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Network analysis can help uncover meaningful regularities in the organization of complex systems. Among
these, rich clubs are a functionally important property of a variety of social, technological and biological
networks. Rich clubs emerge when nodes that are somehow prominent or ‘rich’ (e.g., highly connected)
interact preferentially with one another. The identification of rich clubs is non-trivial, especially in weighted
networks, and to this end multiple distinct metrics have been proposed. Here we describe a unifying
framework for detecting rich clubs which intuitively generalizes various metrics into a single integrated
method. This generalization rests upon the explicit incorporation of randomized control networks into the
measurement process. We apply this framework to real-life examples, and show that, depending on the
selection of randomized controls, different kinds of rich-club structures can be detected, such as topological
and weighted rich clubs.

T
he mesoscopic organization of networks is often described in terms of communities of densely connected
elements, such as the trading blocs within the world economy1. These communities are often regarded as the
functional subunits of the network2,3, a perspective that is premised on a somewhat egalitarian view of a

network’s organization that does not differentiate between individual nodes in terms of their functional import-
ance. Yet some nodes are more influential than others4,5. For instance, to fully understand the coordination of
global trade, it would be necessary to recognize the crucial role of global cities, prototypically New York6. Such
‘important’ cities may be in separate communities, but together they exercise an enormous influence over the
transactions occurring in the global economic system. The study of interactions between the important or
prominent elements in the network is therefore useful for understanding its mesoscopic organization. Here we
focus on one kind of interaction between the prominent network elements, in which they organize into subgroups
called rich clubs. We catalogue and assess various proposed metrics for measuring rich clubs in weighted net-
works. We create a framework that generalizes and unifies these disparate metrics and, in many cases, simplifies
their calculation.

Rich clubs are subgroups of important or influential (rich) nodes that preferentially interact with one another7,8.
This network feature has been detected in diverse complex systems, including transportation networks, scientific
collaboration networks, and the human brain8,9. Rich clubs can serve as a network’s backbone for optimizing the
routing between peripheral nodes10, and can substantially affect a number of the network’s properties, including
clustering and assortativity11. Accordingly, targeted attacks to connections within the rich club can damage a
network’s connectivity more than attacks to the links of highly connected nodes that are not rich-club members9.

Rich clubs may be topological or weighted. In topological rich clubs, the rich nodes preferentially create
connections with each other7,8. In weighted rich clubs, the rich nodes preferentially allocate weight to the
connections between each other12. The weight of a connection may represent its intensity, capacity, duration,
intimacy, or exchange of services13.

The topological rich-club coefficient w is the ratio between the number of existing connections between the rich
nodes, E, and the number of possible connections between them7,8. For a given set of N rich nodes, the coefficient
is formalized as:

w~
2E

N N{1ð Þ , ð1Þ

where the number of possible undirected connections is N(N 2 1)/2. Node ‘richness’ can be defined in terms of
any property (the richness parameter r), insofar as all nodes can be ranked according to that property. Commonly,
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however, r is taken to be node degree (i.e., the number of links
incident upon a node). The rich nodes are those whose richness
exceeds a threshold �r. The rich-club coefficient w can thus be calcu-
lated in relation to any value of �r, and is commonly represented as a
curve showing the value of w within a range of thresholds �r (as is done
in examples below). The value w is then normalized by comparison to
the same value observed in randomized controls, wrand:

wnorm~
w

wrand
: ð2Þ

These controls have the same richness sequence as the real network
(i.e., the set r1, r2, r3, … of richness values for all the nodes)8. The
normalization identifies whether the number of connections
between the rich nodes exceeds what is expected simply by chance,
and thus forms a club of preferentially allocated connections.

Despite the straightforward definition of the topological rich-club
coefficient, its generalization to weighted rich clubs is not trivial.
Numerous metrics for measuring weighted rich clubs have been
proposed and implemented, each with distinct implicit assumptions.
The diversity of these metrics and of their assumptions has received
little explicit attention, even though each metric ultimately captures a
different network property. The lack of a rigorous comparative
assessment of metrics has, in turn, blurred the relation and consist-
ency between different assessments of weighted rich clubs across a
variety of empirical studies.

