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ABSTRACT 47	

Poaching can have devastating impacts on animal and plant numbers, and in many 48	

countries has reached crisis levels, with illegal hunters employing increasingly 49	

sophisticated techniques. Here, we show how geographic profiling – a mathematical 50	

technique originally developed in criminology and recently applied to animal foraging 51	

and epidemiology – can be adapted for use in investigations of wildlife crime, using 52	

data from an eight-year study in Savé Valley Conservancy, Zimbabwe that in total 53	

includes more than 10,000 incidents of illegal hunting and the deaths of 6,454 wild 54	

animals. Using a subset of these data for which the illegal hunters’ identities are 55	

known, we show that the model can successfully identify the illegal hunters’ home 56	

villages using the spatial locations of hunting incidences (for example, snares) as 57	

input, and show how this can be improved by manipulating the probability surface 58	

inside the Conservancy to reflect the fact that – although the illegal hunters mostly 59	

live outside the Conservancy, the majority of hunting occurs inside (in criminology, 60	

‘commuter crime’). The results of this analysis – combined with rigorous simulations 61	

– show for the first time how geographic profiling can be combined with GIS data and 62	

applied to situations with more complex spatial patterns – for example, where 63	

landscape heterogeneity means that some parts of the study area are unsuitable (e.g. 64	

aquatic areas for terrestrial animals, or vice versa), or where landscape permeability 65	

differs (for example, forest bats tending not to fly over open areas). More broadly, 66	

these results show how geographic profiling can be used to target anti-poaching 67	

interventions more effectively and more efficiently, with important implications for 68	

the development of management strategies and conservation plans in a range of 69	

conservation scenarios. 70	
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INTRODUCTION 71	

 72	

Illegal hunting represents one of the most severe threats to wildlife worldwide (Ripple 73	

et al. 2016). The severity of the threat is such that a growing number of species are 74	

suffering population declines and becoming threatened with extinction (Ripple et al. 75	

2015, 2016). In Africa, wildlife hunting is conducted to obtain bushmeat for 76	

subsistence, as well as wildlife products such as ivory, rhino horn, pangolin scales and 77	

leopard skins for the international (and in some cases, local) trade (Biggs et al. 2013; 78	

Blanc et al. 2013; Lindsey et al. 2013, 2017). The resources available to tackle illegal 79	

hunting are severely limited, with the effect that protecting wildlife populations in the 80	

vast landscapes in which they occur is extremely challenging (Mansourian & Dudley 81	

2008; Lindsey et al. 2016). There is an urgent need to develop technological solutions 82	

to provide law enforcement agencies with the edge over illegal hunters. 83	

    84	

Although illegal hunting is prevalent even in times of relative peace, it can intensify 85	

during times of political instability (Cumming 2004). In Zimbabwe, illegal hunting 86	

began to rise with the onset of the land reform programme in which subsistence 87	

farmers were re-settled onto private farms and wildlife ranches (du Toit 2004). In 88	

2001, settlers began to invade a large wildlife area in southeastern Zimbabwe, the 89	

Savé Valley Conservancy (SVC). Financial losses realized through illegal hunting in 90	

SVC were calculated to be at least USD 1 million per year (Lindsey et al. 2011), 91	

highlighting that the crisis is as much an economic problem as a conservation one. 92	

 93	
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In this paper, we show how geographic profiling (GP) can be adapted for use in 94	

investigations of wildlife crime, using data from an eight-year study in Savé Valley 95	

Conservancy, Zimbabwe that includes more than 10,000 incidents of illegal hunting 96	

and the deaths of 6,454 wild animals.  97	

 98	

Geographic profiling is a statistical technique that was original developed in 99	

criminology to prioritise large lists of suspects in cases of serial crime such as murder, 100	

rape and arson (Rossmo 2000). More recently, the model has been successfully 101	

applied to epidemiological and biological data sets such as locating animal roost and 102	

nest sites using as input their foraging locations (Le Comber et al. 2006; Buscema et 103	

al. 2009; Martin et al. 2009; Raine et al. 2009; Le Comber et al. 2011; Le Comber & 104	

Stevenson et al. 2012; Verity et al. 2014; Faulkner et al. 2015, 2016). In criminology, 105	

the model uses the locations of linked crimes to calculate the probability of offender 106	

residence for each point within the study area. These probabilities are then ranked to 107	

produce a geoprofile, with suspects higher on the profile investigated first. 108	

