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A Geometric Invariant Characterising Initial
Data for the Kerr—-Newman Spacetime

Michael J. Cole and Juan A. Valiente Kroon

Abstract. We describe the construction of a geometric invariant char-
acterising initial data for the Kerr—Newman spacetime. This geometric
invariant vanishes if and only if the initial data set corresponds to exact
Kerr—Newman initial data, and so characterises this type of data. We first
illustrate the characterisation of the Kerr—Newman spacetime in terms of
Killing spinors. The space-spinor formalism is then used to obtain a set
of four independent conditions on an initial Cauchy hypersurface that
guarantee the existence of a Killing spinor on the development of the ini-
tial data. Following a similar analysis in the vacuum case, we study the
properties of solutions to the approximate Killing spinor equation and
use them to construct the geometric invariant.

1. Introduction

The Kerr—-Newman solution to the Einstein—-Maxwell equations, describing a
stationary charged rotating black hole, is one of the most interesting and well-
studied exact solutions in general relativity, and yet there still remain several
unresolved questions. For example, the current family of uniqueness results
regarding the Kerr—-Newman solution contain assumptions on the spacetime
that are often considered too restrictive, such as analyticity—see, e.g. [13], for
a review on the subject. Also, although there has been significant progress on
the linear stability of the Kerr—-Newman solution, the question of nonlinear
stability has been far more stubborn—see, e.g. [15], for a discussion on this
topic.

Making progress on these unresolved questions concerning electrovacuum
black holes provides the motivation for finding characterisations of the Kerr—
Newman spacetime. Different methods for characterising the exact solution
can be tailored to emphasise specific properties, and so address each of these
unresolved properties directly. One such characterisation is expressed in terms
of Killing spinors, closely related to Killing—Yano tensors, which represent
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hidden symmetries of the spacetime. These symmetries cannot be expressed
in terms of isometries of the spacetime. It has been shown in [14] that an
asymptotically flat electrovacuum spacetime admitting a Killing spinor which
satisfies a certain alignment condition with the Maxwell field must be isometric
to the Kerr—Newman spacetime—see Theorem 1.

Once the motivation for a characterisation of the Kerr-Newman space-
time in terms of Killing spinors has been established, it is useful to investigate
how the existence of such a spinor can be expressed in terms of initial data.
The initial value problem in general relativity has played a crucial role in the
systematic analysis of the properties of generic solutions to the Einstein field
equations—see, e.g. [16,21,22]. It also provides the framework necessary for
numerical simulations of spacetimes to be performed—see, e.g. [1,8§].

Representing symmetries of a spacetime in terms of conditions on an
initial hypersurface is not a new idea; the Killing initial data (KID) equa-
tions—see, e.g. [10]—are conditions on a spacelike Cauchy surface S which
guarantee the existence of a Killing vector in the resulting development of the
initial data. Thus, isometries of the whole spacetime can be encoded at the
level of initial data. The resulting conditions form a system of overdetermined
equations, so do not necessarily admit a solution for an arbitrary initial data
set. In fact, it has been shown that the KID equations are non-generic, in the
sense that generic solutions of the vacuum constraint Einstein equations do not
possess any global or local spacetime Killing vectors—see [11]. An analogous
construction can, in principle, be performed for Killing spinors. This analysis
has been performed for the vacuum case giving explicitly the conditions re-
lating the Killing spinor candidate and the Weyl curvature of the spacetime
—see [17] and also [4]. These conditions are, like the KID equations, an overde-
termined system and so do not necessarily admit a solution for an arbitrary
initial surface. However, in [3,4] it has been shown that given an asymptoti-
cally Euclidean hypersurface it is always possible to construct a Killing spinor
candidate which, whenever there exists a Killing spinor in the development,
coincides with the restriction of the Killing spinor to the initial hypersurface.
This approximate Killing spinor is obtained by solving a linear second-order
elliptic equation which is the Euler-Lagrange equation of a certain functional
over §. The approximate Killing spinor can be used to construct a geometric
invariant, which in some way parametrises the deviation of the initial data set
from Kerr initial data. Variants of the basic construction in [4] have been given
in [5,6].

The purpose of this article is to extend the analysis of [4] to the electrovac-
uum case. In doing so, we rely on the characterisation of the Kerr—-Newman
spacetime given in [14] which, in turn, builds upon the characterisation pro-
vided in [18] for the vacuum case and [24] for the electrovacuum case. As a
result of our analysis, we find that the Killing spinor initial data equations
remain largely unchanged, with extra conditions, ensuring that the electro-
magnetic content of the spacetime inherits the symmetry of the Killing spinor.
These electrovacuum Killing spinor equations, together with an appropriate
approximate Killing spinor, are used to construct an invariant expressed in
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terms of suitable integrals over the hypersurface S whose vanishing charac-
terises in a necessary and sufficient manner initial data for the Kerr-Newman
spacetime. Our main result, in this respect, is given in Theorem 6.

Overview of the Article

Section 2 provides a brief overview of the theory of Killing spinors in elec-
trovacuum spacetimes. Section 3 discusses the evolution equations governing
the propagation of the Killing spinor equation in an electrovacuum spacetime.
The main conclusion from this analysis is that the resulting system is homo-
geneous in a certain set of zero-quantities. The trivial data for these equations
give rise to the conditions implying the existence of a Killing spinor in the de-
velopment of some initial hypersurface. In Sect. 4, a space-spinor formalism is
used to reexpress these conditions in terms of quantities intrinsic to the initial
hypersurface. In addition, in this section the interdependence between the var-
ious conditions is analysed and a minimal set of Killing spinor data equations
is obtained. Section 5 introduces the notion of approximate Killing spinors for
electrovacuum initial data sets and discusses some basic ellipticity properties
of the associated approximate Killing spinor equation. Section 6 discusses the
solvability of the approximate Killing spinor equation in a class of asymptoti-
cally Euclidean manifolds. Finally, Sect. 7 brings together the analyses in the
various sections to construct a geometric invariant characterising initial data
for the Kerr-Newman spacetime. The main result of this article is given in
Theorem 6.

Notation and Conventions

Let (M, g, F) denote an electrovacuum spacetime—i.e. a solution to the Einst-
ein-Maxwell field equations. The signature of the metric in this article will
be (4+,—,—,—), to be consistent with most of the existing literature using
spinors. We use the spinorial conventions of [19]. The lowercase Latin letters
a, b, c,... are used as abstract spacetime tensor indices, while the uppercase
letters A, B, C,... will serve as abstract spinor indices. The Greek letters
w, v, A, ... will be used as spacetime coordinate indices, while «, 3, v, ... will
serve as spatial coordinate indices. Finally, A, B, C, ... will be used as spino-
rial frame indices.
The conventions for the spinorial curvature are set via the expressions

Ouaspie = Vapepp®” — 20paep)c, Oappic =@acapp®. (1)

We systematically use of the following expression for the (once contracted)
second derivative of a spinor:

’ 1
VAQ/VBQ :§€ABD+DAB~ (2)

2. Killing Spinors in Electrovacuum Spacetimes

In this section, we provide a systematic exposition of the properties of Killing
spinors in an electrovacuum spacetime.
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2.1. The Einstein—-Maxwell Equations
Using standard spinorial notation, the Einstein-Maxwell equations are given
by
Paparp =20aB0A B, A =0, (3a)
VAN dap =0. (3b)
In particular, from the Maxwell equation (3b) it follows that
Vapcp = Va(sbcp)-
The Bianchi identity is given by

VA Uapep = V(BA/(I)CD)A’BH

or, more explicitly
VAL U agep = 2045 VEE ¢cp. (4)

Given an electrovacuum spacetime, applying the derivative VA ¢ to the
Maxwell equation in the form V4 445 = 0, one obtains, after some standard
manipulations, the following wave equation for the Maxwell spinor:

Oéas =2V apcpo”™. (5)
2.2. Killing Spinors

A Killing spinor kap = K(ap) in an electrovacuum spacetime (M, g, F) is a
solution to the Killing spinor equation

Varakpeo) = 0. (6)
In the sequel, a prominent role will be played by the integrability con-

ditions implied by the Killing spinor equation. More precisely, one has the
following:

Lemma 1. Let (M, g, F) denote an electrovacuum spacetime endowed with a
Killing spinor kap. Then kap satisfies the integrability conditions:

kA% pepyo =0, (7a)
D&AB—&-\I/ABCDRCD =0. (7b)

Proof. The integrability conditions follow from applying the derivative V4’
to the Killing spinor equation (6), then using identity (2) together with the
box commutators (1) and finally decomposing the resulting expression into
its irreducible terms—the only non-trivial trace yields Eq. (7b), while the
completely symmetric part gives Eq. (7a). O

Remark 1. Observe that although every solution to the Killing spinor equation
(6) satisfies the wave Eq. (7b), the converse is not true. In what follows, a
symmetric spinor satisfying Eq. (7b), but not necessarily Eq. (6), will be called
a Killing spinor candidate. This notion will play a central role in our subsequent
analysis—in particular, we will be concerned with the question of the further
conditions that need to be imposed on a Killing spinor candidate to be an
actual Killing spinor.
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A well-known property of Killing spinors in a vacuum spacetime is that
the spinor

Ean =V9ukqa (8)
is the counterpart of a (possibly complex) Killing vector £%. A similar property

holds for electrovacuum spacetimes—however, a further condition is required
on the Killing spinor.

Lemma 2. Let (M, g, F) denote an electrovacuum spacetime endowed with a
Killing spinor kap. Then Eaa: as defined by Eq. (8) is the spinorial counterpart
of a Killing vector £* if and only if

H(AQ¢B)Q =0. (9)

Proof. The proof follows by direct substitution of definition (8) into the de-
rivative Va4/pp/. Again, using the box commutators (1) one obtains, after
some manipulations that

Vaalpp +Vppéan = 12045 £4%5)0,
from which the result follows. O
Remark 2. Condition (9) implies that the Killing spinor x4 p and the Maxwell

spinor ¢4 p are proportional to each other—thus, in what follows we refer to
(9) as the matter alignment condition.

Remark 3. In the sequel, we will refer to a spinor £ 44+ obtained from a sym-
metric spinor k4p using expression (8) (not necessarily a Killing spinor) as
the Killing vector candidate associated with Kap.

2.3. Zero-Quantities

In order to investigate the consequences of the Killing spinor Eq. (6) in a more
systematic manner, it is convenient to introduce the following zero-quantities:

Harape =3V akpe), (10a)

Saaep =Vaalpp +Vepaa, (10b)

Oap =264%dp)q. (10¢)

Observe that if Haapc = 0, then kap is a Killing spinor. Similarly, if

Saarpp = 0, then €44/ is the spinor counterpart of a Killing vector, while if
O4p = 0, then the matter alignment condition (9) holds.

