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Abstract. In [J. Algebra 452 (2016), 372–389], we characterise when the sequence
of free subgroup numbers of a finitely generated virtually free group Γ is ultimately
periodic modulo a given prime power. Here, we show that, in the remaining cases,
in which the sequence of free subgroup numbers is not ultimately periodic modulo a
given prime power, the number of free subgroups of index λ in Γ is — essentially —
congruent to a binomial coefficient times a rational function in λ modulo a power of a
prime that divides a certain invariant of the group Γ, respectively to a binomial sum
involving such numbers. These results, apart from their intrinsic interest, in particular
allow for a much more efficient computation of congruences for free subgroup numbers
in these cases compared to the direct recursive computation of these numbers implied
by the generating function results in [J. London Math. Soc. (2) 44 (1991), 75–94].

1. Introduction

For a finitely generated virtually free group Γ, denote by mΓ the least common
multiple of the orders of the finite subgroups in Γ. Moreover, for a positive integer λ,
let fλ(Γ) be the number of free subgroups of index λmΓ in Γ. A concrete example of a
(non-free) finitely generated virtually free group that the reader may want to keep in
mind is the inhomogeneous modular group Γ0 = PSL2(Z) ∼= C2 ∗C3, where Cm denotes
the cyclic group of order m. Here, we have mΓ0 = lcm{2, 3} = 6, and the first few
terms of the sequence (fλ(Γ0))λ≥1 are

5, 60, 1105, 27120, 828250, 30220800, 1282031525, 61999046400, 3366961243750, . . .

In [6], a complete characterisation is given of all pairs (Γ, pα) for which the sequence
(fλ(Γ))λ≥1 is ultimately periodic modulo pα, where Γ is a finitely generated virtually
free group, p is a prime number, and α is a positive integer. As it turns out, somewhat
surprisingly, this is always the case, unless µp(Γ) = 0 and µ(Γ) ≥ 2,1 where µp(Γ)
and µ(Γ) are certain invariants of Γ defined in Section 2. In our running example
Γ0 = PSL2(Z), we have µ(Γ0) = 2, µ2(Γ0) = µ3(Γ0) = 0, and µp(Γ0) = 1 for p ≥ 5.
Indeed, the sequence (fλ(PSL2(Z)))λ≥1 is ultimately periodic modulo pα for p ≥ 5 and
all α, and non-periodic for p = 2, 3; see [3], [2, Sec. 8], [4, Sec. 16], where more precise
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results are obtained for the free subgroup numbers of the inhomogeneous modular group
and certain lifts thereof.

Our present paper focuses on the case of non-periodic behaviour. It is shown in [10]
that, for µp(Γ) = 0 and µ(Γ) ≥ 2, the function fλ(Γ) satisfies the congruence

fλ(Γ) ≡ (−1)
(µ(Γ)−1)λ+1

p−1
1

λ

(µ(Γ)λ
p−1

λ−1
p−1

)
(mod p), (1.1)

where the binomial coefficient is defined to be zero whenever the lower argument is not
an integer; cf. [10, Eqn. (35)].

The purpose of the present paper is to demonstrate that, under the same assump-
tions, the function fλ(Γ) satisfies a very similar congruence modulo an arbitrary p-power.
More precisely, if µ(Γ) ≡ 0, 1 (mod p), the function fλ(Γ), when reduced modulo any
fixed p-power, is congruent to a (quasi-)rational factor in λ times a binomial coefficient
(see Corollary 8 in Section 6), while in the remaining cases the right-hand side takes
the form of a sum of such expressions (see Corollary 12 in the same section). A remark-
able consequence of these results is that, while it may be safely conjectured that the
generating function for the free subgroup numbers (which satisfies a highly non-linear
differential equation obtained from (2.8) via (2.6)) is not D-finite, implying that the
sequence of free subgroup numbers itself is not P-recursive,2 its reduction modulo any
fixed p-power is (see Corollary 7).

While the result obtained in Corollary 8 for arbitrary p-powers is ‘as good as’ the
mod p result (1.1), we show in Proposition 13 that the sum described in Corollary 12
satisfies an inhomogeneous linear recurrence of finite depth with constant coefficients
and leading coefficient 1 (which may be found automatically by means of the Gosper–
Zeilberger algorithm; cf. [11]). This leads again to an efficient computation of fλ(Γ)
modulo pα. All these results are presented in Section 6, and are illustrated there by
concrete examples.

The only known earlier results concerning congruences of free subgroup numbers
modulo prime powers in the non-periodic case covered the following scenarios: (i) lifts
of Hecke groups H(q) ∼= C2 ∗ Cq with q a Fermat prime and p = 2, and (ii) lifts of
the classical modular group H(3) ∼= PSL2(Z) and p = 3; see Section 8, Corollary 34
and Theorem 35 in [2], and [4, Sec. 16]. In particular, the behaviour of fλ(Γ) modulo
p-powers in these known cases fits into the framework of the semi-automatic method
for obtaining congruences developed in [2, 4, 5], and further (unpublished) work. As
we show in this paper, for finitely generated virtually free groups Γ and primes p with
µp(Γ) = 0 and µ(Γ) ≥ 2, this is always the case.

This semi-automatic method is based on a generating function approach, featuring
a basic series — to be adapted for each class of applications — which is then used to
express the generating function for the sequence of numbers we have in mind, reduced
modulo a given p-power, as a polynomial in this basic series. We show in Theorem 6
in Section 5 that, if µp(Γ) = 0 and µ(Γ) ≥ 2, we may choose the series

Φ(z) =
∞∑
n=1

(−1)
(µ(Γ)−1)n+1

p−1
1

n

(µ(Γ)n
p−1

n−1
p−1

)
zn (1.2)

2The reader is referred to [13, Ch. 6] for information on D-finite series and P-recursive sequences.
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as basic series (i.e., the series formed out of the coefficients on the right-hand side
of (1.1)) in order to express the generating function

∑∞
λ=1 fλ(Γ) zλ modulo p-powers

as a polynomial in Φ(z). Corollaries 8 and 12 alluded to above are consequences of
Theorem 6. The proof of the theorem requires some auxiliary results which are presented
in Section 4. These include some interesting determinant evaluations, see Lemmas 4
and 5.

A remarkable feature of the present application of our semi-automatic generating
function method is that the degree of the polynomial in the basic series Φ(z) express-
ing the generating function

∑∞
λ=1 fλ(Γ) zλ modulo pα does not increase with α. As a

consequence, the complexity of the computation only mildly increases with α. This
is in sharp contrast to our previous applications of this method. The reason for the
above phenomenon lies in the fact that Φ(z) satisfies an exact functional equation over
the integers, namely (4.1), while in our previous applications the basic series satisfied
functional equations modulo pα of complexity increasing with α.

Our results concerning the function fλ(Γ) are complemented by Theorem 2 in Sec-
tion 3, which precisely characterises those finitely generated virtually free groups Γ with
µ(Γ) ≥ 2 and µp(Γ) = 0 for a given prime number p.

2. Some preliminaries on finitely generated virtually free groups

Our notation and terminology concerning virtually free groups and their decomposi-
tion in terms of a graph of groups follows Serre’s book [12]; in particular, the category
of graphs used in the context of graphs of groups is described in [12, §2]. This cate-
gory deviates slightly from the usual notions in graph theory. In order to distinguish
the objects of this category from graphs in the sense of graph theory, we call them
S-graphs. Specifically, an S-graph X consists of two sets: E(X), the set of (directed)
edges, and V (X), the set of vertices. The set E(X) is endowed with a fixed-point-free
involution − : E(X) → E(X) (reversal of orientation), and there are two functions
o, t : E(X) → V (X) assigning to an edge e ∈ E(X) its origin o(e) and terminus t(e),
such that t(ē) = o(e). The reader should note that, according to the above definition,
S-graphs may have loops (that is, edges e with o(e) = t(e)) and multiple edges (that
is, several edges with the same origin and the same terminus). An orientation O(X)
consists of a choice of exactly one edge in each pair {e, ē} (this is indeed always a pair
– even for loops – since, by definition, the involution − is fixed-point-free). Such a
pair is called a geometric edge. For our running example Γ0 = PSL2(Z) ∼= C2 ∗ C3, we
may choose V (X) = {v1, v2} and E(X) = {e, ē}. Figure 1.a shows the corresponding
S-graph X.

