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c© 2017 The Author(s).
This article is an open access publication
DOI 10.1007/s00023-017-0606-x Annales Henri Poincaré

A Geometric Invariant Characterising Initial
Data for the Kerr–Newman Spacetime

Michael J. Cole and Juan A. Valiente Kroon

Abstract. We describe the construction of a geometric invariant char-
acterising initial data for the Kerr–Newman spacetime. This geometric
invariant vanishes if and only if the initial data set corresponds to exact
Kerr–Newman initial data, and so characterises this type of data. We first
illustrate the characterisation of the Kerr–Newman spacetime in terms of
Killing spinors. The space-spinor formalism is then used to obtain a set
of four independent conditions on an initial Cauchy hypersurface that
guarantee the existence of a Killing spinor on the development of the ini-
tial data. Following a similar analysis in the vacuum case, we study the
properties of solutions to the approximate Killing spinor equation and
use them to construct the geometric invariant.

1. Introduction

The Kerr–Newman solution to the Einstein–Maxwell equations, describing a
stationary charged rotating black hole, is one of the most interesting and well-
studied exact solutions in general relativity, and yet there still remain several
unresolved questions. For example, the current family of uniqueness results
regarding the Kerr–Newman solution contain assumptions on the spacetime
that are often considered too restrictive, such as analyticity—see, e.g. [13], for
a review on the subject. Also, although there has been significant progress on
the linear stability of the Kerr–Newman solution, the question of nonlinear
stability has been far more stubborn—see, e.g. [15], for a discussion on this
topic.

Making progress on these unresolved questions concerning electrovacuum
black holes provides the motivation for finding characterisations of the Kerr–
Newman spacetime. Different methods for characterising the exact solution
can be tailored to emphasise specific properties, and so address each of these
unresolved properties directly. One such characterisation is expressed in terms
of Killing spinors, closely related to Killing–Yano tensors, which represent
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hidden symmetries of the spacetime. These symmetries cannot be expressed
in terms of isometries of the spacetime. It has been shown in [14] that an
asymptotically flat electrovacuum spacetime admitting a Killing spinor which
satisfies a certain alignment condition with the Maxwell field must be isometric
to the Kerr–Newman spacetime—see Theorem 1.

Once the motivation for a characterisation of the Kerr–Newman space-
time in terms of Killing spinors has been established, it is useful to investigate
how the existence of such a spinor can be expressed in terms of initial data.
The initial value problem in general relativity has played a crucial role in the
systematic analysis of the properties of generic solutions to the Einstein field
equations—see, e.g. [16,21,22]. It also provides the framework necessary for
numerical simulations of spacetimes to be performed—see, e.g. [1,8].

Representing symmetries of a spacetime in terms of conditions on an
initial hypersurface is not a new idea; the Killing initial data (KID) equa-
tions—see, e.g. [10]—are conditions on a spacelike Cauchy surface S which
guarantee the existence of a Killing vector in the resulting development of the
initial data. Thus, isometries of the whole spacetime can be encoded at the
level of initial data. The resulting conditions form a system of overdetermined
equations, so do not necessarily admit a solution for an arbitrary initial data
set. In fact, it has been shown that the KID equations are non-generic, in the
sense that generic solutions of the vacuum constraint Einstein equations do not
possess any global or local spacetime Killing vectors—see [11]. An analogous
construction can, in principle, be performed for Killing spinors. This analysis
has been performed for the vacuum case giving explicitly the conditions re-
lating the Killing spinor candidate and the Weyl curvature of the spacetime
—see [17] and also [4]. These conditions are, like the KID equations, an overde-
termined system and so do not necessarily admit a solution for an arbitrary
initial surface. However, in [3,4] it has been shown that given an asymptoti-
cally Euclidean hypersurface it is always possible to construct a Killing spinor
candidate which, whenever there exists a Killing spinor in the development,
coincides with the restriction of the Killing spinor to the initial hypersurface.
This approximate Killing spinor is obtained by solving a linear second-order
elliptic equation which is the Euler–Lagrange equation of a certain functional
over S. The approximate Killing spinor can be used to construct a geometric
invariant, which in some way parametrises the deviation of the initial data set
from Kerr initial data. Variants of the basic construction in [4] have been given
in [5,6].

The purpose of this article is to extend the analysis of [4] to the electrovac-
uum case. In doing so, we rely on the characterisation of the Kerr–Newman
spacetime given in [14] which, in turn, builds upon the characterisation pro-
vided in [18] for the vacuum case and [24] for the electrovacuum case. As a
result of our analysis, we find that the Killing spinor initial data equations
remain largely unchanged, with extra conditions, ensuring that the electro-
magnetic content of the spacetime inherits the symmetry of the Killing spinor.
These electrovacuum Killing spinor equations, together with an appropriate
approximate Killing spinor, are used to construct an invariant expressed in
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terms of suitable integrals over the hypersurface S whose vanishing charac-
terises in a necessary and sufficient manner initial data for the Kerr–Newman
spacetime. Our main result, in this respect, is given in Theorem 6.

Overview of the Article

Section 2 provides a brief overview of the theory of Killing spinors in elec-
trovacuum spacetimes. Section 3 discusses the evolution equations governing
the propagation of the Killing spinor equation in an electrovacuum spacetime.
The main conclusion from this analysis is that the resulting system is homo-
geneous in a certain set of zero-quantities. The trivial data for these equations
give rise to the conditions implying the existence of a Killing spinor in the de-
velopment of some initial hypersurface. In Sect. 4, a space-spinor formalism is
used to reexpress these conditions in terms of quantities intrinsic to the initial
hypersurface. In addition, in this section the interdependence between the var-
ious conditions is analysed and a minimal set of Killing spinor data equations
is obtained. Section 5 introduces the notion of approximate Killing spinors for
electrovacuum initial data sets and discusses some basic ellipticity properties
of the associated approximate Killing spinor equation. Section 6 discusses the
solvability of the approximate Killing spinor equation in a class of asymptoti-
cally Euclidean manifolds. Finally, Sect. 7 brings together the analyses in the
various sections to construct a geometric invariant characterising initial data
for the Kerr–Newman spacetime. The main result of this article is given in
Theorem 6.

Notation and Conventions

Let (M, g,F ) denote an electrovacuum spacetime—i.e. a solution to the Einst-
ein–Maxwell field equations. The signature of the metric in this article will
be (+,−,−,−), to be consistent with most of the existing literature using
spinors. We use the spinorial conventions of [19]. The lowercase Latin letters
a, b, c, . . . are used as abstract spacetime tensor indices, while the uppercase
letters A, B, C, . . . will serve as abstract spinor indices. The Greek letters
μ, ν, λ, . . . will be used as spacetime coordinate indices, while α, β, γ, . . . will
serve as spatial coordinate indices. Finally, A, B, C, . . . will be used as spino-
rial frame indices.

The conventions for the spinorial curvature are set via the expressions

�ABμC = ΨABCDμD − 2Λμ(AεB)C , �A′B′μC = ΦACA′B′μA. (1)

We systematically use of the following expression for the (once contracted)
second derivative of a spinor:

∇AQ′∇B
Q′

=
1
2
εAB� + �AB . (2)

2. Killing Spinors in Electrovacuum Spacetimes

In this section, we provide a systematic exposition of the properties of Killing
spinors in an electrovacuum spacetime.
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2.1. The Einstein–Maxwell Equations

Using standard spinorial notation, the Einstein–Maxwell equations are given
by

ΦABA′B′ = 2φABφ̄A′B′ , Λ = 0, (3a)

∇A
A′φAB = 0. (3b)

In particular, from the Maxwell equation (3b) it follows that

∇A′BφCD = ∇A′(BφCD).

The Bianchi identity is given by

∇A
B′ΨABCD = ∇(B

A′
ΦCD)A′B′ ,

or, more explicitly

∇A
A′ΨABCD = 2φ̄A′B′∇B

B′
φCD. (4)

Given an electrovacuum spacetime, applying the derivative ∇A′
C to the

Maxwell equation in the form ∇A
A′φAB = 0, one obtains, after some standard

manipulations, the following wave equation for the Maxwell spinor:

�φAB = 2ΨABCDφCD. (5)

2.2. Killing Spinors

A Killing spinor κAB = κ(AB) in an electrovacuum spacetime (M, g,F ) is a
solution to the Killing spinor equation

∇A′(AκBC) = 0. (6)

In the sequel, a prominent role will be played by the integrability con-
ditions implied by the Killing spinor equation. More precisely, one has the
following:

Lemma 1. Let (M, g,F ) denote an electrovacuum spacetime endowed with a
Killing spinor κAB. Then κAB satisfies the integrability conditions:

κ(A
QΨBCD)Q = 0, (7a)

�κAB + ΨABCDκCD = 0. (7b)

Proof. The integrability conditions follow from applying the derivative ∇D
A′

to the Killing spinor equation (6), then using identity (2) together with the
box commutators (1) and finally decomposing the resulting expression into
its irreducible terms—the only non-trivial trace yields Eq. (7b), while the
completely symmetric part gives Eq. (7a). �
Remark 1. Observe that although every solution to the Killing spinor equation
(6) satisfies the wave Eq. (7b), the converse is not true. In what follows, a
symmetric spinor satisfying Eq. (7b), but not necessarily Eq. (6), will be called
a Killing spinor candidate. This notion will play a central role in our subsequent
analysis—in particular, we will be concerned with the question of the further
conditions that need to be imposed on a Killing spinor candidate to be an
actual Killing spinor.
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A well-known property of Killing spinors in a vacuum spacetime is that
the spinor

ξAA′ ≡ ∇Q
A′κQA (8)

is the counterpart of a (possibly complex) Killing vector ξa. A similar property
holds for electrovacuum spacetimes—however, a further condition is required
on the Killing spinor.

Lemma 2. Let (M, g,F ) denote an electrovacuum spacetime endowed with a
Killing spinor κAB. Then ξAA′ as defined by Eq. (8) is the spinorial counterpart
of a Killing vector ξa if and only if

κ(A
QφB)Q = 0. (9)

Proof. The proof follows by direct substitution of definition (8) into the de-
rivative ∇AA′ξBB′ . Again, using the box commutators (1) one obtains, after
some manipulations that

∇AA′ξBB′ + ∇BB′ξAA′ = 12φ̄A′B′ κ(A
QφB)Q,

from which the result follows. �

Remark 2. Condition (9) implies that the Killing spinor κAB and the Maxwell
spinor φAB are proportional to each other—thus, in what follows we refer to
(9) as the matter alignment condition.

Remark 3. In the sequel, we will refer to a spinor ξAA′ obtained from a sym-
metric spinor κAB using expression (8) (not necessarily a Killing spinor) as
the Killing vector candidate associated with κAB .

2.3. Zero-Quantities

In order to investigate the consequences of the Killing spinor Eq. (6) in a more
systematic manner, it is convenient to introduce the following zero-quantities:

HA′ABC ≡ 3∇A′(AκBC), (10a)

SAA′BB′ ≡∇AA′ξBB′ + ∇BB′ξAA′ , (10b)

ΘAB ≡ 2κ(A
QφB)Q. (10c)

Observe that if HA′ABC = 0, then κAB is a Killing spinor. Similarly, if
SAA′BB′ = 0, then ξAA′ is the spinor counterpart of a Killing vector, while if
ΘAB = 0, then the matter alignment condition (9) holds.

The decomposition in irreducible components of ∇AA′κBC can be ex-
pressed in terms of HA′ABC and ξAA′ as

∇AA′κBC =
1
3
HA′ABC − 2

3
εA(BξC)A′ . (11)

Similarly, a further computation shows that for ξAA′ as given by Eq. (8) one
has the decomposition

∇AA′ξBB′ = η̄A′B′εAB + ηABεA′B′ +
1
2
S(AB)(A′B′), (12)
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where

ηAB ≡ 1
2
∇AQ′ξB

Q′
.

If ξAA′ is a real Killing vector, then the spinor ηAB encodes the information
of the so-called Killing form.