Here we describe the relationship between the individual metrics
previously proposed and several new metrics we introduce.
Importantly, we then generalize all these metrics by showing how
they can be reduced to a common unifying framework. The general-
ization relies critically on integrating randomized controls into the
measurement process. We then employ this framework to show how,
by selecting different randomized controls, different kinds of rich-
club structures can be captured. As an example, we illustrate how
topological and weighted rich-club properties can be distinct and can
be measured separately using different randomized controls. We
discuss how methods that do not explicitly integrate randomized
controls can inadvertently conflate these two rich-club structures.

Results
Integration of rich-club measurements. A number of metrics that
extend Eq. 1 to weighted networks have been proposed8,12,14,15. All
these metrics have the form:

w~
C
F

, ð3Þ

where C is the weighted connectedness of the club (Figure 1), defined
as the sum of the weights of the links between the rich nodes, and F is
the maximal possible weighted connectedness of the club. The value
F depends on domain-specific assumptions about how weights and
links could be added or redistributed across the network.

Figure 2 contains previously proposed as well as several novel
measures of F, organized along two dimensions: i) how many links
could contribute to F (rows), and ii) where the weights associated to
these links are drawn from (columns). For example, in the first row,
given the four rich nodes in the network, the maximum number of
links that could exist between them is set at P 5 6. But what is the
maximum weight these links could carry? In the first column, we
assume that any link could have a maximal weight Wmax. This simple
extension of Eq. 1 is relevant for instance in correlation-based fin-
ancial networks, where every pair of nodes (stocks) could in principle
have highly correlated activity (strong connection), and where cor-
relation values are capped at Wmax 5 116. In the second column, we
assume that weights are tied to the links, so that the maximal con-
nectivity would be achieved by placing the six strongest links existing
in the whole network inside the rich club. The third column is sim-

ilar, except that we assume that only links already attached to one of
the rich nodes can be rewired to serve intra-club connectivity.

The second row in Figure 2 is similar to the first row, but assumes
that the number of connections that exist among the rich nodes is
fixed (at E 5 5 in the example shown) and no new connections could
be formed12,17.

In contrast to the first two rows, the third row assumes that
weights can be redistributed across the links of the network. For
example, panel (i) implies that the total strength of the nodes (i.e.,
the sum of the weights of the nodes’ links) is fixed, but rich nodes
could redistribute their weights across their links. This would be
appropriate for a social network in which individuals (nodes) could
choose to redistribute the time spent with various friends (i.e., weight
of links)12. Members of the rich club could therefore in principle
choose to direct all their time (sum of all weights) toward interactions
with other club members.

The use of a domain-specific denominator F has been a common
practice; yet, it is unnecessary, it may involve practical difficulties in
its calculation, and it may induce biases in the detection of rich clubs
by obscuring the influence of randomized controls. Indeed, the
evaluation of the weighted connectedness of a rich club requires
normalization through comparison to randomized controls with
the same richness sequence, just as with unweighted rich clubs12.
This normalization is required because even networks in which links
are randomly established can exhibit a non-zero value of w. The
detection of rich clubs in real networks must therefore take into
account and discount how much weighted connectedness would be
expected simply by chance8,12,17. Let us consider the unweighted rich-
club metric given by Eq. 1. Because the richness sequence is pre-
served, the number of rich nodes N at a given threshold �r will remain
constant. Thus:

wnorm~
w

wrand
~

2E
N N{1ð Þ

�
2Erand

N N{1ð Þ~
E

Erand
: ð4Þ

Similarly, for weighted rich clubs, if F is preserved in the randomized
control, then wnorm simplifies to:

Figure 1 | Weighted rich clubs are measured in terms of the weighted
connectedness between rich nodes. The rich club is the set of red (color

online) nodes with a richness value above a certain threshold �r. In this

example, the richness parameter is degree and �r~3. Size of nodes is

proportional to their richness. The rich club is thus the subgraph formed

by nodes with degree larger than 3. The weighted connectedness, C, of the

rich club is the sum of the weights of the links between the nodes in the

subgraph (black lines). The rich-club coefficient w is calculated by dividing

the existing weighted connectedness C by the maximal possible weighted

connectedness, F. See Eq. 3 and Figure 2.
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wnorm~
w

wrand
~

C
F

�
Crand

F
~

C
Crand

: ð5Þ

The resulting simplified form of the rich-club metric in Eq. 5 has
been used previously18, though without the motivating arguments
presented here. Here we argue that this simplified metric is in fact
necessary, since other previously proposed metrics all simplify into
this form when appropriate randomized controls are used. Indeed,
appropriate randomized controls should impose the same con-
straints on the rewiring of links and weights, and thus have the same
maximal weighted connectedness within the club F as the real net-
work. It then follows that any wnorm will always yield Eq. 5, because
the two values of F, one at the denominator of w and the other at the
denominator of wrand, cancel each other out.

