
A hybrid Constraint Programming/Mixed Integer
Programming framework for the preventive signaling

maintenance crew scheduling problem

Shahrzad M. Poura, John H. Drakeb, Lena Secher Ejlertsenc, Kourosh Marjani
Rasmussena, Edmund K. Burkeb

aDTU Management Engineering, Technical University of Denmark, Produktionstorvet, 2800 Kgs. Lyngby,
Denmark

bOperational Research Group, Queen Mary University of London, Mile End Road, London E1 4NS, UK
cBanedanmark, Amerika Plads 15 DK-2100 Copenhagen , Denmark

Abstract

A railway signaling system is a complex and interdependent system which should en-
sure the safe operation of trains. We introduce and address a mixed integer optimisation
model for the preventive signal maintenance crew scheduling problem in the Danish
railway system. The problem contains many practical constraints, such as temporal
dependencies between crew schedules, the splitting of tasks across multiple days, crew
competency requirements and several other managerial constraints. We propose a novel
hybrid framework using Constraint Programming (CP) to generate initial feasible so-
lutions to feed as ‘warm start’ solutions to a Mixed Integer Programming (MIP) solver
for further optimisation. We apply the CP/MIP framework to a section of the Danish
rail network and benchmark our results against both direct application of a MIP solver
and modelling the problem as a Constraint Optimisation Problem (COP). Whereas the
current practice of using a general purpose MIP solver is only able to solve instances
over a two-week planning horizon, the hybrid framework generates good results for
problem instances over an eight-week period. In addition, the use of a MIP solver to
improve the initial solutions generated by CP is shown to be vastly superior to solving
the problem as a COP.

Keywords: Transportation, Scheduling, Constraint Programming, Mixed Integer
Programming, Hybrid Approaches

1. Introduction

A railway signaling system is an essential component of a railway network, respon-
sible for ensuring safe and efficient train operations. The existing signaling technology

Email addresses: shmp@dtu.dk (Shahrzad M. Pour), j.drake@qmul.ac.uk (John H. Drake),
lsej@bane.dk (Lena Secher Ejlertsen), kmra@dtu.dk (Kourosh Marjani Rasmussen),
e.burke@qmul.ac.uk (Edmund K. Burke)

Preprint submitted to European Journal of Operations Research September 29, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159076581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


within the Danish railway network is based on the Automatic Train Protection (ATP)
signaling system [1]. To ensure that signaling equipment is both cost efficient and safe
throughout its service life, effective maintenance planning is crucial. Generally, rail-
way maintenance planning and scheduling problems are considered as either strategic,
tactical or operational level problems [2]. Using this ontology, the problem that we con-
sider here is classified as a tactical problem, where the aim is to assign and schedule a
set of maintenance tasks to maintenance crew members over a given planning horizon.
Additionally there are several aspects which could differ from one railway network
to another, such as the competency level required for fulfilling each task, coordina-
tion with train traffic, transportation related costs, and several hard and soft managerial
constraints.

A number of papers exist in the literature studying maintenance crew scheduling,
with a variety of formulations and solution techniques proposed. Cheung et al. [3] pre-
sented a Constraint Programming (CP) model for scheduling maintenance tasks within
the Hong Kong Mass Transit system. The results showed that the proposed CP method
was 10 times more efficient than the existing manual method used in practice. Gorman
and Kanet [4] developed a time-space network model and a job scheduling model to
schedule maintenance tasks, showing results for a small test instance. The first model
was solved as a mixed integer programming (MIP) problem, with the second model
solved using a hybrid Constraint Programming and Genetic Algorithm approach. Ne-
mani et al. [5] proposed four different models for the curfew planning problem, which
adds mutual exclusion and time window constraints to the core problem of schedul-
ing tasks. Each model was solved with a commercial MIP solver, using real-world
instances from a large rail company. Bog et al. [6] also solved the curfew planning
problem. Their method iteratively solved sub-problems using a MIP solver, gradually
increasing the size of the sub-problem until the entire instance was included. This
method was applied to the instances used by Nemani et al. [5], outperforming three of
the four approaches from their paper. Peng et al. [7] presented a cluster-first, route-
second approach to minimise the travel cost of maintenance teams. An initial phase
provides an assignment of tasks to maintenance teams before a local search phase at-
tempts to improve the solution found. Their results showed a significant improvement
over manual planning. A two-phase approach was used by Borraz-Sánchez and Klab-
jan [8], first applying dynamic programming to generate an initial schedule, before
a second phase of improvement with a ruin and recreate heuristic [9] using an ILP
model to reinsert tasks optimally. Their method was able to solve an annual scheduling
problem with 1000 tasks within 2.5 hours. Peng and Ouyang [10] described a method
which combines multiple maintenance tasks into longer projects as a pre-processing
stage before allocating the tasks to maintenance crew. The proposed model is also
solved by a method performing an initial constructive phase before a second phase of
local improvement, and was adopted in practice by the company providing the case
study. Khalouli et al. [11] presented an ant colony optimization (ACO) method solving
a set of randomly generated instances of the preventive maintenance scheduling prob-
lem. The proposed method was able to generate optimal solutions to some instances in
significantly less time than that required by a commercial MIP solver. Wen et al. [12]
formulated the problem of determining when to performing ‘tamping’, a track main-
tenance operation, on different sections of a railway network as a MIP model. Baldi

2



et al. [13] consider a stochastic variant of the tactical railway maintenance problem
(STRMP), where the exact maintenance tasks required to be performed are not known
in advance, and scheduling takes place over a long-term rolling planning horizon.

As the infrastructure owner of most of the rail network in Denmark, Banedanmark
is in charge of the maintenance and traffic control of the Danish railway track and
signaling system. The Danish rail network comprises four maintenance areas: Mainte-
nance Machines, Maintenance Nationwide, Maintenance East and Maintenance West.
The East and West divisions are further divided into Track Maintenance, Signaling
Maintenance and Current Maintenance. The pilot maintenance region we consider in
this paper is part of the signaling section of the West region. It is situated between Ejby,
Lunderskov and Vejle as shown in Figure 1. The current practice is to produce plans
over a two-week planning horizon using a commercial MIP solver.

Figure 1: Pilot area of the signaling maintenance problem in Denmark

The main contribution of this paper is the formulation of the preventive signaling
maintenance crew scheduling problem for the existing signaling system in Denmark
as a mixed integer optimisation model. The crew start their tasks from a depot loca-
tion. Three characteristics of the problem add to the complexity of the model. Firstly,
the plan includes temporal dependencies between different crew members. That is be-
cause some of the tasks require more than one crew member, due to crew competency
requirements or safety rules. Secondly, to handle the considerations that must be made
for traffic, multiple crew members can fulfill a task together to minimise the possession
time of the track. Accordingly there is a range in terms of the number of crew members
required to fulfil a given task per day. Finally, the majority of tasks take much longer
than a single day, even with multiple crew members working on them, requiring a plan
to be split over multiple days.

For the real-world problem monthly plans are expected for operational reasons and
currently, optimal solutions cannot be found for practical sized problem instances. Here
we introduce a hybrid framework, using CP to generate initial feasible solutions to feed

3



to a MIP solver for further optimisation.
The remainder of the paper is structured as follows: in Section 2, we describe the

MIP formulation of the problem and explain the real-life constraints within the model.
Section 3 explains our solution approach. In Section 4, the details of the real-world
instances used are given and results for the proposed hybrid framework are presented.
Finally we provide some conclusions in Section 5.

