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Abstract:

Intracellular Ca signals represent a universal raeigm of cell function. Messages carried by Ca
are local, rapid, and powerful enough to be dedidesver the thermal noise. A higher signal to
noise ratio is achieved by a cooperative actioGafelease channels such as IP3 receptors or
ryanodine receptors arranged in clusters (releagg)containing a few to several hundred
release channels. The channels synchronize themiogs via Ca-induced-Ca-release, generating
high-amplitude local Ca signals known as puffseanons and sparks in muscle cells. Despite
positive feedback nature of the activation, Caaligare strictly confined in time and space by
an unexplained termination mechanism. Here we ghatthe collective transition of release
channels from an open to a closed state is idéntiche phase transition associated with the
reversal of magnetic field in an Ising ferromagi@ir new simple quantitative criterion closely
predicts the Ca store depletion level requiredsfark termination for each cluster size. We
further formulate exact requirements that a clusteelease channels should satisfy in any cell
type for our mapping to the Ising model and th@eisded formula to remain valid. Thus, we
describe deterministically the behavior of a systena coarser scale (release unit) which is
random on a finer scale (release channels), bripidie gap between scales. Our results provide
the first exact mapping of a nanoscale biologi@aling model to an interacting particle

system in statistical physics, making the extensia¢hematical apparatus available to

guantitative biology.



Significance Statement:

Living organisms are built on a hierarchy of leyeigrting from macromolecules and clusters of
molecules, to organelles, cells, tissues, and mtdracting organs finally forming the entire
organism. At the lowest of these levels, life defgean individual molecules synchronizing their
states to generate robust intracellular signals theethermal noise. Here we approach the
problem via statistical mechanics to describe qtativiely and deterministically this first
emerging level of life. We discover that the symetization that corresponds to termination of
local Ca signals generated by clusters of Ca relelhannels is governed by the same equations
as the phase transition associated with the revefrsaagnetic field in a classical Ising

ferromagnet.



Introduction

Clusters of release channels play a fundamentlimdbiological systems as elementary
signal generating, processing, and amplifying yfike transistors in electronics. The time scale
for termination of the rapid high-amplitude signgénerated by such units, together with scales
of other elementary cellular processes such asdrimolecular motors and refractory periods of
action potentials, determines the emergent scateuafal life functions such as heartbeat,
muscle motion, and brain activities.

As molecules interact, the signal termination igarerging property of the channel
cluster, rather than a property of an individuarmel. This nanoscale system of interacting
molecules which generates elementary biologicaladgyis particularly interesting because this
is where physics meets biology. Despite extenstpeemental and numerical studies on the
nanoscale, including structures of individual males and their locations (1-4), the universal
links of synchronized intracellular signals to plegsremain mainly unknown and conceptual
understanding remains elusive.

The crucial importance of local Ca signaling anmgtifoy Ca-induced-Ca-release (CICR)
(5) for regulation of cardiac muscle contractiorsvfaeoretically predicted in 1992 (local control
theory (6)), and further validated by the experitakdiscovery of Ca sparks (7). Sparks are
generated by release channel clusters (Ca relesitsge ORUS) in the form of localized Ca
releases from junctional sarcoplasmic reticulum)(SRe sparks are strictly confined in time
and space to roughly 20-40 ms byr@ by a powerful termination mechanism. Stochastic
attrition, local SR depletion, coupled gating, amarnactivation, and lumenal regulation have
been suggested as potential mechanisms of spamkhtgion (review (8)). Since 2002 Sobie et

al. model (9) the effect of mass action (decrea€iadlux with Ca spark duration and loss of Ca



in the SR) is a common driving element is virtualllyof the spark models and central to the
termination mechanism via interrupting CICR (10)pernicious attrition" (11) or “induction
decay” phenomenon (12), i.e. the process oppos€HaR that facilitates channel closure within
the CRU. The model formulations have improvedhfertvia superresolution modeling of
calcium release (4), but the only "feature" thgieap's to have disappeared from all current
models is the need for RyR inactivation. Thus tineent consensus in the field on the spark
termination problem is that SR depletion decre@sefRyR channel current and therefore RyR
interactions to the point that CICR can be susthargy longer, culminating in spark termination.
At the same timgyrevious studies have not provided a mathematiwdé¢rstanding of this
emerging behavior.