The decomposition in irreducible components of V g44/kpc can be ex-
pressed in terms of Ha/apc and 44/ as

Vaakpe = gHA’ABC - §€A(B§C)A'- (11)

Similarly, a further computation shows that for {44/ as given by Eq. (8) one
has the decomposition

1
Vaa€pp = NA'B'€AB +NABEA B + 55(,43)(,4/3/)7 (12)
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where
1 Q'
NAB = §VAQ/§B :

If €44/ is a real Killing vector, then the spinor n4p encodes the information
of the so-called Killing form.

Remark 4. From Eq. (12), it readily follows by contraction that

VAYE 4 =0,
independently of whether the alignment condition (9) holds or not—i.e. the
Killing vector candidate €44 defined by Eq. (8) is always divergence-free. This
observation, in turn, implies that

Saatt =0,
so that one has the symmetry

SaarBB = S(AB)(A'BY)- (13)

Remark 5. The zero-quantities introduced in Egs. (10a)—(10c) are a helpful
bookkeeping device. In particular, a calculation analogous to that of the proof
of Lemma 1 shows that

Vi Hapepy = — 69gapckp .
VAYH g apo = 2(0kpe + ‘IJBCPQKPQ)-

Thus, the integrability conditions of Lemma 1 can be written, alterna-
tively, as

VA Hiapepy =0, VAYHy apc = 0.

In particular, observe that if k4 p is a Killing spinor candidate, then the zero-
quantity Ha/apc is divergence-free.

2.4. A Characterisation of Kerr—-Newman in Terms of Spinors

The following definition will play an important role in our subsequent analysis:

Definition 1. A stationary asymptotically flat 4-end in an electrovacuum space-
time (M, g, F) is an open submanifold M, C M diffeomorphic to I x (R*\Bg)
where I C R is an open interval and Bg is a closed ball of radius R. In the
local coordinates (t,2%) defined by the diffeomorphism, the components g,
and F),, of the metric g and the Faraday tensor F satisfy

|9;w - 77W| + |T8a9;w| < 07"717 (14a)
|E| + |00 Fpuu| <C'r2, (14b)
atgp,l/ =0, (14C)

OiFy =0, (144)

where C and C’ are positive constants, 7 = (z!)? + (22)% + (2%)2, and 1,
denote the components of the Minkowski metric in Cartesian coordinates.
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Remark 6. It follows from condition (14c) in Definition 1 that the station-
ary asymptotically flat end M, is endowed with a Killing vector £* which
takes the form 8,—a so-called time translation. From condition (14d), one has
that the electromagnetic fields inherit the symmetry of the spacetime—that is
L¢F =0, with £¢ the Lie derivative along £°.

Of particular interest will be those stationary asymptotically flat ends
generated by a Killing spinor:

Definition 2. A stationary asymptotically flat end M., C M in an electrovac-
uum spacetime (M, g, F) endowed with a Killing spinor k45 is said to be
generated by a Killing spinor if the spinor £é44/ = V5 4645 is the spinorial
counterpart of the Killing vector £*.

Remark 7. Stationary spacetimes have a natural definition of mass in terms of
the Killing vector £* that generates the isometry—the so-called Komar mass
m defined as

1
m=—— lim €abeaVELAS™?,
81 r—oo s,

where S, is the sphere of radius r centred at » = 0 and dS® is the binormal
vector to S,. Similarly, one can define the total electromagnetic charge of the
spacetime via the integral

qg=—— lim / Fopdseb.

471 r—oo

Remark 8. In the asymptotic region, the components of the metric can be
written in the form

2m
goo =1 = ==+ 0(r7%),
4e, S 7 _
9o :ﬁ:73 + O(T 3)7

Jap =~ dap +O(r™),
where m is the Komar mass of £ in the end M, €npy is the flat rank

3 totally antisymmetric tensor and S” denotes a 3-dimensional tensor with
constant entries. For the components of the Faraday tensor, one has that

_4 -3
FOa _T72 + O(’/‘ ),
Faﬂ :O(Tig)

—see, e.g. [23]. Thus, to leading order any stationary electrovacuum spacetime
is asymptotically a Kerr-Newman spacetime.

In [14], the following result has been proved:

Theorem 1. Let (M,g, F) be a smooth electrovacuum spacetime satisfying
the matter alignment condition with a stationary asymptotically flat end M
generated by a Killing spinor kap. Let both the Komar mass associated with
the Killing vector a4 = VP arkap and the total electromagnetic charge in
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M be nonzero. Then, (M,g,F) is locally isometric to a member of the
Kerr—Newman family spacetimes.

The above result is a consequence of the characterisation of the Kerr—
Newman spacetime given in [24]. It replaces the assumption on the self-dual
Weyl tensor of the spacetime with the (stronger) assumption of the existence
of a Killing spinor. The assumption that the electric charge of the spacetime in
M is nonzero is required in the proof of the above result given in [14]; how-
ever, a further theorem from [14] proves a similar result for vacuum spacetimes,
identifying the spacetime as a member of the Kerr family of solutions.

3. The Killing Spinor Evolution System in Electrovacuum
Spacetimes

In this section, we systematically investigate the interrelations between the
zero-quantities Ha apc, Saapp and ©4p. The ultimate objective of this
analysis is to obtain a system of homogeneous wave equations for the zero-
quantities.

3.1. A Wave Equation for £4 4/

Given a Killing spinor candidate kap, the wave Eq. (7b) naturally implies
a wave equation for the Killing vector candidate £44/. We first notice the
following alternative expression for the field Saa/pp::

Lemma 3. Let kap denote a symmetric spinor field in an electrovacuum (M, g,
F). Then, one has that

_ 1 1
SaaBp =604 pOap — §VPA'HB’ABP - §VPB'HA/ABP- (15)

Proof. To obtain the identity one starts by substituting the expression {44 =
V@4 kga into the definition of Saa pp/, Eq. (10b). One then commutes co-
variant derivatives using commutators (1) and makes use of the decomposi-
tions of VAA/IQBc, VAA’EBB/ and SAA’BB’ given by EqS. (11), (12) and (13),
respectively, to simplify. O

Remark 9. Observe that in the above result the spinor s 4p is not assumed to
be a Killing spinor candidate.

The latter is used, in turn, to obtain the main result of this section:

Lemma 4. Let kap denote a Killing spinor candidate in an electrovacuum
spacetime (M, g, F). Then the Killing vector candidate 441 = VQA/FLAQ sat-
isfies the wave equation
O¢an = =267 ©aparpr + 794" Hpiapg
~VapopHa TP 4+ 6¢ 4/ PV ppOaL. (16)
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Proof. One makes use of the definition of S44/pp and identity (3) to write

VAN anépp + VA Vppitaa =604V ap + 603 VA4 Oup

c
VeoaHpap Vep Haap

1 / 1 /
_ syAa C_ Zyaa
2 2
The above expression can be simplified using the Maxwell equations. More-
over, commuting covariant derivatives in the terms VAAYY o4 Hp 4 and

’
VAAYY cp Harap®

O¢an = 26" ®upap + 872U Hprapg — VapopHatOP

one arrives to

- / ’ 1 ’
+ 604" VppOa” = VanVpp e — §VQA'VPP'HP 79

Finally, using that {44/ is a Killing vector candidate (see Remark 4) and that
VAYH 4 apc =0 (see Remark 5) the result follows. O

Remark 10. Important for the subsequent discussion is that the wave Eq. (17)
takes, in tensorial terms, the form

0¢, = —2®at” + Ja, (17)

where J, is defined in spinorial terms by

Jaa = 0P Hpiapg — WapopHa'P + 6647 Vpp©4L.
In terms of the zero-quantity 44/ to be introduced in Eq. (19), one has

Jaa =90 Hpiapg — WapopHa PP — 664" Capr.

Thus, J44/ is an homogeneous expression of zero-quantities and does not
involve their derivatives.
3.2. A Wave Equation for H s/ aopc

Lemma 5. Let kap denote a Killing spinor candidate in an electrovacuum
spacetime (M, g, F'). Then the zero-quantily H arapc satisfies the wave equa-
tion

OHapep = 2VeparHa g™ +2UpparHac?t +4¢p2da” Hppoa
1264 %' VppOpe — 2Vp? Spoyarp)- (18)
Proof. We consider, again, identity (3) in the form
VapHape® =604 50pc — Spoyan).
Applying the derivative V¥ " to the above expression, one readily finds that
VpP' Vap Hape?
=6(0pcVpP dap +danVpP Opc) — VP Spoyan).

Using identity (2) and the box commutators (1), one obtains, after using the
Maxwell equations to simplify, the desired equation. O

Remark 11. Observe that the right-hand side of the wave equation (18) is
an homogeneous expression in the zero-quantity H 4 4apc and the first-order
derivatives of © 45 and Saa'BB’.
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3.3. A Wave Equation for ©@ 4 p

In order to compute a wave equation for the zero-quantity associated with
the matter alignment condition, it is convenient to introduce a further zero-
quantity:

CAA’ = VQAIGAQ. (19)
Clearly, if the matter alignment condition (9) is satisfied, then (44, = 0. The
reason for introducing this further field will become clear in the sequel. Using
the above definition, one obtains the following:

Lemma 6. Let kaop denote a symmetric spinor field in an electrovacuum space-
time (M, g, F). Then, one has that

00ap =2V appgOFQ — 2V Canr. (20)

Proof. The wave equation follows from applying the derivative V 54 to the
definition of (44 and using identity (2) together with the box commutators
(1). O

Remark 12. A direct computation using the definitions of ©® 45 and 4/ to-
gether with the expression for the irreducible decomposition of V4 4-kpc given
by Eq. (11) and the Maxwell equations gives that

4 1
Caar = =V aradpoykBC + ngA/QMB + gHA/ABC¢BC~ (21)
Remark 13. Tt follows directly from Eq. (20) that
VAY Cuur = 0.

Alternatively, this property can be verified through a direct computation using
identity (21).

As the right-hand side of Eq. (20) is an homogeneous expression in © 45
and a first-order derivative of {44/, one needs to construct a wave equation
for C4a. The required expression follows from an involved computation—as it
can be seen from the proof of the following lemma:

Lemma 7. Let kap denote a symmetric spinor field in an electrovacuum (M, g,
F). Then, one has that

OCaar

=4CPB papdarp + §¢>DB‘I’DBOFHA/ACF - §¢DB‘I’ABCFHA/DCF

- §¢AD¢BC$A/B/HB/DBC - %HB/DBCVAB’¢DA’BC - %HA’DBCVAB’d)DBIBC
+ §¢DB/BCVAB’HA’DBC + §¢DA/BCVAB/HB/DBC - §¢DBVABIS(BD)(A’B’)
—4¢PB 0PV i ©ap — §¢DBVBB/S(AD)(A’B’) + %VAB/¢DBVCB'HA/DBC

- gvAB/¢DBS(BD)(A’B’)- (22)

where paapc = Vaa dpc.
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Proof. Consider identity (21) and apply the derivative V4 g/ to obtain

A BCwA A BC
VepCaar = —k7"V g Vandpc —VaadpcVipk

4
+ 5@V "4 + €74V 5 6a8)

1
+ g(HAfABCVAB'¢BC + ¢POVAp Harapco).