• •v1 v2
e

ē
→← • •C2 C3

1
→← • •2 3

1

Figure 1. a. An S-graph, b. a graph of groups, c. an order graph
for PSL2(Z)

Let Γ be a finitely generated virtually free group with Stallings decomposition
(Γ(−), X); that is, (Γ(−), X) is a finite graph of finite groups with fundamental group
π1(Γ(−), X) ∼= Γ. Figure 1.b shows a graph of groups with fundamental group
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PSL2(Z) ∼= C2 ∗ C3. Replacing the stabiliser groups of vertices and edges by their
respective group orders and replacing each pair (e, ē) by one unoriented edge, we ob-
tain the corresponding order graph of Γ. Abstractly, an order graph is a finite connected
unoriented graph (in the sense of graph theory; multiple edges and loops are allowed)
whose vertices v and edges e carry positive integers, n(v), respectively n(e), as labels
such that n(e) | n(v) if v is incident to e. The labels of vertices and edges will frequently
be referred to as their respective order. Figure 1.c shows the order graph for PSL2(Z)
corresponding to the graph of groups in Figure 1.b.

As in the introduction, denote by mΓ the least common multiple of the orders of the
finite subgroups in Γ, so that, in terms of the above Stallings decomposition of Γ,

mΓ = lcm
{
|Γ(v)| : v ∈ V (X)

}
. (2.1)

(This formula essentially follows from the well-known fact that a finite group has a fixed
point when acting on a tree.) The type τ(Γ) of a finitely generated virtually free group
Γ ∼= π1(Γ(−), X) is defined as the tuple

τ(Γ) =
(
mΓ; ζ1(Γ), . . . , ζκ(Γ), . . . , ζmΓ

(Γ)
)
,

where the ζκ(Γ)’s are integers indexed by the divisors κ of mΓ, given by

ζκ(Γ) =
∣∣{e ∈ O(X) : |Γ(e)|

∣∣κ}∣∣ − ∣∣{v ∈ V (X) : |Γ(v)|
∣∣κ}∣∣. (2.2)

(Here, O(X) is any orientation of the S-graph X.) It can be shown that the type τ(Γ)
is in fact an invariant of the group Γ, i.e., independent of the particular decomposition
of Γ in terms of a graph of groups (Γ(−), X), and that two finitely generated virtually
free groups Γ1 and Γ2 contain the same number of free subgroups of index n for each
positive integer n if, and only if, τ(Γ1) = τ(Γ2); cf. [9, Theorem 2]. We have ζκ(Γ) ≥ 0
for κ < mΓ and ζmΓ

(Γ) ≥ −1 with equality occurring in the latter inequality if, and
only if, Γ is the fundamental group of a tree of groups; cf. [8, Prop. 1] or [9, Lemma 2].
In our running example of the inhomogeneous modular group Γ0 = PSL2(Z), we have
mΓ0 = lcm{2, 3} = 6, ζ1(Γ0) = 1, ζ2(Γ0) = ζ3(Γ0) = 0, and ζ6(Γ0) = −1.

Inspection of (2.1) and (2.2) reveals the noteworthy fact that all ingredients of the
type (that is, mΓ and the ζκ’s) depend only on the orders but not on the internal
structure of the stabilisers of vertices and edges of (Γ(−), X). Therefore it makes sense
to attach the same invariants to the order graph obtained from the graph of groups
(Γ(−), X) in the way described earlier, or, more generally, to an abstract order graph.
Specifically, given an order graph G, we define mG to be the least common multiple of
the vertex orders n(v), taken over all vertices of G, and, for a divisor κ of mG, we let

ζκ(G) =
∣∣{e ∈ E(G) : n(e) | κ

}∣∣ − ∣∣{v ∈ V (G) : n(v) | κ
}∣∣, (2.3)

where V (G) denotes the set of vertices of G and E(G) the set of edges.

Define a torsion-free Γ-action on a set Ω to be a Γ-action on Ω which is free when
restricted to finite subgroups, and let

gλ(Γ) :=
number of torsion-free Γ-actions on a set with λmΓ elements

(λmΓ)!
, λ ≥ 0;

(2.4)
in particular, g0(Γ) = 1. (There exists an explicit product formula for gλ(Γ) in terms
of a corresponding graph of groups, see [9, Prop. 3].) The sequences

(
fλ(Γ)

)
λ≥1

and
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gλ(Γ)

)
λ≥0

are related via the Hall-type transformation formula3

λ−1∑
µ=0

gµ(Γ)fλ−µ(Γ) = mΓλgλ(Γ), λ ≥ 1. (2.5)

Introducing the generating functions

FΓ(z) :=
∞∑
λ=1

fλ(Γ)zλ and GΓ(z) :=
∞∑
λ=0

gλ(Γ)zλ,

Equation (2.5) is seen to be equivalent to the relation

FΓ(z) = mΓz
d

dz

(
logGΓ(z)

)
. (2.6)

Define the free rank µ(Γ) of a finitely generated virtually free group Γ to be the rank
of a free subgroup of index mΓ in Γ (existence of such a subgroup follows, for instance,
from Lemmas 8 and 10 in [12]; it need not be unique, though). It can be shown that
the free rank µ(Γ) may be expressed in terms of the type of Γ via

µ(Γ) = 1 +
∑
κ|mΓ

ϕ(mΓ/κ)ζκ(Γ), (2.7)

where ϕ is Euler’s totient function. This formula implies in particular that µ(Γ) is
well-defined. In our running example Γ0 = PSL2(Z), we have

µ(Γ0) = 1 + ϕ(6)ζ1(Γ0) + ϕ(3)ζ2(Γ0) + ϕ(2)ζ3(Γ0) + ϕ(1)ζ6(Γ0) = 2.

It is known that the sequence gλ(Γ) is of hypergeometric type and that its generating
function GΓ(z) satisfies a homogeneous linear differential equation

θ0(Γ)GΓ(z) + (θ1(Γ)z −mΓ)G′Γ(z) +

µ(Γ)∑
µ=2

θµ(Γ)zµG
(µ)
Γ (z) = 0 (2.8)

of order µ(Γ) with integral coefficients θµ(Γ) given by

θµ(Γ) =
1

µ!

µ∑
j=0

(−1)µ−j
(
µ

j

)
mΓ(j+1)

∏
κ|mΓ

∏
1≤k≤mΓ

(mΓ,k)=κ

(jmΓ+k)ζκ(Γ), 0 ≤ µ ≤ µ(Γ); (2.9)

cf. [9, Prop. 5]. The linear differential equation (2.8) can subsequently be translated
into a Riccati-type differential equation for F (z) via the relation (2.6). In our running
example Γ0 = PSL2(Z), the differential equation (2.8) becomes

5G(z) + (72z − 6)G′(z) + 36z2G′′(z) = 0,

which translates into the differential equation

5z + (6z − 1)F (z) + zF 2(z) + 6z2F ′(z) = 0

satisfied by the generating function F (z) for the free subgroup numbers fλ(PSL2(Z)).

3See [9, Cor. 1], or [1, Prop. 1] for a more general result.
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For a finitely generated virtually free group Γ and a prime number p, we introduce,
in formal analogy with formula (2.7), the p-rank µp(Γ) of Γ via the equation

µp(Γ) = 1 +
∑
p|κ|mΓ

ϕ(mΓ/κ)ζκ(Γ). (2.10)

Clearly, µp(Γ) ≥ 0, with equality occurring if, and only if, Γ is the fundamental group of
a tree of groups, p | mΓ, and ζκ(Γ) = 0 for p | κ | mΓ and κ < mΓ. As already mentioned
in the introduction, for Γ0 = PSL2(Z) we have µ(Γ0) = 2, µ2(Γ0) = µ3(Γ0) = 0, and
µp(Γ0) = 1 for p ≥ 5. Since the free rank µ(Γ) and the p-rank µp(Γ) only depend on
the type invariants mΓ and the ζκ’s, in view of our earlier discussion they may also be
defined for abstract order graphs and, in particular, for an order graph G of a finitely
generated virtually free group Γ. Doing so, one has µ(Γ) = µ(G) and µp(Γ) = µp(G).
These conventions will be used in the proof of Theorem 2.

