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Simple groups, product actions, and generalised quadrangles

JOHN BAMBERG∗, TOMASZ POPIEL† and

CHERYL E. PRAEGER‡

Abstract. The classification of flag-transitive generalised quadrangles is a

long-standing open problem at the interface of finite geometry and permutation

group theory. Given that all known flag-transitive generalised quadrangles are

also point-primitive (up to point–line duality), it is likewise natural to seek a

classification of the point-primitive examples. Working towards this aim, we

are led to investigate generalised quadrangles that admit a collineation group

G preserving a Cartesian product decomposition of the set of points. It is

shown that, under a generic assumption on G, the number of factors of such

a Cartesian product can be at most four. This result is then used to treat

various types of primitive and quasiprimitive point actions. In particular, it

is shown that G cannot have holomorph compound O’Nan–Scott type. Our

arguments also pose purely group-theoretic questions about conjugacy classes

in non-Abelian finite simple groups and fixities of primitive permutation groups.
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§1. Introduction

Generalised quadrangles are point–line incidence geometries introduced

by Tits [25] in an attempt to find geometric models for simple groups of Lie

type. The classical generalised quadrangles arise in this way [22, Section 3].

Each admits one of the simple classical groups T = PSp(4, q) ∼= Ω5(q),

PSU(4, q) ∼= PΩ−6 (q) or PSU(5, q) acting transitively on flags (incident

point–line pairs). Moreover, the point and line stabilisers are certain maxi-

mal subgroups of T , so T acts primitively on both points and lines. The clas-

sification of flag-transitive generalised quadrangles is a long-standing open

problem. In addition to the classical families, only two other flag-transitive

examples are known, up to point–line duality, with each admitting an affine

group acting point-primitively but line-imprimitively. Hence, all of the

known flag-transitive generalised quadrangles are also point-primitive (up

to duality), and so it is natural to seek a classification of the point-primitive

examples. Indeed, this is arguably a more difficult problem, because one

begins with essentially no information about the action of the collineation

group on lines, nor any notion of what ‘incidence’ means, whereas in a

flag-transitive point–line geometry, points and lines correspond to cosets of

certain subgroups of the collineation group, and incidence is determined by

non-empty intersection of these cosets.

Here we prove the following theorem. The abbreviations HS (holo-

morph simple), HC (holomorph compound), SD (simple diagonal), CD

(compound diagonal), PA (product action), AS (almost simple) and TW

(twisted wreath) refer to the possible types of non-affine primitive permu-

tation group actions, in the sense of the O’Nan–Scott Theorem as stated

in [19, Section 6]. In the second column of Table 1, soc(G) denotes the socle

of the group G, namely the subgroup generated by its minimal normal sub-

groups. By fixΩ(h) we mean the number of elements fixed by a permutation

h of the set Ω, and Q−(5, 2) denotes the unique generalised quadrangle of

order (2, 4). Note also that, in the notation for finite simple groups of Lie

type used in Table 1 (and throughout the paper), ε = ± and A+
n = An,

A−n = 2An, D+
n = Dn, D−n = 2Dn, E+

6 = E6, E−6 = 2E6.

Theorem 1.1. If Q is a thick finite generalised quadrangle with a non-

affine collineation group G that acts primitively on the point set P of Q,
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Type soc(G) Necessary conditions

HS T × T T has Lie type
Aε

5, Aε
6, B3, C2, C3, Dε

4, Dε
5, Dε

6, Eε6, E7 or F4

SD T k T is a sporadic simple group or T ∼= Altn with n 6 18;
T is an exceptional Lie type group;
T has Lie type A1 or Aε

n with 2 6 n 6 8;
T has Lie type Bn or Cn with 2 6 n 6 4; or
T has Lie type Dε

n with 4 6 n 6 8

CD (T k)r r = 2 and T ∼= Altn with n 6 9;
r = 2 and T is a sporadic simple group

with T 6∼= Suz, Co2, Fi22, Fi23, B or M;
r = 2 and T has Lie type

A1, Aε
2, Aε

3, B2, 2B2, 2F4, G2 or 2G2; or
r = 3 and either T ∼= J1 or T has Lie type A1 or 2B2

PA T r r = 2 and fixΩ(h) < |Ω|3/5 for all h ∈ H \ {1};
3 6 r 6 4, T is a group of Lie type,

and fixΩ(h) < |Ω|1−r/5 for all h ∈ H \ {1}; or
3 6 r 6 4 and H = T ∼= Altp with point stabiliser

p.p−1
2 for some prime p ≡ 3 (mod 4)

AS T fixP(g) < |P|4/5 for all g ∈ G \ {1}; or
Q = Q−(5, 2) with T ∼= PSU4(2)

TW T r fixP(g) < |P|4/5 for all g ∈ G \ {1}

Table 1: Conditions for Theorem 1.1. Here T is a non-Abelian finite simple

group, k > 2 and r > 2. If G acts primitively of type CD (respectively PA)

on P, then G 6 H o Symr for some primitive group H 6 Sym(Ω) of type

SD (respectively AS) with socle T k (respectively T ).

then the action of G on P does not have O’Nan–Scott type HC, and the

conditions in Table 1 hold for the remaining O’Nan–Scott types.

Before we proceed, a remark is in order about the assumption in The-

orem 1.1 that G not be an affine group. If G is affine, then the generalised

quadrangle Q necessarily arises from a so-called pseudo-hyperoval in a pro-

jective space PG(3n − 1, q) with q even [12]. In joint work with Glasby

[6], we were able to classify the generalised quadrangles admitting an affine

group that acts primitively on points and transitively on lines: they are pre-

cisely the two flag-transitive, point-primitive, line-imprimitive generalised
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quadrangles mentioned above. However, without the extra assumption of

transitivity on lines, the problem is equivalent to the classification of the

pseudo-hyperovals that have an irreducible stabiliser. As explained in [6,

Remark 1.3], this latter problem would appear to be extremely difficult,

and possibly intractable. It also has a rather different flavour to the cases

treated in the present paper, and so we do not consider it further here.

Let us now establish some definitions and notation, before discussing

further. By a point–line incidence geometry we mean a triple Γ = (P,L, I ),

where P and L are sets whose elements are called points and lines, respec-

tively, and I ⊆ P × L is a symmetric binary relation called incidence. We

sometimes write Γ = (P,L) instead of (P,L, I ), when we do not need to

refer to the incidence relation explicitly. Two points (respectively lines) of

Γ are said to be collinear (respectively concurrent) if they are incident with

a common line (respectively point). A collineation of Γ is a permutation

of P ∪ L that preserves P and L setwise and preserves the incidence rela-

tion. By a collineation group of Γ we mean a subgroup of the group of all

collineations of Γ, which is called the full collineation group.

A generalised quadrangle is a point–line incidence geometry Q = (P,L)

that satisfies the following two axioms: (i) two distinct points are incident

with at most one common line, and (ii) given a point P and a line ` not

incident with P , there exists a unique point incident with ` that is collinear

with P . The second axiom implies that every pair in P ∪ L is contained in

an ordinary quadrangle, and that Q contains no triangles. All generalised

quadrangles considered in this paper are assumed to be finite, in the sense

that P and L are finite sets. If every point is incident with at least three

lines, and every line is incident with at least three points, then Q is said

to be thick. In this case, there exist constants s > 2 and t > 2 such that

every point is incident with exactly t+1 lines and every line is incident with

exactly s+ 1 points [27, Corollary 1.5.3]. The pair (s, t) is called the order

of Q. Observe also that there is a natural concept of point–line duality for

generalised quadrangles: if (P,L) is a generalised quadrangle, then so is

(L,P); and if (P,L) has order (s, t), then (L,P) has order (t, s).

Let us now discuss Theorem 1.1 further. The primitive permutation

groups on a finite set ∆ are classified into eight types according to the

O’Nan–Scott Theorem as presented in [19, Section 6]. In 2012, Bamberg

et al. [3] showed that if a thick finite generalised quadrangle admits a

collineation group G that acts primitively on both points and lines, then

G must be an almost simple (AS type) group. That is, G must satisfy
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T 6 G 6 Aut(T ) for some non-Abelian finite simple group T . Given that

there exist point-primitive generalised quadrangles that are line-transitive

but line-imprimitive, our initial aim was to extend the result of [3] by re-

laxing the line-primitivity assumption to line-transitivity. In addition to

handling the affine (HA type) case with Glasby [6], we were also able to

show that no such examples arise if the point action has type HS or HC [8].

Theorem 1.1 significantly strengthens and expands upon the results

of [3, 8]. The idea behind its proof begins with the following observa-

tions. A primitive group G 6 Sym(∆) of O’Nan–Scott type HC, CD, PA or

TW preserves a Cartesian product decomposition ∆ = Ωr, for some set Ω

and some r > 2. Therefore, in studying point-primitive generalised quad-

rangles, we are led in particular to consider generalised quadrangles with

collineation groups that preserve a Cartesian product decomposition of the

point set. The following theorem shows that the number of factors of such

a decomposition becomes severely restricted under a fairly generic assump-

tion on the group. Here a semiregular permutation group action is one in

which only the identity element fixes a point, and if H1, . . . ,Hr are per-

mutation groups on sets Ω1, . . . ,Ωr, respectively, then the product action of

the direct product
∏r
i=1Hi on the Cartesian product

∏r
i=1 Ωi is the action

(ω1, . . . , ωr)
(h1,...,hr) = (ωh11 , . . . , ωhrr ). We also recall that a permutation

group is said to act regularly if it acts transitively and semiregularly.

Theorem 1.2. Let Ω1, . . . ,Ωr be finite sets with 2 6 |Ω1| 6 · · · 6
|Ωr|, where r > 1, and let Hi 6 Sym(Ωi) for each i ∈ {1, . . . , r}. Assume

further that H1 is non-trivial and that its action on Ω1 is not semiregular.

Suppose that N =
∏r
i=1Hi is a collineation group of a thick finite generalised

quadrangle Q = (P,L) of order not equal to (2, 4), such that P =
∏r
i=1 Ωi

and N has the product action on P. Then r 6 4, and every non-identity

element of H1 fixes less than |Ω1|1−r/5 points of Ω1.

The proof of Theorem 1.2 relies on the existence of a non-identity ele-

ment h1 of H1 that fixes at least one point of Ω1. If r > 2, one can then

construct a collineation (h1, 1, . . . , 1) ∈ N of Q that fixes at least
∏r
i=2 |Ωi|

points of the Cartesian product P =
∏r
i=1 Ωi. Theorem 1.2 is then deduced

from the following result, which bounds the number of points fixed by a

non-identity collineation of an arbitrary thick finite generalised quadrangle.

The proofs of both theorems are given in Section 2.
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Theorem 1.3. Let θ be a non-identity collineation of a thick finite

generalised quadrangle Q = (P,L). Then either θ fixes less than |P|4/5
points of Q, or Q is the unique generalised quadrangle Q−(5, 2) of order

(2, 4) and θ fixes exactly 15 of the 27 points of Q.

Remark 1.4. Theorem 1.3 improves a particular case of a recent re-

sult of Babai on automorphism groups of strongly regular graphs [1, Theo-

rem 1.7]. If Q has order (s, t) then its collinearity graph, namely the graph

with vertex set P and two vertices adjacent if and only if they are collinear

in Q, is a strongly regular graph with parameters v = |P| = (s+ 1)(st+ 1),

k = s(t + 1), λ = s − 1 and µ = t + 1. Roughly speaking, we have v ≈ s2t

and k ≈ st, so the condition k 6 n3/4 in assertion (b) of [1, Theorem 1.7]

becomes t 6 s2, which is just Higman’s inequality for generalised quadran-

gles (see Lemma 2.1(ii)). Babai’s result, which applies far more generally to

strongly regular graphs that are non-trivial, non-graphic and non-geometric,

therefore implies that a non-identity collineation θ of Q can fix at most

O(|P|7/8) points. Theorem 1.3 sharpens the 7/8 exponent in this bound

to 4/5 in the case of collinearity graphs of generalised quadrangles (and

replaces the “O” by an explicit constant). (Note also that assertion (a) of

[1, Theorem 1.7] sharpens the 7/8 exponent to 5/6 when, roughly, t > s:

the condition k > n2/3 roughly translates to t > s, and the corresponding

bound is O(
√
kn), with

√
kn ≈ s3/2t > (s2t)5/6 ≈ |P|5/6 when t > s.)

