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Abstract

This study examines how the mind’s predictive mechanisms contribute to the perception of

cadential closure during music listening. Using the Information Dynamics of Music model

(or IDyOM) to simulate the formation of schematic expectations—a finite-context (or

n-gram) model that predicts the next event in a musical stimulus by acquiring knowledge

through unsupervised statistical learning of sequential structure—we predict the terminal

melodic and harmonic events from 245 exemplars of the five most common cadence

categories from the classical style. Our findings demonstrate that (1) terminal events from

cadential contexts are more predictable than those from non-cadential contexts; (2) models

of cadential strength advanced in contemporary cadence typologies reflect the formation of

schematic expectations; and (3) a significant decrease in predictability follows the terminal

note and chord events of the cadential formula.

Keywords: cadence, expectation, statistical learning, segmental grouping, n-gram

models
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Simulating Melodic and Harmonic Expectations

for Tonal Cadences Using Probabilistic Models

1 Introduction

In the intellectual climate now prevalent, many scholars view the brain as a

‘statistical sponge’ whose purpose is to predict the future (Clark, 2013). While descending

a staircase, for example, even slightly misjudging the height or depth of each step could be

fatal, so the brain predicts future steps by building a mental representation of the staircase,

using incoming auditory, visual, haptic, and proprioceptive cues to minimize potential

prediction errors and update the representation in memory. Researchers sometimes call

these representations schemata—‘active, developing patterns’ whose units are serially

organized, not simply as individual members coming one after the other, but as a unitary

mass (Bartlett, 1932, p. 201). Over the course of exposure, these schematic representations

obtain greater specificity, thereby increasing our ability to navigate complex sensory

environments and predict future outcomes.

Among music scholars, this view was first crystallized by Meyer (1956, 1967), with

the resurgence of associationist theories in the cognitive sciences—which placed the brain’s

predictive mechanisms at the forefront of contemporary research in music

psychology—following soon thereafter. Krumhansl (1990) has suggested, for example, that

composers often exploit the brain’s potential for prediction by organizing events on the

musical surface to reflect the kinds of statistical regularities that listeners will learn and

remember. The tonal cadence is a case in point. As a recurrent temporal formula

appearing at the ends of phrases, themes, and larger sections in music of the

common-practice period, the cadence provides perhaps the clearest instance of phrase-level

schematic organization in the tonal system. To be sure, cadential formulæ flourished in

eighteenth-century compositional practice by serving to ‘mark the breathing places in the

music, establish the tonality, and render coherent the formal structure,’ thereby cementing

their position ‘throughout the entire period of common harmonic practice’ (Piston, 1962, p.
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108). As a consequence, Sears (2015, 2016) has argued that cadences are learned and

remembered as closing schemata, whereby the initial events of the cadence activate the

corresponding schematic representation in memory, allowing listeners to form expectations

for the most probable continuations in prospect. The subsequent realization of those

expectations then serves to close off both the cadence itself, and perhaps more importantly,

the longer phrase-structural process that subsumes it.

There is a good deal of support for the role played by expectation and prediction in

the perception of closure (Huron, 2006; Margulis, 2003; Meyer, 1956; Narmour, 1990), with

scholars also sometimes suggesting that listeners possess schematic representations for

cadences and other recurrent closing patterns (Eberlein & Fricke, 1992; Eberlein, 1997;

Gjerdingen, 1988; Meyer, 1967; Rosner & Narmour, 1992; Temperley, 2004). Yet currently

very little experimental evidence justifies the links between expectancy, prediction, and the

variety of cadences in tonal music or indeed, more specifically, in music of the classical style

(Haydn, Mozart, and Beethoven), where the compositional significance of cadential closure

is paramount (Caplin, 2004; Hepokoski & Darcy, 2006; Ratner, 1980; Rosen, 1972). This

point is somewhat surprising given that the tonal cadence is the quintessential

compositional device for suppressing expectations for further continuation (Margulis,

2003). The harmonic progression and melodic contrapuntal motion within the cadential

formula elicit very definite expectations concerning the harmony, the melodic scale degree,

and the metric position of the goal event. As Huron puts it, ‘it is not simply the final note

of the cadence that is predictable; the final note is often approached in a characteristic or

formulaic manner. If cadences are truly stereotypic, then this fact should be reflected in

measures of predictability’ (2006, p. 154). If Huron is right, applying a probabilistic

approach to the cadences from a representative corpus should allow us to examine these

claims empirically.

This study applies and extends a probabilistic account of expectancy formation called

the Information Dynamics of Music model (or IDyOM)—a finite-context (or n-gram)
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model that predicts the next event in a musical stimulus by acquiring knowledge through

unsupervised statistical learning of sequential structure—to examine how the formation,

fulfillment, and violation of schematic expectations may contribute to the perception of

cadential closure during music listening (Pearce, 2005). IDyOM is based on a class of

Markov models commonly used in statistical language modeling (Manning & Schütze,

1999), the goal of which is to simulate the learning mechanisms underlying human

cognition. Pearce explains,

It should be possible to design a statistical learning algorithm ... with no initial

knowledge of sequential dependencies between melodic events which, given

exposure to a reasonable corpus of music, would exhibit similar patterns of

melodic expectation to those observed in experiments with human subjects

(Pearce, 2005, p. 152).

Unlike language models, which typically deal with unidimensional inputs, IDyOM

generates predictions for multidimensional melodic sequences using the multiple viewpoints

framework developed by Conklin (1988, 1990; Conklin & Witten, 1995), which is to say

that Pearce’s model generates predictions for viewpoints like chromatic pitch by combining

predictions from a number of potential viewpoints using a set of simple heuristics to

minimize model uncertainty (Pearce, Conklin, & Wiggins, 2005). In the past decade,

studies have demonstrated the degree to which IDyOM can simulate the responses of

listeners in tasks involving melodic segmentation (Pearce, Müllensiefen, & Wiggins, 2010),

subjective ratings of predictive uncertainty (Hansen & Pearce, 2014), subjective and

psychophysiological emotional responses to expectancy violations (Egermann, Pearce,

Wiggins, & McAdams, 2013), and behavioral (Omigie, Pearce, & Stewart, 2012; Pearce &

Wiggins, 2006; Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 2010), electrophysiological

(Omigie, Pearce, Williamson, & Stewart, 2013), and neural measures of melodic pitch

expectations (Pearce, Ruiz, et al., 2010). And yet, the majority of these studies were

limited to the simulation of melodic pitch expectations, so this investigation develops new
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representation schemes that also permit the probabilistic modeling of harmonic sequences

in complex polyphonic textures.

To consider how IDyOM might simulate schematic expectations in cadential contexts,

this study adopts a corpus-analytic approach, using the many methods of statistical

inference developed in the experimental sciences to examine a few hypotheses about

cadential expectancies. To that end, §2 provides a brief summary and discussion of the

cadence concept, as well as the typology on which this study is based (Caplin, 1998, 2004),

and then offers three hypotheses designed to examine the link between prediction and

cadential closure. Next, §3 introduces the multiple viewpoints framework employed by

IDyOM, and §4 describes the methods for estimating the conditional probability function

for individual melodic or harmonic viewpoints using maximum likelihood (ML) estimation

and the prediction-by-partial-match (PPM) algorithm. We then present in §5 the corpus of

expositions and the annotated cadence collection from Haydn’s string quartets and describe

Pearce’s procedure for improving model performance by combining viewpoint models into a

single composite prediction for each melodic or harmonic event in the sequence. Finally, §6

presents the results of the computational experiments, and §7 concludes by discussing

limitations of the modelling approach and considering avenues for future research.

2 The Classical Cadence

Like many of the concepts in circulation in music scholarship (e.g., tonality, harmony,

phrase, meter), the cadence concept has been extremely resistant to definition. To sort

through the profusion of terms associated with cadence, Blombach (1987) surveyed

definitions in eighty-one textbooks distributed around a median publication date of 1970.

Her findings suggest that the cadence is most frequently characterized as a time span,

which consists of a conventionalized harmonic progression, and in some instances, a ‘falling’

melody. In over half of the textbooks surveyed, these harmonic and melodic formulæ are

also classified into a compendium of cadence types, with the degree of finality associated
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with each type sometimes leading to comparisons with punctuation in language. However,

many of these definitions also conceptualize the cadence as a ‘point of arrival’ (Ratner,

1980), or time point, which marks the conclusion of an ongoing phrase-structural process,

and which is often characterized as a moment of rest, quiescence, relaxation, or repose.

Thus a cadence is simultaneously understood as time-span and time-point, the former

relating to its most representative (or recurrent) features (cadence as formula), the latter

to the presumed boundary it precedes and engenders (cadence as ending) (Caplin, 2004).

The compendium of cadences and other conventional closing patterns associated with

the classical period is enormous, but contemporary scholars typically cite only a few, which

may be classified according to two fundamental types: those cadences for which the goal of

the progression is tonic harmony (e.g., perfect authentic, imperfect authentic, deceptive,

etc.), and those cadences for which the goal of the progression is dominant harmony (e.g.,

half cadences). Table 1 provides the harmonic and melodic characteristics for five of the

most common cadence categories from Caplin’s typology (1998, 2004). The perfect

authentic cadence (PAC), which features a harmonic progression from a root-position

dominant to a root-position tonic, as well as the arrival of the melody on 1̂, serves as the

quintessential closing pattern not only for the high classical period (Gjerdingen, 2007), but

for repertories spanning much of the history of Western music. The imperfect authentic

cadence (IAC) is a melodic variant of the PAC category that replaces 1̂ with 3̂ (or, more

rarely, 5̂) in the melody, and like the PAC category, typically appears at the conclusion of

phrases, themes, or larger sections.

The next two categories represent cadential deviations, in that they initially promise

a perfect authentic cadence, yet fundamentally deviate from the pattern’s terminal events,

thus failing to achieve authentic cadential closure at the expected moment Caplin calls

cadential arrival (1998, p. 43). The deceptive cadence (DC) leaves harmonic closure

somewhat open by closing with a non-tonic harmony, usually vi, but the melodic line

resolves to a stable scale degree like 1̂ or 3̂, thereby providing a provisional sense of ending
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for the ongoing thematic process. The evaded cadence is characterized by a sudden

interruption in the projected resolution of the cadential process. For example, instead of

resolving to 1̂, the melody often leaps up to some other scale degree like 5̂, thereby

replacing the expected ending with material that clearly initiates the subsequent process.

Thus, the evaded cadence projects no sense of ending whatsoever, as the events at the

expected moment of cadential arrival, which should group backward by ending the

preceding thematic process, instead group forward by initiating the subsequent process.

Finally, the half cadence (HC) remains categorically distinct from both the authentic

cadence categories and the cadential deviations, since its ultimate harmonic goal is

dominant (and not tonic) harmony. The HC category also tends to be defined more flexibly

than the other categories in that the terminal harmony may support any chord member in

the soprano (i.e., 2̂, 5̂, or 7̂).

This study examines three claims about the link between prediction and cadential

closure. First, if cadences serve as the most predictable, probabilistic, specifically envisaged

formulæ in all of tonal music (Huron, 2006; Meyer, 1956), we would expect terminal events

from cadential contexts to be more predictable than those from non-cadential contexts

even if both contexts share similar or even identical terminal events (e.g., tonic harmony in

root position, 1̂ in the melody, etc.). Thus, Experiment 1 examines the hypothesis that

cadences are more predictable than their non-cadential counterparts by comparing the

probability estimates obtained from IDyOM for the terminal events from the PAC and HC

categories—the two most prominent categories in tonal music—with those from

non-cadential contexts that share identical terminal events.

