
Better Guarantees for k-Means and Euclidean k-Median by
Primal-Dual Algorithms

Sara Ahmadian
Dept. of Combinatorics and Optimization

University of Waterloo
Waterloo, Canada

Email: sahmadian@uwaterloo.ca

Ola Svensson
School of Computer and Communications Science

EPFL
Lausanne, Switzerland

Email: ola.svensson@epfl.ch

Ashkan Norouzi-Fard
School of Computer and Communications Science

EPFL
Lausanne, Switzerland

Email: ashkan.norouzifard@epfl.ch

Justin Ward
School of Computer and Communications Science

EPFL
Lausanne, Switzerland

Email: justin.ward@epfl.ch

Abstract—Clustering is a classic topic in op-
timization with k-means being one of the most
fundamental such problems. In the absence of
any restrictions on the input, the best known
algorithm for k-means with a provable guaran-
tee is a simple local search heuristic yielding an
approximation guarantee of 9 + ε, a ratio that is
known to be tight with respect to such methods.
We overcome this barrier by presenting a new

primal-dual approach that allows us to (1) ex-
ploit the geometric structure of k-means and (2)
to satisfy the hard constraint that at most k
clusters are selected without deteriorating the
approximation guarantee. Our main result is a
6.357-approximation algorithm with respect to
the standard LP relaxation. Our techniques are
quite general and we also show improved guaran-
tees for the general version of k-means where the
underlying metric is not required to be Euclidean
and for k-median in Euclidean metrics.

Keywords-clustering; primal-dual; k-median; k-
means;

I. Introduction
Clustering problems have been extensively studied

in computer science. They play a central role in
many areas, including data science and machine
learning, and their study has led to the development
and refinement of several key techniques in algo-
rithms and theoretical computer science. Perhaps
the most widely considered clustering problem is
the k-means problem: given a set D of n points in
R` and an integer k, the task is to select a set S
of k cluster centers in R`, so that

∑
j∈D c(j, S) is

minimized, where c(j, S) is the squared Euclidean
distance between j and its nearest center in S.

A commonly used heuristic for k-means is Lloyd’s
algorithm [25], which is based on iterative improve-

ment. However, despite its ubiquity in practice,
Lloyd’s algorithm has, in general, no worst-case
guarantee and may not even converge in polynomial
time [3], [29]. To overcome some of these limitations,
Arthur and Vassilvitskii [4] proposed a random-
ized initialization procedure for Lloyd’s algorithm,
called k-means++, that leads to a Θ(log k) expected
approximation guarantee in the worst case. Under
additional assumptions about the clusterability of
the input dataset, Ostrovsky et al. [27] showed
that this adaptation of Lloyd’s algorithm gives a
PTAS for k-means clustering. However, under no
such assumptions, the best approximation algorithm
in the general case has for some time remained
a (9 + ε)-approximation algorithm based on local
search, due to Kanungo et al. [20]. Their analysis
also shows that no natural local search algorithm
performing a fixed number of swaps can improve
upon this ratio. This leads to a barrier for these
techniques that are rather far away from the best-
known inapproximability result which only says that
it is NP-hard to approximate this problem to within
a factor better than 1.0013 [21].
While the general problem has resisted improve-

ments, there has been significant progress on the k-
means problem under a variety of assumptions. For
example, Awasthi, Blum, and Sheffet obtain a PTAS
in the special case when the instance has certain
stability properties [6] (see also [8]), and there has
been a long line of work (beginning with [26]) obtain-
ing better and better PTASes under the assumption
that k is constant. Most recently, it has been shown
that local search gives a PTAS under the assumption
that the dimension ` of the dataset is constant [13],
[15]. These last results generalize to the case in which

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/159076552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the squared distances are from the shortest path
metric on a graph with forbidden minors [13] or from
a metric with constant doubling dimension [15]. We
remark that the dimension ` of a k-means instance
may always be assumed to be at most O(logn) by a
standard application of the Johnson-Lindenstrauss
transform. But, as the results in [13], [15] exhibit
doubly-exponential dependence on the dimension,
they do not give any non-trivial implications for the
general case. Moreover, such a doubly-exponential
dependence is essentially unavoidable, as the prob-
lem is APX-hard in the general case [7].
In summary, while k-means is perhaps the most

widely used clustering problem in computer science,
the only constant-factor approximation algorithm
for the general case is based on simple local search
heuristics that, for inherent reasons, give guarantees
that are rather far from known hardness results.
This is in contrast to many other well-studied clus-
tering problems, such as facility location and k-
median. Over the past several decades, a toolbox
of core algorithmic techniques such as dual fitting,
primal-dual and LP-rounding, has been refined and
applied to these problems leading to improved ap-
proximation guarantees [28], [12], [9], [22], [24], [19],
[18], [23], [17]. In particular, the current best ap-
proximation guarantees for both facility location (a
1.488-approximation due to Li [22]) and k-median
(a 2.675-approximation due to Byrka et al. [10]) are
LP-based and give significantly better results than
previous local search algorithms [5], [11]. However,
such LP-based techniques have not yet been able
to attain similar improvements for k-means. One
reason for this is that they have relied heavily on
the triangle inequality, which does not hold in the
case of k-means.

Our results.: In this work, we overcome this
barrier by developing new techniques that allow
us to exploit the standard LP formulation for k-
means. We significantly narrow the gap between
known upper and lower bounds by designing a new
primal-dual algorithm for the k-means problem. We
stress that our algorithm works in the general case
that k and ` are part of the input, and requires no
assumptions on the dataset.

Theorem I.1. For any ε > 0, there is a (ρmean + ε)-
approximation algorithm for the k-means problem,
where ρmean ≈ 6.357. Moreover, the integrality gap of
the standard LP is at most ρmean.

We now describe our approach and contributions
at a high level. Given a k-means instance, we apply
standard discretization techniques (e.g., [14]) to ob-
tain an instance of the discrete k-means problem, in

which we are given a discrete set F of candidate
centers in R` and must select k centers from F ,
rather than k arbitrary points in R`. This step
incurs an arbitrarily small loss in the approximation
guarantee with respect to the original k-means in-
stance. Because our algorithm always returns a set of
centers from the discrete set F , all of our results also
hold for the exemplar clustering problem, in which
centers must be chosen from the input points in D.
Specifically, we can simply take F = D.
Using Lagrangian relaxation, we can then consider

the resulting discrete problem using the standard
linear programming formulation for facility location.
This general approach was pioneered in this context
by Jain and Vazirani [19] who gave primal-dual
algorithms for the k-median problem. In their paper,
they first present a Lagrangian Multiplier Preserving
(LMP) 3-approximation algorithm for the facility
location problem. Then they run binary search over
the opening cost of the facilities and use the afore-
mentioned algorithm to get two solutions: one that
opens more than k facilities and one that opens
fewer than k, such that the opening cost of facilities
in these solutions are close to each other. These
solutions are then combined to obtain a solution
that opens exactly k facilities. This step results in
losing another factor 2 in the approximation guar-
antee, which results in a 6-approximation algorithm
for k-median. The factor 6 was later improved by
Jain, Mahdian, and Saberi [18] who obtained a 4-
approximation algorithm for k-median by develop-
ing an LMP 2-approximation algorithm for facility
location.

