1, n+2} into {1, . . . n}, specified for various
cases in [4].
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We are interested in connecting this conjecture with the result (2.1.11) expressing the

form factor as a sum over solutions to the rational scattering equations. An obvious

approach is suggested by comparison to [170], in which Grassmannian amplitude for-

mulae are mapped to CHY-type formulae courtesy of the Veronese map (1.3.23). We

can perform a partial integration of (2.3.1), reducing it to an integral over G(2, n+2)

in this embedding:48

Fn,k = 〈n+1n+2〉2
∫

dn+2σ dn+2ξ d2kρ

|GL(2;C)|
∑
ins

ΩV
n,k(σa, ξa)∏n+2

a=1 ξa(σa − σa+1)

×
n+2∏
a=1

δ(2)
(
λa − ξa

∑
J∈m

ρJσ
J−1
a

) ∏
J∈m

δ(2|4)
( n+2∑
a=1

ξaσ
J−1
a {λ̃a|ηa}

)
.

(2.3.3)

The delta functions enforce the polynomial scattering equations in the language of

[171]. For practical purposes it it more convenient to partially gauge fix the GL(k;C)

symmetry before applying the Veronese map, enforcing the rational scattering equations

of [158]. We also apply the change of variables (2.1.6) to yield

〈n+1n+2〉2
∫

d2(n+2)σ

GL(2)

∑
ins

ΩV
n,k(σa, ta)

(σ1σ2) · · · (σn+2σ1)

×
∏
i∈p̄

δ(2)(λi − λ(σi))
∏
J∈m

δ(2|4)(λ̃J − λ̃(σJ), ηJ − η(σJ)) ,
(2.3.4)

where the functions defining the scattering equations are given by (1.3.72). Under the

Veronese map, Y then becomes

Y V (σa, ξa) =

n∏
j=n+2−k

σj − σn+1

σj − σn+2

k−1∏
i=1

σn+2 − σi
σn+1 − σi

, (2.3.5)

after using the Vandermonde determinant formula. Note immediately that this is in-

dependent of the ξa, thus the transition to the rational scattering equation version is

simply the identity map. In terms of the homogeneous coordinates, (2.3.5) is

Y V (σa) =

n∏
j=n+2−k

(j n+ 1)

(j n+ 2)

k−1∏
i=1

(n+ 2 i)

(n+ 1 i)
. (2.3.6)

The authors of [165] conjectured a simpler formula for the chiral stress tensor super

form factor, namely (2.1.11). In the cases k = 2 and k = n a short calculation shows

48Naively one might worry that there are four fewer integration variables than δ-functions. However
the leftover constraints combine to form the δ-function of momentum conservation in the final answer,
as required.
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agreement with the formula (2.3.6) obtained from the Grassmannian. Indeed, these

cases correspond to the MHV and maximally non-MHV form factor, where the sum

in (2.3.1) consists of a single term. More generally, one must sum over terms arising

from several top-cell forms constructed via on-shell diagrams. These correspond to

particular cyclic shifts of the insertion point of the additional legs representing the

form factor.

The first non-trivial case in which we wish to show agreement between (2.3.4) and

(2.1.11) is n = 4, k = 3, which corresponds to the helicity assignment 1−2−3−4+ in our

chosen convention. For this case it was shown in [87] that the appropriate insertions

are {1, 2, 3, 4, 5, 6} and {1, 2, 5, 6, 3, 4}. A little algebra suffices to prove that

Y1

1− Y1

1

(1 2)(2 3)(3 4)(4 5)(5 6)(6 1)
+

Y2

1− Y2

1

(1 2)(2 5)(5 6)(6 3)(3 4)(4 1)

=
1

(1 2)(2 3)(3 4)(4 1)(5 6)2
,

(2.3.7)

where

Y1 =
(3 5)(4 5)(6 1)(6 2)

(3 6)(4 6)(5 1)(5 2)
, Y2 =

(1 5)(2 5)(6 3)(6 4)

(1 6)(2 6)(5 3)(5 4)
. (2.3.8)

Note that in (2.3.7) we have obtained the expected integrand, where the auxiliary

particles associated to the form factor now only appear in the factor (5 6)2.

The next non-trivial case is n = 5, k = 3. In this case, we have checked numerically

that no combination of insertions reproduces the formula (2.1.11). This is not so

surprising, since in this case different residues are required from each top-cell diagram,

whereas the Veronese map treats terms democratically. In Section 2.5 we indirectly

verify our formula in the 5-point NMHV sector, confirming that the tension with the

Grassmannian integral representation is a interesting mathematical feature.

It would be interesting to determine whether there is an improved choice of top-cells

compatible with a Veronese reduction. As a first step towards this goal, we consider

uplifting our link representation formula (2.2.30) to a Grassmannian integral, following

the procedure first outlined for amplitudes in [172]. In terms of 3 × 3 minors we

find

F 1−2−3−4+
=

(1 3 6)(1 3 5)

(1 3 4)(1 5 6)(3 5 6)(1 2 3)

× 1

(1 2 3)(3 4 5)(1 5 6)(2 4 6)− (2 3 4)(4 5 6)(1 2 6)(1 3 5)
, (2.3.9)

where we have omitted the integration and measure for brevity. In deriving this formula,
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we employed the quadratic Plücker relations,

(a b c)(d i j)− (b c d)(a i j) + (c d a)(b i j)− (d a b)(c i j) = 0 , (2.3.10)

arising from the implicit non-linear embedding of the Grassmannian in the projective

space of the kth exterior power of Cn. We also scaled the answer by factors of (1 2 3)

to ensure that the expression has uniform weight −3 in every leg. This is a permitted

operation since (1 2 3) = 1 in our chosen gauge.

In (2.3.9) the square bracketed term emerges from the rational scattering equation delta

function. Näıvely, we should evaluate the residue when this term vanishes. However,

we saw in the previous section that it can be advantageous to consider the other poles,

by virtue of the global residue theorem. Doing so will allow us to partially match our

uplifted formula onto (2.3.1).

Both the residue at (1 2 3) = 0 and the residue at (1 5 6) = 0 may be equivalently

obtained from the integrand,

1

(1 2 3)(2 3 4)(3 4 5)(4 5 6)(5 6 1)(6 1 2)

(3 4 5)(6 1 2)

(3 4 6)(5 1 2)− (3 4 5)(6 1 2)
, (2.3.11)

as one may easily check with a little algebraic manipulation. Note that the second

factor in (2.3.11) is exactly of the form Y
1−Y , as expected. The situation for the poles

(1 3 4) = 0 and (3 5 6) = 0 is more mysterious, but may be resolved similarly by first

applying the permutation identity derived in Section 3.2 of [173].

2.4 Ambitwistor String Theory

The result (2.1.11) bears a close resemblance to the formula (1.3.73) first derived in [158]

from an ambitwistor-string model, describing the tree-level n-particle scattering in four-

dimensional N = 4 SYM. In this construction, the Parke-Taylor denominator of the

measure emerges from a current algebra on the worldsheet, as we reviewed in Section

1.3.3.

We may construct the measure of formula (2.1.11) from ambitwistor strings in a similar

way, at least up to an overall factor. We must include two additional vertex operators,

corresponding to the punctures σn+1 and σn+2 on the Riemann sphere. These are

dressed with additional currents defined as in (1.3.61). However, in order to obtain

the chiral stress tensor super form factor, we now do not require the single trace term.
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Rather we extract from Wick’s theorem the double trace term displayed below,

〈Ja1 · · · Jan+2〉 = · · ·+ Tr (T a1 · · ·T an)

(σ1 − σ2) · · · (σn − σ1) (σn+1 − σn+2)2
· Tr (T an+1T an+2) + · · · ,

(2.4.1)

providing the appropriate denominator and colour factor for the on-shell state. It would

be very interesting to have a complete derivation of (2.1.11) from ambitwistor strings,

also explaining the 〈x y〉2 prefactor. This may require a more complete description of

the vertex operator corresponding to the operator insertion, perhaps inspired by recent

work [174–177]. Such a construction may also be applicable for the Tr(φk) form factors

considered in [164].

Of course, the current algebra in the four-dimensional ambitwistor string construction

is identical to that in the ten-dimensional formula of [178] which reproduces standard

CHY formulae. We might thus recast the formula (2.1.11) as a sum over solutions to the

standard scattering equations [2]. To do this would require an appropriate prescription

for the polarisation vectors associated with the off-shell insertion. We detail such a

proposal in Section 2.5.

Given that form factors emerge so naturally from an ambitwistor string construction,

it is tempting to speculate that appropriate current algebra modifications might al-

low the construction of still more general objects, namely correlation functions. An

obvious generalisation of the approach followed for form factors would be to include

additional auxiliary particles to represent further operator insertions. The simplest

example would be that of a two-point correlator of O = TrF 2
SD and Ō = TrF 2

ASD with

the vacuum as the external state. In order to contract the two operators, we choose the

two pairs of auxiliary particles to have opposite helicity, (x+, y+) and (u−, v−). One

might conjecture

〈0| O(q) Ō(q′) |0〉 = 〈x y〉2 [u v]2
∫

1

|GL(2;C)|
d2σx d2σy

(x y)2

d2σu d2σv
(u v)2

×
∏
i=x,y

δ(2)(λi − λ(σi))
∏
J=u,v

δ(2)(λ̃J − λ̃(σJ)) , (2.4.2)

where

λ(σ) =
∑
J=u,v

λJ
(σ σJ)

, λ̃(σ) =
∑
i=x,y

λ̃i
(σi σ)

. (2.4.3)

An explicit calculation shows that (2.4.2) is equal to

q4 δ(4)(px + py + pu + pv) , (2.4.4)
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with q = px + py. This is not quite the result one expects to find [179], namely

〈0| O(q) Ō(q′) |0〉 ∼ δ(4)(q + q′) q4 log(q2) + analytic terms . (2.4.5)

In particular the log q2 term is absent. In order to be able to derive such terms one

may need to understand scattering equations for off-shell quantities at loop level, along

the lines of [180–182].

2.5 Towards a CHY Formula

In Section 2.2, we expressed the form factor of TrF 2
SD as a sum over solutions to the

rational scattering equations (1.3.74). This formalism naturally exposes supersymme-

try, but is closely tied to four spacetime dimensions. We may immediately contrast

the CHY formula (1.3.31), which admits no known supersymmetrisation, but is valid

in arbitrary dimensions. Nevertheless, there are at least two methods for translating

between the formalisms. Firstly, one may take advantage of ambitwistor string the-

ory, recalling from Section 1.3.3 that the rational scattering equations emerge from a

four-dimensional specialisation of a general theory reproducing the full CHY result.

Secondly, one can directly reduce from arbitrary dimensions to the four-dimensional

refinement along the lines laid out by Zhang [183]. Importantly Zhang observed that

the Pfaffian (1.3.36) exactly cancels a Jacobian factor upon performing the appropriate

change of variables, explaining why (1.3.73) has unit numerator.