Second, applications of cadence typologies like the one employed here often note the

correspondence between cadential strength (or finality) on the one hand and expectedness

(or predictability) on the other. Dunsby has noted, for example, that in Schoenberg’s view,

the experience of closure for a given cadential formula is only satisfying to the extent that

it fulfills a stylistic expectation (1980, p. 125). This would suggest that the strength and



SIMULATING EXPECTATIONS FOR TONAL CADENCES 9

specificity of our schematic expectations formed in prospect and their subsequent

realization in retrospect contributes to the perception of cadential strength, where the most

expected (i.e., probable) endings are also the most complete or closed. Sears (2015) points

out that models of cadential strength advanced in contemporary cadence typologies

typically fall into two categories: those that compare every cadence category to the perfect

authentic cadence (Latham, 2009; Schmalfeldt, 1992), called the 1-schema model; and

those that distinguish the PAC, IAC, and HC categories from the cadential deviations

because the former categories allow listeners to generate expectations as to how they might

end, called the Prospective (or Genuine) Schemas model (Sears, 2015, 2016). In the

1-schema model, the half cadence represents the weakest cadential category; it is marked

not by a deviation in the melodic and harmonic context at cadential arrival (such as the

deceptive or evaded cadences), but rather by the absence of that content, resulting in the

following ordering of the cadence categories based on their perceived strength,

PAC→IAC→DC→EV→HC. In the Prospective Schemas model, however, the half cadence

is a distinct closing schema that allows listeners to generate expectations for its terminal

events, and so represents a stronger ending than the aforementioned cadential deviations,

resulting in the ordering, PAC→IAC→HC→DC→EV (for further details, see Sears,

2015). Experiment 2 directly compares these two models of cadential strength.

Third, a number of studies have supported the role played by predictive mechanisms

in the segmentation of temporal experience (Brent, 1999; P. Cohen, Adams, & Heeringa,

2007; Elman, 1990; Kurby & Zacks, 2008; Pearce, Müllensiefen, & Wiggins, 2010; Peebles,

2011). In event segmentation theory (EST), for example, perceivers form working memory

representations of ‘what is happening now,’ called event models, and discontinuities in the

stimulus elicit prediction errors that force the perceptual system to update the model and

segment activity into discrete time spans, called events (Kurby & Zacks, 2008). In the

context of music, such discontinuities can take many forms: sudden changes in melody,

harmony, texture, surface activity, rhythmic duration, dynamics, timbre, pitch register, and
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so on. What is more, when the many parameters effecting segmental grouping act together

to produce closure at a particular point in a composition, cadential or otherwise, parametric

congruence obtains (Meyer, 1973). Thus, Experiment 3 examines whether (1) the terminal

event of a cadence, by serving as a predictable point of closure, is the most expected event

in the surrounding sequence; and (2) the next event in the sequence, which initiates the

subsequent musical process, is comparatively unexpected. Following EST, the hypothesis

here is that unexpected events engender prediction errors that lead the perceptual system

to segment the event stream into discrete chunks (Kurby & Zacks, 2008). If the terminal

events from genuine cadential contexts are highly predictable, then prediction errors for the

comparatively unpredictable events that follow should force listeners to segment the

preceding cadential material. For the cadential deviations, however, prediction errors

should occur at, rather than following, the terminal events of the cadence.

3 Multiple Viewpoints

Most natural languages consist of a finite alphabet of discrete symbols (letters),

combinations of which form words, phrases, and so on. As a result, the mapping between

the individual letter or word encountered in a printed text and its symbolic representation

in a computer database is essentially one-to-one. Music encoding is considerably more

complex. Notes, chords, phrases, and the like are characterized by a number of different

features, and so regardless of the unit of meaning, digital encodings of individual events

must concurrently represent multiple properties of the musical surface. To that end, many

symbolic formats employ some variant of the multiple viewpoints framework first proposed

by Conklin (1988, 1990; Conklin & Witten, 1995), and later extended and refined by

Pearce (Pearce & Wiggins, 2004; Pearce, 2005; Pearce et al., 2005).

The multiple viewpoints framework accepts sequences of musical events that typically

correspond to individual notes as notated in a score, but which may also include composite

events like chords. Each event e consists of a set of basic attributes, and each attribute is
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associated with a type, τ , which specifies the properties of that attribute. The syntactic

domain (or alphabet) of each type, [τ ], denotes the set of all unique elements associated

with that type, and each element of the syntactic domain also maps to a corresponding set

of elements in the semantic domain, [[τ ]]. Following Conklin, attribute types appear here in

typewriter font to distinguish them from ordinary text. To represent a sequence of pitches

as scale degrees derived from the twelve-tone chromatic scale, for example, the type

chromatic scale degree (or csd) would consist of the syntactic set, {0, 1, 2, ..., 11}, and the

semantic set, {1̂,]1̂/[2̂,2̂,...,7̂}, where 0 represents 1̂, 7 represents 5̂, and so on (see Figure 1).

Within this representation language, Conklin and Witten (1995) define several

distinct classes of type, but this study examines just three: basic, derived, and linked. Basic

types are irreducible representations of the musical surface, which is to say that they

cannot be derived from any other type. Thus, an attribute representing the sequence of

pitches from the twelve-tone chromatic scale—hereafter referred to as chromatic pitch, or

cpitch—would serve as a basic type in Conklin’s approach because it cannot be derived

from a sequence of pitch classes, scale degrees, melodic intervals, or indeed, any other

attribute. What is more, basic types represent every event in the corpus. For example, a

sequence of melodic contours would not constitute a basic type because either the first or

last events of the melody would receive no value. Indeed, an interesting property of the set

of n basic types for any given corpus is that the Cartesian product of the domains of those

types determines the event space for the corpus, denoted by ξ:

ξ = [τ1]× [τ2]× ...× [τn]

Each event consists of an n-tuple in ξ—a set of values corresponding to the set of basic

types that determine the event space. ξ therefore denotes the set of all representable events

in the corpus (Pearce, 2005).

As should now be clear from the examples given above, derived types like pitch class,
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scale degree, and melodic interval do not appear in the event space but are derived from

one or more of the basic types. Thus, for every type in the encoded representation there

exists a partial function, denoted by Ψ, which maps sequences of events onto elements of

type τ . The term viewpoint therefore refers to the function associated with its type, but for

convenience Conklin and Pearce refer to viewpoints by the types they model.1 The

function is partial because the output may be undefined for certain events in the sequence

(denoted by ⊥). Again, viewpoints for attributes like melodic contour or melodic interval

demonstrate this point, since either the first or last element will receive no value (i.e., it

will be undefined).

Basic and derived types attempt to model the relations within attributes, but they

fail to represent the relations between attributes. Prototypical utterances like cadences, for

example, are necessarily comprised of a cluster of co-occurring features, so it is important

to note that the relations between those features could be just as significant as their

presence (or absence) (Gjerdingen, 1991). This is to say that the harmonic progression V–I

presented in isolation does not provide sufficient grounds for the identification of a perfect

authentic cadence, but the co-occurrence of that progression with 1̂ in the soprano, a

six-four sonority preceding the root-position dominant, or a trill above the dominant makes

such an interpretation far more likely. Linked viewpoints attempt to model correlations

between these sorts of attributes by calculating the cross-product of their constituent types.

4 Finite-Context Models

4.1 Maximum Likelihood Estimation

The goal of finite-context models like IDyOM is to derive from a corpus of example

sequences a model that estimates the probability of event ei given a preceding sequence of

events e1 to ei−1, notated here as ei−1
1 . Thus, the function p(ei|ei−1

1 ) assumes that the

identity of each event in the sequence depends only on the events that precede it. In

principle, the length of the context is limited only by the length of the sequence ei−1
1 , but
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context models typically stipulate a global order bound such that the probability of the

next event depends only on the previous n− 1 events, or p(ei|ei−1
(i−n)+1). Following the

Markov assumption, the model described here is an (n− 1)th order Markov model, but

researchers also sometimes call it an n-gram model because the sequence ei(i−n)+1 is an

n-gram consisting of a context ei−1
(i−n)+1 and a single-event prediction ei.

To estimate the conditional probability function p(ei|ei−1
(i−n)+1) for each event in the

test sequence, IDyOM first acquires the frequency counts for a collection of such sequences

from a training set. When the trained model is exposed to the test sequence, it then uses

the frequency counts to estimate the probability distribution governing the identity of the

next event in the sequence given the n− 1 preceding events (Pearce, 2005). In this case,

IDyOM relies on maximum likelihood (ML) estimation.

p(ei|ei−1
(i−n)+1) =

c(ei|ei−1
(i−n)+1)∑

e∈A
c(e|ei−1

(i−n)+1)
(1)

The numerator terms represent the frequency count c for the n-gram ei|ei−1
(i−n)+1, and the

denominator terms represent the sum of the frequency counts c associated with all of the

possible events e in the alphabet A following the context ei−1
(i−n)+1.

4.2 Performance Metrics

To evaluate model performance, the most common metrics derive from

information-theoretic measures introduced by Shannon (1948, 1951). Returning to

Equation 1, if the probability of ei is given by the conditional probability function

p(ei|ei−1
(i−n)+1), information content (IC) represents the minimum number of bits required to

encode ei in context (MacKay, 2003).

IC(ei|ei−1
(i−n)+1) = log2

1
p(ei|ei−1

(i−n)+1)
(2)
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IC is inversely proportional to p and so represents the degree of contextual unexpectedness

or surprise associated with ei. Researchers often prefer to report IC over p because it has a

more convenient scale (p can become vanishingly small), and since it also has a well-defined

interpretation in data compression theory (Pearce, Ruiz, et al., 2010), we will prefer it in

the analyses that follow.

Whereas IC represents the degree of unexpectedness associated with a particular

event ei in the sequence, Shannon entropy (H) represents the degree of contextual

uncertainty associated with the probability distribution governing that outcome, where the

probability estimates are independent and sum to one.

H(ei−1
(i−n)+1) =

∑
e∈A

p(ei|ei−1
(i−n)+1)IC(ei|ei−1

(i−n)+1) (3)

H is computed by averaging the information content over all e in A following the context

ei−1
(i−n)+1. According to Shannon’s equation, if the probability of a given outcome is 1, the

probabilities for all of the remaining outcomes will be 0, and H = 0 (i.e., maximum

certainty). If all of the outcomes are equally likely, however, H will be maximum (i.e.,

maximum uncertainty). Thus, one can assume that the best performing models will

minimize uncertainty.

In practice, we rarely know the true probability distribution of the stochastic process

(Pearce & Wiggins, 2004), so it is often necessary to evaluate model performance using an

alternative measure called cross entropy, denoted by Hm.

Hm(pm, ej1) = −1
j

j∑
i=1

log2 pm(ei|ei−1
1 ) (4)

Whereas H represents the average information content over all e in the alphabet A, Hm

represents the average information content for the model probabilities estimated by pm over

all e in the sequence ej1. That is, cross entropy provides an estimate of how uncertain a

model is, on average, when predicting a given sequence of events (Manning & Schütze,
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1999; Pearce & Wiggins, 2004). As a consequence, Hm is often used to evaluate the

performance of context models for tasks like speech recognition, machine translation, and

spelling correction because, as Brown and his co-authors put it, ‘models for which the cross

entropy is lower lead directly to better performance’ (Brown, Della Pietra, Della Pietra,

Lai, & Mercer, 1992, p. 39).