Technical contributions.: One can see that the
same approach gives a much larger constant factor
for the k-means problem since one cannot anymore
rely on the triangle inequality. We use two main
ideas to overcome this obstacle: (1) we exploit the
geometric structure of k-means to obtain an im-
proved LMP-approximation, and (2) we develop a
new primal-dual algorithm that opens exactly k
facilities while losing only an arbitrarily small factor.

For our first contribution, we modify the primal-
dual algorithm of Jain and Vazirani [19] into a pa-
rameterized version which allows us to regulate the
“aggressiveness” of the opening strategy of facilities.
By using properties of Euclidean metrics we show
that this leads to improved LMP approximation
algorithms for k-means.

By the virtue of [2], these results already imply
upper bounds on the integrality gaps of the stan-
dard LP relaxations, albeit with an exponential time
rounding algorithm. Our second and more technical
contribution is a new primal-dual algorithm that

accomplishes the same task in polynomial time. In
other words, we are able to turn an LMP approxima-
tion algorithm into an algorithm that opens at most
k facilities without deteriorating the approximation
guarantee. We believe that this contribution is of in-
dependent interest. Indeed, all recent progress on the
approximation of k-median beyond long-standing
local search approaches [5] has involved reducing the
factor 2 that is lost by Jain and Vazirani when two
solutions are combined to open exactly k facilities
(i.e. in the rounding of a so-called bipoint solution)
[23], [10]. Here, we show that it is possible to reduce
this loss all the way to (1 + ε) by fundamentally
changing the way in which dual solutions are con-
structed and maintained.
Instead of finding two solutions by binary search

as in the framework of [19], we consider a sequence
of solutions such that the opening costs and also
the dual values of any two consecutive solutions are
close in L∞-norm. We show that this latter property
allows us to combine two appropriate, consecutive
solutions in the sequence into a single solution that
opens exactly k facilities while losing only a factor
of 1 + ε (rather than 2) in the approximation guar-
antee. Unfortunately, the dual solutions produced
by the standard primal-dual algorithm approach are
unstable, in the sense that a small change in opening
price may result in drastic changes in the value of
the dual variables. Thus, we introduce a new primal-
dual procedure which instead iteratively transforms
a dual solution for one price into a dual solution for
another price. By carefully constraining the way in
which the dual variables are altered, we show that
we can obtain a sequence of “close” solutions that
can be combined as desired.
We believe that this technique may be applicable

in other settings, as well. An especially interesting
open question is whether it is possible combine
stronger LMP approximation algorithms, such as
the one by Jain, Mahdian, Saberi [18], with our
lossless rounding to obtain an improved (2 + ε)-
approximation algorithm for k-median.

Extensions to other problems.: In addition to
the standard k-means problem, we show that our
results also extend to the following two problems.
In the first extension, we consider the Euclidean
k-median problem. Here we are given a set D of
n points in R` and a set F of m points in R`
corresponding to facilities. The task is to select a set
S of at most k facilities from F so as to minimize∑
j∈D c(j, S), where c(j, S) is now the (non-squared)

Euclidean distance from j to its nearest facility in
S. For this problem, no approximation better than
the general 2.675-approximation algorithm of Byrka

et al. [10] for k-median was known.

Theorem I.2. For any ε > 0, there is a (ρmed + ε)-
approximation algorithm for the Euclidean k-median
problem, where ρmed ≈ 2.633. Moreover, the integral-
ity gap of the standard LP is at most ρmed.

In the second extension, we consider a variant
of the k-means problem in which each c(j, S) cor-
responds to the squared distance in an arbitrary
(possibly non-Euclidean) metric on D ∪ F . For this
problem, the best-known approximation algorithm
is a 16-approximation due to Gupta and Tang-
wongsan [16]. In this paper, we obtain the following
improvement:

Theorem I.3. For any ε > 0, there is a (9 + ε)-
approximation algorithm for the k-means problem in
general metrics. Moreover, the integrality gap of the
standard LP is at most 9.

We remark that the same hardness reduction as
used for k-median [18] immediately yields a much
stronger hardness result for the above generalization
than what is known for the standard k-means prob-
lem: it is hard to approximate the k-means problem
in general metrics within a factor 1 + 8/e− ε ≈ 3.94
for any ε > 0.

Outline of paper.: In Section II we review the
standard LP formulation that we use, as well as its
Lagrangian relaxation. We then in Section III show
how to exploit the geometric structure of k-means
to give improved LMP guarantees. In Section IV
we show the main ideas behind our new rounding
approach by giving an algorithm that runs in quasi-
polynomial time. These results are then generalized
to obtain an algorithm that runs in polynomial time
in the full version of this paper[1]. Moreover, in the
full version, we discuss the extension of our approach
to the other objectives described above.

II. The standard LP relaxation and its
Lagrangian relaxation

Here and in the remainder of the paper, we shall
consider the discrete k-means problem, where we are
given a discrete set F of facilities (corresponding
to candidate centers).1 Henceforth, we will simply
refer to the discrete k-means problem as the k-means
problem.

Given an instance (D,F , d, k) of the k-means
problem or the k-median problem, let c(j, i) denote
the connection cost of client j if connected to facility

1As discussed in the introduction, it is well-known that a
ρ-approximation algorithm for this case can be turned into
a (ρ + ε)-approximation algorithm for the standard k-means
problem, for any constant ε > 0 (see e.g., [14]).

i. That is, c(j, i) = d(j, i) in the case of k-median and
c(j, i) = d(j, i)2 in the case of k-means. Let n = |D|
and m = |F|.

The standard linear programming (LP) relaxation
of these problems has two sets of variables: a variable
yi for each facility i ∈ F and a variable xij for each
facility-client pair i ∈ F , j ∈ D. The intuition of
these variables is that yi should indicate whether
facility i is opened and xij should indicate whether
client j is connected to facility i. The standard LP
relaxation can now be formulated as follows.

min
∑
i∈F,j∈D xij · c(j, i)

s.t.
∑
i∈F xij ≥ 1 ∀j ∈ D (II.1)

xij ≤ yi ∀j ∈ D, i ∈ F (II.2)∑
i∈F yi ≤ k (II.3)
x, y ≥ 0 . (II.4)

The first set of constraints says that each client
should be connected to at least one facility; the
second set of constraints enforces that clients can
only be connected to opened facilities; and the third
constraint says that at most k facilities can be
opened. We remark that this is a relaxation of the
original problem as we have relaxed the constraint
that x and y should take Boolean values to a non-
negativity constraint. For future reference, we let
OPTk denote the value of an optimal solution to
this relaxation.