 109	

Despite the success of GP in a range of disparate fields within biology, the model’s 110	

application has to date largely ignored a great deal of spatial complexity and 111	

differences in habitat, many of which are likely to be important (as a simple example, 112	

freshwater aquatic invertebrates will generally be restricted to ponds, lakes and 113	

streams). The particular case examined in this paper provides another good example 114	

of this, as although the illegal hunters mostly live outside SVC, the animals they are 115	

hunting are found almost exclusively inside the Conservancy. In criminology, such a 116	

scenario results in what would be referred to as ‘commuter crime’. In contrast to the 117	

normal assumptions of the model, in which the majority of offenders commit crimes 118	
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close to their anchor point (usually a home or workplace) (Brantingham & 119	

Brantingham 1981; Meany 2004), in commuter crime offenders must travel some 120	

distance to specific locations to commit their crimes because of the clustered nature of 121	

potential crime sites (for example, opportunities for high-value shoplifting are likely 122	

to occur in city centres, with few or no opportunities for the criminal near their home) 123	

(Canter & Larkin 1993).  124	

 125	

In the case study presented here, we address the issue of commuter crime by a post-126	

hoc manipulation of the geoprofile in which we adjust the model probabilities inside 127	

the Conservancy in a variety of ways to reflect the fact that the illegal hunters will in 128	

most cases live outside SVC. Our study thus has two main aims. First, we examine 129	

how an approach originally developed in crime science can be applied to wildlife 130	

crime. Second, we extend the GP method to show how post-hoc adjustment of the 131	

resulting geoprofile can improve model performance. Specifically, we ask: (1) Can 132	

geographic profiling be used to identify illegal hunters from hunting incidences 133	

alone? (2) Can geographic profiling be improved by incorporating geospatial data, in 134	

this case to deal with the issue of commuter crime? 135	

 136	

 137	

METHODS 138	

Ethics 139	

The data relating to the incidents of illegal hunting are a subset of data in an earlier 140	

study (Lindsay et al. 2011). As part of that study, anti-poaching scouts from the 141	

ranches comprising SVC were interviewed on a monthly basis and the locations of 142	

incidents of illegal hunting (eg poaching, snares) recorded. For a subset of these 143	
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incidents, illegal hunters had been observed or caught as part of their routine patrols. 144	

Where the hunter was known to the scouts, the location of their town or village (and 145	

not individual addresses) was recorded; it is these data that our study utilises. Thus, 146	

none of the data in this paper can be used to identify individuals (particularly since the 147	

data were collected 12 years ago). No additional data or analysis were shared with the 148	

police or with anti-poaching scouts. 149	

 150	

General approach 151	

Our study examines how an approach originally developed in crime science can be 152	

applied to wildlife crime, and extends the GP method to show how post-hoc 153	

adjustment of the geoprofile can improve model performance. In the particular case 154	

we examine here, the majority of incidents of illegal hunting originate outside SVC, 155	

even though the incidents themselves mostly occur inside the conservancy. To address 156	

this, we first divide the geoprofile– a matrix describing, for each point in the study 157	

area, the probability that there is a source at that point –into areas inside SVC and 158	

outside SVC using a shapefile. We then adjust our estimate of the probability of 159	

source location inside the conservancy to reflect our belief that source locations 160	

within the conservancy are less likely than sources outside. We consider a range of 161	

manipulations in which we reduce the probability of source location for points inside 162	

the conservancy by factors from 0.1 to 0.000001; we also consider the extreme case 163	

where the probability of source location is set to zero inside the conservancy. 164	

 165	

Study area 166	

The Savé Valley Conservancy (20°24'48.10"S, 32° 8'19.61"E) is a wildlife area 167	

(3,450 km2) in arid, southeastern Zimbabwe (Fig. 1). The Conservancy is comprised 168	
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of 26 individual wildlife ranches held in ownership by private, government, and local 169	

community entities. While there are no internal fences between ranches, 350 km of 170	

double, perimeter fencing has served as a boundary between wildlife within SVC and 171	

the surrounding high-density human settlements. The Conservancy is home to an 172	

abundance of wildlife species such as impala, zebra, wildebeest, buffalo, giraffe, 173	

elephant, leopard, cheetah, wild dog, and both black and white rhino. 174	

 175	

In 2001, trends of increasing wildlife populations within the Conservancy began to 176	

reverse with the implementation of Zimbabwe’s land reform programme. Subsistence 177	

farmers began to settle within SVC and removed large tracts of perimeter fencing, 178	

enough to make over 400,000 wire snares (Lindsey et al. 2009) which are used to 179	

catch wildlife for bushmeat. In Zimbabwe, hunting using snares is prohibited by law 180	