Some further simplifications yield
1 1
VA Can = gVAB'd)BCHA'ABc + gvAA’(bBCHB'ABC
1 2
—§¢ABVCB/HA'ABC + §¢ABS(AB)(A’B’)-

To obtain the required wave equation, we apply Vp? " to the above expression
and make use of decomposition (2) on the terms

1 ’ ’ 1 ’
EVDB VAR ¢P Haape, VpP V»ACan, —§¢ABVDB Vo Harag®

Finally, substitution of the wave equations for ¢ap and Ha apcp, Egs. (5)
and (18) yields the required expression homogeneous in zero-quantities. O

3.4. A Wave Equation for Spa/gp’

The discussion of the wave equation for the spinorial field Sy 4/pp: is best
carried out in tensorial notation. Accordingly, let S, denote the tensorial
counterpart of the (not necessarily Hermitian) spinor Sa4/pp/. Key to this
computation is the wave equation for the Killing vector candidate £%, as given
in Eq. (17).

Lemma 8. Let kap denote a Killing spinor candidate in an electrovacuum
spacetime (M, g, F). Then the zero-quantity Sqp satisfies the wave equation

Dsab = _2££Tab + 2TbCSac + 2Tacsbc - TCdScdgab
- abSCc - 2C(acdeCd + van + vbJa (23)

where L¢ Ty, denotes the Lie derivative of the energy momentum of the Faraday
tensor.

Proof. The required expression follows from applying O = V,V* to
Sab ES Va&, + bea»

commuting covariant derivatives, using the wave equation (17), the Einstein
equation

Ry = Taba
the contracted Bianchi identity
vCLCYCLZ)cd = v[cT’d]b

and the relation



M. J. Cole, J. A. Valiente Kroon Ann. Henri Poincaré

1
Vagb = 5 ab + v[agb}'

O

A straightforward computation shows that the Lie derivative of the elec-
tromagnetic energy-momentum tensor can be expressed in terms of the Lie
derivative of the Faraday tensor and the zero-quantity S, as
1
4

, 1
“!‘FbCEEFaC + Facﬁngc - §F0dgab£§ch.

1
LeToy = —~FoqFS,, — F,°Fy% S + §FchCdgabSdf

Furthermore, the Lie derivative of the Faraday tensor can be expressed in
terms of the Lie derivative of the Maxwell spinor as

1 — o~ N .
LeFanpp = (£§¢AB - §SAC/BD’¢C b > €4’p’ + complex conjugate,

where the Lie derivative of the Maxwell spinor is defined by

Ledap =9 Voo dap + dcaVeyecd© (24)
—see Section 6.6 in [20]. This expression can be written in terms of zero-
quantities by using the wave equations for the Killing and Maxwell spinors,
the Maxwell equations and the identity

1 1 /
&P a¥p pero”t = §\PABCD®CD + g(bEFV(AlA HanpEF),

along with the wave equations for the Killing and Maxwell spinors and the
Maxwell equations, Egs. (7b) and (17), so as to obtain

3 / / /
Lepap = —§V(AA (pyar + HaropaVpy ™t ¢9P — 6PV 4 Hapop).
From the previous discussion, it follows that:

Lemma 9. Let kap denote a Killing spinor candidate in an electrovacuum
spacetime (M, g, F). Then the Lie derivative L¢Ta, can be expressed as an
homogeneous expression in the zero-quantities

Saasps Caa, Haapc
and their first-order derivatives.

Remark 14. In the context of the present discussion, the object Le¢pap, as
defined in (24), must be regarded as a convenient shorthand for a complicated
expression. It is only consistent with the usual notion of Lie derivative of tensor
fields if §AA/ is the spinorial counterpart of a conformal Killing vector £*—see
[20], Section 6.6, for further discussion on this point.
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3.5. Summary
We summarise the discussion of the present section in the following:
Proposition 1. Let kap denote a Killing spinor candidate in an electrovacuum
spacetime (M, g, F). Then the zero-quantities

Haapc, ©ap, Caa, Saasp

satisfy a system of wave equations, consisting of Egs. (18), (20), (22) and
(23), which is homogeneous on the above zero-quantities and their first-order
derivatives.

A direct consequence of the above and the uniqueness of solutions to
homogeneous wave equations is the following:

Theorem 2. Let kap denote a Killing spinor candidate in an electrovacuum
spacetime (M, g, F), and let S denote a Cauchy hypersurface of (M, g, F).
The spinor kap is an actual Killing spinor, and 440 = VB g1k ap is a Killing
vector if and only if on S one has that

Haapcls =0, Ve Haapcls =0 (25a)
Saapp|s =0, VerSaapp|s=0 (25b)
Oasls =0, Verp©apls =0 (25¢)
Caarls =0, Ve aals =0. (25d)

Proof. The initial data for the homogeneous system of wave equations for the
fields Harapc, ©aB, Caar and Saa pp given by Eqs. (18), (20), (22) and (23)
consist of the values of these fields and their normal derivatives at the Cauchy
surface S. Because of the homogeneity of the equations, the unique solution
to these equations with vanishing initial data is given by

Haapc =0, ©Oap=0, Caa =0, Saapp =0.
Thus, if this is the case, the spinor k4p satisfies the Killing equation on M
and, accordingly, it is a Killing spinor. Conversely, given a Killing spinor k4 p
over M such that €44 = Vpakap is a Killing vector, its restriction to S

satisfies conditions (25a)—(25d).
O

Remark 15. As the spinorial zero-fields Ha apc, ©ap, (aar and Saa pp can
be expressed in terms of the spinor k43, it follows that conditions (25a)—(25d)
are, in fact, conditions on k4p, and its (spacetime) covariant derivatives up to
third order. In the next section, it will be shown how these conditions can be
expressed in terms of objects intrinsic to the hypersurface S.

4. The Killing Spinor Data Equations

The purpose of this section is to show how conditions (25a)-(25d) of
Theorem 2 can be reexpressed as conditions which are intrinsic to the hy-
persurface S. To this end, we make use of the space-spinor formalism outlined
in [4] with some minor notational changes.
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4.1. The Space-Spinor Formalism

In what follows assume that the spacetime (M, g) obtained as the development
of Cauchy initial data (S, h, K) can be covered by a congruence of timelike
curves with tangent vector 7% satisfying the normalisation condition 7,7% =
2—the reason for normalisation will be clarified in the following—see Eq. (28).
Associated with the vector 7%, one has the projector

L

h,t =6, — iTaT

projecting tensors into the distribution (7)* of hyperplanes orthogonal to 7%.
Remark 16. The congruence of curves needs not to be hypersurface orthog-

onal—however, for convenience, it will be assumed that the vector field ¢
orthogonal to the Cauchy hypersurface S.

Now, let 744" denote the spinorial counterpart of the vector 7—Dby def-
inition, one has that

TAA/TAA/ = 2. (26)

Let {0”, 14} denote a normalised spin dyad satisfying 04t = 1. In the follow-
ing, we restrict the attention to spin dyads such that

A4 = oA5 AT (27)

It follows then that
Tan TP =645, (28)
consistent with the normalisation condition (26). As a consequence of this

relation, the spinor 744" can be used to introduce a formalism in which all

primed indices in spinors and spinorial equatlons are replaced by unprimed
indices by suitable contractions with 744

Remark 17. The set of transformations on the dyad {o?, 14} preserving ex-
pansion (27) is given by the group SU(2,C).

4.1.1. The Sen Connection. The space-spinor counterpart of the spinorial
covariant derivative V 44+ is defined as

VABETBAIVAA/. (29)
The derivative operator V 4 can be decomposed in irreducible terms as
1
Vap = 56,4377 + Das, (30)
where
P=r"Vax =Vo?  Dap=7u""Vpa =Vn).

The operator P is the directional derivative of V 44/ in the direction of TAA/,
while D4 corresponds to the so-called Sen connection of the covariant deriv-
ative ¥ qar implied by 744
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4.1.2. The Acceleration and the Extrinsic Curvature. Of particular relevance
in the subsequent discussion is the decomposition of the covariant derivative
of the spinor 7pp/, namely V a44/75p/. A calculation readily shows that the
content of this derivative is encoded in the spinors

_ A __c
Kuap =17 Praa, Kapcp =7~ Daptccr,

corresponding, respectively, to the spinorial counterparts of the acceleration
and the Weingarten tensor, expressed in tensorial terms as

1
K, = —invbTa, Kap = —ho“hy 'V . 74.
It can be readily verified that

Kap = K(ap), Kapep = Kap)(cp)- (31)

In the sequel, it will be convenient to express K 4gcp in terms of its irreducible
components. To this end, define

Qapep = Kapep), Qup =K1%p)o. K =Kap°P,
so that one can define
1 1 1

Kapcp = Qapep — §€A(CQD)B - §€B(CQD)A - §€A(C6D)BK-
If the vector field 7% is hypersurface orthogonal, then one has that Q45 = 0,
and thus, the Weingarten tensor satisfies the symmetry K., = K(q) so that
it can be regarded as the extrinsic curvature of the leaves of a foliation of the
spacetime (M, g). If this is the case, in addition to the second symmetry in
(31) one has that

Kapcp = Kcpag.

In particular, K 4pcp restricted to the hypersurface S satisfies the above sym-
metry and one has Q4 = 0—cfr. Remark 16.

In what follows denote by Dap = D 4p), the spinorial counterpart of the
Levi—Civita connection of the metric h on S. The Sen connection D p and
the Levi-Civita connection Dy p are related to each other through the spinor
Kapcep. For example, for a valence 1 spinor m4 one has that

1
Dapme = Dapre + §KABCQ7TQa

with the obvious generalisations for higher-order spinors.

4.1.3. Hermitian Conjugation. Given a spinor 74, its Hermitian conjugate is
defined as

T = TAQ/ﬁ'Q/.

This operation can be extended in the obvious way to higher valence pairwise
symmetric spinors. The operation of Hermitian conjugation allows to introduce
a notion of reality. Given spinors vap = v ap) and {apcp = aB)(cp), We

say that they are real if and only if

UAB = —VAB, &aBcp = €aBep-
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If the spinors are real, then it can be shown that there exist real spatial 3-
dimensional tensors v; and &;; such that v4p and {apcp are their spinorial
counterparts. We also note that
vapv™? >0, €apepétPCP >0
independently of whether vap and £4pcp are real or not.
Finally, it is observed that while the Levi-Civita covariant derivative
D4 p is real in the sense that

Dapmc = —Dap7c,
the Sen connection Dyp is not. More precisely, one has that

Qn

— N 1
Dypnc = —Dap7c + iKABC Q-

4.1.4. Commutators. The main analysis of this section will require a system-
atic use of the commutators of the covariant derivatives P and D4p. In order
to discuss these in a convenient manner, it is convenient to define the Hermit-
ian conjugate of the Penrose box operator (a5 = Vc/(AVB)C/ in the natural
manner as

A~ ! ’
DAB = TAA TBB DA’B’-
From the definition of (4. p/, it follows that
= A _ B F
Oapmec =74" 78" Proarpm .