A main difficulty for approximating the k-median
and the k-means problems is the hard constraint
that at most k facilities can be selected, i.e., con-
straint (II.3) in the above relaxation. A popular
way of overcoming this difficulty, pioneered in this
context by Jain and Vazirani [19], is to consider
the Lagrangian relaxation where we multiply the
constraint (II.3) times a Lagrange multiplier λ and
move it to the objective. This results, for every
λ ≥ 0, in the following relaxation and its dual that
we denote by LP(λ) and DUAL(λ), respectively.

LP(λ)

min
∑

i∈F,j∈D
xij · c(j, i) + λ ·

(∑
i∈F

yi − k

)

s.t. (II.1), (II.2), and (II.4).

DUAL(λ)

max
∑
j∈D

αj − λ · k

s.t.
∑
j∈D

[αj − c(j, i)]+ ≤ λ ∀i ∈ F (II.5)

α ≥ 0.

Here, we have simplified the dual by noticing that
the dual variables {βij}i∈F,j∈D corresponding to
the constraints (II.2) of the primal can always be
set βij = [αj − c(j, i)]+; the notation [a]+ denotes
max(a, 0). Moreover, to see that LP(λ) remains a
relaxation, note that any feasible solution to the
original LP is a feasible solution to the Lagrangian
relaxation of no higher cost. In other words, for any
λ ≥ 0, the optimum value of LP(λ) is at most OPTk.
If we disregard the constant term λ · k in the

objective functions, LP(λ) and DUAL(λ) become the
standard LP formulation and its dual for the fa-
cility location problem where the opening cost of
each facility equals λ and the connection costs are
defined by c(·, ·). Recall that the facility location
problem (with uniform opening costs) is defined as
the problem of selecting a set S ⊆ F of facilities to
open so as to minimize the opening cost |S|λ plus the
connection cost

∑
j∈D c(j, S). Jain and Vazirani [19]

introduced the following method for addressing the
k-median problem motivated by simple economics.
On the one hand, if λ is selected to be very small, i.e.,
it is cheap to open facilities, then a good algorithm
for the facility location problem will open many
facilities. On the other hand, if λ is selected to be
very large, then a good algorithm for the facility
location problem will open few facilities. Ideally, we
want to use this intuition to find an opening price
that leads to the opening of exactly k facilities and
thus a solution to the original, constrained problem.

To make this intuition work, we need the notion
of Lagrangian Multiplier Preserving (LMP) approxi-
mations: we say that a ρ-approximation algorithm is
LMP for the facility location problem with opening
costs λ if it returns a solution S ⊆ F satisfying∑

j∈D
c(j, S) ≤ ρ(OPT(λ)− |S|λ) ,

where OPT(λ) denotes the value of an optimal
solution to LP(λ) without the constant term λ · k.
The importance of this definition becomes apparent
when either λ = 0 or |S| ≤ k. In those cases, we
can see that the value of the k-median or k-means
solution is at most ρ times the optimal value of
its relaxation LP(λ), and thus an ρ-approximation

with respect to its standard LP relaxation since
OPT(λ) − k · λ ≤ OPTk for any λ ≥ 0. For further
explanations and applications of this technique, we
refer the reader to the excellent text books [30]
and [31].

III. An improved LMP approximation for
k-means

In this section we show how to exploit the Eu-
clidean structure of k-means to achieve better ap-
proximation guarantees. Our LMP approximation
algorithm builds upon the primal-dual algorithm
for the facility location problem by Jain and Vazi-
rani [19]. We refer to their algorithm as the JV
algorithm. The main modification to their algorithm
is that we allow for a more “aggressive” opening
strategy of facilities. The amount of aggressiveness
is measured by the parameter δ: we devise an al-
gorithm JV(δ) for each parameter δ ≥ 0, where a
smaller δ results in a more aggressive opening strat-
egy. We first describe JV(δ) and we then optimize δ
for the considered objectives to obtain the claimed
approximation guarantees.
We remark that the result in [2] (non-

constructively) upper bounds the integrality
gap of the standard LP relaxation of k-median in
terms of the LMP approximation guarantee of JV.
This readily generalizes to the k-means problem
and JV(δ). Consequently, our guarantees presented
here for k-means (and in Section ?? for the other
objectives) upper bound the integrality gaps as the
theorems state in the introduction.

A. Description of JV(δ)

As alluded to above, the algorithm is a modifi-
cation of JV, and Remark III.2 below highlights the
difference. The algorithm consists of two phases: the
dual-growth phase and the pruning phase.

Dual-growth phase: In this stage, we construct a
feasible dual solution α to DUAL(λ). Initially, we set
α = 0 and let A = D denote the set of active clients
(which is all clients at first). We then repeat the
following until there are no active clients, i.e., A = ∅:
increase the dual-variables {αj}j∈A corresponding
to the active clients at a uniform rate until one of
the following events occur (if several events happen
at the same time, break ties arbitrarily):

Event 1: A dual constraint
∑
j∈D[αj −

c(j, i)]+ ≤ λ becomes tight for a facility
i ∈ F . In this case we say that facility i is
tight or temporarily opened. We update A
by removing the active clients with a tight
edge to i, that is, a client j ∈ A is removed
if αj − c(j, i) ≥ 0. For future reference, we

say that facility i is the witness of these
removed clients.
Event 2: An active client j ∈ A gets a tight
edge, i.e., αj − c(j, i) = 0, to some already
tight facility i. In this case, we remove j
from A and let i be its witness.

This completes the description of the dual-growth
phase. Before proceeding to the pruning phase, let
us remark that the constructed α is indeed a feasible
solution to DUAL(λ) by design. It is clear that α is
non-negative. Now consider a facility i ∈ F and its
corresponding dual constraint

∑
j∈D[αj−c(j, i)]+ ≤

λ. On the one hand, the constraint is clearly satisfied
if it never becomes tight during the dual-growth
phase. On other hand, if it becomes tight, then all
clients with a tight edge to it are removed from the
active set of clients by Event 1. Moreover, if any
client gets a tight edge to i in subsequent iterations
it gets immediately removed from the set of active
clients by Event 2. Therefore the left-hand-side of
the constraint will never increase (nor decrease)
after it becomes tight so the constraint remains
satisfied. Having proved that α is a feasible solution
to DUAL(λ), let us now describe the pruning phase.

Pruning phase: After the dual-growth phase
(too) many facilities are temporarily opened. The
pruning phase will select a subset of these facilities
to open. In order to formally describe this process,
we need the following notation. For a client j, let
N(j) = {i ∈ F : αj−c(j, i) > 0} denote the facilities
to which client j contributes to the opening cost.
Similarly, for i ∈ F , letN(i) = {j ∈ D : αj−c(j, i) >
0} denote the clients with a positive contribution
toward i’s opening cost. For a temporarily opened
facility i, let

ti = max
j∈N(i)

αj ,

and by convention let ti = 0 if N(i) = ∅ (this
convention will be useful in future sections and will
only be used when the opening cost λ of facilities
are set to 0). Note that, if N(i) 6= ∅, then ti equals
the “time” that facility i was temporarily opened in
the dual-growth phase. A crucial property of ti that
follows from the construction of α is the following.