These methods provide a means of lifting the form factor (2.1.11) to a CHY version,

expressed a sum over the scattering equations (1.3.30). More precisely, we specialise to

purely gluonic external states, and hence conjecture the following formula for the tree

level form factor of TrF 2 in pure Yang-Mills theory in four dimensions:

Fn =
∑

polarisations

1

2
(px·py ε̄x·ε̄y−ε̄x·py ε̄y·px)

∮
dn+2σ

dω

��Pf(Ψn+2)

(σx − σy)2

n∏
a=1

1

σa − σa+1
�
�
�
�n+2∏

a=1

1

fa(σ, k)
.

(2.5.1)

where the momenta of the two auxiliary particles sum to the off-shell momentum q

and we sum over the polarisations εx and εy as in [184]. Note immediately that the

integrand is Möbius invariant, since it differs from the amplitude case by a cross-ratio

factor
(σn−σx)(σy−σ1)
(σx−σy)(σn−σ1) . Leaving aside the gauge invariant prefactor for now, clearly the

formula reduces to (2.1.11) on applying the Zhang rules and choosing x and y to have

positive helicity. Moreover, it is trivially what we expect to obtain by extracting the

trace structure (2.4.1) from the full Mason-Skinner ambitwistor string. It only remains

to understand the agreement of the prefactors. In four dimensions we may represent
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the polarisation vectors by

ε+x =
√

2
|x]〈y|
〈x y〉

, ε+y =
√

2
|y]〈x|
〈y x〉

, ε−x =
√

2
|x〉[y|
[x y]

, ε−y =
√

2
|y〉[x|
[y x]

. (2.5.2)

Then we find that

1

2
(px · py ε̄+x · ε̄+y − ε̄+x · py ε̄+y · px) = 〈x y〉2 , (2.5.3)

as required for the self-dual part of the form factor, where we have implicitly restricted

to real momenta by exchanging angle and square spinors upon complex conjugation.

Similarly we obtain the prefactor [x y]2 for the anti-self-dual case, where x and y are

chosen to have negative helicity. The prefactor gives zero contribution when x and y

have opposite helicities. Hence, we should expect (2.5.1) to compute the form factor of

TrF 2 in four dimensions. We have verified that this is correct using the Mathematica

package documented in Appendix A. Most importantly, we evaluated the n = 5, k = 3

case in which the Veronese reduction was shown to fail, demonstrating agreement with

the sum of MHV diagrams in Figure 4. We did not compute this case in [10].

There are several potential extensions of these observations which we hope to report

on in future work. Firstly, following Dolan and Goddard [185] one should be able to

inductively prove the formula (2.5.1) in four dimensions by demonstrating the validity

of an appropriate recurrence relation. Indeed, the appearance of BCFW terms in

Section 2.2.3 lends weight to this proposal. Secondly, one might consider whether

the formula (and any proof) still holds in arbitrary dimension. Indeed, even in the

base case n = 2, k = 2 a naive evaluate of the Pfaffian produces a large number of

terms, which must combine and cancel to produce the simple result demanded by Wick

contractions,

F2 =
1

4
〈0|Tr [(qµAν − qνAµ)(qµAν − qνAµ)] |1, 2〉 =

1

2
(p1 · p2 ε1 · ε2 − ε1 · p2 ε2 · p1) .

(2.5.4)

A further advantage of the CHY formula over the rational version is the ability to

extend the result to loop level.49 Supposing that a five-dimensional formula could be

verified, one might apply the arguments of [184] to obtain a loop integrand in the

Q-cut representation [188], in particular reproducing the rational terms discovered by

Davies [189]. Finally, one might attempt to find similar formulae for other operators in

pure Yang-Mills, most obviously TrF 3. For this operator, a CHY formula in the soft

49At present the rational scattering equations at loop level are not well understood. The attempted
construction [186] suffers from technical pathologies. For example, the sa variables are set to zero
for MHV amplitudes, rendering the formula meaningless. During the preparation of this manuscript,
a more promising proposal appeared [187], based on the relations between CHY and Grassmannian
formulae. It would be fascinating to extend these arguments to the form factor case.
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limit q → 0 was already determined in [190].
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Chapter 3

Soft Gluon Theorems at Tree

Level and One Loop

In this chapter, we constrain soft gluon theorems at tree level and one loop using

dual conformal symmetry, inspired by [163]. We find that the tree level subleading

soft theorem may be exactly reconstructed, under weak conditions. However, the one-

loop constraint is insufficiently strong to provide a unique solution at subleading order.

We then explicitly calculate the subleading soft anomaly in the MHV and NMHV

sectors, as defined by (1.2.109), through finite order in the IR regulator. This extends

the previously known IR divergent results of [129]. We find evidence for universality

within, but not between, helicity sectors. The text follows very closely that of [9], in

which the author contributed a large amount of the written content.

3.1 Constraints from Conformal Symmetry

In [163], conformal symmetry was used in order to determine the tree-level soft theorem

(1.2.102). As a warm-up to our dual conformal calculations we shall briefly review this

method. From now on we employ arbitrary forms of the stripped amplitudes, with the

proviso that an n-point momentum conservation prescription should be applied after-

wards.

First recall that the special conformal generator takes the form,50

kαα̇ =

n∑
i=1

∂2

∂|i〉∂[i|
, (3.1.1)

50Here, and elsewhere in this chapter, we leave some spinor indices implicit.
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and upon expanding in the soft parameter δ,

kαα̇ =

n−1∑
i=1

∂2

∂|i〉∂[i|
+

1

δ

∂2

∂|n〉∂[n|
. (3.1.2)

Now note that k annihilates arbitrary forms of tree-level stripped superamplitudes, in

particular order by order in δ. Applying k to (1.2.102) yields the constraint equa-

tions,

∂2

∂|n〉∂[n|

(
S(0)Atree

n−1

)
= 0 , (3.1.3)

n−1∑
i=1

∂2

∂|i〉∂[i|

(
S(0)Atree

n−1

)
+

∂2

∂|n〉∂[n|

(
S(1)Atree

n−1

)
= 0 . (3.1.4)

These equations allow us to determine the forms of the soft factors. In fact we shall

require extra input from considerations of little group scaling, mass dimension and

colour ordering. Firstly, the soft operators must have mass dimension −1. Furthermore,

since we are taking a positive helicity particle soft, the soft operators must transform

with weight −2 under the little group scaling,

|n〉 → t|n〉 , |n]→ t−1|n] , (3.1.5)

and remain invariant under little group scaling for all other particles. Finally, since the

amplitudes are colour ordered, the soft operators may only depend on particles n − 1

and 1 adjacent to n, since only these share a colour line with n.51 At one loop we

will find that this simplifying assumption no longer holds since internal gluons carry

colour dependence between arbitrary particles. Putting all this information together

with the conformal Ward identities (3.1.3) and (3.1.4) suffices to determine S(0) and

S(1) as written in (1.2.96) and (1.2.97).

It is difficult to generalise the method of [163] to loop level, because the conformal

anomaly takes a complicated form. The current state of the art is restricted to MHV

amplitudes and is rather intricate [191]. By contrast, the dual conformal anomaly

(1.2.49) is very simple, which will allow us to make progress in the next section.

51At tree level in the planar sector, the only way that the color structure of particles can become
entagled is if they are adjacent. The reader may swiftly verify this by attempting to find a counter-
example in ’t Hooft double line notation [47].
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Figure 9: Solving for xj(p) clockwise around the polygon from xi.

3.2 Constraints from Dual Conformal Symmetry

Our goal is to constrain soft factors using dual superconformal symmetry. Initially we

work at tree level, then we extend the technique to one-loop amplitudes. To begin with,

we collect a few results about soft limits in dual space.

In analogy with the previous section, we must expand the dual conformal boost gener-

ator (1.2.47) in powers of the soft parameter δ. This involves solving for dual momenta

xi in terms of momenta pj . This procedure is ambiguous because of momentum con-

servation. In general we may freely fix any xi allowing us to perform the change of

variables x→ p. More precisely, we determine xj as a sum of the pk between xi and xj

as indicated in Figure 9. The clockwise orientation is an arbitrary choice corresponding

to taking j > i cyclically.

In Section 1.2.9 we saw that momentum conservation is a subtle issue for sublead-

ing soft theorems. Therefore we must be careful regarding the ambiguity in base point

xi and orientation around the polygon when solving for x(p). In the following we use

a prescription that eliminates a pair of antiholomorphic spinors (|a], |b]) according to

the substitution (1.2.100).

The simplest choice52 is to fix x3 = 0 and solve clockwise around the polygon, whence

xkαα̇ = −
k−1∑
j=3

|j]〈j| , (3.2.1)

52In order to preserve momentum conservation and on-shell external momenta, a minimum of three
momenta must acquire δ dependence, and hence a minimum of two dual momenta must be δ-dependent.
Our choice (3.2.1) achieves this.
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Figure 10: Setting x3 = 0 is compatible with eliminating |1] and |2].

for k 6= 3. The solution (3.2.1) is compatible with eliminating |1] and |2]. The only

δ-dependent region momenta are then x1 and x2 as shown in Figure 10. Similarly, for

the fermionic variables we set θ3 = 0 and write

〈θAk | = −
k−1∑
j=3

〈j|ηAj , (3.2.2)

for k 6= 3. We should view (3.2.1) and (3.2.2) as a frame choice well-adapted to the

computations which follow. Of course, any result we derive in this frame may trivially

be transformed to another using the substitution (1.2.100).

The soft expansion of the dual conformal boost generator is

Kαα̇ = −
∑
i 6=3

i−1∑
j=3

′ |j]〈i|
(
|j〉 · ∂

∂|i〉

)
−
∑
i 6=2

i∑
j=3

′ |i]〈j|
(
|j] · ∂

∂|i]

)
−
∑
i 6=2

i∑
j=3

′ |i]〈j|ηAj
∂

∂ηAi

− δ|n]〈2|
(
|n〉 · ∂

∂|2〉

)
− δ|n]〈1|

(
|n〉 · ∂

∂|1〉

)
− δ|n]〈n|

(
|n] · ∂

∂|n]

)
− δ|1]〈n|

(
|n] · ∂

∂|1]

)
− δ|n]〈n|ηAn

∂

∂ηAn
− δ|1]〈n|ηAn

∂

∂ηA1
,

(3.2.3)

where
∑

j

′
indicates a sum over j 6= n. Similarly the statement of dual conformal

covariance (1.2.48) yields

Kαα̇A
tree
n =

(∑
i 6=3

i−1∑
j=3

′ |j]〈j|+ 2δ|n]〈n|
)
Atree
n . (3.2.4)

Paraphrasing (1.2.49), the dual conformal operator acts on one-loop amplitudes to

give

Kαα̇A
1-loop
n = (anomaly)Atree

n + (covariance)A1-loop
n . (3.2.5)
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For later convenience we reproduce the soft expansion of the covariance statement from

(3.2.4),

(covariance) =
(∑
i 6=3

i−1∑
j=3

′ |j]〈j|+ 2δ|n]〈n|
)
. (3.2.6)

In the frame choice (3.2.1) the soft expansion of the anomaly (1.2.49) is

(anomaly) = −2

ε
cΓ

[ ∑
i 6=1,3,n

i−1∑
j=3

′ |j]〈j|
(
−(i− 1 i)

)−ε
+
n−1∑
j=3

|j]〈j|
(
−δ(n− 1 n)

)−ε
+
n−1∑
j=3

|j]〈j|
(
−δ(n 1)

)−ε
+ δ|n]〈n|

(
−δ(n 1)

)−ε
+ δ|n]〈n|

(
−(1 2)

)−ε ]
.