Here we apply statistical mechanics to describegpaéively and deterministically the
collective behavior of release channels within CRIUsNng spark termination. Specifically, we
show that the channel synchronization that cornedpdo termination of signals generated by a
CRU is described by the same equation (and thuksamr the same principle) as the phase
transition associated to the change of magnetid iitean Ising ferromagnet.

The Ising model describes ferromagnetism usinguargqgrid of interacting binary (+/-1)
random variables representing atomic spin. An ditadplution of the 2D-case of this model
was foundoy Onsager (13). The spins "want" to be aligned,iarthe absence of magnetic field
they can synchronize to either a +1 or -1 state. application of a magnetic field breaks this
symmetry, and the spins synchronize accordingdcifin of the magnetic field culminating in
the phase transition. Thus the magnetic field iatgis which state the spins “prefer.” As

described above, Ca release channels also “waii tdigned in either closed or open state. An



open release channel tries to open its neighbar€R (5), and similarly a closed release
channel favors a closed state of its neighbors (12)

Following this analogy, we construct an exact magpietween two systems in 2
dimensions: a system of release channels withiRd &nd the Ising model of interacting spins
within a ferromagnet. Our mapping allows us to déscboth systems by the same mathematical
formulations. We take advantage of the extensigsearch on Ising models (since 1920 (14));
specifically, our criterion for spark terminatiama CRU is the same as the well-known fact that
the Ising model undergoes a phase transition wieexternal magnetic field reverses. This
criterion closely predicts the depletion level riegd for spark termination for each CRU size.
We demonstrate this mechanism using numerical ngidellations of Ca sparks over a wide

range of CRU sizes from 25 to 169 release channels.

Results

We linked a system of release channels within a @R&the Ising model of interacting
spins within a ferromagnet via the same mathenidbcaulations. Here we formulate four
general conditions that a system of release charsteluld satisfy for our mapping between the
two systems to hold. When these conditions arefgatithe RyR interactions are quantitatively
identical to the interactions in a carefully consted version of the Ising model (see Methods):
1. The channels are arranged in a lattice structure
2. Each channel can be in an open or closed statesponding to the plus and minus states of
the Ising model.
3. In the absence of interactions, the Ca proéifilting from one channel opening is roughly

stable in time, corresponding to time-invarianceltdnnel interactions (achieved e.g. by the



joint action of buffer and diffusion out of the cireel cluster), and roughly the same for any
channel in the cluster, corresponding to tranghatiwariance.

4. The channel opening rate as a function of Cébeastescribed by an exponential and the
closing rate by a constant.

We vividly demonstrate the above principles by niag recent numerical model of
sparks in cardiac cells (10) (referred hereafteBtasn model) (Fig. 1) to Ising model. Ryanodine
Receptors (RyRs) in cardiac cells are indeed ot in a crystal-like square grid and generate
sparks by their synchronous opening (Movie S1 a@htb&different grid sizes). The closing rate
of RyR is shown to be approximately constant inezipental studies (12) and it has been set to
a constant in the original Stern model (10). RyRropg rate is described by an exponential
rertcdl (red line in Fig. 2A), and Ca profiles are rougstable in time (Fig. 2B). Please note that
the exponential in Figure 2A fits experimental datdl only in our range of interest from 10 to
100uM (spark termination range): beyond 10 the data points show saturation, but at the
low resting Ca of 0.1M, the opening rate is expected to be substantiaier than that
approximated by (to match the known resting spark rate). To make that our Ising model
operates within the realistic exponential fit, vétimated [Ca] at channels in closed states
(Fig.1C, bottom panel) using numerical simulatiansgl found that on average this [Ca] stays
below 80uM (i.e. within our fit in Fig. 2A).

We next read off the Ca profilethat results from the opening of one RyR (Fig. 264
we let the interaction profilg(r) = y(Ur)/ y(U) in our version of the Ising model be a
normalized and scaled versionyfU is the distance between channels). The Cadidfuout of
the CRU corresponds to imposing a negative bounctamgition. Using #4 we can construct a

dynamic for the Ising model that satisfakstailed balance This means that the Markov chain is



reversible and implies convergence to the expjigitiown equilibrium (Gibbs) measure given in
equation 2 (Methods).

From our exact mapping we derive a formula forgdhalogue of the magnetic fieid
(Methods), which reflects an imbalance in the pbilitst and indicates whether release channels

“prefer” an open or a closed state:

h= % In (gj +21__gts)as.