Claim III.1. For a client j and its witness i, αj ≥
ti. Moreover, for any j′ ∈ N(i) we have ti ≥ αj′ .

For the pruning phase, it will be convenient to de-
fine the client-facility graph G and the conflict graph
H. The vertex set of G consist of all the clients and
all the facilities i such that

∑
j∈D[αj − c(j, i)]+ = λ

(i.e., the tight or temporarily open facilities). There
is an edge between facility i and client j if i ∈ N(j).

The conflict graph H is defined based on the client-
facility graph G and t as follows:
• The vertex set consists of all facilities in G.
• There is an edge between two facilities i and i′

if some client j is adjacent to both of them in
G and c(i, i′) ≤ δmin(ti, ti′).

The pruning phase now finds a (inclusion-wise)
maximal independent set IS of H and opens those
facilities; clients are connected to the closest facility
in IS.

Remark III.2. The difference between the original
algorithm JV and our modified JV(δ) is the additional
condition c(i, i′) ≤ δmin(ti, ti′) in the definition of
the conflict graph. Notice that if we select a smaller δ
we will have fewer edges in H. Therefore a maximal
independent set will likely grow in size, which results
in a more “aggressive” opening strategy. Adjusting δ
will allow us to achieve better LMP approximation
guarantees.

B. Analysis of JV(δ)
We start with some intuition that illustrates our

approach. From the standard analysis of JV (and our
analysis of k-means in general metrics presented in
Section ??), it is clear that the bottleneck for the ap-
proximation guarantee comes from the connection-
cost analysis of clients that need to do a “3-hop”
as illustrated in the left part of Figure 1: client j
is connected to open facility i2 and the squared-
distance is bounded by the path j − i1 − j1 − i2.
Moreover, this analysis is tight when considering
JV = JV(∞). Our strategy will now be as follows:
Select δ to be a constant smaller than 4. This means
that in the configurations of Figure 1, we will also
open i2 if the distance between i1 and i2 is close
to 2. Therefore, if we do not open i2, the distance
between i1 and i2 is less than 2 (as in the right part
of Figure 1) which allows us to get an approximation
guarantee better than 9. However, this might result
in a client contributing to the opening cost of many
facilities in IS. Nonetheless, by using the properties
of Euclidean metrics, we show that even in this
case, we are able to achieve an LMP approximation
guarantee with ratio better than 9.
Specifically, define δmean to be the constant larger

than 2 that minimizes

ρmean(δ) = max
{

(1 +
√
δ)2,

1
δ/2− 1

}
,

which will be our approximation guarantee. It can
be verified that δmean ≈ 2.3146 and ρmean ≈ 6.3574.
Let also c(j, i) = d(j, i)2 where d is the underly-
ing Euclidean metric. The proof uses the following
basic facts about squared-distances in Euclidean

j

1
j1

11
i1i2

Worst case configuration
The clients and the facilities are arranged on a line
and we have c(i2, j) = d(i2, j)2 = 9αj .

j

1
j1

11
i1

i2

Better case in Euclidean space
The distance d(j, i2) is better than that the trian-
gle inequality gives yielding a better bound.

Figure 1. The intuition how we improve the guarantee in
the Euclidean case. In both cases, we have αj = αj1 = 1.
Moreover, i1 6∈ IS, i2 ∈ IS and we are interested in bounding
c(j, i2) as a function of αj .

metrics: given x1, x2, . . . , xs ∈ R`, we have that
miny∈R`

∑s
i=1 ‖xi − y‖2

2 is attained by the centroid
µ = 1

s

∑s
i=1 xi and in addition we have the identity∑s

i=1 ‖xi − µ‖2
2 = 1

2s
∑s
i=1
∑s
j=1 ‖xi − xj‖2

2.

Theorem III.3. Let d be a Euclidean metric on D∪
F and suppose that c(j, i) = d(j, i)2 for every i ∈ F
and j ∈ D. Then, for any λ ≥ 0, Algorithm JV(δmean)
constructs a solution α to DUAL(λ) and returns a set
IS of opened facilities such that∑

j∈D
c(j, IS) ≤ ρmean · (

∑
j∈D

αj − λ|IS|) .

Proof: To simplify notation, we use δ instead
of δmean throughout the proof. Consider any client
j ∈ D. We shall prove that

c(j, IS)
ρmean

≤ αj −
∑

i∈N(j)∩IS

(αj − c(j, i))

= αj −
∑
i∈IS

[αj − c(j, i)]+ .

The statement then follows by summing up over
all clients and noting that any facility i ∈ IS was
temporarily opened and thus we have

∑
j∈D[αj −

c(i, j)]+ = λ. A difference compared to the standard
analysis of JV is that in our algorithm we may
open several facilities in N(j), i.e., client j may con-
tribute to the opening of several facilities. We divide

our analysis into the three cases |N(j) ∩ IS| = 1,
|N(j)∩ IS| > 1, and |N(j)∩ IS| = 0. For brevity, let
S denote N(j) ∩ IS and s = |S|.
Case s = 1: If we let i∗ be the unique facility in S,

c(j, IS)
ρmean

≤c(j, IS) ≤ c(j, i∗)

=αj − (αj − c(j, i∗))
=αj −

∑
i∈N(j)∩IS

(αj − c(j, i)) .

Case s > 1: In this case, there are multiple facilities
in IS that j is contributing to. We need to show that
αj −

∑
i∈S(αj − c(j, i)) ≥ 1

ρmean
c(j, IS).

The sum
∑
i∈S c(j, i) is the sum of square

distances from j to facilities in S which
is at least the sum of square distances of
these facilities from their centroid µ, i.e.,∑
i∈S c(j, i) ≥

∑
i∈S c(i, µ). Moreover, by the

identity,
∑
i∈S c(i, µ) = 1

2s
∑
i∈S
∑
i′∈S c(i, i′), we

get ∑
i∈S

c(j, i) ≥ 1
2s
∑
i∈S

∑
i′∈S

c(i, i′) .

As there is no edge between any pair of distinct
facilities i and i′ in S ⊆ IS, we must have

c(i, i′) > δ ·min(ti, ti′) ≥ δ · αj ,

where the last inequality follows because j is con-
tributing to both i and i′ and hence min(ti, ti′) ≥ αj .
By the above,∑

i∈S
c(j, i) ≥

∑
i∈S
∑
i′∈S c(i, i′)
2s

≥
∑
i∈S
∑
i′ 6=i∈S δ · αj
2s = δ · s− 1

2 · αj .

Hence,∑
i∈S

(αj − c(j, i)) ≤
(
s− δ · s− 1

2

)
αj

=
(
s
(
1− δ

2
)

+ δ
2

)
αj .

Now, since δ ≥ 2 the above upper bound is a non-
increasing function of s. Therefore, since s ≥ 2 we
always have∑

i∈S
(αj − c(j, i)) ≤

(
2− δ

2
)
αj . (III.1)

We also know that αj > c(j, i) for any i ∈ S.
Therefore, αj > c(j, IS) and, since δ ≥ 2:(

δ
2 − 1

)
c(j, IS) ≤

(
δ
2 − 1

)
αj . (III.2)

Combining Inequalities (III.1) and (III.2),∑
i∈S

(αj − c(j, i)) +
(
δ
2 − 1

)
c(j, IS) ≤(

2− δ
2
)
αj +

(
δ
2 − 1

)
αj = αj .