(3.2.7)

3.2.1 Tree Level Constraints

By keeping the leading 1/δ divergence in (3.2.3) we find the following constraint equa-

tion for the leading soft factor, in analogy with (3.1.3),

(
Kαα̇A

tree
n

)
O(δ−2)

= (Kαα̇)O(δ0)

(
S(0)Atree

n−1

)
=
(∑
i 6=3

i−1∑
j=3

′ |j]〈j|
)
S(0)Atree

n−1 . (3.2.8)

The covariance statement for (n−1)-point amplitudes gives

(Kαα̇)O(δ0)A
tree
n−1 =

( ∑
i 6=3,n

i−1∑
j=3

′ |j]〈j|
)
Atree
n−1 . (3.2.9)

Hence (3.2.8) simplifies to

(Kαα̇)O(δ0) S
(0) =

( n−1∑
j=3

|j]〈j|
)
S(0) . (3.2.10)

This leading order behaviour can be checked explicitly using the known form of S(0)

and the formulae in Appendix B. Conversely we may use (3.2.10) to determine the form

of S(0), at least up to a constant factor. Since our amplitudes are colour ordered, we

may assume

S(0) = f(〈a b〉, [a b]) , (3.2.11)
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where a, b can take values in {n−1, n, 1}. To obtain the dual conformal transformation

(3.2.10) f must be proportional to

1

〈n 1〉
or

1

[n− 1 n]
. (3.2.12)

The constant of proportionality must have mass dimension 0. Moreover f must trans-

form under little group scaling with weight +2 for particle n and 0 for all other parti-

cles. These constraints rule out the second option in (3.2.12), and lead us immediately

to

f = k
〈n− 1 1〉

〈n− 1 n〉〈n 1〉
(3.2.13)

Assuming universality, we may fix k = 1 by examining the simplest example, namely a

four-point MHV amplitude.

At subleading order we employ the approach of [129], allowing the freedom to use

arbitrary forms of the stripped amplitudes in our derivations. The dual conformal

analogue of (3.1.4) is

(
Kαα̇A

tree
n

)
O(δ−1)

= (Kαα̇)O(δ1)

(
S(0)Atree

n−1

)
+ (Kαα̇)O(δ0)

(
S(1)Atree

n−1

)
= 2|n]〈n|S(0)Atree

n−1 +
(∑
i 6=3

i−1∑
j=3

′ |j]〈j|
)
S(1)Atree

n−1 .
(3.2.14)

It is convenient to rewrite the first line of (3.2.14) to obtain

(
Kαα̇A

tree
n

)
O(δ−1)

= −|n]〈1|
〈n 1〉

Atree
n−1 + S(0) (Kαα̇)O(δ1)A

tree
n−1

+
[
(Kαα̇)O(δ0) , S

(1)
]
Atree
n−1 + S(1)

( ∑
i 6=3,n

i−1∑
j=3

′ |j]〈j|
)
Atree
n−1

 .
(3.2.15)

Using the covariance statement for (n−1)-point amplitudes we get

− |n]〈1|
〈n 1〉

Atree
n−1 + S(0) (Kαα̇)O(δ1)A

tree
n−1 +

[
(Kαα̇)O(δ0) , S

(1)
]
Atree
n−1

+Atree
n−1S

(1)
( ∑
i 6=3,n

i−1∑
j=3

′ |j]〈j|
)

= 2|n]〈n|S(0)Atree
n−1 +

( n−1∑
j=3

|j]〈j|
)
S(1)Atree

n−1 . (3.2.16)

We begin by verifying this using the known form of the subleading soft operator S(1).

First note that
|n]〈1|
〈n 1〉

+ S(1)
( ∑
i 6=3,n

i−1∑
j=3

′ |j]〈j|
)

= 2|n]〈n|S(0) , (3.2.17)
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using a Schouten identity, whence (3.2.16) becomes

−2
|n]〈1|
〈n 1〉

Atree
n−1+S(0) (Kαα̇)O(δ1)A

tree
n−1+

[
(Kαα̇)O(δ0) , S

(1)
]
Atree
n−1 =

( n−1∑
j=3

|j]〈j|
)
S(1)Atree

n−1 .

(3.2.18)

Using formulae from Appendix B and Schouten identities we evaluate

[
(Kαα̇)O(δ0) , S

(1)
]

=
( n−1∑
j=3

|j]〈j|
)
S(1) + S(0)|1]〈n|

(
|n] · ∂

∂|1]

)
+ S(0)|n]〈1|

(
|n〉 · ∂

∂|1〉

)

− |n]〈1|
〈n 1〉

(
|1〉 · ∂

∂|1〉
− |1] · ∂

∂|1]
− ηA1
〈n 1〉

∂

∂ηA1

)
,

(3.2.19)

and observe that

S(0) (Kαα̇)O(δ1) = −S(0)|1]〈n|
(
|n] · ∂

∂|1]

)
− S(0)|n]〈1|

(
|n〉 · ∂

∂|1〉

)
. (3.2.20)

Hence (3.2.18) simplifies to

− |n]〈1|
〈n 1〉

(
|1〉 · ∂

∂|1〉
− |1] · ∂

∂|1]
− ηA1
〈n 1〉

∂

∂ηA1

)
Atree
n−1 = 2

|n]〈1|
〈n 1〉

Atree
n . (3.2.21)

On the the left-hand side of (3.2.21) we immediately recognise the appearance of the

helicity operator (1.2.31) for particle 1. Recalling that superamplitudes have unit he-

licity completes the verification.

Conversely, we can use (3.2.16) to derive the form of S(1) up to two constants. From

Taylor series considerations it is natural to expect S(1) to be a derivative operator. We

first split the constraint according to whether derivatives act, yielding

S(0) (Kαα̇)O(δ1) +
[(
Kαα̇

)
O(δ0)

, S(1)
]

=
( n−1∑
j=3

|j]〈j|
)
S(1) , (3.2.22)

−|n]〈1|
〈n 1〉

+ S(1)
( ∑
i 6=3,n

i−1∑
j=3

′ |j]〈j|
)

= 2|n]〈n|S(0) . (3.2.23)

Note that we might expect some mixing between the terms in each equation by virtue

of the identity operator. The canonical representation of the identity under these cir-

cumstances is as a helicity operator. Hence we look for a form of S(1) which satisfies

(3.2.22) up to additive helicity operators.

The key observation is found by studying the derivative structure of S(0) (Kαα̇)O(δ1) in

(3.2.20). After Schoutening, the second term on the right hand side yields a derivative
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structure which appears in (Kαα̇)O(δ0), namely

|n− 1〉 · ∂

∂|1〉
, (3.2.24)

and one which appears in the helicity operator for particle 1, namely

|1〉 · ∂

∂|1〉
. (3.2.25)

Now (3.2.22) and Occam’s razor suggest that the second term on the right hand side

of (3.2.20) does not represent a contribution to S(1). On the contrary, the first term

does not admit such a Schoutening since the derivative part involves antiholomorphic

spinors. We thus propose that

S(1) ∝ |n] · ∂

∂|1]
. (3.2.26)

As in the leading case, the requirements of mass dimension, little group scaling and

colour ordering constrain the constant of proportionality, leading to

S(1) =
k|n]

〈n 1〉
· ∂

∂|1]
. (3.2.27)

Of course, freedom to relabel the polygon in the opposite direction dictates the appear-

ance of a similar term involving particle (n− 1). We finally arrive at

S(1) =
k|n]

〈n− 1 n〉
· ∂

∂|n− 1]
+

l|n]

〈n 1〉
· ∂

∂|1]
. (3.2.28)

As above, k and l may be set to 1 by assuming universality and considering two non-

trivial examples.

Similarly to [163] we can fix the leading and subleading soft operators at tree level,

with mild assumptions. More importantly, we may now use the simple form of the one-

loop anomaly of dual conformal symmetry to study soft factorisation at one-loop level,

as we will see below. Note in this context that the conventional conformal anomaly is

much more complicated and its general form is not known.
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3.2.2 One Loop Constraints

In Section 1.2.9 we conjectured a form for the one-loop soft theorem

A1-loop
n → 1

δ2

(
S(0)A1-loop

n−1 + S(0)1-loopAtree
n−1

)
+

1

δ

(
S(1)treeA1-loop

n−1 + S(1)1-loopAtree
n−1

)
,

(3.2.29)

with previous results for S(0)1-loop and the infrared-divergent part of S(1)1-loop quoted

in (1.2.107) and (1.2.108). We now derive dual conformal constraint equations on both

S(0)1-loop and S(1)1-loop through O(ε0). These equations provide non-trivial checks on

the known expressions. Furthermore, the one-loop subleading soft constraint suggests

an ansatz for the hitherto unknown infrared-finite part of S(1)1-loop.

The one-loop version of (3.2.8) is, by using (1.2.106),(
Kαα̇A

1-loop
n

)
O(δ−2)

= (Kαα̇)O(δ0)

(
S(0)F (0)Atree

n−1 + S(0)A1-loop
n−1

)
= (anomaly)O(δ0) S

(0)Atree
n−1 + (covariance)O(δ0) S

(0)F (0)Atree
n−1

+ (covariance)O(δ0) S
(0)A1-loop

n−1 ,

where F (0) is defined in (1.2.107). This can be simplified significantly by recycling our

tree-level knowledge; in fact, we can remove all terms involving the one-loop amplitude.

Recall from (3.2.8) that

(Kαα̇)O(δ0)

(
S(0)Atree

n−1

)
= (covariance)O(δ0) S

(0)Atree
n−1 , (3.2.30)

and hence we find that

(Kαα̇)O(δ0)

(
S(0)A1-loop

n−1

)
= (covariance)O(δ0) S

(0)A1-loop
n−1 + (anomaly)n−1 S

(0)Atree
n−1 .

(3.2.31)

Using these results (3.2.30) simplifies to

(Kαα̇)O(δ0) F
(0) + (anomaly)n−1 = (anomaly)O(δ0) , (3.2.32)

or more explicitly,

(Kαα̇)O(δ0) F
(0) =

2

ε
cΓ

( n−1∑
j=3

|j]〈j|
)[(

−δ(n− 1 n)
)−ε

+
(
−δ(n 1)

)−ε
−
(
−(n− 1 1)

)−ε]
.