Herep=yy is analogue of inverse temperature in classidagjlsmodel:C =117 §' is the channel
closing rate}. andy determine the opening rate)“® (Fig. 2A). The transition is expected at
h just above 0, equivalent to reversal of polanityarromagnetism. Becau€g i, y are
constants, bub (andy) and its integral over neighboring channels depenthe grid size and
Casr ([Ca] in SR), we explorel vs. these two parameters and found thaverses at lower
Casrlevels in larger grids (Fig. 2D).

We tested Ising model predictionsiimsilico experiments using Stern model, in which
Casgwas clamped at various levels. Assgmcreases from 0.1 to 0.15 mM the system
undergoes a sharp transition from terminating sparlsparks that do not terminate (Fig. 3A). At
higher Caglevels, the local [Ca] remains high, despite aatieg boundary effect (Fig. 3B).

We further examined statistics of the terminatiomettransition for different grid sizes
and compared them to the Ising model predictios.C&rincreases, the termination time
indeed undergoes a sharp increase (>10,000 mgpduphase transition for all grid sizes tested
(Fig. 4A). The phase transition onsets are welkdbed by an exponential function (Fig. 4B)
with steeper exponential rise for larger grids (BiG). The Cgr at whichh reverses corresponds
closely to the onset of phase transition for eaah gjze, specifically about 30% increase in

termination time in our numerical simulations (M@). This criterion remains effective for



physiological conditions, when ggais not fixed; namely, if a spark reaches theversal it

terminates; otherwise it becomes metastable (Eg- 4nd Movies S3,S4).

Discussion

In the present study we approach the long-starghiolglem of calcium spark termination
by an unexpected (for biologists and physiologiafg)lication of statistical mechanics to the
nanoscale biological signaling. We discovered thatspark termination process is
mathematically isomorphic (governed by the sameagguos) to the phase transition associated
with the reversal of magnetic field in a classisithg ferromagnet. As this phase transition in
ferromagnets is well-understood, we used this kedge to formulate a criterion for the phase
transition determining the spark termination in @RU system. Our numerical model
simulations have validated the theoretical predictf the spark termination: they clearly show
that sparks terminate when Ca SR depletion reablegsredicted level of the phase transition for
each CRU size. Conversely, sparks do not terminhén SR depletion does not reach the phase
transition level.

Abnormal sparks which don’t promptly terminate (datd metastable sparks (10),
embers (15), or “leaky” releases (16)) have beemigged by numerical model simulations (10,
17, 18) and observed experimentally (19). In cardmscle, failure of Ca release to terminate
leads to explosive Ca waves, which cause life-tereag arrhythmia (20, 21). Our finding of
the release termination failure at higheg&lavels (Figs. 3,4, Movie S4) is in line with
experimental observation of long-lasting Ca reled48) and Ca waves (22) under Ca overload
or rapid intra-SR Ca diffusion and re-uptake (18), Ifacilitating CICR among RyRs and CRUSs.

Recent numerical studies demonstrated that condif@voring long-lasting sparks actually



include a rather complex (and often counter-ingaitiinterplay of SR Ca loading, number of
functional RyRs, and RyR gating kinetics (10, 18). These conditions can be now recast and
explained in the new terms of the phase transirgarion formulated in the present study. Thus,
our approach could be helpful in effective predigtand directing drug actions to avoid the
metastable spark regime and to normalize cardigbmin

One important immediate advantage the CRU to Isiagping is that it provides a new,
much more efficient computational means for evahggthe behavior of models of Ca release
channel clusters. Indeed, while the Markov chaimidation has an analytic solution for its
steady-state, the number of states is very langa feasonable size cluster of release channels.
For example, the number of states is 2*(numbehahoels) that is*° ~ 1¢* (for a RyR cluster
of 13 x 13). Thus, computing the dynamics for &dtes in the full Markovian representation
using the analytic solution to Markov matrix invetstaking exponentials of huge matrices,
which is impractical. Moreover, the full CRU modd$o includes the dynamics of diffusion of
Ca within the cleft, which is not explicitly repesged in the Markov model. The only practical
way to study such a complex system is by numesicalilations (10, 12) which still require
many hours of computing on powerful computer clsst&€he analytic representation using
statistical mechanics suggested in the preseny ssuduch more compact and efficient. It
allows the evaluation of the model behavior withiitliseconds of computing time for a given
channel interaction profile and CaSR level. Fomeple, our rough evaluation of phase
transitions for 5 grid sizes required 23,300 sirtiataruns (Fig. 4B and Fig. 4D, red symbols),
while the same transitions were found virtuallytamgly by using equation 10 (Fig. 4D, blue