Empirical applications. The framework of Eq. 5, with the explicit
inclusion of Crand into the rich-club metric, helps us focus our
attention on the importance of selecting the appropriate
randomized controls to detect rich clubs. Randomized controls
ensure that the measured rich clubs are not a trivial consequence
of connectivity constraints or other features of the network. In the
case of topological rich clubs, such constraints could include the
degree sequence (i.e., the set k1, k2, k3, … of degrees for all the
nodes) as well as more complex properties such as betweenness
centrality. In the case of weighted rich clubs, these potentially
confounding features of the network could include topological rich
clubs originating only from link placement. The traditional use of
randomized controls that only preserve the degree sequence of the
real network can conflate the existence of a purely topological rich-
club structure (due to link placement) with the existence of a

Figure 2 | Nine ways to measure weighted rich clubs, which all simplify to Eq. 5. The rich-club coefficient w is calculated by comparing the existing

weighted connectedness of the rich club to the maximal possible weighted connectedness, F. In each panel, the size of nodes is proportional to their

richness, and the width of links to their weight. Red nodes are the members of the rich clubs. Each panel describes an alternate way to define the maximal

weighted connectedness, and shows the set of links (black lines) whose collective weight is F. Underlying each metric are different assumptions about how

links and weights could, in principle, be alternatively arranged in the network to yield the maximal possible weighted connectedness. Preserving these

assumptions in the creation of randomized controls will ensure that the normalized rich-club coefficient wnorm simplifies to Eq. 5. The nine measures in

this figure are organized along two dimensions: (i) how many links could contribute to F (rows), and (ii) where the weights associated to these links are

drawn from (columns). Left Column (Capped Weight) Assumes links could have any weight up to a specific maximal weight. Middle Column (Globally

Selected) Assumes weights are attached to the links, so that the maximal weighted connectivity would be achieved by taking the strongest links from

anywhere in the network and placing them inside the rich club. Right Column (Locally Selected) Assumes only links connected to rich nodes can be locally

rewired to serve intra-club weighted connectivity. First Row (P Links) Assumes additional links can be added within the club, up to the topological limit P

(P 5 6 in this example). Second Row (E Links) Assumes the number of links in the club is fixed at the existing number, E (E 5 5 in this example). Third Row

(All Links) Assumes weights can be redistributed among the links of the network.
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weighted rich-club structure (due to weight allocation) based on a
given network topology.

Here we use two empirical networks to illustrate the distinction
between topological and weighted rich-club structures and cast light
on the crucial role of randomized controls in the detection of one
structure versus the other. We examined two networks: (i) the
human brain, in which nodes are the cortex regions, links are the
white matter tracts between regions, and weights are the number of
fibers per tract10 (Figure 3a, left); and (ii) the global airline traffic
network, in which nodes are the airports, links are the routes between
airports, and weights are the number of flights per route12,17

(Figure 3a, right). These networks are concerned with different
empirical domains and have different spatial scales; yet they both
have been found to be organized into topological and weighted rich
clubs, with widespread practical implications for their effectiveness
and efficiency.

In neural systems, on the one hand, a distinctive functional sig-
nificance has been attributed to rich clubs24. For instance, schizo-
phrenia has been associated with altered rich-club structures25.
Analysis of rich clubs in the brain has shown that they can facilitate
the connection of peripheral nodes of the network, over and above
the effect of high-degree hubs that are not members of a club10.
Transportation systems, on the other hand, have been found to
exhibit skewed distributions of travel fluxes per connection, as well
as a pronounced heterogeneity in the traffic passing through various
locations26,27. In particular, previous studies have suggested that traf-
fic in airline networks tends to be channeled on the routes connecting
the busiest airports8,12,17. This is responsible for the emergence of rich
clubs in which large backbones of travel fluxes are controlled by the
airports with many intercontinental connections to other hubs. The
organization of airline transportation systems into rich-club struc-
tures, in turn, has a number of policy implications for the manage-
ment and control of air traffic, ranging from the optimization of the
operating costs for carriers and the average traveling time for pas-
sengers, to the resilience of the systems against unexpected failures
and bottlenecks28.