4.3 Prediction by Partial Match (PPM)

Because the number of potential patterns decreases dramatically as the value of n

increases, high-order models often suffer from the zero-frequency problem, in which n-grams

encountered in the test set do not appear in the training set (Witten & Bell, 1991). To

resolve this issue, IDyOM applies a data compression scheme called Prediction by Partial

Match (PPM), which adjusts the ML estimate for each event in the sequence by combining

(or smoothing) predictions generated at higher orders with less sparsely estimated

predictions from lower orders (Cleary & Witten, 1984). Context models estimated with the

PPM scheme typically use a procedure called backoff smoothing (or blending), which

assigns some portion of the probability mass from each distribution to an escape probability

using an escape method to accommodate predictions that do not appear in the training set.

When a given event does not appear in the n− 1 order distribution, PPM stores the escape

probability and then iteratively backs off to lower-order distributions until it predicts the

event or reaches the zeroth-order distribution, at which point it transmits the probability

estimate for a uniform distribution over A (i.e., where every event in the alphabet is

equally likely). PPM then multiplies these probability estimates together to obtain the

final (smoothed) estimate.

Unfortunately there is no sound theoretical basis for choosing the appropriate escape

method (Witten & Bell, 1991), but two recent studies have demonstrated the potential of

Moffat’s (1990) method C to minimize model uncertainty in melodic and harmonic
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prediction tasks (Hedges, 2016; Pearce & Wiggins, 2004), so we employ that method here.

γ(ei−1
(i−n)+1) =

t(ei−1
(i−n)+1)∑

e∈A
c(e|ei−1

(i−n)+1) + t(ei−1
(i−n)+1)

(5)

Escape method C represents the escape count t as the number of distinct symbols that

follow the context ei−1
(i−n)+1. To calculate the escape probability for events that do not

appear in the training set, γ represents the ratio of the escape count t to the sum of the

frequency counts c and t for the context ei−1
(i−n)+1. The appeal of this escape method is that

it assigns greater weighting to higher-order predictions (which are more specific to the

context) over lower-order predictions (which are more general) in the final probability

estimate (Bunton, 1996; Pearce, 2005). Thus, Equation 1 can be revised in the following

way:

α(ei|ei−1
(i−n)+1) =

c(ei|ei−1
(i−n)+1)∑

e∈A
c(e|ei−1

(i−n)+1) + t(ei−1
(i−n)+1)

(6)

The PPM scheme just described remains the canonical method in many context

models (Cleary & Teahan, 1997), but Bunton (1997) has since provided a variant

smoothing technique called mixtures that generally improves model performance, but

which, following Chen and Goodman (1999), we refer to as interpolated smoothing (Pearce

& Wiggins, 2004). The central idea behind interpolated smoothing is to compute a

weighted combination of higher-order and lower-order models for every event in the

sequence—regardless of whether that event features n-grams with non-zero counts—under

the assumption that the addition of lower-order models might generate more accurate

probability estimates.2

Formally, interpolated smoothing estimates the probability function p(ei|ei−1
(i−n)+1) by

recursively computing a weighted combination of the (n− 1)th order distribution with the
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(n− 2)th order distribution (Pearce & Wiggins, 2004; Pearce, 2005).

p(ei|ei−1
(i−n)+1) =


α(ei|ei−1

(i−n)+1) + γ(ei−1
(i−n)+1)p(ei−1

(i−n)+2) if ei−1
(i−n)+2 6= ε

1
|A|+1−t(ε) otherwise

(7)

In the context of interpolated smoothing, it can be helpful to think of γ as a weighting

function, with α serving as the weighted ML estimate. Unlike the backoff smoothing

procedure, which terminates at the first non-zero prediction, interpolated smoothing

recursively adjusts the probability estimate for each order—regardless of whether the

corresponding n-gram features a non-zero count—and then terminates with the probability

estimate for ε, which represents a uniform distribution over |A|+ 1− t(ε) events (i.e.,

where every event in the alphabet is equally likely). Also note here that in the PPM

scheme, the alphabet A increases by one event to accommodate the escape count t but

decreases by the number of events in A that never appear in the corpus.3

4.4 Variable Orders

The optimal order for context models depends on the nature of the corpus, which in

the absence of a priori knowledge can only be determined empirically (2004, p. 2). To

resolve this issue, IDyOM employs an extension to PPM called PPM* (Cleary & Teahan,

1997), which includes contexts of variable length and thus ‘eliminates the need to impose

an arbitrary order bound’ (Pearce & Wiggins, 2004, p. 6). In the PPM* scheme, the

context length is allowed to vary for each event in the sequence, with the maximum context

length selected using simple heuristics to minimize model uncertainty. Specifically, PPM*

exploits the fact that the observed frequency of novel events is much lower than expected

for contexts that feature exactly one prediction, called deterministic contexts. As a result,

the entropy of the distributions estimated at or below deterministic contexts tends to be

lower than in non-deterministic contexts. Thus, PPM* selects the shortest deterministic

context to serve as the global order bound for each event in the sequence. If such a context
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does not exist, PPM* then selects the longest matching context.

5 Methods

5.1 The Corpus

The corpus consists of symbolic representations of 50 sonata-form expositions selected

from Haydn’s string quartets (1771–1803). Table 2 presents the reference information,

keys, time signatures, and tempo markings for each movement. The corpus spans much of

Haydn’s mature compositional style (Opp. 17–76), with the majority of the expositions

selected from first movements (28) or finales (11), and with the remainder appearing in

inner movements (ii: 8; iii: 3). All movements were downloaded from the KernScores

database in MIDI format.4 To ensure that each instrumental part would qualify as

monophonic—a pre-requisite for the analytical techniques that follow—all trills, extended

string techniques, and other ornaments were removed. For events presenting extended

string techniques (e.g., double or triple stops), note events in each part were retained that

preserved the voice leading both within and between instrumental parts. Table 3 provides

a few descriptives concerning the number of note and chord events in each movement.

To examine model predictions for the cadences in the corpus, we classified exemplars

of the five cadence categories that achieve (or at least promise) cadential arrival in Caplin’s

cadence typology—PAC, IAC, HC, DC, and EV (see Table 1). The corpus contains 270

cadences, but 15 cadences were excluded because either the cadential bass or soprano does

not appear in the cello and first violin parts, respectively. Additionally, another 10

cadences were excluded because they imply more than one category (i.e., PAC-EV or

DC-EV). Thus, for the analyses that follow, the cadence collection consists of 245 cadences.

Shown in the right-most column of Table 1, the perfect authentic cadence and the

half cadence represent the most prevalent categories, followed by the cadential deviations:

the deceptive and evaded categories. The imperfect authentic cadence is the least common

category, which perhaps reflects the late-century stylistic preference for perfect authentic
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cadential closure at the ends of themes and larger sections. This distribution also largely

replicates previous findings for Mozart’s keyboard sonatas (Rohrmeier & Neuwirth, 2011),

so it is possible that this distribution may characterize the classical style in general.

5.2 Viewpoint Selection

To select the appropriate viewpoints for the prediction of cadences in Haydn’s string

quartets, we have adopted Gjerdingen’s schema-theoretic approach (2007), which represents

the ‘core’ events of the cadence by the scale degrees and melodic contours of the outer

voices (i.e., the two-voice framework), a coefficient representing the strength of the metric

position (strong, weak), and a sonority, presented using figured bass notation. Given the

importance of melodic intervals in studies of recognition memory for melodies (Dowling,

1981) we might also add this attribute to Gjerdingen’s list. However, for the majority of

the encoded cadences from the cadence collection, the terminal events at the moment of

cadential arrival appear in strong metric positions, and few of the cadences feature

unexpected durations or inter-onset intervals at the cadential arrival, so we have excluded

viewpoint models for rhythmic or metric attributes from the present investigation,

concentrating instead on those viewpoints representing pitch-based (melodic or harmonic)

expectations. What is more, IDyOM was designed to combine melodic predictions from two

or more viewpoints by mapping the probability distributions over their respective alphabets

back into distributions over a single basic viewpoint, such as the pitches of the twelve-tone

chromatic scale (i.e., cpitch). Thus, for the purposes of model comparison it will also be

useful to include cpitch as a baseline melodic model in the analyses that follow.

5.2.1 Note Events. Four viewpoints were initially selected to represent note

events in the outer parts: chromatic pitch (cpitch), melodic pitch interval (melint),

melodic contour (contour), and chromatic scale degree (csd). As described previously,

cpitch represents pitches as integers from 0–127 (in the MIDI representation, C4 is 60),

and serves as the baseline model for the other melodic viewpoint models examined in this
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study. To derive sequences of melodic intervals, melint computes the numerical difference

between adjacent events in cpitch, where ascending intervals are positive and descending

intervals are negative. The viewpoint contour then reduces the information present in

melint, with all ascending intervals receiving a value of 1, all descending intervals a value

of −1, and all lateral motion a value of 0. Finally, to relate cpitch to a referential tonic

pitch class for every event in the corpus, we manually annotated the key, mode,

modulations, and pivot boundaries for each movement and then included the analysis in a

separate text file to accompany the MIDI representation, both of which appear in the

Supplementary materials for each movement in the corpus. Thus, every note event was

associated with the viewpoints key and mode. The vector of keys assumes values in the set

{0,1,2,...,11}, where 0 represents the key of C, 1 represents C] or D[, and so on. Passages in

the major and minor modes receive values of 0 and 1, respectively. The viewpoint csd then

maps cpitch to key and reduces the resulting vector of chromatic scale degrees modulo 12

such that 0 denotes the tonic scale degree, 7 the dominant scale degree, and so on. By way

of example, Figure 1 presents the viewpoint representation for the first violin part from the

opening two measures of the first movement of Haydn’s String Quartet in E, Op. 17/1.

[Insert Figure 1 about here.]

As mentioned previously, IDyOM is capable of individually predicting any one of

these viewpoints using the PPM* scheme, but it can also combine viewpoint models for

note-event predictions of the same basic viewpoint (i.e., cpitch) using a weighted

multiplicative combination scheme that assigns greater weights to viewpoints whose

predictions are associated with lower entropy at that point in the sequence (Pearce et al.,

2005). To determine the combined probability distribution for each event in the test

sequence, IDyOM then computes the product of the weighted probability estimates from

each viewpoint model for each possible value of the predicted viewpoint.

Furthermore, IDyOM can automate the viewpoint selection process using a

hill-climbing procedure called forward stepwise selection, which picks the combination of
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viewpoints that yields the richest structural representations of the musical surface and

minimizes model uncertainty. Given an empty set of viewpoints, the stepwise selection

algorithm iteratively selects the viewpoint model additions or deletions that yield the most

improvement in cross entropy, terminating when no addition or deletion yields an

improvement (Pearce, 2005; Potter, Wiggins, & Pearce, 2007). To derive the optimal

viewpoint system for the representation of melodic expectations, we employed stepwise

selection for the following viewpoints: cpitch, melint, csd, and contour. In this case,

IDyOM begins with the above set of viewpoint models, but also includes the linked

viewpoints derived from that set (i.e., cpitch⊗ melint, cpitch⊗ csd, cpitch⊗ contour,

melint⊗ csd, melint⊗ contour, csd⊗ contour), resulting in a pool of ten individual

viewpoint models from which to derive the optimal combination of viewpoints.