In terms of O, p and ﬁAB, the commutators of P and Dy read

~ 1
[P,Dap] =0ap —Oap — iKABP + KP 4Dpyp — KapcpDP,
(32a)

1 . .
[Das,Depl == (eacOpys + epcOpya) + §(€A(CDD)B +epcpya)

1
2
+ ~(KcpapP — KapepP) + KepraDPr)' — KaprcPp)F -

(32b)

Remark 18. Observe that on the hypersurface S commutator (32b) involves
only objects intrinsic to S. Notice, also, that the Sen connection D4p has
torsion. Namely, for a scalar ¢ one has that

[Dap,Depléd = KepraPr)'' ¢ — KaprcPp)" ¢.

4.2. Basic Decompositions

The purpose of this section is to provide a systematic discussion of the irre-
ducible decompositions of the various spinorial fields and equations that will
be required in the subsequent analysis.
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4.2.1. Space-Spinor Decomposition of the Killing Spinor and Maxwell Equa-
tions. For reference, we provide a brief discussion of the space-spinor decom-
position of the Killing equation (6), and the Maxwell equation (3b).

Contracting the Killing spinor equation (6) in the form V(4 4/5cpy =0
with TBAl, one obtains

V(aB/kcp) =0,

where V 4 p is the differential operator defined in Eq. (29). Using decomposition
(29), one further obtains

1
§€(A\B|7DHCD) + D(A|B|"€CD) =0.

Taking, respectively, the trace and the totally symmetric part of the above
expression, one readily obtains the equations

Prkap +'D(AQI€B)Q =0, (33a)
D(AB'KCCD) =0. (33b)
Equation (33a) can be naturally interpreted as an evolution equation for the
spinor k4 p, while Eq. (33b) plays the role of a constraint.
A similar calculation applied to the Maxwell equation, Eq. (3b), in the
form VA 4 pac = 0 yields the equations
Poap — 2D 4dp)q =0, (34a)
DABpap =0. (34b)
Again, Eq. (34a) is an evolution equation for the Maxwell spinor ¢ap,
while (34b) is the spinorial version of the electromagnetic Gauss constraint.

Remark 19. The operation of Hermitian conjugation can be used to define,
respectively, the electric and magnetic parts of the Maxwell spinor:

1,~ 1 ~
Eap = §(¢AB — dan), Bagp = §(¢AB + ¢aB).
It can be readily verified that
Eap = —Eap, Bap = —Buap.

Thus, Fap and Bap are the spinorial counterparts of three-dimensional ten-
sors; F; and B;—the electric and magnetic parts of the Faraday tensor with
respect to the normal to the hypersurface S.

4.2.2. The Decomposition of the Components of the Curvature. Crucial for
our subsequent discussion will be the fact that the restriction of the Weyl
spinor ¥ pcp to an hypersurface S can be expressed in terms of quantities
intrinsic to the hypersurface.

In analogy to the case of the Maxwell spinor ¢ 45, the Hermitian conju-
gation operation can be used to decompose the Weyl spinor ¥ pcp into its
electric and magnetic parts with respect to the normal to S as

1 - i, .
Eapcp = i(quBCD + VaBcp), Bapep = %(\I/ABCD —Uapep)
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so that

VYapcp = Eapep +iBapep.

The electrovacuum Bianchi identity (4) implies on S the constraint

DB apcp = —20*PDapdcp.
Finally, using the Gauss—Codazzi and Codazzi-Mainardi equations one finds
that
1 PQ 1
Eapcp = —TaBcp) + §Q(AB Qepypg — EQABCDK + EasEcp)y,

Bapcp = —1D%(4Qpcpyo,

where r4pcp is the spinorial counterpart of the Ricci tensor of the intrinsic
metric of the hypersurface S.

4.2.3. Decomposition of the Spatial Derivatives of the Killing Spinor Candi-
date. Given a spinor k4 p defined on the Cauchy hypersurface S, it will prove
convenient to define:

&= 'DAB/{AB, (353)
3

AB = §D(ACKB)C7 (35b)

§apcp = Dapkcp)- (35¢)

These spinors correspond to the irreducible components of the Sen derivative
of k4B, as follows:

1 1 1
Daptcp = &§aBcp — §6A(C§D)B - gGB(ciD)A - §€A(c€D)B§-

Using the commutation relation for the Sen derivatives, Eq. (32b), we
can also calculate the derivatives of £ and £ 4. The irreducible components of
Dapécp are given on S—where Q45 = 0—by

1 3 3 ~
Dypétt = —§Kf + ZQABCDfABCD + §@AB¢AB7 (36a)

3 2 1
Daéey” = —Dpo — §WBCADHAD + §K§BC + §QBCAD€AD

3 3 R
- §Q(BADF§C)ADF + §DAD§BCAD —304039c)",  (36b)

1
Dagsécp) =3Vrapckp)’ + Kéapcp — §§QABCD + Qanc pyr

3 ~
- §Q(ABPQ§CD)PQ +3D" ulpepyr — 30 apdep), (360
where we have also used the Hermitian conjugate of the Maxwell spinor, de-
fined by
¢AB = TAA TBB ¢A’B/-
Note that in (36b), the term D4 p& appears—there is no independent equation
for the Sen derivative of &.
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also calculate the second-order derivatives of £. Again, on the

hypersurface S these take the form:

DapDAP¢ =

DY ADpyc€ =

DaDcpyé =

— SK%+ K3V PO4p — 207 pane
+ %sABDABK +304PDpogaC
—4¢*Pps%¢pe - ;‘I’ABCDfABCD +3¢6486 Peapcp
~36486“PQupcp — %QABCDQABCDg + ZKQABCDEABCD
+3.ABU P Qpepr — ;QABFGQABCDECDFG ~3:486PDppoac
+3:489,“Dopop? — gﬁABDcp\I/ABCD
+ %gABDCDQABCD+gDCDDABEABCD
+ g&ABCDDDFQABcF - gQABCDDDFSABcF, (37a)
%QABCDDC% - %KDABé, (37b)
%G;EF@EFQABCD —VYapcpé— gKQABCDf
+ éQEFPQQABCDfEFPQ + %K2§ABCD + éfDE(AQBCD)E

10 g, 3 EF , 3 EF
- ?K'DE(AfBCD) + 5D<ABD\EF|ECD> + EDF(ADB|E|§CD)
+ %D(A\FDE|F§BCD)E + gK“(AE‘I’BCD)E - gH(AEDB\F\‘IICD)EF
- gHEFD(AB‘PCD)EF - %HEFDF(A‘PBCD)E + 2§$(AB¢CD)
- gKa(ABQCD) + @<ABDC\E\$D>E + 3@(AEDBC$D)E
+ e(AEDB\E\quCD) +2¥gapcén)” + éfQ(ABEFQCD)EF

14 E O EF 2 E
- KKQE(ABC{D) - gKQ(AB écpyer t gQE(ABCDD) 13
+ gQ(ABCEDFPED)EFP - Q" DcPép)prp
+ %Q(ABEFD\FP\fc’D)EP - SQ(AEFPDBCED)EFP
+ %Q(AEFPDB\P\%D)EF + §§(ABDCD>K
+ %g(AEDB|F\QCD)EF + %éEFD(ABQCD)EF
+ éﬁEFDF(AQBCD)E + §€E(ABCDD)EK + %f(ABEFDC\P\QD)EFP
+ gﬁ(AEFPDBcQD)EFP + %&(AEFPDBW\QCD)EF
+ N(AE(EBCDD)F¢EF - 3K(AE$BFDCD)¢EF + 2K(AE$BFDC\F\¢D)E

+ NEF(Z(AB,DC|F|¢D)E + 3KEF$E<ADBC¢D)F

EF\IIP

1 1
+ §HE(A‘I’BEFPQCD>FP o EABScD)FP
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+ gKEF‘I’PEF(AQBCD)P + LBO(E(ABﬁsCEéD)E

+ ;a(AEQbBCED)E + §¢E(A$BE§CD)

- $(AB¢EF£CD)EF + $(AE¢BF§CD)EF + 3¢EF$(AE§BCD)F
+é$(AB®EFQCD)EF

+ %a(AE@BFQCD)EF + g@Ech(AEQBCD)F

+ éngFe(ABQCD)EF + g(gEF@E(AQBCD)F + %Q(ABCPQD)EFPfEF

1 3
+ 6QEFP(AQBCFP£D)E - ZQ(ABCEQD)FPQgEFPQ

3 1
- ZQEFPQQ(ABCEéD)FPQ + EQ(ABEFQCD)PQfEFPQ

1 1
+ gQE(APQQBcEFéD)FPQ + EQE‘FPQQ(ABEF£CD)PQ~ (37¢c)

Remark 20. Tt is of interest to remark that Eq. (37b) is just the statement
that the Sen connection has torsion—cf. Remark 18.

An important and direct consequence of the above expressions is the
following:

Lemma 10. Assume that Qap =0 and D aprcpy =0 on S. Then

DaDcepDerkarn = HapepErcn

on S, where Hapcperay 1S a linear combination of kap, Dapkcp and
DaDcpkir with coefficients depending on Y apcp, Kapcp, ¢a, ap and
Dap9cp-

Proof. The proof of the above result follows from direct inspection of Egs. (36a)
—(36¢) and (37a)—(37c). O

Remark 21. We observe that the above result is strictly not true if éq4pop =
Dapkcpy # 0.
4.3. The Decomposition of the Killing Spinor Data Equations

In this section, we provide a systematic discussion of the decomposition of
the Killing initial data conditions in Theorem 2. The main purpose of this
decomposition is to untangle the interrelations between the various conditions
and to obtain a minimal set of equations which is intrinsic to the Cauchy
hypersurface S.

For the ease of the discussion we make explicit the assumptions we assume
to hold throughout this section:

Assumption 1. Given a Cauchy hypersurface S of an electrovacuum spacetime
(M, g), we assume that the hypothesis and conclusions of Theorem 2 hold.
Also, to ease the calculations, without loss of generality we assume:
Assumption 2. The spinor 734 which on S is normal to S is extended off
the initial hypersurface in such a way that it is the spinorial counterpart of
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the tangent vector to a congruence of g-geodesics. Accordingly, one has that
Kap =0 —that is, the acceleration vanishes.