In what follows, it will be important to be able to represent a finitely generated
virtually free group Γ by a graph of groups avoiding trivial amalgamations along a
maximal tree. This is achieved via the following auxiliary result.

Lemma 1 (Normalisation). Let (Γ(−), X) be a (connected) graph of groups with
fundamental group Γ, and suppose that X has only finitely many vertices. Then there
exists a graph of groups (∆(−), Y ) with |V (Y )| <∞ and a spanning tree T in Y, such
that π1(∆(−), Y ) ∼= Γ, and such that4

∆(e)e 6= ∆(t(e)) and ∆(e)ē 6= ∆(o(e)), for e ∈ E(T ). (2.11)

Moreover, if (Γ(−), X) satisfies the finiteness condition

(F1) X is a finite S-graph,

or

(F2) Γ(v) is finite for every vertex v ∈ V (X),

then we may choose (∆(−), Y ) so as to enjoy the same property.

See [7, Sec. 3] for a proof of this useful result. Subsequently, we shall call a graph
of groups (∆(−), Y ) normalised, if it satisfies the conditions of the lemma for some
spanning tree T of Y . In our situation, normalised graphs of groups will always be
trees, so coincide with their respective spanning trees. We shall therefore suppress the
reference to the spanning trees from now on.

3. Characterisation of finitely generated virtually free groups Γ
with µp(Γ) = 0

Recall (see paragraph below (2.10)) that, if a finitely generated virtually free group
satisfies µp(Γ) = 0 for a given prime p, then, in particular, Γ is the fundamental group of
a tree of groups. Theorem 2 below tells us how a normalised (in the sense of Lemma 1)
order tree5 X underlying the Stallings decomposition (Γ(−), X) of a finitely generated
virtually free group Γ must be constructed so as to satisfy µp(Γ) = 0.

4The notation used in Equation (2.11) follows Serre; see Déf. 8 in [12, Sec. 4.4].
5Here, order tree means an order graph which has the form of a tree.
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Given a fixed prime number p, the starting point of our construction are certain finite
rooted vertex-labelled trees which we call divisor trees. By definition, vertices of divisor
trees are labelled by positive integers coprime to p. Moreover, any two adjacent vertices,
say v1 and v2, with v1 closer to the root than v2, satisfy `(v2) | `(v1) and `(v2) < `(v1),
where `(v1) and `(v2) denote the labels of v1 and v2. See Figure 2 for an example of
such a divisor tree. There, the prime number to be fixed from the very beginning is
p = 5. In the figure, the root is indicated by a square.

@
@

@@

�
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�
�
��

@
@
@@

u u

u
u

u

u

2

3

12504

426

2

Figure 2. A divisor tree for p = 5

Given a divisor tree D, we fix a map f from the set of vertices of D into the set of
(ordinary, unlabelled) finite rooted trees with the property that non-root vertices are
mapped to non-trivial6 trees rooted at a leaf and, in case D consists of just the root, this
root must be mapped to a non-trivial tree (with no restriction on the location of the
root). Figure 3 shows an example of such a map f defined on the vertices of the divisor
tree in Figure 2. There, the roots of the image trees are indicated by little circles.

From D and f , we construct a certain class of order graphs. The reader is advised
to consult Figure 4 while reading the description of this construction in the following
paragraph. We remind the reader that, in that example, the fixed prime number is
p = 5.

If v1 and v2 are adjacent in D, where v1 is closer to the root than v2, then we glue the
root of f(v2) to one of the leaves of f(v1). If this is done for all edges of D, we obtain
a rooted tree, U say, where the root of U is by definition the root of f(r), with r being
the root of D. In Figure 4, the root is again indicated by a square. Given some vertex
v in D, we label the edges in f(v) by `(v) and the non-root vertices in f(v) by p · `(v).
The root of U (that is, the root of f(r)) is assigned a number which is a multiple of

p · lcm{`(v) : v ∈ D}.
Abusing notation, we write f(D) for the set of order graphs resulting from this con-
struction. All of them are trees. We shall occasionally use the term order tree for these
order graphs.

Theorem 2. Let Γ ∼= π1(Γ(−), X) be a finitely generated virtually free group with
µ(Γ) ≥ 2, where X is an S-graph which is assumed to be normalised in the sense of
Lemma 1. Then µp(Γ) = 0 if, and only if, there exist a divisor tree D and a map f as
above from the set of vertices of D into the set of finite rooted trees such that the order
tree corresponding to (Γ(−), X) is in f(D).

6Here, ‘non-trivial’ means ‘at least two vertices’.



8 C. KRATTENTHALER AND T.W. MÜLLER
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Figure 3. A function f on the vertices of the divisor tree of Figure 2
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Figure 4. An order tree resulting from the divisor tree of Figure 2 and
the function f from Figure 3

Proof. We start with the proof of the forward implication. We consider the order
graph of (Γ(−), X), which we denote by G. By the characterisation of groups Γ with
µp(Γ) = 0 given in the paragraph after (2.10), we know that G is a tree, that, using
the identification of invariants of Γ and G discussed in Section 2, p | mG, and that
ζκ(G) = 0 for p | κ | mG and κ < mG. Also, since (Γ(−), X) is normalised, we have
n(e) < n(v) if v ∈ V (G) is incident with e ∈ E(G).

Let m be the minimal order of vertices and edges in G. Since (Γ(−), X) is assumed
to be normalised and µ(Γ) ≥ 2, this order must be the order of an edge. Furthermore,
m cannot be divisible by p since otherwise we would have

0 = ζm(G) =
∣∣{e ∈ E(G) : n(e) = m

}∣∣ > 0,

a contradiction.
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In order to proceed, we need to introduce an auxiliary object. Let ` be a positive
integer. We let S`(G) be the collection of subtrees of G consisting of those vertices
and edges with orders dividing `. It should be noted that the connected components of
S`(G) need not be trees in the classical sense since they may contain edges with one or
both of their vertices removed.

Next we consider Spm(G). We claim that Spm(G) consists of all vertices and edges
with orders m or pm, but no other vertices or edges. Let us assume for a contradiction
that there is a vertex v∗ with n(v∗) = pm′ or an edge e∗ with n(e∗) = pm′, m′ | m and
m′ < m, where m′ is minimal with this property. If there should be such a vertex v∗,
then it is incident with an edge ẽ with n(ẽ) properly dividing n(v∗) = pm′. The order
n(ẽ) cannot be m′ since this would contradict minimality of m. Thus, n(ẽ) = pm′′ with
m′′ | m′ and m′′ < m′, contradicting the minimality of m′. On the other hand, if there
is an edge e∗ as above, then we have

0 = ζpm′(G) =
∣∣{e ∈ E(G) : n(e) | pm′

}∣∣ − ∣∣{v ∈ V (G) : n(v) | pm′
}∣∣.

Thus, there must be at least one vertex v with n(v) | pm′. If n(v) < pm′, then we have
again a contradiction to the minimality of m′. If n(v) = pm′, then the above argument
for v∗ also produces a contradiction to the minimality of m′.

If pm = mG, then Spm(G) = G and indeed µp(Γ) = µp(G) = 0.
If pm < mG, then the connected components of Spm(G) might be of two kinds:

either an edge with order pm without vertices, or a subtree of G consisting of edges
with order m and of some vertices of these edges, which have order pm. If all vertices of
the edges would be part of the component, then this would already be the complete tree
G, which is impossible by our assumption that pm < mG. We may therefore assume
that in each component there is at least one vertex of some edge missing. This vertex
must be a leaf of the tree structure. (If not, the subtree would actually decompose into
smaller trees.) In that case, each component contributes a non-negative number to

ζpm(G) =
∣∣{e ∈ E(G) : n(e) | pm

}∣∣ − ∣∣{v ∈ V (G) : n(v) | pm
}∣∣.

