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Abstract:  

Intracellular Ca signals represent a universal mechanism of cell function. Messages carried by Ca 

are local, rapid, and powerful enough to be delivered over the thermal noise. A higher signal to 

noise ratio is achieved by a cooperative action of Ca release channels such as IP3 receptors or 

ryanodine receptors arranged in clusters (release units) containing a few to several hundred 

release channels. The channels synchronize their openings via Ca-induced-Ca-release, generating 

high-amplitude local Ca signals known as puffs in neurons and sparks in muscle cells. Despite 

positive feedback nature of the activation, Ca signals are strictly confined in time and space by 

an unexplained termination mechanism.  Here we show that the collective transition of release 

channels from an open to a closed state is identical to the phase transition associated with the 

reversal of magnetic field in an Ising ferromagnet. Our new simple quantitative criterion closely 

predicts the Ca store depletion level required for spark termination for each cluster size.  We 

further formulate exact requirements that a cluster of release channels should satisfy in any cell 

type for our mapping to the Ising model and the associated formula to remain valid. Thus, we 

describe deterministically the behavior of a system on a coarser scale (release unit) which is 

random on a finer scale (release channels), bridging the gap between scales.  Our results provide 

the first exact mapping of a nanoscale biological signaling model to an interacting particle 

system in statistical physics, making the extensive mathematical apparatus available to 

quantitative biology. 
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Significance Statement:  

Living organisms are built on a hierarchy of levels, starting from macromolecules and clusters of 

molecules, to organelles, cells, tissues, and with interacting organs finally forming the entire 

organism. At the lowest of these levels, life depends on individual molecules synchronizing their 

states to generate robust intracellular signals over the thermal noise. Here we approach the 

problem via statistical mechanics to describe quantitatively and deterministically this first 

emerging level of life. We discover that the synchronization that corresponds to termination of 

local Ca signals generated by clusters of Ca release channels is governed by the same equations 

as the phase transition associated with the reversal of magnetic field in a classical Ising 

ferromagnet.  
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Introduction  

Clusters of release channels play a fundamental role in biological systems as elementary 

signal generating, processing, and amplifying units, like transistors in electronics. The time scale 

for termination of the rapid high-amplitude signals generated by such units, together with scales 

of other elementary cellular processes such as driving molecular motors and refractory periods of 

action potentials, determines the emergent scale of crucial life functions such as heartbeat, 

muscle motion, and brain activities. 

As molecules interact, the signal termination is an emerging property of the channel 

cluster, rather than a property of an individual channel. This nanoscale system of interacting 

molecules which generates elementary biological signals is particularly interesting because this 

is where physics meets biology. Despite extensive experimental and numerical studies on the 

nanoscale, including structures of individual molecules and their locations (1-4), the universal 

links of synchronized intracellular signals to physics remain mainly unknown and conceptual 

understanding remains elusive.  

The crucial importance of local Ca signaling amplified by Ca-induced-Ca-release (CICR) 

(5) for regulation of cardiac muscle contraction was theoretically predicted in 1992 (local control 

theory (6)), and further validated by the experimental discovery of Ca sparks (7). Sparks are 

generated by release channel clusters (Ca release Units, CRUs) in the form of localized Ca 

releases from junctional sarcoplasmic reticulum (SR). The sparks are strictly confined in time 

and space to roughly 20-40 ms by 2 µm by a powerful termination mechanism. Stochastic 

attrition, local SR depletion, coupled gating, channel inactivation, and lumenal regulation have 

been suggested as potential mechanisms of spark termination (review (8)). Since 2002 Sobie et 

al. model (9) the effect of mass action (decreasing Ca flux with Ca spark duration and loss of Ca 
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in the SR) is a common driving element is virtually all of the spark models and central to the 

termination mechanism via interrupting CICR (10) in “pernicious attrition" (11) or “induction 

decay” phenomenon (12), i.e. the process opposed to CICR that facilitates channel closure within 

the CRU.  The model formulations have improved further via superresolution modeling of 

calcium release (4), but the only "feature" that appears to have disappeared from all current 

models is the need for RyR inactivation. Thus the current consensus in the field on the spark 

termination problem is that SR depletion decreases the RyR channel current and therefore RyR 

interactions to the point that CICR can be sustained any longer, culminating in spark termination.   