Remark 4. From Eq. (12), it readily follows by contraction that

∇AA′
ξAA′ = 0,

independently of whether the alignment condition (9) holds or not—i.e. the
Killing vector candidate ξAA′ defined by Eq. (8) is always divergence-free. This
observation, in turn, implies that

SAA′AA′
= 0,

so that one has the symmetry

SAA′BB′ = S(AB)(A′B′). (13)

Remark 5. The zero-quantities introduced in Eqs. (10a)–(10c) are a helpful
bookkeeping device. In particular, a calculation analogous to that of the proof
of Lemma 1 shows that

∇(A
A′

H|A′|BCD) = − 6ΨQ(ABCκD)
Q,

∇AA′
HA′ABC = 2

(
�κBC + ΨBCPQκPQ

)
.

Thus, the integrability conditions of Lemma 1 can be written, alterna-
tively, as

∇(A
A′

H|A′|BCD) = 0, ∇AA′
HA′ABC = 0.

In particular, observe that if κAB is a Killing spinor candidate, then the zero-
quantity HA′ABC is divergence-free.

2.4. A Characterisation of Kerr–Newman in Terms of Spinors

The following definition will play an important role in our subsequent analysis:

Definition 1. A stationary asymptotically flat 4-end in an electrovacuum space-
time (M, g,F ) is an open submanifold M∞ ⊂ M diffeomorphic to I×(R3\BR)
where I ⊂ R is an open interval and BR is a closed ball of radius R. In the
local coordinates (t, xα) defined by the diffeomorphism, the components gμν

and Fμν of the metric g and the Faraday tensor F satisfy

|gμν − ημν | + |r∂αgμν | ≤ Cr−1, (14a)

|Fμν | + |r∂αFμν | ≤ C ′r−2, (14b)

∂tgμν = 0, (14c)

∂tFμν = 0, (14d)

where C and C ′ are positive constants, r ≡ (x1)2 + (x2)2 + (x3)2, and ημν

denote the components of the Minkowski metric in Cartesian coordinates.
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Remark 6. It follows from condition (14c) in Definition 1 that the station-
ary asymptotically flat end M∞ is endowed with a Killing vector ξa which
takes the form ∂t—a so-called time translation. From condition (14d), one has
that the electromagnetic fields inherit the symmetry of the spacetime—that is
LξF = 0, with Lξ the Lie derivative along ξa.

Of particular interest will be those stationary asymptotically flat ends
generated by a Killing spinor :

Definition 2. A stationary asymptotically flat end M∞ ⊂ M in an electrovac-
uum spacetime (M, g,F ) endowed with a Killing spinor κAB is said to be
generated by a Killing spinor if the spinor ξAA′ ≡ ∇B

A′κAB is the spinorial
counterpart of the Killing vector ξa.

Remark 7. Stationary spacetimes have a natural definition of mass in terms of
the Killing vector ξa that generates the isometry—the so-called Komar mass
m defined as

m ≡ − 1
8π

lim
r→∞

∫

Sr

εabcd∇cξddSab,

where Sr is the sphere of radius r centred at r = 0 and dSab is the binormal
vector to Sr. Similarly, one can define the total electromagnetic charge of the
spacetime via the integral

q = − 1
4π

lim
r→∞

∫

Sr

FabdSab.

Remark 8. In the asymptotic region, the components of the metric can be
written in the form

g00 =1 − 2m

r
+ O(r−2),

g0α =
4εαβγSβxγ

r3
+ O(r−3),

gαβ = − δαβ + O(r−1),

where m is the Komar mass of ξa in the end M∞, εαβγ is the flat rank
3 totally antisymmetric tensor and Sβ denotes a 3-dimensional tensor with
constant entries. For the components of the Faraday tensor, one has that

F0α =
q

r2
+ O(r−3),

Fαβ =O(r−3)

—see, e.g. [23]. Thus, to leading order any stationary electrovacuum spacetime
is asymptotically a Kerr–Newman spacetime.

In [14], the following result has been proved:

Theorem 1. Let (M, g,F ) be a smooth electrovacuum spacetime satisfying
the matter alignment condition with a stationary asymptotically flat end M∞
generated by a Killing spinor κAB. Let both the Komar mass associated with
the Killing vector ξAA′ ≡ ∇B

A′κAB and the total electromagnetic charge in
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M∞ be nonzero. Then, (M, g,F ) is locally isometric to a member of the
Kerr–Newman family spacetimes.

The above result is a consequence of the characterisation of the Kerr–
Newman spacetime given in [24]. It replaces the assumption on the self-dual
Weyl tensor of the spacetime with the (stronger) assumption of the existence
of a Killing spinor. The assumption that the electric charge of the spacetime in
M∞ is nonzero is required in the proof of the above result given in [14]; how-
ever, a further theorem from [14] proves a similar result for vacuum spacetimes,
identifying the spacetime as a member of the Kerr family of solutions.

3. The Killing Spinor Evolution System in Electrovacuum
Spacetimes

In this section, we systematically investigate the interrelations between the
zero-quantities HA′ABC , SAA′BB′ and ΘAB . The ultimate objective of this
analysis is to obtain a system of homogeneous wave equations for the zero-
quantities.

3.1. A Wave Equation for ξAA′

Given a Killing spinor candidate κAB , the wave Eq. (7b) naturally implies
a wave equation for the Killing vector candidate ξAA′ . We first notice the
following alternative expression for the field SAA′BB′ :

Lemma 3. Let κAB denote a symmetric spinor field in an electrovacuum (M, g,
F ). Then, one has that

SAA′BB′ = 6φ̄A′B′ΘAB − 1
2
∇PA′HB′AB

P − 1
2
∇PB′HA′AB

P . (15)

Proof. To obtain the identity one starts by substituting the expression ξAA′ =
∇Q

A′κQA into the definition of SAA′BB′ , Eq. (10b). One then commutes co-
variant derivatives using commutators (1) and makes use of the decomposi-
tions of ∇AA′κBC , ∇AA′ξBB′ and SAA′BB′ given by Eqs. (11), (12) and (13),
respectively, to simplify. �

Remark 9. Observe that in the above result the spinor κAB is not assumed to
be a Killing spinor candidate.

The latter is used, in turn, to obtain the main result of this section:

Lemma 4. Let κAB denote a Killing spinor candidate in an electrovacuum
spacetime (M, g,F ). Then the Killing vector candidate ξAA′ ≡ ∇Q

A′κAQ sat-
isfies the wave equation

�ξAA′ = −2ξPP ′
ΦAPA′P ′ + ΦPQ

A′ P
′
HP ′APQ

−ΨAPQDHA′PQD + 6φ̄A′ P
′∇PP ′ΘA

P . (16)
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Proof. One makes use of the definition of SAA′BB′ and identity (3) to write

∇AA′∇AA′ξBB′ + ∇AA′∇BB′ξAA′ = 6ΘAB∇AA′
φ̄A′B′ + 6φ̄A′B′∇AA′

ΘAB

− 1
2
∇AA′∇CA′HB′AB

C − 1
2
∇AA′∇CB′HA′AB

C .

The above expression can be simplified using the Maxwell equations. More-
over, commuting covariant derivatives in the terms ∇AA′∇CA′HB′AB

C and
∇AA′∇CB′HA′AB

C one arrives to

�ξAA′ = −2ξPP ′
ΦAPA′P ′ + ΦPQ

A′ P
′
HP ′APQ − ΨAPQDHA′PQD

+ 6φ̄A′P
′∇PP ′ΘA

P − ∇AA′∇PP ′ξPP ′ − 1
2
∇QA′∇PP ′HP ′

A
PQ.

Finally, using that ξAA′ is a Killing vector candidate (see Remark 4) and that
∇AA′

HA′ABC = 0 (see Remark 5) the result follows. �
Remark 10. Important for the subsequent discussion is that the wave Eq. (17)
takes, in tensorial terms, the form

�ξa = −2Φabξ
b + Ja, (17)

where Ja is defined in spinorial terms by

JAA′ ≡ ΦPQ
A′ P

′
HP ′APQ − ΨAPQDHA′ PQD + 6φ̄A′ P

′∇PP ′ΘA
P .

In terms of the zero-quantity ζAA′ to be introduced in Eq. (19), one has

JAA′ ≡ ΦPQ
A′P

′
HP ′APQ − ΨAPQDHA′PQD − 6φ̄A′ P

′
ζAP ′ .

Thus, JAA′ is an homogeneous expression of zero-quantities and does not
involve their derivatives.

3.2. A Wave Equation for HA′ABC

Lemma 5. Let κAB denote a Killing spinor candidate in an electrovacuum
spacetime (M, g,F ). Then the zero-quantity HA′ABC satisfies the wave equa-
tion

�HA′BCD = 2ΨCDAF HA′B
AF + 2ΨBDAF HA′C

AF + 4φD
Aφ̄A′B

′
HB′BCA

−12φ̄A′ B
′∇DB′ΘBC − 2∇D

B′
S(BC)(A′B′). (18)

Proof. We consider, again, identity (3) in the form

∇AB′HA′BC
A = 6φ̄A′B′ΘBC − S(BC)(A′B′).

Applying the derivative ∇D
B′

to the above expression, one readily finds that

∇D
B′∇AB′HA′BC

A

= 6(ΘBC∇D
B′

φ̄A′B′ + φ̄A′B′∇D
B′

ΘBC) − ∇D
B′

S(BC)(A′B′)).

Using identity (2) and the box commutators (1), one obtains, after using the
Maxwell equations to simplify, the desired equation. �
Remark 11. Observe that the right-hand side of the wave equation (18) is
an homogeneous expression in the zero-quantity HA′ABC and the first-order
derivatives of ΘAB and SAA′BB′ .
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3.3. A Wave Equation for ΘAB

In order to compute a wave equation for the zero-quantity associated with
the matter alignment condition, it is convenient to introduce a further zero-
quantity:

ζAA′ ≡ ∇Q
A′ΘAQ. (19)

Clearly, if the matter alignment condition (9) is satisfied, then ζAA′ = 0. The
reason for introducing this further field will become clear in the sequel. Using
the above definition, one obtains the following:

Lemma 6. Let κAB denote a symmetric spinor field in an electrovacuum space-
time (M, g,F ). Then, one has that

�ΘAB = 2ΨABPQΘPQ − 2∇B
A′

ζAA′ . (20)

Proof. The wave equation follows from applying the derivative ∇B
A′

to the
definition of ζAA′ and using identity (2) together with the box commutators
(1). �

Remark 12. A direct computation using the definitions of ΘAB and ζAA′ to-
gether with the expression for the irreducible decomposition of ∇AA′κBC given
by Eq. (11) and the Maxwell equations gives that

ζAA′ = −∇A′(AφBC)κ
BC +

4
3
ξB

A′φAB +
1
3
HA′ABCφBC . (21)

Remark 13. It follows directly from Eq. (20) that

∇AA′
ζAA′ = 0.

Alternatively, this property can be verified through a direct computation using
identity (21).

As the right-hand side of Eq. (20) is an homogeneous expression in ΘAB

and a first-order derivative of ζAA′ , one needs to construct a wave equation
for ζAA′ . The required expression follows from an involved computation—as it
can be seen from the proof of the following lemma:

Lemma 7. Let κAB denote a symmetric spinor field in an electrovacuum (M, g,
F ). Then, one has that

�ζAA′

= 4ζDB′
φADφ̄A′B′ +

2

3
φDBΨDBCF HA′A

CF − 2

3
φDBΨABCF HA′D

CF

− 4

3
φA

DφBC φ̄A′B
′
HB′DBC − 2

3
HB′DBC∇AB′φDA′BC − 2

3
HA′DBC∇AB′φD

B′
BC

+
2

3
φDB′BC∇AB′HA′DBC +

2

3
φD

A′BC∇AB′HB′
DBC − 4

3
φDB∇A

B′
S(BD)(A′B′)

− 4φDB φ̄A′B
′∇BB′ΘAD − 2

3
φDB∇B

B′
S(AD)(A′B′) +

2

3
∇A

B′
φDB∇CB′HA′DB

C

− 4

3
∇A

B′
φDBS(BD)(A′B′). (22)

where φAA′BC ≡ ∇AA′φBC .
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Proof. Consider identity (21) and apply the derivative ∇A
B′ to obtain

∇A
B′ζAA′ = − κBC∇A

B′∇AA′φBC − ∇AA′φBC∇A
B′κBC

+
4
3
(φAB∇A

B′ξB
A′ + ξB

A′∇A
B′φAB)

+
1
3
(HA′ABC∇A

B′φBC + φBC∇A
B′HA′ABC).