2. Mathematical Model

The model formulation is provided by Banedanmark and is based on the practi-
cal maintenance crew scheduling problem encountered by the Banedanmark planning
team. The problem consists of a number of technical places where maintenance tasks
are required to be carried out. A technical place is either a station or the maintenance
area between a station and the next station. The crew start their tasks from a depot
location and return to the depot at the end of every day. The model covers travelling
distance to and from the depot, transportation costs between technical places during
the working day and the duration of maintenance tasks, with the hard constraint that
the plan does not exceed the maximum shift length each day. The model also considers
that crew members should have the correct competence level for a particular task and
defines the minimum and maximum number of crew members that can work simulta-
neously on each task. For longer tasks that are completed over more than one shift, it
is desirable to allocate the same crew members to continue the task the next day. The
model in its entirety is explained in the following subsections. Within the model, M
represents an arbitrarily large number to help bound some of the constraints.

2.1. Indexes

n crew n ∈ [N]

i task i ∈ [I]

j date j ∈ [J]

k competencies k ∈ [K]

p,(q) technical place p ∈ [P]

2.2. Parameters

a number of hours per shift

f total competence level needed

ci time required to complete task i

d1i minimum number of crew for task i

d2i maximum number of crew for task i

en j whether crew member n is available on planning date j

4



boik whether task i demands competence k

bmnk whether crew n has at least competence level 3 for competence k

bm2nk 1 if crew n has less than competence level 3 for competence k

bm3nk competence level for crew n for competence k

t pip if task i is physically located at technical place p

trpq transport time from technical place p to technical place q

tmp transport time from depot to technical place p

gi 1 if the task must be done inside the planning horizon, 0 if it can be left out

2.3. Variables

xni j fraction of task i that crew n completes on date j.

x3i j fraction of task i that is completed on date j.

x2i j

{
1 if some of task i is completed on date j
0 else

x4i

{
1 if task i is fully completed within the planning horizon
0 else

x5ni j

{
1 if crew member n is working on task i on date j but not on date j+1
0 else

x6i j

{
1 if part of task i is completed on date j but not on date j+1
0 else

yn j

{
1 if crew member n will work on date j
0 else

zni j

{
1 if crew member n works on task i on date j
0 else

z1ni

{
1 if crew n works on task i
0 else

wnp j

{
1 if crew n works on technical place p on date j
0 else

vnpq j


1 if crew n needs transport between technical place p and technical

place q on date j
0 else

w1np j if crew n needs transport to technical place p from another technical place
on date j

w2np j if crew n needs transport from a technical place p to another technical place
on date j

5



2.4. Objective function

The objective function is composed of a number of parts. Firstly, it aims to min-
imise the number of working days used to complete the plan. Secondly, it should ensure
that as many tasks as possible are completed inside the planning horizon. Thirdly, the
model tries to minimise the penalty for assigning crew members to a particular task
on non-consecutive days. In addition, the model aims to minimise the total number
of crew members working each day and minimise the number of different crew mem-
bers working on each task. These terms aim to strengthen the sense of responsibility
crew members feel towards the tasks that they are allocated. Finally due to managerial
preferences, the amount of work scheduled to be completed on a Friday penalises the
objective function, whilst work scheduled to be completed on a Monday rewards the
objective function.

minO = ∑
n

∑
j

yn j ·a+∑
i
(1− x4i) · ci +∑

ni j
x5ni j +∑

i j
x6i j

+∑
ni j

zni j +∑
ni

z1ni +∑
n

∑
j=5,10,...

yn j−∑
n

∑
j=1,6,...

yn j (1)

In order to normalise this multi-objective function we have scaled each term, di-
viding it by the maximum possible value for that specific term. The weighted sum
method is applied to give relative coefficients/weights to each term of the objective
function. The sum of the weights are one and are provided by the planning manager
from Banedanmark to reflect the importance of each to the company. Priority is given
in the following order: fulfilling a greater number of tasks in the planning time horizon,
minimising the total number of working days and finally, generating a high quality plan
from a managerial point of view.

2.5. Constraints

2.5.1. Constraints in relation to the tasks:
All tasks should either be completed entirely or not completed at all within the

planning horizon:
∑
n

∑
j

xni j = x4i ∀ i (2)

The total number of hours for each shift should not be exceeded. The first term is
the duration of tasks, the second term is the transportation time to and from the depot,
and third term is the transportation time between technical places during the shift:

∑
i

xni j ·ci +∑
p
(wnp j ·2−w1np j−w2np j) · tmp +∑

p
∑
q

vnpq j · trpq ≤ a ∀ j,n (3)

The sum of the fractions of tasks allocated to crew members cannot exceed the total
required to complete the task:

x2i j ≥∑
n

xni j ∀ i, j (4)

6



x3 is defined as the sum of the fractions of a task allocated to all crew members for
a particular task on a given day:

x3i j = ∑
n

xni j ∀ i, j (5)

Some tasks are considered critical and must be completed inside the planning hori-
zon, meaning that they are high priority. The more tasks that are fulfilled, the better the
plan is considered to be. Accordingly, a task i must be completed within the planning
horizon if parameter gi is set to 1:

x4i ≥ gi ∀ i (6)

If a task is completed within the planning horizon, the fraction of a task that is
completed on a given day should not exceed x4:

x4i ≥ xni j ∀ n, i, j (7)

A crew member cannot be allocated a task on a day that they are not due to work:

yn j ≥ zni j ∀ n, i, j (8)

If a crew member is allocated a fraction of a task on a particular date, Equation (9)
ensures that the variable indicating that a crew member is working on this task on this
date is set to 1. Equation (10) ensures that this variable cannot be set to 1 if the crew
member is not allocated a fraction of this task on a particular date.

zni j ≥ xni j ∀ n, i, j (9)

zni j ≤ xni j ·M ∀ n, i, j (10)

If a crew member is allocated a fraction of a task to complete on a particular date,
the variable indicating if a crew member works on this task at all should always at least
as large as this value:

z1ni ≥ zni j ∀ n, i, j (11)

2.5.2. Managerial constraints
From a managerial point of view, if a given task takes more than a day to complete,

the following soft constraints will be desired:

• If some crew members work on a task on date j but do not continue the following
day, the remaining parts of the task should preferably be undertaken by the same
remaining crew members who started working on the task:

x5ni j ≥ zni j− zni j+1 ∀ n, i, j (12)

• If task i is started but not completed on date j and is not continued the following
day, resulting in the task being fulfilled on non-consecutive days, a penalty will
be given to the plan:

x6i j ≥ x2i j− x2i j+1 ∀ i, j (13)

7



2.5.3. Constraints in relation to the crew:
According to Banedanmark, the suggested plan should allow for assigning multiple

crew members to one task in order to shorten the total time it takes to complete. On
the other hand, having too many employees working on each task weakens the sense
of responsibility and thereby the quality of the job done by crew members. As a result
Banedanmark provides a maximum possible number of the crew members which can
be assigned to each task. In addition, due to safety regulations there are some tasks that
require at least two crew members to work on them simultaneously. Therefore, there is
a minimum and maximum number of crew members that can work simultaneously on
a task on a given date.