At the same time, previous studies have not provided a mathematical understanding of this 

emerging behavior. 

Here we apply statistical mechanics to describe quantitatively and deterministically the 

collective behavior of release channels within CRUs during spark termination. Specifically, we 

show that the channel synchronization that corresponds to termination of signals generated by a 

CRU is described by the same equation (and thus works on the same principle) as the phase 

transition associated to the change of magnetic field in an Ising ferromagnet. 

The Ising model describes ferromagnetism using a square grid of interacting binary (+/-1) 

random variables representing atomic spin. An analytic solution of the 2D-case of this model 

was found by Onsager (13). The spins "want" to be aligned, and in the absence of magnetic field 

they can synchronize to either a +1 or -1 state. The application of a magnetic field breaks this 

symmetry, and the spins synchronize according to the sign of the magnetic field culminating in 

the phase transition. Thus the magnetic field indicates which state the spins “prefer.” As 

described above, Ca release channels also “want” to be aligned in either closed or open state.  An 
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open release channel tries to open its neighbors via CICR (5), and similarly a closed release 

channel favors a closed state of its neighbors (12).  

Following this analogy, we construct an exact mapping between two systems in 2 

dimensions: a system of release channels within a CRU and the Ising model of interacting spins 

within a ferromagnet. Our mapping allows us to describe both systems by the same mathematical 

formulations. We take advantage of the extensive research on Ising models (since 1920 (14)); 

specifically, our criterion for spark termination in a CRU is the same as the well-known fact that 

the Ising model undergoes a phase transition when the external magnetic field reverses. This 

criterion closely predicts the depletion level required for spark termination for each CRU size.  

We demonstrate this mechanism using numerical model simulations of Ca sparks over a wide 

range of CRU sizes from 25 to 169 release channels. 

 

Results 

We linked a system of release channels within a CRU and the Ising model of interacting 

spins within a ferromagnet via the same mathematical formulations. Here we formulate four 

general conditions that a system of release channels should satisfy for our mapping between the 

two systems to hold. When these conditions are satisfied the RyR interactions are quantitatively 

identical to the interactions in a carefully constructed version of the Ising model (see Methods): 

1. The channels are arranged in a lattice structure.  

2. Each channel can be in an open or closed state, corresponding to the plus and minus states of 

the Ising model. 

3. In the absence of interactions, the Ca profile resulting from one channel opening is roughly 

stable in time, corresponding to time-invariance of channel interactions (achieved e.g. by the 
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joint action of buffer and diffusion out of the channel cluster), and roughly the same for any 

channel in the cluster, corresponding to translation invariance.  

4. The channel opening rate as a function of Ca can be described by an exponential and the 

closing rate by a constant.  

We vividly demonstrate the above principles by mapping a recent numerical model of 

sparks in cardiac cells (10) (referred hereafter as Stern model) (Fig. 1) to Ising model. Ryanodine 

Receptors (RyRs) in cardiac cells are indeed positioned in a crystal-like square grid and generate 

sparks by their synchronous opening (Movie S1 and S2 for different grid sizes). The closing rate 

of RyR is shown to be approximately constant in experimental studies (12) and it has been set to 

a constant in the original Stern model (10). RyR opening rate is described by an exponential 

λeγ[Ca]  (red line in Fig. 2A), and Ca profiles are roughly stable in time (Fig. 2B). Please note that 

the exponential in Figure 2A fits experimental data well only in our range of interest from 10 to 

100 µM (spark termination range): beyond 100 µM the data points show saturation, but at the 

low resting Ca of 0.1 µM, the opening rate is expected to be substantially lower than that 

approximated by λ (to match the known resting spark rate). To make sure that our Ising model 

operates within the realistic exponential fit, we estimated [Ca] at channels in closed states 

(Fig.1C, bottom panel) using numerical simulations and found that on average this [Ca] stays 

below 80 µM (i.e. within our fit in Fig. 2A).  

We next read off the Ca profile ψ that results from the opening of one RyR (Fig. 2C) and 

we let the interaction profile ϕ(r) = ψ(Ur)/ ψ(U) in our version of the Ising model be a 

normalized and scaled version of ψ (U is the distance between channels). The Ca diffusion out of 

the CRU corresponds to imposing a negative boundary condition. Using #4 we can construct a 

dynamic for the Ising model that satisfies detailed balance. This means that the Markov chain is 
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reversible and implies convergence to the explicitly known equilibrium (Gibbs) measure given in 

equation 2 (Methods). 

