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1Département de Physique Théorique and Center for Astroparticle Physics (CAP),

University of Geneva, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland.
2Department of Mathematics & Applied Mathematics, University of Cape Town, Cape Town 7701, South Africa.
3Department of Physics & Astronomy, University of the Western Cape, Cape Town 7535, South Africa.
4SKA South Africa, 3rd Floor, The Park, Park Road, Pinelands, 7405, South Africa.
5Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK.
6School of Physics & Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
7California Institute of Technology, Pasadena, CA 91125, USA.
8Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California, USA.

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Objects falling into an overdensity appear larger on its near side and smaller on its far side than
other objects at the same redshift. This produces a dipolar pattern of magnification, primarily as a
consequence of the Doppler effect. At low redshift this Doppler magnification completely dominates
the usual integrated gravitational lensing contribution to the lensing magnification. We show that
one can optimally observe this pattern by extracting the dipole in the cross-correlation of number
counts and galaxy sizes. This dipole allows us to almost completely remove the contribution from
gravitational lensing up to redshift ∼< 0.5, and even at high redshift z ' 1 the dipole picks up the
Doppler magnification predominantly. Doppler magnification should be easily detectable in current
and upcoming optical and radio surveys; by forecasting for telescopes such as the SKA, we show that
this technique is competitive with using peculiar velocities via redshift-space distortions to constrain
dark energy. It produces similar yet complementary constraints on the cosmological model to those
found using measurements of the cosmic shear.
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1 INTRODUCTION

Gravitational lensing is a powerful cosmological probe that
is sensitive to the distribution of matter between the source
and the observer. It provides a measurement of the grav-
itational potentials integrated along the photon trajectory
and is therefore sensitive to the growth rate of structure.
Gravitational lensing can be measured through two distinct
observables: the shear and the convergence. The shear γ en-
codes the effect of lensing on the observed shape of galaxies.
An estimator for the shear can be constructed from the ellip-
ticity of galaxies. The convergence κ accounts for the effect
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of lensing on the observed size of galaxies. The convergence
is in principle more difficult to measure than the shear, since
the mean intrinsic size of galaxies at a given redshift is un-
known, whereas the mean intrinsic ellipticity is expected to
vanish. Recently an estimator for the convergence has been
proposed, combining measurements of the size and magni-
tude of galaxies (Schmidt et al. 2012; Casaponsa et al. 2013;
Heavens et al. 2013; Alsing et al. 2015). The signal-to-noise
of the convergence using this estimator has been shown to
be about half of that of the shear. Since the convergence is
affected by different systematics than the shear, this esti-
mator provides a valuable complementary tool to measure
gravitational lensing.

However, it has also been shown that, unlike the shear,
the convergence is not only affected by gravitational lens-
ing but also by various other effects: Doppler effects, Sachs-
Wolfe effects, Shapiro time-delay and the integrated Sachs-
Wolfe effect (Bonvin 2008; Bolejko et al. 2013; Bacon et al.
2014). The physical origin of these effects is easy to under-
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stand: they modify the apparent distance between the ob-
server and the galaxies at a given redshift and consequently
they change their observed size. The most important of these
contributions at sub-horizon scales is the Doppler correction
due to the peculiar velocity of galaxies. This effect has been
called Doppler magnification (or Doppler lensing).

The fact that galaxy peculiar velocities affect the
observed distance to objects is well known, and has
been extensively used in the context of nearby objects
to measure the velocity (see e.g. Tully & Fisher 1977;
Dressler et al. 1987; Djorgovski & Davis 1987; Tonry et al.
2000; Turnbull et al. 2012; Tully et al. 2013; Springob et al.
2014, and the discussion in Section 6.1). The low red-
shift expression relating the distance to the velocity has
subsequently been extended to higher redshift and gen-
eral expressions for the fluctuations in the luminosity dis-
tance (which can easily be related to the convergence)
have been derived (Sasaki 1987; Futamase & Sasaki 1989;
Kasai et al. 1990; Pyne & Birkinshaw 2004; Bonvin et al.
2006; Hui & Greene 2006; Kaiser & Hudson 2015). How-
ever this Doppler magnification is usually not accounted for
in weak lensing analyses. The reason is twofold: first the
Doppler magnification affects only the size of galaxies at
linear order, but it leaves their shape unchanged. As a con-
sequence the cosmic shear γ, which is the primary target of
lensing surveys, is not affected by Doppler lensing at linear
order 1. The second reason why Doppler magnification is
usually neglected in lensing analyses is because it becomes
subdominant with respect to gravitational lensing as the red-
shift increases. This is because gravitational lensing accumu-
lates along the line-of-sight whereas the Doppler magnifica-
tion is a local effect which decreases with redshift. Measure-
ments of 〈κ(n)κ(n′)〉 at redshift larger than ∼ 0.5 are there-
fore relatively insensitive to Doppler magnification (Bonvin
2008).