(3.2.33)

Firstly we wish to verify that (3.2.33) holds using the known expression for F (0) in

(1.2.107). It is easy to see that this is true at O(ε−1). Using results from Appendix B
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we find that

(Kαα̇)O(δ0)

(
(n− 1 1)

(n− 1 n)(n 1)

)
= 2
( n−1∑
j=3

|j]〈j|
)( (n− 1 1)

(n− 1 n)(n 1)

)
, (3.2.34)

whence at O(ε0) in (3.2.33) both sides evaluate to

2cΓ

( n−1∑
j=3

|j]〈j|
)

log

(
− 1

δ2

(n− 1 1)

(n− 1 n)(n 1)

)
, (3.2.35)

confirming the consistency of (3.2.33) at O(ε0) also.

Conversely we can use (3.2.33) as a constraint equation to determine F (0) up to and

including ε0 terms, provided that we assume that F (0) only depends on particles n− 1,

n and 1 and is a dimensionless, helicity-blind function. The derivation proceeds analo-

gously to that in Section 3.2.1.

Näıvely, the restriction to particles neighbouring n seems unreasonable from the Wilson

loop perspective. Indeed, we might expect contributions from diagrams where an inter-

nal gluon connects an arbitrary edge to pn. However, the scalar boxes corresponding

to the non-cusp diagrams do not contribute in the leading soft limit. This is perhaps

most obvious from the perspective of MHV diagrams [134].

The one-loop version of (3.2.14) is(
Kαα̇A

1-loop
n

)
O(δ−1)

= (Kαα̇)O(δ1)

(
S(0)F (0)Atree

n−1 + S(0)A1-loop
n−1

)
+ (Kαα̇)O(δ0)

(
S(1)A1-loop

n−1 + F (1)S(1)Atree
n−1 + ZAtree

n−1

)
= (anomaly)O(δ1) S

(0)Atree
n−1 + (covariance)O(δ1) S

(0)F (0)Atree
n−1

+ (covariance)O(δ1) S
(0)A1-loop

n−1 + (anomaly)O(δ0) S
(1)Atree

n−1

+ (covariance)O(δ0) S
(1)A1-loop

n−1 + (covariance)O(δ0) F
(1)S(1)Atree

n−1

+ (covariance)O(δ0) ZA
tree
n−1 ,

(3.2.36)

where F (1) and Z are defined in (1.2.109). Just as in the leading case, we can re-

move all terms involving A1-loop
n−1 by recycling tree-level knowledge. Recall from (3.2.14)

that
(Kαα̇)O(δ1)

(
S(0)Atree

n−1

)
+ (Kαα̇)O(δ0)

(
S(1)Atree

n−1

)
= (covariance)O(δ1) S

(0)Atree
n−1 + (covariance)O(δ0) S

(1)Atree
n−1 ,

(3.2.37)
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and hence that

(Kαα̇)O(δ1)

(
S(0)A1-loop

n−1

)
+ (Kαα̇)O(δ0)

(
S(1)A1-loop

n−1

)
= (covariance)O(δ1) S

(0)A1-loop
n−1 + (covariance)O(δ0) S

(1)A1-loop
n−1 + S(1)

[
(anomaly)n−1A

tree
n−1

]
.

(3.2.38)

Applying these results to (3.2.36) we get

S(0)Atree
n−1 (Kαα̇)O(δ1) F

(0) + (F (0) − F (1)) (Kαα̇)O(δ1)

(
S(0)Atree

n−1

)
+ S(1)Atree

n−1 (Kαα̇)O(δ0) F
(1) +Atree

n−1 (Kαα̇)O(δ0) Z

= (F (0) − F (1)) (covariance)O(δ1) S
(0)Atree

n−1 + (anomaly)O(δ1) S
(0)Atree

n−1

+ (anomaly)O(δ0) S
(1)Atree

n−1 + (anomaly)n−1 S
(1)Atree

n−1 − S(1)
[
(anomaly)n−1

]
Atree
n−1

+
[
(covariance)O(δ0) − (covariance)n−1

]
ZAtree

n−1 .

(3.2.39)

To proceed, we separate this result into two equations, depending on whether derivatives

act on Atree
n−1; of course there may be some cancellations between these equations via the

appearance of helicity operators. With this separation we have derivative terms,

(F (0) − F (1))S(0) (Kαα̇)O(δ1)A
tree
n−1 + S(1)Atree

n−1 (Kαα̇)O(δ0) F
(1)

= (anomaly)O(δ0) S
(1)Atree

n−1 − (anomaly)n−1 S
(1)Atree

n−1 ,
(3.2.40)

and non-derivative terms,

S(0)Atree
n−1 (Kαα̇)O(δ1) F

(0) + (F (0) − F (1))Atree
n−1 (Kαα̇)O(δ1) S

(0) +Atree
n−1 (Kαα̇)O(δ0) Z

= (F (0) − F (1)) (covariance)O(δ1) S
(0)Atree

n−1 + (anomaly)O(δ1) S
(0)Atree

n−1

− S(1)
[
(anomaly)n−1

]
Atree
n−1 +

[
(covariance)O(δ0) − (covariance)n−1

]
ZAtree

n−1 .

(3.2.41)

We focus first on equation (3.2.40). Note that the derivatives in (Kαα̇)O(δ1) and S(1) do

not combine to yield a helicity operator. Therefore we may assume that this equation

is truly decoupled from (3.2.41). Using (3.2.32) we see that (3.2.40) is satisfied if we

choose F (1) = F (0). This is consistent with the known infrared divergent behaviour of

F (1) and extends it to finite order in ε.

With this choice, (3.2.41) simplifies to give

S(0)Atree
n−1 (Kαα̇)O(δ1) F

(0) +Atree
n−1 (Kαα̇)O(δ0) Z = (anomaly)O(δ1) S

(0)Atree
n−1

− S(1)
[
(anomaly)n−1

]
Atree
n−1 +

[
(covariance)O(δ0) − (covariance)n−1

]
ZAtree

n−1 .

(3.2.42)

Thus we have arrived at a dual conformal constraint equation on the one-loop sublead-
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ing soft anomaly.

Constraint on the Infrared-Divergent Anomaly

We now expand in ε to find constraint equations for Z at each order. We write

Z =
1

ε2
Z−2 +

1

ε
Z−1 + Z0 +O(ε) . (3.2.43)

At leading order in ε the anomaly constraint (3.2.42) becomes

(Kαα̇)O(δ0) Z−2 =
[
(covariance)O(δ0) − (covariance)n−1

]
Z−2 =

( n−1∑
j=3

|j]〈j|
)
Z−2 .

(3.2.44)

Clearly this is consistent with the choice Z−2 = 0 implicit in (1.2.108). For the converse

argument, first note that (3.2.44) has exactly the same form as (3.2.10). We therefore

employ logic similar to the leading tree-level case. Indeed, since we are dealing with

infrared-divergent terms,

Z−2 = f(〈a b〉, [a b]) , (3.2.45)

where a, b takes values in {n−2, n−1, n, 1, 2} by the Wilson loop observations of Section

1.2.9. Following Section 3.2.1, we see that if Z−2 6= 0 then we must have Z−2 = S(0).

But reinserting factors of δ shows that S(0) can only appear as a leading soft divergence.

Hence the constraint equation fixes

Z−2 = 0 . (3.2.46)

At subleading order in ε the anomaly constraint (3.2.42) becomes

[
(Kαα̇)O(δ0) −

n−1∑
j=3

|j]〈j|
]
Z−1

= −|1]〈1| [n− 1 n]

[n− 1 1]〈n 1〉
+
|n]〈n− 1|
〈n− 1 n〉

− |n]〈1|
〈n 1〉

+ |n− 1]〈n− 1| [n 1]

〈n− 1 n〉[n− 1 1]
.

(3.2.47)

Note that this is symmetric under relabelling the polygon anticlockwise, as expected.

From (1.2.108) we have [129]

Z−1 =
[n− 1 n]

[n− 1 1]〈1 n〉
+

[2 n]

[2 1]〈1 n〉
− [1 n]

[1 n− 1]〈n− 1 n〉
− [n− 2 n]

[n− 2 n− 1]〈n− 1 n〉
.

(3.2.48)
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The reader may verify that this satisfies the constraint equation, using formulae from

Appendix B. Conversely we write an ansatz,

Z−1 = g(〈a b〉, [a b]) , (3.2.49)

where a, b can take values in {n − 2, n − 1, n, 1, 2} by the same logic as for Z−2. We

assume for simplicity that each term on the right-hand side of (3.2.47) emerges from a

single term in Z−1. Then (B.8)–(B.11) immediately suggest the result (3.2.48), which

is clearly consistent with spinor weight and dimension constraints.

Constraint on the Infrared-Finite Anomaly

Finally we consider the O(ε0) terms. The anomaly constraint (3.2.42) becomes

[
(Kαα̇)O(δ0) −

n−1∑
j=3

|j]〈j|
]
Z0

= 2
[
Z−1

n−1∑
j=3

|j]〈j| − |n− 1]〈n− 1| [n− 2 n]

〈n− 1 n〉[n− 1 n− 2]
+ |1]〈1| [2 n]

[2 1]〈1 n〉

]
+

[
|n]〈1|
〈n 1〉

+ 2
|n]〈n− 1|
〈n− 1 n〉

− |1]〈n| 〈n− 1 1〉[n n− 1]

〈n− 1 n〉〈n 1〉[1 n− 1]

]
log

(
− (n− 1 1)

(n− 1 n)(n 1)

)
− 2
|n]〈n− 1|
〈n− 1 n〉

log(−(n− 1 1)) + 2|n]〈n| 〈n− 1 1〉
〈n− 1 n〉〈n 1〉

log(−(n 1)) .

(3.2.50)

We now employ this formula to find plausible coefficients for the log δ terms appear-

ing in Z0. The constraint equation (3.2.50) immediately suggests that these take the

form,

A log(−(n− 1 n)) +B log(−(n 1)) . (3.2.51)

Relabelling symmetry ensures that it suffices to predict coefficient A. We make the

ansatz,

A = S(0)h(〈a b〉, [a b]) , (3.2.52)

where a, b take values in {n−2, n−1, n, 1, 2}. Unlike the Z−2 and Z−1 cases considered

above, there is no rigorous argument for this assumption, since the log δ terms do not

only emerge from cusp diagrams. Nevertheless it seems plausible to expect that such

divergent terms only involve particles close to n. In Section 3.3 we shall see that this

ansatz holds for MHV amplitudes, but not in the NMHV sector.