From our exact mapping we derive a formula for the analogue of the magnetic field h 

(Methods), which reflects an imbalance in the probability and indicates whether release channels 

“prefer” an open or a closed state:  

.5

1
ln 2 ( )

2 s
h s ds

C

λ π φ
β >

 = + 
 

∫ . 

Here β=γψ is analogue of inverse temperature in classical Ising model; C =117 s-1 is the channel 

closing rate; λ and γ determine the opening rate as λeγ[Ca] (Fig. 2A). The transition is expected at 

h just above 0, equivalent to reversal of polarity in ferromagnetism. Because C, λ, γ are 

constants, but ϕ (and ψ) and its integral over neighboring channels depend on the grid size and 

CaSR ([Ca] in SR), we explored h vs. these two parameters and found that h reverses at lower 

CaSR levels in larger grids (Fig. 2D). 

We tested Ising model predictions in in silico experiments using Stern model, in which 

CaSR was clamped at various levels. As CaSR increases from 0.1 to 0.15 mM the system 

undergoes a sharp transition from terminating sparks to sparks that do not terminate (Fig. 3A). At 

higher CaSR levels, the local [Ca] remains high, despite a negative boundary effect (Fig. 3B).  

We further examined statistics of the termination time transition for different grid sizes 

and compared them to the Ising model prediction.  As CaSR increases, the termination time 

indeed undergoes a sharp increase (>10,000 ms) due to a phase transition for all grid sizes tested 

(Fig. 4A). The phase transition onsets are well-described by an exponential function (Fig. 4B) 

with steeper exponential rise for larger grids (Fig. 4C). The CaSR at which h reverses corresponds 

closely to the onset of phase transition for each grid size, specifically about 30% increase in 

termination time in our numerical simulations (Fig. 4D). This criterion remains effective for 
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physiological conditions, when CaSR is not fixed; namely, if a spark reaches the h reversal it 

terminates; otherwise it becomes metastable (Fig. 4E,F and Movies S3,S4). 

 

Discussion  

In the present study we approach the long-standing problem of calcium spark termination 

by an unexpected (for biologists and physiologists) application of statistical mechanics to the 

nanoscale biological signaling. We discovered that the spark termination process is 

mathematically isomorphic (governed by the same equations) to the phase transition associated 

with the reversal of magnetic field in a classical Ising ferromagnet. As this phase transition in 

ferromagnets is well-understood, we used this knowledge to formulate a criterion for the phase 

transition determining the spark termination in the CRU system. Our numerical model 

simulations have validated the theoretical prediction of the spark termination:  they clearly show 

that sparks terminate when Ca SR depletion reaches the predicted level of the phase transition for 

each CRU size.  Conversely, sparks do not terminate when SR depletion does not reach the phase 

transition level.  

Abnormal sparks which don’t promptly terminate (dubbed metastable sparks (10), 

embers (15), or “leaky” releases (16)) have been generated by numerical model simulations (10, 

17, 18) and observed experimentally (19). In cardiac muscle, failure of Ca release to terminate 

leads to explosive Ca waves, which cause life-threatening arrhythmia (20, 21).  Our finding of 

the release termination failure at higher CaSR levels (Figs. 3,4, Movie S4) is in line with 

experimental observation of long-lasting Ca releases (19) and Ca waves (22) under Ca overload 

or rapid intra-SR Ca diffusion and re-uptake (10, 18),  facilitating CICR among RyRs and CRUs. 

Recent numerical studies demonstrated that conditions favoring long-lasting sparks actually 
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include a rather complex (and often counter-intuitive) interplay of SR Ca loading, number of 

functional RyRs, and RyR gating kinetics (10, 17, 18). These conditions can be now recast and 

explained in the new terms of the phase transition criterion formulated in the present study. Thus, 

our approach could be helpful in effective predicting and directing drug actions to avoid the 

metastable spark regime and to normalize cardiac rhythm. 

One important immediate advantage the CRU to Ising mapping is that it provides a new, 

much more efficient computational means for evaluating the behavior of models of Ca release 

channel clusters. Indeed, while the Markov chain formulation has an analytic solution for its 

steady-state, the number of states is very large for a reasonable size cluster of release channels. 