The minimum number of crew members that should work (simultaneously) on a
task per date is defined as:

∑
n

zni j ≥ d1i · x2i j ∀ i, j (14)

Similarly, the maximum number of crew members that should work (simultane-
ously) on a task per date is:

∑
n

zni j ≤ d2i · x2i j ∀ i, j (15)

Each crew member cannot perform more than the fraction of a task that can be com-
pleted by the minimum number of crew members required. This ensures that at least
the minimum number of crew members required work on each task simultaneously:

xni j ≤
x3i j

d1i
∀ n, i, j (16)

As crew members will not available for all dates due to working shift patterns
vacation, education etc., crew members cannot be assigned to work on a task on a date
that they are not due to work:

zni j ≤ en j ∀ n, i, j (17)

2.5.4. Constraints in relation to competencies:
The model also considers that crew members must have the right competence level

to complete different tasks. We believe that satisfying the competencies required for
each task is the most challenging part of the model, since the number of crew working
on each task is not predetermined in advance and can vary within a possible range. This
is further complicated by the fact that tasks can be split over multiple days. As a result,
the number of crew members needed to satisfy the crew competency requirements can
change based on the number of crew working on a task per day.

In order to satisfy the crew competency requirements for each task, there are three
possible acceptable scenarios defined by the planners. Figure 2 shows the scenarios
which lead to the crew competency requirements being met. We suppose that there is a
task called task1 which demands crew with competency level 3 of A and there are two
crew members crew1 and crew2 with competencies level 3 of A and less than level 3 of
A, respectively.

8



• When the minimum number of crew required for fulfilling task1 is one person,
there are two possible states:

– One crew member is assigned to the task. Crew1 is assigned to Task1 and
100% of the task is undertaken by the same person (a).

– More than one crew member is assigned to the task. Crew1 and Crew2 are
assigned to Task1. Since Crew2 does not have the required competency
level 3 for undertaking Task1, they can only work on the task simultane-
ously with Crew1. Crew1 can fulfill the remaining part of the task on his
own due to his level of competency (b). What is crucial is satisfying the
level of competency until a task is finished. The process of accomplishing
the task will be shortened by having more than one crew member involved.

• If Task1 needs crew competency A and the minimum number of crew required
is two persons, it necessitates that both crew members attend simultaneously (c).

Figure 2: Different possible scenarios for Crew competency

To summarise, at least one of the crew members should have the right competence
level for a task and the minimum and maximum number of crew members that can be
allocated to a task should be respected. For the particular scheduling problem at hand,
each crew member has a competence level ranging from 0 to 4. A crew member is
considered as an expert if they have at least level 3 for a particular competency and at
least one expert crew member should be present at all times when working on a specific
task. The total competence level f of crew members working simultaneously on a task
should be at least 4.

On this basis, the related constraints are defined as follows. The combined compe-
tence level of all crew members should be sufficient for each task:

∑
n

zni j ·bm3nk ≥ x2i j ·boik · f ∀ i, j,k (18)

At least one crew member should have competence level 3 for the equipment type
of task i:

∑
n

zni j ·bmnk ≥ x2i j ·boik ∀ i, j,k (19)

9



The competence level should be maintained during the full duration of a task. This
formulation ensures that at least one crew member has competence level 3 if multiple
crew members work on the same task simultaneously:

∑
n

xni j ·bmnk ≥
∑n xni j ·bm2nk

d1i
∀ i, j,k (20)

2.5.5. Constraints in relation to transportation:
These constraints ensure that a crew member is transported between the technical

places that he works on during the day, and that he is transported to and from the depot
at the start and the end of the shift. Each crew member works at the technical places
that each allocated task belongs to:

wnp j ≤∑
i

zni j · t pip ∀ n, p, j (21)

wnp j ·M ≥∑
i

zni j · t pip ∀ n, p, j (22)

A crew member is only transported between the technical places that the tasks he
is allocated are located:

∑
q

vnpq j ≤ wnp j ·M ∀ n, p, j (23)

∑
p

vnpq j ≤ wnq j ·M ∀ n,q, j (24)

If a crew member works at more than one technical place during a shift, the tech-
nical places he is transported to and from while going between technical places are
maintained by the following variables:

w1nq j = ∑
p

vnpq j ∀ n,q, j (25)

w2np j = ∑
q

vnpq j ∀ n, p, j (26)

Each crew member can only be transported to and from each technical place once
per day:

w1np j ≤ 1 ∀ n, p, j (27)

w2np j ≤ 1 ∀ n, p, j (28)

If a crew member is working on a given date then he is transported only once from
the depot and once to the depot:

∑
p

wnp j ·2−w1np j−w2np j = 2 · yn j ∀ n, j (29)

10



3. Proposed solution approach

The main goal of this work is to find feasible solutions for larger instances of the
maintenance crew scheduling problem presented in the previous section, as the current
practice is only able to solve problems with a planning horizon two weeks. We propose
a hybrid framework consisting of two phases, initial solution construction and a sec-
ond phase of solution improvement. Previous work has shown that CP is an effective
method for generating feasible solutions to highly constrained problems [14]. Here we
use Google’s software suite for combinatorial optimisation (Google OR-Tools) [15] to
model the problem as a Constraint Satisfaction Problem (CSP). In the improvement
phase, a MIP solver is used to further improve the initial feasible solution. Each phase
is described in the following sections in more detail.

3.1. Construction phase
As mentioned above, we use CP to generate feasible solutions by modeling the

problem as a CSP [16]. A CSP is a mathematical model described by three sets of
elements: a set of variables, a set of possible values (domain) for each variable, and
a set of constraints on the variables. Each solution is constructed by assigning values
within the defined domain to the variables of the model such that every constraint is
satisfied. The problem is modelled as a CSP with a customised global constraint added
to deal with the specific crew competency constraints contained in the model. This
process is illustrated in Figure 3, inspired by Baptiste [17].

Problem definition as 
Constraint Satisfaction Problem (CSP):

A set of variables

A set of possible values/domain
for each variables

A set of constraints 
between the variables

Primary constraints

Crew Competency constraint:

Propagation embedded with
Look Ahead Technique

Solution construction:

Decision making:

If xn,i,j is 
bounded

Partial solution Search 
strategy

Is  
competency
validated?

Validate
constraints

No:
Backtrack

YesAccept the value

Select decision variable

Assign value to the decision variable

Continue search

Figure 3: Constraint Programming framework

As seen in Figure 3, the process of solving a CP problem consists of four stages:
problem definition, decision making, solution construction and defining the crew com-
petency global constraint.

11



In the problem definition stage, in order to model the problem as a CSP, all of
the MIP variables are defined over similar finite domains within a CSP model. All
of the constraints except the constraints related to crew competency (18, 19 and 20 in
Section 2.5.4 above) are defined as primary constraints. Due to difficulty of satisfying
the crew competency constraints, these are defined as customised global constraints
in the final stage. Next in the decision making stage, we define the main decision
variable and the way the search tree is constructed. This is done by deciding on how
we select the main decision variable and what value(s) are assigned to it at each node
of the tree in order to branch the search tree. In the solution construction stage, at
each node of the decision tree, one element of the main decision variable is selected
and a value is assigned to it. Finally, by defining the crew competency constraints as
global constraints, constraint propagation is used to make the given problem easier to
solve. This is done by helping the solver to prune infeasible regions of the search space
which violate the crew competency constraints. Infeasible areas are identified using a
look-ahead technique embedded in a propagation algorithm.

The individual stages are described in detail in the following subsections.