To aid our discussion, let us now state the following immediate corollary

of Theorem 1.2.

Corollary 1.5. Let Ω be a finite set with |Ω| > 2, and suppose that

H 6 Sym(Ω) is non-trivial and not semiregular. Suppose that N = Hr,

r > 1, is a collineation group of a thick finite generalised quadrangle Q =

(P,L) of order not equal to (2, 4), such that P = Ωr and N has the product

action on P. Then r 6 4, and every non-identity element of H fixes less

than |Ω|1−r/5 points of Ω.

We apply Corollary 1.5 to groups N that arise as subgroups of certain

types of primitive groups. This in turn motivates certain questions about

non-Abelian finite simple groups. As illustration, consider the case where

Ω = T for some non-Abelian finite simple group T , with H = T × T acting

on Ω via ω(x,x′) = x−1ωx′. This situation arises when N is the socle (the

subgroup generated by the minimal normal subgroups) of a primitive group
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T r = 1 r = 2 r = 3

Altn 5 6 n 6 18 5 6 n 6 9 5 6 n 6 6
sporadic any T 6∼= Suz, Co2, Fi22, T ∼= J1

Fi23, B or M
exceptional Lie type any T ∼= 2F4(q), G2(q), T ∼= 2B2(q)

2G2(q) or 2B2(q)
PSLn+1(q) 1 6 n 6 8 1 6 n 6 3 n = 1, q 6= 7
PSUn+1(q) 2 6 n 6 8 2 6 n 6 3 —
PSp2n(q) or Ω2n+1(q) 2 6 n 6 4 n = 2 —
PΩ±2n(q) 4 6 n 6 8 — —

Table 2: Possibilities for a non-Abelian finite simple group T with the prop-

erty that |CT (x)| < |T |1−r/5 for all x ∈ T \ {1}, where r ∈ {1, 2, 3}.

of type HS (r = 1) or HC (r > 2). If x′ = x then the element (x, x′) =

(x, x) ∈ H fixes precisely |CT (x)| points of Ω, where CT (x) is the centraliser

of x in T . Corollary 1.5 therefore implies that r 6 4, and that |CT (x)| <
|T |1−r/5 for all x ∈ T \{1}. We therefore ask which non-Abelian finite simple

groups T satisfy this condition. If r = 4 then we require that |CT (x)| <
|T |1/5 for all x ∈ T \ {1}, which is false for every non-Abelian finite simple

group T . Indeed, it is well known that every non-Abelian finite simple group

T contains an involution x with |CT (x)| > |T |1/3 (in fact, every involution

in T has this property [21, Proposition 2.4]). For r ∈ {1, 2, 3}, we verify

the following result in Section 3. Although this result follows from routine

calculations, we include it here in case it proves to be a convenient reference.

Proposition 1.6. Let r ∈ {1, 2, 3} and let T be a non-Abelian finite

simple group. Then either |CT (x)| > |T |1−r/5 for some x ∈ T \ {1}, or T is

one of the groups listed in Table 2.

Our new results about generalised quadrangles with point-primitive

collineation groups are proved in Sections 4–6. Corollary 1.5 is applied

not only to actions of type HS or HC as illustrated above, but also to types

SD, CD and PA. In particular, the proof of Theorem 1.1 does not depend

on the Classification of Finite Simple Groups (CFSG) to the extent that,

for G of type HC, CD or PA with socle T r×T r, T (k−1)r or T r, respectively,

the proof that r 6 4 depends only on Corollary 1.5. The CFSG is, however,

needed to prove Proposition 1.6 and some of the results in Section 5. For
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type PA, the group H in Corollary 1.5 is an almost simple primitive group,

so we are led to consider lower bounds on the fixity of such a group, namely

the maximum number of points that can be fixed by a non-identity element.

In Section 6, we discuss how refinements of a recent result of Liebeck and

Shalev [21, Theorem 4] on this problem, currently being carried out by Elisa

Covato at the University of Bristol as part of her PhD research [11], can be

adapted to further improve the bound r 6 4 in this case. In particular, for

r ∈ {3, 4} we are able to show that T cannot be a sporadic simple group,

and to rule out the case T ∼= Altn except in one specific action when n is a

prime congruent to 3 modulo 4 (see Table 1). The proof of Theorem 1.1 is

presented in Section 7.

Section 8 concludes the paper with a discussion and some open prob-

lems. In light of the growing body of work towards a classification of point-

primitive generalised quadrangles, and the possible avenues outlined in Re-

mark 5.11, Remark 6.4 and Section 8 for attacking the cases left open by

Theorem 1.1, we feel that the following conjecture can be made with a

reasonable amount of confidence.

Conjecture 1.7. If a thick finite generalised quadrangle Q admits a

collineation group G that acts primitively on the point set of Q, then G is

either affine or almost simple.

§2. Bounding the number of points fixed by a collineation

The facts summarised in the following lemma are well known. (The ex-

istence of an order is proved in [27, Corollary 1.5.3], and proofs of assertions

(i)–(iii) may be found in [22, Section 1.2].)

Lemma 2.1. Let Q be a thick finite generalised quadrangle. Then Q
has an order (s, t), and the following properties hold:

(i) Q has (s+ 1)(st+ 1) points and (t+ 1)(st+ 1) lines,

(ii) s1/2 6 t 6 s2 6 t4 (Higman’s inequality),

(iii) s+ t divides st(st+ 1).

A point–line incidence geometry S = (P,L, I ) is called a grid if there

exist positive integers s1 and s2 such that the point set P can be written

in the form {Pij | 0 6 i 6 s1, 0 6 j 6 s2}, the line set L can be written
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in the form {`k | 0 6 k 6 s1} ∪ {`′k | 0 6 k 6 s2}, and we have Pij I `k
if and only if i = k, and Pij I `′k if and only if j = k. Each point of S
is then incident with exactly two lines, and |P| = (s1 + 1)(s2 + 1). Let

us say that such a grid has parameters s1 and s2. Note that a grid with

parameters s1 = s2 is a generalised quadrangle of order (s1, 1). A dual

grid is defined analogously, by swapping the roles of points and lines. That

is, there exist positive integers t1 and t2 such that L can be written in

the form {`ij | 0 6 i 6 t1, 0 6 j 6 t2}, P can be written in the form

{Pi | 0 6 i 6 t1} ∪ {P ′j | 0 6 j 6 t2}, Pk I `ij if and only if i = k, and

P ′k I `ij if and only if j = k. In this case, each line is incident with exactly

two points, and |P| = (t1 + 1) + (t2 + 1). Let us say that such a dual grid

has parameters t1 and t2.

If θ is a collineation of a generalised quadrangle Q = (P,L), then it

makes sense to consider the point–line incidence geometry Qθ = (Pθ,Lθ)
with Pθ = {P ∈ P | P θ = P}, Lθ = {` ∈ L | `θ = `}, and incidence

inherited from Q. Here we call Qθ the substructure of Q fixed by θ. It may

happen that Qθ is a grid or a dual grid, or a generalised quadrangle. More

specifically, we have the following result, based on the description of the

possible structures of Qθ given by Payne and Thas [22, 2.4.1].

Lemma 2.2. Let Q = (P,L) be a thick finite generalised quadrangle of

order (s, t). Let θ be a non-identity collineation of Q, and let Qθ = (Pθ,Lθ)
be the substructure of Q fixed by θ. Then at least one of the following

conditions holds.

(i) Pθ is empty.

(ii) Lθ is empty and Pθ is a set of pairwise non-collinear points. In par-

ticular, |Pθ| 6 st+ 1.

(iii) All points of Qθ are incident with a common line, and |Pθ| 6 s+ 1.

(iv) All points of Qθ are collinear with a common point, and

|Pθ| 6 s(t+ 1) + 1.

(v) Qθ is a grid. In this case, either |Pθ| = (s+1)2 and s 6 t, or |Pθ| < s2.

(vi) Qθ is a dual grid, and |Pθ| 6 2(t+ 1).

(vii) Qθ is a thick generalised quadrangle, and |Pθ| 6 (s+ 1)(t+ 1).
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In particular, either |Pθ| 6 (s + 1)(t + 1); or s > t + 3, Qθ is a grid and

|Pθ| < s2.

Proof. The possible structures (i)–(vii) of Qθ are given by [22, 2.4.1].

We verify the claimed upper bounds for |Pθ|. The bounds in cases (iii)

and (iv) are immediate, because every line of Q is incident with exactly

s + 1 points, and every point of Q is incident with exactly t + 1 lines. For

case (ii), note [22, Section 2.7] that the maximum size of a set of pairwise

non-collinear points in Q is st + 1. For (v), if Qθ is a dual grid with

parameters t1 and t2, then t1 6 t and t2 6 t, and hence |Pθ| 6 2(t+ 1).

Now suppose that Qθ is a grid with parameters s1 and s2, noting that

s1 6 s and s2 6 s, and assuming (without loss of generality) that s1 > s2.

If s1 = s2 = s then |Pθ| = (s + 1)2, and Qθ is a generalised quadrangle of

order (s, 1), so [22, 2.2.2(i)] implies that s 6 t. The case s2 = s− 1 cannot

occur, because if θ fixes s points incident with a line then it must also fix

the final point; and if s2 6 s − 2 then |Pθ| 6 (s + 1)(s − 1) < s2. Finally,

suppose that Q is a thick finite generalised quadrangle, and let (s′, t′) denote

its order. Then |Pθ| = (s′ + 1)(s′t′ + 1) by Lemma 2.1(i). If t′ = t then

s′ < s because θ 6= 1, so [22, 2.2.1] implies that s′t = s′t′ 6 s, and hence

|Pθ| 6 (s/t + 1)(s + 1) 6 (t2/t + 1)(s + 1) = (s + 1)(t + 1), where for the

second inequality we use Lemma 2.1(ii). If t′ < t then the dual statement

of [22, 2.2.1] yields s′t′ 6 t, so |Pθ| = (s′ + 1)(s′t′ + 1) 6 (s+ 1)(t+ 1).

The final assertion is deduced by comparing the upper bounds on |Pθ|
established in each case. We observe that |Pθ| 6 (s + 1)(t + 1) except

possibly in the second case of (v), where our bound is |Pθ| < s2. However,

if s 6 t+ 2 then in this case we have |Pθ| < s2 < (s+ 1)(t+ 1).

Remark 2.3. We mention a paper of Frohardt and Magaard [17, Sec-

tion 1.3], in which results analogous to Lemma 2.2 are obtained for gener-

alised d-gons with d ∈ {6, 8}, namely generalised hexagons and generalised

octagons. The known examples of such geometries admit point- and line-

primitive actions of almost simple groups with socle 3D4(q) or G2(q) (for

d = 6) and 2F4(q) (for d = 8). Frohardt and Magaard use the aforemen-

tioned results to determine upper bounds for fixities of primitive actions of

groups G with generalised Fitting subgroup 3D4(q), G2(q) or 2F4(q) (and

they also treat the other exceptional Lie type groups of Lie rank 1 or 2).

By comparison, we instead apply Lemma 2.2 to determine which groups

might act primitively on the points of a generalised d-gon (with d = 4 in
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our case). (We remark that we have also investigated point-primitive gen-

eralised hexagons and octagons, although via different methods than in the

present paper [7, 18].)

We now use Lemma 2.2 to prove Theorem 1.3, from which we deduce

Theorem 1.2.

Proof of Theorem 1.3. Let (s, t) be the order ofQ, and letQθ = (Pθ,Lθ)
be the substructure of Q fixed by θ. We must show that either |Pθ| < |P|4/5,

or (s, t) = (2, 4) and |Pθ| = 15 for Q = Q−(5, 2).

First suppose that s 6= 2. By Lemma 2.2, we have either |Pθ| < s2

or |Pθ| 6 (s + 1)(t + 1). If |Pθ| < s2 then |Pθ| < |P|4/5 since |P| =

(s + 1)(st + 1) > s2t > s5/2 by Lemma 2.1. If |Pθ| 6 (s + 1)(t + 1) then it

suffices to show that the function f(s, t) = ((s+1)(st+1))4/5−(s+1)(t+1)

is positive for all s > 3, for all s1/2 6 t 6 s2. This is readily checked when

s ∈ {3, 4}, so assume that s > 5. Regarding s and t as real variables, we

have

∂f

∂t
(s, t) =

(s+ 1)(4s− h(s, t))

h(s, t)
, where h(s, t) = 5((s+ 1)(st+ 1))1/5.