Since ζpm(G) = 0, all components must actually contribute zero. This implies that
components of the first kind cannot exist, and all components consist of edges of order m
and an equal number of vertices with order pm, that is, exactly one of the vertices is
missing from the tree component.

We now remove Spm(G) from G. What remains is another order tree, say G′. It is
easy to see that our construction guarantees that ζκ(G

′) = ζκ(G) for all κ.
We repeat the above construction for G′, with a new minimal order m′ > m. This

process is continued until nothing remains from the original order tree G.
We now form a divisor tree out of the pieces of this construction. Each connected

component of Spm(G), of Spm′(G
′), . . . is interpreted as a vertex labelled by m, by

m′, . . . , respectively, and two vertices, v1 and v2 say, are connected by an edge if the
(incomplete) tree, C(v2) say, corresponding to v2 was attached to the (incomplete) tree,
C(v1) say, corresponding to v1 in the original order tree G. The label of v2 divides the
one of v1 since the order of the leaf of C(v1) on which C(v2) was attached must be a
multiple of the order of the edges of C(v2).

Finally, to see the reverse implication, one has to convince oneself that the divisor
tree construction of the theorem always yields order trees G with µp(G) = 0, and that
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we have µp(Γ) = 0 for any group Γ of the theorem with order graph equal to G, which
is not difficult. �

4. auxiliary results

The purpose of this section is to provide the means for the proof of Theorem 6 in the
next section. Lemma 3 below demonstrates that the derivatives of our basic series Φ(z)
in (1.2) can be expressed as a polynomial in Φ(z) with rational coefficients, which is one
of the fundamental facts needed in the proof of Theorem 6. The proof of the lemma is
based on the evaluation of the determinant of a block matrix given in Lemma 4, which
itself uses another determinant evaluation, provided in Lemma 5. The determinant
evaluation of Lemma 4 also plays a crucial role in the proof of Theorem 6.

Let p be a given prime number. In all of this section, we write N for µ(Γ)/(p − 1).
Using this notation, the series Φ(z) in (1.2) becomes

Φ(z) =
∞∑
n=1

(−1)Nn−
n−1
p−1

1

n

(
Nn
n−1
p−1

)
zn.

A straightforward application of the Lagrange inversion formula (cf. [13, Theorem 5.4.2])
shows that Φ(z) is the unique formal power series solution of the equation

Φ(z)− z
(
Φp−1(z)− 1

)N
= 0. (4.1)

Lemma 3. We have

Φ′(z) =
Pol(z,Φ(z))

(−1)(p−1)N
(
(p− 1)N

)(p−1)N
zp−1 +

(
(p− 1)N − 1

)(p−1)N−1
, (4.2)

where Pol(z, t) is a polynomial in z and t over the integers.

Proof. Differentiating both sides of (4.1), we obtain

Φ′(z)−
(
Φp−1(z)− 1

)N − zN(p− 1)Φ′(z)Φp−2(z)
(
Φp−1(z)− 1

)N−1
= 0.

Hence,

Φ′(z) =
(Φp−1(z)− 1)

N

1− zN(p− 1)Φp−2(z) (Φp−1(z)− 1)N−1
. (4.3)

We must now express the reciprocal of the denominator as a polynomial in Φ(z). In
order to do this, we make the Ansatz(

1− zN(p− 1)Φp−2(z)
(
Φp−1(z)− 1

)N−1
) (p−1)N−1∑

i=0

bi(z)Φi(z) = 1, (4.4)

with at this point undetermined coefficients bi(z), where the sum represents the re-
ciprocal of the denominator in (4.3). We multiply both sides of the last equation by
(Φp−1(z)− 1). Then, using (4.1), we obtain

((
1−N(p− 1)

)
Φp−1(z)− 1

) (p−1)N−1∑
i=0

bi(z)Φi(z) = Φp−1(z)− 1, (4.5)
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We expand the product on the left-hand side and use (4.1) again to reduce Φ(p−1)N(z)
to a linear combination of lower powers of Φ(z). This leads to

(
1−N(p− 1)

) (p−1)N−p∑
i=0

bi(z)Φi+p−1(z)

+
(
1−N(p− 1)

) p−2∑
i=0

bi+(p−1)(N−1)(z)

(
z−1Φi+1(z)−

N−1∑
k=0

(
N

k

)
(−1)N−kΦi+(p−1)k(z)

)

−
(p−1)N−1∑

i=0

bi(z)Φi(z) = Φp−1(z)− 1,

Comparison of powers of Φ(z) then yields a system of equations of the form

M · b = c, (4.6)

where b = (bi(z))0≤i≤(p−1)N−1 is the column vector of unknowns, c = (ci)0≤i≤(p−1)N−1

with c0 = −1, cp−1 = 1, and ci = 0 otherwise, and M is the (p− 1)N × (p− 1)N matrix
given by

Mi,j =



−1 if 0 ≤ i = j ≤ (p− 1)N − p,
X if p− 1 ≤ i = j + p− 1 ≤ (p− 1)N − 1,

Xz−1 if 1 ≤ i = j − (p− 1)(N − 1) + 1 ≤ p− 1,

(−1)N−k−1
(
N
k

)
X if 0 ≤ i− (p− 1)k = j − (p− 1)(N − 1) ≤ p− 2,

for some k with 0 ≤ k ≤ N − 1,

X being short for 1− (p− 1)N . The structure of the matrix M becomes clearer if we
reorder the rows and columns of the matrix simultaneously so that first come the rows
and columns indexed by i and j which are ≡ 0 (mod p − 1), respectively, then those
which are ≡ 1 (mod p− 1), . . . , and finally those which are ≡ p− 2 (mod p− 1). The
result is the matrix 

A 0 0 . . . 0 C
B A 0 . . . 0 0
0 B A . . . 0 0
...

. . . . . .
...

0 . . . 0 B A 0
0 . . . 0 0 B A

 , (4.7)

where the block A is the N ×N matrix given by

A =



−1 0 0 . . . 0 (−1)N−1X
X −1 0 . . . 0 (−1)N−2X

(
N
1

)
0 X −1 . . . 0 (−1)N−3X

(
N
2

)
...

. . . . . .
...

0 . . . 0 X −1 −X
(
N
N−2

)
0 . . . 0 X X

(
N
N−1

)
− 1


, (4.8)
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B is the N ×N matrix given by

B =


0 . . . 0 Xz−1

0 . . . 0 0
...

...
...

0 . . . 0 0

 ,

and C is the N ×N matrix given by

C =


0 . . . 0 0
0 . . . 0 Xz−1

0 . . . 0 0
...

...
...

0 . . . 0 0

 .

The determinant of M (that is, of the matrix in (4.7)) is computed in Lemma 4. It is
obviously non-zero, therefore the system of linear equations satisfied by the coefficients
bi(z), i = 0, 1, . . . , N − 1, has a unique solution. In the end, we obtain (4.2). �

Lemma 4. The determinant of the matrix in (4.7) equals

(−1)(p−1)N
(
(p− 1)N

)(p−1)N
+
(
(p− 1)N − 1

)(p−1)N−1
z−p+1.

Proof. We write the last column of (4.7) as the sum c1 +c2, where c1 is the column with
Xz−1 as index-1 entry (the reader should remember that our indexing starts with 0)
and 0’s otherwise, and c2 is the “rest,” that is, the index i entry equals

(−1)N−(i−(p−2)N)−1)

(
N

i− (p− 2)N

)
X − δi,(p−1)N−1

for i = (p− 2)N, (p− 2)N + 1, . . . , (p− 1)N − 1 and 0’s otherwise. Then, by linearity
in the last column, the determinant detM equals the sum of

det



A 0 0 . . . 0 0
B A 0 . . . 0 0
0 B A . . . 0 0
...

. . . . . .
...