Some further simplifications yield

∇A
B′ζAA′ =

1
3
∇A

B′φBCHA′ABC +
1
3
∇A

A′φBCHB′ABC

−1
3
φAB∇CB′HA′AB

C +
2
3
φABS(AB)(A′B′).

To obtain the required wave equation, we apply ∇D
B′

to the above expression
and make use of decomposition (2) on the terms

1
3
∇D

B′∇A
B′φBCHA′ABC , ∇D

B′∇A
B′ζAA′ , −1

3
φAB∇D

B′∇CB′HA′AB
C .

Finally, substitution of the wave equations for φAB and HA′ABCD, Eqs. (5)
and (18) yields the required expression homogeneous in zero-quantities. �

3.4. A Wave Equation for SAA′BB′

The discussion of the wave equation for the spinorial field SAA′BB′ is best
carried out in tensorial notation. Accordingly, let Sab denote the tensorial
counterpart of the (not necessarily Hermitian) spinor SAA′BB′ . Key to this
computation is the wave equation for the Killing vector candidate ξa, as given
in Eq. (17).

Lemma 8. Let κAB denote a Killing spinor candidate in an electrovacuum
spacetime (M, g,F ). Then the zero-quantity Sab satisfies the wave equation

�Sab = −2LξTab + 2Tb
cSac + 2Ta

cSbc − T cdScdgab

−TabS
c
c − 2CacbdS

cd + ∇aJb + ∇bJa (23)

where LξTab denotes the Lie derivative of the energy momentum of the Faraday
tensor.

Proof. The required expression follows from applying � = ∇a∇a to

Sab = ∇aξb + ∇bξa,

commuting covariant derivatives, using the wave equation (17), the Einstein
equation

Rab = Tab,

the contracted Bianchi identity

∇aCabcd = ∇[cTd]b

and the relation
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∇aξb =
1
2
Sab + ∇[aξb].

�

A straightforward computation shows that the Lie derivative of the elec-
tromagnetic energy-momentum tensor can be expressed in terms of the Lie
derivative of the Faraday tensor and the zero-quantity Sab as

LξTab = −1
4
FcdF

cdSab − Fa
cFb

dScd +
1
2
Fc

fF cdgabSdf

+Fb
cLξFac + Fa

cLξFbc − 1
2
F cdgabLξFcd.

Furthermore, the Lie derivative of the Faraday tensor can be expressed in
terms of the Lie derivative of the Maxwell spinor as

LξFAA′BB′ =
(

LξφAB − 1
2
SAC′BD′ φ̄C′D′

)
εA′B′ + complex conjugate,

where the Lie derivative of the Maxwell spinor is defined by

LξφAB ≡ ξCC′∇CC′φAB + φC(A∇B)C′ξCC′
(24)

—see Section 6.6 in [20]. This expression can be written in terms of zero-
quantities by using the wave equations for the Killing and Maxwell spinors,
the Maxwell equations and the identity

κD
(AΨB)DEF φEF =

1
2
ΨABCDΘCD +

1
3
φEF ∇(A|A

′
HA′|BEF ),

along with the wave equations for the Killing and Maxwell spinors and the
Maxwell equations, Eqs. (7b) and (17), so as to obtain

LξφAB = −3
2
∇(A

A′
ζB)A′ + HA′CD(A∇B)

A′
φCD − φCD∇(A|A

′
HA′|BCD).

From the previous discussion, it follows that:

Lemma 9. Let κAB denote a Killing spinor candidate in an electrovacuum
spacetime (M, g,F ). Then the Lie derivative LξTab can be expressed as an
homogeneous expression in the zero-quantities

SAA′BB′ , ζAA′ , HA′ABC

and their first-order derivatives.

Remark 14. In the context of the present discussion, the object LξφAB , as
defined in (24), must be regarded as a convenient shorthand for a complicated
expression. It is only consistent with the usual notion of Lie derivative of tensor
fields if ξAA′

is the spinorial counterpart of a conformal Killing vector ξa—see
[20], Section 6.6, for further discussion on this point.
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3.5. Summary

We summarise the discussion of the present section in the following:

Proposition 1. Let κAB denote a Killing spinor candidate in an electrovacuum
spacetime (M, g,F ). Then the zero-quantities

HA′ABC , ΘAB , ζAA′ , SAA′BB′

satisfy a system of wave equations, consisting of Eqs. (18), (20), (22) and
(23), which is homogeneous on the above zero-quantities and their first-order
derivatives.

A direct consequence of the above and the uniqueness of solutions to
homogeneous wave equations is the following:

Theorem 2. Let κAB denote a Killing spinor candidate in an electrovacuum
spacetime (M, g,F ), and let S denote a Cauchy hypersurface of (M, g,F ).
The spinor κAB is an actual Killing spinor, and ξAA′ = ∇B

A′κAB is a Killing
vector if and only if on S one has that

HA′ABC |S = 0, ∇EE′HA′ABC |S = 0 (25a)

SAA′BB′ |S = 0, ∇EE′SAA′BB′ |S = 0 (25b)

ΘAB |S = 0, ∇EE′ΘAB |S = 0 (25c)

ζAA′ |S = 0, ∇EE′ζAA′ |S = 0. (25d)

Proof. The initial data for the homogeneous system of wave equations for the
fields HA′ABC , ΘAB , ζAA′ and SAA′BB′ given by Eqs. (18), (20), (22) and (23)
consist of the values of these fields and their normal derivatives at the Cauchy
surface S. Because of the homogeneity of the equations, the unique solution
to these equations with vanishing initial data is given by

HA′ABC = 0, ΘAB = 0, ζAA′ = 0, SAA′BB′ = 0.

Thus, if this is the case, the spinor κAB satisfies the Killing equation on M
and, accordingly, it is a Killing spinor. Conversely, given a Killing spinor κAB

over M such that ξAA′ = ∇BA′κAB is a Killing vector, its restriction to S
satisfies conditions (25a)–(25d).

�
Remark 15. As the spinorial zero-fields HA′ABC , ΘAB , ζAA′ and SAA′BB′ can
be expressed in terms of the spinor κAB , it follows that conditions (25a)–(25d)
are, in fact, conditions on κAB , and its (spacetime) covariant derivatives up to
third order. In the next section, it will be shown how these conditions can be
expressed in terms of objects intrinsic to the hypersurface S.

4. The Killing Spinor Data Equations

The purpose of this section is to show how conditions (25a)–(25d) of
Theorem 2 can be reexpressed as conditions which are intrinsic to the hy-
persurface S. To this end, we make use of the space-spinor formalism outlined
in [4] with some minor notational changes.
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4.1. The Space-Spinor Formalism

In what follows assume that the spacetime (M, g) obtained as the development
of Cauchy initial data (S,h,K) can be covered by a congruence of timelike
curves with tangent vector τa satisfying the normalisation condition τaτa =
2—the reason for normalisation will be clarified in the following—see Eq. (28).
Associated with the vector τa, one has the projector

ha
b ≡ δa

b − 1
2
τaτ b

projecting tensors into the distribution 〈τ 〉⊥ of hyperplanes orthogonal to τa.

Remark 16. The congruence of curves needs not to be hypersurface orthog-
onal—however, for convenience, it will be assumed that the vector field τa is
orthogonal to the Cauchy hypersurface S.

Now, let τAA′
denote the spinorial counterpart of the vector τa—by def-

inition, one has that

τAA′τAA′
= 2. (26)

Let {oA, ιA} denote a normalised spin dyad satisfying oAιA = 1. In the follow-
ing, we restrict the attention to spin dyads such that

τAA′
= oAōA′

+ ιAῑA
′
. (27)

It follows then that
τAA′τBA′

= δA
B , (28)

consistent with the normalisation condition (26). As a consequence of this
relation, the spinor τAA′

can be used to introduce a formalism in which all
primed indices in spinors and spinorial equations are replaced by unprimed
indices by suitable contractions with τA

A′
.

Remark 17. The set of transformations on the dyad {oA, ιA} preserving ex-
pansion (27) is given by the group SU(2, C).

4.1.1. The Sen Connection. The space-spinor counterpart of the spinorial
covariant derivative ∇AA′ is defined as

∇AB ≡ τB
A′∇AA′ . (29)

The derivative operator ∇AB can be decomposed in irreducible terms as

∇AB =
1
2
εABP + DAB , (30)

where

P ≡ τAA′∇AA′ = ∇Q
Q, DAB ≡ τ(A

A′∇B)A′ = ∇(AB).

The operator P is the directional derivative of ∇AA′ in the direction of τAA′
,

while DAB corresponds to the so-called Sen connection of the covariant deriv-
ative ∇AA′ implied by τAA′

.
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4.1.2. The Acceleration and the Extrinsic Curvature. Of particular relevance
in the subsequent discussion is the decomposition of the covariant derivative
of the spinor τBB′ , namely ∇AA′τBB′ . A calculation readily shows that the
content of this derivative is encoded in the spinors

KAB ≡ τB
A′PτAA′ , KABCD ≡ τD

C′DABτCC′ ,

corresponding, respectively, to the spinorial counterparts of the acceleration
and the Weingarten tensor, expressed in tensorial terms as

Ka ≡ −1
2
τ b∇bτa, Kab ≡ −ha

chb
d∇cτd.

It can be readily verified that

KAB = K(AB), KABCD = K(AB)(CD). (31)

In the sequel, it will be convenient to express KABCD in terms of its irreducible
components. To this end, define

ΩABCD ≡ K(ABCD), ΩAB ≡ K(A
Q

B)Q, K ≡ KAB
CD,

so that one can define

KABCD = ΩABCD − 1
2
εA(CΩD)B − 1

2
εB(CΩD)A − 1

3
εA(CεD)BK.

If the vector field τa is hypersurface orthogonal, then one has that ΩAB = 0,
and thus, the Weingarten tensor satisfies the symmetry Kab = K(ab) so that
it can be regarded as the extrinsic curvature of the leaves of a foliation of the
spacetime (M, g). If this is the case, in addition to the second symmetry in
(31) one has that

KABCD = KCDAB .

In particular, KABCD restricted to the hypersurface S satisfies the above sym-
metry and one has ΩAB = 0—cfr. Remark 16.

In what follows denote by DAB = D(AB), the spinorial counterpart of the
Levi–Civita connection of the metric h on S. The Sen connection DAB and
the Levi–Civita connection DAB are related to each other through the spinor
KABCD. For example, for a valence 1 spinor πA one has that

DABπC = DABπC +
1
2
KABC

QπQ,

with the obvious generalisations for higher-order spinors.

4.1.3. Hermitian Conjugation. Given a spinor πA, its Hermitian conjugate is
defined as

π̂A ≡ τA
Q′

π̄Q′ .

This operation can be extended in the obvious way to higher valence pairwise
symmetric spinors. The operation of Hermitian conjugation allows to introduce
a notion of reality. Given spinors νAB = ν(AB) and ξABCD = ξ(AB)(CD), we
say that they are real if and only if

ν̂AB = −νAB , ξ̂ABCD = ξABCD.
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If the spinors are real, then it can be shown that there exist real spatial 3-
dimensional tensors νi and ξij such that νAB and ξABCD are their spinorial
counterparts. We also note that

νAB ν̂AB ≥ 0, ξABCD ξ̂ABCD ≥ 0

independently of whether νAB and ξABCD are real or not.
Finally, it is observed that while the Levi–Civita covariant derivative

DAB is real in the sense that

D̂ABπC = −DABπ̂C ,

the Sen connection DAB is not. More precisely, one has that

D̂ABπC = −DABπ̂C +
1
2
KABC

Qπ̂Q.

4.1.4. Commutators. The main analysis of this section will require a system-
atic use of the commutators of the covariant derivatives P and DAB . In order
to discuss these in a convenient manner, it is convenient to define the Hermit-
ian conjugate of the Penrose box operator �AB ≡ ∇C′(A∇B)

C′
in the natural

manner as

�̂AB ≡ τA
A′

τB
B′�A′B′ .