Bacon et al. (2014) proposed a new method to detect
the Doppler magnification by cross-correlating the conver-
gence κ, estimated through galaxy sizes and magnitudes,
with the galaxy number count contrast ∆. As shown there,
the two-point function 〈∆κ〉 is anti-symmetric around ∆.
Bacon et al. constructed an estimator, based on the angular
power spectrum C`, which changes sign when the measured
convergence is in front of or behind the density contrast ∆,
to target the Doppler magnification. They showed that this
can be used to constrain the cosmological model, and also to
reconstruct the peculiar velocity field on cosmological scales.

In this paper we propose an improved estimator in
configuration space that allows us to optimally exploit the
anti-symmetry of the two-point function 〈∆κ〉. We use the
formalism developed for redshift-space distortion measure-
ments, i.e. we associate to each pair of pixels (i, j) a sep-
aration dij and an orientation with respect to the line-of-
sight βij (see Figure 1). In one of those pixels we measure
the galaxy number count ∆i and in the other we measure
the convergence κj . We then expand the mean of the two-
point function in Legendre polynomial and show that the
Doppler magnification induces a dipole and an octupole.

1 Note that at second-order in perturbation theory,
this effect contributes to the shear in a non-negligible

way (Bernardeau et al. 2010, 2012).

Consequently we propose the following estimators to opti-
mally measure Doppler magnification

ξdip(d) = aN

∑
ij

∆iκj cosβijδK(dij − d) , (1)

ξoct(d) = bN
∑
ij

∆iκjP3(cosβij)δK(dij − d) , (2)

where aN and bN are normalisation factors and P3 is the
Legendre polynomial of degree 3. We show that the dipole
estimator allows us to almost completely remove the contri-
bution from gravitational lensing up to redshift ∼ 0.5, and
that even at high redshift z ' 1 the dipole picks up the
Doppler magnification predominantly. It therefore provides
a new way of measuring peculiar velocities by observing the
size of galaxies. We then calculate the signal-to-noise of the
dipole and the octupole in a selection of optical and radio
surveys. Depending on the error associated with the mea-
surement of the convergence, we find a cumulative signal-
to-noise of 12−31 (the first number is associated with a size
error of σκ = 0.8 and the second is for σκ = 0.3 (Alsing et al.
2015)) combining the main sample of SDSS, the LOWz and
the CMASS samples. For the upcoming DESI bright galaxy
sample (Levi et al. 2013), along with imaging, we forecast a
signal-to-noise of 14− 37. For SKA Phase 2, combining red-
shifts 0.1 ≤ z ≤ 0.5 we find a cumulative signal-to-noise of
35−93. The octupole is significantly smaller than the dipole
and cannot be detected in current optical surveys. For DESI
we find however a cumulative signal-to-noise of 1.9− 5 and
for the SKA 5.1 − 14. This demonstrates the detectability
of Doppler magnification in both optical and radio surveys.
We then perform a Fisher forecast analysis and show that
the Doppler magnification can provide constraints on cos-
mological parameters which are competitive with standard
redshift-space distortion measurements.

The remainder of the paper is organised as follows: in
Section 2 we derive the general form of the cross-correlation
between ∆ and κ. In Section 3, we construct an estimator
to measure the dipole and the octupole generated by the
Doppler magnification. We discuss the contamination from
gravitational lensing and the importance of wide-angle and
evolution effects. In Section 4 we calculate the variance of
our estimator and compute the signal-to-noise in optical and
radio surveys. We present Fisher forecasts in Section 5, and
compare with other velocity estimators in Section 6. Finally,
we conclude in Section 7.