For example, the number of states is 2^(number of channels) that is 2169 ~ 1051 (for a RyR cluster 

of 13 x 13). Thus, computing the dynamics for all states in the full Markovian representation 

using the analytic solution to Markov matrix involves taking exponentials of huge matrices, 

which is impractical. Moreover, the full CRU model also includes the dynamics of diffusion of 

Ca within the cleft, which is not explicitly represented in the Markov model. The only practical 

way to study such a complex system is by numerical simulations (10, 12) which still require 

many hours of computing on powerful computer clusters. The analytic representation using 

statistical mechanics suggested in the present study is much more compact and efficient. It 

allows the evaluation of the model behavior within milliseconds of computing time for a given 

channel interaction profile and CaSR level. For example, our rough evaluation of phase 

transitions for 5 grid sizes required 23,300 simulation runs (Fig. 4B and Fig. 4D, red symbols), 

while the same transitions were found virtually instantly by using equation 10 (Fig. 4D, blue 

symbols). 
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Our study extends the domain of applicability of statistical mechanics, which traditionally 

describes systems with numerous (or infinite) number of elements. Here we show that this 

relatively small biological system with as few as 25 molecules is able to function utilizing the 

smoothed-out phase transition associated with finite systems (Fig. 4, Movie S2). While larger 

clusters, such as of 169 molecules, generate stronger local signals, they are “harder” to terminate 

(i.e. lower CaSR levels are required, Fig. 4A). Super-resolution imaging data on CRU 

ultrastructure show that actual RyR clusters in cardiac cells exhibit complex shapes and various 

sizes, with some CRUs being an incompletely filled grid of channels (3, 4) that could help reach 

a balance between signal strength and termination. In cardiac pacemaker cells, where diastolic 

Ca releases are synchronized via local propagation (23, 24),  bigger RyR clusters are mixed with 

smaller “connecting” clusters (25). The Ising model  with some sites missing would be a dilute 

Ising model, which is currently an object of active research in physics (26).  

  The equivalence of an Ising and CRU model can tell us the limiting probability of any 

configuration of open/closed release channels. It will be given by the equilibrium measure for the 

corresponding Ising model, and will depend only on the length of the contour. With this tool one 

can quantify the extent of termination failure in terms of the equilibrium measure. Such an 

application of interacting particle systems bridging the gap between scales of individual 

molecules and their collective behavior has been a long-standing problem in biology (27).  

Ca puffs generated by IP3 receptors (IP3r) are generally accepted to be collective events 

in which clustered channels are mutually activated by CICR. Their termination mechanism, 

remains uncertain (28).  Our present model cannot be directly applied to puffs, because unlike 

the RyR, the IP3r is strongly inactivated by high calcium, meaning that our condition (4) only 

holds for a small part of the calcium range. There is considerable uncertainty about the 
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mechanisms of IP3r opening and closing in puffs (28-30), so it is premature to speculate on 

details of any possible extension of the Ising paradigm to puffs.  On the other hand, in 2009 

Smith and Parker (31) resolved individual openings and closings of IP3r’s during a puff that 

showed a tendency for IP3r’s to close abruptly and collectively (“square” puffs).  Wiltgen et al. 

(28) examined further the “square puff” phenomenon and showed unambiguously that IP3r’s in a 

decaying puff do not behave independently, but tend to close synchronously.  This implies some 

kind of “closing signal” coordinating the various channels.  The nature of this signal remains 

unknown.  However, the collective inactivation may be suggestive of some kind of phase 

transition, and a “closing signal” could be accommodated in an Ising-like model. 
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Methods 

1. Brief Introduction to the Ising Model.  The Ising model we will work with consists of binary 

random variables (i.e. taking values ±1) called spins positioned on a 2D finite grid Λ (e.g. 

section 3.3.5 in (32)). A configuration of spins is a function σ that assigns 1 or -1 to each point 

x∈Λ . The configuration space Ω  is the set of all possible assignments of spins to points in Λ, 

i.e. all possible functions σ : Λ → {1, −1}. A interaction profile φ : ℝ�ℝ  is a function with 

( )xφ  → 0 rapidly as x →∞ and φ > 0. We chooseφ  so that φ (1) = 1. We furthermore place our 

finite grid Λ inside of a bigger grid Λb (b for boundary) and let �(�) = −1 for any \bx ∈Λ Λ  . In 

this way we impose a -1 boundary condition on Λ. Here Λb\Λ must “frame” Λ and its thickness 

has to be at least as wide as the effective interaction range, which in our case will be around 5. 