From the definition of �A′B′ , it follows that

�̂ABπC = τA
A′

τB
B′

ΦFCA′B′πF .

In terms of �AB and �̂AB , the commutators of P and DAB read

[P,DAB ] = �̂AB − �AB − 1
2
KABP + KD

(ADB)D − KABCDDCD,

(32a)

[DAB ,DCD] =
1
2
(
εA(C�D)B + εB(C�D)A

)
+

1
2
(
εA(C�̂D)B + εB(C�̂D)A

)

+
1
2
(
KCDABP − KABCDP)

+ KCDF (ADB)
F − KABF (CDD)

F .

(32b)

Remark 18. Observe that on the hypersurface S commutator (32b) involves
only objects intrinsic to S. Notice, also, that the Sen connection DAB has
torsion. Namely, for a scalar φ one has that

[DAB ,DCD]φ = KCDF (ADB)
F φ − KABF (CDD)

F φ.

4.2. Basic Decompositions

The purpose of this section is to provide a systematic discussion of the irre-
ducible decompositions of the various spinorial fields and equations that will
be required in the subsequent analysis.
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4.2.1. Space-Spinor Decomposition of the Killing Spinor and Maxwell Equa-
tions. For reference, we provide a brief discussion of the space-spinor decom-
position of the Killing equation (6), and the Maxwell equation (3b).

Contracting the Killing spinor equation (6) in the form ∇(A|A′|κCD) = 0
with τB

A′
, one obtains

∇(A|B|κCD) = 0,

where ∇AB is the differential operator defined in Eq. (29). Using decomposition
(29), one further obtains

1
2
ε(A|B|PκCD) + D(A|B|κCD) = 0.

Taking, respectively, the trace and the totally symmetric part of the above
expression, one readily obtains the equations

PκAB + D(A
QκB)Q = 0, (33a)

D(ABκCD) = 0. (33b)

Equation (33a) can be naturally interpreted as an evolution equation for the
spinor κAB , while Eq. (33b) plays the role of a constraint.

A similar calculation applied to the Maxwell equation, Eq. (3b), in the
form ∇A

A′φAC = 0 yields the equations

PφAB − 2DQ
(AφB)Q = 0, (34a)

DABφAB = 0. (34b)

Again, Eq. (34a) is an evolution equation for the Maxwell spinor φAB ,
while (34b) is the spinorial version of the electromagnetic Gauss constraint.

Remark 19. The operation of Hermitian conjugation can be used to define,
respectively, the electric and magnetic parts of the Maxwell spinor:

EAB ≡ 1
2
(
φ̂AB − φAB

)
, BAB ≡ i

2
(
φAB + φ̂AB

)
.

It can be readily verified that

ÊAB = −EAB , B̂AB = −BAB .

Thus, EAB and BAB are the spinorial counterparts of three-dimensional ten-
sors; Ei and Bi—the electric and magnetic parts of the Faraday tensor with
respect to the normal to the hypersurface S.

4.2.2. The Decomposition of the Components of the Curvature. Crucial for
our subsequent discussion will be the fact that the restriction of the Weyl
spinor ΨABCD to an hypersurface S can be expressed in terms of quantities
intrinsic to the hypersurface.

In analogy to the case of the Maxwell spinor φAB , the Hermitian conju-
gation operation can be used to decompose the Weyl spinor ΨABCD into its
electric and magnetic parts with respect to the normal to S as

EABCD ≡ 1
2
(
ΨABCD + Ψ̂ABCD

)
, BABCD ≡ i

2
(
Ψ̂ABCD − ΨABCD

)
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so that

ΨABCD = EABCD + iBABCD.

The electrovacuum Bianchi identity (4) implies on S the constraint

DABΨABCD = −2φ̂ABDABφCD.

Finally, using the Gauss–Codazzi and Codazzi–Mainardi equations one finds
that

EABCD = −r(ABCD) +
1
2
Ω(AB

PQΩCD)PQ − 1
6
ΩABCDK + E(ABECD),

BABCD = −iDQ
(AΩBCD)Q,

where rABCD is the spinorial counterpart of the Ricci tensor of the intrinsic
metric of the hypersurface S.

4.2.3. Decomposition of the Spatial Derivatives of the Killing Spinor Candi-
date. Given a spinor κAB defined on the Cauchy hypersurface S, it will prove
convenient to define:

ξ ≡ DABκAB , (35a)

ξAB ≡ 3
2
D(A

CκB)C , (35b)

ξABCD ≡ D(ABκCD). (35c)

These spinors correspond to the irreducible components of the Sen derivative
of κAB , as follows:

DABκCD = ξABCD − 1
3
εA(CξD)B − 1

3
εB(CξD)A − 1

3
εA(CεD)Bξ.

Using the commutation relation for the Sen derivatives, Eq. (32b), we
can also calculate the derivatives of ξ and ξAB . The irreducible components of
DABξCD are given on S—where ΩAB = 0—by

DABξAB = −1
2
Kξ +

3
4
ΩABCDξABCD +

3
2
ΘABφ̂AB , (36a)

DA(BξC)
A = −DBCξ − 3

2
ΨBCADκAD +

2
3
KξBC +

1
2
ΩBCADξAD

− 3
2
Ω(B

ADF ξC)ADF +
3
2
DADξBC

AD − 3ΘA(Bφ̂C)
A, (36b)

D(ABξCD) = 3ΨF (ABCκD)
F + KξABCD − 1

2
ξΩABCD + Ω(ABC

F ξD)F

− 3
2
Ω(AB

PQξCD)PQ + 3DF
(AξBCD)F − 3Θ(ABφ̂CD), (36c)

where we have also used the Hermitian conjugate of the Maxwell spinor, de-
fined by

φ̂AB ≡ τA
A′

τB
B′

φ̄A′B′ .

Note that in (36b), the term DABξ appears—there is no independent equation
for the Sen derivative of ξ.
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We can also calculate the second-order derivatives of ξ. Again, on the
hypersurface S these take the form:

DABDABξ = − 1

6
K2ξ +

1

2
Kφ̂ABΘAB − 2φ̂ABφABξ

+
2

3
ξABDABK + 3ΘABDBC φ̂A

C

− 4φ̂ABφA
CξBC − 3

2
ΨABCDξABCD + 3φ̂ABφCDξABCD

− 3φ̂ABΘCDΩABCD − 1

2
ΩABCDΩABCDξ +

5

4
KΩABCDξABCD

+ 3κABΨA
CDF ΩBCDF − 3

2
ΩAB

FGΩABCDξCDFG − 3κAB φ̂CDDBDφAC

+ 3κAB φ̂A
CDCDφB

D − 3

2
κABDCDΨAB

CD

+
1

2
ξABDCDΩAB

CD+
3

2
DCDDABξABCD

+
3

2
ξABCDDDF ΩABC

F − 9

2
ΩABCDDDF ξABC

F , (37a)

DC
(ADB)Cξ =

1

2
ΩABCDDCDξ − 1

3
KDABξ, (37b)

D(ABDCD)ξ =
1

3
φ̂EF ΘEFΩABCD − ΨABCDξ − 5

9
KΩABCDξ

+
1

6
ΩEFPQΩABCDξEFPQ +

8

9
K2ξABCD +

1

3
ξDE(AΩBCD)

E

− 10

3
KDE(AξBCD)

E +
3

2
D(ABD|EF |ξCD)

EF +
3

2
DF (ADB|E|ξCD)

EF

+
1

2
D(A|F DE|F ξBCD)

E +
8

3
Kκ(A

EΨBCD)E − 3

2
κ(A

EDB|F |ΨCD)E
F

− 3

2
κEF D(ABΨCD)EF − 1

2
κEF DF (AΨBCD)E + 2ξφ̂(ABφCD)

− 8

3
Kφ̂(ABΘCD) + Θ(ABDC|E|φ̂D)

E + 3Θ(A
EDBC φ̂D)E

+ Θ(A
EDB|E|φ̂CD) + 2ΨE(ABCξD)

E +
1

6
ξΩ(AB

EF ΩCD)EF

− 14

9
KΩE(ABCξD)

E − 5

3
KΩ(AB

EF ξCD)EF +
2

3
ΩE(ABCDD)

Eξ

+
3

2
Ω(ABC

EDFP ξD)EFP − Ω(AB
EF DC

P ξD)EFP

+
1

2
Ω(AB

EF D|FP |ξCD)E
P − 3

2
Ω(A

EFP DBCξD)EFP

+
1

2
Ω(A

EFP DB|P |ξCD)EF +
2

3
ξ(ABDCD)K

+
1

2
ξ(A

EDB|F |ΩCD)E
F +

1

2
ξEF D(ABΩCD)EF

+
1

6
ξEF DF (AΩBCD)E +

2

3
ξE(ABCDD)

EK +
1

2
ξ(AB

EF DC|P |ΩD)EF
P

+
3

2
ξ(A

EFP DBCΩD)EFP +
1

2
ξ(A

EFP DB|P |ΩCD)EF

+ κ(A
E φ̂BCDD)F φE

F − 3κ(A
E φ̂B

F DCD)φEF + 2κ(A
E φ̂B

F DC|F |φD)E

+ κEF φ̂(ABDC|F |φD)E + 3κEF φ̂E(ADBCφD)F

+
1

2
κE(AΨB

EFPΩCD)FP − 1

2
κEF ΨP

E(ABΩCD)FP
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+
3

2
κEF ΨP

EF (AΩBCD)P +
10

3
φ̂(ABφC

EξD)E

+
2

3
φ̂(A

EφBCξD)E +
2

3
φE(Aφ̂B

EξCD)

− φ̂(ABφEF ξCD)EF + φ̂(A
EφB

F ξCD)EF + 3φE
F φ̂(A

EξBCD)F

+
1

6
φ̂(ABΘEFΩCD)EF

+
2

3
φ̂(A

EΘB
F ΩCD)EF +

3

2
ΘE

F φ̂(A
EΩBCD)F

+
1

6
φ̂EF Θ(ABΩCD)EF +

3

2
φ̂EF ΘE(AΩBCD)F +

1

2
Ω(ABC

P ΩD)EFP ξEF

+
1

6
ΩEFP (AΩBC

FP ξD)
E − 3

4
Ω(ABC

EΩD)
FPQξEFPQ

− 3

4
ΩE

FPQΩ(ABC
EξD)FPQ +

1

12
Ω(AB

EF ΩCD)
PQξEFPQ

+
1

3
ΩE(A

PQΩBC
EF ξD)FPQ +

1

12
ΩEF

PQΩ(AB
EF ξCD)PQ. (37c)

Remark 20. It is of interest to remark that Eq. (37b) is just the statement
that the Sen connection has torsion—cf. Remark 18.

An important and direct consequence of the above expressions is the
following:

Lemma 10. Assume that ΩAB = 0 and D(ABκCD) = 0 on S. Then

DABDCDDEF κGH = HABCDEFGH

on S, where HABCDEFGH is a linear combination of κAB, DABκCD and
DABDCDκEF with coefficients depending on ΨABCD, KABCD, φAB, φ̂AB and
DABφCD.

Proof. The proof of the above result follows from direct inspection of Eqs. (36a)
–(36c) and (37a)–(37c). �

Remark 21. We observe that the above result is strictly not true if ξABCD =
D(ABκCD) 	= 0.

4.3. The Decomposition of the Killing Spinor Data Equations

In this section, we provide a systematic discussion of the decomposition of
the Killing initial data conditions in Theorem 2. The main purpose of this
decomposition is to untangle the interrelations between the various conditions
and to obtain a minimal set of equations which is intrinsic to the Cauchy
hypersurface S.

For the ease of the discussion we make explicit the assumptions we assume
to hold throughout this section:

Assumption 1. Given a Cauchy hypersurface S of an electrovacuum spacetime
(M, g), we assume that the hypothesis and conclusions of Theorem 2 hold.

Also, to ease the calculations, without loss of generality we assume:

Assumption 2. The spinor τAA′
which on S is normal to S is extended off

the initial hypersurface in such a way that it is the spinorial counterpart of
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the tangent vector to a congruence of g-geodesics. Accordingly, one has that
KAB = 0 —that is, the acceleration vanishes.