We conclude the analysis of this case by rearranging
the above inequality and recalling that ρmean ≥ 1

δ/2−1 .
Case s = 0: Here, we claim that there exists a

tight facility i such that

d(j, i) +
√
δti ≤ (1 +

√
δ)√αj . (III.3)

To see that such a facility i exists, consider the
witness w(j) of j. By Claim III.1, we have αj ≥
tw(j) and since j has a tight edge to its witness
w(j), αj ≥ c(j, w(j) = d(j, w(j))2; or, equivalently,√
αj ≥

√
tw(j) and √αj ≥ d(j, w(j)) which implies

that there is a tight facility, namely w(j), satisfy-
ing (III.3).

Since IS is a maximal independent set of H, either
i ∈ IS, in which case d(j, IS) ≤ d(j, i), or there is an
i′ ∈ IS such that the edge (i′, i) is in H, in which
case

d(j, IS) ≤ d(j, i) + d(i, i′) ≤ d(j, i) +
√
δti ,

where the second inequality follows from d(i, i′)2 =
c(i, i′) ≤ δmin(ti, ti′) by the definition of H. In any
case, we have by (III.3)

d(j, IS) ≤ (1 +
√
δ)√αj .

Squaring both sides and recalling that ρmean ≥ (1 +√
δ)2 completes the last case and the proof of the

theorem.

IV. Quasi-polynomial time algorithm
In this section, we present a quasi-polynomial

time approach that turns the LMP approximation
algorithm presented in the previous section into an
approximation algorithm for k-means, i.e., into an
algorithm finding a solution that satisfies the strict
constraint that at most k facilities are opened. This
is achieved by only deteriorating the approximation
guarantee by an arbitrarily small factor regulated
by ε. We also introduce several of the ideas used
in the polynomial time approach. Although the
results obtained in this section are weaker (quasi-
polynomial instead of polynomial), we believe that
the easier quasi-polynomial algorithm serves as a
good starting point before reading the more complex
polynomial time algorithm. Let ρ = ρmean denote
the approximation guarantee and δ = δmean denote
the parameter to our algorithm. Throughout this
section we fix ε > 0 to be a small constant, and
we assume for notational convenience and without

loss of generality that n� 1/ε. We shall also assume
that the distances satisfy the following:

Lemma IV.1. By losing a factor (1 + 100/n2) in
the approximation guarantee, we can assume that the
squared-distance between any client j and any facility
i satisfies: 1 ≤ d(i, j)2 ≤ n6, where n = |D|.

The proof follows by standard discretization tech-
niques and is presented in the full version of this
paper[1].
Our algorithm will produce a (ρ + O(ε))-

approximate solution. In the algorithm, we consider
separately the two phases of the primal-dual algo-
rithm from Section III-B. Suppose that the first
phase produces a set of values α = {αj}j∈D sat-
isfying the following definition:

Definition IV.2. A feasible solution α of DUAL(λ)
is good if for every j ∈ D there exists a tight facility
i such that (1 +

√
δ + ε)

√
αj ≥ d(j, i) +

√
δti.

Recall that for a dual solution α, ti is defined to
be the largest α-value out of all clients that are
contributing to a facility i: ti = maxj∈N(i) αj where
N(i) = {j ∈ D : αj − d(i, j)2 > 0}.
As the condition of Definition IV.2 relaxes (III.3)

by a tiny amount (regulated by ε), our analysis in
Section III shows that as long as the first stage of
the primal-dual algorithm produces an α that is
good, the second stage will find a set of facilities
IS such that

∑
j∈D d(j, IS)2 =

∑
j∈D c(j, IS) ≤ (ρ +

O(ε))
(∑

j∈D αj−λ|IS|
)
. If we could somehow find a

value λ such that the second stage opened exactly
k facilities, then we would obtain a (ρ + O(ε))-
approximation algorithm. In order to accomplish
this, we first enumerate all potential values λ = 0, 1 ·
εz, 2·εz, . . . , L·εz, where εz is a small step size and L
is large enough to guarantee that we eventually find
a solution of size at most k (for a precise definition
of L and εz, see (IV.1) and (IV.2)). Specifically, in
Section IV-A, we give an algorithm that in time
nO(ε−1 logn) generates a quasi-polynomial-length se-
quence of solutions α(0), α(1), . . . , α(L), where α(`) is
a good solution to DUAL(` · εz). We shall ensure that
each consecutive set of values α(`), α(`+1) are close
in the following sense:

Definition IV.3. Two solutions α and α′ are close
if |α′j − αj | ≤ 1

n2 for all j ∈ D.

Unfortunately, it may be the case that for a good
solution α(`) to DUAL(λ), the second stage of our
algorithm opens more than k facilities, while for
the next good solution α(`+1) to DUAL(λ+ εz), it
opens fewer than k facilities. In order to obtain
a solution that opens exactly k facilities, we must

somehow interpolate between consecutive solutions
in our sequence. In Section IV-B we describe an
algorithm that accomplishes this task. Specifically,
for each pair of consecutive solutions α(`), α(`+1) we
show that, since their α-values are nearly the same,
we can control the way in which a maximal indepen-
dent set in the associated conflict graphs changes.
Formally, we show how to maintain a sequence of
approximate integral solutions with cost bounded
by α(`) and α(`+1), in which the number of open
facilities decreases by at most one in each step. This
ensures that some solution indeed opens exactly k
facilities and it will be found in time nO(ε−1 logn).

A. Generating a sequence of close, good solutions
We first describe our procedure for generating a

close sequence of good solutions. Select the following
parameters

εz = n−3−10 log1+ε n , (IV.1)
L = 4n7 · ε−1

z = nO(ε−1 logn) . (IV.2)

We also use the notion of buckets that partition the
real line:

Definition IV.4. For any value v ∈ R, let B(v) =
0, if v < 1, and B(v) = 1 + blog1+ε(v)c if v ≥ 1. We
say that B(v) is the index of the bucket containing
v.

The buckets will be used to partition the α-values of
the clients. As, in every constructed solution α, each
client will have a tight edge to a facility, Lemma IV.1
implies that αj will always be at least 1. Therefore,
the definition gives the property that the α-values
of any two clients j and j′ in the same bucket differ
by at most a factor of 1 + ε. In other words, the
buckets will be used to classify the clients according
to similar α-values.