Viewpoint selection derived the same combination of viewpoint models for the first

violin and the cello. For this corpus, melint was the best performing viewpoint model in

the first step, receiving a cross entropy estimate of 3.006 in the first violin and 2.798 in the

cello. In the second step, the combination of melint with the linked viewpoint

csd⊗ cpitch decreased the cross entropy estimate to 2.765 in the first violin and 2.556 in

the cello. Including any of the remaining viewpoints did not improve model performance,

so the stepwise selection procedure terminated with this combination of viewpoints. In §6,

we refer to this viewpoint model as selection. What is more, the contour model received

a much higher cross entropy estimate than the other viewpoint models, so we elected to

exclude it in the experiments reported here. Thus, the final melodic viewpoint models

selected for the present study are cpitch, melint, csd, and selection.

5.2.2 Chord Events. To accommodate chord events, we have extended the

multiple viewpoints framework by performing a full expansion of the symbolic encoding,

which duplicates overlapping note events across the instrumental parts at every unique

onset time (Conklin, 2002). This representation yielded two harmonic viewpoints: vertical

interval class combination (vintcc) and chromatic scale-degree combination (csdc). The
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viewpoint vintcc produces a sequence of chords that have analogues in figured-bass

nomenclature by modelling the vertical intervals in semitones modulo 12 between the

lowest instrumental part and the upper parts from cpitch. Unfortunately, however, the

syntactic domain of vintcc is rather large; the domain of each vertical interval class

between any two instrumental parts is {0, 1, 2, ..., 11,⊥}, yielding 13 possible classes, so the

number of combinatorial possibilities for combinations containing two, three, or four

instrumental parts is 133 − 1, or 2196 combinations.

To reduce the syntactic domain while retaining those chord combinations that

approximate figured bass symbols, Quinn (2010) assumed that the precise location and

repeated appearance of a given interval in the instrumental texture are inconsequential to

the identity of the combination. Adopting that approach here, we have excluded note

events in the upper parts that double the lowest instrumental part at the unison or octave,

allowed permutations between vertical intervals, and excluded interval repetitions. As a

consequence, the first two criteria reduce the major triads 〈4, 7, 0〉 and 〈7, 4, 0〉 to 〈4, 7,⊥〉,

while the third criterion reduces the chords 〈4, 4, 10〉 and 〈4, 10, 10〉 to 〈4, 10,⊥〉. This

procedure dramatically reduces the potential domain of vintcc from 2196 to 232 unique

vertical interval class combinations, though the corpus only contained 190 of the 232

possible combinations, reducing the domain yet further.

To relate each combination to an underlying tonic, the viewpoint csdc represents

vertical sonorities as combinations of chromatic scale degrees that are intended to

approximate Roman numerals. The viewpoint csdc includes the chromatic scale degrees

derived from csd as combinations of two, three, or four instrumental parts. Here, the

number of possibilities increases exponentially to 134 − 131, or 28, 548 combinations, since

the cello part is now encoded explicitly in combinations containing all four parts. Rather

than treating permutable combinations as equivalent (e.g., 〈0, 4, 7,⊥〉 and 〈4, 7, 0,⊥〉), as

was done for vintcc, it will also be useful to retain the chromatic scale degree in the lowest

instrumental part in csdc and only permit permutations in the upper parts. Excluding
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voice doublings and permitting permutations in the upper parts reduces the potential

domain of csdc to 2784, though in the corpus the domain reduced yet further to 688

distinct combinations.

Finally, a composite viewpoint was also created to represent those viewpoint models

characterizing pitch-based (i.e., melodic and harmonic) expectations more generally. To

simulate the cognitive mechanisms underlying melodic segmentation, Pearce, Müllensiefen,

and Wiggins (2010) found it beneficial to combine viewpoint predictions for basic

attributes like chromatic pitch, inter-onset interval, and offset-to-onset interval by

multiplying the component probabilities to reach an overall probability for each note in the

sequence as the joint probability of the individual basic attributes being predicted.

Following their approach, the viewpoint model composite represents the product of the

selection viewpoint model from the first violin (to represent melodic expectations) and

the csdc viewpoint model (to represent harmonic expectations) for each unique onset time

for which a note and chord event appear in the corpus. In this case, csdc was preferred to

vintcc in the composite model because the former viewpoint explicitly encodes the

chromatic scale-degree successions in the lowest instrumental part along with the relevant

scale degrees from the upper parts.

5.3 Long-term vs. Short-term

To improve model performance, IDyOM separately estimates and then combines two

subordinate models trained on different subsets of the corpus for each viewpoint: a

long-term model (LTM), which is trained on the entire corpus to simulate long-term,

schematic knowledge; and a short-term model (STM), which is initially empty for each

individual composition and then is trained incrementally to simulate short-term, dynamic

knowledge (Pearce & Wiggins, 2012). As a result, the long-term model reflects inter-opus

statistics from a large corpus of compositions, whereas the short-term model only reflects

intra-opus statistics, some of which may be specific to that composition (Conklin & Witten,
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1995; Pearce & Wiggins, 2004). Like the STM, the LTM may also be slightly improved by

incrementally training on the composition being predicted, called LTM+. However, the

STM only discards statistics when it reaches the end of the composition, so it far surpasses

the supposed upper limits for short-term and working memory of around 10–12 s (Snyder,

2000), sometimes by several minutes. What is more, the STM should be irrelevant for the

present purposes, since cadences exemplify the kinds of inter-opus patterns that listeners

are likely to store in long-term memory. Thus, we have elected to omit the STM in the

analyses that follow and only present the probability estimates from LTM+.

5.4 Performance Evaluation

Context models like IDyOM depend on a training set and a test set, but in this case

the corpus will need to serve as both. To accommodate small corpora like this one, IDyOM

employs a resampling approach called k-fold cross-validation (Dietterich, 1998), using cross

entropy as a measure of performance (Conklin & Witten, 1995). The corpus is divided into

k disjoint subsets containing the same number of compositions, and the LTM+ is trained k

times on k − 1 subsets, each time leaving out a different subset for testing. IDyOM then

computes an average of the k cross entropy values as a measure of the model’s

performance. Following Pearce and Wiggins (2004), we use 10-fold cross validation for the

models that follow.

6 Computational Experiments

6.1 Experiment 1

The perfect authentic and half cadence categories account for 206 of the 245 cadences

from the collection, so it seems reasonable that listeners with sufficient exposure to music

of the classical style will form schematic expectations for the terminal events of exemplars

from these two categories. What is more, if cadences are the most predictable formulæ in

all of tonal music, we should expect to find lower IC estimates for the terminal events from
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the aforementioned cadence categories compared to those from non-cadential closing

contexts even if they both share similar or even identical terminal events. Thus,

Experiment 1 examines the hypothesis that cadences are more predictable than their

non-cadential counterparts.

6.1.1 Analysis. To compare the PAC and HC categories against non-cadential

contexts exhibiting varying degrees of closure or stability, each of the viewpoints estimated

by IDyOM was analyzed for the terminal note events from the first violin and

cello—represented by the viewpoints cpitch, melint, csd, and selection—and the

terminal chord events from the entire texture—represented by the viewpoints vintcc,

csdc, and composite—using a one-way analysis of variance (ANOVA) with a three-level

between-groups factor called closure. To examine the IC estimates for the first (tonic)

type, tonic closure consists of three levels: PAC, which consists of the IC estimates for the

terminal events from the 122 exemplars of the PAC category; tonic, which consists of an

equal-sized sample of events selected randomly from the corpus that appear in strong

metric positions (i.e., appearing at the tactus level; see Sears, 2016) and feature tonic

harmony in root position and any scale degree in the soprano; and non-tonic, which again

consists of an equal-sized sample of events selected randomly from the corpus that appear

in strong metric positions, but that feature any other harmony and any other scale degree

in the soprano.

To examine the IC estimates for the second (dominant) type, dominant closure was

designed in much the same way. HC consists of the IC estimates for the terminal events

from the 84 exemplars of the HC category, while the other two levels consist of equal-sized

samples of non-cadential events selected at random. Events from dominant appear in

strong metric positions and feature dominant harmony in root position with any scale

degree in the soprano, while events from other appear in strong metric positions but

exclude events featuring tonic or dominant harmonies in root position. The assumption

behind this additional exclusion criterion is that tonic events in root position are
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potentially more predictable than root-position dominants in half-cadential contexts (an

assumption examined in greater detail in Experiment 2), so it was necessary here to

provide a condition that allows us to compare the IC estimates for the terminal events in

half-cadential contexts against those featuring other, presumably less stable harmonies and

scale degrees.

For every between-groups factor examined in the experiments reported here, Levene’s

equality of variances revealed significant differences between groups for nearly every

viewpoint model. Thus, we employ an alternative to Fisher’s F ratio that is generally

robust to heteroscedastic data, called the Welch F ratio (Welch, 1951). To determine the

effect size both for the Welch F ratio and for the planned comparisons described shortly,

we use Cohen’s (2008) recent notation of a common effect size measure called estimated ω2.

To address more specific hypotheses about the potential differences in the IC

estimates for the terminal events from cadential and non-cadential contexts, each model

also includes two planned comparisons that do not assume equal variances: the first to

determine whether the IC estimates from the corresponding cadence category differ

significantly from the two non-cadential levels (Cadences vs. Non-Cadences), and the

second to determine whether the IC estimates from the corresponding cadence category

differ significantly from the second (tonic or dominant) level of closure (PAC vs Tonic or

HC vs. Dominant). Unfortunately, these additional tests increase the risk of committing a

Type I error, so we apply Bonferroni correction to the planned comparisons.

6.1.2 Results. The top bar plots in Figure 2 display the mean IC estimates for

the terminal note event in the first violin (left) and cello (right) for each level of tonic

closure. Table 4 presents the omnibus statistics and planned comparisons. Beginning with

the first violin, one-way ANOVAs of the IC estimates revealed a main effect for the

viewpoints melint, csd, and the optimized combination selection, but the baseline

viewpoint, cpitch, was not significant. Mean IC estimates also increased significantly from

PAC to the non-cadential levels of tonic closure for melint, csd, and selection.
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Although this trend also emerged for the second planned comparison between PAC and

tonic, only the melint model revealed a significant effect. Thus, the viewpoint models for

the first violin demonstrated that terminal note events from cadential contexts are more

predictable than those from non-cadential contexts.

[Insert Figure 2 about here.]

For the cello, one-way ANOVAs revealed a main effect of tonic closure for every

viewpoint, but the direction of the effect was reversed. Mean IC estimates decreased in

every model from PAC to the non-cadential levels of tonic closure, as well as from PAC to

tonic. Thus, contrary to our predictions, the terminal events in the cello from cadential

contexts were actually less predictable than those from non-cadential contexts.

The bottom-left bar plot in Figure 2 displays the mean IC estimates for the terminal

chord event—represented by vintcc and csdc—for each level of the between-groups factor.

One-way ANOVAs again revealed a main effect of tonic closure for vintcc and csdc, with

the mean IC estimates increasing from PAC to the non-cadential levels of tonic closure.

The second planned comparison comparing PAC to tonic was not significant for either

viewpoint model, however. Thus, for both models the terminal chord events from cadential

contexts were more predictable than those from non-cadential contexts.

To represent the predictability of the harmony and melody in a single IC estimate for

each note/chord event, we created a composite viewpoint that reflects the joint probability

of csdc and selectionvl1. The bottom-right line plot in Figure 2 displays the mean IC

estimates for the terminal composite event for each level of tonic closure. In this case, the

one-way ANOVA revealed a significant main effect, with the mean IC estimates increasing

from PAC to the non-cadential levels of closure, and the increase from PAC to tonic was

marginally significant. As a result, composite demonstrated an ascending staircase for the

levels of tonic closure, with PAC receiving the lowest IC estimates and non-tonic receiving

the highest IC estimates.
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The top bar plots in Figure 3 display the mean IC estimates for the terminal note

event in the first violin (left) and cello (right) for each level of dominant closure. For the

first violin, one-way ANOVAs revealed a main effect for every viewpoint model. As

expected, the mean IC estimates also increased significantly from HC to the non-cadential

levels of dominant closure for every model. The increase from HC to dominant was also

significant for cpitch, melint, and selection, but not for csd.