4.3.1. Decomposing H ' papc = 0. Splitting the expression oA Harapo
into irreducible parts, and using definitions (35a)—(35c¢) gives that the condition
Hy apo = 0 is equivalent to

§apcp =0, (38a)
2
Prap =— ngR (38Db)

Equation (38a) is a condition intrinsic to the hypersurface, while (38b)
is extrinsic—i.e. it involves derivatives in the direction normal to S.

Remark 22. Observe that conditions (38a) and (38b) are essentially Eqs. (33a)
and (33b).

4.3.2. Decomposing Ve Harapc = 0. If Hyape =0 on S, it readily fol-
lows that DgrHa apc = 0 on S. Thus, in order investigate the consequences
of the second condition in (25a) it is only necessary to consider the transverse
derivative PH 4/ apc. It follows that

’

Apyg =P H H Prpt
™D A’ABC — (TD A’ABC) - A’ABCFTD

and so as Ha apcls = 0, the irreducible parts of oY PH A apc = 0 are given
by

Péascp =0, (39a)

2
Plhap = — gpgAB. (39b)

Taking Eq. (39a) and commuting the Dap and P derivatives, and using
Eqgs. (38a) and (38b), gives

P&apcp = PDapkcp)
1 2
= 20" spckpyr — ngABC’D + gQF(ABch)F

2 N
- gD(AB€CD) —204B%cD)-

Substituting for the derivative of £4p using (36¢), and using Egs. (38a) and
(38b) again, gives

Péapep = 4V" upckpyr = 0. (40)

To reexpress condition (39b), we use the following result which is obtained
by commuting the Dap and P derivatives:

3 ~ 1
Plap = §HCD‘I’ABCD — 300498 — 3 K&

1 3
+§QABCDfCD - §DC(A7’HB)C~ (41)
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Recall that the Killing spinor candidate k4p satisfies the homogeneous wave
equation (7b). We can use the space-spinor decomposition to split the wave
operator into Sen and normal derivative operators. The result is:

1 2
P?hap = —26“PWapcp + 3 ABE + gQABf - 2K1%p)c

4
- gQ(Ach)C + KPépep +29Peapen

2 4
— KPrap — gDABf + gD(AcﬁB)C —2Dcpéap?

Applying conditions (38a) and (38b) to the right-hand side of the latter, eval-
uating at S (where Q45 = 0) and setting Kap = 0 gives

2 2 4
P?rap = —26PUapcp + gKﬁAB - gDABf + gD(AC§B)C~

Then, using Eqgs. (36b) and (41), as well as (38a) and (38b) as needed, it can
be shown that

2
P’kap = _§P§AB7 (42)

which is exactly the condition we needed. Thus, we have shown that condition
(39Db) is purely a consequence of the evolution equation for the Killing spinor
candidate, along with the conditions arising from H 4 apc|s = 0.

In summary, if k4 p satisfies Jkap + Yapcpk©? = 0, then:

Hy apcls = PHarapels =0 <= apep =0,

2
Prap + ngB =0, U5 apckpyr=0.

4.3.3. Decomposing ® 45 = 0. As O 4p has no unprimed indices, it is already
in a space-spinor compatible form—we have the condition:

Oap =k “dp)c = 0. (43)

4.3.4. Decomposing Ve ®ap = 0. If ©45|s = 0, one only needs to con-
sider the normal derivative PO 4. Using the evolution equation for the spinor
¢ ap implied by Maxwell equations, Eq. (34a), along with (38b) in the condi-
tion PO ap = 0, gives the spatially intrinsic condition

1
ka1 “Depoip)’ = §¢(AC€B)C- (44)
In summary, assuming (38b) holds, then:
@AB‘S = ’P@AB|5 =0 <— H(Acqu)c = 0,

1
k" Depdip)” = §¢(AC€B)C-
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4.3.5. Decomposing Saa-ppr = 0. Our point of departure to decompose
the condition Saa pp/|s = 0 is the relation linking Saa/pp to © 45 and the
derivative of Harapc given by Eq. (3). Splitting the derivative of H 4 ap¢ into
normal and tangential parts gives

- 1
Saapp = —6045Oap + §TC(A/77HB/)ABC +7pa PP Hpryapc.  (45)

We already have conditions ensuring that © ap|ls = Harapcls = PHa apcls
= 0, and so as a consequence we automatically have that Saa/pp/|s = 0.

4.3.6. Decomposing Vg Saargp = 0. Again as Saapp/|s = 0, one only
needs to consider the normal derivative PS44/pp. Taking the normal deriva-
tive of Eq. (45) and using that one has a Gaussian gauge gives on S that

PSaapp =—6PdapOap — 6645 POss + 74P Hpyape
+ TD(ArPDDCHB/)ABc.

The first and second terms on the right-hand side are zero as a consequence
of conditions (43) and (44). The last term can also be shown to be zero by
commuting the derivatives and using (38a), (38b) and (40). This leaves

0="PSanpp =7°aP*Hpyapc- (46)
Eliminating the primed indices by multiplying by factors of 744/ gives
T(C|A,’P2HA/AB|D) = O

Thus, if this condition is satisfied on S, then we have that PSaa pp/|s = 0.
In the following, we investigate further the consequences of this condition. As
in a Gaussian gauge P74/ = 0 it readily follows that, in fact, one has

7)2 (T(C‘A HA’AB|D)) =0.
Splitting into irreducible parts, one obtains two necessary conditions:
P*eapcp =0, (47a)

2
P? (PHAB + 3§AB) =0. (47b)

Let us first consider condition (47a). We can commute the Sen derivative
with one of the normal derivatives to obtain

P(Péapcp) = P(PDagkcp))

~ 1 2
= 7’<2‘1’(ABCFHD)F —20aBPcD) — §QABCD§ - gQF(ABciFD)

1 1
- gQ(ABfCD) - gKfABCD +QF ulpepyr — Uas® écpypr + D(ABPHcm)-

Now, we can use our previous conditions on S to eliminate terms. For example,
the second term in the bracket is zero from conditions (43) and (44). The
fifth, sixth and seventh terms vanish from (38a) and (40). We can also use
(38b) and (42) to replace the last term—alternatively, one can commute the
derivatives, use the substitution and then commute back; the result is the
same. From this substitution, one obtains a factor D4 p€cp) inside the normal
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derivative, which can be replaced using (36¢)—this equation is valid on the
whole spacetime rather than just the hypersurface, so one is allowed to take
normal derivatives of it.

Proceeding as above, condition (47a) can be reduced to

P?*¢apcp =P (4V apc’kpyr) = 0. (48)
Now, splitting the covariant derivatives in the Bianchi identity (4) into normal

and tangential components gives the following space-spinor version:

PV apcp = *4$F(ADFB¢CD) - 4$(ABDFC¢D)F —2Dpa¥pep)” .

One can use the latter expression to further reduce condition (48) to

Upapcép)’ + GQZF(AHEBDFC%D)E + 6$(ABHECDFD)¢EF
—|—3I€(AF'DB‘E\I/F‘CD)E =0. (49)

This is an intrinsic condition on S.

In order to obtain insight into condition (47b), we make use, again, of the
wave Eq. (7b) for the spinor k4 p. Taking a normal derivative of this equation,
one obtains

P (DHAB + \I/ABCDECD) =0.

Splitting the spacetime derivatives into normal and tangential parts and rear-
ranging gives

P (P?kap) = P(— 2PV apcp + %QABf - %Q(Ach)C +2QPEapep
2
3
As before, we can use our previous conditions to eliminate terms. The fourth
and eight terms on the right-hand side vanish due to (38a) and (40). Also, we
can use Eq. (36b) to replace the seventh term—this is because relation (36b)

holds on the whole spacetime, and so one can take normal derivatives of it
freely. These steps give

4
— KPrap — ;Dapé — gDC(AfB)C —2Dcpéas®P).

2 2 2 2
P(P’kap) = 7’(39(,4053)0 - §K§AB - gQABCDECD + SDABE)-
Alternatively, consider the second derivative of €45, given by applying a nor-
mal derivative to Eq. (41)—note that Eq. (41) applies on the whole spacetime),
so one can take the normal derivative. This yields

3 ~ 1 1
P?*6an = 7’<2F»:CD‘I/ABCD —30c(a0p) " — 59,435 - gKﬁAB

1 1
+ 59(,4053)0 + §QABCD£CD

3
+ EQCDSABCD -

3 3
§Q(ACDF§B)CDF - QDC(APKB)C>-
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As before, we can use conditions (38a), (38b), (40) and (42), and identity (36b)
to reduce this to

1
P*ap = P(SKSAB — Qu%s)c + Qpepé? - DABﬁ) :
By comparing terms, we find that
2
Prap = —§P2§AB

which is exactly the second condition (47b). So, no further conditions are
needed to be prescribed on the hypersurface—this condition arises naturally
from the evolution equation for the Killing spinor.

4.3.7. Decomposing (44 = 0. Recalling the definition of {44/, Eq. (19), and
splitting the spacetime spinorial derivative into normal and tangential parts,
one obtains

Canr =VP 4045

1
= iTBA/'P@AB — TCA/DCB@AB.

From conditions (43) and (44), it then follows that (44/|s = 0.

4.3.8. Decomposing Vg Caar = 0. Again, if (4a/ls = 0 then one only
needs to consider the transverse derivative P(4.4/. By definition, one has that

Plaar =PVP4Oap
1
= P( — TCA/DBC + QTBA/'P>@AB

1
= §TBA/P2@AB

where the last equation has been obtained by commuting the Sen and normal
derivatives, and using (44). Therefore, one only needs to show that
P?Oap = 0.

Now, recalling the wave equation for © 45, Eq. (20), one readily notices that
the right-hand side vanishes on S as a consequence of (38a), (38b) and (40),
so that one is left with

OO 4B ‘3 =0.
Finally, expanding the left-hand side one finds that on &
OO0 = VCC,VCC’@AB

/ 1 / 1
= <—TBC DCB + 5700 P) (—TBC/DBC + QTCC’P> OB

1 ,
= ZTCC Tcc'P*Oap
where the last line follows by commuting the derivatives where appropriate
and using conditions (43) and (44). Finally, as 7" 70¢s = 2 by definition, we

get that P20 45 = 0 as a consequence of the evolution equation for © 4.
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4.4. Eliminating Redundant Conditions
The discussion of the previous subsections can be summarised in the following:
Theorem 3. Let kap denote a Killing spinor candidate on an electrovacuum

spacetime (M, g, F). Then kap satisfies on a Cauchy hypersurface S the in-
trinsic conditions

§apcp =0, (50a)
Upasckp)’ =0, (50b)
kS op)c =0, (50c)

1
k" DPepdip)” = §¢(AC£B)07 (50d)

3ka" D" Vepypr + Yapc épyr = 6$F(AHEBDFC¢D)E
+ 6<ZA5(AB k" cDF pydEpr, (50e)
with normal derivative on S given by
2
Prap = *ngBv

if and only if kap is, in fact, a Killing spinor, and the vector E440 = VP grk4p
1 a Killing vector.