(Trapping of Animals (Control) Act [Chapter 20:21]), as is the possession or sale of 181	

illegally obtained bushmeat (Parks and Wildlife Act [Chapter 20:14]). 182	

 183	

Data 184	

Illegal hunting data were collected between August 2005 and July 2009. We received 185	

data monthly from anti-poaching managers on each ranch in SVC. We compiled: 186	

number of illegal hunting incidents, number of hunters and dogs, number of illegal 187	

hunters caught (or shot in the case of dogs), how they were caught, number of snares 188	

recovered, number/species/gender/age of animals killed in each snare as well as the 189	

status of carcasses; i.e. recovered by illegal hunters, recovered by ranch, rotten or 190	

scavenged. Data on wildlife killed included records of observations of carcasses in 191	

snares, carcasses found in the possession of hunters, at their homes or in hunting 192	

camps, or from identifiable hair or body parts left in snares. The location of illegal 193	
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hunting incidents was indicated by the anti-poaching managers on 1:50,000-scale 194	

maps overlaid with 1-km grid squares, with an average error of approximately 1 km 195	

(Lindsey et al. 2011).  For this analysis we used a subset of these data for which the 196	

illegal hunter identities are known. This included 151 hunting incidents, and a total of 197	

47 known illegal hunters.  The most hunting incidents per individual was 32, with 198	

most individuals, hunting just one time.  The method of hunting varied: snares (66), 199	

dogs (60), fishing (13), snares and dogs (3), and other (9).   200	

 201	

Geographic profiling: the DPM model 202	

The DPM model is described fully in Verity et al. (2014) and extended in Faulkner et 203	

al. (2016). In brief, though, it can be explained as follows. Constructing a geoprofile 204	

can be broken down into two related problems – allocating ‘crimes’ to clusters, and 205	

finding the sources of the clusters. Solving these two problems together is difficult, 206	

but each is simple if the answer to the other is known. That is, if we know which 207	

crimes come from which source, finding the sources is straightforward, since they are 208	

most likely to be found at the spatial means of these clusters. Similarly, if we know 209	

where the sources are, allocating crimes to clusters is easy, since crimes are most 210	

likely to originate from the closest source. The solution is to alternate between these 211	

two problems in a process known as Gibbs sampling (Geman & Geman 1984). The 212	

Gibbs sampler begins by randomly assigning crimes to clusters, and then – 213	

conditional on this clustering – estimates the locations of the sources. Then – 214	

conditional on these source locations – it reassigns crimes to clusters. These two steps 215	

are repeated many thousands of times using standard Bayesian Markov Chain Monte 216	

Carlo (MCMC) methods until the model converges on a posterior distribution of 217	

interest. Crucially, it is not necessary to decide on the number of clusters, since at 218	
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each step there is a finite, positive probability that a crime comes from a previously 219	

unseen source.  220	

 221	

Model implementation 222	

The DPM model described here was implemented in R (R Core Team 2014) using 223	

version 2.0.0 of the package Rgeoprofile introduced by Verity et al. (2014) and 224	

extended in Faulkner et al (2016); this package is available at 225	

https://github.com/bobverity/Rgeoprofile. Models settings are explained in detail in 226	

Verity et al (2014). Here, the settings used were sigma_mean=1, 227	

sigma_squared_shape=2, samples=10000, chains=10, burnin=1000. Broadly 228	

speaking sigma represents the standard deviation (in km) of the dispersal distribution 229	

around the source, and sigma_mean is the initial prior on this.  The parameter 230	

sigma_squared_shape relates to the shape parameter of the inverse-gamma prior on 231	

sigma, with a value of 2 corresponding to a weakly informative distribution; see 232	

Faulkner et al. (2016) for details of the underlying mathematics. These settings 233	

correspond to a diffuse prior on sigma of 1km, implying that 39% of the poaching 234	

events occur within 1km from the source, 87% within 2km and 99% within 3km; 235	

however, the model will disregard this prior if the data warrant it. A value of 1km is a 236	

value typical of human patterns of movement (Rossmo 2000). The parameters 237	

samples, chains and burnin are all standard parameters relating to the MCMC. 238	

 239	

Model evaluation 240	

The model output is assessed in two ways. The model’s performance in finding an 241	

individual source can be calculated using the hit score. The hit score is the proportion 242	

of the total area covering the crimes (in this case the hunting incidents) that has to be 243	
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searched before that source is located. This is calculated by ranking each grid square 244	

within the total search area and dividing the ranked score of the grid square in which 245	

the source is located by the total number of grid squares to give a value between 0 and 246	