4.3.1. Decomposing HA′ABC = 0. Splitting the expression τD
A′

HA′ABC

into irreducible parts, and using definitions (35a)–(35c) gives that the condition
HA′ABC = 0 is equivalent to

ξABCD = 0, (38a)

PκAB = − 2
3
ξAB . (38b)

Equation (38a) is a condition intrinsic to the hypersurface, while (38b)
is extrinsic—i.e. it involves derivatives in the direction normal to S.

Remark 22. Observe that conditions (38a) and (38b) are essentially Eqs. (33a)
and (33b).

4.3.2. Decomposing ∇EE′HA′ABC = 0. If HA′ABC = 0 on S, it readily fol-
lows that DEF HA′ABC = 0 on S. Thus, in order investigate the consequences
of the second condition in (25a) it is only necessary to consider the transverse
derivative PHA′ABC . It follows that

τD
A′PHA′ABC = P(

τD
A′

HA′ABC

) − HA′ABCPτD
A′

and so as HA′ABC |S = 0, the irreducible parts of τD
A′PHA′ABC = 0 are given

by

PξABCD =0, (39a)

P2κAB = − 2
3
PξAB . (39b)

Taking Eq. (39a) and commuting the DAB and P derivatives, and using
Eqs. (38a) and (38b), gives

PξABCD = PD(ABκCD)

= 2ΨF
(ABCκD)F − 1

3
ξΩABCD +

2
3
ΩF

(ABCξD)F

− 2
3
D(ABξCD) − 2Θ(ABφ̂CD).

Substituting for the derivative of ξAB using (36c), and using Eqs. (38a) and
(38b) again, gives

PξABCD = 4ΨF
(ABCκD)F = 0. (40)

To reexpress condition (39b), we use the following result which is obtained
by commuting the DAB and P derivatives:

PξAB =
3
2
κCDΨABCD − 3ΘC(Aφ̂B)

C − 1
3
KξAB

+
1
2
ΩABCDξCD − 3

2
DC(APκB)

C . (41)
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Recall that the Killing spinor candidate κAB satisfies the homogeneous wave
equation (7b). We can use the space-spinor decomposition to split the wave
operator into Sen and normal derivative operators. The result is:

P2κAB = − 2κCDΨABCD +
1
3
KABξ +

2
3
ΩABξ − 2

3K(A
CξB)C

− 4
3
Ω(A

CξB)C + KCDξABCD + 2ΩCDξABCD

− KPκAB − 2
3
DABξ +

4
3
D(A

CξB)C − 2DCDξAB
CD

Applying conditions (38a) and (38b) to the right-hand side of the latter, eval-
uating at S (where ΩAB = 0) and setting KAB = 0 gives

P2κAB = −2κCDΨABCD +
2
3
KξAB − 2

3
DABξ +

4
3
D(A

CξB)C .

Then, using Eqs. (36b) and (41), as well as (38a) and (38b) as needed, it can
be shown that

P2κAB = −2
3
PξAB , (42)

which is exactly the condition we needed. Thus, we have shown that condition
(39b) is purely a consequence of the evolution equation for the Killing spinor
candidate, along with the conditions arising from HA′ABC |S = 0.

In summary, if κAB satisfies �κAB + ΨABCDκCD = 0, then:

HA′ABC |S = PHA′ABC |S = 0 ⇐⇒ ξABCD = 0,

PκAB +
2
3
ξAB = 0, ΨF

(ABCκD)F = 0.

4.3.3. Decomposing ΘAB = 0. As ΘAB has no unprimed indices, it is already
in a space-spinor compatible form—we have the condition:

ΘAB = κ(A
CφB)C = 0. (43)

4.3.4. Decomposing ∇EE′ΘAB = 0. If ΘAB |S = 0, one only needs to con-
sider the normal derivative PΘAB . Using the evolution equation for the spinor
φAB implied by Maxwell equations, Eq. (34a), along with (38b) in the condi-
tion PΘAB = 0, gives the spatially intrinsic condition

κ(A|CDCDφ|B)
D =

1
3
φ(A

CξB)C . (44)

In summary, assuming (38b) holds, then:

ΘAB |S = PΘAB |S = 0 ⇐⇒ κ(A
CφB)C = 0,

κ(A|CDCDφ|B)
D =

1
3
φ(A

CξB)C .
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4.3.5. Decomposing SAA′BB′ = 0. Our point of departure to decompose
the condition SAA′BB′ |S = 0 is the relation linking SAA′BB′ to ΘAB and the
derivative of HA′ABC given by Eq. (3). Splitting the derivative of HA′ABC into
normal and tangential parts gives

SAA′BB′ = −6φ̄A′B′ΘAB +
1
2
τC

(A′PHB′)ABC + τD(A′DDCHB′)ABC . (45)

We already have conditions ensuring that ΘAB |S = HA′ABC |S = PHA′ABC |S
= 0, and so as a consequence we automatically have that SAA′BB′ |S = 0.

4.3.6. Decomposing ∇EE′SAA′BB′ = 0. Again as SAA′BB′ |S = 0, one only
needs to consider the normal derivative PSAA′BB′ . Taking the normal deriva-
tive of Eq. (45) and using that one has a Gaussian gauge gives on S that

PSAA′BB′ = − 6Pφ̄A′B′ΘAB − 6φ̄A′B′PΘAB + τC
(A′P2HB′)ABC

+ τD(A′PDDCHB′)ABC .

The first and second terms on the right-hand side are zero as a consequence
of conditions (43) and (44). The last term can also be shown to be zero by
commuting the derivatives and using (38a), (38b) and (40). This leaves

0 = PSAA′BB′ = τC
(A′P2HB′)ABC . (46)

Eliminating the primed indices by multiplying by factors of τAA′ gives

τ(C|A
′P2HA′AB|D) = 0.

Thus, if this condition is satisfied on S, then we have that PSAA′BB′ |S = 0.
In the following, we investigate further the consequences of this condition. As
in a Gaussian gauge PτAA′ = 0 it readily follows that, in fact, one has

P2
(
τ(C|A

′
HA′AB|D)

)
= 0.

Splitting into irreducible parts, one obtains two necessary conditions:

P2ξABCD = 0, (47a)

P2

(
PκAB +

2
3
ξAB

)
= 0. (47b)

Let us first consider condition (47a). We can commute the Sen derivative
with one of the normal derivatives to obtain
P(PξABCD

)
= P(PD(ABκCD)

)

= P
(

2Ψ(ABC
F κD)F − 2Θ(AB φ̂CD) − 1

3
ΩABCDξ − 2

3
ΩF (ABCξFD)

− 1

3
Ω(ABξCD) − 1

3
KξABCD + ΩF

(AξBCD)F − Ω(AB
EF ξCD)EF + D(ABPκCD)

)
.

Now, we can use our previous conditions on S to eliminate terms. For example,
the second term in the bracket is zero from conditions (43) and (44). The
fifth, sixth and seventh terms vanish from (38a) and (40). We can also use
(38b) and (42) to replace the last term—alternatively, one can commute the
derivatives, use the substitution and then commute back; the result is the
same. From this substitution, one obtains a factor D(ABξCD) inside the normal
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derivative, which can be replaced using (36c)—this equation is valid on the
whole spacetime rather than just the hypersurface, so one is allowed to take
normal derivatives of it.

Proceeding as above, condition (47a) can be reduced to

P2ξABCD = P (
4Ψ(ABC

F κD)F

)
= 0. (48)

Now, splitting the covariant derivatives in the Bianchi identity (4) into normal
and tangential components gives the following space-spinor version:

PΨABCD = −4φ̂F (ADF
BφCD) − 4φ̂(ABDF

CφD)F − 2DF (AΨBCD)
F .

One can use the latter expression to further reduce condition (48) to

ΨF (ABCξD)
F + 6φ̂F (AκE

BDF
CφD)E + 6φ̂(ABκE

CDF
D)φEF

+3κ(A
F DB|EΨF |CD)

E = 0. (49)

This is an intrinsic condition on S.
In order to obtain insight into condition (47b), we make use, again, of the

wave Eq. (7b) for the spinor κAB . Taking a normal derivative of this equation,
one obtains

P (
�κAB + ΨABCDκCD

)
= 0.

Splitting the spacetime derivatives into normal and tangential parts and rear-
ranging gives

P (P2κAB

)
= P( − 2κCDΨABCD +

2
3
ΩABξ − 4

3
Ω(A

CξB)C + 2ΩCDξABCD

− KPκAB − 2
3
DABξ − 4

3
DC(AξB)

C − 2DCDξAB
CD

)
.

As before, we can use our previous conditions to eliminate terms. The fourth
and eight terms on the right-hand side vanish due to (38a) and (40). Also, we
can use Eq. (36b) to replace the seventh term—this is because relation (36b)
holds on the whole spacetime, and so one can take normal derivatives of it
freely. These steps give

P(P2κAB

)
= P

(
2
3
Ω(A

CξB)C − 2
9
KξAB − 2

3
ΩABCDξCD +

2
3
DABξ

)
.

Alternatively, consider the second derivative of ξAB , given by applying a nor-
mal derivative to Eq. (41)—note that Eq. (41) applies on the whole spacetime),
so one can take the normal derivative. This yields

P2ξAB = P
(

3
2
κCDΨABCD − 3ΘC(Aφ̂B)

C − 1
2
ΩABξ − 1

3
KξAB

+
1
2
Ω(A

CξB)C +
1
2
ΩABCDξCD

+
3
4
ΩCDξABCD − 3

2
Ω(A

CDF ξB)CDF − 3
2
DC(APκB)

C

)
.
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As before, we can use conditions (38a), (38b), (40) and (42), and identity (36b)
to reduce this to

P2ξAB = P
(

1
3
KξAB − Ω(A

CξB)C + ΩABCDξCD − DABξ

)
.

By comparing terms, we find that

P3κAB = −2
3
P2ξAB

which is exactly the second condition (47b). So, no further conditions are
needed to be prescribed on the hypersurface—this condition arises naturally
from the evolution equation for the Killing spinor.

4.3.7. Decomposing ζAA′ = 0. Recalling the definition of ζAA′ , Eq. (19), and
splitting the spacetime spinorial derivative into normal and tangential parts,
one obtains

ζAA′ = ∇B
A′ΘAB

=
1
2
τB

A′PΘAB − τC
A′DC

BΘAB .

From conditions (43) and (44), it then follows that ζAA′ |S = 0.

4.3.8. Decomposing ∇EE′ζAA′ = 0. Again, if ζAA′ |S = 0 then one only
needs to consider the transverse derivative PζAA′ . By definition, one has that

PζAA′ = P∇B
A′ΘAB

= P
(

− τC
A′DB

C +
1
2
τB

A′P
)

ΘAB

=
1
2
τB

A′P2ΘAB

where the last equation has been obtained by commuting the Sen and normal
derivatives, and using (44). Therefore, one only needs to show that

P2ΘAB = 0.

Now, recalling the wave equation for ΘAB , Eq. (20), one readily notices that
the right-hand side vanishes on S as a consequence of (38a), (38b) and (40),
so that one is left with

�ΘAB |S = 0.

Finally, expanding the left-hand side one finds that on S
�ΘAB = ∇CC′∇CC′ΘAB

=
(

−τBC′DC
B +

1
2
τCC′P

) (
−τB

C′DBC +
1
2
τCC′P

)
ΘAB

=
1
4
τCC′

τCC′P2ΘAB

where the last line follows by commuting the derivatives where appropriate
and using conditions (43) and (44). Finally, as τCC′

τCC′ = 2 by definition, we
get that P2ΘAB = 0 as a consequence of the evolution equation for ΘAB .
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4.4. Eliminating Redundant Conditions

The discussion of the previous subsections can be summarised in the following:

Theorem 3. Let κAB denote a Killing spinor candidate on an electrovacuum
spacetime (M, g,F ). Then κAB satisfies on a Cauchy hypersurface S the in-
trinsic conditions

ξABCD = 0, (50a)

ΨF (ABCκD)
F = 0, (50b)

κ(A
CφB)C = 0, (50c)

κ(A|CDCDφ|B)
D =

1
3
φ(A

CξB)C , (50d)

3κ(A
F DB

EΨCD)EF + Ψ(ABC
F ξD)F = 6φ̂F (AκE

BDF
CφD)E

+ 6φ̂(ABκE
CDF

D)φEF , (50e)

with normal derivative on S given by

PκAB = −2
3
ξAB ,

if and only if κAB is, in fact, a Killing spinor, and the vector ξAA′ = ∇B
A′κAB

is a Killing vector.

