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Abstract. Many wearable lower-limb robots for walking assistance have been
developed in recent years. However, it remains unclear how they can be
commanded in an intuitive and efficient way by their user. In particular,
providing robotic assistance to neurologically impaired individuals in turning
remains a significant challenge. The control should be safe to the users and
their environment, yet yield sufficient performance and enable natural human-
machine interaction. Here, we propose using the head and trunk anticipatory
behaviour in order to detect the intention to turn in a natural, non-intrusive way,
and use it for triggering turning movement in a robot for walking assistance. We
therefore study head and trunk orientation during locomotion of healthy adults,
and investigate upper body anticipatory behaviour during turning. The collected
walking and turning kinematics data are clustered using the k-means algorithm
and cross-validation tests and k-nearest neighbours method are used to evaluate
the performance of turning detection during locomotion. Tests with seven subjects
exhibited accurate turning detection. Head anticipated turning by more than
400-500 ms in average across all subjects. Overall the proposed method detected
turning 300 ms after its initiation and 1230 ms before the turning movement is
completed. Using head anticipatory behaviour enabled to detect turning faster
by about 100 ms if compared to turning detection using only pelvis orientation
measurements. Finally, it was demonstrated that the proposed turning detection
can improve quality of human-robot interaction by improving the control accuracy
and transparency.

Keywords: locomotion, wearable robots, exoskeleton, biomimetic control, human-
machine interaction
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1. Introduction

Designing the control of robots for walking assistance is
a challenging task, as it is not clear yet how they should
be controlled by the user [22, 33, 7, 29, 32]. Ideally, the
control should be safe, efficient and enable an intuitive
and natural human-machine interaction. The recent
Cybathlon 2016 competition illustrated the importance
of having an easy to use control interface, and the
challenges to develop intuitive control interfaces for
walking assistance robots [27].

Various strategies were proposed to control
wearable lower limb robots and exoskeletons. For
instance, the Rex Bionics exoskeleton (Auckland, New
Zealand) is controlled over a joystick that enables the
user to select the activity and walking speed. While
this joystick based control is simple and robust, it
increases the mental load and may not be fast to
learn. Some robots use a non-invasive BCI to select
actions [22, 33], which currently enables only slow
control not compatible with real-time walking control.
Other control approaches include body weight shifting
detection for motion initiation [7, 29] and real-time
interaction force and kinematics tracking [32] which
is suitable for healthy subjects walking assistance,
and can also be used for neurologically impaired
users by generating patient-specific stable locomotion
trajectories [5, 34, 18].

Existing exoskeleton control systems assume that
the human-user is able to perform the turning action or
to rely on joystick based input. This lets the robot to
follow the turn when it is mechanically transparent and
its mechanical structure does not constraint natural
human movements. However, many current systems
have kinematics constraining the movement to straight
walking thus do not allow natural steering. On the
other hand, several studies have shown how the upper
body can be used to control powered wheelchairs, using
gaze tracking [21, 23] or head movement based on face
tracking [20]. However, such tracking systems require
significant attention and concentration, and the gaze-
based control interface may interfere with the users’
natural eye-head-body coordination.

While these previous works have proposed various
ways to control walking interfaces, to our knowledge
no dedicated turning detection algorithm has been
proposed that enables intuitive and efficient control of
the mechanically coupled human-exoskeleton turning
movements. Turning during locomotion is a relatively
complex motor task [13, 31, 30], and careful human-
robot coordination is required to perform the task
safely and efficiently. The present paper investigates
a natural human-robot interaction method for turning
during locomotion based on actual human body
movements. Neurologically injured individuals such
as stroke and spinal cord injury are often unable to

control their lower body but have better control of the
upper body including the head and trunk [9, 10, 2].
Therefore the upper body may be used to control a gait
assistance exoskeleton, by detecting the intention to
turn and subsequently assisting the turning movement.

Indeed, it is well known that during natural
locomotion upper body movement precedes the actual
turn. The head and gaze react first by steering the
eyes and head towards the turning direction. In
[11] the head behaviour during walking along curvy
paths was studied in healthy humans. The results
showed that head direction systematically anticipated
changes in direction of locomotion by about 200 ms.
This anticipatory behaviour was observed in gaze as
well, as it was shown that the gaze is reoriented
towards the change of direction of locomotion before
the head. The eye-head anticipatory coordination
was recorded for 90◦ turns both in eyes closed and
natural conditions and the anticipation lead time was
up to 1 s [12]. The head anticipatory behaviour is an
essential part of the walking and steering behaviour
in humans. It was shown in [15] that head rotation
immobilisation resulted in anticipatory trunk rotations
and reduction of stability in trunk orientation during
turning. Similar results were reported on gaze-head-
trunk turning anticipatory behaviour in walking and
standing [19, 17, 4, 14, 16, 1].