As s and t are positive, this derivative is positive if and only if 4s−h(s, t) >

0. Since s > 5 and 2 6 t 6 s2, we have h(s, t) 6 5(6
5s)

1/5(11
10st)

1/5 6
5(33

25)1/5s4/5. Hence, 4s−h(s, t) > s4/5(4s1/5−5(33
25)1/5). The right-hand side

of this inequality is positive if s > (5
4)5(33

25) = 4125
1024 ≈ 4.028, and so certainly

∂f
∂t (s, t) > 0 when s > 5 and s1/2 6 t 6 s2. Since f(s, t) > f(s, s1/2) and

f(s, s1/2) > 0 for s > 5, it follows that f(s, t) > 0 for all s > 5, for all

s1/2 6 t 6 s2.

Now suppose that s = 2. Then t ∈ {2, 4} by Lemma 2.1. There exist

unique generalised quadrangles of orders (2, 2) and (2, 4), namely the sym-

plectic space W(3, 2) and the elliptic quadric Q−(5, 2), respectively [22, 5.2.3

and 5.3.2]. The full collineation groups of these generalised quadrangles are

PΓSp4(2) and PΓU4(2), respectively. One may use the package FinInG [4]

in the computer algebra system GAP [14] to check that every non-identity

collineation of W(3, 2) fixes at most 7 points. Since W(3, 2) has a total of 15

points and 154/5 ≈ 8.73 > 7, the claimed inequality |Pθ| < |P|4/5 holds for

every non-identity collineation θ in this case. On the other hand, there ex-

ist 36 non-identity collineations of Q−(5, 2) that fix 15 points, but the total

number of points of Q−(5, 2) is 27 and 274/5 ≈ 13.97 < 15. We also remark



12 J. BAMBERG, T. POPIEL AND C. E. PRAEGER

SUBMIT

that the substructure fixed by such a collineation is, in fact, a generalised

quadrangle of order (2, 2). Every other non-identity collineation of Q−(5, 2)

fixes at most 9 points.

Proof of Theorem 1.2. Since the action of H1 on Ω1 is not semiregular,

there exists h1 ∈ H1 \ {1} fixing at least one point of Ω1. Let f1 be the

number of points of Ω1 fixed by h1. Let θ = (h1, 1, . . . , 1) ∈ N , and let

f be the number of points of Q fixed by θ. If r = 1 then Theorem 1.3

implies that f1 = f < |P|4/5 = |Ω1|4/5. If r > 2 then Theorem 1.3 gives

f1
∏r
i=2 |Ωi| = f < |P|4/5 = (

∏r
i=1 |Ωi|)4/5, so f1(

∏r
i=2 |Ωi|)1/5 < |Ω1|4/5.

Since (
∏r
i=2 |Ωi|)1/5 > |Ω1|(r−1)/5, it follows that f1 < |Ω1|1−r/5. In partic-

ular, 1− r/5 > 0 because f1 > 1, and so r 6 4.

We also use Lemma 2.2 to sharpen the 4/5 exponent bound in Theo-

rem 1.3 in some special cases. The proofs are just modifications of the proof

of Theorem 1.3, but since the details are somewhat tedious to check, we in-

clude them at the end of the paper, in Section 9, to save the reader having

to reproduce them. We also remark that the exponent 94/125 = 0.752 in

case (i) of Proposition 2.5 could be changed to 3/4 + ε for any ε > 0 at the

expense of increasing the upper bound on s in case (ii), but that this would

not have been useful for our arguments in Section 5.

Proposition 2.4. Let Q = (P,L) be a finite generalised quadrangle of

order (s, t), let θ be any non-identity collineation of Q, and let Qθ = (Pθ,Lθ)
be the substructure of Q fixed by θ. Then either

(i) |Pθ| < |P|7/9,

(ii) s ∈ {2, 3}, t = s2 and Qθ is a generalised quadrangle of order (s, s),

or

(iii) s > t+ 3, Qθ is a grid and |Pθ| < s2.

Proposition 2.5. Let Q = (P,L) be a finite generalised quadrangle of

order (s, t), let θ be any non-identity collineation of Q, and let Qθ = (Pθ,Lθ)
be the substructure of Q fixed by θ. Then either

(i) |Pθ| < |P|94/125,

(ii) s < 2.9701× 1015, or
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(iii) s > t+ 3, Qθ is a grid and |Pθ| < s2.

Proposition 2.6. Let Q = (P,L) be a finite generalised quadrangle of

order (s, t), let θ be any non-identity collineation of Q, and let Pθ denote

the set of points fixed by θ. Suppose that t = s + 2. Then |Pθ| < |P|7/9 if

s > 3, and |Pθ| < |P|13/18 if s > 5.

§3. Centraliser orders in non-Abelian finite simple groups

Here we verify some lemmas about centraliser orders in non-Abelian

finite simple groups, from which Proposition 1.6 is deduced. Specifically, we

need to know which non-Abelian finite simple groups T contain non-identity

elements x with ‘large’ centralisers, in the sense that |CT (x)| > |T |1−r/5 for

r equal to one of 1, 2 or 3. This question is readily and exactly answered for

alternating groups and sporadic simple groups in the following two lemmas.

Note that we treat the Tits group 2F4(2)′ in Lemma 3.2 along with the

sporadic groups.

Lemma 3.1. Let T ∼= Altn with n > 5. Then

(i) |CT (x)| < |T |4/5 for all x ∈ T \ {1} if and only if n 6 18,

(ii) |CT (x)| < |T |3/5 for all x ∈ T \ {1} if and only if n 6 9,

(iii) |CT (x)| < |T |2/5 for all x ∈ T \ {1} if and only if n 6 6.

Proof. If n > 19 and x ∈ T is a 3-cycle, then we have |CT (x)| =
3
2(n− 3)! > (1

2n!)4/5 = |T |4/5. The remaining assertions are readily verified

using GAP [14].

Lemma 3.2. Let T be either a sporadic finite simple group or the Tits

group 2F4(2)′. Then

(i) |CT (x)| < |T |4/5 for all x ∈ T \ {1},

(ii) |CT (x)| < |T |3/5 for all x ∈ T \ {1} if and only if T 6∼= Suz, Co2, Fi22,

Fi23, B or M,

(iii) |CT (x)| < |T |2/5 for all x ∈ T \ {1} if and only if T ∼= J1.

Proof. This is readily verified by checking maximal centraliser orders

in the ATLAS [10].
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Next we consider the exceptional Lie type groups, namely those of type

E8, E7, Eε6 (where ε = ±), F4, 2F4, G2, 2G2, 3D4 or 2B2. Note that we

make no attempt to check the converse of assertion (i) (although this could

be done using standard references including those cited here).

Lemma 3.3. Let T be a finite simple group of exceptional Lie type.

(i) If T has type E8, E7, Eε6, F4 or 3D4, then there exists x ∈ T \{1} with

|CT (x)| > |T |3/5.

(ii) |CT (x)| < |T |2/5 for all x ∈ T \ {1} if and only if T has type 2B2.

Proof. (i) For T ∼= E8(q), F4(q) or 3D4(q), take x ∈ T to be a unipotent

element of type A1 in the sense of [20, Tables 22.2.1 and 22.2.4] and [23], re-

spectively. Then |CT (x)| = q57|E7(q)|, q15|C3(q)| or q12(q6−1), respectively,

and it is readily checked that |CT (x)| > |T |3/5 in each case. Now suppose

that T ∼= E7(q) or Eε6(q), and write G := Inndiag(T ). Take x ∈ T to be a

unipotent element of type A1 in the sense of [20, Tables 22.2.2 and 22.2.3],

respectively. Then xT = xG by [9, Corollary 17.10], so we have |CT (x)| =

|CG(x)|/|G : T | = q33|D6(q)|/ gcd(2, q − 1) or q21|Aε
5(q)|/ gcd(3, q − ε), re-

spectively, and again one can check that |CT (x)| > |T |3/5 in each case.

(ii) If T ∼= 2B2(q) then |CT (x)| 6 q2 < (q2(q2 + 1)(q − 1))2/5 = |T |2/5
for all x ∈ T \ {1} [24]. It remains to check that |CT (x)| > |T |2/5 for some

x ∈ T \{1} when T has type 2F4, G2 or 2G2. In these respective cases, take

x to be a unipotent element of type (Ã1)2, A1 or (Ã1)3 in the sense of [20,

Tables 22.2.5–22.2.7], so that |CT (x)| = q10|2B2(q)|, q5|A1(q)| or q3.

Finally, we consider the finite simple classical groups. Again, we do not

check the converses of assertions (i) or (ii), remarking only that one could

do so using the monograph [9] of Burness and Giuidici, where the conjugacy

classes of elements of prime order in these groups are classified.

Lemma 3.4. Let T be a finite simple classical group.

(i) If T has type Aε
n, Dn or 2Dn with n > 9, or type Bn or Cn with n > 5,

then there exists x ∈ T \ {1} with |CT (x)| > |T |4/5.

(ii) If T has type Aε
n with n > 4, type Bn or Cn with n > 3, or type Dn or

2Dn with n > 4, then there exists x ∈ T \ {1} with |CT (x)| > |T |3/5.
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(iii) |CT (x)| < |T |2/5 for all x ∈ T \ {1} if and only if T ∼= PSL2(q) with

q 6= 7.

Proof. Throughout the proof, we write q = pf with p a prime and

f > 1. First suppose that T has type A1. That is, T ∼= PSL2(q), with

q > 4. The smallest non-trivial conjugacy class of T has size q(q − 1),
1
2(q2 − 1) or 1

2q(q − 1) according to whether p = 2, q ≡ 1 (mod 4) or q ≡ 3

(mod 4). Hence, every non-trivial conjugacy class of T has size greater than

|T |3/5 if and only if q 6= 7. Equivalently, |CT (x)| < |T |2/5 for all x ∈ T \ {1}
if and only if q 6= 7.

Now suppose that T has type Aε
n with n > 2. That is, T ∼= PSLεn+1(q)

(where we write L+ := L and L− := U). Let x ∈ G := PGLεn+1(q) be an

element of order p with one Jordan block of size 2 and n− 1 Jordan blocks

of size 1. That is, a1 = n− 1, a2 = 1 and a3 = · · · = ap = 0 in the notation

of [9, Section 3.2.3]. Then x ∈ T , and xT = xG by [9, Propositions 3.2.7

and 3.3.10], so by [9, Tables B.3 and B.4], |CT (x)| = |CG(x)|/|G : T | =
1
d |CG(x)| = 1

dq
2n−1|GLεn−1(q)|, where d := gcd(n+ 1, q − ε). Therefore,

|CT (x)| = 1

d
qn(n+1)/2

n−1∏
i=1

(qi− εi) and |T | = 1

d
qn(n+1)/2

n+1∏
i=2

(qi− εi). (1)

For n ∈ {2, 3} we must show that |CT (x)| > |T |2/5. If n = 2 then d 6 3,

so |CT (x)| > 1
3q

3(q − ε) while |T | 6 q3(q2 − ε2)(q3 − ε3). This implies that

|CT (x)| > |T |2/5 for all q > 7, and one may check directly that this inequality

also holds for q < 7. If n = 3 then d 6 4, so |CT (x)| > 1
4q

6(q − ε)(q2 − ε2)

while |T | 6 q6(q2− ε2)(q3− ε3)(q4− ε4). This implies that |CT (x)| > |T |2/5
for all q > 3, and a direct calculation shows that this inequality also holds for

q = 2. Now suppose that 4 6 n 6 8. We must show that |CT (x)| > |T |3/5.