symbols).
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Our study extends the domain of applicability @ftistical mechanics, which traditionally
describes systems with numerous (or infinite) nunabelements. Here we show that this
relatively small biological system with as few d&rfiolecules is able to function utilizing the
smoothed-out phase transition associated withefsystems (Fig. 4, Movie S2). While larger
clusters, such as of 169 molecules, generate grdogal signals, they are “harder” to terminate
(i.e. lower Cgrlevels are required, Fig. 4A). Super-resolutioaging data on CRU
ultrastructure show that actual RyR clusters iligar cells exhibit complex shapes and various
sizes, with some CRUSs being an incompletely fitjeid of channels (3, 4) that could help reach
a balance between signal strength and termindtiorardiac pacemaker cells, where diastolic
Ca releases are synchronized via local propagé2i®n24), bigger RyR clusters are mixed with
smaller “connecting” clusters (25). The Ising moddth some sites missing would be a dilute
Ising model, which is currently an object of actresearch in physics (26).

The equivalence of an Ising and CRU model cdrugethe limiting probability of any
configuration of open/closed release channelsillie given by the equilibrium measure for the
corresponding Ising model, and will depend onltloemlength of the contour. With this tool one
can quantify the extent of termination failure enrhs of the equilibrium measure. Such an
application of interacting particle systems bridgthe gap between scales of individual
molecules and their collective behavior has belemg:-standing problem in biology (27).

Ca puffs generated by IP3 receptors (IP3r) arergépeccepted to be collective events
in which clustered channels are mutually activditgICR. Their termination mechanism,
remains uncertain (28). Our present model canedalifectly applied to puffs, because unlike
the RyR, the IP3r is strongly inactivated by higthcium, meaning that our condition (4) only

holds for a small part of the calcium range. Thereonsiderable uncertainty about the

11



mechanisms of IP3r opening and closing in puffs3@8 so it is premature to speculate on
details of any possible extension of the Ising gaya to puffs. On the other hand, in 2009
Smith and Parker (31) resolved individual openiagg closings of IP3r’s during a puff that
showed a tendency for IP3r’s to close abruptly emitectively (“square” puffs). Wiltgen et al.
(28) examined further the “square puff” phenomeand showed unambiguously that IP3r's in a
decaying puff do not behave independently, but teredose synchronously. This implies some
kind of “closing signal” coordinating the variousannels. The nature of this signal remains
unknown. However, the collective inactivation nimysuggestive of some kind of phase

transition, and a “closing signal” could be accomdiated in an Ising-like model.
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Methods

1. Brief Introduction to the Ising Model. The Ising model we will work with consists of biga
random variables (i.e. taking values +1) capths positioned on a 2D finite grid (e.g.
section 3.3.5in (32)). A configuration of spingifunctionc that assigns 1 or -1 to each point
XUOA . The configuration spac® is the set of all possible assignments of spinmoiats inA,

i.e. all possible functions : A — {1, —1}. A interaction profile ¢: R > R is a function with
@Ax) — 0 rapidly asx —c0 and ¢> 0. We choosg so thatg(1) = 1. We furthermore place our
finite grid A inside of a bigger grid, (b for boundary) and let(x) = -1 for anyxOA, \A . In
this way we impose a {doundary condition on A. HereAp\A must “frame”A and its thickness
has to be at least as wide as tffeaive interaction range, which in our case willdoeund 5.