Both networks clearly exhibit topological rich clubs. As shown by
Figure 3b (left), in the brain network, highly connected cortex
regions tend to be linked with one another to a larger extent than
would be expected by chance. However, when topology is controlled
for, the weight allocation in the brain network shows a pattern that is
the opposite of rich-club behavior, as indicated by Figure 3c (left). In
this case, the links between high-degree nodes have less weight than
would be expected by chance, in spite of the tendency of such nodes
to connect with one another.

Similarly, in the airline network, highly trafficked airports, with
routes to many destinations, tend to establish connections with one
another to a larger extent than randomly expected (Figure 3b, right).
However, unlike the brain network, the airline network is organized
not only into topological, but also weighted rich clubs (Figure 3c,
right). Over and above the propensity to direct routes toward one
another, highly trafficked airports also tend to allocate more flights
among one another than randomly expected. This finding is in
qualitative agreement with previous work that has documented
non-trivial correlations between degree and weight of links in trans-
portation networks26,27. Because airports with many routes are also
characterized by large travel fluxes per route, hub airports can secure
and share control over such fluxes by preferentially directing their
routes toward one another. One speculative explanation for why the
brain and airline networks show opposite weighted rich-club behavior
could be that the two systems have different goals: airline networks
integrate regions, while brain networks must achieve both integration
and segregation of processing regions. Thus in the airline network
both link placement and link weight serve to increase connectivity
between cities; in the brain link placement also increases connectivity,
but lower link weight keeps processing regions functionally distinct.

Further research could examine how these distinct topological and
weighted rich-club structures yield different system behaviors.

For both the brain and the airline networks, measuring the dis-
tinctive contributions of topology and weights to rich-club structures
requires the use of the appropriate null models. If randomized con-
trols that alter both topology and weights are used, the two contribu-
tions are inevitably mixed and combined, and thus the two distinct

Figure 3 | Topological and weighted rich-club structures intermingle in
networks, but can be distinguished by using different randomized controls.
(a) Visualization of the two weighted networks examined: the white matter

network of the human brain (left, data from10, link weight: number of fiber

tracts) and the global commercial airline network (right, data from21, link

weight: flights per day). (b–d) The rich-club behavior as measured by

applying different metrics to the white matter network of the human brain

(left) and the global airline network (right). wnorm is the normalized rich-club

coefficient, based on 1, 000 randomized controls. The shaded areas highlight

those values for which wnorm is significantly different from 1 (p , .05). Rich-

club coefficients were calculated for every unique value of degree in the

network. (b) The topological (unweighted) rich-club behavior, based on

randomized controls with the same degree sequence as the real network.

Both networks show topological rich clubs, in qualitative agreement with

what was found in8,10,12. (c) The weighted rich-club behavior, based on

randomized controls characterized by the same topology as the real network,

but with uncorrelated weights. (d) The mixed rich-club behavior, based on

controls that randomize the topology and also decorrelate the weights.

Similar controls were used to measure weighted rich clubs in the networks

analyzed in10.
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types of rich-club structures cannot be properly disentangled. As
shown by Figure 3d (left), the brain network exhibits a mixed rich-
club structure. In this case, the negative contribution of weights is
more than compensated for by the positive contribution of topology
to the rich clubs. The resulting net effect is a rich-club ordering that is
not unambiguously attributable to either topology or weights, but
only to some combination of the two sources. Similar mixed evidence
is shown with the airline network (Figure 3d, right). In this case, the
network exhibits a more pronounced tendency toward a mixed rich-
club structure than toward topological or weighted rich clubs. While
in the brain network topology and weights have distinct effects of
different sign, in the airline network both effects have a positive sign
and combine into synergies yielding a compound and mixed rich-
club ordering.