A general one-loop amplitude in N = 4 SYM theory involves functions of transcenden-

tality 2. Therefore we expect the soft anomaly Z0 to contain functions of transcenden-
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tality 1 and 0. We may hence deduce from (3.2.50) a constraint on h by examining the

coefficient of log(−(n− 1 n)), namely

(Kαα̇)O(δ0) h = −|n− 1]〈n− 1| (n 1)

(n− 1 1)
− |n]〈n|+ |1]〈1|(n− 1 n)

(n− 1 1)
. (3.2.53)

Equations (B.12) and (B.13) hence suggest that

Z0|log δ =

(
(n 1)

(n− 1 1)
+

(n− 2 n)

(n− 2 n− 1)
− (n− 2 1)(n− 1 n)

(n− 2 n− 1)(n− 1 1)

)
× S(0) log(−(n− 1 n)) + (i↔ n− i) . (3.2.54)

We now proceed to verify this prediction by explicitly computing the subleading soft

anomaly in the MHV and NMHV sectors. Beware that Z0 itself does not suffice to

reconstruct the subleading soft behaviour of an n-point amplitude; we must also re-

member feed-down terms, as discussed near (1.2.105). We consider this nicety in detail

in Section 3.3.1.

3.3 Direct Calculation of the Subleading Soft Anomaly

In this section we determine the subleading soft contribution for n-point one-loop MHV

amplitudes and for six-point and seven-point one-loop NMHV amplitudes. We first

present the subleading soft behaviour of some low-point MHV cases, extracted via

the unitarity method. We then use momentum twistor technology to derive a sur-

prisingly compact expression for the subleading soft term at n-point modulo Atree
n ,

namely53

〈n− 1 1〉
〈n− 1 n〉

n−4∑
j=4

log

(
y2
n−1j

y2
1j

)
〈n− 2 n− 1 j − 1 j〉〈n− 2 n− 1 n 1〉
〈n− 2 n− 1 1 j − 1〉〈n− 2 n− 1 1 j〉

+
〈n− 1 1〉
〈n 1〉

n−3∑
j=5

log

(
y2

2j

y2
1j

)
〈n− 1 n 1 2〉〈j − 1 j 1 2〉
〈n− 1 1 2 j〉〈n− 1 1 2 j − 1〉

+ boundary terms ,

(3.3.1)

The boundary terms have a universal form for all n ≥ 7. In particular, the log δ

dependence is simply(
(n 1) + (n 2)

(1 2)
− sn−1,1,2(n 1)

(n− 1 1)(1 2)

)
log(−(n 1)) + (i↔ n− i) . (3.3.2)

53Round brackets such as (6) appearing below represent the dual superconformal R-invariants, and
are defined in (3.3.40).
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where sabc ..= (pa + pb + pc)
2 denotes a three-particle invariant. We finally investigate

the possibility of universality carrying over to NMHV amplitudes by identifying the

subleading log δ terms in low-point cases. Again intricate cancellations yield a remark-

ably simple result, but of a slightly different form to the MHV sector. Explicitly we

find terms at six and seven points,

1

2

〈n− 1 1〉
〈n− 1 n〉

(6)
〈2 3 4 5〉〈4 5 6 1〉
〈1 2 4 5〉〈3 4 5 1〉

log(−(6 1)) + (i↔ n− i) , (3.3.3)

1

2

〈n− 1 1〉
〈n− 1 n〉

[
(5)
〈2 3 4 6〉〈5 6 7 1〉
〈3 4 6 1〉〈1 2 5 6〉

+ (3)
〈2 4 5 6〉〈5 6 7 1〉
〈4 5 6 1〉〈1 2 5 6〉

]
log(−(7 1)) + (i↔ n− i) ,

(3.3.4)

respectively. We conjecture that the log δ terms display universal behaviour for arbi-

trary n within each NkMHV sector, but not between different sectors.

Throughout this section we employ the approach of [129], with a symmetric momentum

conservation prescription eliminating |n− 1] and |1]. In particular this implies that the

feed-down terms from Taylor-expanding S(0)A1-loop
n−1 in the soft parameter exactly can-

cel the contribution from S(1)A1-loop
n−1 . Therefore the form of the lower-point amplitude

becomes irrelevant to the calculation of the subleading soft anomaly.

3.3.1 MHV Sector

In Section 1.2.8, we saw that all one-loop MHV amplitudes in N = 4 SYM theory may

be written as a sum over box functions. To calculate the subleading soft behaviour, we

must in principle Taylor expand all box functions. Many may be immediately discarded,

along the lines outlined in Section 1.2.9. Specifically the only nonzero terms emerge

from boxes corresponding to Wilson loop diagrams in which the internal gluon ends on

particle lines n− 1, n or 1.

Five-Point Amplitude

The simplest non-trivial subleading soft behaviour appears at five points. In this case,

the two-mass easy boxes degenerate to one-mass boxes. The subleading soft five-point

infrared-finite term divided by Atree
5 is

− 〈4 5〉[2 5]

〈3 4〉[2 3]
log

(
(4 5)

(1 5)(2 3)

)
− 〈1 5〉[3 5]

〈1 2〉[2 3]
log

(
(1 5)

(2 3)(4 5)

)
, (3.3.5)
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For compactness we have implicitly recombined terms using four-point momentum con-

servation where appropriate. We have checked this result numerically using the Math-

ematica package SubSoft.m documented in Appendix A.

The simplifications required to reach (3.3.5) involve intricate cancellations between

roughly 20 terms from different boxes. This suggests that box functions are poorly

adapted to the calculation of subleading soft behaviour.

Six-Point Amplitude

At six points we discover new structure associated with the appearance of non-degenerate

two-mass boxes. The subleading soft infrared-finite contribution modulo Atree
6 is

(3 4)(1 6)

(1 2)(1 5)

[
1 + log

(
(1 2)(1 5)

(1 6)(3 4)

)]
+

(2 3)(5 6)

(4 5)(1 5)

[
1 + log

(
(1 5)(4 5)

(2 3)(5 6)

)]
− 〈1 6〉[3 4](〈3 4〉[4 6] + 〈3 5〉[5 6])

(1 2)〈1 5〉[4 5]
log(−(1 2))− 〈5 6〉[2 3](〈1 3〉[1 6] + 〈2 3〉[2 6])

(4 5)〈1 5〉[1 2]
log(−(4 5))

+
((1 6) + (2 6))

(1 2)

[
log

(
−(1 6)(3 4)

(1 5)

)
− 1

]
+

((4 6) + (5 6))

(4 5)

[
log

(
−(2 3)(5 6)

(1 5)

)
− 1

]
+

[2 6]〈5 6〉
〈1 5〉[1 2]

log

(
−(1 5)(2 3)

(3 4)

)
+

[4 6]〈1 6〉
〈1 5〉[4 5]

log

(
−(1 5)(3 4)

(2 3)

)
.

(3.3.6)

As in the five-point case, very non-trivial simplifications take place – the Taylor ex-

pansion initially produces some 200 terms. Mathematica numerics exactly confirm our

concise formula.

It is instructive to perform a consistency check that the six-point result (3.3.6) re-

produces the five-point result (3.3.5) when we make particle 3 soft. Taking the limit

and relabelling appropriately we obtain(
〈4 5〉[2 5]

〈1 4〉[1 2]
+
〈1 5〉[3 5]

〈1 4〉[3 4]

)
log(−(1 4))

+
(1 5) + (2 5)

(1 2)
log(−(1 5)) +

(3 5) + (4 5)

(3 4)
log(−(4 5)) . (3.3.7)

Näıvely it looks impossible to equate (3.3.7) and (3.3.5), however we only require them

to match when a consistent momentum conservation prescription is applied to both.

The relatively simple form of (3.3.5) is a consequence of the special four-point kinemat-

ics, [1 2] = 〈3 4〉[2 3]/〈1 4〉 .
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log δ Terms

To complete our analysis we concentrate on terms involving a log δ. Recent evidence

[131] shows that these may be universal in QCD processes. Indeed these terms are truly

infrared divergent, so intuitively one might expect enhanced universality to ensure such

quantities cancel in any physical observable. At five points we have from (3.3.7)

(1 5) + (2 5)

(1 2)
log(−(1 5)) +

(3 5) + (4 5)

(3 4)
log(−(4 5)) , (3.3.8)

while at six points (3.3.6) yields

(1 6) + (2 6)

(1 2)
log(−(1 6)) +

(4 6) + (5 6)

(4 5)
log(−(5 6))

− (3 4)(1 6)

(1 2)(1 5)
log(−(1 6))− (2 3)(5 6)

(1 5)(4 5)
log(−(5 6)) . (3.3.9)

The chances of a simple universal result look slim based on this evidence. In (3.3.9)

new structures appear, in addition to a generalisation of (3.3.8). However, we shall

see shortly that the complexity of log δ terms does not grow with particle number in

general. From the perspective of box functions, this is reasonable: a new type of box

function enters at six points, after which no further new functions appear in the MHV

sector.

n-point Formula via Momentum Twistors

We saw in Section 3.2.2 that two classes of Wilson loop diagrams contribute to the

subleading soft behaviour. Cusp diagrams give rise to the infrared-divergent piece of

any one-loop SYM amplitude,

− 1

ε2

n∑
i=1

(
−(i i+ 1)

)−ε
. (3.3.10)

Non-cusp diagrams with an internal gluon ending on at least one δ-dependent edge

also feature. In the MHV sector these correspond to the finite parts of the two-mass

easy box in Figure 5. Note that i and j must be separated by at least one intervening

particle cyclically. For the symmetric momentum conservation prescription eliminating

(|n− 1], |1]), we can restrict to diagrams where i or j is in {n− 1, n, 1}.

We must sum over boxes to produce the full amplitude. This yields large cancellations,

particularly between non-degenerate boxes in which i and j are separated by at least

two intermediate particles. In Secton 1.2.8 we showed that the n-point one-loop MHV
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amplitude may be written at O(ε0) as

A1-loop
n

Atree
n

=
1

2

∑
i

∑
j 6∈{i−2,i−1,i,i+1,i+2}

(
−Li2(1− uij) + log x2

ij log uij
)

+
∑
i

log(x2
ii−2) log

 x2
i+1i−2

x2
i+1i−1

√
x2
ii−2

 ,

(3.3.11)

where uij denotes the dual conformal invariant cross-ratio,

uij =
x2
ij+1x

2
i+1j

x2
ijx

2
i+1j+1

, (3.3.12)

and the square root arises from the infrared divergent pieces (3.3.10). The formula

(3.3.11) phrases the MHV one-loop amplitude in a form which illuminates dual con-

formal properties. For example, it is particularly easy to verify that (1.2.49) holds.

Presently, we shall see that this expression is especially convenient for extracting sub-

leading soft behaviour. We anticipate that this form of the amplitude may find useful

further applications.