To be precise, i\ is an by mgrid, A, will be an+10 by m+10 grid with A situated in the

middle ofA\,. The Hamiltonian is

[1] H(o)=- > dlx-yhoXo(y)-h> o(x)

X, YA, XA,
Here the first sum is ovek, instead of A. This is necessary to ensure the interaction ti¢h
boundary.
In physics h is the magnetic field. The Hamiltonian can be prteted as the energy of the
system. The equilibrium measure (Gibbs measurgiyen by

[2] o) =Z27"e”")

The normalization constadtis well-defined since our lattick is finite, and we will not need to
know it explicitly for our analysis. Hepgis the inverse temperature. (For further inforoatn

the general Ising model, of which this is an ins&gref Sections 2.1 and 2.2 in (33))
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2.Dynamic Ising: Detailed Balance and the TransitiorRates.Let A be a 2 dimensional
integer grid of a finite size. Recall thatis the configuration space anddetA — {1, -1} be an
element of2. One can introduce a dynamic on spin configuratsanthat the configuration

spaceQ) becomes the state space for a Markov chain withansition matrixP. We introduce the
notationg™ to mean
o = {a(y) fory #x
—o(y) fory=x

i.e. 0" coincides withr everywhere except af where the spin is reversed. To obtain a Glauber-
like dynamic for the Ising model, it fices to choose a spin uniformly at random at eanh ti
increment and to give the probability that it flips, to giveP(o - d”).

The condition orP that guarantees thatas in [2] is indeed the equilibrium measure fa th
Markov chain is called detailed balance, and itestahat the Markov chain is reversible with
respect tar (cf equation (1.30) and Proposition 1.19 in (3Z})e equation for detailed balance is

the following: for allg € Q andx € A we have that

[3] P(g - 0™ =P(g" - g)e™)
This is equivalent to

P(O-_’O-X)_ H(o)-BH (o*
[4] — gfM(0)-H ()

P(o* - 0)

_ e-Zﬂ(ZyDAb P(x=yo (x)o (y yrho (x) _ e-ZﬂU (><)(Zymb P(x=ya(y)+h)

The detailed balance equations will be satisfiecafaside variety of rateB, so we can choose
P to be most appropriate to our CRU model. Sinc&kmav that the release channel opening rate
is an exponential while the closing rate is a camstwe look foP so that the transition from -1
to 1 is exponential while the transition from 1-fiois a constant. This indeed can be achieved

simultaneously with  the detailed balance conditionf o(x)=-1 we Ilet
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> qo(|x—y|)a(y)+h]

2[{
P(c - cg*)=Ce V™ yielding thatP(c® - 0)=C to satisfy detailed

balance. Thus, the Markov chain is given as followe pick a locatiorx uniformly at random,

and define the transition matrfxto be:

2P on, o ¥Do 1) forg & )= -
foro(x)=1

Here time is continuous and the above are tramsitites. In our numerical model, time is

[5] P(o,07) =

discrete and we tak&t = 0.05 ms. The transition matrix with the discretizeddilbrecomes

25( () =y (y)+h) ,
AtCe 2 ony foro k )=-:

AtC foro(x)=1

[6] P(o,0%) =

and we ensure thait is small enough so that all transition probaletitare smaller than 1.
Letting alsdP(g,0) =1-P(g,0") ensures tha® is indeed stochastic.

3. The CRU as an Ising ModelA numerical model of the CRU consists of a squgie of
calcium release channetsand each release channel can be open or closeds$\m 1 to each
open and -1 to each closed release channel, thamioly a configuratior : A —{1, —1}. We
introduce the constaft to represent the spatial distance between nealesise channels. In our
numerical model, i&) = 30 nm.

We lety be the 1D slice of the time-stable spatial calcpnofile resulting from the opening
of one release channel. This idfgtient to contain all the information about the aaic profile
sincey is rotationally symmetric. We obtainfrom our numerical simulation. Howeveyr ,is an
immediate result of the environment, including eaty difusion, and bffer and is not an

emergent property. We interpret it as a scaledant®mn profile, and ley in [1] be given as

@r)=¢Ur)/yU), whereUr is the distance to the open release channelnitiigplication
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by U accounts for the fact that the release channels amnits apart while spins are 1 unit apart.
The division byy/(U) is a choice of scaling for the interaction profilenction ¢. With this
scaling we havey(l) =1. We choose this scaling f@g so that at the nearest neighbors its value
matches the classic Ising model, where each spenaicts with 4 neighbors with a strength of 1.

The distance between CRUs is assumed to be toe Fargcalcium from one CRU to
influence another. On the other hand, calciumfi&ising out of the CRU and in this way the
release channels in the CRU interact with the datsithe model would be identical if the
CRU were surrounded by release channels that wayslclosed. In this way, the boundary
condition of the CRU model is equivalent to a negaboundary condition of the I1sing model.