3.1.1. Problem definition:
As this stage, all of the variables introduced in our mathematical model are defined

as a set of variables in the CSP. The variables need to be scoped over finite domains.
Consequently, the domain of each variable in our model is determined according to the
domain of variables in the MIP model introduced in Section 2. The constraints can
be defined as either initial/primary constraints or global constraints. Initial constraints
can be defined as a set of C = C1, ..,CK where each constraint comprises several vari-
ables and a list of values that the variables can take. From this perspective, the initial
constraints correspond to what is known as a constraint in linear programming. In
our model, all of the constraints except the constraints related to crew competency are
defined as initial constraints.

A global constraint is defined as an “expressive and concise condition involving
a non-fixed number of variables” according to the Global Constraint Catalogue [18].
There are several well-known global constraints introduced in the literature which have
been used in practice in many CP models [19, 20, 21, 22]. In our approach, we have
defined a customised global constraint composed of all of the related crew competency
constraints in our mathematical model.

3.1.2. Decision making:
The core decision variable of the problem is xni j, which represents the fraction of

the task i fulfilled on date j by crew member n. Since most of the tasks are not atomic
and need to be split over multiple days, the model mostly uses a fraction of the whole
duration of each task. At each node of the tree, one variable from the x vector is selected
and is given a value which propagates over the other variables in the search space. In
Google OR-tools there are 16 strategies for selecting variables and 14 strategies for
assigning values to a decision variable.

• Selecting decision variable: We have chosen the following five selection strate-
gies, which all select the variable with the smallest domain: Min Size,

12



Min Size Lowest Min, Min Size Highest Min, Min Size Lowest Max
and Min Size Highest Max. These five strategies only differ in the case of tie.
Min Size considers the order of variables in the vector, whilst the remaining four
strategies select the variable with the lowest min value, the highest min value, the
lowest max value and the highest max value respectively.

• Assigning values to decision variables: After selecting a variable from xni j, we
should assign a value to it. We use two strategies strategies for assigning values:
Min Value and Max Size. The former assigns the smallest possible value and the
latter assigns the biggest value that is within the range of the selected variable in
the vector.

We can see that the order of variables in xni j has an effect on the strategies used to select
the variable at each node in case of tie. According to the dimensionality of xn,i, j, there
are six possible orders that we can use: {i, j,n}, {i,n, j}, { j,n, i}, { j, i,n}, {n, j, i},
{n, i, j}. For instance, i, j,n denotes that the xn,i, j vector is generated by three inner
loops with n being the most inner loop. In this way we determine what portion of task
i should be done by each crew member per day until the task is fully allocated i.e. the
priority is on fulfilling tasks one by one per day by all crew members. As an example if
n=3, i=2 and j=2, the vector of xn,i, j based on i, j,n order would be x1,1,1, x2,1,1, x3,1,1,
x1,1,2, x2,1,2, x3,1,2, x1,2,1, x2,2,1, x3,2,1, x1,2,2, x2,2,2, x3,2,2.

With five selection strategies, six possible orders for the x vector, and two strategies
for assigning values, we will test all 60 possible combinations of these three factors on
a small problem instance, to find the best combination before applying CP to larger
problem instances.

3.1.3. Solution construction:
In our framework a systematic tree-based search strategy is used. At each node

including the root, one variable from xn,i, j is selected and a value assigned to the cho-
sen variable. In addition to the back-track technique embedded within CP, systematic
search can be improved by look-back or look-ahead methods [23, 24]. In our frame-
work, using the crew competency constraint as a customised global constraint helps the
CP solver to prune infeasible regions of the search space violating this constraint. The
infeasible areas are identified using a new look-ahead technique embedded in propaga-
tion algorithm explained below.

3.1.4. Crew competency global constraint:
As mentioned previously, the most challenging part of this scheduling problem is

satisfying all of the crew competency constraints. In CP, the solver treats a global con-
straint similarly to a primary constraint, in the sense that the class of global constraints
is inherited from the same base class of primary constraints. When there is a change of
variable domain or the bound of variable xni j, an event is triggered which propagates
its value on all other variables. The global constraint will register itself to this event
and once the event is triggered the propagation algorithm associated with the proposed
global constraint will be called.

The overall process, presented in Algorithms 1 and 2, validates the crew com-
petency constraints based on the current state of the solution and the potential future

13



states that can be reached. The algorithm returns f ail when either the crew competency
constraints are violated, or it is deemed impossible to satisfy the crew competency con-
straints of task i, based on the availability of expert crew members (those who have at
least competence level 3 for the competencies required for the task), when looking
ahead at the possible future states of the solution. The algorithm returns success if the
task is not compulsory (i.e. x4i is 0), if the task does not require any crew competen-
cies or if it is possible to yield a feasible solution in future, with respect to the crew
competency constraints, based on the expert crew members available.

As mentioned above, whenever xni j is bounded or its domain is changed, the prop-
agation algorithm will be called. It will first check if task i requires any competencies
and whether or not it is compulsory to be completed (lines 4 and 5 in Algorithm 1). If
not, it will return success and the solver can continue with the current state of xni j. In
both situations, as the solver does not need to validate crew competency constraints,
these constraints are ignored.

When the algorithm does not return from either of the two situations above, it means
there is a need to validate the crew competency constraints when xni j is changed. This
is what the rest of the algorithm deals with, and is composed of the following two steps:

1. Capture the current state of the solution in terms of resources required to validate
the crew competency constraints (constraints 18, 19 and 20 in the MIP model).
This part is presented in Algorithm 1 (lines 6 to 20).

2. Validate the crew competency constraints with respect to the change in xni j.
The pseudo-code of this part of the propagation algorithm is presented in Al-
gorithm 2.

The current state of the solution is captured from line 6 to line 20. For each
crew member, if the solver has decided whether crew member works on task i at
date j or not (line 7), the crew member will be added to the boundedCrew list (line
8). If the crew member is working on the task (line 9), the crew member will also
be added to workingCrew list and their competency level (bm3crew,k) is added to the
total crew level variable (lines 10 and 11). Next if the crew member is an expert in
the competency required for the task (line 13), they will be added to the expertCrew
list (line 14) and the time the crew member spends on the task i will be added to
the expert duration list (line 15), otherwise the working time will be added to the
non expert duration (line 17) as the crew member is not an expert in the competency
required for this task.

Once the algorithm knows the current state of the solution being constructed, it can
start validating the crew competency constraints with respect to the change in xni j, as
presented in Algorithm 2. At this point, there are two possible states the solver can be
in. Either the solver has already bounded all of the crew members for task i at date j
(line 22 to line 26) or some crew members remain unbounded (line 27 to line 49).

If all crew members are bounded, the algorithm only needs to check the validity of
the crew competency based on the current state as it is not possible to assign extra crew
members to the task i on date j in future exploration of the search space. If no crew
member is working on the task i (line 23), the algorithm will return success. Otherwise
it will check the crew competency constraints based on the current state of the solution,

14



Algorithm 1: Crew competency global constraint (part I - capturing the current
state of the solution)
1 Initialise empty lists for boundedCrew, workingCrew, expertCrew,

availableExperts
2 Initialise variables for total crew level, expert duration, non expert duration,

usable expert time
3 Other variables are as defined in the MIP model
4 if task i does not require any competencies then return success;
5 if task i is not compulsory then return success;
6 foreach crew ∈ N do
7 if (xcrew,i, j is bounded) then
8 add crew to boundedCrew
9 if (xcrew,i, j > 0) then

10 add crew to workingCrew
11 add crew competency level (bm3crew,k) to total crew level
12 end
13 if (crew is expert) then
14 add crew to expertCrew
15 add xcrew,i, j to expert duration
16 else
17 add xcrew,i, j to non expert duration
18 end
19 end
20 end

and will return f ail in lines 24-26 if any of the constraints are violated (constraints 18,
19 and 20 from Section 2.5.4). If none of these constraints are violated, the algorithm
will return success (line 50).