[Insert Figure 3 about here.]

For the cello, the mean IC estimates demonstrated a significant effect of dominant

closure for csd, but the other viewpoint models were not significant. For csd, the mean IC

estimates increased significantly from HC to the non-cadential levels. A similar trend also

emerged for the second planned comparison between HC and dominant, but the effect was

not significant. For the viewpoint models representing harmonic progressions, the mean IC

estimates revealed main effects of dominant closure for vintcc and csdc, suggesting that

the terminal note and chord events represented in the cello and the entire multi-voiced

texture are more predictable in half-cadential contexts than in non-cadential contexts. The

first planned comparison comparing HC with the two non-cadential levels was not

significant for these viewpoint models, however. Finally, the composite viewpoint

demonstrated a significant main effect of dominant closure, with the mean IC estimates

increasing significantly from HC to the non-cadential levels, but not from HC to dominant.

6.1.3 Discussion. Both between-groups factors demonstrated significantly lower

mean IC estimates for the terminal events from cadential contexts compared to those from

non-cadential contexts. The factor tonic closure elicited significant effects for viewpoints

representing both voices of the two-voice framework, with greater effect sizes appearing for

viewpoint models characterizing harmonic progressions (vintcc, csdc, and composite).

For viewpoint models representing the cello explicitly, however, the terminal events from

perfect authentic cadential contexts were actually less predictable than those from

non-cadential tonic contexts. This finding may reflect limitations of the modelling
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approach (see §7), but since the leap in the bass by descending fifth (or ascending fourth)

in perfect authentic cadential contexts occurs less frequently than motion by smaller

intervals in any other context (e.g., by unison, m2, or M2) (Sears, 2016), it may also be

that cadential bass lines are simply less predictable than their stepwise, non-cadential

counterparts when considered in isolation. For the viewpoints that explicitly model the

interaction between the bass and the upper voices, however (e.g., vintcc, csdc, or

composite), IDyOM produced considerably lower IC estimates for cadential successions

like 5̂-1̂ than for non-cadential successions like 1̂-1̂, 2̂-1̂, or 7̂-1̂.

For dominant closure, significant effects were generally limited to the viewpoint

models for csd in the outer parts, but the effects were more pronounced for the csdc and

composite models. In each case, the terminal events from cadential contexts were more

predictable than those from non-cadential contexts. Nevertheless, half-cadential contexts

generally failed to elicit lower mean IC estimates compared to non-cadential root-position

dominants. Thus, according to IDyOM, the terminal events from the HC level are no more

(or less) predictable than any other instance of root-position dominant harmony selected at

random from the corpus.

Given our earlier assumptions about schematic expectations for dominant events,

these results should not be surprising. Nevertheless, it remains unclear whether terminal

events from half cadences receive higher IC estimates on average due to limitations of the

modelling approach, because the preceding context fails to stimulate strong expectations

for any particular continuation, or because the actual continuation is unexpected (Pearce,

Müllensiefen, & Wiggins, 2010, pp. 1374–1375) And yet, by only considering the potential

differences between cadential and non-cadential contexts, the previous analysis failed to

directly compare the cadence categories from Caplin’s typology. We might hypothesize, for

example, that the strength and specificity of our schematic expectations formed in prospect

and their subsequent realization in retrospect contributes to the perception of cadential

strength, where the most expected (i.e., probable) endings are also the most complete or
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closed. From this point of view, the probabilities estimated by IDyOM might correspond

with models of cadential strength advanced in contemporary cadence typologies.

6.2 Experiment 2

Recall that the cadence collection consists of exemplars from five categories in

Caplin’s typology: PAC, IAC, HC, DC, and EV. Sears (2015) recently classified models

that estimate the closural strength of these categories into two general types: those that

relate every cadential category to one essential prototype, called the 1-Schema model

(Latham, 2009; Schmalfeldt, 1992); and those that distinguish the categories according to

whether they allow listeners to form expectations as to how they might end, called the

Prospective Schemas model (Sears, 2015) (see §2). Experiment 2 directly compares these

two models of cadential strength.

6.2.1 Analysis. To compare the mean IC estimates for the terminal events from

each cadence category, each of the viewpoints was again analyzed for the terminal note

events from the first violin and cello and the terminal chord events from the entire texture

using a one-way ANOVA with a five-level between-groups factor called cadence category

(PAC, IAC, HC, DC, and EV). To examine the potential differences in the IC estimates for

the terminal events from each cadence category, each model includes two planned

comparisons that do not assume equal variances, with a Bonferroni correction applied to

the obtained statistics. In the first comparison, each level of cadence category was coded to

represent two models of cadential strength: Prospective Schemas

(PAC→IAC→HC→DC→EV ) and 1-Schema (PAC→IAC→DC→EV→HC ). Polynomial

contrasts with linear and quadratic terms were then included to estimate the

goodness-of-fit for each model. In what follows, we report the contrast whose linear or

quadratic trend accounts for the greatest proportion of variance in the outcome variable.

The second comparison examines the hypothesis that the genuine cadence categories in

Caplin’s typology elicit lower IC estimates on average than the cadential deviations
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(Genuine vs. Deviations).

6.2.2 Results. Figure 4 displays line plots of the mean IC estimates for the

terminal note event in the first violin (left) and cello (right) for each level of cadence

category. Table 6 presents the omnibus statistics and planned comparisons. For the first

violin, the mean IC estimates revealed a main effect for the viewpoints cpitch, csd, and

selection, but not for melint. Moreover, the best-fitting polynomial contrast revealed a

positive (increasing) linear trend in the Prospective Schemas model (i.e., from the PAC to

the EV categories) for every viewpoint model. The genuine cadence categories also received

lower mean IC estimates than the cadential deviations in every model.

[Insert Figure 4 about here.]

For the cello, the IC estimates also revealed a main effect of cadence category for

every viewpoint model, and the Prospective Schemas model again produced the best fit,

with polynomial contrasts revealing positive quadratic trends for cpitch and melint, but

positive linear trends for csd and selection. The quadratic trend exhibited in the cpitch

and melint models for the cello probably reflects the statistical preference for smaller

melodic intervals in the corpus, resulting in lower mean IC estimates for categories that

feature stepwise motion in the bass (HC and DC), and higher estimates for categories

featuring large leaps (PAC, IAC, and EV). This trend was not demonstrated in the csd

and selection viewpoint models, however, as the DC category received higher IC

estimates relative to the other categories in these models, thereby resulting in positive

linear trends. Presumably, the HC category received the lowest IC estimates on average

because scale-degree successions like 4̂–5̂ are more common than successions like 5̂–1̂. And

yet successions like 5̂–6̂ are also evidently less common than 5̂–1̂, hence the higher IC

estimates for the DC category and the increasing linear trend, PAC→IAC→DC→EV.

Finally, as expected, the genuine cadence categories received lower mean IC estimates than

the cadential deviations in every model.



SIMULATING EXPECTATIONS FOR TONAL CADENCES 32

The left line plot in Figure 5 displays the mean IC estimates for the terminal chord

event—represented by vintcc and csdc—for each level of cadence category. As before, the

IC estimates revealed a main effect for vintcc and csdc, and the best-fitting polynomial

contrast revealed a positive linear trend in the Prospective Schemas model for both models.

The genuine cadence categories also received lower mean IC estimates than the cadential

deviations for vintcc and csdc.

It is also noteworthy that the terminal events from the EV category generally

received lower IC estimates than those from the DC category. Recall that evaded cadences

are typically characterized not by a deviation in the harmonic progression (though such a

deviation may take place), but rather by a sudden interruption in the projected resolution

of the melody. In this collection, 10 of the 11 evaded cadences feature tonic harmony either

in root position or in first inversion at the moment of cadential arrival. Given how often

this harmony appears in the corpus, it is therefore not too surprising that the mean IC

estimates decreased from the DC to the EV category.

The right line plot in Figure 5 displays the mean IC estimates for the terminal

composite event for cadence category. In this case, the best-fitting polynomial contrast

revealed a positive linear trend for the Prospective Schemas model. Thus, the model

PAC→IAC→HC→DC→EV accounted for roughly 55% of the variance in the mean IC

estimates for composite, which represents the largest effect demonstrated across all of the

polynomial contrasts from every viewpoint model. Finally, the genuine cadence categories

again received lower mean IC estimates than the cadential deviations.

[Insert Figure 5 about here.]

6.2.3 Discussion. The mean IC estimates from IDyOM provide strong evidence

in support of the Prospective Schemas model of cadential strength. Polynomial contrasts

revealed significant positive linear trends for the viewpoints vintcc, csdc, composite,

csdvc, and selectionvc, as well as significant positive quadratic trends for cpitchvc,

melintvc, and all of the viewpoints for the first violin. Furthermore, the claim that the
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genuine cadence categories elicit the strongest and most specific schematic expectations

appears to be well supported by the experimental results from the second planned

comparison, which revealed that the terminal events from the genuine cadence categories

produced the lowest IC estimates on average for the viewpoint models from the first violin

and across the entire texture, whereas the cadential deviations generally received the

highest IC estimates on average.

Taken together, the reported findings support the role for expectancy in models of

cadential strength, with the most complete or closed cadences also serving as the most

expected. What is more, the results obtained here replicate the pattern of results reported

by Sears, Caplin, and McAdams (2014). In that study, participants indicated how complete

they found the end of each of a series of cadential excerpts from Mozart’s keyboard

sonatas. The genuine cadence categories and the cadential deviations received the highest

and lowest completion ratings, respectively, which in light of the present findings suggests

that the perceived strength of the cadential ending corresponds with the strength of the

schematic expectations it generates in prospect. But recall that the perception of closure

also depends on the cessation of expectations following the terminal events of the cadence.

That is, the strength of the potential boundary between two sequential events results in

part from the increase in information content (or decrease in probability) from the first to

the second event (i.e., the last event of one group to the first event of the following group).

The preceding analyses examined terminal events from cadential and non-cadential

contexts in isolation, so Experiment 3 considers the role played by schematic expectations

in boundary perception and event segmentation by examining the time course of IC

estimates surrounding the terminal events of the cadence.

6.3 Experiment 3

Experiment 3 examines two claims about the relationship between expectancy and

boundary perception: (1) that the terminal event of a group is the most expected (i.e.,
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predictable) event in the surrounding sequence; and (2) that the next event in the sequence

is comparatively unexpected (i.e., unpredictable). Again, the hypothesis here is that

unexpected events engender prediction errors that lead the perceptual system to segment

the event stream into discrete chunks (Kurby & Zacks, 2008). The terminal events from

the PAC, IAC, and HC categories should be highly predictable, and prediction errors for

the comparatively unpredictable events that follow should force listeners to segment the

preceding cadential material. For the cadential deviations, however, prediction errors

should occur at, rather than following, the terminal events of the cadence.

6.3.1 Analysis. In addition to the between-groups factor of cadence category,

Experiment 3 includes a between-groups factor of time that consists of three levels: et,

which represents the terminal event of the group, and et−1 and et+1, which represent the

immediately surrounding events. With more complex designs like this one, the number of

significance tests can become prohibitively large, so we have restricted the investigation to

the four viewpoints that serve as reasonable approximations of the two-voice framework

characterizing the classical cadence: selectionvl1 and selectionvc to represent the

soprano and bass, respectively, and vintcc and csdc to each represent the entire texture.