0 . . . 0 B A 0
0 . . . 0 0 B A

 , (4.9)

and the determinant of a second matrix, which arises from (4.7) by replacing the last
column by c1. Since the matrix in (4.9) is a lower triangular block matrix, its determi-
nant equals

(detA)p−1 . (4.10)

We are going to evaluate the determinant of A in Lemma 5.
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In order to evaluate the determinant of the second matrix, we expand it along the
last column. This leads to the expression

(−1)(p−1)NXz−1 det



A′ 0 0 . . . 0 0
B A 0 . . . 0 0
0 B A . . . 0 0
...

. . . . . .
...

0 . . . 0 B A 0
0 . . . 0 0 B A′′

 , (4.11)

where A′ is the matrix which arises from A by deleting its row with index 1 (it should
be remembered again that our indexing of rows starts with the index 0), and A′′ is the
matrix which arises from A be deleting its last column. Inspection of the matrix in
(4.11) reveals that it is an upper (sic!) triangular matrix, hence its determinant equals
the product of its diagonal entries, so that (4.11) equals

(−1)(p−1)NXz−1
(
Xz−1

)p−2
(−1)X(p−1)(N−1)−1 =

(
(p− 1)N − 1

)(p−1)N−1
z−p+1. �

Lemma 5. With the matrix A given by (4.8), We have

detA = (−1)N
(
(p− 1)N

)N
.

Proof. We replace the 0-th row of A by

N−1∑
j=0

X−j · (row j).

This is an operation which does not change the determinant. For the entry in the 0-th
row and (N − 1)-st column of the new matrix, we obtain

N−1∑
j=0

X−j(−1)N−j−1

(
N

j

)
X −X−N+1 = −X−N+1

N∑
j=0

XN−j(−1)N−j
(
N

j

)

= −X−N+1(1−X)N = −
(
(p− 1)N

)N
XN−1

. (4.12)

Thus, after the operation described above, the new matrix reads

0 0 0 . . . 0 Y
X −1 0 . . . 0 (−1)N−2X

(
N
1

)
0 X −1 . . . 0 (−1)N−3X

(
N
2

)
...

. . . . . .
...

0 . . . 0 X −1 −X
(
N
N−2

)
0 . . . 0 X X

(
N
N−1

)
− 1


,

where Y denotes the quantity in (4.12). The determinant of this matrix, and thus the
determinant of A, equals

(−1)N−1XN−1Y = (−1)N
(
(p− 1)N

)N
,

establishing the claim. �
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5. A generating function approach

Given a finitely generated virtually free group Γ, in this section we write F (z) for the
generating function FΓ(z) =

∑∞
λ=1 fλ(Γ) zλ of the number fλ(Γ) of subgroups of index

λmΓ in Γ. The theorem below shows that, under the conditions of Theorem 2, the
series F (z), when coefficients are reduced modulo any given p-power, can be expressed
as a polynomial in Φ(z).

Theorem 6. Let p be a prime and α a positive integer. Furthermore, let Γ be a finitely
generated virtually free group with µp(Γ) = 0 and µ(Γ) ≥ 2. As before, let Φ(z) be the
series in (1.2). Then the generating function F (z) for the free subgroup numbers of Γ,
when reduced modulo pα, can be expressed as a polynomial in Φ(z) of degree at most
µ(Γ)− 1, with coefficients in Z[z, z−1, Y −1(z)], where

Y (z) =

{
zp−1 −

(µ(Γ)
p−1

+ 1
)−1

, if p ≥ 3 and µ(Γ) 6≡ 0, 1 (mod p),

1, otherwise.

Proof. It is known from [10, Prop. 2] that F (z) satisfies a differential equation of the
form

F (z) = z
(
F p−1(z)− 1

)µ(Γ)/(p−1)
+ pP

(
z, F (z), F ′(z), . . . , F (µ(Γ)−1)(z)

)
, (5.1)

where P(z, t0, t1, . . . , tµ(Γ)−1) is a polynomial in z, t0, t1, . . . , tµ(Γ)−1 over the integers.
(To be precise, this is the result of a careful p-adic analysis of the differential equation
arising from a combination of (2.6) and (2.8).) It is our goal to express F (z) modulo pα

as a polynomial in Φ(z) with coefficients in Z[z, z−1, Y −1(z)]. Since Φ(z) satisfies the
functional equation (4.1) with N = µ(Γ)/(p− 1), we have

F (z) = Φ(z) modulo p.

Here, given integral power series (or Laurent series) f(z) and g(z), we write

f(z) = g(z) modulo pγ

to mean that the coefficients of zi in f(z) and g(z) agree modulo pγ for all i.
We now suppose that we have already found a polynomial

Fβ(z) =

µ(Γ)−1∑
i=0

ai,β(z)Φi(z),

with coefficients ai,β(z) in Z[z, z−1, Y −1(z)], so that

F (z) = Fβ(z) modulo pβ. (5.2)

We then make the Ansatz

F (z) = Fβ+1(z) = Fβ(z) + pβ
µ(Γ)−1∑
i=0

bi,β+1(z)Φi(z) modulo pβ+1, (5.3)
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for certain, at this point undetermined, rational functions bi,β+1(z) over the integers.
We substitute this Ansatz in the differential equation (5.1) and reduce the result mod-
ulo pβ+1, to obtain

Fβ(z) + pβ
µ(Γ)−1∑
i=0

bi,β+1(z)Φi(z)

− z

F p−1
β (z) + (p− 1)F p−2

β (z)pβ
µ(Γ)−1∑
i=0

bi,β+1(z)Φi(z)− 1

µ(Γ)/(p−1)

− pP
(
z, Fβ+1(z), F ′β+1(z), . . . , F

(µ(Γ)−1)
β+1 (z)

)
= 0 modulo pβ+1. (5.4)

By Lemma 3, we have

F
(j)
β+1(z) = F

(j)
β (z) + pβ

µ(Γ)−1∑
i=0

ci,β+1;j(z)Φi(z) (5.5)

for all non-negative integers j and certain rational functions ci,β+1;j(z). It should be
noted that the denominators of these rational functions are powers of

(−1)(p−1)N
(
(p− 1)N

)(p−1)N
zp−1 +

(
(p− 1)N − 1

)(p−1)N−1
, (5.6)

where we wrote again N = µ(Γ)/(p−1) for short. Since we are considering (5.4) modulo
pβ+1, and since the sum on the right-hand side of (5.5) has the prefactor pβ, we may
reduce these denominators modulo p. Explicitly, we have

(−1)(p−1)N
(
(p− 1)N

)(p−1)N
zp−1 +

(
(p− 1)N − 1

)(p−1)N−1

=



1 (mod p), if p = 2 and N is even,

z (mod p), if p = 2 and N is odd,

−1 (mod p), if p ≥ 3 and N ≡ 0 mod p

zp−1 (mod p), if p ≥ 3 and N ≡ −1 mod p

zp−1 − (N + 1)−1 (mod p), if p ≥ 3 and N 6≡ 0, 1 mod p

(5.7)

In all cases, the reciprocals of the polynomials on the right-hand side of (5.7) are
elements of Z[z, z−1, Y −1(z)]. (Here we use that N ≡ −1 (mod p) and µ(Γ) ≡ 1 (mod p)
are equivalent.) Hence, in our computation, the coefficients ci,β+1;j(z) may be assumed
to lie in Z[z, z−1, Y −1(z)].

If relation (5.5) is substituted in (5.4), then one sees that this congruence reduces to

Fβ(z) + pβ
µ(Γ)−1∑
i=0

bi,β+1(z)Φi(z)

− z

(F p−1
β (z)− 1)N + pβ(p− 1)NF p−2

β (z)(F p−1
β (z)− 1)N−1

µ(Γ)−1∑
i=0

bi,β+1(z)Φi(z)


− pP

(
z, Fβ(z), F ′β(z), . . . , F

(µ(Γ)−1)
β (z)

)
= 0 modulo pβ+1.



16 C. KRATTENTHALER AND T.W. MÜLLER

By definition of Fβ(z), we may divide both sides by pβ. This leads to the congruence

Gβ(z) +

µ(Γ)−1∑
i=0

bi,β+1(z)Φi(z)

− (p− 1)NzF p−2
β (z)(F p−1

β (z)− 1)N−1

µ(Γ)−1∑
i=0

bi,β+1(z)Φi(z) = 0 modulo p,

for some explicitly given polynomial Gβ(z) in Φ(z) with coefficients in Z[z, z−1, Y −1(z)].
By construction, we have

Fβ(z) = Φ(z) modulo p.