Since q > 2, (1) gives

|CT (x)| > 1

d

qn
2

2n−1
and |T | 6 1

d

(3

2

)n
qn

2+2n,

and so it suffices to show that q2n2−6n > d222n−533n. Indeed, since d 6 n+1,

it suffices to show that q2n2−6n > (n + 1)222n−533n. This inequality holds

for all q > 2 if n ∈ {7, 8}, for all q > 3 if n = 6, for all q > 4 if n = 5, and

for all q > 11 if n = 4. In the remaining cases, where (n, q) = (6, 2), (5, 2),

(5, 3), or (4, q) with q < 11, one may check directly that |CT (x)| > |T |3/5.
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It remains to show that |CT (x)| > |T |4/5 for all q > 2 when n > 9. If q > 3

then (1) gives

|CT (x)| > 1

d

(2

3

)n−1
qn

2
and |T | 6 1

d

(4

3

)n
qn

2+2n,

so it suffices to show that qn
2−8n > d · 23n+53n−5. Indeed, since d 6 n+ 1,

we can just show that qn
2−8n > (n + 1)23n+53n−5. This inequality holds

for all q > 3 if n > 11; if n = 10, it holds for all q > 5, and if n = 9,

it holds for all q > 29. For n = 10 with 2 6 q < 5, and n = 9 with

2 6 q < 29, one may check directly that |CT (x)| > |T |4/5. Finally, we must

check that |CT (x)| > |T |4/5 when q = 2 and n > 9. Since n > 9, and since
255
256q

i 6 qi − ε 6 257
256q

i for i > 8, (1) gives

|CT (x)| > 1

d

(255

256

)n−8
qn

2−28
7∏
i=1

(qi − 1)

and

|T | 6 1

d

(257

256

)n−8
qn

2+2n−27
7∏
i=2

(qi − 1).

Noting also that d 6 3, we see that it suffices to show that

2n
2−8n−322555n−40

7∏
i=2

(qi − 1) > 3 · 256n−82574n−32.

This holds for all n > 9, and so the proof of the Aε
n case is complete.

Next, suppose that T has type Cn, where n > 2. That is, T ∼= PSp2n(q).

Write G := PGSp2n(q), noting that |G : T | = gcd(2, q − 1). If p > 2, take

x ∈ G of order p with one Jordan block of size 2 and 2(n − 1) Jordan

blocks of size 1. That is, a1 = 2(n− 1), a2 = 1 and a3 = · · · = ap = 0 in the

notation of [9, Section 3.4.3]. Then x ∈ T , and by [9, Proposition 3.4.12], xG

splits into two T -conjugacy classes and hence |CT (x)| = 2|CG(x)|/|G : T | =
1
2q

2n−1|Sp2(n−1)(q)|. If p = 2 then T = G and we take x to be an involution

of type b1 as in [9, Table 3.4.1], so that |CT (x)| = q2n−1|Sp2(n−1)(q)|. Hence,

for every p, we have

|CT (x)| = 1

d
qn

2
n−1∏
i=1

(q2i − 1) and |T | = 1

d
qn

2
n∏
i=1

(q2i − 1), (2)
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where d = gcd(2, q − 1) 6 2. If n = 2 then |CT (x)| > 1
2q

4(q2 − 1) and

|T | 6 q4(q2 − 1)(q4 − 1), and it follows that |CT (x)| > |T |2/5 for all q > 2.

Similarly, for n ∈ {3, 4} one may check that |CT (x)| > |T |3/5 for all q > 2.

Now suppose that n > 5. Since q2i > 4, we have q2i − 1 > 3
4q

2i for all

i > 1, and so |CT (x)| > 1
2(3

4)n−1q2n2−n, while |T | < q2n2+n. Hence, to show

that |CT (x)| > |T |4/5, it suffices to show that (3
4)5n−5q2n2−9n > 2. This

inequality holds for all q > 2 when n > 6, and for all q > 4 when n = 5; for

(n, q) = (5, 2) and (5, 3), one may check directly that |CT (x)| > |T |4/5.

Now suppose that T has type Bn, where n > 2. That is, T ∼= Ω2n+1(q)

with q odd. For q ≡ 1 or 3 (mod 4), let x ∈ G := PGO2n+1(q) be an

involution of type tn or t′n, respectively, in the sense of [9, Sections 3.5.2.1

and 3.5.2.2]. Then x ∈ T and xT = xG, so |CT (x)| = |CG(x)|/|G : T | =
1
2 |CG(x)| = |SO±2n(q)| by [9, Table B.8]. Now,

|SO±2n(q)| = qn
2−n(qn ∓ 1)

n−1∏
i=1

(q2i − 1) >
1

2
qn

2
n−1∏
i=1

(q2i − 1), (3)

and the right-hand side above is the value of |CT (x)| that we obtained in

the Cn case. Since |Ω2n+1(q)| = |PSp2n(q)|, we therefore reach the same

conclusions as for type Cn.

Now suppose that T has type Dε
n, namely T ∼= PΩε

2n(q) with n > 4.

Let G := Inndiag(PΩε
2n(q)), as defined on [9, p. 56]. Assume first that

p > 2, noting that |G : T | divides 4. Take x ∈ G of order p with one

Jordan block of size 2(n − 2) and two Jordan blocks of size 2. That is,

a1 = 2(n − 2), a2 = 2 and a3 = · · · = ap = 0 in the notation of [9,

Section 3.5.3]. Then x ∈ T , and [9, Propositions 3.5.14(i) and (ii,b)] imply

that xT = xG. Therefore, [9, Table B.12] gives |CT (x)| = |CG(x)|/|G : T | >
1
4 |CG(x)| = 1

8q
4n−7|Oε1

2(n−2)(q)||Sp2(q)|, where the value of ε1 = ± depends

on n and q as described there. Multiplying the inequality in (3) by 2 to get

a lower bound for |Oε1
2(n−2)(q)|, it follows that

|CT (x)| > 1

8
qn

2−2(q2 − 1)

n−3∏
i=1

(q2i − 1), (4)

while

|T | = 1

d
qn(n−1)(qn − ε)

n−1∏
i=1

(q2i − 1), (5)
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where d = gcd(4, qn − ε). Since q2i > 9 for all i > 1, and in particular

qn > 34 = 81, we have

|CT (x)| > 1

8

(8

9

)n−2
q2n2−5n+6 and |T | < 82

81
q2n2−n. (6)

For 4 6 n 6 8 we need |CT (x)| > |T |3/5, so by (6) it suffices to show that

(8
9)5n−10q4n2−22n+30 > 85(82

81)3, which holds unless (n, q) = (4, 3) or (4, 5).

For (n, q) = (4, 5), (4)–(5) imply that |CT (x)| > |T |3/5; for (n, q) = (4, 3),

a GAP [14] calculation shows that there exist elements x ∈ T \ {1} for

which this inequality holds. For n > 9 we claim that |CT (x)| > |T |4/5,

and we now have qn > 39 = 19683, so we can replace the 82
81 in (6) by

19684
19683 to see that it suffices to show that (8

9)5n−10q2n2−21n+30 > 85(19684
19683)4.

If n > 10 then this inequality holds for all q > 3, and if n = 9 then it

holds for q > 127. For n = 9 and q < 127, using the equality in (3) we

obtain |CT (x)| > 1
4q
n2−n(qn−2 − 1)(q2 − 1)

∏n−3
i=1 (q2i − 1), which implies

that |CT (x)| > |T |4/5 except when q = 3 and ε = +. However, in this case

we have |G : T | = 2 (compare [9, Figure 2.5.1 and Lemma 2.2.9], noting that

the discriminant of a hyperbolic quadratic form on F2n
q with (n, q) = (9, 3)

is �, in the notation used there, because n(q− 1)/4 = 9 is odd), so the 1
4 in

the above estimate for |CT (x)| may be replaced by 1
2 , and we again obtain

|CT (x)| > |T |4/5.

Finally, suppose that T ∼= PΩε
2n(q) with q even, noting that T = G in

this case. Take x ∈ G to be an involution of type a2 as in [9, Table 3.5.1].

Then |CT (x)| = q4n−7|Ωε
2(n−2)(q)||Sp2(q)| and gcd(4, qn− ε) = 1, so instead

of (4)–(5) we have

|CT (x)| > 1

4
qn

2−2(q2 − 1)

n−3∏
i=1

(q2i − 1) (7)

and

|T | = qn(n−1)(qn − ε)
n−1∏
i=1

(q2i − 1). (8)

(In the bound for |CT (x)| we drop a factor of 1
4 because |G : T | = 1

for q even, but pick up a factor of 1
2 because Ωε

2(n−2)(q) has index 2 in

SOε
2(n−2)(q).) For 4 6 n 6 8 we need |CT (x)| > |T |3/5. As qi > 2 for all i >

1, and in particular qn > 16, it suffices to show that (3
4)5n−10q4n2−22n+30 >

45(17
16)3. This inequality holds unless (n, q) = (4, 2) or (4, 4), in which cases
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a direct calculation shows that |CT (x)| > |T |3/5. For n > 9 we must

show that |CT (x)| > |T |4/5. We now have qn > 512, and so it suffices

to show that (3
4)5n−10q2n2−21n+30 > 45(513

512)4. This inequality holds unless

(n, q) = (10, 2), or n = 9 and q 6 28. One may use (7)–(8) to check that

|CT (x)| > |T |4/5 in each of these cases except (n, q) = (9, 2), in which case

the desired inequality may be verified by a direct calculation.

§4. Quasiprimitive point actions of type SD or CD

We now apply Corollary 1.5 to permutation groups N that arise as

subgroups of certain types of primitive groups. In some cases, we are also

able to treat quasiprimitive groups, namely those in which every non-trivial

normal subgroup is transitive. In this section, we consider the case where

the group N in Corollary 1.5 has a ‘diagonal’ action. Specifically, we work

under the following hypothesis.

Hypothesis 4.1. Let T be a non-Abelian finite simple group, let k > 2,

and write H = T k. Let Ω = {(y1, . . . , yk−1, 1) | y1, . . . , yk−1 ∈ T} 6 H, and

let H act on Ω by

(y1, . . . , yk−1, 1)(x1,...,xk) = (x−1
k y1x1, . . . , x

−1
k yk−1xk−1, 1). (9)

Suppose that N = Hr is a collineation group of a thick finite generalised

quadrangle Q = (P,L, I ) of order (s, t), such that P = Ωr and N has the

product action on P.

This situation arises when N is the socle of a primitive permutation

group G 6 Sym(Ω) of type HS, HC, SD or CD. For type HS (respectively

HC) we have k = 2 and r = 1 (respectively r > 2), G has two minimal

normal subgroups, each isomorphic to T r, and the socle of G is T r × T r,
which is isomorphic to N . For type SD (respectively CD) we have k >
2 and r = 1 (respectively r > 2), and G has a unique minimal normal

subgroup, isomorphic to T kr ∼= N . Note that the notation k and r is

consistent with that of Table 1. Of course, G must (usually) satisfy certain

other conditions [19, Section 6] in order to actually be primitive, but these

conditions are not needed for the proof of Proposition 4.2. It suffices that

there is a subgroup of the form N . In particular, we are also able to treat

quasiprimitive groups [19, Section 12], because the (action of the) socle of G

is the same as in the respective primitive types. (Note that a quasiprimitive
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group of type HS or HC is necessarily primitive, but a quasiprimitive group

of type SD or CD need not be primitive.)

Proposition 4.2 shows, in particular, that the parameter r in Hypoth-

esis 4.1 can be at most 3. As illustrated after Corollary 1.5, the proof

relies on the information about centraliser orders in non-Abelian finite sim-

ple groups given in Proposition 1.6. We also observe that when r = 3,

there always exists a solution (s, t) = (|Ω| − 1, |Ω| + 1) of the equation

|Ω|3 = |Ω|r = |P| = (s+ 1)(st+ 1), and this solution satisfies properties (ii)

and (iii) of Lemma 2.1. Hence, although we are unable to rule out the case

r = 3 completely, we verify that this ‘obvious’ situation cannot occur.

Proposition 4.2. If Hypothesis 4.1 holds then r 6 3 and |CT (x)| <
|T |1−r/5 for all x ∈ T \ {1}, and in particular T must appear in Table 2.

Moreover, if r = 3 then (s, t) 6= (|Ω| − 1, |Ω|+ 1).

Proof. Note first that |P| = |Ω|r = |T |(k−1)r. In particular, the ex-

cluded case (s, t) = (2, 4) in Corollary 1.5 does not arise, because |P| >
|T | > |Alt5| = 60 > (2 + 1)(2 · 4 + 1). If we take x := x1 = · · · = xk 6= 1 in

(9), then (y1, . . . , yk−1, 1) ∈ Ω is fixed if and only if y1, . . . , yk−1 ∈ CT (x).