Experiment 3 analyzes these viewpoints using a 5× 3 two-way ANOVA with

between-groups factors of cadence category (PAC, IAC, HC, DC, and EV), and time (et−1,

et, et+1).

By moving from one to two between-groups factors, the number of omnibus statistics

and planned comparisons necessarily increases, and since Levene’s test also revealed

heteroscedastic groups for all four of the 5× 3 viewpoint ANOVAs, the risk of committing

a Type I error is considerably greater here than in the previous experiments. In this case,

the two hypotheses mentioned above concern the interaction between cadence category and

time: namely, whether the IC estimates for each cadence category increase or decrease

significantly from one event to the next. Thus, the following analysis ignores the main

effects and concentrates only on the interaction term of the two-way ANOVA. If the
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interaction is significant, we report simple main effects, which represent one-way ANOVAs

with time as a factor for each level of cadence category. Finally, to examine the potential

differences in the IC estimates for the levels of time for each cadence category, each simple

main effect included two planned comparisons with Bonferroni correction that do not

assume equal variances: (1) whether the IC estimate for et is lower on average than the

surrounding events, et−1 and et+1 (et vs. Surrounding); and (2) whether the IC estimate for

et+1 is higher on average than the estimate for et (et vs. et+1).

6.3.2 Results. Figure 6 displays line plots of the mean IC estimates for the note

events over time in the first violin (top) and cello (bottom) for each level of cadence

category. Table 7 presents the omnibus statistics for the simple main effects and planned

comparisons. To gain a more global picture of the IC time course, the line plots present the

mean IC estimates for the seven-event sequence surrounding the terminal event of each

cadence category, but the ANOVA models only consider the three events, −1, 0 (or

Terminus), and 1. For the first violin, a two-way ANOVA of the mean IC estimates

revealed a significant interaction between cadence category and time, F (8, 718) = 3.88,

p < .001, est. ω2 = .03. The mean IC estimates for each level of cadence category revealed

simple main effects for PAC and HC, but the remaining categories were not significant.

[Insert Figure 6 about here.]

Despite the non-significant simple main effects for the IAC, DC, and EV categories,

simple planned comparisons revealed significant trends over time for every cadence

category. As expected, the terminal event in the first violin received lower IC estimates on

average than the immediately surrounding events for the genuine cadence categories and

the DC category, though the latter trend was marginal. Thus, for cadences featuring

melodies that resolve to presumably stable scale degrees like 1̂ or 3̂, the terminal event of

the group is also the most predictable event in the sequence.

For the PAC, IAC, HC, and DC categories, the mean IC estimates increased

significantly from et to et+1, thereby supporting the view that the strength of the
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perceptual boundary depends on the increase in information content following the terminal

event of the cadence. And yet since the EV category replaces the expected terminal event

in the melody with material that clearly initiates the subsequent process—often by leaping

up to an unexpected scale degree like 5̂—one might therefore predict that a significant

increase in information content should occur at (and not following) the expected terminal

event of the group. This is exactly what we observe, with the expected terminal events

from the EV category receiving the highest mean IC estimate in the sequence (see Table

7). Thus, the pattern of results from selectionvl1 is entirely consistent with the two main

hypotheses: (1) the terminal event of a group is the most predictable event in the sequence,

and (2) the next event is comparatively unpredictable. Here, the mean IC estimates for the

first violin increased significantly following the predicted boundary for every cadence

category in the collection.

For the cello, a two-way ANOVA of the mean IC estimates revealed a significant

interaction between cadence category and time, F (8, 717) = 13.02, p < .001, est. ω2 = .12.

Excepting IAC, the mean IC estimates also revealed simple main effects for every level of

cadence category. As expected, the terminal event in the cello received lower IC estimates

on average than the immediately surrounding events for the HC category, but the trend

was reversed for the PAC, DC, and EV categories, and the trend for the IAC category was

not significant.

For the HC category at least, the terminal event was also the most predictable event

in the sequence. Furthermore, the significant increase in information content in the cello at

the expected terminal event in the DC and EV categories is consistent with the behavior of

cadential deviations. For the former category, the bass typically resolves deceptively to

scale degrees like 6̂, thereby violating expectations for 1̂, whereas the latter category evades

the expected resolution by leaping to other scale degrees to support harmonies like I6. The

significant increase in information content for the terminal event of the PAC category is

somewhat more surprising, however. Recall from Experiment 2 that the mean IC estimates
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for the terminal events from each cadence category in the cello demonstrated a positive

quadratic trend, with the HC category receiving the lowest IC estimates (see Figure 4). In

that case, we suggested that small melodic intervals appear more abundantly in the corpus

than large intervals, resulting in higher IC estimates for categories featuring large leaps

(PAC, IAC, and EV). From this point of view, it seems reasonable that the mean IC

estimates for the cello would increase at et for categories featuring large leaps or unexpected

scale-degree continuations, as is the case with the PAC, IAC, DC, and EV categories.

Given this pattern of results for the cello, it should also come as little surprise that

HC was the only category to demonstrate a significant increase in information content

following the terminal event of the cadence. To be sure, the IC estimates for the cello did

not significantly increase at et+1 for the PAC and IAC categories, thereby undermining the

hypothesis that for the genuine cadence categories at least, the perceived boundary follows

the terminal events of the cadence. When the results from the first violin and the cello are

considered together, HC was also the only category for which the IC estimates from

selectionvl1 and selectionvc decreased at et and then increased at et+1. If the PAC and

IAC categories also generate strong and specific melodic and harmonic expectations for the

terminal events of the cadence, the viewpoint models representing both voices of the

two-voice framework should demonstrate congruent behavior.

Figure 7 displays line plots of the mean IC estimates for vintcc (top) and csdc

(bottom) over time for each level of cadence category. Two-way ANOVAs of the mean IC

estimates revealed a significant interaction between cadence category and time for both

viewpoint models (vintcc, F (8, 719) = 3.13, p = .002, est. ω2 = .03; csdc,

F (8, 704) = 2.99, p = .003, est. ω2 = .03). Simple main effects and planned comparisons

were not significant for csdc, however, so it will not be reported here. For vintcc, the

mean IC estimates revealed simple main effects for the genuine cadence categories, but not

for the cadential deviations. As expected, the terminal chord event received lower IC

estimates on average compared to the surrounding events for the genuine cadence
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categories. Although the trend was reversed for the cadential deviations, with the mean IC

estimates increasing from et−1 to et, the difference was not significant for either category.

Finally, the mean IC estimates increased significantly from et to et+1 for PAC and HC, but

this trend was marginal for IAC.

[Insert Figure 7 about here.]

6.3.3 Discussion. The viewpoint model for vintcc demonstrated a similar trend

to that found in selectionvl1 for the genuine cadence categories, with the mean IC

estimates decreasing from et−1 to et, and then increasing from et to et+1. These two

viewpoint models also displayed congruent behavior for the EV category, with both models

increasing from et−1 to et, suggesting that the perceptual boundary precedes (rather than

follows) the expected terminal event in evaded cadences. For the DC category, parametric

noncongruence obtained, with the mean IC estimates at et decreasing in selectionvl1 but

increasing in vintcc. Thus, across the levels of cadence category and time, the

selectionvl1 and vintcc viewpoint models supported our initial hypotheses: (1) that the

terminal event of a group is the most expected (i.e., predictable) event in the sequence; and

(2) that the next event is comparatively unexpected (i.e., unpredictable).

7 Conclusions

This study examined three claims about the relationship between expectancy and

cadential closure: (1) terminal events from cadential contexts are more predictable than

those from non-cadential contexts; (2) models of cadential strength advanced in cadence

typologies like the one employed here reflect the formation, violation, and fulfillment of

schematic expectations; and (3) a significant decrease in predictability follows the terminal

note and chord events of the cadential process. To that end, we created a corpus of Haydn

string quartets to serve as a proxy for the musical experiences of listeners situated in the

classical style, selected a number of viewpoints to represent suitable (i.e., cognitively

plausible) representations of the musical surface, and then employed IDyOM—an n-gram
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model that predicts the next note or chord event in a musical stimulus through

unsupervised learning of sequential structure—to simulate the formation of schematic

expectations during music listening.

The findings from Experiment 1 indicate that the terminal note and chord events

from perfect authentic cadences are more predictable than (1) non-cadential events

featuring tonic harmony in root position and supporting any scale degree in the soprano,

and (2) non-cadential events featuring any other harmony and any other scale degree in the

soprano. For half cadences, significant effects were limited to the chord models (vintcc,

csdc, and composite) and the csd viewpoint model, but the terminal events from

half-cadential contexts were still more predictable than those from non-cadential contexts.

Experiment 2 provided strong evidence in support of the Prospective Schemas model of

cadential strength (PAC→IAC→HC→DC→EV), with the genuine cadence categories

(PAC, IAC, HC) and cadential deviations (DC, EV) in Caplin’s typology eliciting the

lowest and highest IC estimates on average, respectively. Finally, the results from

Experiment 3 indicated that unexpected events—like those directly following the terminal

note and chord events from genuine cadences—engender prediction errors that presumably

lead the perceptual system to segment the event stream immediately following the

cadential process.

Taken together, the reported findings support the role of expectancy in models of

cadential closure, with the most complete or closed cadences also serving as the most

expected or probable. Nevertheless, future studies will need to address a number of

limitations in the current investigation. First, the rather meager sample size for three of

the five cadence categories in the collection—as well as the corpus more generally—casts

some doubt upon the generalizability of the reported findings. That the estimates from

IDyOM correspond so well with theoretical predictions suggests that these findings may be

robust to issues of sample size, but future studies should look to expand the collection

considerably, as well as to consider how the relationship between expectancy and cadential
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closure varies for other genres and style periods.

Second, we selected individual viewpoints if existing theoretical or experimental

evidence justified their inclusion, such as melint and csd in melodic contexts (Dowling,

1981; Krumhansl, 1990), and vintcc and csdc in harmonic contexts (Gjerdingen, 2007).

Yet in a few instances, cpitch—which was only included among the melodic viewpoints to

serve as a baseline for model comparison—produced similar results (see Experiment 2).

One reason for this finding is that many of the viewpoints characterizing melodic

organization in Haydn’s string quartets systematically covary such that statistical

regularities governing the more cognitively plausible viewpoints (e.g., melint and csd) also

appear in the less plausible ones (cpitch), albeit more weakly. In a melody composed in

the key of C-major, for example, B\ presumably functions as the leading tone, not because

the twelve-tone chromatic universe regularly features this two-note sequence regardless of

the particular tonal context, but because C\ typically follows B\ in the key of C-major,

forming one of the many statistical associations characterizing the tonal system.

Nevertheless, the tendency for small melodic intervals and the prevalence of certain keys in

tonal music—wherein B\ is more likely to progress to C\ than to, say, A[—ensures that

IDyOM will learn statistical regularities in basic viewpoints like cpitch that are correlated

to those found in other melodic viewpoints like melint or csd.

What is more, rather than assume that listeners expect specific intervals in a melodic

sequence, as is IDyOM’s approach using melint, existing models of melodic expectation

typically theorize that listeners expect smaller melodic intervals regardless of the preceding

context, a principle known as pitch proximity (e.g., Cuddy & Lunney, 1995; Margulis, 2005;

Narmour, 1990; Schellenberg, 1997). Yet in this study, we only assume that listeners form

expectations on the basis of statistical regularities among melodic intervals in a sequence.