A few studies proposed to use anticipatory
properties of upper body movements to control
robotic systems. In [28, 24] it was shown that
head anticipatory behaviour can be observed during
controlling robotic systems. Specifically, the head was
observed to anticipate the hand joystick movement in
mobile robot teleoperation, video game and robotic
tool control. However, to our knowledge no systematic
investigation of the behaviour and its application to
robot control was presented yet. Furthermore, the
robot control tasks described in [28, 24] did not involve
locomotion with an assistive device co-moving with
the user. In [2, 8] it was demonstrated that spinal
cord injured patients can learn to use the residual
upper body movements in order to control assistive
devices such as a wheelchair, or perform computer
tasks, using a pre-defined body to task mapping.
However movement intention prediction based on
typical anticipatory behaviour was not investigated.

In this paper we investigate the use of the natural
anticipatory behaviour of upper body to detect the
intention to turn during locomotion, and to command
turning with a lower limb assistive robot. This
natural behaviour of the upper body may make human-
robot interaction more intuitive than previous control
methods, and improve the performance of robotic
rehabilitation and prostheses applications. First,
we record and characterise the head anticipatory
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Figure 1. Experimental setup (top view).

behaviour in locomotion in healthy participants. Then,
we use the recorded data to develop a method to
detect a turning movement before it is started based
on the head anticipatory behaviour. We suggest that
the turning anticipatory behaviour of the upper body
can be efficiently used to control lower limb assistive
robotic devices based on real time head and pelvis
motion measurements and provide user with a natural
human-robot control interface. To support our findings
we demonstrate in a simple turning example that faster
activity detection improves the quality of the robot
control.

2. Methods

This section describes the experimental protocol, the
proposed turning detection algorithm and a set of
validation methods used to evaluate the algorithm’s
performance. Subsections 2.1 and 2.2 describe
the experiment which was used to collect human
turning data. These data was then used for
generating turning behavior clusters for the proposed
head-based turning detection method described in
subsection 2.3. A simple pelvis yaw threshold based
method is described in subsection 2.4 which was
used as an alternative turning detection approach for
performance comparison with the proposed method.
Subsections 2.5, 2.6 and 2.7 describe performance

evaluation tests for different turning angles, multiple
turns and for anticipatory turning control of an
assistive robotic system, respectively.

2.1. Experimental setup and protocol

Seven healthy human-subjects (age 25-31, all males)
were asked to walk straight and turn during which
the orientation of the pelvis and head were recorded.
Yaw angle orientation was recorded at 75 Hz sampling
rate using wireless wearable inertial measurement units
(IMUs - MTw XSens, Enschede, the Netherlands).
Fig. 1 shows a top view of the experimental setup.
Each subject was asked to walk under three conditions:
straight-ahead, straight-ahead followed by a 90◦ left
turn, and straight-ahead followed by a 90◦ right
turn. In the beginning of a trial a subject was
asked to stay straight with head and body aligned
along the direction of walking. IMUs were re-
aligned before each trial to improve motion tracking
accuracy. Computer generated voice command first
gave a command to start walking straight-ahead. An
infrared proximity sensor (placed approximately 1.5 m
away from the starting point) was used to detect
subject and to trigger one of recorded voice commands:
’walk straight’, ’turn left’ or ’turn right’. The sequence
of commands was randomised for each subject. After
hearing the voice command, a subject was expected
to continue walking straight for 1-1.5 m and then to
follow the requested walking trajectory. Subjects were
instructed to stop movement after they had walked for
about 8 meters in total. Each walking command was
repeated 10 times for each subject, thus each subject
performed 30 walking tasks during the experiment.
Additionally, each subject performed six initial testing
trials which helped them to understand the task better.
Average walking speed in all trials was about 1-
1.5 m/s. The experimental protocol was approved by
the Imperial College London research ethics committee
and the participants have written and signed informed
consent.

Additionally, two subjects (from the same partici-
pants group) carried out a control experiment to test if
the proposed turning detection algorithm will be able
to distinguish between the real whole body turning mo-
tion and head only turning during walking. The same
experimental setup as for the main experiment was
used in this case. These subjects were asked to perform
walking trials when only their head was turned left or
right during straight locomotion. The random voice
commands were: ’turn head left’, ’turn head right’,
’keep head straight’. Each subject performed 10 trials
for each command.
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Figure 2. Head and pelvis yaw recordings. A: Single subject
recordings of head and pelvis yaw vs. time during walking
straight, turning left and turning right; the figure shows 10 trial
recordings per turning direction. B: Averaged and modeled head
and pelvis yaw for left turning for single subject; modelling is
done with system identification based on linear transfer function
fitting.