Mixed rich clubs may be measured intentionally (as in Figure 3d).
However, the previous framework of Eq. 3 (w 5 C/F) made uninten-
tional (and inaccurate) measurements of these mixed patterns more
likely to occur as a result of mismatches between F and the rando-
mized controls. A number of previous studies have reported
weighted rich clubs based on w 5 C/F, where the quantity F was
the sum of the E strongest links in the network, as shown in
Figure 29,10,12,17. This quantity assumes that the number of links in
the club is fixed, at E, and as such is suitable to measuring solely the
behavior of weights and their contribution to rich-club structures,
above and beyond the contribution of topology. However, to cal-
culate wnorm, w was then compared to randomized controls that
shuffled link placement, and thus changed the number of links
within the club9,10. This introduced a mismatch between the assump-
tion underlying the quantity F and the one underlying the rando-
mized controls. For F, the assumption is that the topology is fixed, so
that the maximum number of links that could exist between mem-
bers of the rich club is fixed at the existing number of links within the
club, E. In contrast, for the randomized controls the assumption is
that the number of links existing within the club is allowed to vary. By
reintroducing the effect of link placement on rich clubs through the
randomized control, the value ultimately calculated inadvertently
conflated topological and weighted rich-club structures. Such poten-
tial mismatches between F and randomized controls are circum-
vented by our framework of Eq. 5 (wnorm 5 C/Crand), which
eliminates the need to calculate F and places emphasis on the selec-
tion of randomized controls.

Discussion
Here we have generalized previously reported metrics for measuring
weighted rich clubs, and created a unifying framework based on the
direct inclusion of randomized controls. Just as the various metrics in
Figure 2 were originally proposed to address conceptually different
questions, the present framework enables different properties of a
network to be evaluated through different randomized controls. For
example, we have shown that purely topological rich clubs can be
measured using controls that shuffle topology, while weighted rich
clubs can be measured using controls that preserve topology but
decorrelate weights.

More complex measurements and controls can be envisaged, and a
number of procedures have been proposed to create different types of
controls. For instance, the strength sequence (i.e., the set s1, s2, s3, …
of the strengths of all the nodes) of a given network can be preserved
while uncorrelated values can be assigned to the weights of the
links19. It is also possible to preserve the weight sequence (i.e., the
set w1, w2, w3, … of the weights attached to all the links), for networks
with many links20. Moreover, for directed networks, the out-strength
or in-strength sequence could be preserved by randomizing the
weights of each individual node’s outgoing or incoming links,
respectively12. This procedure has the added effect of preserving
not only the weight sequence for the entire network, but also the

out-weight or in-weight sequence of each individual node (i.e., the set
of weights of all links departing from, or arriving at, each node).

Even more sophisticated properties could be preserved in rando-
mized controls, such as network structural features (e.g., between-
ness centrality) or non-network features (e.g., the demographic
attributes of individuals in a social network). These controls can then
be used to isolate any contribution those features make to the con-
nectedness of a rich club, and thus to assess whether any rich-club
structure remains. Ultimately, the choice of the appropriate rando-
mized control requires domain-specific information as to how links
in a given network could in principle be added, severed or reshuffled,
and the weights reallocated to existing or newly established links.

In summary, while a number of metrics have been suggested for
uncovering topological and weighted rich-club structures8,12,14,15, the
framework described here simplifies these metrics to a single form by
explicitly incorporating randomized controls into the measurement
process. In doing so, this framework lays bare how to disentangle and
measure the distinct contributions of topology and weight assign-
ment to the generation of rich-club structures.

Methods
Rich-club effects were measured in two empirical networks: the human brain and the
global commercial airline network.

The human brain network, from10, is the white matter connectivity network of the
cortex, as measured with diffusion tensor imaging data from 40 healthy subjects. The
cortex was divided into 1, 170 equally sized regions, which served as the nodes of
the network. The links between the nodes are the white matter tracts between cortex
regions, and link weights are the number of fibers found for each connection.

The global commercial airline network, from21, was created from the open-
flights.org airline route database as of August, 2011. Network nodes are airports, links
are flight routes between airports, and link weights are the number of flights per route.

For each network, the rich-club coefficient wnorm was calculated using Eq. 5, and
Crand was calculated from the average of 1, 000 randomized controls. To measure
topological rich clubs, link weights were ignored (i.e., they were set to one) and
randomized controls with the same degree sequence were generated using the Viger-
Latapy method22, as implemented in the igraph toolbox23. To measure the weighted
rich clubs, the link weights were included, and randomized controls were generated
with the same topology but new, uncorrelated link weights. Uncorrelated link weights
that closely preserved the strength sequence were created using the methods by
Serrano et al.19. Lastly, to measure mixed rich clubs, both methods were combined,
using randomized controls with both shuffled topology and uncorrelated weights.
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