That is, (x, . . . , x) ∈ H fixes precisely |CT (x)|k−1 elements of Ω (and, in

particular, the action of H on Ω is not semiregular). Corollary 1.5 there-

fore implies that r 6 4 and |CT (x)|k−1 < |Ω|1−r/5 = |T |(k−1)(1−r/5), namely

|CT (x)| < |T |1−r/5, for all x ∈ T \{1}. If r = 4 then we have a contradiction

because every non-Abelian finite simple group T contains a non-identity ele-

ment x with |CT (x)| > |T |1/5. For example, it is well known that every non-

Abelian finite simple group T contains an involution x with |CT (x)| > |T |1/3
(indeed, every involution has this property [21, Proposition 2.4]). There-

fore, r 6 3. In particular, Proposition 1.6 tells us that T must be one of the

groups appearing in Table 2. To prove the final assertion, suppose towards a

contradiction that r = 3 and (s, t) = (|Ω|− 1, |Ω|+ 1). Take any x ∈ T with

|CT (x)| > |T |1/3. Then ((x, . . . , x), (1, . . . , 1), (1, . . . , 1)) ∈ Hr = H3 = N

fixes |CT (x)|k−1|T |2(k−1) > |T |7(k−1)/3 = |P|7/9 points of Q, contradicting

Proposition 2.6.

The following immediate consequence of Proposition 4.2 (and the pre-

ceding observations) implies the SD and CD cases of Theorem 1.1.

Proposition 4.3. Let Q = (P,L) be a thick finite generalised quad-

rangle admitting a collineation group G that acts quasiprimitively of type

SD or CD on P. Then the conditions in Table 1 hold.
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§5. Primitive point actions of type HS or HC

We now consider the case where k = 2 in Hypothesis 4.1 in more detail.

As explained above, this case arises when N is the socle of a primitive

permutation group G 6 Sym(Ω) of type HS (r = 1) or HC (r > 2). When

k = 2, it is natural to simplify the notation of Hypothesis 4.1 by identifying

the set Ω with T r, so we first re-cast the hypothesis in this way and also

establish some further notation.

Hypothesis 5.1. Let T be a non-Abelian finite simple group and let

N = T r × T r act on T r by

y(u1,u2) = u−1
2 yu1.

Let M = {(u, 1) | u ∈ T r} 6 N , so that M may be identified with T r acting

regularly on itself by right multiplication. Suppose that N is a collineation

group of a thick finite generalised quadrangle Q = (P,L, I ) of order (s, t)

with P = T r. Let P1 ⊂ P denote the set of points collinear with but not

equal to the identity element 1 ∈ T r = P, and let L1 ⊂ L denote the set of

lines incident with 1. Given a line ` ∈ L, let ¯̀⊂ P denote the set of points

incident with `.

The following lemma may essentially be deduced from [26, Lemma 10]

upon observing that the assumption gcd(s, t) > 1 imposed there is not

necessary (as far as we can tell, and at least not in our more restrictive

setting). We include a proof to make it clear that we do not need to make

this assumption. Our notation differs from that of [26, p. 654] as follows:

the point-regular group G is our M ∼= T r, and the point O is our point 1,

so that ∆ is our P1.

Lemma 5.2. Suppose that Hypothesis 5.1 holds. Let x ∈ P1, and let `x
be the unique line in L1 incident with x. Then, for every i ∈ {1, . . . , |x|−1},
the conjugacy class (xi)T

r
is contained in P1. Moreover, the collineation

(x, 1) ∈M fixes `x.

Proof. Let us first establish some notation. Given u ∈ T r = P, write

fixP(u) = {P ∈ P | P (u,1) = P},
collP(u) = {P ∈ P | P (u,1) is collinear with but not equal to P},
fixL(u) = {` ∈ L | `(u,1) = `},

concL(u) = {` ∈ L | `(u,1) is concurrent with but not equal to `}.
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Since the subgroup M = {(u, 1) | u ∈ T r} of N acts regularly on P, fixP(u)

is empty. Moreover, P ∈ collP(u) if and only if the points P (P−1,1) = 1 and

(Pu)(P−1,1) = PuP−1 are collinear, which is if and only if PuP−1 ∈ uT r∩P1.

Since for g, h ∈ T r we have gug−1 = huh−1 if and only if g−1h ∈ CT r(u), it

follows that

| collP(u)| = |uT r ∩ P1||CT r(u)|,

as in the proof of [26, Lemma 3]. Then (again, as in that proof) [22, 1.9.2]

implies that

| collP(u)| = (s+ 1)| fixL(u)|+ | concL(u)| = |uT r ∩ P1||CT r(u)|, (10)

for every u ∈ T r.
Now, since x ∈ P1, we have u−1xu = x(u,u) ∈ P1 for every collineation

of the form (u, u) ∈ N , because such collineations (are precisely those that)

fix the point 1. That is, every T r-conjugate of x is in P1. In other words,

xT
r ∩ P1 = xT

r
, and so (10) implies that

| collP(x)| = (s+ 1)| fixL(x)|+ | concL(x)|
= |xT r ||CT r(x)| = |T r| = |P| = (s+ 1)(st+ 1). (11)

In particular, we have collP(x) = P; that is, every point of Q is mapped

to a collinear point under the collineation (x, 1) ∈ M . We now claim that

concL(x) is empty. If not, then some line ` is concurrent with its image

under the collineation (x, 1). Let P denote the unique point incident with

both ` and `(x,1). Then Px−1 is incident with `, being the image of P

under the collineation (x, 1)−1 = (x−1, 1), and Px−1 6= P because x 6= 1

and M acts regularly on P. Since Q is thick, there exists a third point

P3 incident with `, distinct from P and Px−1. Since collP(x) = P, the

points P
(x,1)
3 = P3x and P3 are collinear. Moreover, P3x is collinear with

P , because both of these points are incident with `(x,1). Therefore, P3x is

collinear with two distinct points that are incident with `, namely P3 and P ,

and so P3x is itself incident with ` because Q contains no triangles. This,

however, means that P3x is incident with both ` and `(x,1), which forces

P3x = P and hence P3 = Px−1, a contradiction. Therefore, | concL(x)| = 0

as claimed, and so (11) implies that

| fixL(x)| = st+ 1. (12)

Next, we show that (xi)T
r ⊆ P1 for all i ∈ {1, . . . , |x| − 1}. For each such

i, we certainly have fixL(x) ⊆ fixL(xi), because if the collineation (x, 1)
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fixes a line then so too does (x, 1)i = (xi, 1). In particular, | fixL(xi)| >
|fixL(x)| = st+ 1, by (12). On the other hand, no two lines fixed by (xi, 1)

can be concurrent, because if they were, then the unique point incident

with both of them would be fixed by (xi, 1), a contradiction since M acts

regularly on P. Hence, the total number of points that are incident with

some line in fixL(xi) is (s + 1)| fixL(xi)|. As this number cannot exceed

|P| = (s + 1)(st + 1), we must also have | fixL(xi)| 6 st + 1. Therefore,

|fixL(xi)| = st+ 1. Now (10) implies, on the one hand, that

| collP(xi)| = (s+ 1)|fixL(xi)|+ | concL(xi)| = |P|+ | concL(xi)|.

Since | collP(xi)| 6 |P|, this implies that | concL(xi)| = 0, and then in

turn that |P| = | collP(xi)|. Appealing again to (10), we now deduce that

|(xi)T r ∩ P1||CT r(xi)| = |P| = |T r|, which implies that (xi)T
r ⊆ P1 as

required. The first assertion is therefore proved.

Finally, we must show that the collineation (x, 1) fixes the unique line

`x ∈ L1 incident with x. If |x| = 2, then (x, 1) fixes `x because it fixes

setwise the subset {1, x} of points incident with `x. That is, it maps 1 to

1(x,1) = 1x = x and x to x(x,1) = x2 = 1. Now suppose that |x| > 2. Then

the point 1(x,1)2 = x2 6= 1 is collinear with x because x is collinear with

1. On the other hand, (x2)Tr ⊆ P1 by the first assertion, so in particular

x2 is collinear with 1. Therefore, x2 is collinear with two distinct points

incident with `x (namely 1 and x), and so is itself incident with `x because

Q contains no triangles. Hence, (x, 1) fixes `x because it maps a pair of

points incident with `x, namely 1 and x, to another pair of points incident

with `x, namely x and x2.

Hypothesis 5.1 imposes the following restrictions on the points and lines

incident with the identity element of T r = P, and on the order (s, t) of Q.

Lemma 5.3. The following assertions hold under Hypothesis 5.1.

(i) P1 is a union of T r-conjugacy classes.

(ii) Every line ` ∈ L1 has the property that ¯̀ is a subgroup of T r. Specifi-

cally, ¯̀= {u ∈ T r | (u, 1) ∈M fixes `}.

(iii) Every line ` ∈ L1 is incident with an involution.

(iv) If there exists a line in L1 incident with representatives of every T r-

conjugacy class of involutions in P1, then N acts transitively on the

flags of Q and r > 2.
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(v) T r has at least three conjugacy classes of involutions.

(vi) If T r has exactly three conjugacy classes of involutions, then either

P1 contains exactly two of these classes, or N acts transitively on the

flags of Q and r > 2.

(vii) gcd(s, t) = 1 and t > s+ 1.

Proof. (i) This follows immediately from Lemma 5.2.

(ii) If u ∈ ¯̀ then the collineation (u, 1) ∈ M fixes ` by Lemma 5.2.

Conversely, if (u, 1) fixes ` then, because 1 ∈ P is incident with `, so too is

1(u,1) = u; that is, u ∈ ¯̀.

(iii) If ` ∈ L1 is not incident with any involution, then ¯̀, which is a

subgroup of T r by (ii), must have odd order. That is, s+1 = |¯̀|must be odd.

However, (s+1)(st+1) = |T |r is even by the Feit–Thompson Theorem [13],

so s must be odd and hence s+ 1 must be even, a contradiction.

(iv) If ` ∈ L1 is incident with representatives of every conjugacy class

of involutions in P1, then ` can be mapped to any other line in L1 by

some element of the stabiliser N1 = {(u, u) | u ∈ T r} in N of the point

1 ∈ P = T r. Since N acts transitively on P, this means that N acts

transitively on the flags of Q, and hence on L. If r = 1, this contradicts [8,

Theorem 1.1], because N acts primitively on P in this case. Hence, r > 2.

(v) Suppose towards a contradiction that T r contains at most two conju-

gacy classes of involutions. Then r = 1, because if r > 2 then any involution

x ∈ T gives rise to the three pairwise non-conjugate involutions (x, 1, . . . , 1),

(1, x, 1, . . . , 1) and (x, x, 1, . . . , 1) in T r. Hence, by (iii), T must have ex-

actly two conjugacy classes of involutions, say xT and yT , and both must be

contained in P1. Without loss of generality, x and y commute, because at

least one of them centralises a Sylow 2-subgroup of T . Therefore, xy is an

involution, and so must be collinear with 1 ∈ P. Since 1 is collinear with x,

the images of 1 and x under the collineation (y, 1) ∈M are collinear. That

is, 1(y,1) = y is collinear with x(y,1) = xy. Similarly, 1 and y are collinear,

and hence so too are 1(x,1) = x and y(x,1) = yx = xy. Since the involution

xy is also collinear with 1 and Q contains no triangles, the points 1, x, y

and xy must be incident with a common line. In particular, x and y are

incident with a common line in L1. Since r = 1, this contradicts (iv).

(vi) Let x, y and z denote representatives of the three T r-conjugacy

classes of involutions. If P1 contains exactly one of these classes, then N

acts flag-transitively by (iv), and it follows from [8, Theorem 1.1] that r > 2.
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Now suppose that P1 contains all three of xT , yT and zT . Without loss of

generality, x centralises a Sylow 2-subgroup of T r and both y and z commute

with x, so xy = yx and xz = zx are involutions. Arguing as in the proof of

(iii), we deduce that 1, x, y and xy are incident with a common line ` ∈ L1.

Replacing y by z in this argument, we see that z is also incident with `, so

(iv) again implies that N acts flag-transitively, and it follows that r > 2.