2.2. Data analysis

The recorded time history of head and pelvis yaw
were first analysed to identify the start and end of
the turning movement for the head and pelvis during
locomotion. Fig. 2 shows the time history plots for
head and pelvis yaw of a typical subject. In Fig. 2A,
we observe that the head turns earlier than the pelvis
during left or right turning, and these results are in
accordance with previous findings on head anticipatory
behaviour [11, 12]. To determine the time instants
when turning starts head and pelvis yaw behaviour
was modelled as a time-delayed second order system
described with the following transfer function:

W (s) =
ω2

s2 + 2ωξs+ ω2
· e−T◦s (1)

where ω is the natural frequency, ξ damping ratio, and
T◦ time delay. Identification of the transfer function
parameters was done using the MATLAB identification
toolbox (Mathworks, Natick, MA, US) for each trial
of each subject. Step signal starting at time t = 0
(90◦ step, positive for left, negative for right turns) was
used as input for W (s), while the yaw measurements
were used as delayed output of W (s). We were
specifically interested in the identified values of time
delays, T◦, which defined when head and pelvis turning
started and permitted the analysis of the anticipatory
behaviour. Therefore, the identification precision for
time delay parameter of W (s) was set to 10 ms. The
total turning time was determined by using the 10%-
settling time which corresponded to the approximate
range of turns based on the recorded data, as the
subjects were not able to perform exact 90◦ turns.

Figure 3. Head vs pelvis yaw measurements for all subjects.

2.3. Anticipatory head based turning detection

Let us now describe how the head turning anticipatory
behaviour during locomotion can be used to detect
turning before it actually happens. Head yaw
and pelvis yaw measurements collected during the
experiment with the different subjects and plotted
against each other are shown in Fig. 3. Five relatively
clear sets of data can be obtained: walking straight
when head is straight, walking straight with head
turned left, walking straight with head turned right,
walking after turning left and walking after turning
right. We aimed to develop a method to distinguish
between all these sets and detect turning as fast as
possible after it has been initiated. It is important
to note here that the data points located between
left and right turning activities are not located along
the {y = x} diagonal line which corresponds to head
anticipatory behaviour. This anticipatory behaviour
provides additional information about turning action
and can be used to detect turning early. Clustering
head and pelvis data is used to define the data sets
that correspond to walking straight, turning left and
turning right behaviours during locomotion. Then, by
assigning a given point of head and pelvis yaw to one
of the clusters we can identify if turning has started or
not.

We used k-means clustering (with k=3) to define
three behaviours: walking straight, turning left and
turning right. In order to obtain improved clustering
results we applied the following transformation to each
measured pelvis-head yaw point:(

x
y

)
=

1

c+ r
sin(2Θ)

(
1 0
0 kh

)(
φp
φh

)
,

Θ = arctan

(
φp
φh

)
, (2)

r =
√
φ2p + φ2h,
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Figure 4. Transformations to improve clustering of head and pelvis yaw data.

where vector
(
x, y

)>
is pelvis and head yaw vector(

φp, φp
)>

in the transformed space; kh and c
the scaling constants; Θ an angle between the

measurement vector
(
φp, φp

)>
and horizontal axis,

and r its length. First, the yaw points along the head-
axis were scaled kh-times, because in our approach
the head behaviour as a valuable feature for turning
detection. Then each point was scaled with respect
to the corresponding vector’s angular orientation by
multiplying it by sin(2Θ). This keeps the points
{y = x} along the main diagonal, but moves points
corresponding to head-only rotation closer to the
origin. Finally, the scaling by 1/(c+r) moves the points
of interest away from the origin.