Vos and Troost (1989) have demonstrated, for example, that small intervals are far more

common than large intervals in Western tonal music, so it should not be surprising that

IDyOM produces higher probability estimates for smaller intervals, just as do
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proximity-based models. The difference in these two approaches is thus theoretical, rather

than empirical, in that IDyOM bases its predictions on a theory of implicit statistical

learning, whereas proximity-based models also sometimes base their assumptions on other

(sensory or psychoacoustic) mechanisms. It is certainly possible that these mechanisms

influence the preference for smaller over larger intervals in Western tonal music—or indeed,

the formation of expectations during music listening more generally—but we do not

examine this assumption here.

Perhaps more importantly, the cross entropy estimates for the melodic models in this

study indicate that IDyOM was more certain about its predictions for more cognitively

plausible viewpoints like melint and csd than for less plausible ones like cpitch, thereby

reinforcing the view that representations of the musical surface are ‘cognitively plausible’ to

the degree that they minimize prediction errors for future events (Pearce & Wiggins, 2012).

Indeed, if prediction is the ‘primary function’ of the brain (Hawkins & Blakeslee, 2004,

p. 89), and listeners learn to compress information during processing by only retaining

representations of the musical surface that minimize uncertainty (Pearce & Wiggins, 2012),

it therefore seems reasonable to include cpitch and melint among a potentially large

number of candidate viewpoints in the initial model configuration and allow IDyOM to

select the viewpoint (or combination of viewpoints) that minimizes uncertainty empirically

(i.e., in an unsupervised manner). Furthermore, in this case IDyOM benefited from human

annotations of tonal information in csd, but future studies could employ viewpoints like

the General Chord Type (GCT) representation (Cambouropoulos, 2015), which

automatically produces Roman numeral-like encodings of complex polyphonic corpora.

Third, IDyOM’s modeling architecture could be further improved to more closely

resemble the mechanisms by which listeners form expectations for future events. A number

of studies in the language modelling literature have demonstrated the utility of

non-contiguous n-grams for the discovery and classification of recurrent patterns (i.e.,

collocations) (Guthrie, Allison, Liu, Guthrie, & Wilks, 2006; Huang, Beeferman, & Huang,



SIMULATING EXPECTATIONS FOR TONAL CADENCES 42

1999; Simons, Ney, & Martin, 1997), but the present investigation was limited to

contiguous n-grams. Creel, Newport, and Aslin (2004) have shown, for example, that

listeners can learn non-contiguous statistical regularities in melodic sequences if the

intervening events are segregated in terms of pitch height or timbre. What is more,

Gjerdingen (2014) has suggested that for stimuli demonstrating hierarchical structure,

non-contiguous events often serve as focal points in the syntax. This problem is

particularly acute for corpus studies of tonal harmony, where the musical surface contains

considerable repetition, and many of the vertical sonorities from the notated score do not

represent triads or seventh chords, thereby obscuring the most recurrent patterns. IDyOM

is presently capable of including non-contiguous n-grams using threaded viewpoints, which

sample events from a base viewpoint like cpitch according to some test viewpoint that

represents positions in the sequence, such as metric downbeats or phrase boundaries.

Pearce (2005) has shown that these viewpoints improve model performance in melodic

prediction tasks, so it is possible that they may also improve model predictions for the

terminal events from cadential contexts.

Finally, the present approach depended entirely on simulation. If the brain is a

‘prediction machine’ that generates expectations about future events by forming

associations between co-occurring attributes within the external environment, as some have

suggested (Bar, 2007; Clark, 2013), then behavioral and neural manifestations of

expectancy formation, violation, and fulfillment should correspond in some way with the

model simulations reported in this study. In this case, the model estimates generated by

IDyOM support the view that cadences and other recurrent closing patterns serve as the

most predictable, probabilistic, specifically envisaged formulæ in all of tonal music (Huron,

2006; Meyer, 1956). To demonstrate further that the schematic expectations formed by

listeners for cadences and other recurrent temporal patterns amount to these sorts of

probabilistic inferences requires an entirely different approach, one in which the listener,

rather than the music, represents the primary object of study.
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Footnotes

1For basic types like cpitch, Ψτ is simply a projection function, thereby returning as

output the same values it receives as input (Pearce, 2005, p. 59).
2Context models like the one just described also often use a technique called exclusion,

which improves the final probability estimate by reclaiming a portion of the probability mass

in lower-order models that is otherwise wasted on redundant predictions (i.e., the counts for

events that were predicted in the higher-order distributions do not need to be included in

the calculation of the lower-order distributions).
3For a worked example of the PPM* method, see Sears (2016).
4http://kern.ccarh.org/.
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Table 1
The cadential types and categories, along with the harmonic and melodic characteristics
and the count for each category in the cadence collection. Categories marked with an
asterisk are cadential deviations.

Types Categories Essential Characteristics N

I

Perfect Authentic (PAC) V – I 1221̂

Imperfect Authentic (IAC) V – I 93̂ or 5̂

Deceptive (DC)* V – ?, Typically vi 191̂ or 3̂

Evaded (EV)* V – ? 11?, Typically 5̂

V Half (HC) ? – V 845̂, 7̂, or 2̂



SIMULATING EXPECTATIONS FOR TONAL CADENCES 52

Table 2
Reference information (Opus number, work, movement, measures), keys (case denotes
mode), time signatures, and tempo markings for the exposition sections in the corpus.

Excerpt Key Time Signature Tempo Marking
Op. 17, No. 1, i, mm. 1–43 E 4/4 Moderato
Op. 17, No. 2, i, mm. 1–38 F 4/4 Moderato
Op. 17, No. 3, iv, mm. 1–26 E[ 4/4 Allegro molto
Op. 17, No. 4, i, mm. 1–53 c 4/4 Moderato
Op. 17, No. 5, i, mm. 1–33 G 4/4 Moderato
Op. 17, No. 6, i, mm. 1–73 D 6/8 Presto
Op. 20, No. 1, iv, mm. 1–55 E[ 2/4 Presto
Op. 20, No. 3, i, mm. 1–94 g 2/4 Allegro con spirito
Op. 20, No. 3, iii, mm. 1–43 G 3/4 Poco Adagio
Op. 20, No. 3, iv, mm. 1–42 g 4/4 Allegro molto
Op. 20, No. 4, i, mm. 1–112 D 3/4 Allegro di molto
Op. 20, No. 4, iv, mm. 1–49 D 4/4 Presto scherzando
Op. 20, No. 5, i, mm. 1–48 f 4/4 Allegro moderato
Op. 20, No. 6, ii, mm. 1–27 E cut Adagio
Op. 33, No. 1, i, mm. 1–37 b 4/4 Allegro moderato
Op. 33, No. 1, iii, mm. 1–40 D 6/8 Andante
Op. 33, No. 2, i, mm. 1–32 E[ 4/4 Allegro moderato
Op. 33, No. 3, iii, mm. 1–29 F 3/4 Adagio
Op. 33, No. 4, i, mm. 1–31 B[ 4/4 Allegro moderato
Op. 33, No. 5, i, mm. 1–95 G 2/4 Vivace assai
Op. 33, No. 5, ii, mm. 1–30 g 4/4 Largo
Op. 50, No. 1, i, mm. 1–60 B[ cut Allegro
Op. 50, No. 1, iv, mm. 1–75 B[ 2/4 Vivace
Op. 50, No. 2, i, mm. 1–106 C 3/4 Vivace
Op. 50, No. 2, iv, mm. 1–86 C 2/4 Vivace assai
Op. 50, No. 3, iv, mm. 1–74 E[ 2/4 Presto
Op. 50, No. 4, i, mm. 1–64 f] 3/4 Allegro spirituoso
Op. 50, No. 5, i, mm. 1–65 F 2/4 Allegro moderato
Op. 50, No. 5, iv, mm. 1–54 F 6/8 Vivace
Op. 50, No. 6, i, mm. 1–54 D 4/4 Allegro
Op. 50, No. 6, ii, mm. 1–25 d 6/8 Poco Adagio
Op. 54, No. 1, i, mm. 1–47 G 4/4 Allegro con brio
Op. 54, No. 1, ii, mm. 1–54 C 6/8 Allegretto
Op. 54, No. 2, i, mm. 1–87 C 4/4 Vivace
Op. 54, No. 3, i, mm. 1–58 E cut Allegro
Op. 54, No. 3, iv, mm. 1–82 E 2/4 Presto
Op. 55, No. 1, ii, mm. 1–36 D 2/4 Adagio cantabile
Op. 55, No. 2, ii, mm. 1–76 f cut Allegro
Op. 55, No. 3, i, mm. 1–75 B[ 3/4 Vivace assai
Op. 64, No. 3, i, mm. 1–69 B[ 3/4 Vivace assai
Op. 64, No. 3, iv, mm. 1–79 B[ 2/4 Allegro con spirito
Op. 64, No. 4, i, mm. 1–38 G 4/4 Allegro con brio
Op. 64, No. 4, iv, mm. 1–66 G 6/8 Presto
Op. 64, No. 6, i, mm. 1–45 E[ 4/4 Allegretto
Op. 71, No. 1, i, mm. 1–69 B[ 4/4 Allegro
Op. 74, No. 1, i, mm. 1–54 C 4/4 Allegro moderato
Op. 74, No. 1, ii, mm. 1–57 G 3/8 Andantino grazioso
Op. 76, No. 2, i, mm. 1–56 d 4/4 Allegro
Op. 76, No. 4, i, mm. 1–68 B[ 4/4 Allegro con spirito
Op. 76, No. 5, ii, mm. 1–33 F] cut Largo. Cantabile e mesto
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Table 3
Descriptive statistics for the corpus.

Instrumental Part N M (SD) Range

Note Events

Violin 1 14,506 290 (78) 133–442

Violin 2 10,653 213 (70) 69–409

Viola 9156 183 (63) 79–381

Cello 8463 169 (60) 64–326

Chord Events

Expansiona 20,290 406 (100) 189–620
a To identify chord events in polyphonic textures, full expansion duplicates overlapping note

events at every unique onset time (Conklin, 2002).
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Table 4
Analysis of variance and planned comparisons predicting the information content estimates
from all viewpoint models with tonic closure.

Omnibus Comparisons

PAC vs. Non-Cadence PAC vs. Tonic

Viewpoint df Welch F est. ω2 p df t r p df t r p

Note Events

Violin 1

cpitch 241.99 1.56 .003 NS 241.58 −1.43 .09 NS 241.99 −0.73 .05 NS

melint 238.65 5.80 .03 .003 289.44 −3.38 .19 .002 239.31 −2.47 .16 .029

csd 238.43 7.83 .04 <.001 292.69 −3.19 .18 .003 238.25 −1.23 .08 .220

selection 237.80 8.11 .04 <.001 297.25 −3.64 .21 <.001 237.52 −1.91 .12 NS

Cello

cpitch 239.77 29.42 .13 <.001 286.12 7.46 .40 <.001 236.13 7.21 .42 <.001

melint 229.78 41.29 .18 <.001 342.08 9.04 .44 <.001 208.37 7.81 .48 <.001

csd 233.81 17.76 .08 <.001 319.18 4.31 .23 <.001 231.65 5.95 .36 <.001

selection 231.83 35.32 .16 <.001 333.12 7.90 .40 <.001 218.98 8.01 .48 <.001

Chord Events

vintcc 232.01 26.32 .12 <.001 311.30 −5.53 .30 <.001 238.84 −0.96 .06 NS

csd 237.59 9.96 .05 <.001 296.92 −3.81 .22 <.001 238.39 −1.67 .11 NS

composite 238.02 13.61 .06 <.001 281.84 −4.59 .26 <.001 241.89 −2.24 .14 .052

Note. NS = non-significant. Planned comparisons corrected with Bonferroni adjustment.
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Table 5
Analysis of variance and planned comparisons predicting the information content estimates
from all viewpoint models with dominant closure.