Using this in the above congruence, we arrive at

Gβ(z) +
(
1− (p− 1)NzΦp−2(z)(Φp−1(z)− 1)N−1

) µ(Γ)−1∑
i=0

bi,β+1(z)Φi(z) = 0

modulo p. (5.8)

By reducing “high” powers of Φ(z) by means of (4.1) and subsequently comparing
coefficients of powers of Φ(z), we obtain a system of linear equations over Z/pZ for
the unknown rational functions bi,β+1(z), i = 0, 1, . . . , µ(Γ) − 1. As inspection shows,
the coefficient matrix of the system is exactly the same as the one arising from (4.5).
(The reader should in particular compare (5.8) and (4.4).) We have computed the
determinant of this coefficient matrix in the proof of Lemma 3. As a matter of fact, it
equals (5.6) divided by zp−1. Since (5.8) is a congruence modulo p, we have to reduce
(5.6) modulo p, which we did in (5.7). We observed that the reciprocals of the reduced
expressions lie in Z[z, z−1, Y −1(z)] in all cases. In particular, they are all non-zero.
Hence, there are unique rational functions bi,β+1(z), i = 0, 1, . . . , µ(Γ)−1, solving (5.8),
and all of them are elements of Z[z, z−1, Y −1(z)]. This completes the proof of the
theorem. �

Theorem 6 has a remarkable consequence concerning the nature of the generating
function F (z) for the free subgroup numbers of a finitely generated virtually free
group Γ. In the proof of the theorem, we used that F (z) satisfies an algebraic dif-
ferential equation of the form (5.1). The technical term which is commonly used for
this situation is that the generating function F (z) is differentially algebraic. On the
other hand, it may be safely conjectured that it does not belong to the more restrictive
class of D-finite power series, that is, it does not satisfy a linear differential equation
with polynomial coefficients. Equivalently, we conjecture that the sequence of free sub-
group numbers of Γ is not P-recursive, that is, it does not satisfy a linear recurrence
with polynomial coefficients. (The reader is referred to [13, Ch. 6] for information on
D-finite series and P-recursive sequences.) Theorem 6 implies that the situation changes
drastically when one reduces the free subgroup numbers modulo a given prime power.
(The reader should recall that algebraic power series are automatically D-finite.)

Corollary 7. Under the assumptions of Theorem 6, we have

F (z) = Ap,α(z) modulo pα,
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where Ap,α(z) is an algebraic power series, that is, it satisfies an equation of the form
Pol(Ap,α(z), z) = 0, where Pol(y, z) is a polynomial in y and z.

Proof. Theorem 6 says that F (z) can be expressed as a polynomial in Φ(z), z, z−1, and
Y −1(z). The series Φ(z) is algebraic by (4.1), as are z, z−1, and Y −1(z). The assertion of
the corollary then follows from the closure properties of the class of algebraic series. �

6. The main results

Let again Γ be a finitely generated virtually free group and p a prime such that
µp(Γ) = 0 and µ(Γ) ≥ 2. We are now in the position to derive the main results of
this paper, which say that the number of free subgroups of index λmΓ in Γ, when
reduced modulo any given p-power, is congruent to a binomial coefficient involving λ
times a rational function in λ, respectively a sum involving these quantities. These
results are made precise in Corollaries 8 and 12 below. We accompany these results by
concrete examples, given in Example 9 and 10, which illustrate Corollary 8, respectively
Example 14, illustrating Corollary 12. Moreover, we explain in Remarks 11 and 15 how
the earlier results in [2, 4] fit into the more general picture that we present here.

Corollary 8. Let r be a non-negative integer. With the assumptions of Theorem 6, if
µ(Γ) ≡ 0, 1 (mod p), then

fλ(Γ) ≡ RΓ,p,r(λ)

(µ(Γ)λ
p−1

λ−r
p−1

)
(mod pα), for λ ≡ r (mod p− 1), (6.1)

where, RΓ,p,r(λ) is a rational function in λ. Furthermore, the right-hand side of the
above congruence is always integral.

Proof. By Theorem 6, the generating function
∑∞

λ=1 fλ(Γ) zλ equals

µ(Γ)−1∑
i=0

bi,α(z)Φi(z) modulo pα, (6.2)

and the coefficients bi,α(z) are elements of Z[z, z−1, Y −1(z)]. According to the definition
of Y (z), under our assumption µ(Γ) ≡ 0, 1 we have Y (z) = 1. Consequently, the
coefficients bi,α(z) are actually Laurent polynomials over the integers.

We must now extract the coefficient of zλ in (6.2). In order to do so, we appeal again
to the Lagrange inversion formula (cf. [13, Theorem 5.4.2]), which shows that

〈zn〉Φm(z) = (−1)
(µ(Γ)−1)n+m

p−1
m

n

(µ(Γ)n
p−1
n−m
p−1

)
. (6.3)

If this is used to extract the coefficient of zλ in (6.2) for λ ≡ r (mod p − 1), then
one arrives at the assertion (6.1). The integrality claim follows from the fact that the
expression on the right-hand side of (6.1) is an integral linear combination of terms
(6.3), all of which are integral. �

Example 9. We let p = 3 and Γ1 a finitely generated virtually free group with order
graph given by the normalised tree in Figure 5. In this situation, we have mΓ1 = 6,
ζ1(Γ1) = 2, ζ2(Γ1) = 4, ζ3(Γ1) = 0, and ζ6(Γ1) = −1, and thus

µ3(Γ1) = 1 + ϕ
(

6
3

)
ζ3(Γ1) + ϕ

(
6
6

)
ζ6(Γ1) = 1 + 0 + (−1) = 0
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Figure 5. The order graph of the group Γ1 in Example 9

and

µ(Γ1) = 1+ϕ
(

6
1

)
ζ1(Γ1)+ϕ

(
6
2

)
ζ2(Γ1)+ϕ

(
6
3

)
ζ3(Γ1)+ϕ

(
6
6

)
ζ6(Γ1) = 1+4+8+0−1 = 12.

The functional equation for F (z) = FΓ1(z) that we get from (2.6) and (2.8), after
reduction of the coefficients modulo 81, is

63z3F 9(z)F ′′(z) + 72z3F 3(z)F ′′(z) + 27z3F (z)F ′′(z) + 72z2F 10(z)F ′(z)

+ 36z2F 9(z)F ′(z) + 9z2F 4(z)F ′(z) + 18z2F 3(z)F ′(z) + 27z2F 2(z)F ′(z)

+ 27z2F (z)F ′(z) + 54z2F ′(z) + zF 12(z) + 36zF 11(z) + 15zF 10(z) + 72zF 9(z)

+ 54zF 8(z) + 46zF 6(z) + 18zF 5(z) + 21zF 4(z) + 63zF 3(z)

+ 9zF 2(z) + 54zF (z) + 80F (z) + 16z = 0 modulo 81.

The algorithm given in the proof of Theorem 6 to find a solution to this congruence
yields

F (z) = 15z + (27z + 1)Φ(z) + 69zΦ2(z) + 9zΦ3(z) + 42zΦ4(z) + 27zΦ5(z)

+ 39zΦ6(z) + 27zΦ7(z) + 66zΦ8(z) + 72zΦ9(z) + 12zΦ10(z) modulo 81.

Coefficient extraction then yields

f2L+1(Γ1) ≡ (−1)L+1 P1(L)

(12L+ 1)6

(
12L+ 6

L

)
(mod 81), for L ≥ 1,

where

P1(L) = 18(473007L5 + 969687L4 + 765456L3 + 308998L2 + 72732L+ 9080),

and

f2L(Γ1) ≡ (−1)L+1 P2(L)

(12L− 6) (11L− 4)4

(
12L− 6

L− 1

)
(mod 81), for L ≥ 1,

where

P2(L) = 324(48L6 − 528L5 + 6079L2 + 9091L4 − 10582L3 − 1874L+ 286),

with the Pochhammer symbol (α)m being defined by (α)m := α(α + 1) · · · (α +m− 1)
for m ≥ 1, and (α)0 := 1.