2 MULTIPOLE EXPANSION OF THE
CROSS-CORRELATION 〈∆κ〉

We shall consider the cross-correlation between the number
count contrast of galaxies ∆ and the convergence κ

ξ = 〈∆(z,n)κ(z′,n′)〉 , (3)

where z denotes the redshift and n the direction of obser-
vation. The number count contrast of galaxies can be writ-
ten as (Yoo et al. 2009; Yoo 2010; Bonvin & Durrer 2011;
Challinor & Lewis 2011; Jeong et al. 2012)

∆(z,n) =b δ − 1

H∂r(V · n) (4)

+ (5s− 2)

∫ r

0

dr′
r − r′

2rr′
∆Ω(Φ + Ψ) + ∆rel(z,n) ,
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where Φ and Ψ are the two metric potentials2, V is the pe-
culiar velocity, H is the conformal Hubble parameter, r is
the conformal distance to the source, b and s denote respec-
tively the bias and the slope of the luminosity function and
the operator ∆Ω is the angular part of the Laplacian

∆Ω = r2

(
∇2 − ninj∂i∂j −

2

r
ni∂i

)
. (5)

The first term in (4) represents the contribution from dark
matter density fluctuations (assuming a linear galaxy bias),
the second term is the well-known redshift-space distortions,
the third term denotes the lensing magnification bias and the
last term ∆rel encodes the so-called relativistic distortions.

The general expression for the convergence at lin-
ear order is given by (Bonvin 2008; Bolejko et al. 2013;
Bacon et al. 2014)

κ(z,n) =
1

2r

∫ r

0

dr′
r − r′

r′
∆Ω

(
Φ + Ψ

)
+

(
1

rH − 1

)
V · n

− 1

r

∫ r

0

dr′
(
Φ + Ψ

)
+

(
1− 1

rH

)∫ r

0

dr′
(
Φ̇ + Ψ̇

)
+

(
1− 1

rH

)
Ψ + Φ . (6)

In addition to the standard gravitational lensing contribu-
tion (first term), we see that the convergence contains a
Doppler magnification (second term), a Shapiro time-delay
and an integrated Sachs-Wolfe (second line) and a Sachs-
Wolfe contribution (third line). Note that we neglect the
contributions to ∆ and κ at the observer position. The terms
proportional to the gravitational potentials at the observer,
ΦO and ΨO, contribute only to the local monopole around
the observer, and so are always subtracted observationally
(∆ and κ are defined as the difference with respect to the
total mean). In addition, the contributions proportional to
the peculiar velocity at the observer, VO · n, generate a lo-
cal dipole around the observer, which can easily be fitted
for and subtracted from the perturbations, as done in CMB
analyses for example.3

The cross-correlation between ∆ and κ contains a large
number of terms. In this paper we concentrate on the dom-
inant contributions, given by

ξ =

〈(
b δ − 1

H∂r(V · n)

)(
κg + κv

)〉
= ξg + ξv , (7)

where κg and κv denote respectively the gravitational lens-
ing contribution and the Doppler magnification

κg =
1

2r

∫ r

0

dr′
r − r′

r′
∆Ω(Φ + Ψ) , (8)

κv =

(
1

rH − 1

)
V · n , (9)

2 We use here the following convention for the metric ds2 = a2
[
−

(1 + 2Ψ)dη2 + (1− 2Φ)δijdx
idxj

]
, where a is the scale factor and

η denotes conformal time.
3 Note that even if the local dipole is not subtracted from the
perturbations, its contribution to our estimator should be negli-
gible. In the distant-observer approximation, the velocity of the

observer affects all galaxies in the same way (since in this case
n = n′) and therefore this contribution exactly vanishes when we
fit for a dipole and an octupole around ∆; see Eqs. (25) and (26).

In the full-sky limit, a small contribution may remain, however.
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Figure 1. Coordinate system: the cross-correlation can be ex-
pressed in terms of three variables. Two common choices are

(r, r′, θ) (or equivalently (z, z′, θ), see footnote 3); and (r, d, β)

(or equivalently (z, d, β)).

and ξg and ξv denote the individual ∆-κg and ∆-κv cross-
corelations.