If the solver has not bounded all crew members for task i on date j, it means that
it is possible at a future point in the search process to assign other crew members
to complete the rest of the task. Consequently, a look-ahead technique can be used
to monitor the feasibility of future assignments with respect to the crew competency
constraints, by checking if the remaining expert crew members have enough free time
to satisfy those constraints for this task. This allows us to prune infeasible areas of the
search space in case that the crew competency constraints cannot be met.

If there are any crew members working on the task i (line 28), the algorithm will
calculate the maximum number of extra crew members who can be added to work
on the task later (line 29). The number of additional possible crew members that can
work on task i at date j, max additional crew, is calculated by subtracting the number
of crew members who are currently working on the task from the maximum possible
number of crew members that can work on the task together (d2i). If this value is
zero, it means that although there are crew members who are still unbounded, we have
already assigned the maximum number of crew members for this particular task. In

15



this case (line 30), the algorithm only needs to check the crew competency constraints
(line 31 to 33), without needing to look ahead to the future state of the solution. If none
of these constraints are violated, the algorithm return success (line 34).

If it is possible to assign extra crew members to the task i on date j, the algorithm
will use a look-ahead technique to consider the current and future state of the solution,
based on the current value of xni j in order to validate the crew competency constraints.
The proposed technique guarantees that the feasibility of the solution is maintained
from a crew competency point of view, following the change made to variable xni j.

To provide the constraint solver with a better view of the availability of the other
expert crew members to fulfil the rest of the task in future stages of the search, while
satisfying the crew competency constraints, we first need to find the crew members
who are expert in the competency required for task i who have free time available free
time on date j (line 36 to 40). These crew members are added sequentially to a list of
availableExperts (line 38).

If there are no crew members working on the task who are are expert and no
other crew members with the required expertise are available on date j, the algorithm
will return f ail as it is not possible to meet the crew competency constraints (line
41). This is effectively a look ahead technique for validating the crew competency
constraints 18 and 19 in the MIP model. Otherwise, the algorithm sorts the list of
availableExperts in ascending order of available time remaining on day j (line 42).
Although we capture all of possible free time of the experts though availableExperts
list, as there is a maximum number of crew members who can work on a task at one
time (d2i), we calculate the amount of expert time that can actually be added to the
task (usable expert time). This is accumulated by looping over the minimum number
between the count of availableExperts, and the number of crew members that can be
added before exceeding the maximum crew capacity (max additional crew, calculated
previously in line 29).

After calculating usable expert time, the algorithm checks how much of the task
i can be undertaken by expert crew members in future, considering the actual time
that task i requires to be completed (potential expert duration) (line 46). This is
the minimum of the actual amount of the task which has been left undone by non-
experts (c[i] - non expert duration) and the free time of experts to undertake the task
(usable expert time) added to the original amount of work undertaken on the task by
experts (expert duration). If the potential expert duration is less than the duration
of non experts (non expert duration), the algorithm returns f ail. This is the last part
of the look ahead technique which validates the final crew competency constraint 20
in the MIP model. If no constraint violations are identified by the previous validation
checks, the algorithm will return success (line 50).

16



Algorithm 2: Crew competency global constraint (part II - validating the crew
competency with respect to the change in Xni j)

22 if all crew members are bounded then
23 if no crew member is working on task i then return success;
24 if total crew level < f then return f ail;
25 if expertCrew list is empty then return f ail;
26 if expert duration < non expert duration / ∑n′ zn′,i, j then return f ail;
27 else
28 if workingCrew is not empty then
29 max additional crew = d2i− count(workingCrew);
30 if max additional crew == 0 then
31 if total crew level < f then return f ail;
32 if expertCrew list is empty then return f ail;
33 if expert duration < non expert duration/∑n′ zn′,i, j then return f ail;
34 return success
35 end
36 foreach crew n′ ∈ N, with competency k required for task i do
37 if n′ is not in boundedCrew then
38 if n′ has unallocated time remaining on day j then add n′ to

availableExperts;
39 end
40 end
41 if expertCrew and availableExperts are empty then return f ail;
42 Sort availableExperts in ascending order of unallocated time remaining
43 for t = 1 to Min(count(availableExperts), max additional crew) do
44 usable expert time += available time of t-th crew member in

availableExperts list on day j;
45 end
46 potential expert duration = Min((ci - non expert duration),

usable expert time) + expert duration;
47 if potential expert duration < non expert duration then return f ail;
48 end
49 end
50 return success

3.2. Improvement phase

Once a feasible solution has been found in the construction phase, a MIP solver
starts searching in the branch and bound tree from that point and tries to improve the
solution. Here we use CPLEX 12.4 to solve the MIP model as defined in Section 2.This
process is known as a warm start [25]. Feeding the MIP solver with a feasible starting
solution helps the solver enormously by allowing for efficient cuts in the branch and
bound tree, effectively reducing the size of the problem to such an extent that further
search in the branch and bound tree becomes possible.

17



4. Results and Discussion

In this section, we first introduce the four instances and then present the results
of solving the problems by using the hybrid CP/MIP approach introduced above. We
compare to both using a commercial MIP solver directly and modelling the problem as
a Constraint Optimisation Problem (COP).

4.1. Dataset
The four instances used are based on real-world data provided by the Banedanmark

planning department. In all four instances, there are the same 23 technical places and
8 crew members with 12 different crew competencies. Each task requires at most one
competency. The closest task to the depot is 0.00 hours travel time (i.e. it is next to
the depot), the furthest is 0.66 hours, and the average travel time is 0.28 hours from the
depot. Table 3 presents the four different problem instances and their characteristics.
The instances are named based on their planning time horizon, since they differ from
one another with respect to the number of planning days (J), where each day is 6.90
hours long. The four problem instances, D2, D4, D6 and D8 have 2, 4, 6 and 8 week
planning horizons respectively. With eight crew members, each plan should have J×8
planning days in total, however, as not all crew members are available every day, the
total number of available planning days for each instance is slightly less than this.
There are different numbers of tasks in each instance, with the number of compulsory
tasks to be scheduled in the plan, the number of tasks which last more than one working
day and the number of tasks that require competencies also given. The total duration of
tasks, and the minimum and maximum duration of a single task in each data instance
are given in hours.

Table 3: Characteristics of the data instances used

Instance Name D2 D4 D6 D8
Horizon Days 10 20 30 40
Working Days 24 58 74 108

Number of Tasks 11 39 47 59
Compulsory Tasks 8 16 16 16

Tasks Requiring Competencies 10 34 41 53
Tasks > 1 day long 6 15 20 26
Total Duration (h) 198.6 474.5 597.6 839.8

Minimum Task Duration (h) 1.6 1.6 1.6 1.6
Maximum Task Duration (h) 63.4 63.4 63.4 81.2

As seen in Table 3, the vast majority of tasks cannot be undertaken without an
expert for a particular competency, adding to the complexity when scheduling crew
members. Table 4 presents the number of tasks which require a specific competency
and the number of crew members who have the required competency for each data
instance. For instance, D2 includes tasks which require competency A2 (1 task), B2 (2
tasks), B7 (1 task), B12 (5 tasks) and C11 (1 task), with 5, 5, 4, 5 and 3 crew members
having each of these competencies respectively.