Omnibus Comparisons

HC vs. Non-Cadence HC vs. Dominant

Viewpoint df Welch F est. ω2 p df t r p df t r p

Note Events

Violin 1

cpitch 164.25 4.82 .02 .009 191.26 −3.11 .22 .004 165.44 −2.55 .19 .024

melint 159.52 5.89 .03 .003 227.92 −3.42 .22 .002 146.00 −2.99 .24 .007

csd 162.09 8.14 .04 <.001 202.06 −3.80 .26 <.001 165.50 −2.16 .17 NS

selection 162.39 9.38 .04 <.001 209.13 −4.26 .28 <.001 161.61 −2.91 .22 .008

Cello

cpitch 162.93 0.78 ≈ 0 NS 209.18 1.24 .08 NS 157.94 0.94 .06 NS

melint 164.37 1.15 ≈ 0 NS 195.71 1.46 .09 NS 163.31 0.97 .06 NS

csd 161.11 6.19 .03 .003 216.02 −3.36 .22 .002 159.74 −1.97 .25 NS

selection 162.88 1.37 .002 NS 207.10 −1.59 .10 NS 161.31 2.45 .16 NS

Chord Events

vintcc 160.56 16.66 .08 <.001 216.71 −1.42 .09 NS 160.57 2.45 .16 NS

csd 164.84 4.00 .02 .020 187.47 −1.86 .12 NS 165.37 −0.36 .02 NS

composite 162.93 8.04 .04 <.001 203.00 −3.56 .24 <.001 163.99 −1.74 .13 NS

Note. NS = non-significant. Planned comparisons corrected with Bonferroni adjustment.
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Table 6
Analysis of variance and planned comparisons predicting the information content estimates
from all viewpoint models with cadence categories.

Omnibus Comparisons

Prospective Schemas Genuine vs. Deviations

Viewpoint df Welch F est. ω2 p Trend df t r p df t r p

Note Events

Violin 1

cpitch 32.42 3.19 .03 .026 Linear 13.47 3.40 .68 .013 17.19 −3.64 .66 .006

melint 31.57 2.34 .02 NS Linear 12.13 3.00 .65 .032 14.14 −2.94 .62 .033

csd 29.95 3.02 .03 .033 Linear 18.99 3.43 .62 .008 30.51 −3.17 .50 .009

selection 29.80 3.77 .04 .013 Linear 16.38 3.85 .69 .004 26.03 −3.66 .58 .003

Cello

cpitch 31.18 8.86 .11 <.001 Quadratic 25.39 4.38 .66 <.001 27.62 −2.59 .44 .045

melint 30.72 6.81 .09 <.001 Quadratic 14.04 4.11 .74 .003 15.93 −2.93 .59 .030

csd 31.25 13.99 .18 <.001 Linear 14.83 4.09 .73 .003 24.39 −5.18 .72 .003

selection 30.66 14.99 .19 <.001 Linear 13.41 3.83 .72 .003 19.91 −4.95 .74 .003

Chord Events

vintcc 29.94 6.68 .08 .001 Linear 16.96 3.56 .65 .007 28.01 −3.92 .60 .001

csd 31.90 7.02 .09 <.001 Linear 27.04 4.14 .62 <.001 39.39 −3.84 .52 .001

composite 30.91 7.21 .09 <.001 Linear 19.23 4.81 .74 <.001 31.87 −4.58 .63 .003

Note. NS = non-significant. Planned comparisons corrected with Bonferroni adjustment.
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Table 7
Analysis of variance and planned comparisons predicting the information content estimates
from selectionvl1, selectionvc, and vintcc over time for each cadence category.

Omnibus Comparisons

et vs. Surrounding et vs. et+1

Viewpoint df Welch F est. ω2 p df t r p df t r p

Note Events

selectionvl1

PAC 236.76 67.63 .35 <.001 298.45 −9.88 .50 <.001 223.50 11.64 .61 <.001

IAC 14.95 3.89 .02 NS 18.48 −2.79 .54 .024 12.53 2.78 .54 .032

HC 162.48 32.34 .20 <.001 209.41 −6.92 .43 <.001 160.95 8.02 .53 <.001

DC 35.86 2.84 .01 NS 36.92 −2.10 .33 .085 35.62 2.41 .55 .043

EV 18.67 5.22 .03 NS 14.87 2.54 .55 .043 19.23 −1.58 .34 NS

selectionvc

PAC 227.67 42.14 .25 <.001 322.14 3.18 .17 .003 180.58 1.65 .12 NS

IAC 14.20 3.38 .02 NS 21.98 1.98 .39 NS 10.57 −0.71 .21 NS

HC 161.48 15.57 .11 <.001 213.66 −5.44 .35 <.001 151.11 3.76 .29 <.001

DC 35.50 8.93 .06 .004 43.02 2.98 .41 .010 33.15 −0.97 .17 NS

EV 19.87 8.29 .06 .012 17.49 4.06 .70 .002 19.22 −3.19 .59 .009

Chord Events

vintcc

PAC 235.55 9.74 .07 <.001 313.01 −3.63 .20 .001 220.21 4.42 .29 <.001

IAC 15.21 6.48 .04 .046 22.58 −3.49 .59 .004 13.71 2.09 .49 NS

HC 161.39 8.26 .06 .002 216.80 −4.07 .27 <.001 157.62 3.25 .25 .003

DC 34.73 2.05 .01 NS 38.02 1.14 .18 NS 34.51 0.05 .01 NS

EV 19.91 0.18 ≈ 0 NS 18.50 0.25 .06 NS 19.98 0.04 .01 NS

Note. NS = non-significant. Planned comparisons corrected with Bonferroni adjustment.
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Figure Captions

Figure 1. Top: First violin part from Haydn’s String Quartet in E, Op. 17/1, i, mm.

1–2. Bottom: Viewpoint representation.

Figure 2. Top: Bar plots of the mean information content (IC) estimated for the

terminal note event in the first violin (left) and cello (right) for each level of

tonic closure. Viewpoints include cpitch, melint, csd, and an optimized

combination called selection, which represents melint and the linked

viewpoint csd ⊗ cpitch. Bottom left: Bar plot of the mean information

content (IC) estimated for the terminal vintcc and csdc for each level of

tonic closure. Bottom right: Line plot of the mean information content

(IC) estimated for the combination called composite, which represents the

dot product of selectionvl1 and csdc. Whiskers represent ±1 standard

error.

Figure 3. Top: Bar plots of the mean information content (IC) estimated for the

terminal note event in the first violin (left) and cello (right) for each level

of dominant closure. Viewpoints include cpitch, melint, csd, and an

optimized combination called selection, which represents melint and

the linked viewpoint csd ⊗ cpitch. Bottom left: Bar plot of the mean

information content (IC) estimated for the terminal vintcc and csdc

for each level of dominant closure. Bottom right: Line plot of the mean

information content (IC) estimated for the combination called composite,

which represents the dot product of selectionvl1 and csdc. Whiskers

represent ±1 standard error.
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Figure 4. Line plots of the mean IC estimated for the terminal note event in the first

violin (left) and cello (right) for each cadence category. Viewpoints include

cpitch, melint, csd, and an optimized combination called selection,

which represents melint and the linked viewpoint csd⊗cpitch. Whiskers

represent ±1 standard error.

Figure 5. Left: Line plot of the mean IC estimated for the resolving chord event

for each cadence category. Right: Line plot of the mean IC estimated

for the combination called composite, which represents the product of

selectionvl1 and csdc. Whiskers represent ±1 standard error.

Figure 6. Time course of the mean IC estimated for the events surrounding the

terminal note event in the first violin (top) and cello (bottom) for each

cadence category using the viewpoint selection, which represents melint

and the linked viewpoint csd⊗ cpitch. The statistical analysis pertains

to event numbers −1, 0 (or Terminus), and 1. Whiskers represent ±1

standard error.

Figure 7. Time course of the mean IC estimated for the events surrounding the

terminal chord event for vintcc (top) and csdc (bottom) for each cadence

category. The statistical analysis pertains to event numbers −1, 0 (or

Terminus), and 1. Whiskers represent ±1 standard error.
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Figure 1 . Top: First violin part from Haydn’s String Quartet in E, Op. 17/1, i, mm. 1–2.
Bottom: Viewpoint representation.
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Figure 2 . Top: Bar plots of the mean information content (IC) estimated for the terminal
note event in the first violin (left) and cello (right) for each level of tonic closure.
Viewpoints include cpitch, melint, csd, and an optimized combination called selection,
which represents melint and the linked viewpoint csd⊗ cpitch. Bottom left: Bar plot of
the mean information content (IC) estimated for the terminal vintcc and csdc for each
level of tonic closure. Bottom right: Line plot of the mean information content (IC)
estimated for the combination called composite, which represents the dot product of
selectionvl1 and csdc. Whiskers represent ±1 standard error.

vintcc
csdc

2

4

6

8

10
composite

IC
(b

it
s)

PAC Tonic Non-Tonic

cpitch melint csd selection

0

1

2

3

4 Violin 1

IC
(b

it
s)

PAC Tonic Non-Tonic
0

1

2

3

4

5 Cello

IC
(b

it
s)

PAC Tonic Non-Tonic

0
1
2
3
4
5
6

IC
(b

it
s)

PAC Tonic Non-Tonic



SIMULATING EXPECTATIONS FOR TONAL CADENCES 62

Figure 3 . Top: Bar plots of the mean information content (IC) estimated for the terminal
note event in the first violin (left) and cello (right) for each level of dominant closure.
Viewpoints include cpitch, melint, csd, and an optimized combination called selection,
which represents melint and the linked viewpoint csd⊗ cpitch. Bottom left: Bar plot of
the mean information content (IC) estimated for the terminal vintcc and csdc for each
level of dominant closure. Bottom right: Line plot of the mean information content (IC)
estimated for the combination called composite, which represents the dot product of
selectionvl1 and csdc. Whiskers represent ±1 standard error.
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Figure 4 . Line plots of the mean IC estimated for the terminal note event in the first violin
(left) and cello (right) for each cadence category. Viewpoints include cpitch, melint, csd,
and an optimized combination called selection, which represents melint and the linked
viewpoint csd⊗ cpitch. Whiskers represent ±1 standard error.
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Figure 5 . Left: Line plot of the mean IC estimated for the resolving chord event for each
cadence category. Right: Line plot of the mean IC estimated for the combination called
composite, which represents the product of selectionvl1 and csdc. Whiskers represent
±1 standard error.
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Figure 6 . Time course of the mean IC estimated for the events surrounding the terminal
note event in the first violin (top) and cello (bottom) for each cadence category using the
viewpoint selection, which represents melint and the linked viewpoint csd⊗ cpitch.
The statistical analysis pertains to event numbers −1, 0 (or Terminus), and 1. Whiskers
represent ±1 standard error.
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Figure 7 . Time course of the mean IC estimated for the events surrounding the terminal
chord event for vintcc (top) and csdc (bottom) for each cadence category. The statistical
analysis pertains to event numbers −1, 0 (or Terminus), and 1. Whiskers represent ±1
standard error.
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