To be precise, if Λ  is a n by m grid, bΛ  will be a n+10 by m+10 grid with Λ situated in the 

middle of bΛ . The Hamiltonian is  

,

[1] ( ) (| |) ( ) ( ) ( )
b bx y x

H x y x y h xσ φ σ σ σ
∈ Λ∈Λ

             = − − −∑ ∑   

Here the first sum is over bΛ
 
instead of Λ . This is necessary to ensure the interaction with the 

boundary.  

In physics, h is the magnetic field. The Hamiltonian can be interpreted as the energy of the 

system. The equilibrium measure (Gibbs measure) is given by  

 1 ( )[2] ( ) HZ e β σπ σ − −                =  . 

The normalization constant Z is well-defined since our lattice Λ is finite, and we will not need to 

know it explicitly for our analysis. Here β is the inverse temperature. (For further information on 

the general Ising model, of which this is an instance, cf Sections 2.1 and 2.2 in (33)) 
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2. Dynamic Ising: Detailed Balance and the Transition Rates. Let Λ be a 2 dimensional 

integer grid of a finite size. Recall that Ω is the configuration space and let �: Λ → {1, −1} be an 

element of Ω. One can introduce a dynamic on spin configurations so that the configuration 

space Ω becomes the state space for a Markov chain with a transition matrix P. We introduce the 

notation xσ
 
to mean  

 �� = ��(	)								��
		 ≠ �	
−�(	)		��
		 = �  

i.e. xσ
  
coincides withσ everywhere except at x, where the spin is reversed. To obtain a Glauber-

like dynamic for the Ising model, it suffices to choose a spin uniformly at random at each time 

increment and to give the probability that it flips, i.e. to give ( )xP σ σ→ .  

The condition on P that guarantees that π as in [2] is indeed the equilibrium measure for the 

Markov chain is called detailed balance, and it states that the Markov chain is reversible with 

respect to π (cf equation (1.30) and Proposition 1.19 in (32)). The equation for detailed balance is 

the following: for all σ ∈ Ω and x ∈ Λ we have that 

( ) ( )[3] ( ) ( )
xx H x HP e P eβ σ β σσ σ σ σ− −→ = →  

This is equivalent to  

( ) ( )( )
[4]

( )

x
x

H H
x

P
e

P
β σ β σσ σ

σ σ
−→ =

→   

 
The detailed balance equations will be satisfied for a wide variety of rates P, so we can choose 

P to be most appropriate to our CRU model. Since we know that the release channel opening rate 

is an exponential while the closing rate is a constant, we look for P so that the transition from -1 

to 1 is exponential while the transition from 1 to -1 is a constant. This indeed can be achieved 

simultaneously with the detailed balance condition. If ( ) 1xσ = −  we let 

2 ( (| |) ( ) ( ) ( ) () 2 ( (| |)) ( ) )
y yb b

x y x y h xx x y y h
e e

β φ σ σ σ β φσ σ
∈Λ ∈Λ

− − + − − +∑ ∑= =
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(| |) ( )2

( ) y b

x y y h
xP Ce

φ σβ

σ σ ∈Λ

 
 − +
 
 →
∑

=  yielding that ( )xP Cσ σ→ =  to satisfy detailed 

balance. Thus, the Markov chain is given as follows. We pick a location x uniformly at random, 

and define the transition matrix P to be:  

2 ( (| |) ( ) )
           for ( ) 1[5] ( , )

                                         for ( ) 1

by
x h

x
y y

Ce xP
C x

β φ σ

σ
σ σσ

∈Λ
− +∑  = −=  

=  
 

Here time is continuous and the above are transition rates. In our numerical model, time is 

discrete and we take 0.05t∆ =  ms. The transition matrix with the discretized time becomes 

2 ( (| |) ( ) )
           for ( ) 1[6] ( , )

                                         for ( ) 1

by
x y y h

x tCe xP
tC x

β φ σ

σ σ σ
σ

∈Λ
− +∑  ∆ = −=  

∆ =  
   

and we ensure that t∆   is small enough so that all transition probabilities are smaller than 1. 