The parameters for space transformations were:
kh=4 (it should be more than 1 in order to scale
the head yaw) and c=35. The parameter c = 35
was selected as follows. Clustered over the data
set of Fig. 4B will not group the data into required
behaviours, as the three centroids of the data are not
clearly split due to significant amount of data liaising
the centroids (central, bottom left and upper right
centroids). Therefore, division by (c+ r) was required,
so that the walking straight data centroid (central
centroid in Fig. 4B) will be distinct from turning
centroids. To do that, we defined a disk with radius
R = 23◦ containing all data points corresponding to
walking straight with head straight as shown in Fig. 3.
We considered a point A in the first quadrant as the
intersection of the circle and the identity line and
point B with the coordinates (90◦, 90◦) as presented
in Fig. 3. The points A and B lie on the identity line,
therefore the transformation sin(2Θ) does not influence
their location. The clustering procedure after the
final transformation (Fig. 4C) should take into account
that the transformed points A’ and B’ represent the
element of the maximal boundary for straight walking
and the centroid of walking to the left after turning
was completed, correspondingly. To assure this it is
required that the distance between the origin (0,0) to
A’ equals to A’B’. This distance equality condition

suffices when c ≈ 35.
The transformed data set of measured head and

pelvis yaw was clustered into three groups: {walking
straight, turning right, turning left} - using k-means
clustering shown in Fig. 4C. Once clustered the data
points can be mapped back to the original space as
shown in Fig. 4D.

These clusters were used for off-line detection of
turning during locomotion for each subject using cross-
validation tests and the k-nearest neighbours method
(k=5) to classify the tested data points. Off-line
testing was used to evaluate the performance of the
proposed algorithm, as it enabled easy parameter setup
and testing condition modifications. Importantly, once
the turning detection is tested off-line and suitable
parameters are determined it can be transferred to
online testing. The turning detection algorithm was
realized in MATLAB (Mathworks, Natick, MA, US),
which used the recorded during experiments time-
history of head and pelvis yaw for a given subject
as an input and calculated the turning detection time
for the recorded data. Each walking data for a given
subject which was being used for turning detection, was
not used for forming the clusters. That was done in
order to test the robustness of the proposed detection
method and to demonstrate that the method is not
subject-specific and can efficiently work with the data
sets of different subjects. The turning was detected
when the identified class of the tested point changed
from walking straight to turning.

2.4. Pelvis based turning detection

A simple way to understand whether a subject is
turning during walking is to observe the pelvis yaw
movements and detect the instances when the pelvis
yaw angle exceeds the predefined orientation threshold
ϕth. This pelvis based method is the simplest upper
body based turning detection method and it will be
used to evaluate the efficiency of the proposed method
which is based on the head anticipatory behaviour.
The angular orientation thresholds can be set as
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maximal pelvis yaw angles of the specific subject
if available or as the maximal possible pelvis yaw
during straight walking of a group of subjects as done
in this paper. Some implementations of threshold
based methods for turning detection can be found
in [6, 25] where it was also suggested that monitoring
body’s angular velocity improves the turning detection.
In our study we do not take angular velocity into
consideration for the pelvis based methods, as well
as for the proposed head based method, hence
performance comparison of both approaches is fair.

2.5. Multiple turns detection

The turning detection method described in previous
subsections was extended to a multiple turns detection
algorithm. Additionally to applying the k-nearest
search method to the turning data, we need to
determine when each turning is completed and straight
walking is initiated. To detect straight walking we
employ a simple threshold based method that observes
the pelvis yaw time history and triggers straight
walking event. Once turning is completed and walking
straight is detected we need to reset the coordinate
frame for the clusters (Fig. 4D). This was done by
translating the origin to (90◦, 90◦) if the last detected
turning was “left” or to (-90◦, -90◦) when the last
turning was “right”.

Three subjects took part in the testing multiple
turning detection experiment, who had not partici-
pated in the initial single turning trials. They were
asked to walk indoors and follow the turning commands
of the experimenter. The same set of IMU measure-
ments was used as in the initial experiments. The data
set used for cross validation tests for turning detection
was based on the yaw angles collected in the single turn
trials described above.

2.6. Testing turning to different angles

To test the efficiency of the proposed algorithm
to detect turning to different angles a series of
numerical simulations were performed. We simulated
a participant walking straight, and then turning to
30◦, 45◦ and 60◦. A set of 70 head and yaw turning
trajectories was generated for each turning angle. In
testing, the simulated head and pelvis trajectories
were used as inputs to the proposed turning detection
algorithm which is based on the clustering from the
90◦-turning left/right real participants data. Hence
we can assume that the proposed turning detection
method is efficient, if it is shown that turning to other
angles can be detected with the 90◦-turning clusters
only.

To simulate natural dynamic behaviour of the
pelvis and the head the averaged results of the system

identification from all subjects’ data in subsection 2.2
were employed. Turning behavior was modelled with
step responses of the second order transfer function
(1) with the head parameters ωh = 4.03 rad/s and
ξh = 1.17, and the pelvis parameters ωp = 3.00
rad/s and ξp = 0.83. Anticipatory behaviour of the
head was modelled by delaying the pelvis turning by
averaged anticipatory time calculated from all subjects
data (528±385 ms). For our simulation the turning
initiation time was set to t = 3 s.