Example 10. We let p = 2 and Γ2 a finitely generated virtually free group with order
graph given by the normalised tree in Figure 6. In this situation, we have mΓ2 = 30,
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Figure 6. The order graph of the group Γ2 in Example 10

ζ1(Γ2) = 0, ζ2(Γ2) = 0, ζ3(Γ2) = 3, ζ5(Γ2) = 1, ζ6(Γ2) = 0, ζ10(Γ2) = 0, ζ15(Γ2) = 5,
and ζ30(Γ2) = −1, and thus

µ2(Γ2) = 1 + ϕ
(

30
2

)
ζ2(Γ2) + ϕ

(
30
6

)
ζ6(Γ2) + ϕ

(
30
10

)
ζ10(Γ2) + ϕ

(
30
30

)
ζ30(Γ2)

= 1 + 0 + 0 + (−1) = 0

and

µ(Γ2) = 1 + ϕ
(

30
1

)
ζ1(Γ2) + ϕ

(
30
2

)
ζ2(Γ2) + ϕ

(
30
3

)
ζ3(Γ2) + ϕ

(
30
5

)
ζ5(Γ2) + ϕ

(
30
6

)
ζ6(Γ2)

+ ϕ
(

30
10

)
ζ10(Γ2) + ϕ

(
30
15

)
ζ15(Γ2) + ϕ

(
30
30

)
ζ30(Γ2)

= 1 + 0 + 0 + 12 + 2 + 0 + 0 + 5 + (−1) = 19.

The functional equation for F (z) = FΓ2(z) that we get from (2.6) and (2.8), after
reduction of the coefficients modulo 16, is

4z3F 16(z)F ′′(z) + 8z3F 8(z)F ′′(z) + 4z3F ′′(z) + 10z2F 17(z)F ′(z) + 10z2F 16(z)F ′(z)

+ 8z2F 13(z)F ′(z) + 8z2F 12(z)F ′(z) + 12z2F 9(z)F ′(z) + 12z2F 8(z)F ′(z)

+ 8z2F 5(z)F ′(z) + 8z2F 4(z)F ′(z) + 10z2F (z)F ′(z) + 10z2F ′(z) + zF 19(z)

+ 13zF 18(z) + 11zF 17(z) + 7zF 16(z) + 4zF 15(z) + 4zF 14(z) + 12zF 13(z)

+ 12zF 12(z) + 14zF 11(z) + 6zF 10(z) + 10zF 9(z) + 2zF 8(z) + 4zF 7(z) + 4zF 6(z)

+12zF 5(z)+12zF 4(z)+9zF 3(z)+5zF 2(z)+3zF (z)+15F (z)+15z = 0 modulo 16.

The algorithm given in the proof of Theorem 6 to find a solution to this congruence
yields

F (z) = 4z + 5Φ(z) + (12z + 2)Φ2(z) + 8Φ3(z) + 12Φ4(z) + 8Φ5(z) + 8zΦ8(z)

+ 8zΦ10(z) + 4zΦ16(z) + 12zΦ18(z) modulo 16.

Coefficient extraction then yields

fλ(Γ2) ≡ Q(λ)

3λ(6λ+ 1)(9λ+ 1)(9λ+ 2)(18λ+ 5)(19λ− 18)19

(
19λ

λ− 1

)
(mod 16),

for λ ≥ 2,
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where

Q(λ) = 41487381613117440000 + 1687131469740810240000λ

+ 11694465019743123456000λ2 + 292824544319204134118400λ3

− 2920284679646876757433344λ4 + 29139678526675320716647104λ5

− 208744430518331785363075776λ6 + 1109655351908161743775529040λ7

− 4529445293042933659974133664λ8 + 13823323659414730061860809764λ9

− 27457006500072077685531953836λ10 + 13774006864417015570820956495λ11

+ 106285230034124606189268827556λ12 − 297352958635465036740864629691λ13

− 141581261268484414672371284786λ14 + 3042215815187103665497014434600λ15

− 10200061275321550038724683325744λ16 + 20246947276823841509192253805174λ17

− 27403542237122957637017406285816λ18 + 26128885491619758888717502991655λ19

− 17392298204833244937049876124804λ20 + 7727636538613299232368005827649λ21

− 2065181275328822431645181305786λ22 + 251508577253835734501825269810λ23.

Remark 11. More generally, if p = 2, µ2(Γ) = 0 and µ(Γ) ≥ 2, then we are always in the
case covered by Corollary 8, since, trivially, µ(Γ) ≡ 0 (mod 2) or µ(Γ) ≡ 1 (mod 2). In
particular, we see that the discussion of the subgroup numbers of lifts of Hecke groups
H(q) ∼= C2 ∗ Cq with q a Fermat prime modulo powers of 2 in [2, Sec. 8 and second
part of Sec. 13] fits into the framework of Corollary 8, which can be regarded as a vast
generalisation. It has to be emphasised yet that the results for lifts of Hecke groups
in [2] go slightly further than Corollary 8 in that case as the basic series used there
— which is the mod-2-reduction of our basic series Φ(z) — allows for a very efficient
coefficient extraction, a point that we did not touch in the present paper.

Now we turn to the somewhat more complicated case when µ(Γ) 6≡ 0, 1 (mod p).

Corollary 12. Let r be an integer with 0 ≤ r ≤ p − 2. With the assumptions of
Theorem 6, if µ(Γ) 6≡ 0, 1 (mod p), then

fλ(Γ) ≡
(
µ(Γ)

p− 1
+ 1

)λ/(p−1)

R
(1)
Γ,p,r(λ)

+

bλ/(p−1)c∑
k=0

(
µ(Γ)

p− 1
+ 1

)k
R

(2)
Γ,p,r(λ, k)

(µ(Γ)λ
p−1
− µ(Γ)k

λ−r
p−1
− k

)
(mod pα),

for λ ≡ r (mod p− 1), (6.4)

where R
(1)
Γ,p,r(λ) and R

(2)
Γ,p,r(λ, k) are rational functions in their respective arguments.

Moreover, R
(2)
Γ,p,r(λ, k) depends only on λ

p−1
− k, and the right-hand side of the above

congruence is always integral.

Proof. We begin as in the proof of Corollary 12 by quoting Theorem 6, which tells us
that the generating function

∑∞
λ=1 fλ z

λ is given by (6.2) modulo pα. However, here we
have Y (z) = zp−1 − (N + 1)−1, with N = µ(Γ)/(p− 1).
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Again, we must now extract the coefficient of zλ in (6.2). Here, we must first expand
fractions,

1

Y q(z)
=

1(
zp−1 − (N + 1)−1

)q = (−1)q(N + 1)q
∞∑
k=0

(
q + k − 1

k

)
(N + 1)kz(p−1)k.

Subsequent coefficient extraction using (6.3) leads to the result in (6.4), where the term

containing R
(1)
Γ,p,r(λ) comes from the summand b0,α(z) in (6.2), while the term containing

R
(2)
Γ,p,r(λ, k) is generated by the remaining summands in (6.2). The integrality claim

follows from the fact that the expression on the right-hand side of (6.4) is an integral
linear combination of terms, all of which are integral. �

We now show that the sum on the right-hand side of (6.4) satisfies a linear recurrence
with constant coefficients, so that the computation of this sum modulo pα can be
achieved in essentially linear time with growing λ by reducing results modulo pα after
each iteration of the recurrence. (We say “essentially” since the computation of the
inhomogeneous part of the recurrence does grow super-linearly.)

Proposition 13. Let r be an integer with 0 ≤ r ≤ p− 2, and let Sr(λ) denote the sum
on the right-hand side of (6.4). Then we have

d+1∑
j=0

(−1)j
(
d+ 1

j

)
Md+1−jSr(λ+ (p− 1)j) = gr(λ), for λ ≡ r (mod p− 1), (6.5)

where d is the numerator degree of R
(2)
Γ,p,r(λ, k) in λ, M = µ(Γ)

p−1
+ 1, and gr(λ) is a

hypergeometric term, that is, gr(λ+ 1)/gr(λ) equals a rational function in λ.