Letting also ( ) 1, , )( xPP σ σ σ σ= −  ensures that P is indeed stochastic.  

3. The CRU as an Ising Model. A numerical model of the CRU consists of a square grid of 

calcium release channels Λ and each release channel can be open or closed. We assign 1 to each 

open and -1 to each closed release channel, thus obtaining a configuration σ : Λ →{1, −1}. We 

introduce the constant U to represent the spatial distance between nearest release channels. In our 

numerical model, is U = 30 nm.  

We let ψ be the 1D slice of the time-stable spatial calcium profile resulting from the opening 

of one release channel. This is sufficient to contain all the information about the calcium profile 

since ψ is rotationally symmetric. We obtain ψ from our numerical simulation. However, ψ is an 

immediate result of the environment, including current, diffusion, and buffer and is not an 

emergent property. We interpret it as a scaled interaction profile, and let φ  in [1] be given as 

( ) ( ) / ( )r Ur Uφ ψ ψ= , where Ur   is the distance to the open release channel. The multiplication 
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by U accounts for the fact that the release channels are U units apart while spins are 1 unit apart. 

The division by ( )Uψ  is a choice of scaling for the interaction profile function φ . With this 

scaling we have (1) 1φ = . We choose this scaling for φ  so that at the nearest neighbors its value 

matches the classic Ising model, where each spin interacts with 4 neighbors with a strength of 1.  

The distance between CRUs is assumed to be too large for calcium from one CRU to 

influence another. On the other hand, calcium is diffusing out of the CRU and in this way the 

release channels in the CRU interact with the outside. The model would be identical if the 

CRU were surrounded by release channels that are always closed. In this way, the boundary 

condition of the CRU model is equivalent to a negative boundary condition of the Ising model.  

We will compute the analogues of inverse temperature β and the magnetic field h in our 

CRU model as functions of initial model parameters. They play the exact same role in the 

mathematical description of our CRU model as they do in the Ising model even though they do 

not carry the same physical meaning. We will note that β is an increasing function of the 

concentration of Ca inside the junctional SR and we vary the SR Ca in our numerical model to 

test the predictions of the CRU Ising model.  

4. Relating [Ca] and the Ising Hamiltonian. Let us introduce the set 

{ }2( ) : : | | 0 for some S x s s x y y= ∈ = − ≠ ∈ℝ ℤ . We can rewrite both the local [Ca] at x (we 

denote it [Ca](x)) and the exponent in the -1 to 1 transition in P in terms of a sum over ( )S x . 

Given a configuration of open and closed release channels σ  and a given release channel at a 

point x, let NUs be the number of open RyRs at a distance Us from x. If the release channel at x is 

closed, we can approximate [Ca]
 
at x by  

( )

[7] [ ]( ) ( ) Us
s S x

Ca x Us Nψ
∈

= ∑  
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We similarly rewrite P. We introduce the following notation: Ts(x) := total number of spins at 

distance s from x; Ls(x) := number of -1 spins at distance s from x; Ns(x) := number of +1 spins at 

distance s from x; and we have Ns(x) + Ls(x) = Ts(x).  

Henceforth in this section, let us fix a site x ∈ Λ and suppress the dependence on x in 

Ts, Ls, Ns, and S for ease of notation. Then we can rewrite the expression in the exponent of the 

Ising -1 to +1 transition probability in [5] in the following way:  

[8] (| |) ( ) ( )( ) ( )(2 )
b

s s s s
y s S s S

x y y s N L s N Tφ σ φ φ
∈Λ ∈ ∈

− = − = −∑ ∑ ∑  

.5
2 ( ) ( ) 2 ( ) 2 ( )s s s s

s S s S s S

s N s T s N s dsφ φ φ π φ
>

∈ ∈ ∈

= − ≈ −∑ ∑ ∑ ∫  

In the last approximate equality, we have replaced ( ) s
s S

s Tφ
∈
∑ by  where the factor 

of 2π is due to the fact that ( ) s
s S

s Tφ
∈
∑ is approximately a 2D integral of a rotationally symmetric 

function. We observe that the first term in the final expression in [8] is a scalar multiple of the 

total calcium [Ca] (x) as given in [7]. 