Remark 23. We note that

ΘAB = κ(A
CφB)C = 0 implies φAB ∝ κAB

Using this fact, one can show that (50d) and (50e) can be more simply ex-
pressed as a condition on the proportionality between the Killing spinor κAB

and the Maxwell spinor φAB .

In order to simplify the conditions in Theorem 3 and to analyse their
various interrelations, we proceed by looking at the different algebraic types
that the Killing spinor can have. First, we consider the algebraically general
case:

Lemma 11. Assume that a symmetric spinor κAB satisfies the conditions

κABκAB 	= 0, ξABCD = ΨF (ABCκD)
F = κ(A

CφB)C = 0

on an open subset U ⊂ S. Then, there exists a spin basis {oA, ιA} with oAιA =
1 such that the spinors κAB and φAB can be expanded as

κAB = eκo(AιB), φAB = ϕo(AιB).

Furthermore, if Q ≡ ϕe2κ is a constant on U , then conditions (50d) and (50e)
are satisfied on U .

Proof. The first part of the lemma follows directly from κABκAB 	= 0, and the
fact that κ(A

CφB)C = 0 implies that φAB ∝ κAB . The condition ΨF (ABCκD)
F

= 0 also allows us to expand the Weyl spinor in the same basis:

ΨABCD = ψo(AoBιCιD).
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To show the redundancy of (50d) and (50e), we first decompose the equa-
tion D(ABκCD) = 0 into irreducible components. To simplify the notation, we
borrow the D,Δ, δ symbols from the Newman-Penrose formalism to represent
directional derivatives:

D ≡ oAoBDAB , Δ ≡ ιAιBDAB , δ ≡ oAιBDAB . (51)

The components of D(ABκCD) = 0 then become:

oCDoC = 0, (52a)

oCδoC = −1
2
Dκ, (52b)

ιCDιC − oCΔoC = 2δκ, (52c)

ιCδιC =
1
2
Δκ, (52d)

ιCΔιC = 0. (52e)

Using these, one can show that

e−κξAB = −3oAoBιF διF − 3ιAιBoF δoF +
3
2
o(AιB)

(
ιF DιF + oF ΔoF

)
.

Now, using the electromagnetic Gauss constraint, Eq. (34b), together with the
expansion for φAB one obtains that using the basis expansion for φAB one
obtains

δϕ + 2ϕδκ = 0 (53)

on S. Now, the spacetime Bianchi identity (4) implies the constraint

DCDΨABCD = −2φ̂CDDCDφAB (54)

on S. To find the basis expansion of the Hermitian conjugate φ̂AB , note that:

oAôA ≡ oAτAA′
ōA′ = τAA′oAōA′

= τaka,

where ka ≡ oAōA′ . As τa is timelike and ka is null, this scalar product is
nonzero, and the pair {oA, ôA} forms a basis. We expand the spinor ιA in this
basis as

ιA = αôA + βoA.

Contracting this with oA, we find 1/α = oAôA ≥ 0, and so α ≥ 0. Performing
a Lorentz transformation on the basis {oA, ιA} parametrised by the complex
function one has that

oA → õ =
1
λ

oA,

ιA → ι̃ = λιA.

This transformation preserves the value of oAιA and the symmetrised product
o(AιB), and thus, it preserves the form of the basis expansions of κAB and
φAB . Moreover, one has that

ι̃A = α|λ|2̂̃oA
+ βλ2õA.
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So, by choosing |λ|2 = 1/α and β̃ = βλ2, and dropping the tildes, we get

ιA = ôA + βoA,

ι̂A = −oA + β̄ôA.

Using the above expressions, we can find the basis expansion of φ̂AB . Namely,
one has that:

φ̂AB =
1
2
ϕ̄(ôAι̂B + ι̂AôB)

=
1
2
ϕ̄(−oAôB − ôAoB + 2β̄ôAôB)

= ϕ̄β̄ιAιB + ϕ̄β(1 + |β|2)oAoB − ϕ̄(1 + 2|β|2)o(AιB).

Now, using the basis expansion for the Weyl spinor, contracting with
combinations of oA and ιA and using the relations given in (52a) and (53), the
components of (54) become

Dψ + 3ψDκ = 6|ϕ|2(1 + 2|β|2)Dκ + 12β̄|ϕ|2oAΔoA,

Δψ + 3ψΔκ = 6|ϕ|2(1 + 2|β|2)Δκ − 12β|ϕ|2(1 + |β|2)ιADιA,

δψ + 3ψδκ = −6|ϕ|2(1 + 2|β|2)δκ − 3βϕ̄(1 + |β|2)Dϕ − 3β̄ϕ̄Δϕ.

Exploiting conditions (52a), the expansions of the Maxwell and the Bianchi
constraints, it can be shown that condition (50e) can be decomposed into the
following non-trivial irreducible parts:

β̄ϕ̄ (Dϕ + 2ϕDκ) = 0,

ϕ̄(1 + 2|β|2) (Dϕ + 2ϕDκ) = 0,

ϕ̄(1 + 2|β|2) (Δϕ + 2ϕΔκ) = 0,

βϕ̄(1 + |β|2) (Δϕ + 2ϕΔκ) = 0.

Assuming ϕ 	= 0, these conditions along with the Maxwell constraint (53) are
equivalent to the following basis-independent expression, also independent of
the value of β:

DABϕ + 2ϕDABκ = 0.

The latter can be written as

DAB

(
ϕe2κ

)
= DABQ = 0.

Therefore, under the hypotheses of the present lemma, Eq. (50e) is equivalent
to the requirement of Q being constant in a domain U ⊂ S. In a similar way,
substituting the above relations in Eq. (50d) and splitting into irreducible parts
gives the following set of equivalent conditions:

eκ (Dϕ + 2φDκ) = 0,

eκ (Δϕ + 2ϕΔκ) = 0,

eκ (δϕ + 2ϕδκ) = 0.

As eκ is nonzero, this set of conditions is again equivalent to the constancy of
Q in U ⊂ S. �
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Next, we consider the case when the Killing spinor is algebraically special:

Lemma 12. Assume the symmetric spinor κAB satisfies the conditions

κABκAB = 0, κABκ̂AB 	= 0, ξABCD = ΨF (ABCκD)
F = κ(A

CφB)C = 0

on an open subset U ⊂ S. Then, there exists a normalised spin basis {oA, ιA}
such that the spinors κAB and φAB can be expanded as

κAB = eκoAoB , φAB = ϕoAoB.

Furthermore, Eqs. (50d) and (50e) are satisfied on U ⊂ S.

Proof. The first part of the lemma follows directly from the hypothesis
κABκAB = 0, κABκ̂AB 	= 0, and the fact that κ(A

CφB)C = 0 implies φAB ∝
κAB . The condition ΨF (ABCκD)

F = 0 also allows us to expand the Weyl spinor
in the same basis as

ΨABCD = ψoAoBoCoD.

In this basis, the components of the equation D(ABκCD) = 0 become

oADoA = 0,

Dκ + 4oAδoA + 2ιADoA = 0,

δκ + oAΔoA + 2ιAδoA = 0,

Δκ + 2ιAΔoA = 0.

Using these relations, one can show that

e−κξAB = 3oAoBoCΔoC − 6o(AιB)o
CδoC .

The Maxwell constraint, Eq. (34b), on S is equivalent to

Dφ − φDκ − 6φoAδoA = 0,

and the o(AιB) component of the Bianchi constraint

DCDΨABCD = −2φ̂CDDCDφAB

on S, as a consequence of the previous relations, is equivalent to the following
condition:

|ϕ|2oAΔoA − 2β|ϕ|2oAδoA = 0.

Then, by substituting all the relevant basis expansions into (50d) and (50e),
and splitting the equations into irreducible parts, one finds that both condi-
tions are automatically satisfied as a result of the above relations.

�

We round up the discussion of this section with the following electrovac-
uum analogue of Theorem in [6]:

Lemma 13. Assume that one has a symmetric spinor κAB satisfying the con-
ditions

D(ABκCD) = ΨF (ABCκD)
F = κ(A

CφB)C = 0
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on the Cauchy hypersurface S and that the complex function

Q2 ≡ (
κABκAB

)2
φABφAB

is constant on S. Then the domain of dependence, D+(S), of the initial data
set (S, g,K,F ) will admit a Killing spinor.

Proof. Let U1 be the set of all points in S where κABκAB 	= 0 and U2 be the set
of all points in S where κABκ̂AB 	= 0. The scalar functions κABκAB : S → C

and κABκ̂AB : S → R are continuous. Therefore, U1 and U2 are open sets.
Now, let V1 and V2 denote, respectively, the interiors of S\U1 and V1\U2. On
the open set V1 ∩ U2, we have that κABκAB = 0 and κABκ̂AB 	= 0. Hence, by
Lemma 12, conditions (50d) and (50e) are satisfied on V1 ∩ U2. Similarly, by
Lemma 11, conditions (50d) and (50e) are satisfied on U1. On the open set V2,
we have that κAB = 0 and therefore (50d) and (50e) are trivially satisfied on
V2. Using the above sets, the 3-manifold S can be split as

intS = U1 ∪ (V1 ∩ U2) ∪ V2 ∪ ∂U1 ∪ ∂V2.

By hypothesis, all terms in conditions (50d) and (50e) are continuous, and the
conditions themselves are satisfied on the open sets U1, V2 and V1 ∩ U2. By
continuity, the conditions are also satisfied on the boundaries ∂U1 and ∂V2.
Therefore, (50d) and (50e) are satisfied on int S, and by continuity this extends
to the whole of S. �

4.5. Summary

We can summarise the discussion of the present section calculations in the
following theorem:

Theorem 4. Let (S,h,K,F ) be an initial data set for the Einstein–Maxwell
field equations where S is a Cauchy hypersurface. Then the conditions

ξABCD = 0, (55a)

ΨF (ABCκD)
F = 0, (55b)

κ(A
CφB)C = 0, (55c)

Q2 ≡ (
κABκAB

)2
φABφAB = constant, (55d)

are satisfied on S if and only if the development of the initial data set admits
a Killing spinor κAB in the domain of dependence of S, such that ξAA′ =
∇B

A′κAB is a Killing vector. The Killing spinor is obtained by evolving (7b)
with initial data on S satisfying the above conditions and

PκAB = −2
3
ξAB .

5. The Approximate Killing Spinor Equation

In the previous section, we have identified the conditions that need to be sat-
isfied by an initial data set for the Einstein–Maxwell equations so that its
development is endowed with a Killing spinor —see Theorem 4. Together with
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the characterisation of the Kerr–Newman spacetime given by Theorem 1, the
latter provide a way of characterising initial data for the Kerr–Newman space-
time. The key equation in this characterisation is the spatial Killing spinor
equation

D(ABκCD) = 0. (56)

As it will be seen in the following, this equation is overdetermined and thus
admits no solution for a generic initial data set (S,h,K,F ). Following the
discussion of Section 5 in [4], in this section we show how to construct a el-
liptic equation for a spinor κAB over S which can always be solved and which
provides, in some sense, a best fit to a spatial Killing spinor. This approx-
imate Killing spinor will be used, in turn, to measure the deviation of the
electrovacuum initial data set under consideration from initial data for the
Kerr–Newman spacetime.

5.1. Basic Identities

In the present section, we provide a brief discussion of the basic elliptic-
ity properties of the spatial Killing equation. In what follows, let S(AB)(S)
and S(ABCD)(S) denote, respectively, the space of totally symmetric valence
2 and 4 spinor fields over the 3-manifold S. Given μAB , νAB ∈ S(AB)(S),
ζABCD, χABCD ∈ S(ABCD)(S) one can use the Hermitian structure induced
on S by τAA′

to define an inner product in S(AB)(S) and S(ABCD)(S), re-
spectively, via

〈μ,ν〉 ≡
∫

S
μAB ν̂ABdμ, 〈ζ,χ〉 ≡

∫

S
ζABCDχ̂ABCDdμ, (57)

where dμ denotes volume form of the 3-metric h.
Let now Φ denote the spatial Killing spinor operator

Φ : S(AB)(S) −→ S(ABCD)(S), Φ(κ) ≡ D(ABκCD).