We should point out that our description (3.3.11) is not entirely new; partial results

of a similar flavour exist in the literature, confirming our observations. The double

sum,
1

2

∑
i

∑
j 6∈{i−2,i−1,i,i+1,i+2}

(
−Li2(1− uij) + log x2

ij log uij
)
, (3.3.13)

emerges from considering only non-degenerate two-mass easy-boxes, and accords with

the results of [107]. The remaining sum,

∑
i

log(x2
ii−2) log

 x2
i+1i−2

x2
i+1i−1

√
x2
ii−2

 , (3.3.14)

comprises degenerate box and infrared divergent contributions, which were recognised

but not calculated in [108].

Note that although (3.3.13) and (3.3.14) look symmetric under reversing the poly-

gon labelling, this is not the case. On careful inspection, we see that this asymmetry

is a consequence of our particular choices of telescoping cancellations in arriving at

(1.2.89). Of course, the symmetry is restored when generic terms and edge cases are

summed.

96



CHAPTER 3. SOFT GLUON THEOREMS AT TREE LEVEL AND ONE LOOP

We first compute the subleading soft behaviour of the generic terms (3.3.13). Without

loss of generality we consider only those terms in which i ∈ {n−1, n, 1}. It is convenient

to use momentum twistor variables [89], which we reviewed in Section 1.3.4. In such

variables the (super)soft limit may be expressed as [192]

Zn → αZ1 + βZn−1 + δZn . (3.3.15)

For generic α and β four spinors gain δ-dependence, namely |n − 1], |n], |n〉 and |1].

Note that box functions transform with zero weight under little group scaling. Hence

we may freely switch between holomorphic and antiholomorphic soft limits without

affecting our results. We find it convenient to use the latter, explicitly

|n〉 → |n〉 , |n]→ δ|n] , ηn → δηn , (3.3.16)

with the symmetric elimination of |n − 1] and |1]. By comparing (1.3.85) to (1.2.100)

this stipulation forces

α =
〈n− 1 n〉
〈n− 1 1〉

(1− δ) and β =
〈n 1〉
〈n− 1 1〉

(1− δ) . (3.3.17)

The δ-dependence of α and β is present to ensure that |n〉 remains fixed. The dual con-

formal cross-ratio uij may be expressed as a ratio of twistor four-brackets, namely

uij =
〈i− 1 i j j + 1〉〈i i+ 1 j − 1 j〉
〈i− 1 i j − 1 j〉〈i i+ 1 j j + 1〉

. (3.3.18)

To evaluate the soft behaviour of relevant cross-ratios we will require the δ expansion

of the four-brackets,

〈n 1 j − 1 j〉 = β〈n− 1 1 j − 1 j〉+ δ〈n 1 j − 1 j〉 , (3.3.19)

〈n− 1 n j − 1 j〉 = α〈n− 1 1 j − 1 j〉+ δ〈n− 1 n j − 1 j〉 . (3.3.20)

Using twistor identities we can then derive simple forms for

un−1j = vn−1j

(
1− δ〈j − 1 j j + 1 n− 1〉〈n− 1 n 1 j〉

α〈n− 1 1 j − 1 j〉〈n− 1 1 j j + 1〉

)
for 3 ≤ j ≤ n− 4 ,(3.3.21)

u1j = v1j

(
1− δ〈j − 1 j j + 1 1〉〈n− 1 n 1 j〉

β〈n− 1 1 j − 1 j〉〈n− 1 1 j j + 1〉

)
for 4 ≤ j ≤ n− 3 , (3.3.22)

unj = 1 +
δ〈j − 1 j + 1 j n− 1〉〈n n− 1 1 j〉
α〈n− 1 1 j − 1 j〉〈n− 1 1 j j + 1〉

+
δ〈j − 1 j + 1 1 j〉〈n− 1 n 1 j〉

β〈n− 1 1 j − 1 j〉〈n− 1 1 j j + 1〉
for 3 ≤ j ≤ n− 3 , (3.3.23)

valid through subleading order in δ, where the vij are cross-ratios evaluated in (n−1)-
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point kinematics. In addition we have special cases of cross-ratios that vanish in the

soft limit

u1n−2 =
δ〈n 1 n− 2 n− 1〉〈1 2 n− 3 n− 2〉

β〈1 2 n− 1 n− 2〉〈n− 1 1 n− 3 n− 2〉

(
1− δ〈n 1 n− 3 n− 2〉

β〈n− 1 1 n− 3 n− 2〉

)
,

un−12 =
δ〈n− 2 n− 1 2 3〉〈n− 1 n 1 2〉
α〈n− 2 n− 1 1 2〉〈n− 1 1 2 3〉

(
1− δ〈n− 1 n 2 3〉

α〈n− 1 1 2 3〉

)
.

(3.3.24)

Since these appear as arguments of logarithms we require these quantities through order

δ2 in order to extract terms subleading in δ. The multiparticle invariants x2
ij may be

written as a ratio of a four-bracket to two holomorphic spinor brackets,

x2
ij =

〈i− 1 i j − 1 j〉
〈i− 1 i〉〈j − 1 j〉

, (3.3.25)

which breaks conformal symmetry due to the presence of the infinity twistor in the

definition of the spinor brackets. The expansions of the only δ-dependent invariants

are

x2
nj = y2

1j + δ
〈n− 1 n j − 1 j〉
〈n− 1 n〉〈j − 1 j〉

for 2 ≤ j ≤ n− 2 , (3.3.26)

x2
1j = y2

1j + δ
〈n 1 j − 1 j〉
〈n 1〉〈j − 1 j〉

for 3 ≤ j ≤ n− 1 , (3.3.27)

through subleading order in δ, where the y2
ij are multiparticle invariants with (n−1)-

point kinematics.

We have calculated the soft expansion of (3.3.13) by employing these formulae. There

are significant telescopic cancellations, yielding bulk terms,

1

α

n−4∑
j=4

log

(
y2
n−1j

y2
1j

)
〈n− 2 n− 1 j − 1 j〉〈n− 2 n− 1 n 1〉
〈n− 2 n− 1 1 j − 1〉〈n− 2 n− 1 1 j〉

+
1

β

n−3∑
j=5

log

(
y2

2j

y2
1j

)
〈n− 1 n 1 2〉〈j − 1 j 1 2〉
〈n− 1 1 2 j〉〈n− 1 1 2 j − 1〉

,

(3.3.28)
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and boundary contributions,

− (n− 1 1 2)(n 1)

(n− 1 1)(1 2)

[
log

(
(n− 1 1 2)(n 1)

(n− 1 1)(1 2)

)
− 1

]
+

(
(n 1) + (n 2)

(1 2)

)[
log(−(n 1))− 1

]
+

(n− 1 1 2)〈n 1〉 ([n 1]〈1 3〉+ [n 2]〈2 3〉)
(1 2)〈n− 1 1〉 ([n− 1 1]〈1 3〉+ [n− 1 2]〈2 3〉)

log

(
(1 2)

(n− 1 1 2)

)
− 〈n− 1 n〉[n 1]〈3 4〉[2 3]

[1 2]〈n− 1 1〉([1 2]〈2 4〉+ [1 3]〈3 4〉)
log

(
(2 3)

(1 2 3)

)
+

(
(n 1) + (n 2)

(1 2)
− 〈n− 1 n〉[n 2]

〈n− 1 1〉[1 2]

)
log(−(n− 1 1)) + (i↔ n− i) .

(3.3.29)

We have verified this result using box functions and Mathematica numerics in the case

n = 7. The computations are available as a package, documented in Appendix A.

Observe that the log δ terms take a universal and simple form in the MHV sector

for all n, namely(
(n 1) + (n 2)

(1 2)
− sn−1,1,2(n 1)

(n− 1 1)(1 2)

)
log(−(n 1)) + (i↔ n− i) . (3.3.30)

where sabc ..= (pa + pb + pc)
2 denotes a three-particle invariant. These structures were

already visible at six points in (3.3.9). Note also that the purely rational terms have a

similar universal behaviour.

We must now check that (3.3.30) is consistent with the coefficients of Z0 predicted

in (3.2.54). To see this, we first recall the ansatz (1.2.106), implicitly eliminating

(|n− 1], |1]) as discussed at the start of Section 3.3.

A1-loop
n →

(
1

δ2
S(0)1-loop +

1

δ
Z

)
Atree
n−1 . (3.3.31)

We focus exclusively on infrared finite δ−1 log δ terms. Then the left hand side is given

by Atree
n times (3.3.30). The right-hand side comprises the feed-down term54

− (n 1) + (n− 1 n)

(n− 1 1)
S(0) log(−(n 1)) + (i↔ n− i) , (3.3.32)

and the soft anomaly

Z0|log δ =

(
(n− 1 n)

(n− 1 1)
+

(n 2)

(1 2)
− (n− 1 2)(n 1)

(1 2)(n− 1 1)

)
S(0) log(−(n 1)) + (i↔ n− i) .

(3.3.33)

54This is obtained by expanding S(0)1-loop to subleading order in δ, with the given momentum conser-
vation prescription. For a full treatment of such subtleties, see Section 1.2.9 and in particular equation
(1.2.105).
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Summing (3.3.32) and (3.3.33) yields(
(n 1) + (n 2)

(1 2)
− (n 1)

(1 2)
− (n 1)

(n− 1 1)
− (n− 1 2)(n 1)

(1 2)(n− 1 1)

)
S(0) log(−(n 1)) + (i↔ n− i) ,

(3.3.34)

which is identical to (3.3.30) up to S(0), as expected.

3.3.2 NMHV Sector

In the NMHV sector tree-level superamplitudes can be conveniently expressed in terms

of dual superconformal R-invariants as we reviewed in Section 1.3.4. It is natural to

ask whether the R-invariants have simple subleading soft behaviour, a study partially

undertaken in [192]. There it was shown that in the (super)soft limit,

Zn → αZ1 + βZn−1 + δZn , (3.3.35)

the R-invariants R1jk vanish at subleading order. Indeed when k 6= n, clearly R1jk is

independent of δ, so there is no subleading contribution. For k = n, the denominator

becomes

δ2〈1 j−1 j n−1〉〈j−1 j n−1 1〉〈j n−1 n 1〉〈n−1 n 1 j−1〉〈n−1 1 j−1 j〉+O(δ3) ,

(3.3.36)

while the argument of the δ function is

α〈j− 1 j n− 1 1〉χ1 + β〈n− 1 1 j− 1 j〉χn−1 + 〈1 j− 1 j n− 1〉(αχ1 + βχn−1) +O(δ) .

(3.3.37)

Notice that the leading term in (3.3.37) exactly vanishes, hence the leading contribu-

tion of the numerator is O(δ4). Therefore R1jn certainly vanishes at subleading order,

as claimed.

Recall that for appropriate α and β the momentum conservation prescription asso-

ciated with (3.3.35) is exactly the symmetric elimination of (|n − 1], |1]). With this

prescription the subleading term for tree amplitudes vanishes. Hence we conclude that

each R1jk individually obeys the amplitude soft theorem.