5. Crucial Parameters and the Spark Termination Criterion. We want to solve for the 

analogues of h and β in the CRU model. We again fix a site x ∈ Λ and suppress the dependence 

on x in [Ca] and S for ease of notation. From experimental data we fit the exponential λe
γ[Ca] 

to 

the Ising transition rate from -1 to +1 in [5]:  

2 ( (| |) ( ) )[ ] y b
x y y hCae Ce

β φ σγλ ∈Λ
− +∑=  

 
Then we replace the LHS using [7] and the RHS using the expression derived in [8] to obtain  

[9]   .5
2 (2 ( ) 2 ( )ds )( ) sUs s Ss S s

s N s hUs N
e Ce

β φ π φγ ψλ ∈∈ >
− +∑∑ ∫=  

     .5
4 ( ) 2 4 ( ( ) )ss s S

s h s N
Ce e

βπ φ β β φ
> ∈

− +∫ ∑=  
Since we wish the above equality to hold for any configuration, we must equate the 

.5
2 ( )

s
s dsπ φ

>∫
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coefficients of ( )s S s
s Nφ∈∑ to obtain  β = γψ(U)/4.  

Next we equate the coefficients in front of 
4 ( ( ) )ss S

s N
e

β φ
∈∑

to obtain  

 .5
4 ( ) 2

s
s ds h

Ce
βπ φ β

λ >
− +∫=  

yielding that  

.5

1
[10] ln 2 ( )

2 s
h s ds

C

λ π φ
β >

 = + 
 

∫  

 

Rewriting h in terms of the calcium profile ψ we obtain  

  
/2

2 ( )
[11] ln 2

( ) ( )s U

s
h ds

U C U U

λ ψπ
γψ ψ>

 = + 
 

∫  

Since h is the analogue of the magnetic field in the CRU model, the emergent behavior of release 

channels can be predicted based on h. During termination all the release channels begin in an 

open state (analogous to +1). The Ca diffusion out of CRU is equivalent to a negative boundary 

condition. We can hence deduce the signal termination criterion : If h< 0, then the spark will 

terminate and this termination is mathematically identical to reversal of polarity in 

ferromagnetism. Mathematically, this phase transition follows from the Lee-Yang theorem. On 

the other hand, if h> 0, the spark will be metastable.  
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Figure Legends 

Fig. 1: Stern numerical model describes collective behavior of RyR ensemble during spark 

activation and termination.  A, A schematic representation of a CRU in cardiac cells. B, An 

example of Ca spark generated by a CRU featuring 9x9 RyRs separated by 30 nm. The sequence 

of the RyR ensemble states is shown along with their instant local [Ca] on a grid with 10x10 nm 

computational voxels in the cleft. White up-arrows indicate open channels. Green down-arrows 

indicate closed channels (see also Movie S1 and S2, for different grid sizes). [Ca] is coded by red 

shades, saturated at 30 µM. C, Dynamics of open number of RyRs and SR [Ca] (CaSR) during the 

spark. Termination span of ~40 ms is shown by a blue shadow.  Bottom panel: at each time 

sample, we collected information about [Ca] at all closed channels (i.e. ready to open) and report 

here respective maximum, mean, and minimum values.  

 

 

Fig. 2.  Construction of an exact mapping between a CRU described by Stern model and 

the Ising model of interacting spins. A, The exponential relation of RyR opening rate vs. [Ca] 

in the cleft. All previous models fit a power function to original data obtained in lipid bilayers. 

Here we fit an exponential (red line) to the same data points (original data and power fit are 

reproduced from Laver et al. (12) with permission). Thus, we replaced the quadratic opening rate 

in original Stern model with the exponential opening rate from this fit.  B, Representative [Ca](t) 

when one RyR is open in the center of the grid: at the open RyR and its closest neighbor. C, A 

steady-state spatial [Ca] profile when one RyR is open in the center of 9x9 grid (similar profiles 

for other grid sizes are not shown).  D, Plots of h as a function of CaSR for 5 different grid sizes. 
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Inset: Ising model predicts phase transition as h reverses at different CaSR for each grid size; the 

transition requires lower CaSR levelsfor larger grids. 