2.1 Doppler magnification

Let us start by calculating the Doppler magnification con-
tribution to ξ. Using the Fourier transform convention

f(x, η) =
1

(2π)3

∫
d3k e−ik·xf(k, η) , (10)

we can express the cross-correlation as

ξv(z, z′, θ) = i
H(z′)

H0
f(z′)

(
1

H(z′)r′
− 1

)∫
d3k

(2π)3
eik·(x−x′)

× P (k, z, z′)
H0

k

[
b(z) +

f(z)

3
+

2f(z)

3
P2(k̂ · n)

]
P1(k̂ · n′) ,

(11)

where f = d lnD/d ln a denotes the growth rate (D is the
growth function), P1(x) = x and P2(x) = (3x2 − 1)/2 are
the Legendre polynomials of order 1 and 2 and P (k, z, z′) is
the matter power spectrum defined through

〈δ(k, z)δ(k′, z′)〉 = (2π)3P (k, z, z′)δD(k + k′) . (12)

The cross-correlation (11) is a function of (z, z′, θ), where θ
is the angle between n and n′. We can re-express this cross-
correlation in terms of (z, d, β), where d is the comoving
distance between the galaxies and β is the orientation of the
pair with respect to the line-of-sight (see Figure 1). Follow-
ing Szalay et al. (1998); Szapudi (2004); Papai & Szapudi
(2008); Montanari & Durrer (2012), we expand the expo-
nential and Legendre polynomials in terms of spherical har-
monics, which allows us to integrate over the direction of k.
The cross-correlation then takes the simple form (see also
Appendix B of Bonvin et al. (2014) for a similar detailed
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derivation)

ξv(z, z′, β) =
H(z′)

H0
f(z′)

(
1− 1

H(z′)r′

)
(13)

×

{[(
b(z) +

2f(z)

5

)
ν1(d)− f(z)

10
ν3(d)

]
cosα

+
f(z)

5

[
ν1(d)− 3

2
ν3(d)

]
cosα cos 2β

+
f(z)

5

[
ν1(d) + ν3(d)

]
sinα sin 2β

}
,

where

ν`(d) =
1

2π2

∫
dkk2H0

k
P (k, z, z′)j`(kd) , ` = 1, 3 , (14)

and j` are the spherical Bessel functions 4. The comoving
distance to κ, r′, and the angle α can be explicitly written
in terms of (r, d, β):

r′ =
√
r2 + 2dr cosβ + d2 , (15)

cosα =
d+ r cosβ√

r2 + 2dr cosβ + d2
, (16)

sinα =
r sinβ√

r2 + 2dr cosβ + d2
. (17)

Eqs. (13) to (17) provide the general linear expression (valid
at all scales) for the cross-correlation between the galaxy
number counts and the Doppler magnification, as a function
of the three variables (r, d, β). These expressions can be fur-
ther simplified in the distant observer approximation, i.e. in
the regime where d/r � 1. In this limit, we have

r′ = r +O
(
d

r

)
, (18)

cosα = cosβ +O
(
d

r

)
, (19)

sinα = sinβ +O
(
d

r

)
. (20)

Moreover, all functions of z′ ≡ z(r′) can be Taylor expanded
around r. For example, the Hubble parameterH(z′) becomes
at lowest order in d/r

H(z′) = H(r′) = H(r) +O
(
d

r

)
, (21)

and similarly for f(z′) and P (k, z, z′). With these approxi-
mations, Eq. (13) becomes, at lowest order in d/r,

ξv(r, d, β) =
H(z)

H0
f(z)

(
1− 1

H(z)r

)
(22)

×
{(

b(z) +
3f(z)

5

)
ν1(d)P1(cosβ)− 2f(z)

5
ν3(d)P3(cosβ)

}
In the distant observer approximation, the cross-correlation
between the galaxy number counts and the Doppler mag-
nification can therefore be expressed as the sum of a

4 Note that here we use z and r (and similarly z′ and r′) inter-

changeably since they are related by their background relation,
1 + z(r) = 1/a(r). The corrections induced by the fluctuations
in the redshift have already been consistently included in the ex-
pressions for ∆ and κ, Eqs. (4) and (6).

dipole (proportional to P1(cosβ)), and an octupole (pro-
portional to P3(cosβ)). The cross-correlation is completely
anti-symmetric: it changes sign when the convergence is
evaluated in front of or behind the overdensity (i.e. when
β → π − β). This can be intuitively understood by noting
that galaxies tend to move towards overdense regions. On
average, galaxies in front of overdensities are therefore mov-
ing away from the observer and are apparently magnified
by the Doppler magnification term, whereas galaxies behind
overdensities are moving towards the observer and are ap-
parently demagnified.