1: the smaller the hit score the more efficient the search strategy. For example, a 247	

suspect site with a hit score of 0.1 would be located after searching one tenth of the 248	

total search area. 249	

 250	

Overall model performance – across all sources – can be compared by calculating the 251	

gini coefficient or gini index. The gini coefficient is essentially a measure of 252	

inequality (it is often used to look at wealth distribution) (Gini 1921). Here, we 253	

compare the proportion of illegal hunting incidents whose sources have been 254	

identified to the proportion of the total area searched. A strategy that finds sources 255	

exactly in proportion to the area searched would have a gini coefficient of 0. In 256	

contrast, a perfect search strategy would have a gini coefficient of 1. The higher the 257	

gini coefficient, the more effective the search. 258	

 259	

 260	

Simulations 261	

To further test the accuracy of the model with and without the incorporated spatial 262	

data, we compared 1000 simulated data sets, each dealing with a simplified case with 263	

a study area spanning -1º to 1º longitude and -1º to 1º latitude, with a central 264	

‘conservancy’ from -0.5º to 0.5º longitude and -0.5º to 0.5º latitude. We randomly 265	

generated 36 sources from a uniform distribution within the study area but outside the 266	

simulated conservancy, and 11 sources within the ‘conservancy’, again from a 267	
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uniform distribution. The ratio of 36:11 was chosen because it reflected the spatial 268	

distribution of crimes in the SVC dataset. For each of these 47 sources, we generated 269	

a large number of crimes from a bivariate normal distribution with a standard 270	

deviation of 20km around the source, and sub-sampled from this distribution to select 271	

a maximum of 12 crimes per source such that all of the crimes occurred within the 272	

simulated conservancy (note that this constraint meant that for sources further from 273	

the conservancy, the realised number of crimes was in some cases less than 12; 274	

sources for which no crimes fell within the conservancy were excluded from the 275	

analysis). For each data set, eight analyses were carried out: the unmodified DPM 276	

model, and then using the same modifications used on the real data set (that is, 277	

multiplying by factors from 0.1 to 1 x 10–6, and also by zero). To account for the 278	

paired nature of the design (each analysis was run on the same data set), the data were 279	

analysed using an analysis of variance on the differences obtained by subtracting the 280	

unmodified DPM hit scores from the hit scores for each of the other analyses; thus, 281	

negative values indicate cases in which the modified version of the model 282	

outperforms the unmodified DPM.  283	

 284	

Spatial data 285	

To account for the issue of commuter crime as mentioned previously, we incorporated 286	

spatial information into the model post-hoc. Shapefiles for SVC were superimposed 287	

on the geoprofile, and the probability of offender residence within SVC reduced by 288	

multiplying points within the Conservancy by 1 x 10n, where n ranged from -1 to -6; 289	

in addition, we considered the case where the Conservancy was excluded entirely by 290	

multiplying by zero within SVC. Effectively, this forces the model to give greater 291	

weight to potential locations outside SVC to varying extent. This approach was 292	
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compared to a simple ‘ring search’ strategy based on searching outwards from illegal 293	

hunting incidents in circles of increasing radii (see for example Smith et al. (2015). 294	

 295	

RESULTS 296	

Simulations  297	

Across the 1000 replicates, the model identified the sources located outside the 298	

specified area (here, the area comprising the simulated ‘conservancy’) better when the 299	

model was adjusted (Fig. 2a). The hit scores improved as the adjustment on the 300	

surface increased, until it stopped having an effect at an adjustment of 0.001. 301	

(ANOVA:  Adjusted surface F7,226504 = 21953, p < 0.0001; location (inside/outside) 302	

F1,226504 = 3181562, p < 0.0001, interaction F7,226504 = 201110, p < 0.0001).  303	

 304	

Spatial data 305	

The geoprofiles produced by the standard DPM model and the subsequent adjusted 306	

surfaces are shown in Figure 3. Figure 3a shows the basic DPM model results before 307	

we corrected for the commuter crime issue. Figures 3b and 3c show the geoprofiles 308	

when the probability values inside SVC were multiplied by 0.001 and 0. Hit scores 309	

improved as the adjustment on the surface increased and again the model identified 310	

the sources located outside the specified area better when the model was adjusted 311	