18



Table 4: Competency-related attributes of the data instances

Dataset Competencies

A2 A3 B2 B4 B7 B9 B10 B12 C3 C4 C5 C11

D2 Crew 5 5 4 5 3

Tasks 1 2 1 5 1

D4 Crew 5 5 5 4 5 5 5 5 5 3

Tasks 3 4 1 1 1 3 8 6 3 4

D6 Crew 5 5 5 4 5 5 5 5 5 5 3

Tasks 4 5 2 1 1 3 8 9 3 1 4

D8 Crew 5 5 5 5 4 5 5 5 5 5 5 3

Tasks 7 1 6 2 1 1 3 8 15 3 2 4

4.2. Tuning search in the decision making phase

In the decision making phase, we need to decide how to select the main decision
variable and what value(s) are assigned to it at each node of the tree in order to branch
the search tree. Thereby, the first set of experiments investigates the performance of all
possible combinations of the factors introduced in Section 3.1 on instance D2. Conse-
quently, we can use the best tuning found to solve the larger problem instances. With
five selection strategies, six possible orderings for the x vector, and two strategies for
assigning values, we have tested all 60 possible combinations. Each combination is
allowed to run for a maximum of 1 hour CPU time on a 2.1GHz Intel Core i7-4600U
CPU with 8.00GB RAM.

Assigning values using the Max Size strategy does not generate any feasible solu-
tions with any selection strategy and any ordering of the x vector within the time limit.
This accounts for 30 of the 60 possible combinations tested. Considering the complex-
ity of the model, the dependencies that exist, and the number of the variables we have,
this is not a surprise since the Max Size strategy leaves less room for assigning values
to other variables. We also ran additional overnight experiments on a small number
of combinations using the Max Size strategy, however in all cases no feasible solution
was found for D2.

Moreover when using the Min Size strategy, only three of the six orderings of the
x vector are able to generate feasible solutions within the time limit: {i, j,n}, {i,n, j},
and { j, i,n}, ruling out another 15 of the combinations tested. We observe that these
three orderings branch the search tree, prioritising finishing each task i over fully using
the availability of each crew member n. As a feasible solution is found, more con-
straints have been propagated on the partial solution at each assignment by prioritising
in this manner. This is likely to be due to the fact that there are more constraints on the
tasks than the crew members. As x can propagate its value faster over a larger number
of variables, the partial solution is constrained more quickly. Consequently we are able

19



to accept or refuse the partial solution at an earlier stage of the search.
This leaves 15 combinations of selection strategy, ordering and value assignment

strategy which are able to produce feasible solutions. Table 5 shows the results of these
combinations on instance D2, obtained using orderings {i, j,n} , {i,n, j}, and { j, i,n}
with five different selection strategies and Min Size assignment strategy.

Table 5: Results of feasible solutions found for instance D2, using three different orderings, five different
selection strategies and Min Size assignment strategy

Selection variable strategy obj Time S Failures Branches

Order: i,j,n

Min Size 0.3753 2.71 95 304
Min Size Lowest Max 0.3753 4.44 96 305
Min Size Lowest Min 0.3753 1.98 96 305
Min Size Highest Min 0.3753 2.20 95 304
Min Size Highest Max 0.3753 3.25 95 304

Order: i,n,j

Min Size 0.3714 207.97 490515 981154
Min Size Lowest Max 0.3655 142.09 496938 993999
Min Size Lowest Min 0.3655 156.30 496938 993999
Min Size Highest Min 0.3714 135.36 513396 1026916
Min Size Highest Max 0.3714 103.45 513396 1026916

Order: j,i,n

Min Size 0.3711 29.12 114014 228142
Min Size Lowest Max 0.3711 15.79 56820 113753
Min Size Lowest Min 0.3711 70.05 56820 113753
Min Size Highest Min 0.3711 29.08 114014 228142
Min Size Highest Max 0.3711 22.61 114014 228142

From this table we can clearly see that the objective values obtained using differ-
ent selection strategies are not significantly different from each other. Specifically,
using {i, j,n} and { j, i,n} ordering, the objective values have the same values for
all five selection strategies. For {i,n, j} ordering, the objective values are 0.3714
for the Min Size, Min Size Highest Min and Min Size Highest Max and 0.3655 for
Min Size Lowest Max and Min Size Lowest Max strategies. Comparing the time taken
to generate the first solution, {i, j,n} is far quicker than the other two orderings, gen-
erating feasible solutions within 5 seconds for all five selection strategies. { j, i,n} and
{i,n, j} take much longer to generate initial solutions, needing between 103 and 207
seconds and between 15 and 70 seconds respectively. In addition, the number of fail-
ures (backtracks) and branches required to generate the feasible solutions for { j, i,n}
and {i,n, j} is much larger than {i, j,n}. The large number of failures and branches
indicates that when applied to larger instances, these two orderings may struggle to
find a first feasible solution as they will not identify infeasible regions of the search
space as quickly as {i, j,n}. As the primary goal of the constructive CP phase is to

20



find a feasible solution, using a combination of strategies that minimise the time to
find an initial solution is preferable. Hence we will use ordering {i, j,n} with selection
strategy Min Size Lowest Min in the experiments on the larger instances in the next
section.

4.3. Results and Comparison

The hybrid framework we propose uses initial feasible solutions generated using
CP as warm start solutions for an MIP solver. The MIP solver used is CPLEX 12.4
with default parameter settings. All experiments are performed on the same machine
as above. We compare the quality of the solutions obtained by the hybrid CP/MIP
framework to both solving the MIP model directly, and to optimising the initial solu-
tions obtained by CP by considering the problem as a Constraint Optimisation Problem
(COP). Modelling the problem as a COP requires adding an extra constraint to find a
solution with a better objective value than the previously found feasible solution [16].
For the hybrid CP/MIP and COP, the solvers are given 3 hours to improve the initial
CP solution for each instance. In the case of the MIP solver only, it is allowed 3 hours
CPU time.

Table 6 shows the objective function values and relative gaps of the soltuions found
by the CP/MIP hybrid, COP, and only the MIP solver for the four instances introduced
in Section 4.1. In the results presented for the CP/MIP approach, the value of the initial
feasible solution obtained by CP is given along with the value and relative gaps of the
first, second and final solutions obtained by the MIP improvement phase. For COP
the value of the improved solution after 3 hours is given, with the value obtained by
feeding this instance to the MIP solver given in brackets for reference. Here we note
that no optimisation is done by the MIP solver for this result, the value is obtained by
the pre-processing phase converting the COP result into a MIP model only.

A number of observations are worthy of mentioning here. On feeding the starting
solutions provided by CP into the MIP solver, it can easily generate an initial feasible
solution based on the CSP solution, improving that solution immediately. Additionally,
in all four instances the relative gap to the lower bound is decreased considerably by
the MIP solver. This is still true when the quality of the solution found is not improved,
suggesting that the quality of the initial CSP solutions are good in these cases.

The only problem instance solved within the time limit using the MIP solver alone
is the two-week problem (D2). It is interesting to note that in D2, where both the hy-
bridised CP/MIP and MIP solver only methods end up with approximately the same
result (0.3175 and 0.3173 respectively), the initial solution obtained by CSP is restrict-
ing the performance of the MIP solver in the hybrid CP/MIP approach to some extent.