To emulate natural pelvis and head oscillations
in horizontal plane during straight walking before the
turning is initiated a sinusoidal signal was added to the
head and the pelvis yaw trajectories: for the pelvis with
amplitude 12◦ and frequency 0.74 Hz, and for the head
with amplitude 3◦ and frequency 0.60 Hz. These values
for amplitude and frequency were obtained as averaged
parameters from the fast Fourier transform analysis of
the straight walking data of all subjects. The phase
difference for the head and the pelvis oscillations was
set to π±25% as similar behaviour was observed in the
experimental data. To model the variation between
the trials, Gaussian random noise was added to the
signal parameters such as straight walking oscillation
amplitudes, phase difference and anticipation time
when each simulated walking trajectory was generated.
The amplitudes of the added noise for maximal pelvis
and head oscillation amplitudes, phase difference and
turning anticipation time corresponded to the signals
standard deviation values: ≈ 2◦, ≈ 1◦, ≈ π/4 rad,
358 ms, respectively.

2.7. Using turning detection for human-robot
co-control

This section describes how anticipatory control of turn-
ing based on above detection method can be imple-
mented to provide robotic assistance. Demonstra-
tion of the control is achieved through simple human-
exoskeleton robot interaction model consisting of cou-
pled masses corresponding to human turning during
locomotion. A human’s head and pelvis and the assis-
tive robot connected to the pelvis were modelled using
simple second order linear models:

mhẍh = fh −bh(ẋh − ẋb)−kh(xh−xb),
mbẍb = fb −bh(ẋb − ẋh)−krb(xb−xr)−kh(xb−xh),

mrẍr = fr −brẋr−krb(xr−xb), (3)

where x = x(t), f = f(t), m, b and k define the
angle, control force, inertia, damping and stiffness,
respectively; the lower indices h, b, r indicate the head,
body (pelvis) and the wearable robot parameters,
respectively. In the model, the head was connected to
the rest of the body through viscous coupling bh. The
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viscous coupling between the body and the robot was
neglected, however the connection with the robot was
modelled as stiffness, krb, and the robots’ friction was
modelled as damping br. The human turning motor
inputs were modelled as linear controllers:

fh(t) = kh [xref (t)− xh(t)]− dhẋh(t), (4)

fb(t) = kb [xref (t− ta)− xb(t)]− dbẋb(t),

where k and d are control gains, xref is the desired
turning angle, and ta is the time specifying the delay
in the body turn following the head anticipatory
movements. To model the robot control, a simple
linear compensator was used that tracks the human
body movements by minimising the difference in the
robot and the body orientation:

fr(t) = kr(xb(t)−xr(t))+dr(ẋb(t)−ẋr(t))+fac(t), (5)

where fac is the anticipatory control law which
we introduced to improve turning assistance using
additional head movements information. The fac was
defined as

fac(t) =

{
kac(xh(t)− xr(t)) if t > ta + td

0 otherwise,
(6)

where td is the turning detection time. In the
head-based turning detection method the anticipatory
control was activated once the turning had been
detected. The anticipatory control component of
the model was not used (fac = 0) when the pelvis
only turning detection method was tested. The
tracking control error (difference between robot and
human motion) for two turning detection methods
were compared. In this paper we introduced the
basic anticipatory control law, but the control is not
necessarily limited to simple linear relations and more
efficient designs are left for future research.

The values of the model’s parameters were selected
so that the time responses of the head and the pelvis
movements corresponded to the average response of
the experimentally identified second order systems
(1): mh = 4 kg·m2, bh = 1 Nm·s/rad, kh =
2.08 Nm/rad [26], mb=60 kg·m2, mr=10 kg·m2, br =
100 Nm·s/rad, krb=100 Nm/rad, kh=50 Nm/rad,
dh=20 Nm·s/rad, kb=350 Nm/rad, db=200 Nm·s/rad,
kr=1750 Nm/rad, dr =200 Nm·s/rad; sampling time
was set to 0.001 s. In the simulation Gaussian random
noise with standard deviation 0.05 rad was added to
the angular positions of the head and the pelvis in
equations (4)-(6).