(ANOVA: adjusted surface F7,360 = 7.993, p < 0.0001; location (inside/outside) F1,360 312	

= 1241.61, p < 0.0001, interaction F7,360 = 77.328, p < 0.0001) (Fig 2b). Proportions 313	

of illegal hunters located using the different methods of spatial targeting were also 314	

compared. All of the analyses using the adjusted geoprofiles located 50% of the 315	

illegal hunters by searching less than 20% of the area, with hit scores for sources 316	

outside SVC improving and hit scores for those inside SVC becoming worse.  317	



	 14	

 318	

The adjusted geoprofile (using a multiplication of 0.001 inside SVC) (Fig. 3b) also 319	

outperformed a simple ‘ring search’ strategy based on searching outwards from illegal 320	

hunting incidents in circles of increasing radii (Fig. 4). Although the GP hit scores 321	

were higher for the small number of sources inside the conservancy (t = 6.00, df = 10, 322	

p = 0.0001), they were lower for the larger number of sources outside the conservancy 323	

(t = 18.5, df = 35, p < 0.0001), searching on average 13% less of the total area than 324	

the ring search. Overall, the adjusted geoprofile identified the sources of more 325	

incidents of illegal hunting while searching a smaller area, with a gini coefficient of 326	

0.879 compared to 0.825 for the ring search, finding the sources for 50% of the 327	

incidents while searching 11% of the search area, as opposed to 18%. 328	

 329	

 330	

DISCUSSION 331	

Crimes that have been committed against the environment and animals – variously 332	

termed ‘green criminology’ (Lynch & Stretsky 2003), ‘conservation criminology’, 333	

and ‘environmental criminology’ (Gibbs et al. 2010) have had an increasing profile in 334	

recent years (Wellsmith 2011).  The field of criminology has historically shown little 335	

interest in these issues, largely leaving environmental issues to other disciplines 336	

(Lynch & Stretsky 2003). Our study shows that GP can be successfully used to 337	

identify areas where illegal hunters may live and could be used to target law 338	

enforcement interventions and community engagement efforts in these areas to 339	

prevent reoffending. In addition, we demonstrate for the first time how incorporating 340	

spatial information can improve the efficiency of the model, with the model 341	
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outperforming an alternative ‘ring search’ strategy. Crucially, the DPM model 342	

identified the sources of 50% of illegal hunting incidents after searching just 11% of 343	

the study area, as opposed to 18%. Clearly, across the spatial scales that often 344	

characterise reserves and conservancies, such an improvement in efficiency may be of 345	

considerable benefit. 346	

 347	

The origins of geographic profiling lie in criminology, and this study takes the 348	

modifications to the model that have been developed in biology back to this source. In 349	

criminal investigations, limitations of resources and time mean that a search 350	

prioritisation tool such as GP can be of great practical utility. The same can be said 351	

for conservation where resources and time are likely to be heavily limited (Stevenson 352	

et al. 2012; Faulkner et al. 2016).  353	

 354	

There has been an increase in the scale of commercial hunting and the wildlife trade 355	

as the population expands and as techniques used by hunters improve (Fa & Brown 356	

2009; Peres 2009; Di Minin et al. 2015; Naidoo et al. 2016). Traditionally 357	

conservation actions have been dependent on the hypothesis that different illegal 358	

wildlife actions occur in different places; commercial trade will occur closer to cities 359	

and coastal areas (Di Minin et al. 2015) and illegal hunting incidents will cluster in 360	

rural areas where the primary motivation for hunting is subsistence (Sanchez-Mercado 361	

et al. 2016). However, it has recently been shown that subsistence hunting and 362	

wildlife trade maybe spatially correlated (Sanchez-Mercado et al. 2016). In fact, 363	

spatial patterns of hunting will differ from case to case, just as the techniques used by 364	

the illegal hunters and the pressures driving hunting will vary between countries, time 365	

of year species and protected areas as  illegal hunters adapt to – for example – 366	
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difference in terrain and accessibility to protected areas and to the population changes 367	

that will occur amongst the animals (Risdianto et al. 2016). Geographic profiling 368	

provides one way of identifying locations that are the source of hunting  – in most 369	

cases, areas where illegal hunters live – on a case by case basis. This could have 370	

important implications for the design and implementation of effective and efficient 371	

conservation actions since it could allow limited law enforcement resources to be 372	

focused on communities where it is needed most and help focus conservation efforts 373	

and generate economic benefits from wildlife to these local communities (Knapp 374	