Remark 23. We note that
Oap = H(ACQZ)B)C =0 implies ¢ap X KaB

Using this fact, one can show that (50d) and (50e) can be more simply ex-
pressed as a condition on the proportionality between the Killing spinor k4p
and the Maxwell spinor ¢ 45.

In order to simplify the conditions in Theorem 3 and to analyse their
various interrelations, we proceed by looking at the different algebraic types
that the Killing spinor can have. First, we consider the algebraically general
case:

Lemma 11. Assume that a symmetric spinor kap satisfies the conditions
kapk™P £ 0, €apep = VYrapckpy’ =k dpc =0
on an open subset U C S. Then, there exists a spin basis {0, 14} with 041* =
1 such that the spinors kap and ¢pap can be expanded as
KAB = €70(alB), GAB = PO(ALB)-
Furthermore, if Q = pe** is a constant on U, then conditions (50d) and (50e)

are satisfied on U.

Proof. The first part of the lemma follows directly from x4pr? # 0, and the
fact that K(AC¢B)C = 0 implies that ¢ 4p x Kap. The condition \I/F(ABC,%D)F
= 0 also allows us to expand the Weyl spinor in the same basis:

Vapcp = Yo(a0BLcoLp)-
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To show the redundancy of (50d) and (50e), we first decompose the equa-
tion Dapkcp) = 0 into irreducible components. To simplify the notation, we
borrow the D, A, symbols from the Newman-Penrose formalism to represent
directional derivatives:

D =0"0"Dyg, A=4PDyp, §=0"BDyp. (51)

The components of D 4pkcp) = 0 then become:

0% Do¢ = 0, (52a)
0%Soc = —%D%, (52b)
“Dic — 0% Aoc = 263, (52¢)
Coe = %A%, (52d)
1CAue = 0. (52e)
Using these, one can show that
e "éap = —30405.  Sup — 3uargof dop + gO(ALB) (W Dup + 0" Aop) .

Now, using the electromagnetic Gauss constraint, Eq. (34b), together with the
expansion for ¢ 4p one obtains that using the basis expansion for ¢ 4p one
obtains

0p+2pdx =0 (53)
on §. Now, the spacetime Bianchi identity (4) implies the constraint
DPU apcp = —26“PDepdas (54)

on S. To find the basis expansion of the Hermitian conjugate (E AB, note that:

AA’

~ _ _ !
0402 = 047 64 = Tan 040 = Tk°,

where k, = 0404/. As 7, is timelike and k, is null, this scalar product is
nonzero, and the pair {04,04} forms a basis. We expand the spinor +* in this
basis as

A = a0 + Bo?.
Contracting this with 04, we find 1/a = 040 > 0, and so a > 0. Performing

a Lorentz transformation on the basis {o4,t4} parametrised by the complex
function one has that

This transformation preserves the value of 04:4 and the symmetrised product
ocatp), and thus, it preserves the form of the basis expansions of Kap and
¢ap. Moreover, one has that

~A
i =al\*o + pAZo.
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So, by choosing |A\|?> = 1/a and 3 = B2, and dropping the tildes, we get
A =04+ Bo?,
= —o" + o

Using the above expressions, we can find the basis expansion of qg 45 Namely,
one has that:

bap = ~p(0alp +740B)

@(—040p — 040 + 2(30408)

= @Bars + @B(1 + |81*)oaos — @(1 4 2|81*)oatp)-
Now, using the basis expansion for the Weyl spinor, contracting with

combinations of 0 and 4 and using the relations given in (52a) and (53), the
components of (54) become

Dip 4 30D = 6|3 (1 + 2|3|*) D + 1253|¢[?0" Ao,
A + 3 Ase = 6l * (1 + 2|8]*) Ase — 128]p*(1 + |B*)1* D,
81 4 3de = —6|0|*(1 + 2|6]*)d2c — 385(1 + |B]*) D — 3B A¢.

Exploiting conditions (52a), the expansions of the Maxwell and the Bianchi
constraints, it can be shown that condition (50e) can be decomposed into the
following non-trivial irreducible parts:

N~ N —

Assuming ¢ # 0, these conditions along with the Maxwell constraint (53) are
equivalent to the following basis-independent expression, also independent of
the value of 3:

DABSO + 2S0DAB% = 0.
The latter can be written as
DAB (@62%) == DABQ =0.

Therefore, under the hypotheses of the present lemma, Eq. (50e) is equivalent
to the requirement of 9 being constant in a domain ¢ C S. In a similar way,
substituting the above relations in Eq. (50d) and splitting into irreducible parts
gives the following set of equivalent conditions:

e” (D +2¢Ds) =0,
e” (Ap + 2pAsx) =0,
e” (0 + 2¢032) = 0.

As e” is nonzero, this set of conditions is again equivalent to the constancy of
NQinUCS. O



A Geometric Invariant Characterising Initial Data

Next, we consider the case when the Killing spinor is algebraically special:
Lemma 12. Assume the symmetric spinor kap satisfies the conditions

kapk™® =0, kaph*® £0, €apcp = VYpapcrp)’ =k dpc =0

on an open subset U C S. Then, there exists a normalised spin basis {0, 14}

such that the spinors kap and ¢ ap can be expanded as

KAB = €70A0B,  ¢AB = POAOB.
Furthermore, Egs. (50d) and (50e) are satisfied on U C S.

Proof. The first part of the lemma follows directly from the hypothesis

kapkP =0, kapRAP # 0, and the fact that H(AC¢B)C = 0 implies ¢pap x

k4p- The condition \IIF(ABCKD)F = 0 also allows us to expand the Weyl spinor
in the same basis as

Wapcp =Yoa0pocop.
In this basis, the components of the equation D4prcp) = 0 become
04Doy = 0,
D+ 404604 + 20 Doy = 0,
S+ 02 Aog + 20404 = 0,
Az + 204 Aoy = 0.
Using these relations, one can show that
e "€ = 304050° Aoc — 60(ALB)OC5OC.
The Maxwell constraint, Eq. (34b), on S is equivalent to
D¢ — ¢pDsc — 6004 = 0,
and the o(4tp) component of the Bianchi constraint
PP apep = —26°PDepdas

on S, as a consequence of the previous relations, is equivalent to the following
condition:

lp20t Ao — 28|¢|?0? 604 = 0.
Then, by substituting all the relevant basis expansions into (50d) and (50e),
and splitting the equations into irreducible parts, one finds that both condi-

tions are automatically satisfied as a result of the above relations.
O

We round up the discussion of this section with the following electrovac-
uum analogue of Theorem in [6]:

Lemma 13. Assume that one has a symmetric spinor kap satisfying the con-
ditions

Dagkcp) = Vrapckpy” =k o =0



M. J. Cole, J. A. Valiente Kroon Ann. Henri Poincaré

on the Cauchy hypersurface S and that the complex function

Q% = (kaprP)” gapo""

is constant on S. Then the domain of dependence, DY (S), of the initial data
set (S,g, K, F) will admit a Killing spinor.

Proof. Let U, be the set of all points in S where k45547 # 0 and Uy be the set
of all points in S where k4gR*? # 0. The scalar functions kapkd? : S — C
and kapRAP : S — R are continuous. Therefore, U; and Us are open sets.
Now, let V; and Vs, denote, respectively, the interiors of S\U; and V1 \Us. On
the open set V; NUs, we have that kapk?P =0 and kypRAE # 0. Hence, by
Lemma 12, conditions (50d) and (50e) are satisfied on V; N Us. Similarly, by
Lemma 11, conditions (50d) and (50e) are satisfied on U;. On the open set Vs,
we have that kap = 0 and therefore (50d) and (50e) are trivially satisfied on
V5. Using the above sets, the 3-manifold S can be split as

intS = Lﬁ @] (Vl QUQ) @] VQ U 81/{1 U 8V2

By hypothesis, all terms in conditions (50d) and (50e) are continuous, and the
conditions themselves are satisfied on the open sets Ui, Vo and V; NUs. By
continuity, the conditions are also satisfied on the boundaries OU; and 9Vs.
Therefore, (50d) and (50e) are satisfied on int S, and by continuity this extends
to the whole of S. O
4.5. Summary

We can summarise the discussion of the present section calculations in the
following theorem:

Theorem 4. Let (S,h, K, F) be an initial data set for the Einstein—Mazwell
field equations where S is a Cauchy hypersurface. Then the conditions

§apep =0, (55a)

Upapckn)’ =0, (55b)

kS Pp)c =0, (55¢)

02 = (KABHAB)2 dapdP = constant, (55d)

are satisfied on S if and only if the development of the initial data set admits
a Killing spinor kap in the domain of dependence of S, such that a4 =
VB srkap is a Killing vector. The Killing spinor is obtained by evolving (7b)
with initial data on S satisfying the above conditions and

2
Prap = *ngB

5. The Approximate Killing Spinor Equation

In the previous section, we have identified the conditions that need to be sat-
isfied by an initial data set for the Einstein—Maxwell equations so that its
development is endowed with a Killing spinor —see Theorem 4. Together with
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the characterisation of the Kerr—-Newman spacetime given by Theorem 1, the
latter provide a way of characterising initial data for the Kerr—-Newman space-
time. The key equation in this characterisation is the spatial Killing spinor
equation

D(ABKCD) =0. (56)

As it will be seen in the following, this equation is overdetermined and thus
admits no solution for a generic initial data set (S, h, K, F). Following the
discussion of Section 5 in [4], in this section we show how to construct a el-
liptic equation for a spinor k4p over S which can always be solved and which
provides, in some sense, a best fit to a spatial Killing spinor. This approz-
imate Killing spinor will be used, in turn, to measure the deviation of the
electrovacuum initial data set under consideration from initial data for the
Kerr—-Newman spacetime.

5.1. Basic Identities

In the present section, we provide a brief discussion of the basic elliptic-
ity properties of the spatial Killing equation. In what follows, let &(4p)(S)
and &(apcp)(S) denote, respectively, the space of totally symmetric valence
2 and 4 spinor fields over the 3-manifold S. Given pap, vap € &ap)(S),
CABCD, XABCD € G(ABCD)(S) one can use the Hermitian structure induced
on S by 744" to define an inner product in Sap)(S) and &apcp)(S), re-
spectively, via

(,v) = /8 was? Bdu, (¢ ) /S CapepRAEPdy,  (57)

where du denotes volume form of the 3-metric h.
Let now ® denote the spatial Killing spinor operator

®:6ap)(S) — Sapcp)(S), ®(k) = Diapkcp)-

The inner product (57) allows to define ®* : S 4pcp)(S) — Sap)(S), the
formal adjoint of ®, through the condition

(®(k),¢) = (k, 2"(C))-

In order to evaluate the above condition, one makes use of the identity (inte-
gration by parts)

/'DABKCDZABCDCUJ_/ KABDCDCABCDdM“"/ 264PQPE 4 Cpoprdp
u u u

= / nABKVCDZABCDdS (58)
ou

with 4 C S and where dS denotes the area element of OU, n 4 p is the spinorial
counterpart of its outward pointing normal and (4pcp is a totally symmetric
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spinorial field. Now, observing that
(@(k),C) :/SD(ABHCD)ZABCDdM

:/ DapkcepCPPdp,
s
it follows then from identity (58) that

*(¢) = D*PCapep — 2977 (oCpyapr.