(vii) If gcd(s, t) > 1 then [26, Lemma 6(1)] implies that every non-trivial

T r-conjugacy class intersects P1. However, assertion (i) then implies that

P1 = P\{1}, which is impossible. Therefore, gcd(s, t) = 1. In particular, to

show that t > s+1 it suffices to show that t > s. The proof of this assertion is

adapted from that of [8, Corollary 2.3]. Choose two distinct lines `1, `2 ∈ L1,

so that ¯̀
1 and ¯̀

2 are subgroups of T r by (ii). For brevity, we now abuse

notation slightly and identify `1 and `2 with ¯̀
1 and ¯̀

2, respectively, dropping

the ‘bar’ notation. Since `1 is a subgroup of T r and right multiplication

by any element of T r is a collineation of Q (identified with an element of

M), we have in particular that every right coset `1g2 of `1 with g2 ∈ `2
corresponds precisely to the set of points incident with some line of Q.

Similarly, left multiplications (identified with elements of {1} × T r 6 N)

are collineations, so every left coset g1`2 of `2 with g1 ∈ `1 is a line of Q.

Therefore, L′ = {g1`2 | g1 ∈ `1}∪ {`1g2 | g2 ∈ `2} is a subset of L. Consider

also the subset P ′ = `1`2 of P = T r, and let I ′ be the restriction of I to

(P ′ × L′) ∪ (L′ × P ′). If we can show that Q′ = (P ′,L′, I ′) is a generalised

quadrangle of Q of order (s, 1), then [22, 2.2.2(i)] will imply that t > s. Let

us first check that Q′ satisfies the generalised quadrangle axiom. Take ` ∈ L′
and P ∈ P ′ not incident with `. Since Q satisfies the generalised quadrangle

axiom, there is a unique point P0 ∈ P incident with ` and collinear with

P . Since ` ⊂ P ′, we have P0 ∈ P ′, and so Q′ also satisfies the generalised

quadrangle axiom. It remains to check that Q′ has order (s, 1). Every line

in L′ is incident with s+1 points in P ′, being a coset of either `1 or `2, so it

remains to show that every point in P ′ is incident with exactly two lines in

L′. Given P = g1g2 ∈ P ′, where g1 ∈ `1, g2 ∈ `2, each line ` ∈ L′ incident

with P is either of the form h1`2 for some h1 ∈ `1 or `1h2 for some h2 ∈ `2,

and since P ∈ `, we must have h1 = g1 or h2 = g2, respectively. Therefore,

P is incident with exactly two lines in L′, namely g1`2 and `1g2.

Proposition 4.2 restricts the possibilities for the simple group T in Hy-

pothesis 5.1 to those listed in Table 2. The following result shows that,

moreover, T must be a Lie type group.
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Proposition 5.4. If Hypothesis 5.1 holds then T is a Lie type group.

Proof. We have |P| = |T |r, and r ∈ {1, 2, 3} by Proposition 4.2. For

each of the alternating and sporadic simple groups T in Table 2, we check

computationally for solutions of |T |r = (s+1)(st+1) satisfying s > 2, t > 2

and properties (ii) and (iii) of Lemma 2.1 (see Remark 5.5). If r = 3 then the

only such solutions have the form (s, t) = (|T |−1, |T |+1) = (|Ω|−1, |Ω|+1),

and this contradicts the final assertion of Proposition 4.2. If r ∈ {1, 2} then

the possibilities for T and (s, t) are as in Table 3. By Lemma 5.3(i), P1 is

a union of T r-conjugacy classes, and so we must be able to partition |P1| =
s(t+ 1) into a subset of the sizes of these classes (respecting multiplicities).

When r = 1 and T ∼= Alt7 or Alt8, this is impossible: the non-trivial

conjugacy class sizes not exceeding s(t+ 1) are 70, 105 and 210 in the first

case, and 105, 112 and 210 in the second (with each occurring exactly once).

Similarly, if r = 2 and T ∼= J1, one may check computationally that there

is no partition of s(t+ 1), where (s, t) = (419, 175141), into non-trivial T 2-

conjugacy class sizes. Hence, it remains to consider the cases where r = 2

and T ∼= Alt6 or M11. Here we first determine computationally the possible

partitions of s(t + 1) into non-trivial T 2-conjugacy class sizes to obtain a

list of possible partitions of P1 into T 2-conjugacy classes. Now, because the

point graph of Q is a strongly regular graph in which adjacent vertices have

λ := s − 1 common neighbours and non-adjacent vertices have µ := t + 1

common neighbours, P1 must be a partial difference set of T 2 with these

parameters. That is, each non-identity element y ∈ T 2 must have exactly λ

representations of the form y = ziz
−1
j for zi, zj ∈ P1 if y ∈ P1, and exactly

µ such representations if y 6∈ P1. A computation verifies that this condition

is violated for each of the partitions of P1 determined in the previous step.

Remark 5.5. In the proof of Proposition 5.4, and at several other

points in Sections 5 and 6, we need to check computationally whether certain

positive integers X can be equal to the number of points of a thick finite

generalised quadrangle. That is, we check for integral solutions (s, t) of

the equation (s + 1)(st + 1) = X subject to the constraints s > 2, t > 2,

s1/2 6 t 6 s2 6 t4 and s + t | st(st + 1) imposed by Lemma 2.1. In

Section 5, X has the form |T |m for some non-Abelian finite simple group T

and some m 6 3, and in Section 6 we instead have X = Y m with m 6 4

and Y the index of a maximal subgroup of an almost simple group. The

above inequalities imply that s must lie between X1/4 − 1 and X5/2, so
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r T s t s(t+ 1)

1 Alt7 11 19 220
1 Alt8 19 53 1026
2 Alt6 19 341 6498
2 M11 89 7831 697048
2 J1 419 175141 73384498

Table 3: Alternating and sporadic groups in the proof of Proposition 5.4.

it suffices to consider every integer s in this range and determine whether

t = ((X−1)/s−1)/(s+ 1) is an integer and, if so, whether s+ t | st(st+ 1).

We remark that we found it useful to also observe that s must divide X−1,

because it turned out that X − 1 had only a very small number of divisors

in many of the cases that we had to consider.

We now show that r cannot equal 3, and deduce some further restric-

tions on T when r ∈ {1, 2}.

Proposition 5.6. If Hypothesis 5.1 holds then r 6 2 and T is a Lie

type group with the property that |CT (x)| < |T |1−2r/9 for all x ∈ T \ {1}.

Proof. By Propositions 4.2 and 5.4, T is a Lie type group and r 6 3.

We now show that |CT (x)| < |T |1−2r/9 for all x ∈ T \ {1} and deduce

from this that r 6= 3. Suppose, towards a contradiction, that there exists

x ∈ T \ {1} with |CT (x)| > |T |1−2r/9. Define w = (x, 1, . . . , 1) ∈ T r and let

Qθ = (Pθ,Lθ) be the substructure of Q fixed by θ = (w,w) ∈ N1. Then

Pθ = CT (x) × T r−1, and hence |Pθ| > |T |(1−2r/9)+(r−1) = |T |7r/9 = |P|7/9.

Proposition 2.4 then says that either s > t + 3, or (s, t) ∈ {(2, 4), (3, 9)}.
The first of these conditions contradicts Lemma 5.3(vii); the second implies

that |T |r = (s+1)(st+1) ∈ {27, 112}, which is impossible because |T | > 60.

Hence, every x ∈ T \ {1} must satisfy |CT (x)| < |T |1−2r/9. For r = 3, this

says that |CT (x)| < |T |1/3 for all x ∈ T \ {1}, a contradiction because we

can always find some x with |CT (x)| > |T |1/3 (as noted in the proof of

Proposition 4.2). Therefore, r 6 2.

Proposition 5.6 allows us to further reduce the list of candidates for the

simple group T in Hypothesis 5.1 in the remaining cases, where r ∈ {1, 2}.
Let us first consider the case r = 2.



28 J. BAMBERG, T. POPIEL AND C. E. PRAEGER

SUBMIT

Corollary 5.7. If Hypothesis 5.1 holds with r = 2 then T has Lie

type A1, Aε
2, 2B2 or 2G2. In particular, T has a unique conjugacy class of

involutions.

Proof. The result is verified by straightforward calculations involving

the bound on centraliser orders imposed by Proposition 5.6, but we include

the details in Section 9.

We can now prove the HC case of Theorem 1.1.

Theorem 5.8. Suppose that Q is a thick finite generalised quadrangle

with a collineation group G that acts primitively on the point set P of Q.

Then the action of G on P does not have O’Nan–Scott type HC.

Proof. As explained above, the socle of G is a group N = T r × T r

as in Hypothesis 5.1, for some r > 2. However, Corollary 5.7 tells us that

r = 2 and that T has a unique conjugacy class of involutions. In particular,

T r = T 2 has exactly three conjugacy classes of involutions, with represen-

tatives (x, 1), (1, y) and (x, y), where x and y are involutions in T . Now, [8,

Theorem 1.1] says that G cannot act transitively on the flags of Q, so in par-

ticular N cannot act transitively on the flags of Q. Lemma 5.3(vi) therefore

implies that P1 must contain exactly two T 2-conjugacy classes of involu-

tions. Hence, without loss of generality, P1 contains the class (x, 1)T
2
. Since

G acts primitively on P, it induces a subgroup of Aut(T 2) = Aut(T ) oSym2

that swaps the two simple direct factors of T 2. Therefore, P1 also contains

the class (1, y)T
2
, and so does not contain the class (x, y)T

2
. In particular,

no line ` ∈ L1 can be incident with both a conjugate of (x, 1) and a con-

jugate of (1, y), because by Lemma 5.3(ii), ` would then also be incident

with the product of these elements, a conjugate of (x, y). Hence, L1 is par-

titioned into two sets of lines: those incident with conjugates of (x, 1), and

those incident with conjugates of (1, y). Since G1 swaps these sets, G acts

flag-transitively, in contradiction with [8, Theorem 1.1].

For r = 1 we are left with the following list of candidates for T .

Corollary 5.9. Suppose that Hypothesis 5.1 holds with r = 1. Then

T is of Lie type A1, Aε
n with 2 6 n 6 6, B2, C2, C3, Dε

n with 4 6 n 6 6, or

exceptional Lie type other than E8.
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Proof. By Propositions 4.2 and 5.4, T is one of the Lie type groups in

the first column of Table 2. By arguing as in the proof of Proposition 5.6 but

applying Proposition 2.5 instead of Proposition 2.4 in the first paragraph,

we conclude that one of the following conditions must also hold:

(i) every non-identity element x ∈ T satisfies |CT (x)| < |T |94/125, or

(ii) s 6 2.9701× 1015.

By choosing appropriate elements x ∈ T as in the proofs in Section 3, we

are able to use this to deduce that T does not have type Aε
7, Aε

8, B4, C4,

Dε
7, Dε

8 or E8. We rule out E8 here as an example, and include details

of the remaining cases in Section 9. If T ∼= E8(q) then (s + 1)4 > |P| =

|T | > |E8(2)| ≈ 3.378 × 1074 and hence s > |E8(2)|1/4 − 1 ≈ 4.287 × 1018,

contradicting (ii), so (i) must hold. However, as noted in the proof of

Lemma 3.3, there exists x ∈ T ∼= E8(q) with |CT (x)| = q57|E7(q)| ∼ q190,

while |T |94/125 ∼ (q248)94/125 < q187. Indeed, one may check that |CT (x)| >
|T |94/125 for all q > 2.

Finally, we use Lemma 5.3 to reduce the list of candidates for T in

Corollary 5.9 to those given in the first row of Table 1, thereby proving the

HS case of Theorem 1.1.

Proposition 5.10. Let Q = (P,L) be a thick finite generalised quad-

rangle admitting a collineation group G that acts primitively of type HS on

P, with socle T × T for some non-Abelian finite simple group T . Then T

has Lie type Aε
5, Aε

6, B3, C2, C3, Dε
4, Dε

5, Dε
6, Eε6, E7 or F4.

Proof. We are assuming that Hypothesis 5.1 holds with r = 1, so

T must be one of the groups listed in Corollary 5.9. It remains to show

that, moreover, T cannot have type A1, Aε
2, Aε

3, Aε
4, 2B2, 2G2, 2F4, G2

or 3D4. This follows from Lemma 5.3(v), because in each of these cases

T has at most two conjugacy classes of involutions. (This may be verified

using, for example, [16, Table 4.5.1] for odd characteristic and [20] for even

characteristic.)