3. Results

3.1. Head anticipatory behavior

First, we determined the starting and ending turning
times for the head and the pelvis of each subject in

Figure 5. Characteristic times for left and right turning (left
and right panels) for all subjects. Upper row shows mean and
standard deviations of starting and ending turning times for the
head and pelvis. Pelvis turning start time is set to t=0 (dark
grey bars), therefore head turning start time is negative (light
grey bars) and head turning is completed earlier (black bars).
Lower row shows mean anticipatory and standard deviation head
turning time for each subject.

each trial using second order transfer function fitting
as described by equation (1). The turning times for
seven subjects (s1-s7) are shown in Fig. 5. In the first
row of the figure the height of each bar plot represents
the turning time of the head (black bars) and of the
pelvis (grey bars). The bar plots representing starting
and ending turning times were aligned such that time
t=0 corresponds to the pelvis turn starting time. In
all cases head turning was initiated before the pelvis
turn (t ≤0). The middle row shows the turning
anticipation time for all subjects in left and right turns.
The bar plots in the bottom shows the normalised
anticipation time where the mean anticipation time
for each subject was divided by the total turning
time. The mean results of turning duration and head
turning anticipation time for all subjects are presented
in Table 1. In average the subjects’ head turned 528 ms
earlier than the pelvis which corresponds to 27.5% of
total turning time. There was no significant difference
in turning and anticipation times for left and right
walking trajectories.

3.2. Turning detection

Fig. 6A presents the comparative results of turning
detection using the proposed head anticipatory turning
method and pelvis threshold based method for
all subjects in left and right walking trajectories.
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Figure 6. Turning detection results for left and right
trajectories (left and right panels) using head anticipatory and
pelvis based methods for all subjects. Upper row of each panel
shows mean detection time and standard deviation for head
anticipatory (black bars) and pelvis methods (grey bars). Middle
row shows the percentage of cases when head based method
detection time was smaller than the detection time using the
pelvis threshold method. Lower bar plots show the number of
misdetections when the pelvis threshold method was used. A.
pelvis yaw threshold of ϕth = 17.25◦. B. pelvis yaw threshold
ϕth = 6.02◦.

The pelvis turning detection threshold was set to
17.25◦, the maximal pelvis yaw angular deviation
during straight walking among all subjects. In
average, detection was faster with the proposed head
anticipatory method. The average turning detection
time reported in Table 1, is 300 ms for head based
method and 407 ms for pelvis based method. The
second row of Fig. 6A shows the proportion of cases
when the proposed detection method performed better
in each individual turn. The proposed anticipatory
detection method performed better at least in 80% of
cases except for subject s5 for turning left. Overall in

Figure 7. Comparative results for turning detection with
different pelvis yaw thresholds. Left: percentage of successful
detections for the head and the pelvis methods vs pelvis
threshold. Right: proportion of cases when the head based
method detected turning faster than the pelvis based method.

more than 87% of the tests the turning was detected
earlier with the proposed head based anticipatory
method. The bottom row of Fig. 6A shows the
percentage of misdetections for the pelvis based
detection method. We defined misdetection as the case
when turning was predicted, but the data following
this prediction did not match the turning activity. As
shown in Fig.6A (third row) and reported in Table 1,
there were no cases for misdetections when the pelvis
yaw threshold was set to maximal possible deviation,
17.25◦. There were no misdetection cases when the
proposed detection method was used.

We have tested the detection when a lower pelvis
yaw threshold was used, as it may improve the
detection results for the pelvis threshold method.
Possible disadvantage of lowering the threshold is a
potential increase of the number of misdetections.
The pelvis yaw threshold was set to 6.02◦ which
corresponds to the value of two standard deviations
of the pelvis yaw during straight walking (more than
95% of yaw points were considered). Fig. 6B shows the
comparative results for this threshold and the proposed
head anticipatory based method. As expected this
time, the pelvis based method detected turnings faster
than the proposed head based method. Mean detection
time with the pelvis based method was 283 ms, which
is still larger than the head based anticipatory method
(see Table 1). Importantly, the pelvis based method
could not to detect turning correctly in most of the
cases, as there was significant number of misdetections:
81% of all trials were identified turning action for
straight walking. In both cross validation tests there
were no misdetections observed when the proposed
head based anticipatory methods was used.

To further compare the performance of the
proposed turning detection method to pelvis threshold
based method, we run a set of cross-validation tests
for different values of pelvis thresholds. In summary
of results for all subjects and trials presented in Fig. 7,
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Table 1. Turning and detection time results across all subjects.