Definition 3. The composition operator L = ®* o & : §4)(S) — S(ap)(S)
given by

L(k) = D*PDaprcpy — QBT 4Diprikpyc — QBT 4Dpyrkep  (59)

will be called the approximate Killing spinor operator and the equation
L(k)=0
the approximate Killing spinor equation.
Remark 24. A direct computation shows that the approximate Killing spinor
Eq. (59) is, in fact, the Euler-Lagrange equation of the functional
J= / Dapkcp)yDABRCPdp.
s

5.2. Ellipticity of the Approximate Killing Spinor Equation
The key observation concerning the approximate Killing spinor operator is
given in the following:

Lemma 14. The operator L is a formally self-adjoint elliptic operator.
Proof. Tt is sufficient to look at the principal part of the operator L given by
P(L)(k) = D*PDaprcp)-

The symbol for this operator is given by
o1(&) = e8¢ apken)

where the argument &4p satisfies Eap = f(AB) and EAB = —{pp—ie. £ is
a real symmetric spinor. Also, define the inner product (,) on the space of
symmetric valence-2 spinors by

<£a 77> = fABnAB-
The operator L is elliptic if the map
or(€) s kap — £9PEcpkan)

is an isomorphism when |£|? = (€,&) # 0. As the above mapping is linear
and between vector spaces of the same dimension, one only needs to verify
injectivity—in other words, that if EAB&ABRCD) =0, then k45 = 0. To show
this, first expand the symmetrisation in the symbol to obtain

—kopl€* — (&, K)écp +26*Bécprap + 26*B¢pprac = 0,
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where we have used the reality condition EAB = —¢&ap. Note also that the
Jacobi identity implies that

1
¢ P¢op = *550‘4\52,
which reduces the above equation to

3kcpl€]? + Eop (€, k) = 0.

Contracting this with kP, and using the conjugate symmetry of the inner
product, we obtain

3|k [*1€1* +[(&, K)|* = 0.
Both of these terms are positive, and so the equality can only hold if each term
vanishes individually. Taking the first of these, one sees that when [£|? # 0,
we must have |k|? = 0. This is equivalent to k45 = 0, completing the proof of
injectivity and establishing the ellipticity of L. O

6. The Approximate Killing Spinor Equation in Asymptotically
Euclidean Manifolds

The purpose of this section is to discuss the solvability of the approximate
Killing spinor equation, Eq. (59), in asymptotically Euclidean manifolds. As a
result of this analysis, one concludes that for this type of initial data sets for the
Einstein—Maxwell equations it is always possible to construct an approximate
Killing spinor.

6.1. Weighted Sobolev Norms

The discussion of asymptotic boundary conditions for the approximate Killing
equation makes use of weighted Sobolev norms and spaces. In this section, we
introduce the necessary terminology and conventions to follow the discussion.
The required properties of these objects for the present analysis are discussed in
detail in Section 6.2 of [4] to which the reader is directed for further reference.

Given u a scalar function over S and § € R, let || u ||5 denote the weighted
L? Sobolev norm of u. All throughout we make use of Bartnik’s conventions
for the weights—see [7]—so that, in particular || u ||_5/o is the standard L*
norm of u. Similarly, let H§ with s a non-negative index denote the weighted
Sobolev space of functions for which the norm

lullss= D> | D lls-jal;
0< o <s
is finite where oo = (a1, v, v3) is a multiindex and |a] = a1 + ag + a3. We say
that v € H$® if uw € H§ for all s. We will say that a spinor or a tensor belongs
to a function space if its norm does—so, for instance (4p € Hj is a shorthand
for (CABéAB + CAAEBB)V? € H§. A property of the weighted Sobolev spaces
that will be used repeatedly is the following: if v € H$°, then v is smooth
(i.e. C> over S) and has a fall off at infinity such that D®u = o(r*~1%1).1 In

I Recall that the small o indicates that if f(z) = o(2™), then f(z)/z™ — 0 as x — 0.
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a slight abuse of notation, if v € H§°, then we will often say that u = o (r%)
at a given asymptotic end.

6.2. Asymptotically Euclidean Manifolds

We begin by spelling out our assumptions on the class of Einstein—-Maxwell
initial data sets to be considered in the remainder of this article. The Einstein—
Maxwell constraint equations are given by

r— K2+ Kinij = 2p,
D'K;j — D;K = j;,
D'E; =0,

D'B; =0,

where D; denotes the Levi—Civita connection of the 3-metric h, r is the asso-
ciated Ricci scalar, K;; is the extrinsic curvature, K = K;*, p is the energy-
density of the electromagnetic field, j; is the associated Poynting vector and
FE; and B; denote the electric and magnetic parts of the Faraday tensor with
respect to the unit normal of S.

Assumption 3. In the remainder of this article, it will be assumed that one
has initial data (h,K,E,B) for the Einstein-Mazwell equations which is
asymptotically Reissner—Nordstrom in the sense that in each asymptotic end
of S there exist asymptotically Cartesian coordinates (z%) and two constants
m,q # 0, for which

2
hop = — (1 + ;”) B + 00 (r™2), (60a)
Kag = 000(r™°"?), (60D)
qTq _
E, = g + 000 (r%/?), (60c)
Bo = 050 (r7%/?). (60d)

Remark 25. The asymptotic conditions spelled in Assumption 3 ensure that
the total mass and electric charge of the initial data are non-vanishing. In
particular, it contains standard initial data for the Kerr-Newman spacetime
in, say, Boyer—Lindquist coordinates as an example. More generally, the as-
sumptions are consistent with the notion of stationary asymptotically flat end
provided in Definition 1. In the case m = 0, the spacetime is guaranteed to be
isomorphic to the Minkowski spacetime as a result of the positive energy theo-
rem; in the case ¢ = 0, the Einstein—-Maxwell equations reduce to the vacuum
Einstein equations, and the proceeding analysis is the same as in [4].

Remark 26. The above class of initial data is not the most general one could
consider. In particular, conditions (60a)—(60d) exclude boosted initial data. In
order to do so, one would require that

Kop = ooo(r_3/2).
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The Einstein—-Maxwell constraint equations would then require one to modify
the leading behaviour of the 3-metric ho3. The required modifications for this
extension of the present analysis are discussed in [4].

6.3. Asymptotic Behaviour of the Approximate Killing Spinor

In this section, we discuss the asymptotic behaviour of solutions to the spatial
Killing spinor equation (Eq. (56) start of Sect. 5) on asymptotically Euclidean
manifolds of the type described in Assumption 3. To this end, we first consider
the behaviour of the Killing spinor in the Kerr-Newman spacetime. In a second
stage, we impose the same asymptotic solution to the approximate Killing
spinor equation on slices of a more general spacetime. In what follows, we
concentrate our discussion to an asymptotic end.

6.3.1. Asymptotic Behaviour in the Exact Kerr—-Newman Spacetime. For the
exact Kerr—-Newman spacetime with mass m, angular momentum a and charge
g, it is possible to introduce a NP frame {I%, n% m®, m*} with associated
spin dyad {0, 1} such that the spinors kap, ¢ap and Yapcp admit the
expansion

KAB = %0(AlB), $AB = POo(ALB), Vapep = Y0(40BLetp),
with

2
= g(r—iacosﬂ),

_ q
v (r —iacos6)?’

v - -
= -m
(r —iacos6)? \ r +iacos6 ’
where r denotes the standard Boyer—Lindquist radial coordinate—see [2] for

more details. A further computation shows that the spinorial counterpart,
44 of the Killing vector £ takes the form

3 _ _ _ _
Ean = —5%(MOAOAI — TOALA + TLADA — pLATAY) (61)
where the NP spin connection coefficients p, 7, 7 and p satisfy the conditions
nx = s, Tx = uT, px = p

which ensure that €44/ is a Hermitian spinor —i.e. €44/ = £4.4/. Despite the
conciseness of the above expressions, the basis of principal spinors given by
{04,14} is not well adapted to the discussion of asymptotics on a stationary
end of the Kerr—-Newman spacetime—in particular, the asymptotic behaviour
of the NP frame {I%, n®, m®, m®} is not related to the asymptotic behaviour

of the stationary Killing vector of the spacetime.
From the point of view of asymptotics, a better representation of the

Kerr-Newman spacetime is obtained using a NP frame {I'®, n'*, m’® m/*}
with associated spin dyad {0’4, //4} such that

74— l/a + n/a _ ﬂ(at)a’
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where the vector 7% is the tensorial counterpart of the spinor A4 Tt follows
from the above that
7_AA’ _ OlAa/A’ + LlAF’A/. (62)

Notice, in particular, that from the above expression it follows that ¢’y = 0. As
Taar = V/2€44/, one can use expressions (61) and (62) to compute the leading
terms of the Lorentz transformation relating the NP frames {I%, n®, m®, m®}
and {I'*, n'*, m’® m/'*}. The details of this tedious computation will not be
presented here—just the main result.

In what follows it will be convenient to denote the spinors of the basis
{04, /A} in the form {ea?} where

60A — O/A’ 6lA — L/A.

Moreover, let kap = eategPrap denote the components of k4 p with respect
to the basis {e4“}. It can then be shown that for Kerr-Newman initial data
satisfying the asymptotic conditions (60a)—(60d) one can choose asymptoti-
cally Cartesian coordinates (%) = (2!, 22, 2%) and orthonormal frames on the
asymptotic ends such that

\@ 2\/§m

KAB = :F?xAB + 3

U 1 —z! +iz? 23
AB = NG 23 2l 4ix? )
From the above expressions, one finds that on the asymptotic ends

E=+V2+ 050(r /2,
12,

rTAB + Ooo(r_1/2)a (63)
with

§AB =000 (T

where éap = eaeP&an. Moreover, for any electrovacuum initial data set
satisfying conditions (60a)—(60d) a spinor of form (63) satisfies

DaBkcD) = 0co (r=?/%).