2012; Cooney et al. 2016). Such focusing of efforts is key. Law enforcement and 375	

protected area management is expensive and enormous budget deficits exist in 376	

African countries (Lindsey et al. 2016, 2017). Traditional anti-poaching patrols are 377	

reactive and attempt to find evidence of hunting after it has already happened, or after 378	

illegal hunters have already entered the area (Lotter & Clark 2014). Due to the large 379	

areas that are often involved and the difficulty associated with finding snares and 380	

traps, or of catching illegal hunters on the move, such interventions often fail to 381	

prevent hunting incidents and are of limited efficacy. Our method, especially if 382	

combined with information from intelligence operations has potential to allow for 383	

both preventative outreach efforts with the communities and households most 384	

involved in illegal hunting, and also much more targeted law enforcement efforts 385	

(Lotter & Clark 2014).   386	

 387	

Beyond the interest of the particular case we describe here, our study illustrates how 388	

more complex spatial information can be incorporated within the DPM model 389	

framework. In many instances – notably in biology but also in criminology – treating 390	

the study area – the target backcloth in criminology – as homogenous will fail to take 391	
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into account important information. For example, if we are searching for plants that 392	

only occur above 400m, or mosquitoes that only breed in water, it may well be the 393	

case that large parts of our study area can be excluded from the search, creating a 394	

more efficient search strategy. More complex manipulations of the model output – 395	

using continuous variables, rather than the categorical inside/outside here – are also 396	

possible – for example, if the probability of finding an anchor point is proportional to 397	

altitude, soil pH, distance from water, etc.  398	

 399	

In some cases, of course, it will not be obvious precisely what manipulation of the 400	

final model output will be most appropriate and selecting a particular manipulation 401	

will require expert input. In this study, for example, it is clear that entirely excluding 402	

areas inside SVC from the search misses a number of sources (Figure 3c); multiplying 403	

by 0.001, on the other hand, effectively excluded large areas within SVC which are 404	

unlikely to be of interest, while still prioritising the areas of highest probability within 405	

the Conservancy (Figure 3b).  406	

 407	

This study shows that geographic profiling can successfully identify areas where 408	

illegal hunters may live, using only the spatial locations of hunting incidents such as 409	

traps and snares. This has important implications for management strategies and 410	

conservation plans in terms of targeting particular areas with community based 411	

initiatives.  We suggest that by being able to target control efforts in this way, will 412	

make hunting interventions more efficient and cost effective.  More broadly, we 413	

demonstrate for the first time how incorporating additional spatial information can 414	

improve the overall efficiency of the DPM model.  415	

  416	
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FIGURE LEGENDS 579	

Figure 1.  Map of Savé Valley Conservancy in southeastern Zimbabwe. 580	

 581	

Figure 2.  Boxplot of (a) simulated and (b) Savé Valley data. The plot shows the 582	

difference in hitscore for sources located inside and outside the conservancy (or 583	

simulated area) (grey and white boxes respectively).  584	

 585	

Figure 3. Geoprofiles showing the results of the geospatial analyses (a) standard – no 586	

adjustment, (b) 0.001 probability and (c) 0 probability. Locations of hunting incidents 587	

are shown as black circles and locations of illegal hunters by red squares. Contours 588	

show bands of 5%, with lighter colours corresponding to higher parts of the 589	

geoprofile.   590	

 591	

Figure 4. An alternative search strategy, based on searching outwards from incidents 592	

of illegal hunting in circles of expanding radii.	593	
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Figure 1.  Map of Savé Valley Conservancy in southeastern Zimbabwe. 
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FIGURE 2 

 

Figure 2.  Boxplot of (a) simulated and (b) Savé Valley data. The plot shows the difference in hitscore for sources located inside and outside the 

conservancy (or simulated area) (grey and white boxes respectively).  
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FIGURE 3 

 

 

Figure 3. Geoprofiles showing the results of the geospatial analyses (a) standard – no adjustment, (b) 0.001 probability and (c) 0 probability. 

Locations of hunting incidents are shown as black circles and locations of illegal hunters by red squares. Contours show bands of 5%, with 

lighter colours corresponding to higher parts of the geoprofile.   
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FIGURE	4	

	

Figure 4. An alternative search strategy, based on searching outwards from incidents 

of illegal hunting in circles of expanding radii.	