We now describe a procedure QuasiSweep
that takes as input a good dual solution αin of
DUAL(λ) and outputs a good dual solution αout of
DUAL(λ+ εz) such that αin and αout are close. In order
to generate the desired close sequence of solutions,
we first define an initial solution for DUAL(0) by
αj = mini∈F d(i, j)2 for j ∈ D. Then, for 0 ≤ ` < L,
we call QuasiSweep with αin = α(`) to generate
the next solution α(`+1) in our sequence. We shall
show that each α(`) is a feasible dual solution of
DUAL(` · εz), and that the following invariant holds
throughout the generation of our sequence:

Invariant 1. In every solution α = α(`), (0 ≤ ` ≤
L), every client j ∈ D has a tight edge to a tight
facility w(j) ∈ F (its witness) such that B(tw(j)) ≤
B(αj).

Note that this implies that each solution in our
sequence is good. Indeed, consider a dual solution
α that satisfies Invariant 1. Then, for any client j,
we have some i (= w(j)) such that √αj ≥ d(i, j)
(since j has a tight edge to w(j)) and

√
(1 + ε)δαj ≥√

δti where we used that B(αj) ≥ B(ti) implies
(1 + ε)αj ≥ ti. Hence, (1 +

√
δ + ε)√αj ≥(

1 +
√

(1 + ε)δ
)√

αj ≥ d(i, j) +
√
δti, and so α is

good (here, for the first inequality we have used that√
1 + ε ≤ 1 + ε/2 and

√
δ ≤ 2). We observe that our

initial solution α(0) has ti = 0 for all i ∈ F , and so
Invariant 1 holds trivially. In our following analysis,
we will show that each call to Sweep preserves
Invariant 1.
1) Description of QuasiSweep: We now for-

mally describe the procedure QuasiSweep that,
given the last previously generated solution αin in our
sequences produces the solution αout returned next.
We initialize the algorithm by setting αj = αin

j

for each j ∈ D and by increasing the opening prices
of each facility from λ to λ + εz. At this point, no
facility is tight and therefore the solution α is not
a good solution of DUAL(λ+ εz). We now describe
how to modify α to obtain a solution αout satisfying
Invariant 1 (and hence into a good solution). The
algorithm will maintain a current set A of active
clients and a current threshold θ. Initially, A = ∅,
and θ = 0. We slowly increase θ and whenever θ =
αj for some client j, we add j to A. While j ∈ A,
we increase αj at the same rate as θ. We remove a
client j from A, whenever the following occurs:

j has a tight edge to some tight facility i with
B(αj) ≥ B(ti). In this case, we say that i is the
witness of j.

Note that if a client j satisfies this condition when it
is added to A, then we remove j from A immediately
after it is added. In this case, αj is not increased.
Increasing the α-values for clients in A, may cause

the contributions to some facility i to exceed the
opening cost λ+εz. To prevent this from happening,
we also decrease every value αj with B(αj) > B(θ)
at a rate of |A| times the rate that θ is increasing.
Observe that while there exists any such j ∈ N(i),
the total contribution of the clients toward opening
this i cannot increase, and so i cannot become tight.
It follows that once any facility i becomes tight,
B(αj) ≤ B(θ) for every j ∈ N(i) and so i is
presently a witness for all clients j ∈ N(i) ∩ A.
At this moment all such clients in N(i) ∩ A will be
removed from A and their α-values will not subse-
quently be changed. Thus, i remains tight until the
end of QuasiSweep. Moreover, observe any other
client j′ that is added to A later will immediately

be removed from A as soon as it has a tight edge
to i. Thus, neither ti nor the total contribution to i
change throughout the remainder of QuasiSweep.
In particular, i remains a witness for all such clients
j for the remainder of QuasiSweep.

We stop increasing θ once every client j has been
added and removed from A. The procedure Qua-
siSweep then terminates and outputs αout = α. As
we have just argued, the contributions to any tight
facility can never increase, and every client that is
removed from j will have a witness through the rest
of QuasiSweep (in particular, in αout). Thus, αout

is a feasible solution of DUAL(λ+ εz) in which every
client j has a witness w(j), i.e., j has a tight edge to
the tight facility w(j) and B(tw(j)) ≤ B(αj). Hence,
the output of Sweep always satisfies Invariant 1.
This completes the description of QuasiSweep.

We now show that the produced sequence of solu-
tions is close and to analyze the running time.
2) Closeness and running time: We begin by

showing that QuasiSweep produces a close se-
quence of solutions.

Lemma IV.5. For each client j ∈ D, we have |αin
j−

αout
j | ≤ 1/n2.

The proof of this lemma is available in the full
version of this paper [1].

For the sake of clarity, we have presented the
QuasiSweep procedure in a continuous fashion.
We show in the full version of this paper [1] how
to implement QuasiSweep as a discrete algorithm
running in polynomial time. We conclude the anal-
ysis of this section by noting that, as Sweep is
repeated L = nO(ε−1 logn) times, the total running
time for producing the sequence α(0), α(1), . . . , α(L)

is nO(ε−1 logn).

B. Finding a solution of size k
In this section we describe our algorithm for find-

ing a solution of k facilities given a close sequence
α(0), α(1) . . . , α(L), where α(`) is a good solution to
DUAL(εz · `).

We associate with each dual solution α(`) a client-
facility graph and a conflict graph that are defined
in exactly the same way as in Section III-A: that
is, the graph G(`) is a bipartite graph with all of D
on one side and every tight facility in α(`) on the
other and G(`) contains the edge (j, i) if and only
if α(`)

j > c(j, i). Given each G(`), recall that H(`)

is then a graph consisting of the facilities present
in G(`), which contains an edge (i, i′) if i and i′

are both adjacent to some client j in G(`) and
c(i, i′) ≤ δmin(t(`)i , t

(`)
i′), where for each i, we have

t
(`)
i = max{α(`)

j : α(`)
j > c(j, i)} (and again we adopt

the convention that t(`)i = 0 if α(`)
j ≤ c(j, i) for all

j ∈ D). Thus, we have a sequence G(0), . . . , G(L) of
client-facility graphs and a sequence H(0), . . . ,H(L)

of conflict graphs obtained from our sequence of dual
solutions. The main goal of this section is to give
a corresponding sequence of maximal independent
sets of the conflict graphs so that the size of the
solution (independent set) never decreases by more
than 1 in this sequence. Unfortunately, this is not
quite possible. Instead, starting with a maximal
independent set IS(`) of H(`), we shall slowly trans-
form it into a maximal independent set IS(`+1) of
H(`+1) by considering maximal independent sets in a
sequence of polynomially many intermediate conflict
graphs H(`) = H(`,0), H(`,1), . . . ,H(`,p`) = H(`+1).
We shall refer to these independent sets as IS(`) =
IS(`,0), IS(`,1), . . . , IS(`,p`) = IS(`+1). This interpola-
tion will allow us to ensure that the size of our
independent set decreases by at most 1 throughout
this sequence. It follows that at some point we find
a solution IS of size exactly k: on the one hand,
since H(0) contains all facilities and no edges we
have IS(0) = F , which by assumption is strictly
greater than k. On the other hand, we must have
|IS(L)| ≤ 1. Indeed, as α(L) is a good dual solution
of DUAL(Lεz) = DUAL(4n7), we claim H(L) is a
clique. First, note that any tight facility i in α(L)

has ti ≥ Lεz
n = 4n6 which means that all clients

have a tight edge to i when i becomes tight (since
the maximum squared facility-client distance is n6

by Lemma IV.1). Second, any two facilities i, i′ have
d(i, i′)2 ≤ 4n6 using the triangle inequality and
facility-client distance bound. Combining these two
insights, we can see that H(L) is a clique and so
|IS(L)| ≤ 1.