Variable Left turns Right turns All turns

Duration [s]
pelvis turn 1.415±0.613 1.638±0.709 1.530±0.671
head turn 1.773±0.849 1.654±0.668 1.715±0.765
Anticipation
head turning [s] 0.580±0.459 0.461±0.284 0.528±0.385
normalised [%] 31.0±21.3 24.1±14.6 27.5±18.4
Detection [s]
head based 0.229±0.215 0.319±0.276 0.300±0.246
pelvis based:
· ϕth = 17.25◦ 0.359±0.252 0.454±0.289 0.407±0.274
· ϕth = 6.06◦ 0.351±0.103 0.220±0.136 0.255±0.137
Misdetection
head based 0%
pelvis based:
· ϕth = 17.25◦ 0%
· ϕth = 6.06◦ 81%

each data point corresponds to 140 trials (7 subjects
× 20 trials for left and right trajectories). The left
bar plot presents the percentage of cases when turning
detection was successful, i.e. when the detection
event was followed by actual turning movement.
While all detection tests with the proposed head
based anticipatory method were always successful, the
turning detection with the pelvis method was always
successful only when the threshold was more than
17.25◦ which corresponds to maximal absolute pelvis
oscillation during straight walking among all subjects.
The detection success rate was decreased for lower
threshold values and it was less than 50% for the
threshold values below 7.5◦. The right plot of Fig. 7
shows the percentage of cases when the proposed head
anitcipation based method was detecting the turns
faster than the pelvis based method. Based on the two
plots of Fig. 7 the pelvis method detected the turning
faster than the head based method with a success rate
more than 50% for the pelvis yaw thresholds in the
range of ≈ 7.5◦.. 11.9◦. Once the pelvis yaw threshold
was set to ≥11.9◦ the head based method was better
than the pelvis based method providing 100% detection
success rate. At the same threshold point, the pelvis
based method reached the success rate of 90%, 10%
less than with the proposed detection technique.

We have also tested if the proposed head
anticipatory based method is capable of discriminating
the steering during locomotion and from head turns
alone (i.e. with no corresponding body turning
movement). The results showed that there were no
misdetection cases.

3.3. Multiple turning detection

Fig. 8 shows walking trajectories during multiple
turning detection tests with three participants. The
feet trajectories were reconstructed from the inertial

Figure 8. Turning detection with the proposed head based
anticipatory method with multiple turns for three participants.
Location of head and pelvis orientation vectors correspond to
instants when turning was detected.

measurements based on the method described in [35].
Thin black lines of the feet trajectories correspond to
straight walking, while thick red lines correspond to
turns, as it was identified by the proposed turning
detection method. The instants when turning was
detected and completed are shown with black and
grey arrows, representing orientation of the head and
the pelvis, respectively. In all turning cases the
proposed turning detection method worked correctly
and was able to identify turning at its earliest stages.
Head orientation was always anticipating the turning
intention of the subjects. The turning detection times
for the subjects were 176±25 ms, 201±23 ms and
218±57 ms.

3.4. Turning to different angles

We have used the simulated turning trajectories as
described in subsection 2.6 with the experimental data
based clusters to evaluate the performance of the
proposed turning detection method. Fig. 9A illustrates
generated head and pelvis yaw behaviour for turning to
30◦ and 60◦. Both trajectories contain straight walking
(t ≤3 s) when the head and the pelvis are oscillating in
antiphase, as it is observed in the experimental data.
Turning initiation was programmed for t=3 s, which
was followed by the head and the pelvis turning to
the final orientation. The set of 70 trajectories was
used to test the turning detection with the proposed
and pelvis-based methods. The threshold for pelvis
based method was set to 13.00◦ as it corresponded
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Figure 9. Modelling results for testing the robustness of the
method to different turning angles. A: an example of simulated
head and pelvis yaw trajectories for 30◦ and 60◦turning; B:
results of turning detection for 30◦, 45◦, 60◦ with pelvis and
anticipatory head based detection methods.

to maximal amplitude of simulated straight walking
pelvis movements which is a more conservative testing
condition than it was in the experimental tests. The
results for turning detection time for three turning
angles are shown in Fig. 9B. For all turning angles
and trials the head-based detection method performed
better than the pelvis-based only method. The turning
detection was ≈90 ms, ≈40 ms and ≈30 ms faster when
head turning information was used for 30◦, 45◦, 60◦,
respectively.