The inner product (57) allows to define Φ∗ : S(ABCD)(S) −→ S(AB)(S), the
formal adjoint of Φ, through the condition

〈Φ(κ), ζ〉 = 〈κ,Φ∗(ζ)〉.
In order to evaluate the above condition, one makes use of the identity (inte-
gration by parts)

∫

U
DABκCD ζ̂ABCDdμ −

∫

U
κAB ̂DCDζABCDdμ +

∫

U
2κABΩCDF

Aζ̂BCDF dμ

=
∫

∂U
nABκCD ζ̂ABCDdS (58)

with U ⊂ S and where dS denotes the area element of ∂U , nAB is the spinorial
counterpart of its outward pointing normal and ζABCD is a totally symmetric
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spinorial field. Now, observing that

〈Φ(κ), ζ〉 =
∫

S
D(ABκCD)ζ̂

ABCDdμ

=
∫

S
DABκCD ζ̂ABCDdμ,

it follows then from identity (58) that

Φ∗(ζ) = DABζABCD − 2ΩABF
(CζD)ABF .

Definition 3. The composition operator L ≡ Φ∗ ◦ Φ : S(AB)(S) −→ S(AB)(S)
given by

L(κ) ≡ DABD(ABκCD) − ΩABF
(AD|DF |κB)C − ΩABF

(ADB)F κCD (59)

will be called the approximate Killing spinor operator and the equation

L(κ) = 0

the approximate Killing spinor equation.

Remark 24. A direct computation shows that the approximate Killing spinor
Eq. (59) is, in fact, the Euler–Lagrange equation of the functional

J ≡
∫

S
D(ABκCD)

̂DABκCDdμ.

5.2. Ellipticity of the Approximate Killing Spinor Equation

The key observation concerning the approximate Killing spinor operator is
given in the following:

Lemma 14. The operator L is a formally self-adjoint elliptic operator.

Proof. It is sufficient to look at the principal part of the operator L given by

P (L)(κ) = DABD(ABκCD).

The symbol for this operator is given by

σL(ξ) ≡ ξABξ(ABκCD)

where the argument ξAB satisfies ξAB = ξ(AB) and ξ̂AB = −ξAB—i.e. ξ is
a real symmetric spinor. Also, define the inner product 〈 , 〉 on the space of
symmetric valence-2 spinors by

〈ξ,η〉 ≡ ξ̂ABηAB .

The operator L is elliptic if the map

σL(ξ) : κAB → ξCDξ(CDκAB)

is an isomorphism when |ξ|2 ≡ 〈ξ, ξ〉 	= 0. As the above mapping is linear
and between vector spaces of the same dimension, one only needs to verify
injectivity—in other words, that if ξABξ(ABκCD) = 0, then κAB = 0. To show
this, first expand the symmetrisation in the symbol to obtain

−κCD|ξ|2 − 〈ξ,κ〉ξCD + 2ξABξCBκAD + 2ξABξDBκAC = 0,
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where we have used the reality condition ξ̂AB = −ξAB . Note also that the
Jacobi identity implies that

ξABξCB = −1
2
δC

A|ξ|2,
which reduces the above equation to

3κCD|ξ|2 + ξCD〈ξ,κ〉 = 0.

Contracting this with κ̂CD, and using the conjugate symmetry of the inner
product, we obtain

3|κ|2|ξ|2 + |〈ξ,κ〉|2 = 0.

Both of these terms are positive, and so the equality can only hold if each term
vanishes individually. Taking the first of these, one sees that when |ξ|2 	= 0,
we must have |κ|2 = 0. This is equivalent to κAB = 0, completing the proof of
injectivity and establishing the ellipticity of L. �

6. The Approximate Killing Spinor Equation in Asymptotically
Euclidean Manifolds

The purpose of this section is to discuss the solvability of the approximate
Killing spinor equation, Eq. (59), in asymptotically Euclidean manifolds. As a
result of this analysis, one concludes that for this type of initial data sets for the
Einstein–Maxwell equations it is always possible to construct an approximate
Killing spinor.

6.1. Weighted Sobolev Norms

The discussion of asymptotic boundary conditions for the approximate Killing
equation makes use of weighted Sobolev norms and spaces. In this section, we
introduce the necessary terminology and conventions to follow the discussion.
The required properties of these objects for the present analysis are discussed in
detail in Section 6.2 of [4] to which the reader is directed for further reference.

Given u a scalar function over S and δ ∈ R, let ‖ u ‖δ denote the weighted
L2 Sobolev norm of u. All throughout we make use of Bartnik’s conventions
for the weights—see [7]—so that, in particular ‖ u ‖−3/2 is the standard L2

norm of u. Similarly, let Hs
δ with s a non-negative index denote the weighted

Sobolev space of functions for which the norm

‖ u ‖s,δ ≡
∑

0≤|α|≤s

‖ Dαu ‖δ−|α|,

is finite where α = (α1, α2, α3) is a multiindex and |α| ≡ α1 +α2 +α3. We say
that u ∈ H∞

δ if u ∈ Hs
δ for all s. We will say that a spinor or a tensor belongs

to a function space if its norm does—so, for instance ζAB ∈ Hs
δ is a shorthand

for (ζAB ζ̂AB + ζA
Aζ̂B

B)1/2 ∈ Hs
δ . A property of the weighted Sobolev spaces

that will be used repeatedly is the following: if u ∈ H∞
δ , then u is smooth

(i.e. C∞ over S) and has a fall off at infinity such that Dαu = o(rδ−|α|).1 In

1 Recall that the small o indicates that if f(x) = o(xn), then f(x)/xn → 0 as x → 0.
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a slight abuse of notation, if u ∈ H∞
δ , then we will often say that u = o∞(rδ)

at a given asymptotic end.

6.2. Asymptotically Euclidean Manifolds

We begin by spelling out our assumptions on the class of Einstein–Maxwell
initial data sets to be considered in the remainder of this article. The Einstein–
Maxwell constraint equations are given by

r − K2 + KijK
ij = 2ρ,

DjKij − DiK = ji,

DiEi = 0,

DiBi = 0,

where Di denotes the Levi–Civita connection of the 3-metric h, r is the asso-
ciated Ricci scalar, Kij is the extrinsic curvature, K ≡ Ki

i, ρ is the energy-
density of the electromagnetic field, ji is the associated Poynting vector and
Ei and Bi denote the electric and magnetic parts of the Faraday tensor with
respect to the unit normal of S.

Assumption 3. In the remainder of this article, it will be assumed that one
has initial data (h,K,E,B) for the Einstein–Maxwell equations which is
asymptotically Reissner–Nordström in the sense that in each asymptotic end
of S there exist asymptotically Cartesian coordinates (xα) and two constants
m, q 	= 0, for which

hαβ = −
(

1 +
2m

r

)
δαβ + o∞(r−3/2), (60a)

Kαβ = o∞(r−5/2), (60b)

Eα =
qxα

r2
+ o∞(r−5/2), (60c)

Bα = o∞(r−5/2). (60d)

Remark 25. The asymptotic conditions spelled in Assumption 3 ensure that
the total mass and electric charge of the initial data are non-vanishing. In
particular, it contains standard initial data for the Kerr–Newman spacetime
in, say, Boyer–Lindquist coordinates as an example. More generally, the as-
sumptions are consistent with the notion of stationary asymptotically flat end
provided in Definition 1. In the case m = 0, the spacetime is guaranteed to be
isomorphic to the Minkowski spacetime as a result of the positive energy theo-
rem; in the case q = 0, the Einstein–Maxwell equations reduce to the vacuum
Einstein equations, and the proceeding analysis is the same as in [4].

Remark 26. The above class of initial data is not the most general one could
consider. In particular, conditions (60a)–(60d) exclude boosted initial data. In
order to do so, one would require that

Kαβ = o∞(r−3/2).
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The Einstein–Maxwell constraint equations would then require one to modify
the leading behaviour of the 3-metric hαβ . The required modifications for this
extension of the present analysis are discussed in [4].

6.3. Asymptotic Behaviour of the Approximate Killing Spinor

In this section, we discuss the asymptotic behaviour of solutions to the spatial
Killing spinor equation (Eq. (56) start of Sect. 5) on asymptotically Euclidean
manifolds of the type described in Assumption 3. To this end, we first consider
the behaviour of the Killing spinor in the Kerr–Newman spacetime. In a second
stage, we impose the same asymptotic solution to the approximate Killing
spinor equation on slices of a more general spacetime. In what follows, we
concentrate our discussion to an asymptotic end.

6.3.1. Asymptotic Behaviour in the Exact Kerr–Newman Spacetime. For the
exact Kerr–Newman spacetime with mass m, angular momentum a and charge
q, it is possible to introduce a NP frame {la, na, ma, m̄a} with associated
spin dyad {oA, ιA} such that the spinors κAB , φAB and ΨABCD admit the
expansion

κAB = κo(AιB), φAB = ϕo(AιB), ΨABCD = ψo(AoBιCιD),

with

κ =
2
3
(r − ia cos θ),

ϕ =
q

(r − ia cos θ)2
,

ψ =
6

(r − ia cos θ)3

(
q2

r + ia cos θ
− m

)
,

where r denotes the standard Boyer–Lindquist radial coordinate—see [2] for
more details. A further computation shows that the spinorial counterpart,
ξAA′

, of the Killing vector ξa takes the form

ξAA′ = −3
2

κ(μoAōA′ − πoAῑA′ + τιAōA′ − ριAῑA′) (61)

where the NP spin connection coefficients μ, π, τ and ρ satisfy the conditions

μ̄κ̄ = μκ, τ̄ κ̄ = κπ, ρ̄κ̄ = κρ

which ensure that ξAA′ is a Hermitian spinor —i.e. ξAA′ = ξ̄AA′ . Despite the
conciseness of the above expressions, the basis of principal spinors given by
{oA, ιA} is not well adapted to the discussion of asymptotics on a stationary
end of the Kerr–Newman spacetime—in particular, the asymptotic behaviour
of the NP frame {la, na, ma, m̄a} is not related to the asymptotic behaviour
of the stationary Killing vector of the spacetime.

From the point of view of asymptotics, a better representation of the
Kerr–Newman spacetime is obtained using a NP frame {l′a, n′a, m′a, m̄′a}
with associated spin dyad {o′A, ι′A} such that

τa = l′a + n′a =
√

2(∂t)a,
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where the vector τa is the tensorial counterpart of the spinor τAA′
. It follows

from the above that
τAA′

= o′Aō′A′
+ ι′Aῑ′A

′
. (62)

Notice, in particular, that from the above expression it follows that ι′A = ô′
A. As

τAA′ =
√

2ξAA′ , one can use expressions (61) and (62) to compute the leading
terms of the Lorentz transformation relating the NP frames {la, na, ma, m̄a}
and {l′a, n′a, m′a, m̄′a}. The details of this tedious computation will not be
presented here—just the main result.

In what follows it will be convenient to denote the spinors of the basis
{o′A, ι′A} in the form {εA

A} where

ε0
A = o′A, ε1

A = ι′A.

Moreover, let κAB ≡ εA
AεB

BκAB denote the components of κAB with respect
to the basis {εA

A}. It can then be shown that for Kerr–Newman initial data
satisfying the asymptotic conditions (60a)–(60d) one can choose asymptoti-
cally Cartesian coordinates (xα) = (x1, x2, x3) and orthonormal frames on the
asymptotic ends such that

κAB = ∓
√

2
3

xAB ∓ 2
√

2m

3r
xAB + o∞(r−1/2), (63)

with

xAB ≡ 1√
2

(−x1 + ix2 x3

x3 x1 + ix2

)
.

From the above expressions, one finds that on the asymptotic ends

ξ = ±
√

2 + o∞(r−1/2),

ξAB =o∞(r−1/2),

where ξAB ≡ εA
AεB

BξAB . Moreover, for any electrovacuum initial data set
satisfying conditions (60a)–(60d) a spinor of form (63) satisfies

D(ABκCD) = o∞(r−3/2).