 

Fig. 3. In silico CaSR clamp experiments validating Ising model predictions for spark 

termination.  A, Evolution of 9x9 RyR ensemble at various CaSR levels after all RyRs are set in 

the open state at time 0. Sparks do not terminate at CaSR above 0.15 mM. The sharp transition in 

the numerical model behavior is in line with the Ising model prediction of the phase transition 

above 0.12 mM for the 9x9 grid. B, [Ca] profiles in the dyadic cleft for terminated and non-

terminated sparks at CaSR levels higher and lower the phase transition. [Ca] is coded by red 

shades, saturating at 50 µM. 

 

Fig. 4. Results of statistical analysis of our in silico experiments testing Ising model 

predictions for various grid sizes.  A, Median termination times (Tt) plotted as a function of 

clamped CaSR. Each data point was obtained from 100 simulation runs. B, The data set of panel 

A, but at a smaller scale. The transition onsets are closely described by an exponential (shown at 

the plot). C, The transitions are sharper for larger grids as occurring within smaller ranges of 

CaSR (∆CaSR). D, h reversal (CaSR_h reversal) in our Ising model closely predicts the onset of the 

phase transition in our model simulations. The transition onset in the simulations is estimated as 

a 30% increase in the median Tt (CaSR_30%_Tt_increase) calculated using respective exponential 

fits in panel B. E and F,  Open RyRs and CaSR dynamics in representative examples of stable 

and metastable sparks (13x13 RyR grid). The metastable spark was generated by increasing SR 

Ca refiling rate (TAUFILL was decreased from 6.5 ms to 1.5 ms). Inset shows a narrow margin 

for CaSR that determines spark termination fate (see Movies S3 and S4 for more details).  
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s1 

Supporting Information: Movies 

Link to Movie S1 in mp4 format. Link to Movie S1 in wmv format 

Movie S1: A typical Ca spark generated by Stern model by a mid-size release unit featuring 

9x9 Ca release channels, ryanodine receptors  (RyRs, marked by arrows, separated by 30 nm).  

Local [Ca] dynamics is simulated on a grid with 10x10 nm computational voxels in the dyadic 

cleft of 15 nm. White up-arrows indicate open channels. Green down-arrows indicate closed 

channels.  [Ca] is coded by red shades, with pure red representing 30 µM. Left hand panels 

show the dynamics of the key spark parameters: open number of RyRs and SR [Ca] (CaSR). 




https://drive.google.com/open?id=0B68Q9S0HOGLHV05ES01jaEZYZ2s
https://drive.google.com/open?id=0B68Q9S0HOGLHcWxHOS1xZ0ZsczQ


s2 

Link to Movie S2 in mp4 format. Link to Movie S2 in wmv format 

Movie S2: A spark generated by a very small release unit featuring 5x5 RyRs. RyR 

spacing, computational voxels, and [Ca] scale were 30 nm, 10x10x15 nm, and 30 μM, 

respectively, similar to Movie S1. 




https://drive.google.com/open?id=0B68Q9S0HOGLHanlPazZhYU5xTHc
https://drive.google.com/open?id=0B68Q9S0HOGLHR1VnUVJoYUpHT0k


s3 

Link to Movie S3 in mp4 format. Link to Movie S3 in wmv format 

Movie S3: A stable spark generated by a large release unit featuring 13x13 RyRs. Green 

line shows CaSR level of our Ising model prediction for phase transition (at h=0). RyR 

spacing, computational voxels, and [Ca] scale were 30 nm, 10x10x15 nm, and 30 μM, 

respectively.   




https://drive.google.com/open?id=0B68Q9S0HOGLHejJYOWZVNWJwR00
https://drive.google.com/open?id=0B68Q9S0HOGLHWWhIZlRFZlBlbDQ


s4 

Link to Movie S4 in mp4 format. Link to Movie S4 in wmv format 

Movie S4: A metastable spark generated by a large release unit featuring 13x13 RyRs and 

increased junctional SR Ca refiling rate (TAUFILL was decreased from its original value of 6.5 

ms to 1.5 ms).  Green line shows CaSR level of our Ising model prediction for phase transition (at 

h=0). RyR spacing, computational voxels, and [Ca] scale were 30 nm, 10x10x15 nm, and 30 μM, 

respectively. 




https://drive.google.com/open?id=0B68Q9S0HOGLHaThvLVdtb3pnQkU
https://drive.google.com/open?id=0B68Q9S0HOGLHNFdOQS1CaGZHLTQ
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