Remark 5.11. Proposition 5.10 begs the obvious question of whether

we can rule out the last remaining candidates for T listed there. We are

confident that we will be able to do this, but it seems that it will require

even more new ideas and a detailed case-by-case analysis. Of course, some of



30 J. BAMBERG, T. POPIEL AND C. E. PRAEGER

SUBMIT

the remaining groups can be ruled out in certain cases using Lemma 5.3(v);

in particular, if T has Lie type C2, C3, F4 or Eε6 in characteristic p, then

we must have p = 2, because in odd characteristic these groups have only

two conjugacy classes of involutions. When T has exactly three conjugacy

classes of involutions, we can begin by applying Lemma 5.3(v) (because we

know from [8] that N cannot act transitively on the flags of Q), and then the

arguments in the proof of Lemma 5.3(iv)–(vi) can be extended to deduce

some restrictions on which involutions can appear in P1. However, even

with this extra information, we have thus far been unable to completely

rule out any of the remaining candidates for T . These kinds of arguments

become more difficult when T has more than three conjugacy classes of

involutions, and in any case, it seems that it will be necessary to treat each

group individually, and to use the structure of its involution centralisers in

some detail. Although not an ideal state of affairs, we therefore leave the

remaining cases for a future project.

§6. Primitive point actions of type PA

We now apply Corollary 1.5 to the case where N is the socle of a

primitive permutation group G of O’Nan–Scott type PA. The notation of

Hypothesis 6.1 coincides with that of Table 1.

Hypothesis 6.1. Let Q = (P,L) be a thick finite generalised quadran-

gle of order (s, t) admitting a collineation group G that acts primitively of

type PA on P, writing T r 6 G 6 H oSymr for some almost simple primitive

group H 6 Sym(Ω) with socle T , where r > 2.

Proposition 6.2. If Hypothesis 6.1 holds then 2 6 r 6 4 and every

non-identity element of H fixes less than |Ω|1−r/5 points of Ω.

Proof. The socle of G is N = T r and the action of H on Ω is not

semiregular, so the result follows immediately from Corollary 1.5.

To say more than this, we would like to have generic lower bounds for the

fixity f(H), namely the maximum number of fixed points of a non-identity

element, of an almost simple primitive group H 6 Sym(Ω). This problem

was investigated in a recent paper of Liebeck and Shalev [21], who proved

that f(H) > |Ω|1/6 except in a short list of exceptions. This lower bound is

not quite large enough to force further restrictions on r in Proposition 6.2,

because to rule out r = 4 (as we did for types HC and CD) we would need
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f(H) to be at least |Ω|1/5. However, Liebeck and Shalev remark (after

[21, Theorem 4]) that their |Ω|1/6 bound could potentially be improved

generically to around |Ω|1/3, which would be sufficient for this purpose.

Work in this direction is currently being undertaken by Elisa Covato at

the University of Bristol as part of her PhD research [11], with the aim of

classifying the almost simple primitive permutation groups H 6 Sym(Ω)

containing an involution that fixes at least |Ω|4/9 points. As of this writing,

the alternating and sporadic cases have been completed, and so we are able

to apply these results to sharpen Proposition 6.2 as follows.

Proposition 6.3. Suppose that Hypothesis 6.1 holds with r > 2 and

T an alternating group or a sporadic simple group, and let S 6 H denote

the point stabiliser in the action of H on Ω. Then r ∈ {3, 4}, H = T ∼= Altp
with p a prime congruent to 3 modulo 4, and S ∩ T = p.p−1

2 .

Proof. Since r > 2, Proposition 6.2 tells us that r ∈ {3, 4}, and that

the fixity f(H) of H must be at most |Ω|1−r/5. If f(H) 6 |Ω|1−3/5 = |Ω|2/5
then Covato’s results [11] imply that either (i) T ∼= Altp with p ≡ 3 (mod 4)

a prime and S ∩ T = p.p−1
2 , or (ii) H and S are in Table 4.

In case (i) we can at least deal with the situation where H = Symp.

Indeed, by the argument in [21, Section 6], there is an involution u ∈ S =

p.(p− 1) fixing 2(p−3)/2(p−3
2 )! elements of Ω, which is greater than |Ω|2/5 =

(2(p − 2)!)2/5 provided that p > 7. If p = 7 then we observe that u still

fixes more than |Ω|1/3 elements. This rules out r = 4, because then 1/3 >

1−r/5 = 1/5. For r = 3 we apply Proposition 2.6. We have |Ω| = 2·5! = 120

and hence |P| = |Ω|3 = 1203, and the only solution of 1203 = (s+ 1)(st+ 1)

satisfying s > 2, t > 2 and properties (ii) and (iii) of Lemma 2.1 is (s, t) =

(119, 121), so Proposition 2.6 implies that every non-identity collineation of

Q fixes at most |P|7/9 points. However, the collineation (u, 1, 1) ∈ G fixes

more than |Ω|1/3|Ω|2 = |P|7/9 points, a contradiction. Therefore, if we are

in case (i) then we must have H = Altp, as per the assertion.

Now suppose that H and S are in Table 4. First consider the six cases

on the left-hand side of the table. In each of these cases, f(H) is at least

|Ω|1/5, so r = 4 is ruled out. For r = 3, we apply Proposition 2.6 as

above. Since f(H) > |Ω|1/5, we have in particular f(H) > |Ω|1/6. Choose

u ∈ H fixing at least |Ω|1/6 elements of Ω, and consider the collineation

(u, 1, 1) ∈ G, which fixes at least |Ω|1/6+2 = |Ω|13/6 = |P|13/18 points of Q.

Since the only solutions of |Ω|3 = (s+ 1)(st+ 1) satisfying s > 2, t > 2 and
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properties (ii) and (iii) of Lemma 2.1 are those with t = s+2, Proposition 2.6

provides a contradiction. Now consider the five cases on the right-hand side

of Table 4. The actions of J3.2, O’N.2 and Th all have fixity greater than

|Ω|1/6 [21, Lemma 5.3], so these are ruled out for both r = 3 and r = 4

by the same arguments as above. Now consider the action of M23. Here

|Ω| = 40320, and for r = 4 there are no solutions of |Ω|r = (s + 1)(st + 1)

satisfying s > 2, t > 2 and properties (ii) and (iii) of Lemma 2.1. If

r = 3, the only such solution is (s, t) = (40319, 40321). By [21, Lemma 5.3],

we have f(H) = 5, realised by an element u of order 11, and so we can

construct a collineation θ = (u, 1, 1) ∈ G of Q fixing 5|Ω|2 = 8128512000

points. However, s = t − 2 < t + 3, so the final assertion of Lemma 2.2

implies that |Pθ| 6 (s + 1)(s + 3) = 1988752683 < 8128512000, and we

have a contradiction. Finally, consider the given action of B, for which

|Ω| = 3843461129719173164826624000000. For r = 4, there is no solution

of |Ω|r = (s+1)(st+1) satisfying s > 2, t > 2 and properties (ii) and (iii) of

Lemma 2.1. For r = 3, the only such solution is (s, t) = (|Ω|−1, |Ω|+1), and

so the final assertion of Lemma 2.2 implies that any non-identity collineation

of Q fixes at most (|Ω|+ 1)(|Ω|+ 3) points. However, [21, Lemma 5.3] tells

us that f(H) = 22, so we can construct a collineation with 22|Ω|2 points to

yield a contradiction.

Remark 6.4. Further improvements to Proposition 6.2 will be made

in a future project. In the first instance, we hope to use Covato’s results [11]

on fixities of Lie type groups (once available), to complete our treatment

of the cases r = 3 and r = 4. We also note that it is straightforward to

handle the case r = 2 with T a sporadic simple group, and likewise the

almost simple case with sporadic socle, computationally along the lines of

[3, Section 6] (but assuming only point-primitivity and not line-primitivity).

However, we omit these computations from the present paper for brevity.

§7. Proof of Theorem 1.1

Let us now summarise the proof of Theorem 1.1. If the primitive action

of G on P has O’Nan–Scott type AS or TW, then the conditions stated in

Table 1 follow immediately from Theorem 1.3. Types HS, HC and PA are

treated in Proposition 5.10, Theorem 5.8 and Proposition 6.3, respectively.

Types SD and CD are treated together in Proposition 4.3.
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H S H S

Alt9 32 : SL2(3) J3.2 19.9
J1 23.7.3 O’N.2 31.15
J1 7 : 6 M23 23.11
He 72 : 2.PSL2(7) Th 31.15
He.2 72 : 2.PSL2(7).2 B 47.23
Th 25.PSL5(2)

Table 4: Actions with small fixity in Proposition 6.3.

§8. Discussion and open problems

We feel that the results presented in this paper represent a substantial

amount of progress towards the classification of point-primitive generalised

quadrangles, but there is evidently still a good deal of work to do. We

conclude the paper with a brief discussion, and outline some open problems

that could be investigated independently and then potentially applied to

our classification program.

As discussed in Remark 5.11, we are confident that we will be able to

finish the HS case, and it is at least somewhat clear how this might be

done. The SD and CD cases would appear to be more difficult, however.

The arguments used in Section 5 do not work in these cases, because the

proof of Lemma 5.2 (and therefore Lemma 5.3) relies in a crucial way on

having k = 2 in Hypothesis 4.1, so that conjugation by an element of the

point-regular subgroup M is a collineation. We have thus far been unable

to find a way to work around this difficulty in any sort of generality. On

the other hand, a primitive (respectively quasiprimitive) group of type SD

must induce a primitive (respectively transitive) permutation group on the

set of simple direct factors of its socle T k, and it seems that it should be

possible to use this extra structure to say more about the SD and CD types,

at least in the primitive case (especially since we have already reduced the

list of candidates for T to those in Table 1). Although we have made some

preliminary investigations along these lines, we do not yet know how to

finish the SD and CD cases, and so we leave this task for a future project.

Point-regular groups, and a number-theoretic problem

There is, of course, a potential, but apparently extremely challenging,

way to deal with all of the types HS, SD and CD, and also with type

TW, in one fell swoop. In each of these cases, the full collineation group
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must have a point-regular subgroup of the form Tm, for some m, with T a

non-Abelian finite simple group. Hence, it would certainly be sufficient to

show that such a group cannot act regularly on the points of a generalised

quadrangle. However, this would appear to be a very difficult problem

in light of the (limited) existing literature. Yoshiara [26] managed to show

that a generalised quadrangle of order (s, t) with s = t2 cannot have a point-

regular collineation group, while Ghinelli [15] considered the case where s

is even and t = s, showing that such a group must have trivial centre

and cannot be a Frobenius group. Beyond this, not much else seems to

be known in the way of restrictions on groups that can act regularly on

the points of a generalised quadrangle (though certainly many of the known

generalised quadrangles admit point-regular groups [5], and the Abelian case

is understood [12]). Although Yoshiara [26] has an extensive suite of lemmas

that one might attempt to use to investigate (in particular) the possibility

that a group of the form Tm acts point-regularly on a generalised quadrangle

Q, the bulk of these lemmas assume that the order (s, t) of Q satisfies

gcd(s, t) 6= 1. Although this condition holds under Yoshiara’s intended

assumption that s = t2, it seems to be difficult to guarantee in general.

Indeed, according to Lemma 5.3(ii) (and perhaps not surprisingly), it must

fail in our HS case. On the other hand, one might seek a contradiction

by examining the arithmetic nature of the equation |T |m = (s + 1)(st + 1)

subject to the constraints imposed by Lemma 2.1, and asking when it can

be guaranteed that a solution must satisfy gcd(s, t) 6= 1. More generally,

one might simply ask whether this equation can have any such solutions at

all. This motivates the following problem.

Problem 8.1. Determine for which non-Abelian finite simple groups

T , and which positive integers m, there exist integral solutions (s, t) of the

equation

|T |m = (s+ 1)(st+ 1) (13)

subject to the constraints

s > 2, t > 2, s1/2 6 t 6 s2 6 t4 and s+ t | st(st+ 1). (14)

Failing this, determine when such a solution must satisfy gcd(s, t) 6= 1.

As noted before Proposition 4.2, there is always an ‘obvious’ solution of

(13)–(14) when m is divisible by 3, namely (s, t) = (|T |m/3− 1, |T |m/3 + 1),
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and gcd(s, t) = 1 in this case because |T | is even. It would be useful even to

know whether this is the unique solution in this particular situation. We do

know that (13)–(14) has solutions for certain groups T when m = 1 or 2, as

demonstrated by Table 3, but we do not recall encountering any solutions

apart from the aforementioned ‘obvious’ ones when m > 3. Moreover, it

is straightforward to run numerical computations that suggest that certain

combinations of families of T and values of m will never yield a solution

of (13)–(14). For example, if T ∼= PSL2(q) and m = 1 then there is no

solution if q < 106, but we do not see how to go about proving that there

is no solution for any q.