It remains to describe and analyze the procedure
QuasiGraphUpdate that will perform the interpo-
lation between two conflict graphs H(`) and H(`+1)

when given a maximal independent set IS(`) of H(`)

so that |IS(`)| > k. We run this procedure at most L
times starting with H(0), H(1), and IS(0) = F until
we find a solution of size k.
1) Description of QuasiGraphUpdate: Denote

the input by H(`), H(`+1), and IS(`) (the maximal
independent set of H(`) of size greater than k). Al-
though we are interested in producing a sequence of
conflict graphs, it will be helpful to think of a process
that alters some “hybrid” client-facility graph G,
then uses G and the corresponding opening times
t to construct a new conflict graph H after each
alteration. To ease the description of this process, we
duplicate each facility that appears both in G(`) and
G(`+1) so as to ensure that these sets are disjoint.
Let V(`) and V(`+1) denote the (now disjoint) sets

of facilities in G(`) and G(`+1), respectively. Note
that the duplication of facilities does not alter the
solution space of the considered instance, as one may
assume that at most one facility is opened at each
location. Note that our algorithm will also satisfy
this property, since d(i, i′)2 = 0 for any pair of co-
located facilities i, i′.

Initially, we let G be the client-facility graph with
bipartition D and V(`) ∪ V(`+1) that has an edge
from client j to facility i ∈ V(`) if (j, i) is present in
G(`) and to i ∈ V(`+1) if (j, i) is present in G(`+1).
The opening time ti of facility i is now naturally
set to t

(`)
i if i ∈ V(`) and to t

(`+1)
i if i ∈ V(`+1).

Informally, G is the union of the two client-facility
graphs G(`) and G(`+1) where the client vertices are
shared. We then generate2 the conflict graph H(`,1)

from G and t. As the induced subgraph of H(`,1)

on vertex set V` equals H(`) = H(`,0), we have
that IS(`) is also an independent set of H(`,1). We
obtain a maximal independent set IS(`,1) of H(`,1)

by greedily extending IS(`). Clearly, the independent
set can only increase so we still have |IS(`,1)| > k.

To produce the remaining sequence, we iteratively
perform changes, but construct and output a new
conflict graph and maximal independent set after
each such change. Specifically, we remove from G
each facility i ∈ V(`), one by one. At the end of the
procedure (after |V(`)| many steps), we have G =
G(`+1) and so H(`,p`) = H(`+1). Note that at each
step, our modification to G results in removing a
single facility i from the associated conflict graph.
Thus, if IS(`,s) is an independent set in H(`,s) before
a modification, then IS(`,s)\{i} is an independent set
in H(`,s+1). We obtain a maximal independent set
IS(`,s+1) ofH(`,s+1) by greedily extending IS(`,s)\{i}.
Then, for each step s, we have |IS(`,s+1)| ≥ |IS(`,s)|−
1, as required.
2) Analysis: The total running time is

nO(ε−1 logn) since the number of steps L (and
the number of dual solutions in our sequence) is
nO(ε−1 logn) and each step runs in polynomial time
since it involves the construction of at most O(|F|)
conflict graphs and maximal independent sets.

We proceed to analyze the approximation guar-
antee. Consider the first time that we produce some
maximal independent set IS of size exactly k. Sup-
pose that when this happened, we were moving be-
tween two solutions α(`) and α(`+1), i.e., IS = IS(`,s)

is a maximal independent set of H(`,s) for some
1 ≤ s ≤ p`. That we may assume that s ≥ 1 follows

2Recall that a conflict graph is defined in terms of a client-
facility graph G and t: the vertices are the facilities in G, and
two facilities i and i′ are adjacent if there is some client j that
is adjacent to both of them in G and d(i, i′)2 ≤ δmin(ti, ti′).

from |IS(0)| > k and IS(`−1,p`) = IS(`) = IS(`,0) (recall
that IS was selected to be the first independent set
of size k).
To ease notation, we let H = H(`,s) and denote by

G the “hybrid” client-facility graph that generated
H. In order to analyze the cost of IS, let us form a
hybrid solution α by setting αj = min(α(`)

j , α
(`+1)
j)

for each client j ∈ D. Note that α ≤ α(`) is a
feasible solution of DUAL(λ) where λ = ` · εz and,
since α(`) and α(`+1) are close, αj ≥ α

(`)
j − 1

n2 and
αj ≥ α(`+1)

j − 1
n2 for all j. For each client j, we define

a set of facilities Sj ⊆ IS to which j contributes, as
follows. For all i ∈ IS, we have i ∈ Sj if αj > d(j, i)2.
Note that Sj is a subset of j’s neighborhood in G
and therefore for all i ∈ Sj

αj = min(α(`)
j , α

(`+1)
j) ≤ ti =

{
t
(`)
i if i ∈ V(`)

t
(`+1)
i if i ∈ V(`+1)

Using the fact that α(`+1) is a good dual solution,
we can bound the total service cost of all clients
in the integral solution IS. Let us first proceed
separately for those clients with |Sj | > 0. Let
D0 = {j ∈ D : |Sj | = 0}, and D>0 = D \ D0.
We remark that the analysis is now very similar
to the proof of Theorem III.3. We define βij =
[αj −d(i, j)2]+ and similarly β(`)

ij = [α(`)
j −d(i, j)2]+

and β(`+1)
ij = [α(`+1)

j − d(i, j)2]+.

Lemma IV.6. For any j ∈ D>0, d(j, IS)2 ≤ ρ ·(
αj −

∑
i∈Sj βij

)
.

Proof: Consider some j ∈ D>0 and first suppose
that |Sj | = 1. Then, if we let Sj = {i}, αj = βij +
d(j, i)2 ≥ βij + d(j, IS)2 just as in “Case s = 1” of
Theorem III.3. Next, suppose that |Sj | = s > 1. In
other words, j is contributing to multiple facilities
in IS. By construction we have αj ≤ min(ti, ti′) for
any two facilities i, i′ ∈ Sj . Thus, αj −

∑
i∈Sj βij ≥

1
ρd(j, IS)2 by the exact same arguments as in “Case
s > 1” of Theorem III.3.
Next, we bound the total service cost of all those

clients that do not contribute to any facility in IS.
The proof is very similar to “Case s = 0” in the
proof of Theorem III.3. The proof of the following
two lemmas are available in the full version of this
paper [1].

Lemma IV.7. For every j ∈ D0, d(j, IS)2 ≤ (1 +
5ε)ρ · αj.

One difference compared to the analysis in Sec-
tion III-B is that not all opened facilities are fully
paid for. However, they are almost paid for:

Lemma IV.8. For any i ∈ IS,
∑
j∈D βij ≥ λ−

1
n .