We will compute the analogues of inverse tempeegfuand the magnetic field in our
CRU model as functions of initial model parametéiisey play the exact same role in the
mathematical description of our CRU model as theyndhe Ising model even though they do
not carry the same physical meaning. We will ndiat § is an increasing function of the
concentration of Ca inside the junctional SR andveuws the SR Ca in our numerical model to
test the predictions of the CRU Ising model.

4. Relating [Ca] and the Ising Hamiltonian.Let us introduce the set

S(x) ::{SDR :s=|x—-y O for someyDZZ} . We can rewrite both the local [Ca] afwe

denote it [Ca]f)) and the exponent in the -1 to 1 transitioRPim terms of a sum oves(x) .
Given a configuration of open and closed releaserdiac and a given release channel at a
pointx, let Nys be the number of open RyRs at a distdosé&om x. If the release channelxats

closed, we can approximate [@ak by

[7] [Cal(R = D ¢AUI N,

SOS(x)
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We similarly rewriteP. We introduce the following notatioy(x) := total number of spins at
distance s fronx; Ls(X) := number of -1 spins at distance s freniNs(x) := number of +1 spins at
distance s fromx; and we havély(x) + Ls(X) = Tg(X).

Henceforth in this section, let us fix a skk€ A and suppress the dependencexam
T, Ls, Ns, andSfor ease of notatiomhen we can rewrite the expression in the expookttte

Ising -1 to +1 transition probability in [5] in tHellowing way:

[8] 2 Ax —yDo(y) =2 @(s)(N,—L,) =) ¢(s)(2N, - T,)

=2 @SN, - AT, = 23 9N, - 27 __p(s)ds

In the last approximate equality, we have replagqja(s)TS by ZITI 5qo(s)ds where the factor
1S S>.

of 2n is due to the fact thaz #AS)T, is approximately a 2D integral of a rotationallyrayetric
saS

function. We observe that the first term in theafiexpression in [8] is a scalar multiple of the
total calcium [Ca]X) as given in [7].
5. Crucial Parameters and the Spark Termination Crterion. We want to solve for the

analogues ol andg in the CRU model. We again fix a ske€ A and suppress the dependence

. . . . . [Ca]
onx in [Ca] andSfor ease of notation. From experimental data wmtﬁtexponentla)leY to

the Ising transition rate from -1 to +1 in [5]:

Jerical = CeZﬁ(Zymbrp(lx -yl (y)+h)

Then we replace the LHS using [7] and the RHS usiegxpression derived in [8] to obtain

- 18 et UM _ Ce‘?ﬂ(ZZsDJ’(S)Ns‘2”L>,5¢<S)d3*h )

Since we wish the above equality to hold for anwyfiguration, we must equate the

17



coefficients of Qg (S) N, to obtain 8 = yy(U)/4.

4( @(s)Ns)
Next we equate the cffigients in front of€ Z’ES to obtain
48|  @(s)s+24h
/1 — Ce Js>.5
yielding that
[10] h :iln(ij+2ﬂj' @(s)ds
28 \C 5

Rewritingh in terms of the calcium profike we obtain

[11] h=—2 In(ij+2nj Y6 g
wU) \C =V2Uy ()

Sinceh is the analogue of the magnetic field in the CRUWehathe emergent behavior of release

channels can be predicted basedhouring termination all the release channels begian

open state (analogous to +1). The Gfudion out of CRU is equivalent to a negative boupda

condition. We can hence deduce #ignal termination criterion: If h< 0, then the spark will

terminate and this termination is mathematicallyeniical to reversal of polarity in

ferromagnetism. Mathematically, this phase traosifiollows from the Lee-Yang theorem. On

the other hand, ii> 0, the spark will be metastable.
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Figure Legends

Fig. 1: Stern numerical model describes collectivieehavior of RyR ensemble during spark
activation and termination. A, A schematic representation of a CRU in cardidis.dg, An
example of Ca spark generated by a CRU featuri®gRRs separated by 30 nm. The sequence
of the RyR ensemble states is shown along withr thefant local [Ca] on a grid with 10x10 nm
computational voxels in the cleft. White up-arrandicate open channels. Green down-arrows
indicate closed channels (see also Movie S1 anéb&different grid sizes). [Ca] is coded by red
shades, saturated at 30 u®.Dynamics of open number of RyRs and SR [CakfCduring the
spark. Termination span of ~40 ms is shown by a Bhadow. Bottom panel: at each time
sample, we collected information about [Ca] atkiked channels (i.e. ready to open) and report

here respective maximum, mean, and minimum values.