One might also ask about gearing Problem 8.1 towards the PA and AS

cases, by seeking solutions of (13)–(14) with |T | replaced by |H : S| for

H an almost simple group with socle T and S a maximal subgroup of H

(compare with Hypothesis 6.1, which reduces to the AS case if r is taken

to be 1). However, solutions of (13)–(14) seem to be rather more common

in this setting, and so other methods are needed to rule out cases where

solutions arise. For example, if we take H = T = McL (the McLaughlin

sporadic simple group) then there are five (classes of) maximal subgroups

S of H for which |H : S|2 = (s + 1)(st + 1) has a solution subject to (14):

four maximal subgroups of order 40320, for which (s, t) = (296, 5644), and

the maximal subgroup PSU4(3), for which (s, t) = (24, 126).

Fixities of primitive groups of type TW

Let us conclude with a brief discussion of the TW case. Write N = T1×
· · · × Tr, where T1

∼= · · · ∼= Tr ∼= T for some non-Abelian finite simple group

T . A primitive permutation group G 6 Sym(Ω) of type TW is a semidirect

product N o P with socle N acting regularly by right mutlitplication, and

P 6 Symr acting by conjugation in such a way that T1, . . . , Tr are permuted

transitively. Certain other rather complicated conditions must also hold

[2], and in particular T must be a section of P . If we intend to apply

Theorem 1.1 to classify the generalised quadrangles with a point-primitive

collineation group of TW type, then we will need ‘good’ lower bounds for

fixities of primitive TW-type groups. Liebeck and Shalev [21, Section 4]

showed that, for every T and r, the fixity of G is at least |T |r/3. Although

this is very far away from the 4/5 exponent bound imposed by Theorem 1.1,

we would be interested to know under what conditions the exponent could

be improved to something ‘close’ to 4/5, so that we could at least rule out

some of the subgeometries listed in Lemma 2.2 and then perhaps use other

ideas to say more. In [21, Section 4], Liebeck and Shalev considered an
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involution x ∈ P (which must exist because T is a section of P and |T | is

even) and observed that x induces a permutation of {T1, . . . , Tr} that fixes at

least |T |ca+b elements of Ω ≡ T r , where the induced permutation has cycle

structure (1a, 2b) and every involution g ∈ Aut(T ) satisfies |CT (g)| > |T |c.
By [21, Proposition 2.4], we can take c = 1/3 independently of T , and so

because a/3+b > (r−2)/3+2/3 = r/3, it follows that x fixes at least |T |r/3
elements. Now, c can certainly be taken larger than 1/3 in at least some

non-Abelian finite simple groups T (though presumably never as large as

4/5), and if we happen to have c > 1/2 then ca+b is maximised when b = 1

(else it is maximised when a = 0). Hence, roughly speaking, if c happens to

be somewhat large (for a given T ) and we happen to be able to guarantee

that x can be chosen with b quite small, then we might have a useful bound

on the fixity of G to work with. Bounds on c can certainly be determined

on a case-by-case basis from standard results about involution centralisers,

but in light of the rather involved necessary and sufficient conditions for P

to be a maximal subgroup of G, it is not clear to us what can be said about

the cycle structure of permutations of {T1, . . . , Tr} induced by involutions

in P . We therefore pose the following (somewhat vaguely worded) problem.

Problem 8.2. Under what conditions can it be guaranteed that a prim-

itive permutation group of type TW and degree d has large fixity, where by

“large” we mean, say, d3/4 or more?

§9. Additional proofs

Proof of Proposition 2.4. Suppose that we are not in case (iii). Then,

by the final assertion of Lemma 2.2, |Pθ| 6 (s+ 1)(t+ 1), and we argue as

in the proof of Theorem 1.3. We must show that we are either in case (ii),

or that f(s, t) = ((s + 1)(st + 1))7/9 − (s + 1)(t + 1) is positive. We have
∂f
∂t (s, t) = (s+ 1)(7s− h(s, t))/h(s, t), where h(s, t) = 9((s+ 1)(st+ 1))2/9.

If s > 13 then (using also 2 6 t 6 s2) we have h(s, t) 6 9(14
13s)

2/9(27
26st)

2/9 6
9(189

169)2/9s8/9, so 7s− h(s, t) > s8/9(7s1/9 − 9(189
169)2/9). The right-hand side

is positive if and only if s > (9
7)9(189

169)2 ≈ 12.01 > 12, and so it follows that

f(s, t) > 0 for all s > 13, for all s1/2 6 t 6 s2. If 4 6 s 6 12 then a direct

calculation shows that f(s, t) > 0 for all s1/2 6 t 6 s2, so it remains to

consider s ∈ {2, 3}. If s = 2 then, by the final paragraph of the proof of

Theorem 1.3, either t = 2 and every non-identity collineation of Q fixes at

most 7 < |P|7/9 = 157/9 ≈ 8.22 points, or t = 4 and we are in case (ii).

Finally, if s = 3 then 31/2 6 t 6 32, and a direct calculation shows that



Simple groups, product actions, and generalised quadrangles 37

SUBMIT

f(3, t) > 0 for 31/2 6 t 6 7. Moreover, Q cannot have order (s, t) = (3, 8)

by Lemma 2.1(iii). If (s, t) = (3, 9) then Q is the elliptic quadric Q−(5, 3)

[22, 5.3.2], and a FinInG [4] calculation shows that (up to conjugacy) there

is a unique non-identity collineation θ fixing 40 > |P|7/9 = 1127/9 ≈ 39.25

points. Moreover, Qθ is a generalised quadrangle of order (3, 3), and every

other non-identity collineation of Q fixes at most 16 < 1127/9 points.

Proof of Proposition 2.5. Suppose that we are not in case (ii) or (iii).

Then |Pθ| 6 (s+1)(t+1) by the final assertion of Lemma 2.2. We show that

f(s, t) = ((s+1)(st+1))94/125−(s+1)(t+1) is positive. We have ∂f
∂t (s, t) =

(s+ 1)(94s− h(s, t))/h(s, t), where h(s, t) = 125((s+ 1)(st+ 1))31/125. Let

a = 2.9701 × 1015. Then s > a, so (using also 2 6 t 6 s2) we have

h(s, t) 6 125(a+1
a s)31/125(2a+1

2a st)31/125 6 9( (2a+1)(a+1)
2a2

)31/125s124/125, and

hence 94s− h(s, t) > s124/125(94s1/125 − 125( (2a+1)(a+1)
2a2

)31/125). The right-

hand side is positive because s > a > (125
94 )125( (2a+1)(a+1)

2a2
)31 ≈ 2.97009 ×

1015, and it follows that f(s, t) > 0 for all s > a, for all s1/2 6 t 6 s2.

Proof of Proposition 2.6. Since s = t− 2 < t+ 3, the final assertion of

Lemma 2.2 implies that |Pθ| 6 (s + 1)(t + 1) = (s + 1)(s + 3). The result

follows upon comparing this with |P| = (s+ 1)3.

Proof of Corollary 5.7. By Propositions 4.2 and 5.4, T is one of the Lie

type groups in the second column of Table 2. However, by Proposition 5.6,

we must also have |CT (x)| < |T |5/9 for all x ∈ T \ {1}. We use this to show

that T cannot have type Aε
3, B2 = C2, 2F4 or G2.

If T ∼= G2(q) then |T | = q6(q6 − 1)(q2 − 1), and we can choose x ∈
T with |CT (x)| = q|A1(q)| = q6(q2 − 1)/ gcd(2, q − 1) as in the proof of

Lemma 3.3(ii). Note also that q > 3 because G2(2) is not simple. If q is

even or q > 19 then |CT (x)| > |T |5/9, and if q ∈ {3, 5, 7, 9, 11, 13, 17, 19}
then there is no solution of |T |2 = (s+ 1)(st+ 1) satisfying s > 2, t > 2 and

properties (ii) and (iii) of Lemma 2.1. If T ∼= 2F4(q) then q = 22n+1 with n >
1 (because 2F4(2) is not simple and 2F4(2)′ was treated in Proposition 5.4),

|T | = q12(q6 +1)(q4−1)(q3 +1)(q−1) and, as in the proof of Lemma 3.3(ii),

we can choose x ∈ T with |CT (x)| = q10|2B2(q)| = q12(q2 + 1)(q − 1). This

yields |CT (x)| > |T |5/9 for all q. If T ∼= PSp4(q) ∼= Ω5(q) then q > 3 (because

PSp2(2) ∼= Sym6 is not simple), |T | = q4(q4 − 1)(q2 − 1)/ gcd(2, q − 1), and

taking x ∈ T with |CT (x)| = q4(q2 − 1)/ gcd(2, q − 1) as in the proof of

Lemma 3.4 yields |CT (x)| > |T |5/9 for all q > 3. Finally, if T ∼= PSLε4(q)
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then |T | = q6(q4− 1)(q2− 1)(q3− ε)/ gcd(4, q− ε) and we can choose x ∈ T
with |CT (x)| = q5|GLε2(q)|/ gcd(4, q − ε) = q6(q2 − 1)(q − ε)/ gcd(4, q − ε)
as in the proof of Lemma 3.4. This yields |CT (x)| > |T |5/9 unless ε = +

and q = 2, and in this case there is no solution of |T |2 = (s + 1)(st + 1)

satisfying s > 2, t > 2 and properties (ii) and (iii) of Lemma 2.1.

Proof of Corollary 5.9 (continued). Now suppose that T ∼= PSLεn+1(q)

with n ∈ {7, 8}, and choose x ∈ T as in the proof of Lemma 3.4, so that

(1) holds. If n = 8 then |CT (x)| > |T |7/9 for all q > 2, so Proposition 5.6

gives a contradiction. If n = 7 then |CT (x)| > |T |94/125 for all q > 2, so

condition (ii) must hold. That is, s 6 2.9701× 1015, so

|T | = |P| < (s+ 1)4 6 (2.9701× 1015 + 1)4 < 7.78188× 1061. (15)

This forces q 6 9, in which case there is no solution of |T | = (s+ 1)(st+ 1)

satisfying s > 2, t > 2 and properties (ii) and (iii) of Lemma 2.1.

If T ∼= PSp8(q) then |T | = q16(q2−1)(q4−1)(q6−1)(q8−1)/ gcd(2, q−1)

and we take x ∈ T with |CT (x)| = q16(q2− 1)(q4− 1)(q6− 1)/ gcd(2, q− 1),

as per (2). This yields |CT (x)| > |T |94/125 for all q > 2, so again (15)

must hold. This implies that q 6 53, in which case there is no solution of

|T | = (s + 1)(st + 1) satisfying s > 2, t > 2 and properties (ii) and (iii)

of Lemma 2.1. Similarly, for T ∼= Ω9(q) take x ∈ T as in the proof of

Lemma 3.4, so that |CT (x)| = |SO±2n(q)| = q12(q4±1)(q2−1)(q4−1)(q6−1)

as in (3). This yields |CT (x)| > |T |94/125 for all q > 2, so (15) must hold,

and we immediately have a contradiction because |Ω9(q)| = |PSp8(q)|.
Finally, suppose that T ∼= PΩ±2n(q) with n ∈ {7, 8}, and choose x ∈ T

as in the proof of Lemma 3.4. If n = 8 then by using (4)–(5) (for q odd)

and (7)–(8) (for q even), one may check that |CT (x)| > |T |94/125 for all

q > 2. Hence, (15) must hold, and this implies that q ∈ {2, 3}, in which

case there is no solution of |T | = (s + 1)(st + 1) satisfying s > 2, t > 2

and properties (ii) and (iii) of Lemma 2.1. Now suppose that n = 7. Then

(15) holds if and only if q 6 4, and in this case there is no solution of

|T | = (s + 1)(st + 1) satisfying s > 2, t > 2 and properties (ii) and (iii)

of Lemma 2.1. Therefore, we must have q > 5. However, in this case

|CT (x)| > |T |94/125, so we have a contradiction. (To check this, note that

|CT (x)| > c · q42(q5 − 1)(q2 − 1)2(q4 − 1)(q6 − 1)(q8 − 1) where c = 1
2 or 1

4

according to whether q is even or odd.)
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