We now combine the above lemmas to bound
the approximation guarantee of the found solution.
Recall that OPTk denotes the optimum value of the
standard LP-relaxation (see Section II).

Theorem IV.9.
∑
j∈D d(j, IS)2 ≤ (1+6ε)ρ ·OPTk.

Proof: From Lemmas IV.6 and IV.7 we have:

∑
j∈D

d(j, IS)2 ≤ (1 + 5ε)ρ
∑
j∈D

αj −∑
i∈Sj

βij

 .

By Lemma IV.8 (note that by definition,
∑
i∈IS βij =∑

i∈Sj βij),∑
j∈D

αj −∑
i∈Sj

βij

 ≤∑
j∈D

αj − |IS|
(
λ− 1

n

)
=
∑
j∈D

αj − k · λ+ k
n ≤ OPTk + 1 ,

where the last inequality follows from k ≤ n and, as
α is a feasible solution to DUAL(λ),

∑
j∈D αj−k ·λ ≤

OPTk. The statement now follows from OPTk ≥∑
j∈Dmini∈F d(i, j)2 ≥ n and n� 1/ε, which imply

that OPTk + 1 ≤ (1 + ε)OPTk.

We have thus proved that our quasi-polynomial al-
gorithm produces a (ρ+O(ε))-approximate solution
which implies Theorem I.1. The quasi-polynomial
algorithms for the other considered problems are the
same except for the selection of δ and ρ, and that in
the k-median problem the connection costs are the
(non-squared) distances.

Acknowledgment
The authors would like to thank the anony-

mous reviewers for their helpful comments. This re-
search is supported by ERC Starting Grant 335288-
OptApprox.

References
[1] S. Ahmadian, A. Norouzi-Fard, O. Svensson, and

J. Ward. Better guarantees for k-means and eu-
clidean k-median by primal-dual algorithms. CoRR,
abs/1612.07925, 2016.

[2] A. Archer, R. Rajagopalan, and D. B. Shmoys.
Lagrangian relaxation for the k-median problem:
New insights and continuity properties. In Proc.
11th ESA, pages 31–42, 2003.

[3] D. Arthur and S. Vassilvitskii. How slow is the k-
means method? In Proc. 22nd SoCG, pages 144–
153, 2006.

[4] D. Arthur and S. Vassilvitskii. K-means++: The
advantages of careful seeding. In Proc. 18th SODA,
pages 1027–1035, 2007.

[5] V. Arya, N. Garg, R. Khandekar, A. Meyerson,
K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems. SIAM
J. Comput., 33(3):544–562, 2004.

[6] P. Awasthi, A. Blum, and O. Sheffet. Stability yields
a PTAS for k-median and k-means clustering. In
Proc. 51st FOCS, pages 309–318, 2010.

[7] P. Awasthi, M. Charikar, R. Krishnaswamy, and
A. K. Sinop. The hardness of approximation of
euclidean k-means. In Proc. 31st SoCG, pages 754–
767, 2015.

[8] M.-F. Balcan, A. Blum, and A. Gupta. Approx-
imate clustering without the approximation. In
Proc. 20th SODA, pages 1068–1077, 2009.

[9] J. Byrka and K. Aardal. An optimal bifactor
approximation algorithm for the metric uncapaci-
tated facility location problem. SIAM J. Comput.,
39(6):2212–2231, 2010.

[10] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and
K. Trinh. An improved approximation for k-median,
and positive correlation in budgeted optimization.
In Proc. 26th SODA, pages 737–756, 2015.

[11] M. Charikar and S. Guha. Improved combinatorial
algorithms for facility location problems. SIAM J.
Comput., 34(4):803–824, 2005.

[12] F. A. Chudak and D. B. Shmoys. Improved approx-
imation algorithms for the uncapacitated facility
location problem. SIAM J. Comput., 33(1):1–25,
2004.

[13] V. Cohen-Addad, P. N. Klein, and C. Mathieu.
The power of local search for clustering. CoRR,
abs/1603.09535, 2016.

[14] D. Feldman, M. Monemizadeh, and C. Sohler. A
PTAS for k-means clustering based on weak core-
sets. In J. Erickson, editor, Proc. 23rd SoCG, pages
11–18, 2007.

[15] Z. Friggstad, M. Rezapour, and M. R. Salavatipour.
Local search yields a PTAS for k-means in doubling
metrics. CoRR, abs/1603.08976, 2016.

[16] A. Gupta and K. Tangwongsan. Simpler analyses of
local search algorithms for facility location. CoRR,
abs/0809.2554, 2008.

[17] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and
V. V. Vazirani. Greedy facility location algorithms
analyzed using dual fitting with factor-revealing LP.
J. ACM, 50:795–824, 2003.

[18] K. Jain, M. Mahdian, and A. Saberi. A new greedy
approach for facility location problems. In Proc.
34th STOC, pages 731–740, 2002.

[19] K. Jain and V. V. Vazirani. Approximation al-
gorithms for metric facility location and k-median
problems using the primal-dual schema and la-
grangian relaxation. J. ACM, 48(2):274–296, 2001.

[20] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D.
Piatko, R. Silverman, and A. Y. Wu. A local search
approximation algorithm for k-means clustering.
Comput. Geom., 28(2-3):89–112, 2004.

[21] E. Lee, M. Schmidt, and J. Wright. Improved and
simplified inapproximability for k-means. CoRR,
abs/1509.00916, 2015.

[22] S. Li. A 1.488 approximation algorithm for the un-
capacitated facility location problem. Inf. Comput.,
222:45–58, 2013.

[23] S. Li and O. Svensson. Approximating k-median
via pseudo-approximation. SIAM J. Comput.,
45(2):530–547, 2016.

[24] J. Lin and J. S. Vitter. Approximation algorithms
for geometric median problems. Inf. Process. Lett.,
44:245–249, 1992.

[25] S. Lloyd. Least squares quantization in PCM. IEEE
Trans. Inf. Theor., 28(2):129–137, Sept. 2006.

[26] J. Matoušek. On approximate geometric k-
clustering. Discrete & Computational Geometry,
24(1):61–84, 2000.

[27] R. Ostrovsky, Y. Rabani, L. J. Schulman, and
C. Swamy. The effectiveness of Lloyd-type methods
for the k-means problem. J. ACM, 59(6):28:1–28:22,
Jan. 2013.

[28] D. B. Shmoys, E. Tardos, and K. Aardal. Approx-
imation algorithms for facility location problems
(extended abstract). In Proc. 29th STOC, pages
265–274, 1997.

[29] A. Vattani. k-means requires exponentially many
iterations even in the plane. Discrete & Computa-
tional Geometry, 45(4):596–616, 2011.

[30] V. V. Vazirani. Approximation Algorithms.
Springer-Verlag New York, Inc., New York, NY,
USA, 2001.

[31] D. P. Williamson and D. B. Shmoys. The Design of
Approximation Algorithms. Cambridge University
Press, New York, NY, USA, 1st edition, 2011.