3.5. Anticipatory control of turning with the assistive
wearable robot

This subsection presents an example of anticipatory
control for wearable assistance robot during turning
based on the model described in subsection 2.7. The
model was used to compare how turning detection
methods based on the head and the pelvis movements
influence the accuracy of the robot exoskeleton control
and interaction with the user during turning. In the
modelling tests presented here the primary goal of
the controller was to make the wearable robot follow
the human’s turning as closely as possible, hence
making turning action comfortable through increasing
mechanical transparency. Enabling transparent
control is a crucial step for human-robot assistive
systems, as it makes interaction natural and prepares
a basis for further assistive controllers implementation.
To evaluate the transparency of the controller, the
error between the robot and the human body positions
was selected as the performance measure, because
accurate tracking of the body position is critical for
the stability, efficiency and safety of the wearable
robotic system. Accurate position tracking improves
the system haptic transparency which is critical for
wearable robotic systems. In the modelling scenario
a human was required to turn the body by 1 rad.
The results are presented in Fig. 10. The left panel
shows the head and the pelvis yaw vs time and the

Figure 10. Modelling results for anticipatory based control.
Left: head, pelvis and robot angles and control error vs time
during turning. Right: root mean square of control error for
different detection times.

error of the robot tracking controller. The robot
followed the body turn in two cases: when the
turning was detected based on the pelvis threshold
and when the turning was detected based on the
proposed anticipatory method. In the simulation, the
timings for head anticipatory turn ta, and for turning
detection time td were taken from Table 1 (ta = 0.41
s; td = 0.3 s for the head based method and td = 0.35
s for the pelvis based method). As shown in the
left panel of Fig. 10 the control error was reduced
when the anticipatory head based turning detection
was used. The control performance was tested for
different turning detection times (td = 0 ... 0.5 s).
The calculated root mean square errors of differences
between the body and the robot angles for different
turning detection times are shown in the right panel in
Fig. 10. The control error was significantly increased
with the longer turning detection time. The modelling
demonstrated that using head movements for turning
detection is beneficial for collaborative human-robot
control by taking advantage of anticipatory nature of
human motion planning.

4. Discussion

A novel method for detection of turning behaviour
during locomotion by which can be used for lower
limb assistive robotic systems was presented. The
results of our experimental evaluation demonstrated
the efficiency of the proposed head based turning
anticipation method in detecting turning during
locomotion. Compared to simple threshold based
turning detection method the presented method
relies on the usage of head movements during
locomotion which provides valuable information about
human’s intention during walking and turning. The
anticipatory behaviour of the head and the upper body
which was used in the detection method has found
to be essential for natural walking and observed in
all healthy subjects. Early head movements during
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steering enabled to detect turning earlier and more
robustly, as the design of the anticipatory based
method is independent from the pelvis based threshold.

In the present work we considered the applications
in which turning is detected while human-subjects are
walking. The proposed turning detection method is
meant to be used with assistive walking robots which
are physically interacting and moving together with
its user in contrast to previous work on controlling
robots [24]. Typical example of systems where our
approach is useful are wearable exoskeletons which
require fast, robust and reactive control for high
performance. Physical interaction between robot and
its user requires the controller to observe and predict
human movement intentions to improve stability and
safety of collaborative locomotion.

Our control application scenario demonstrated
that earlier turning detection helps the robot to
turn in accordance with the natural human body
movements, which should improve the coordination of
the robot with the human movements and increase
haptic transparency of the interaction. Achieving
transparent haptic interaction is critical for human-
robot assistive systems, as transparent control is the
basis for designing assistive strategies operating in
force/position or impedance modes. Having extra
anticipatory body movement information such as
head orientation enabled fasted control reaction and
provided the robot with a new motion planning
reference. The turning detection method presented
in this study can be used as a natural control input,
making human-robot interaction more intuitive and
assisted locomotion more efficient.

Data clustering required for the proposed method
is computationally expensive, however it can be done
off-line, while the actual detection procedure based
on k-nearest neighbours method can be implemented
online as it only consists of a simple search in two-
dimensional space. Importantly, the size of the clusters
can be reduced, as the algorithm does not require
the full range of turning data, because the actual
turning and switching between clusters happen when
the absolute hip and head yaw angles are typically
in a range of 7◦ to 20◦. Additionally, our tests have
shown that it is not necessary to redo the clustering
for turning detection for each individual user, as the
identified turning clusters are similar between different
subjects, and subject-to-subject differences do not
affect the detection’s quality.

The proposed approach may be applied to
different groups of neurologically impaired users to
assist walking with the help of robotic systems. It
was shown that SCI patients are capable to use
upper body movements to perform robot control
tasks [2]. Usage of anticipatory behaviour of

upper body may provide more efficient and natural
human-robot interaction control which can be also
applied in the rehabilitation systems to improve
turning performance [3]. However, further studies
of upper body anticipatory behaviour is required for
neurologically impaired users. Additionally, further
studies are required to investigate the robustness of
anticipatory turning behavior when robotic assistance
for turning is applied, as it may be possible that
the natural human behavior is constrained with the
robot and extra adjustment for the algorithm might
be required, especially in the case of impaired users.
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