6.3.2. Asymptotic Behaviour for Non-Kerr Data. Not unsurprisingly, given
electrovacuum initial data satisfying conditions (60a)–(60d), it is always pos-
sible to find a spinor κAB satisfying expansion (63) in the asymptotic region.
More precisely, one has:

Lemma 15. For any asymptotic end of an electrovacuum initial data set sat-
isfying (60a)–(60d), there exists a spinor κAB such that

κAB = ∓
√

2
3

xAB ∓ 2
√

2m

3r
xAB + o∞(r−1/2)

with

ξ = ±
√

2 + o∞(r−1/2), (64a)

ξAB = o∞(r−1/2), (64b)

ξABCD = o∞(r−3/2). (64c)
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Proof. The proof follows the same structure of Theorem 17 in [4] where the
vacuum case is considered. �

Remark 27. The spinors obtained from the previous lemma can be cut off so
that they are zero outside the asymptotic end. One can then add them to yield
a real spinor κ̊AB on the whole of S such that

D(ABκ̊CD) ∈ H∞
−3/2

and asymptotic behaviour given by (63) at each end.

In the analysis of the solvability of the approximate Killing spinor equa-
tion, it is crucial that there exist no non-trivial spatial Killing spinor that goes
to zero at infinity. More precisely, one has the following:

Lemma 16. Let νAB ∈ H∞
−1/2 be a solution to D(ABνCD) = 0 on an electrovac-

uum initial data set satisfying the asymptotic conditions (60a)–(60d). Then
νAB = 0 on S.

Proof. From Lemma 10, one can write DABDCDDEF κGH as a linear combi-
nation of lower order derivatives, with smooth coefficients. Direct inspection
shows that the coefficients in this linear combination have the decay conditions
to make use of Theorem 20 from [4] with m = 2. It then follows that νAB must
vanish on S. �

6.4. Solving the Approximate Killing Spinor Equation

In the reminder of this section, we will consider solutions to the approximate
Killing spinor equation of the form:

κAB = κ̊AB + θAB , θAB ∈ H∞
−1/2 (65)

with κ̊AB the spinor discussed in Remark 27. For this Ansatz, one has the
following:

Theorem 5. Given an electrovacuum asymptotically Euclidean initial data set
(S,h,K,E,B) satisfying the asymptotic conditions (60a)–(60d) there exists
a smooth unique solution to the approximate Killing spinor equation (59) of
the form (65).

Proof. The proof is analogous to that of Theorem 25 in [4] and is presented
for completeness as this is the main result of this article.

Substitution of Ansatz (65) into equation (59) yields the equation

L(θAB) = −L(̊κAB) (66)

for the spinor θAB . Due to elliptic regularity, any solution to the above equation
of class H2

−1/2 is, in fact, a solution of class H∞
−1/2. Thus, if a solution θAB

exists, then it must be smooth. By construction—see Remark 27—it follows
that D(ABκCD) ∈ H∞

−3/2 so that

FAB ≡ −L(̊κAB) ∈ H∞
−5/2.
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In order to discuss the existence of solutions, we make use of the Fredholm
alternative for weighted Sobolev spaces. In the particular case of equation
(66), there exists a unique solution of class H−1/2 if

∫

S
FAB ν̂ABdμ = 0,

for all νAB ∈ H2
−1/2 satisfying

L∗(νCD) = L(νCD) = 0.

It will now be shown that a spinor νAB satisfying the above must be trivial.
Using identity (58) with ζABCD = D(ABνCD) and assuming that L(νCD) = 0,
one obtains

∫

S
DABνCD ̂D(ABνCD)dμ =

∫

∂S∞
nABνCD ̂D(ABνCD)dS,

where ∂S∞ denotes the sphere at infinity. Now, using that by assumption
νAB ∈ H2

−1/2, it follows that D(ABνCD) ∈ H∞
−3/2 and that

nABνCD ̂D(ABνCD) = o(r−2).

The integration of the latter over a finite sphere is of type o(1). Accordingly,
the integral over the sphere at infinity ∂S∞ vanishes and, moreover,

∫

S
DABνCD ̂D(ABνCD)dμ = 0.

Thus, one concludes that

D(ABνCD) = 0 over S

so that νAB is a Killing spinor candidate. Now, Lemma 16 shows that there
are no non-trivial Killing spinor candidates that go to zero at infinity.

It follows from the discussion in the previous paragraph that the kernel
of the approximate Killing spinor operator is trivial and that the Fredholm
alternative imposes no obstruction to the existence of solutions to (66). Thus,
one obtains a unique solution to the approximate Killing spinor equation with
the prescribed asymptotic behaviour at infinity. �

7. The Geometric Invariant

In this section, we make use of the approximate Killing spinor constructed
in the previous section to construct an invariant measuring the deviation of
a given electrovacuum initial data set satisfying the asymptotic conditions
(60a)–(60d) from initial data for the Kerr–Newman spacetime.
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In the following, let κAB denote the approximate Killing spinor obtained
from Theorem 5, and let

J ≡
∫

S
D(ABκCD)

̂DABκCDdμ, (67a)

I1 ≡
∫

S
Ψ(ABC

F κD)F
̂ΨABCGκD

Gdμ, (67b)

I2 ≡
∫

S
ΘABΘ̂ABdμ, (67c)

I3 ≡
∫

S
DABQ2D̂ABQ2dμ, (67d)

where following the notation of Sect. 4 one has

ΘAB ≡ 2κ(A
QφB)Q, Q2 ≡ (

κABκAB
)2

φABφAB .

The above integrals are well defined. More precisely, one has that:

Lemma 17. Given the approximate Killing spinor κAB obtained from Theorem
5, one has that

J, I1, I2, I3 < ∞.

Proof. By construction, one has that the spinor κAB obtained from Theorem 5
satisfies D(ABκCD) ∈ H0

−3/2. It follows then from the definition of the weighted
Sobolev norm that

‖ ∇(ABκCD) ‖H0
−3/2

=‖ ∇(ABκCD) ‖L2= J < ∞.

To verify the boundedness of I1 one notices that by assumption ΨABCD ∈
H∞

−3+ε, κAB ∈ H∞
1+ε it follows by the multiplication properties of weighted

Sobolev spaces (see, e.g. Lemma 14 in [4]) that

Ψ(ABC
F κD)F ∈ H∞

−3/2,

so that, in fact, I1 < ∞.
We now look at the boundedness of I2. By construction and due to the

asymptotic conditions (60a)–(60d), one can choose asymptotically Cartesian
coordinates and orthonormal frames on the asymptotic ends such that the
approximate Killing spinor and Maxwell spinor satisfy

κAB = ∓
√

2
3

xAB + o∞
(
r1/2

)

φAB =
q√
2r3

xAB + o∞
(
r−5/2

)
.

Therefore,

ΘAB = κ(A
QφB)Q

= ∓ q

3r3
x(A

QxB)Q + o∞
(
r−3/2

)

= o∞
(
r−3/2

)
.

and so ΘAB ∈ H∞
−3/2, and I2 < ∞.
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Finally, to show the boundedness of I3, note that in the asymptotically
Cartesian coordinates and orthonormal frames used above, we have

(
κABκAB

)2
=

4
81

r4 + o∞
(
r−7/2

)
,

φABφAB =
q2

2r4
+ o∞

(
r−9/2

)
,

and so the quantity Q satisfies

Q2 =
2
81

q2 + o∞
(
r−1/2

)
.

Taking a derivative, one obtains

DABQ2 = o∞
(
r−3/2

)
,

and therefore DABQ2 ∈ H∞
−3/2 and I3 < ∞. �

The integrals J , I1, I2 and I3 are then used to define the following geo-
metric invariant:

I = J + I1 + I2 + I3. (68)
One has the following result combining the whole analysis of this article:

Theorem 6. Let (S,h,K,E,B) denote a smooth asymptotically Euclidean ini-
tial data set for the Einstein–Maxwell equations satisfying on each of its two
asymptotic ends the decay conditions (60a)–(60d) with non-vanishing mass and
electromagnetic charge. Let I be the invariant defined by equation (68) where
κAB is the unique solution to equation (59) with asymptotic behaviour at each
end given by (63). The invariant I vanishes if and only if (S,h,K,E,B) is
locally an initial data set for a member of the Kerr–Newman family of space-
times.

Remark 28. Theorem 6 is the electrovacuum generalisation of the characteri-
sation of initial data for the Kerr spacetime given in Theorem 28 in [4].

Proof. The proof follows the same strategy of Theorem 28 in [4]. It follows
from our assumptions that if I = 0 then the electrovacuum Killing spinor data
Eqs. (55a)–(55d) are satisfied on the whole of the hypersurface S. Thus, from
Theorem 4 the development of the electrovacuum initial data (S,h,K,E,B)
will have, at least on a slab a Killing spinor.

Now, the idea is to make use of Theorem 1 to conclude that the devel-
opment will be the Kerr–Newman spacetime. For this, one has to conclude
that the spinor ξAA′ ≡ ∇Q

AκBQ is Hermitian so that it corresponds to the
spinorial counterpart of a real Killing vector. By assumption, it follows from
expansions (64a)–(64c) that

ξ − ξ̂ = o∞(r−1/2), ξAB + ξ̂AB = o∞(r−1/2).

Together, the last two expressions correspond to the Killing initial data for
the imaginary part of ξAA′—thus, the imaginary part of ξAA′ goes to zero
at infinity. It is well known that for electrovacuum spacetimes there exist no
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non-trivial Killing vectors of this type [9,12]. Thus, ξAA′ is the spinorial coun-
terpart of a real Killing vector. By construction, ξAA′ tends, asymptotically, to
a time translation at infinity. Accordingly, the development of the electrovac-
uum initial data (S,h,K,E,B) contains two asymptotically stationary flat
ends M∞ and M′

∞ generated by the Killing spinor κAB . As the Komar mass
and the electromagnetic charge of each end is, by assumption, nonzero, one
concludes from Theorem 1 that the development (M, g,F ) is locally isometric
to the Kerr–Newman spacetime.

Conversely, if the initial data set corresponds to initial data for a mem-
ber of the Kerr–Newman family of solutions, then we know that there exists
a Killing spinor κAB in the development (M, g,F ), such that κAB |S has the
asymptotic behaviour given in (65), and the vector ξAA′ = ∇B

A′κAB is a
Killing vector in (M, g,F ). Furthermore, this restriction must satisfy the spa-
tial Killing spinor equation on S, and so also the approximate Killing spinor
equation. Therefore, κAB |S is the unique solution described in Theorem 5,
which is used to construct the invariant I. Finally, Theorem 4 tells us that
conditions (55a)–(55d) must be satisfied on S, and so the invariant I must
vanish. �

8. Conclusions

As a natural extension to the vacuum case described by Bäckdahl and Va-
liente Kroon [4], the formalism presented above for the electrovacuum case
has similar applications and possible modifications. For example, the use of
asymptotically hyperboloidal rather than asymptotically flat slices can now be
analysed for the full electrovacuum case, applying to the more general Kerr–
Newman solution. Another interesting alternative to asymptotically flat slices
would be to obtain necessary and sufficient conditions for the existence of a
Killing spinor in the future development of a pair of intersecting null hyper-
surfaces. For instance, one could take a pair of event horizons intersecting at a
bifurcation surface and obtain a system of conditions intrinsic to the horizon
that ensures the black hole interior is isometric to the Kerr–Newman solution.

A motivation for the above analysis was also to provide a way of tracking
the deviation of initial data from exact Kerr–Newman data in numerical sim-
ulations. However, in order to be a useful tool, one would still have to show
that the geometric invariant is suitably behaved under time evolution (such
as monotonicity). As highlighted in [4], a major problem is that it is hard
to find a evolution equation for κAB such that the elliptic equations (59) are
satisfied on each leaf in the foliation. If these issues can be resolved, then this
formalism may be of some use in the study of nonlinear perturbations of the
Kerr–Newman solution and the black hole stability problem.

Finally, the ethos of this article is to show that the characterisation of
black hole spacetimes using Killing spinors is still a fruitful avenue of investi-
gation. In future, we hope to show that this method can be used to investigate
other open questions, such as the Penrose inequality and black hole uniqueness.
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