6.3.2. Asymptotic Behaviour for Non-Kerr Data. Not unsurprisingly, given
electrovacuum initial data satisfying conditions (60a)—(60d), it is always pos-
sible to find a spinor k4 p satisfying expansion (63) in the asymptotic region.
More precisely, one has:

Lemma 15. For any asymptotic end of an electrovacuum initial data set sat-
isfying (60a)—(60d), there exists a spinor kap such that

V2 2v2m —1/2)

KAB = :F?Z‘AB + T-TAB + 000 (7
with
£ = +v2 + ooo(r_l/Q), (64a)
€ = 000 (r™'/?), (64b)

€aBeD = 00s(r*/?). (64c)
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Proof. The proof follows the same structure of Theorem 17 in [4] where the
vacuum case is considered. O

Remark 27. The spinors obtained from the previous lemma can be cut off so
that they are zero outside the asymptotic end. One can then add them to yield
a real spinor k4p on the whole of S such that

D(ABIO{CD) (S Hi%/g
and asymptotic behaviour given by (63) at each end.

In the analysis of the solvability of the approximate Killing spinor equa-
tion, it is crucial that there exist no non-trivial spatial Killing spinor that goes
to zero at infinity. More precisely, one has the following:

Lemma 16. Let vap € Hfol/z be a solution to D apvcpy = 0 on an electrovac-
uum initial data set satisfying the asymptotic conditions (60a)—(60d). Then
vVaAB = 0onS.

Proof. From Lemma 10, one can write DapDepDrrkgy as a linear combi-
nation of lower order derivatives, with smooth coefficients. Direct inspection
shows that the coefficients in this linear combination have the decay conditions
to make use of Theorem 20 from [4] with m = 2. It then follows that v4p must
vanish on S. O

6.4. Solving the Approximate Killing Spinor Equation

In the reminder of this section, we will consider solutions to the approximate
Killing spinor equation of the form:

Kkap = kap +0aB, Oap € HX )y (65)

with k4p the spinor discussed in Remark 27. For this Ansatz, one has the
following:

Theorem 5. Given an electrovacuum asymptotically Fuclidean initial data set
(S,h, K, E, B) salisfying the asymptotic conditions (60a)—(60d) there exists
a smooth unique solution to the approximate Killing spinor equation (59) of
the form (65).

Proof. The proof is analogous to that of Theorem 25 in [4] and is presented
for completeness as this is the main result of this article.
Substitution of Ansatz (65) into equation (59) yields the equation

L(0ap) = —L(kaB) (66)
for the spinor 4 5. Due to elliptic regularity, any solution to the above equation
of class Hz1/2 is, in fact, a solution of class Hiol/Q. Thus, if a solution 645

exists, then it must be smooth. By construction—see Remark 27—it follows

that Dapkcp) € HS%/Q so that

Faip = _L(/%AB) € HE%N
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In order to discuss the existence of solutions, we make use of the Fredholm
alternative for weighted Sobolev spaces. In the particular case of equation
(66), there exists a unique solution of class H~'/? if

/ FapD4Bdu =0,
S

for all vup € H31/2 satisfying

L*(Z/CD) = L(Z/CD) =0.

It will now be shown that a spinor v4p satisfying the above must be trivial.
Using identity (58) with (apcp = D(apV¥cp) and assuming that L(vcp) = 0,
one obtains

/ DABVCDD(ABVCD)du = / nABVCDD(ABVCD)dS,

S 0Sc

where 0S,, denotes the sphere at infinity. Now, using that by assumption

vaB € H31/2v it follows that Dapvep) € H ), and that
nABl/CDD(ABl/CD) =o(r7?).

The integration of the latter over a finite sphere is of type o(1). Accordingly,

the integral over the sphere at infinity dS,, vanishes and, moreover,

/ DABI/CDD(ABZ/CD)dy, =0.
s
Thus, one concludes that

Dapvepy =0 over S

so that vap is a Killing spinor candidate. Now, Lemma 16 shows that there
are no non-trivial Killing spinor candidates that go to zero at infinity.

It follows from the discussion in the previous paragraph that the kernel
of the approximate Killing spinor operator is trivial and that the Fredholm
alternative imposes no obstruction to the existence of solutions to (66). Thus,
one obtains a unique solution to the approximate Killing spinor equation with
the prescribed asymptotic behaviour at infinity. O

7. The Geometric Invariant

In this section, we make use of the approximate Killing spinor constructed
in the previous section to construct an invariant measuring the deviation of
a given electrovacuum initial data set satisfying the asymptotic conditions
(60a)—(60d) from initial data for the Kerr-Newman spacetime.
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In the following, let k 4p denote the approximate Killing spinor obtained
from Theorem 5, and let

J= /S Diapkicp) DABRCPdy, (67a)
I, E/S\II(ABCF/‘JD)F\IIAB/C-G\/‘LDGdﬂa (67b)
I E/‘S@AB@\BdM’ (67¢)
Iy = /S DapQ2DABQ2dy, (67d)

where following the notation of Sect. 4 one has

2
Oa5 = 264%5)0, 9? = (kapr™?)” daps™?

The above integrals are well defined. More precisely, one has that:

Lemma 17. Given the approzimate Killing spinor kap obtained from Theorem
5, one has that

J, I, Iy, I3 < cc.
Proof. By construction, one has that the spinor x4 obtained from Theorem 5
satisfies D apkcp) € HY , /o- It follows then from the definition of the weighted
Sobolev norm that
| Viapkcp) ||H93/2:H Vapkcpy 2= J < oo.

To verify the boundedness of I; one notices that by assumption Vapcp €
H*3., ., kap € HY. it follows by the multiplication properties of weighted
Sobolev spaces (see, e.g. Lemma 14 in [4]) that

Uapc' kpyr € HZ )0,

so that, in fact, [} < oc.

We now look at the boundedness of I5. By construction and due to the
asymptotic conditions (60a)—(60d), one can choose asymptotically Cartesian
coordinates and orthonormal frames on the asymptotic ends such that the
approximate Killing spinor and Maxwell spinor satisfy

2
KAB = :ngAB + 0o (r1/2>

baB = \[ —=3TAB + 0x (7—5/2) )
Therefore,
Oap = ka%n)q

3q3$(A 2By + 0o (7“_3/2)

= 0o (7"73/2) .

and so O p € H73/2, and I, < oo.
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Finally, to show the boundedness of I3, note that in the asymptotically
Cartesian coordinates and orthonormal frames used above, we have

4
(I{ABHAB)Q _ §T4 T on (V?/z) 7

2
Papd™’ = 2q74 + 00 (7“_9/2> ;
and so the quantity £ satisfies
2
Q2 — 871(]2 + o (T—1/2) .
Taking a derivative, one obtains

DapQ® = 00 (r_3/2) )

and therefore D4p? € HS%/Q and I3 < oo. O

The integrals J, I, Is and I3 are then used to define the following geo-
metric invariant:

I=J+15+1,+ I (68)
One has the following result combining the whole analysis of this article:

Theorem 6. Let (S, h, K, E, B) denote a smooth asymptotically Euclidean ini-
tial data set for the Einstein—-Mazwell equations satisfying on each of its two
asymptotic ends the decay conditions (60a)—(60d) with non-vanishing mass and
electromagnetic charge. Let I be the invariant defined by equation (68) where
Kkap is the unique solution to equation (59) with asymptotic behaviour at each
end given by (63). The invariant I vanishes if and only if (S,h, K, E,B) is
locally an initial data set for a member of the Kerr—Newman family of space-
times.

Remark 28. Theorem 6 is the electrovacuum generalisation of the characteri-
sation of initial data for the Kerr spacetime given in Theorem 28 in [4].

Proof. The proof follows the same strategy of Theorem 28 in [4]. Tt follows
from our assumptions that if I = 0 then the electrovacuum Killing spinor data
Eqgs. (5ba)—(55d) are satisfied on the whole of the hypersurface S. Thus, from
Theorem 4 the development of the electrovacuum initial data (S, h, K, E, B)
will have, at least on a slab a Killing spinor.

Now, the idea is to make use of Theorem 1 to conclude that the devel-
opment will be the Kerr-Newman spacetime. For this, one has to conclude
that the spinor 44/ = VQA/-@BQ is Hermitian so that it corresponds to the
spinorial counterpart of a real Killing vector. By assumption, it follows from
expansions (64a)—(64c) that

§— é = OW(T_I/Q)v §aB + éAB = 000(7"_1/2)~

Together, the last two expressions correspond to the Killing initial data for
the imaginary part of £44.—thus, the imaginary part of €44/ goes to zero
at infinity. It is well known that for electrovacuum spacetimes there exist no
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non-trivial Killing vectors of this type [9,12]. Thus, €44 is the spinorial coun-
terpart of a real Killing vector. By construction, £ 4 4/ tends, asymptotically, to
a time translation at infinity. Accordingly, the development of the electrovac-
uum initial data (S,h, K, E, B) contains two asymptotically stationary flat
ends Mo, and M/ generated by the Killing spinor x45. As the Komar mass
and the electromagnetic charge of each end is, by assumption, nonzero, one
concludes from Theorem 1 that the development (M, g, F') is locally isometric
to the Kerr—Newman spacetime.

Conversely, if the initial data set corresponds to initial data for a mem-
ber of the Kerr-Newman family of solutions, then we know that there exists
a Killing spinor k45 in the development (M, g, F'), such that xk4p|s has the
asymptotic behaviour given in (65), and the vector 440 = VB 4kap is a
Killing vector in (M, g, F'). Furthermore, this restriction must satisfy the spa-
tial Killing spinor equation on S, and so also the approximate Killing spinor
equation. Therefore, k4p|s is the unique solution described in Theorem 5,
which is used to construct the invariant I. Finally, Theorem 4 tells us that
conditions (55a)—(55d) must be satisfied on S, and so the invariant I must
vanish. g

8. Conclusions

As a natural extension to the vacuum case described by Béckdahl and Va-
liente Kroon [4], the formalism presented above for the electrovacuum case
has similar applications and possible modifications. For example, the use of
asymptotically hyperboloidal rather than asymptotically flat slices can now be
analysed for the full electrovacuum case, applying to the more general Kerr—
Newman solution. Another interesting alternative to asymptotically flat slices
would be to obtain necessary and sufficient conditions for the existence of a
Killing spinor in the future development of a pair of intersecting null hyper-
surfaces. For instance, one could take a pair of event horizons intersecting at a
bifurcation surface and obtain a system of conditions intrinsic to the horizon
that ensures the black hole interior is isometric to the Kerr-Newman solution.

A motivation for the above analysis was also to provide a way of tracking
the deviation of initial data from exact Kerr-Newman data in numerical sim-
ulations. However, in order to be a useful tool, one would still have to show
that the geometric invariant is suitably behaved under time evolution (such
as monotonicity). As highlighted in [4], a major problem is that it is hard
to find a evolution equation for k4p such that the elliptic equations (59) are
satisfied on each leaf in the foliation. If these issues can be resolved, then this
formalism may be of some use in the study of nonlinear perturbations of the
Kerr-Newman solution and the black hole stability problem.

Finally, the ethos of this article is to show that the characterisation of
black hole spacetimes using Killing spinors is still a fruitful avenue of investi-
gation. In future, we hope to show that this method can be used to investigate
other open questions, such as the Penrose inequality and black hole uniqueness.
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