For the 4, 6 and 8 week plans (D4, D6 and D8) the hybrid CP/MIP and COP
approaches have feasible solutions generated in the construction phase. Comparing
the quality of the best solutions obtained by COP and the CP/MIP hybrid, we see that
the hybridised framework generates significantly better results, highlighted as bold in
Table 6. In addition, the quality and the relative gap of the first solutions found by the
cutting algorithms of the MIP solver, from both the CP and COP solutions, shows that
using COP leads to limited improvement in objective value and relative gap compared
to the original CP solution, despite the 3 hours computational time used by COP. For

21



Table 6: Results of the hybrid CP/MIP framework, Only MIP solver, and COP (result fed to MIP) over all
instances

Instance CSP + MIP Only MIP COP

Best integer Rlt Gap(%) Best integer Rlt Gap(%) Best integer Rlt Gap(%)

D2 0.3753(CSP) 0.3674(COP)

0.3688 60.67% 0.3571 17.90% (0.3629 60.03%)

2nd 0.3688 21.70% 0.3571 17.90%

Best 0.3175 3.42% 0.3173 3.89%

D4 0.3663(CSP) NA 0.3610(COP)

0.3361 73.09% (0.3308 72.66%)

0.3361 24.77%

Best 0.3162 16.45%

D6 0.3392(CSP) NA 0.3389(COP)

0.3166 74.89% (0.3163 74.87%)

0.3166 21.29%

Best 0.3138 18.42%

D8 0.3290(CSP) NA 0.3270(COP)

0.3130 79.31% (0.3110 79.18%)

0.3130 25.64%

Best 0.3130 22.76%

instance in D4, the objective value and the relative gap obtained on CSP and COP
solutions are 0.3361 and 73.09%, and 0.3308 and 72.66%, respectively.

Table 7 reveals the computational time spent generating solutions for each of the
three approaches tested. The computational time of the hybrid CP/MIP framework is
the time spent generating the first feasible solution by CP added to the three hours time
given to the MIP solver to optimise the solution. To evaluate how much time has been
spent on the node relaxation and branching separately, we have distinguished between
the time spent on each part in the table. Similarly, for the results using the MIP solver
only, the time on both parts has also been included. For the COP solutions, the table
shows the amount of time taken to generate the best solution within the time limit.

The time taken to generate the first feasible solution by CP is striking, where it
takes approximately 2 seconds for D2 and 4.5, 12 and 52 minutes for D4, D6 and
D8 respectively. It was not possible for the MIP solver to find feasible solutions for
data instances bigger than D2 at all. Interestingly, for the only data instance that MIP
was able to generate solution (D2), we can see that feeding the MIP solver with the
CSP solution leads to less root node processing compared to using the MIP solver
alone. This indicates that starting with a feasible solution helps to reduce the time taken

22



Table 7: Time spent to generate solutions within the time limit by all three approaches: hybridised approach
(CP/MIP), Only the MIP solver, and COP

Instance CSP + MIP Only MIP COP (within 3 hours)

D2 1.98 ≈ 2s Root T: 2.57 3.87 284.908 ≈ 4.5 m

B&C T: 10579.8 10273.95

Total MIP: 10582.37 ≈ 3 h 10277.81 ≈ 3 h

D4 256.318≈ 4.5 m Root T: 327.32 432.86 ≈ 7.2 m

B&C T: 10469.27

Total: 10796.6 ≈ 3 h

D6 724.776 ≈ 12 m Root T: 947.49 2599.574 ≈ 43.32 m

B&C T: 9850.2

Total MIP: 10797.69 ≈ 3 h

D8 3157.474 ≈ 52 m Root T: 8416.66 3524.647 ≈ 58.74 m

B&C T: 2380.89

Total MIP: 10797.55≈ 3 h

resolving the LP relaxation. Looking into the node processing time for all data sets, the
increasing pattern is not a surprise when dealing with bigger data instances. Despite
this reduction, continuous root relaxation still takes up a considerable proportion of
running time in our model. For the D8 instance, it is worth highlighting that the node
processing time has grown significantly. It is also notable that the MIP solver spends
one fifth of its total execution time on the branching and cutting on such a big data
instance. As this ratio is particularly high, it suggests that for this instances and any
larger instances a longer running time might be more appropriate.

Looking at the time taken to find the best COP solutions for each data instance, we
see that CP could not improve the CSP solution for the D2, D4 and D8 after a couple
of minutes and for D6 after half an hour. This suggests that COP gets stuck in a local
optimum quickly, long before reaching the time limit. Table 8 gives the details of the
improvements made to the original CSP solution by COP during the 3 hour run for
each instance. In this table each row is representative of a feasible solution with the
first solution corresponding to the original feasible CSP solution. Each subsequent row
shows any improved solutions found by COP within the time limit.

23



Table 8: Improvements made by COP to the original CP solution for each instance

Instance Obj Time S Failures Branches

D2 0.3753 1.98 96 305

0.3741 7.82 32126 64367

0.3713 27.79 165483 331084

0.3674 284.91 1268374 2536868

D4 0.3663 256.32 110137 220992

0.3646 258.80 110170 221059

0.3636 261.31 110220 221159

0.3631 263.85 110418 221558

0.3615 266.66 110463 221650

0.3612 269.60 111675 224075

0.3611 425.62 500941 1002610

0.3610 432.86 502184 1005093

D6 0.3392 724.78 724070 1449483

0.3391 776.89 725395 1452134

0.3389 2599.57 4662224 9325790

D8 0.3290 3157.47 372812 748162

0.3280 3350.27 372857 748253

0.3270 3524.65 373031 748602

Here we see that the first solutions (CSP solution) for all instances were yielded in
1.98, 256.32, 724.78 and 3157.47 seconds respectively for each instance. However, no
solutions are improved further after 284.91, 432.86, 2599.57 and 3524.65 seconds by
COP on D2, D4 and D8, respectively showing that a large proportion of CPU time is
spent without any improvement in quality observed. Comparing the number of failures
and branches on the final solutions obtained by COP for D4 and D6 with those on
earlier solutions we see that COP seems to get stuck in a local optimum. Moreover,
comparing the quality of the first feasible solution with the quality of the best solution
found over all instances shows a very small improvement has been made. Thereby, even
though CP generates the first solution quickly, COP is not a good candidate approach
to be used for the improvement phase.

Considering COP both quality-wise and time-wise, we found COP to be inferior to

24



a commercial MIP solver when improving the initial solutions found by CP. Enhancing
the initial solutions through COP demands more problem-specific customisation, con-
sequently more implementation and development effort code-wise. For instance, em-
ploying local search instead of systematic search might improve the solutions, however
this would require defining several neighbourhoods, due to the number of dimensions
of the objective function. Additional effort would also be required for proper tuning
within a framework such as a meta-heuristic or hyper-heuristic. The hybrid CP/MIP
method takes advantage of the initial feasible solutions found by CP, eliminating large
portions of the search space and resulting in smaller branch-and-cut trees. Passing the
first found feasible solution as a starting solution to a MIP solver we are able to validate
the quality of the initial solution and attempt to improve it using a MIP solver without
having to tailor advanced, difficult to maintain heuristics to the problem.