Fig. 2. Construction of an exact mapping between @RU described by Stern model and

the Ising model of interacting spins. AThe exponential relation of RyR opening rate[€s]

in the cleft. All previous models fit a power fuimt to original data obtained in lipid bilayers.
Here we fit an exponential (red line) to the sam&gboints (original data and power fit are
reproduced from Laver et al. (12) with permissidrtus, we replaced the quadratic opening rate
in original Stern model with the exponential opgniate from this fit.B, Representative [Ca](t)
when one RyR is open in the center of the grithatopen RyR and its closest neightiorA
steady-state spatial [Ca] profile when one RyRpemin the center of 9x9 grid (similar profiles

for other grid sizes are not showi), Plots ofh as a function of Gg for 5 different grid sizes.
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Inset: Ising model predicts phase transitioh asverses at different gafor each grid size; the

transition requires lower Galevelsfor larger grids.

Fig. 3.1n silico Casg clamp experiments validating Ising model predictios for spark
termination. A, Evolution of 9x9 RyR ensemble at variousglavels after all RyRs are set in
the open state at time 0. Sparks do not termirtaf&s above 0.15 mM. The sharp transition in
the numerical model behavior is in line with themgsmodel prediction of the phase transition
above 0.12 mM for the 9x9 grid, [Ca] profiles in the dyadic cleft for terminatedd non-
terminated sparks at galevels higher and lower the phase transition. [€apded by red

shades, saturating at 50 pM.

Fig. 4. Results of statistical analysis of oun silico experiments testing Ising model
predictions for various grid sizes. A Median termination times {JTplotted as a function of
clamped Cgr. Each data point was obtained from 100 simulatiors.B, The data set of panel

A, but at a smaller scale. The transition onsetchrsely described by an exponential (shown at
the plot).C, The transitions are sharper for larger gridsa@sioing within smaller ranges of

Casr (ACasR). D, hreversal (Cgr_h reversal) in our Ising model closely predicts ¢imset of the
phase transition in our model simulations. Theditton onset in the simulations is estimated as
a 30% increase in the median(Tasg_30% _T_increase) calculated using respective exponential
fits in panel BE and F, Open RyRs and Gadynamics in representative examples of stable
and metastable sparks (13x13 RyR grid). The mddigsspark was generated by increasing SR
Carefiling rate (TAUFILL was decreased from 6.5tm4.5 ms). Inset shows a narrow margin

for Casgr that determines spark termination fate (see MaS&snd S4 for more details).
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Supporting Information: Movies
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Movie S1: A typical Ca spark generated by Stern model by a mid-size release unit featuring
9x9 Ca release channels, ryanodine receptors (RyRs, marked by arrows, separated by 30 nm).
Local [Ca] dynamics is simulated on a grid with 10x10 nm computational voxels in the dyadic
cleft of 15 nm. White up-arrows indicate open channels. Green down-arrows indicate closed
channels. [Ca] is coded by red shades, with pure red representing 30 uM. Left hand panels

show the dynamics of the key spark parameters: open number of RyRs and SR [Ca] (Cagg).
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https://drive.google.com/open?id=0B68Q9S0HOGLHV05ES01jaEZYZ2s
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Movie S2: A spark generated by a very small release unit featuring 5x5 RyRs. RyR
spacing, computational voxels, and [Ca] scale were 30 nm, 10x10x15 nm, and 30 uM,

respectively, similar to Movie S1.
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Movie S3: A stable spark generated by a large release unit featuring 13x13 RyRs. Green
line shows Cagg level of our Ising model prediction for phase transition (at h=0). RyR
spacing, computational voxels, and [Ca] scale were 30 nm, 10x10x15 nm, and 30 uM,

respectively.
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https://drive.google.com/open?id=0B68Q9S0HOGLHejJYOWZVNWJwR00
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Movie S4: A metastable spark generated by a large release unit featuring 13x13 RyRs and
increased junctional SR Ca refiling rate (TAUFILL was decreased from its original value of 6.5
ms to 1.5 ms). Green line shows Cagg level of our Ising model prediction for phase transition (at
h=0). RyR spacing, computational voxels, and [Ca] scale were 30 nm, 10x10x15 nm, and 30 uM,

respectively.
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