Proof. We fix r, and we write λ = (p− 1)L+ r. Using this notation, the sum Sr(λ) has
the form

Sr(λ) = Sr((p− 1)L+ r) =
L∑
k=0

MkA(L− k, L) f(L− k), (6.6)

where A(x, y) is a polynomial in x and y of degree d in y, and f(L − k) comprises
the binomial coefficient on the right-hand side of (6.4) as well as the denominator of

R
(2)
Γ,p,r(λ, k). We chose to parametrise the polynomial A(L−k, L) in this slightly unusual

form since it will be of advantage during the following computation.
Let E denote the shift operator in L, that is, (Eh)(L) := h(L + 1). We now apply

(E −M · id)d+1 to (6.6). We obtain

(E −M · id)d+1Sr((p− 1)L+ r)

=
d+1∑
j=0

(−1)d+1−j
(
d+ 1

j

)
Md+1−j

L+j∑
k=0

MkA(L+ j − k, L+ j) f(L+ j − k)

=
d+1∑
j=0

(−1)d+1−j
(
d+ 1

j

)
Md+1−j

L∑
k=−j

Mk+jA(L− k, L+ j) f(L− k)

=
L∑
k=0

Md+k+1f(L− k)
d+1∑
j=0

(−1)d+1−j
(
d+ 1

j

)
A(L− k, L+ j) +Gr(L),
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Figure 7. The order graph of the group H(7) in Example 14

where Gr(L) is the hypergeometric term resulting from summands that we split off
when passing from the summation over k running from −j to L in the next-to-last line
to the summation over k running from 0 to L in the last line. Using the difference
operator ∆t defined by (∆th)(t) := h(t+ 1)−h(t), this last expression can be rewritten
as

(E−M ·id)d+1Sr((p−1)L+r) =
L∑
k=0

Md+k+1f(L−k) ∆d+1
t A(L−k, t)

∣∣
t=L

+Gr(L). (6.7)

We assumed that A(x, y) is a polynomial of degree d in y, hence ∆d+1
t kills A(L− k, t).

Consequently, on the right-hand side in (6.7) there remains only Gr(L), while, after
expansion of (E −M · id)d+1, the left-hand side becomes the left-hand side of (6.5), as
desired. �

Example 14. We consider the Hecke group H(7) = C2 ∗C7, whose order graph is shown
in Figure 7, and the prime p = 7. We have mH(7) = 14, ζ1(H(7)) = 1, ζ2(H(7)) = 0,
ζ7(H(7)) = 0, and ζ14(H(7)) = −1, and thus µ7(H(7)) = 0 and µ(H(7)) = 6.

The functional equation for F (z) = FH(7)(z) that we get from (2.6) and (2.8) is
sufficiently small to be displayed here:

537824z6F (5)(z) + 230496z5F (z)F (4)(z) + 6991712z5F (4)(z) + 41160z4F (z)2F (3)(z)

+ 1959216z4F (z)F (3)(z) + 24989608z4F (3)(z) + 384160z5
(
F ′′(z)

)2
+ 3920z3F 3(z)F ′′(z)

+ 205800z3F 2(z)F ′′(z) + 3874528z3F (z)F ′′(z) + 25988424z3F ′′(z) + 41160z4
(
F ′(z)

)3

+ 8820z3F 2(z)
(
F ′(z)

)2
+ 288120z3F (z)

(
F ′(z)

)2
+ 2512132z3

(
F ′(z)

)2

+ 210z2F 4(z)F ′(z) + 9800z2F 3(z)F ′(z) + 180516z2F 2(z)F ′(z) + 1561336z2F (z)F ′(z)

+ 5336394z2F ′(z) + 576240z5F (3)(z)F ′(z) + 164640z4F (z)F ′(z)F ′′(z)

+ 3649520z4F ′(z)F ′′(z) + zF 6(z) + 42zF 5(z) + 679zF 4(z) + 5292zF 3(z)

+ 20335zF 2(z) + 34986zF (z)− F (z) + 19305z = 0.

The algorithm in the proof of Theorem 6 to find a solution to this congruence gives

7
(
8z18 + 12z17 + 7z15 + 7z13 + 48z12 + 16z11

+7z10 + 35z9 + 42z7 + 23z6 + 24z5 + 21z4 + 42z3 + 14z
)

(1− 2z6)3

+

1 +

7
(
35z18 + 11z17 + 30z16 + 14z14 + 14z12 + 17z11

+47z10 + 14z9 + 42z8 + 21z6 + z5 + 32z4 + 42z3
)

(1− 2z6)3

Φ(z)
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+

7
(
28z17 + 36z16 + 31z15 + 14z14 + 7z13 + 21z11 + 20z10

+18z9 + 35z8 + 28z7 + 7z5 + 30z4 + 41z3 + 28z2 + 21z
)

(1− 2z6)3 Φ2(z)

+

7
(
42z16 + 29z15 + 22z14 + 7z13 + 7z12 + 7z10 + 27z9

+48z8 + 35z7 + 21z6 + 35z4 + 16z3 + 2z2 + 42z
)

(1− 2z6)3 Φ3(z)

+

7
(
42z17 + 14z15 + 41z14 + 19z13 + 7z12 + 42z11

+35z9 + z8 + 23z7 + 21z6 + 42z5 + 28z3 + 26z2 + 31z
)

(1− 2z6)3 Φ4(z)

+

7
(
22z18 + 21z17 + 21z16 + 21z14 + 34z12 + 7z11

+7z10 + 28z8 + 9z6 + 28z5 + 28z4 + 42z2
)

(1− 2z6)3 Φ5(z)

modulo 343. (6.8)

Finally, we have to extract coefficients. We content ourselves with displaying here the
results for fλ(H(7)) for λ ≡ 0 (mod 6); for the other congruence classes for λ, similar
results are available. By comparing coefficients of z6λ on both sides of (6.8), we obtain

f6λ(H(7)) ≡ 7 · 2λ−2(49λ2 − 7λ+ 4)

+ 7
∞∑
k=0

(−1)k+λ2k−4 5 (5k − 5λ+ 1) (k − λ)P (λ)

3 (6λ− 6k − 5)5

(
6λ− 6k

λ− k

)
(mod 343), (6.9)

where

P (λ) = 22661k4−45322k3λ+70594k3 +22661k2λ2−110545k2λ+92331k2 +39951kλ2

− 110913kλ+ 56014k + 28424λ2 − 38696λ+ 12528.

Let us denote the sum on the right-hand side of the congruence (6.9) by S(λ). Applying
Proposition 13 (or, more precisely, its proof; alternatively, one may use the Gosper–
Zeilberger algorithm; cf. [11]), we see that S(λ) satisfies the recurrence

S(λ+ 3)− 6S(λ+ 2) + 12S(λ+ 1)− 8S(λ) = 7 (−1)λ+1 T (λ)
(6λ)!

λ! (5λ+ 13)!
,

where

T (λ) = 7578375074183λ12 + 110764942152696λ11 + 719438896272607λ10

+ 2739679993093800λ9 + 6794561274739329λ8 + 11525824255968648λ7

+ 13662933657289381λ6 + 11354903297697240λ5 + 6532000464773588λ4

+ 2520106018198656λ3 + 613697061412512λ2 + 83672481893760λ+ 4738762828800.

Remark 15. The discussion of free subgroup numbers of lifts Γm(3) of the classical
modular group H(3) ∼= PSL2(Z) in [4, Sec. 16] taken modulo powers of 3 fits into the
framework of Corollary 12. Indeed, for these lifts, we have µΓm(3) = 2, which is not
congruent to 0, 1 (mod 3). Consequently, according to Theorem 6, we must be prepared
to encounter denominators in the coefficients of the polynomial in Φ(z) that expresses
the generating function for the free subgroup numbers when coefficients are reduced
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modulo a power of 3. This is exactly what happened in [4], and this is also the reason
why coefficient extraction was considerably harder in [4] than in [2].
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