5. Conclusion

In this paper, we have introduced a hybrid CP/MIP framework for solving a large
scale maintenance crew scheduling problem for the Danish railway system. The model
is based on a practical MIP formulation provided by Banedanmark, who are responsi-
ble for most of the railway infrastructure in Denmark. The problem involves a large
number of real-life attributes and constraints, so the current practice of trying to solve
the model directly using a standard MIP solver does not return any feasible solutions
for planning horizons longer than two weeks. We have proposed a customised global
constraint, embedded with a look-ahead technique in a CSP-based model, to construct
initial solutions and attempt to improve them by warm-starting the MIP solver. The
framework examines an exploration of variable/value ordering heuristics. Results have
been presented using four real-world instances. The proposed hybrid CP/MIP frame-
work has been shown to outperform both solving the problem as a MIP problem di-
rectly and using COP to improve the initial feasible solution found by CP.

The hybridised framework is a contribution to the development of integration be-
tween MIP and CP, where CP greatly reduces the time required by the MIP to produce
a solution. From a programming perspective, the framework is easy to maintain since
the proposed propagation algorithm is logically and conceptually independent. This
maintains the generality of the framework by focusing on feasibility checking, pruning
infeasible areas from the perspective of crew competency constraints. Thereby if any
other constraints need to be added to the model in future, it can be implemented as an
independent constraint in the framework. Any new constraint simply needs to be added
to the MIP model in the improvement phase.

In terms of future work, one limitation of the method proposed here is the transfor-
mation of a multi-objective problem to a single objective function. The weighted sum
method used is based on expert opinion to reflect the importance of each component
of the objective function. Future work will formulate this problem as a multi-objective
problem directly, presenting and highlighting the different trade-offs that exist between
multiple objectives. Our work here has also used a single MIP solver, under default pa-
rameter settings. As a wide range of commercial MIP solvers, with a large number of
tunable parameters exist, another potential future research direction is the investigation

25



of the ability of different solvers, using different parameter settings, to solve different
instances of this problem.

Acknowledgments

This research has been carried out as part of the PhD research project funded by
Technical University of Denmark and Banedanmark company which is responsible for
the operation and maintenance of the Danish railway network. This work has been
partially funded by the DAASE project, EPSRC programme grant EP/J017515/1.

6. References

[1] Banedanmark., Trafikministeriet., The signalling programme : a total renewal of
the Danish signalling infrastructure, Banedanmark, 2009.

[2] T. Lidén, Railway infrastructure maintenance-a survey of planning problems and
conducted research, Transportation Research Procedia 10 (2015) 574–583.

[3] B. S. Cheung, K. Chow, L. C. Hui, A. M. Yong, Railway track possession assign-
ment using constraint satisfaction, Engineering Applications of Artificial Intelli-
gence 12 (5) (1999) 599–611.

[4] M. F. Gorman, J. J. Kanet, Formulation and solution approaches to the rail mainte-
nance production gang scheduling problem, Journal of Transportation Engineer-
ing 136 (8) (2010) 701–708.

[5] A. K. Nemani, S. Bog, R. K. Ahuja, Solving the curfew planning problem, Trans-
portation Science 44 (4) (2010) 506–523.

[6] S. Bog, A. K. Nemani, R. K. Ahuja, Iterative algorithms for the curfew planning
problem, Journal of the Operational Research Society 62 (4) (2011) 593–607.

[7] F. Peng, S. Kang, X. Li, Y. Ouyang, K. Somani, D. Acharya, A heuristic approach
to the railroad track maintenance scheduling problem, Computer-Aided Civil and
Infrastructure Engineering 26 (2) (2011) 129–145.

[8] C. Borraz-Sánchez, D. Klabjan, Strategic gang scheduling for railroad mainte-
nance, CCITT, Center for the Commercialization of Innovative Transportation
Technology, Northwestern University, 2012.

[9] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dueck, Record breaking op-
timization results using the ruin and recreate principle, Journal of Computational
Physics 159 (2) (2000) 139–171.

[10] F. Peng, Y. Ouyang, Optimal clustering of railroad track maintenance jobs,
Computer-Aided Civil and Infrastructure Engineering 29 (4) (2014) 235–247.

26



[11] S. Khalouli, R. Benmansour, S. Hanafi, An ant colony algorithm based on oppor-
tunities for scheduling the preventive railway maintenance, in: Control, Decision
and Information Technologies (CoDIT), 2016 International Conference on, IEEE,
2016, pp. 594–599.

[12] M. Wen, R. Li, K. B. Salling, Optimization of preventive condition-based tamping
for railway tracks, European Journal of Operational Research 252 (2) (2016) 455–
465.

[13] M. M. Baldi, F. Heinicke, A. Simroth, R. Tadei, New heuristics for the stochastic
tactical railway maintenance problem, Omega 63 (2016) 94–102.

[14] A. Bockmayr, J. N. Hooker, Constraint programming, Handbooks in Operations
Research and Management Science 12 (C) (2005) 559–600.

[15] Google, Google optimization tools, [Online] developers.google.com/

optimization/.

[16] F. Rossi, P. Van Beek, T. Walsh, Handbook of constraint programming, Elsevier,
2006.

[17] P. Baptiste, Combining operations research and constraint programming to solve
real-life scheduling problems, [Online] www.ercim.eu/publication/Ercim_
News/enw44/baptiste.html.

[18] N. Beldiceanu, M. Carlsson, J.-X. Rampon, Global constraint catalog, [Online]
sofdem.github.io/gccat/.

[19] J.-C. Régin, A filtering algorithm for constraints of difference in csps, in: AAAI,
Vol. 94, 1994, pp. 362–367.

[20] A. Aggoun, N. Beldiceanu, Extending chip in order to solve complex scheduling
and placement problems, Mathematical and Computer Modelling 17 (7) (1993)
57–73.

[21] N. Beldiceanu, Global constraints as graph properties on a structured network of
elementary constraints of the same type, in: International Conference on Princi-
ples and Practice of Constraint Programming, Springer, 2000, pp. 52–66.

[22] Y. Caseau, F. Laburthe, Solving small tsps with constraints, in: Proceedings of
the 14th International Conference on Logic Programming, MIT PRESS, 1997,
pp. 316–330.

[23] N. Jussien, R. Debruyne, P. Boizumault, Maintaining arc-consistency within dy-
namic backtracking, in: International Conference on Principles and Practice of
Constraint Programming, Springer, 2000, pp. 249–261.

[24] R. J. Bayardo Jr, R. Schrag, Using csp look-back techniques to solve real-world
sat instances, in: AAAI/IAAI, 1997, pp. 203–208.

[25] J. Gondzio, Warm start of the primal-dual method applied in the cutting-plane
scheme, Mathematical Programming 83 (1-3) (1998) 125–143.

27

developers.google.com/optimization/
developers.google.com/optimization/
www.ercim.eu/publication/Ercim_News/enw44/baptiste.html
www.ercim.eu/publication/Ercim_News/enw44/baptiste.html
sofdem.github.io/gccat/

	Introduction
	Mathematical Model
	Indexes
	Parameters
	Variables
	Objective function
	Constraints
	Constraints in relation to the tasks:
	Managerial constraints
	Constraints in relation to the crew:
	Constraints in relation to competencies:
	Constraints in relation to transportation:


	Proposed solution approach
	Construction phase
	Problem definition:
	Decision making:
	Solution construction:
	Crew competency global constraint:

	Improvement phase

	Results and Discussion
	Dataset
	Tuning search in the decision making phase
	Results and Comparison

	Conclusion
	References