At one loop we may write a general planar NMHV amplitude in terms of dual conformal

ratio functions R as

ANMHV,1-loop
n = AMHV,1-loop

n Rtree + AMHV,tree
n R1-loop . (3.3.38)
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Rtree is the sum of R-invariants appearing in (1.3.92). R1-loop may be expressed in

terms of general R-invariants and dual conformal combinations of box integrals called

V -functions [70,99,102].

We now investigate the subleading soft behaviour of the R-invariants and V -functions

appearing at one loop for six- and seven-point amplitudes, leaving general results to fu-

ture work. More precisely we will focus on terms of order δ log δ in R1-loop which, taking

into account the AMHV,tree
n prefactor lead to terms of order (1/δ) log δ. For illustration

we outline the soft expansion of the various terms in (3.3.38),

AMHV,1-loop
n ∼ 1

δ2
+

1

δ
log δ +

1

δ
, Rtree ∼ 1 + δ2 , (3.3.39)

AMHV,tree
n ∼ 1

δ2
, R1-loop ∼ 1 + δ log δ + δ ,

where we employ a symmetric momentum conservation prescription that eliminates

|n− 1] and |1]. The particular behaviour for Rtree was first observed in [192].

Six-Point Amplitude

At six points each five-bracket necessarily omits exactly one momentum twistor. This

naturally provides a more concise notation by virtue of the cyclic symmetry of five-

brackets. For example we write

(2) = [1 3 4 5 6] . (3.3.40)

The six-point tree-level ratio function may then be written as

Rtree = (1) + (3) + (5) = (2) + (4) + (6) , (3.3.41)

which in the soft limit takes the form,

Rtree = (6) +O(δ2) , (3.3.42)

noting that (6) = [12345] has no δ dependence. The six-point one-loop ratio function

is explicitly [193],

R1-loop =
1

2

([
(1) + (4)

]
V3 +

[
(2) + (5)

]
V1 +

[
(3) + (6)

]
V2

)
, (3.3.43)

where the dual conformal V -functions are naturally expressed in terms of cross-ratios,

V1 = − log(u36) log(u25) +X , (3.3.44)
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V2 = − log(u36) log(u14) +X , (3.3.45)

V3 = − log(u14) log(u25) +X , (3.3.46)

X =
1

2

3∑
i=1

(
log(uii+3) log(ui+1i+4) + Li2(1− uii+3)

)
− 2ζ2 , (3.3.47)

and indices inX are implicitly modulo six. We know from tree-level reasoning that

(2) = O(δ2), (3) = O(δ2), (4) = O(δ2) . (3.3.48)

Therefore in the soft limit the ratio function (3.3.43) becomes

R1-loop =
1

2

(
(6)

2∑
i=1

Li2(1− uii+3) + [(6)− (1)] log(u36) log(u25)

+ [(6)− (5)] log(u36) log(u14)

)
+O(δ2) . (3.3.49)

From our calculations in the previous section observe that

log(u36) =
δ〈1 3 5 6〉

αβ〈1 2 3 5〉〈1 3 4 5〉
(β〈2 3 4 5〉 − α〈1 2 3 4〉) +O(δ2) . (3.3.50)

Hence we need only expand the R-invariants to leading order, viz.

(1) = (6)
α〈1 2 3 4〉

α〈1 2 3 4〉 − β〈2 3 4 5〉
+O(δ) , (3.3.51)

(5) = (6)
β〈2 3 4 5〉

β〈2 3 4 5〉 − α〈1 2 3 4〉
+O(δ) . (3.3.52)

Thus (3.3.49) reduces to

R1-loop =
1

2
(6)

(
2∑
i=1

Li2(1− uii+3) +
δ〈1 3 5 6〉〈2 3 4 5〉
α〈1 2 3 5〉〈1 3 4 5〉

log(u25)

+
δ〈1 3 5 6〉〈1 2 3 4〉
β〈1 2 3 5〉〈1 3 4 5〉

log(u14)

)
+O(δ2) . (3.3.53)

It is instructive to extract the δ log δ terms, for these have the best hope of universal

behaviour. Explicitly we find the contribution,

1

2

〈n− 1 1〉
〈n− 1 n〉

(6)
〈2 3 4 5〉〈4 5 6 1〉
〈1 2 4 5〉〈3 4 5 1〉

log(u25) + (i↔ n− i) . (3.3.54)
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Seven-Point Amplitude

At seven points we employ the formulae of [102], namely

R1-loop =
1

2

(
RtreeV tot +R147V147 +R157V157 + cyclic

)
, (3.3.55)

where the V -functions are defined by

7V tot = −Li2(1− u−1
1246) +

1

2

[
Li2(1− u14) + Li2(1− u15)

]
− log(u47) log(u26) + cyclic ,

(3.3.56)

V147 = Li2(1− u2476) + Li2(1− u2146) + log(u2476) log(u2146)− ζ2 , (3.3.57)

V157 = V147 + Li2(1− u2745)− Li2(1− u1254)− log(u7145) log

(
u1256

u2467

)
, (3.3.58)

and general cross-ratios are written as

uijkl =
x2
ikx

2
jl

x2
ilx

2
jk

=
〈i− 1 i k − 1 k〉〈j − 1 j l − 1 l〉
〈i− 1 i l − 1 l〉〈j − 1 j k − 1 k〉

. (3.3.59)

We first examine the soft behaviour of the fourteen R-invariants explicitly entering

(3.3.55). Eight of these have no O(δ) term, namely

R147, R157, R261, R372 ∼ O(δ2) , (3.3.60)

R362, R524, R625, R635 independent of δ . (3.3.61)

We obtain terms linear in δ from the remaining six, which are

R251, R514, R473, R413, R736, R746 . (3.3.62)

At six points, we had no need to expand such R-invariants, courtesy of convenient

behaviour of the V -functions. We must ask whether this property continues to hold at

seven points. Hence we list the δ dependence of the relevant V -functions,

V251 ∼ O(δ) , V736 ∼ O(δ) ,

V514 ∼ nonzero +O(δ) , V473 ∼ nonzero +O(δ) ,

V746 − V736 ∼ nonzero +O(δ) , V413 − V473 ∼ O(δ) .

(3.3.63)

We also note that

V746 − V514 ∼ O(δ) . (3.3.64)
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Therefore the only non-trivial R-invariants we must expand to O(δ) are the combina-

tions,

R413 +R473 and R514 +R746 . (3.3.65)

Remarkably, through an intricate series of twistor bracket identities, both of these com-

binations have zero subleading soft dependence. Thus it only remains to expand the

relevant V -functions explicitly. Henceforth we shall only look for δ log δ terms, these

being the best candidates for universal behaviour.

It is convenient to express the V -functions only in terms of our earlier uij cross-ratios,

defined by

uij =
x2
ij+1x

2
i+1j

x2
ijx

2
i+1j+1

. (3.3.66)

whose soft expansions were determined earlier. Observe that

u−1
ii+1jj+2 = uijuij+1 , (3.3.67)

and we trivially have relations,

uijkl = u−1
ijlk = uklij . (3.3.68)

Thus we may write

7V tot = −Li2(1− u14u15) +
1

2

[
Li2(1− u14) + Li2(1− u15)

]
− log(u47) log(u26) + cyclic ,

(3.3.69)

V147 = Li2(1− u62u63) + Li2(1− u14u15) + log(u62u63) log(u14u15)− ζ2 , (3.3.70)

V157 = V147 + Li2(1− u47u41)− Li2(1− u14) + log(u74) log

(
u62u63

u15

)
. (3.3.71)

We only obtain log δ terms from the invariants u15 and u26. By relabelling symmetry it

suffices to determine only the log(u26) terms. The leading behaviour of the R-invariants

involved is

R473 +R413 → (5), R625 → (3), R635 → (1) , (3.3.72)

R413 →
β〈2 3 4 6〉

β〈2 3 4 6〉 − α〈1 2 3 4〉
(5) , (3.3.73)

R251 →
β〈2 4 5 6〉

β〈2 4 5 6〉 − α〈1 2 4 5〉
(3) . (3.3.74)

On expanding the relevant V -functions many terms are produced. Quite unexpectedly,

when multiplying by the respective R-invariants a highly non-trivial simplification takes
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place, yielding the expression,

Rtree δ

α

(
〈3 5 4 6〉〈7 6 1 4〉
〈6 1 3 4〉〈6 1 4 5〉

+
〈3 4 5 6〉〈1 2 6 7〉
〈3 4 6 1〉〈1 2 5 6〉

+
〈2 3 4 5〉〈1 2 6 7〉
〈1 2 4 5〉〈2 3 6 1〉

−〈1 2 6 7〉〈2 3 5 6〉
〈1 2 5 6〉〈2 3 6 1〉

)
+ (5)

〈2 3 4 6〉〈5 6 7 1〉
〈3 4 6 1〉〈1 2 5 6〉

+ (3)
〈2 4 5 6〉〈5 6 7 1〉
〈4 5 6 1〉〈1 2 5 6〉

. (3.3.75)

All that remains is to extract the log(u26) pieces from V tot. These come from

− log(u47u41) log(u26)− Li2(1− u25u26)− Li2(1− u62u63) + Li2(1− u26) , (3.3.76)

yielding subleading soft terms,

− δ
α

(
〈3 5 4 6〉〈7 6 1 4〉
〈6 1 3 4〉〈6 1 4 5〉

+
〈2 3 4 5〉〈1 2 6 7〉
〈1 2 4 5〉〈2 3 6 1〉

+
〈3 4 5 6〉〈1 2 6 7〉
〈1 2 5 6〉〈3 4 6 1〉

− 〈1 2 6 7〉〈2 3 5 6〉
〈1 2 5 6〉〈2 3 6 1〉

)
.

(3.3.77)

Miraculously these terms exactly cancel terms in (3.3.75). Hence we arrive at the final

expression for subleading log δ contributions,

1

2

〈n− 1 1〉
〈n− 1 n〉

[
(5)
〈2 3 4 6〉〈5 6 7 1〉
〈3 4 6 1〉〈1 2 5 6〉

+ (3)
〈2 4 5 6〉〈5 6 7 1〉
〈4 5 6 1〉〈1 2 5 6〉

]
log(u26) + (i↔ n− i) .

(3.3.78)

Observe that these terms have the same overall structure as we found at six points

in equation (3.3.54). Furthermore, one may immediately perform a consistency check

that (3.3.78) reduces to (3.3.54) as we make particles 3 and 4 collinear. These terms

seem amenable to an n-point generalisation, which we leave to future work.

We note finally that the coefficients in (3.3.78) were not predicted in Section 3.2.2;

indeed they involve particles other than {n− 2, n− 1, n, 1, 2} which were considered in

deriving (3.2.54). It would be interesting to investigate whether the constraint equation

(3.2.50), perhaps supplemented with further physical reasoning, is sufficently powerful

to determine the NMHV one-loop subleading soft anomaly in general.
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Conclusions

In this thesis, we have presented two ways in which on-shell methods may be extended

beyond evaluating the S-matrix. We shall now briefly review our main results, and

outline various possible directions for future research.

In Chapter 2, we introduced a connected formula for the super form factor of the

chiral stress tensor multiplet and showed precisely how it may be related to known

results involving rational scattering equations, link representations, and Grassmannian

integrals. Moreover, we verified our results both analytically and numerically in several

non-trivial low-point cases. We then derived a CHY formula computing the form factor

of TrF 2 in four dimensions. Interestingly, this prescription has no explicit dependence

on dimensionality.

There are now several appealing avenues for future work. Most pressingly, it would

be fascinating to determine what modifications are required to promote our CHY for-

mula to arbitrary dimensions. To do so, one may need to refine the polarisation sum

appropriately. This would provide an indirect means of generating Q-cut expressions

for loop-level form factors, following [184]. Of course, simply evaluating our conjec-

ture on the support of the one-loop scattering equations [194, 195] may suffice for this

purpose.

Staying at tree level, one could ask whether other form factors admit scattering equation

representations. Formulae for the Tr(φk) case are already available [164]. Constructions

for general operators may be possible by analogy with the programme of Koster et al. –

see for example [196]. More abstractly, it is important to determine the exact obstruc-

tion to relating the Grassmannian integral [87] to our link representation. This may

well uncover further valuable links between QFT and algebraic geometry. Finally, it

would be interesting to determine whether Grassmannian expressions for gauge invari-
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ant off-shell amplitudes [197] can be reinterpreted as a sum over the rational scattering

equations.

In Chapter 3, we derived dual conformal constraints on the soft behaviour of super-

amplitudes through subleading order. We demonstrated that these suffice to fix the

universal soft operators at tree level. Our equations do not have a unique solution at

one loop, but nonetheless provide non-trivial information about the interplay between

IR divergences from different sources. We determined the full subleading soft anomaly

in the MHV sector, arriving at a surprisingly simple all-point result. Analysis of two

non-trivial NHMV examples showed that new features appear beyond the MHV sector.

It seems natural to conjecture that universality is broken between helicity sectors but

holds within each sector separately, at least for subleading log δ terms.

Our results generate several intriguing questions. Firstly, it would be valuable to test

our conjecture in different helicity sectors, providing additional insight into the sur-

prising cancellations we discovered. This may lead to a soft-improved representation

of one-loop amplitudes in N = 4 SYM, along the lines of [198]. On a similar theme,

suitable generalisations of our results may be applicable to the recent bootstrap pro-

gramme [199,200]. One could also ask how our relatively compact results fit into a more

general framework [201], bridging the gap between theory and phenomenology. From

this perspective, it becomes important to also include collinear behaviour, perhaps

building on the advances in [202].

There are also several open problems of a more formal nature. Given the emerging im-

portance of asymptotic symmetry in physical models, one may ask how the subleading

soft anomaly manifests itself from the perspective of symmetry breaking, and whether

this can be tamed by renormalisation, as was recently argued for gravity [203]. It may

also be worthwhile to investigate the interaction between soft limits, BCJ duality and

the double copy, continuing the study of Oxburgh [204]. Indeed, the good IR behaviour

of gravity may well be indirectly responsible for our unexpectedly simple subleading soft

anomaly. Finally, one might consider extending our results to form factors, particularly

in light of the recent Wilson loop duality [69].
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Mathematica Packages

This appendix documents two Mathematica packages we have developed, which may

be used to verify some of our computations in Chapters 2 and 3. The code for both

packages is provided on the attached CD of illustrative material.

A.1 SubSoft.m

SubSoft.m is a Mathematica package for the automated calculation and verification of

subleading soft theorems. A separate Mathematica file contains sample calculations,

pertinent to our results in Section 3.3.1. The package extends Bourjaily’s bcfw.m [205].

The files SubSoft.m and bcfw.m are required, and SubSoft Examples.nb is an optional

walkthrough.

Setup

First ensure that both SubSoft.m and bcfw.m are saved to the same directory as the

notebook you are writing. To initialise the package, simply call
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Glossary

In Table 2, we collect descriptions of the most important expressions. The definitions

of related expressions may be inferred, or determined by direct inspection of the source

code. Strictly speaking, the verification functions compute the difference between sub-

leading terms on the LHS and RHS of (1.2.103) or (1.2.106) at tree level or one loop

respectively. Hence the subleading soft theorems are verified if the resulting quantity

is within machine precision of zero.

A.2 CHY.m

CHY.m is a Mathematica package for the automated calculation and verification of CHY

formulae. A separate Mathematica file contains sample calculations, pertinent to our

results in Chapter 2. The package extends Bourjaily’s bcfw.m [205]. The files CHY.m

and bcfw.m are required, and CHY Examples.nb is an optional walkthrough.

Setup

First ensure that both CHY.m and bcfw.m are saved to the same directory as the note-

book you are writing. To initialise the package, simply call

Glossary

In Table 3, we collect descriptions of the most important expressions. The definitions

of related expressions may be inferred, or determined by direct inspection of the source

code. Note in particular that n is always taken to be the total number of external legs,

including any used to define a form factor. This makes it easy to adapt the code in

both amplitude and form factor settings, at the expense of introducing slight notational

tension with Chapter 2.
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Expression Type Description

ab[i,j] object represents the angle bracket
〈i j〉.

sb[i,j] object represents the square bracket
[i j].

MHVTreeAmplitude[{i,j},n] function returns the tree amplitude
with helicity configuration
1+ · · · i− · · · j− · · ·n+.

F[i,n] function returns the ith box function for
n-point kinematics.

useRandomKinematics[n] function sets up n-point random kine-
matics for numerical evalula-
tion.

NEvalute[expr] function numerically evaluates an ex-
pression featuring ab and/or
sb.

deltaDependence[n] rule introduces holomorphic δ de-
pendence for particle n.

momentumConservation

WithDelta[n,a,b]

rule performs the substitution
(1.2.100) assuming that parti-
cle n carries δ dependence.

VerifySoftTheorem

TreeLevel[An, An−1, n, a, b]
function verifies the tree-level sublead-

ing soft theorem for given An,
An−1 with the elimination of |a]
and |b].

VerifySoftTheorem1LoopIRFinite

Term[Alpn, Alpn−1, Atrn−1, n, i, j]
function verifies the one-loop subleading

soft term at finite order in ε
for given A1-loop

n , A1-loop
n−1 , Atree

n−1

with the elimination of |a] and
|b].

Z0[n] function returns the predicted infrared-
finite subleading soft anomaly,
by default defined for MHV am-
plitudes with n = 5, 6, 7.

Table 2: Documentation for the SubSoft.m package.
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Expression Type Description

ab[i,j] object represents the angle bracket
〈i j〉.

sb[i,j] object represents the square bracket
[i j].

useRandomKinematics[n,1] function sets up n-point random ratio-
nal kinematics for numerical
evalulation.

kinematicSubstitution rule numerically evaluates an ex-
pression using the random
kinematics.

PlusPolarizationVector[i,r]

MinusPolarizationVector[i,r]

function spinor helicity form for ε±i
with reference r in four
dimensions

IntegrandMatrix[n] function provides the 2n×2n integrand
matrix (1.3.34).

SamplePolarizations[n,k] function choice of 4-d polarisation vec-
tors, k of which are −.

ConvenientIntegrand[n] function evaluates the integrand
(2.5.1) in the gauge
{zn−1, zn, z1} → {1, 59, 0}.

ConvenientIntegrand[n,k] function same as previous, but with 4-
d sample polarisations.

ScatteringEquation[i,n] function returns the scattering equa-
tion for particle i of n.

NumericalConvenientResult[n,k] function sums integrand over solutions
to scattering equations.

NumericalConvenientDGResult[n,k] function same as previous, but using
the Dolan-Goddard scatter-
ing equations [149].

Table 3: Documentation for the CHY.m package.
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Action of the Dual Conformal

Boost Generator

We collect various formulae outlining the action of the dual conformal boost generator

on spinors and multiparticle invariants used in Chapter 3. To adapt the formulae to

(Kαα̇)O(δ0) replace all
∑

j by
∑′

j =
∑

j 6=n.

Suppose a < b cyclically in {3, 4, . . . 2}. Then we have

−K(〈a b〉) =
a−1∑
j=3

|j]〈j|〈a b〉+
b−1∑

j=a+1

|j]〈b|〈a j〉 , (B.1)

−K([a b]) =
b∑

j=3

|j]〈j|[a b] +
b−1∑

j=a+1

|a]〈j|[b j] , (B.2)

−K((a b)) = 2
a−1∑
j=3

|j]〈j|(a b) +
b∑

j=a

|j]〈j|(a b) +
b−1∑

j=a+1

|j]〈b|〈a j〉[b a] (B.3)

−
b−1∑

j=a+1

|a]〈j|[b j]〈a b〉 . (B.4)

In particular if a and b are adjacent then

−K(〈a b〉) =

a−1∑
j=3

|j]〈j|〈a b〉 , (B.5)

−K([a b]) =
b∑

j=3

|j]〈j|[a b] , (B.6)
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−K((a b)) = 2
a−1∑
j=3

|j]〈j|(a b) +
∑
j=a,b

|j]〈j|(a b) . (B.7)

The following corollaries are of particular use in Section 3.2.2.

[(
Kαα̇

)
O(δ0)

−
n−1∑
j=3

|j]〈j|
]( [2 n]

[2 1]〈1 n〉

)
= −|n]〈1|

〈n 1〉
, (B.8)

[(
Kαα̇

)
O(δ0)

−
n−1∑
j=3

|j]〈j|
]( [n− 2 n]

[n− 2 n− 1]〈n− 1 n〉

)
= −|n]〈n− 1|

〈n− 1 n〉
, (B.9)

[(
Kαα̇

)
O(δ0)

−
n−1∑
j=3

|j]〈j|
]( [1 n]

[1 n− 1]〈n− 1 n〉

)
= −|n− 1]〈n− 1| [n 1]

〈n− 1 n〉[n− 1 1]
,

(B.10)[(
Kαα̇

)
O(δ0)

−
n−1∑
j=3

|j]〈j|
]( [n− 1 n]

[n− 1 1]〈1 n〉

)
= −|1]〈1| [n− 1 n]

[n− 1 1]〈n 1〉
, (B.11)

(
Kαα̇

)
O(δ0)

( (n 1)

(n− 1 1)

)
= −|n− 1]〈n− 1| (n 1)

(n− 1 1)
, (B.12)

(
Kαα̇

)
O(δ0)

( (n− 2 n)

(n− 2 n− 1)
− (n− 2 1)(n− 1 n)

(n− 2 n− 1)(n− 1 1)

)
= −|n]〈n|+ |1]〈1|(n− 1 n)

(n− 1 1)
.

(B.13)
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