2.2 Gravitational lensing

The cross-correlation between the gravitational lensing con-
tribution κg and the galaxy number counts is also expected
to have an asymmetric contribution: galaxies behind an over-
dense region will be magnified by it, whereas galaxies in
front of an overdense region will not be affected. This cross-
correlation can be calculated using the Limber approxima-
tion. It reads

ξg(r, d, β) =
3Ωm
2aπ

b(z)
r(r′ − r)

2r′
Θ(r′ − r) (23)

×
∫ ∞

0

dk⊥k⊥H0P (k⊥, z, z
′)J0(k⊥|∆x⊥|) ,

where |∆x⊥| = d| sinβ| is the transverse separation between
x and x′, k⊥ is the transverse component of the wavenumber
and Θ(y) is the Heaviside function: Θ(y) = 1 if y > 0 and
zero elsewhere. We see that in the Limber approximation,
the cross-correlation is therefore non-zero only if r′ > r, i.e.
when the convergence is evaluated behind an overdensity.
The dependence of Eq. (23) on the angle β is non-trivial,
since it is given not only by the pre-factor

r′ − r
r′

=
d

r
cosβ +O

(
d

r

)2

, (24)

but also by the argument of the Bessel function J0.
Therefore, even in the flat-sky approximation, the cross-
correlation between gravitational lensing and the galaxy
number count cannot be expressed analytically as a simple
multipole expansion. The multipoles can however be calcu-
lated numerically, by weighting the cross-correlation by the
appropriate Legendre polynomial.

3 ESTIMATOR

Knowing the form of the Doppler magnification contribu-
tion we can construct an estimator to isolate it in the cross-
correlation. From (22) we see immediately that in the distant
observer approximation an obvious choice is to weight the
correlation function by P1(cosβ) = cosβ, and by P3(cosβ),
and to integrate over β. In terms of discrete bins i and j, we
construct

ξ̂dip(d) = aN

∑
ij

∆iκj cosβijδK(dij − d) , (25)

ξ̂oct(d) = bN
∑
ij

∆iκjP3(cosβij)δK(dij − d) , (26)

where aN and bN are normalisation factors, and δK denotes
the Kronecker-δ function. Eqs. (25) and (26) allow us to
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Figure 2. Left panel: Amplitude of the Doppler magnification dipole (28), plotted as a function of separation d, at four different redshifts:

z = 0.1 (blue solid), z = 0.3 (magenta dashed), z = 0.5 (black dotted) and z = 1 (cyan dash-dotted). Right panel: Amplitude of the
Doppler lensing octupole (29) at the same four redshifts. The dipole and octupole are multiplied by d2. We show scales between 12 Mpc/h

and 180 Mpc/h, that will be used in the Fisher forecasts.
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Figure 3. Left panels: Amplitude of the Doppler magnification dipole (black solid line) and the gravitational lensing dipole (magenta

dashed line) as a function of separation d, at z = 0.1 and z = 1. Right panels: Same for the octupole. In all plots, the dipole and octupole

are multiplied by d2.

measure the amplitude of the dipole and of the octupole
generated by the Doppler magnification. To determine the
normalisation factors aN and bN we take the continuous limit
of (25) and (26). The derivation is presented in Appendix A.
We find

aN =
3

4π

`5p
d2V

and bN =
7

4π

`5p
d2V

, (27)

where `p is the size of the cubic pixels in which we measure
∆ and κ, and V denotes the total volume of the survey
(or the volume of the redshift bin in which we average the
signal). Neglecting the lensing contribution, the mean of the
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Figure 4. Left panels: Amplitude of the Doppler magnification dipole as a function of separation d, at z = 0.1 and z = 0.3, calculated in
the distant observer approximation Eq. (28) (black solid line), and for the full sky (red dotted line). Right panels: Same for the octupole.

In all plots the dipole and octupole are multiplied by d2.

estimators then becomes

〈ξ̂dip〉(d) ' H(z)

H0
f(z)

(
1− 1

H(z)r

)(
b(z) +

3f(z)

5

)
ν1(d) ,

(28)

〈ξ̂oct〉(d) ' −H(z)

H0
f(z)

(
1− 1

H(z)r

)
2f(z)

5
ν3(d) . (29)

In Figure 2, we plot the dipole (28) and the oc-
tupole (29) in a ΛCDM Universe with cosmological param-
eters h = 0.68, ns = 0.96, Ωcdm = 0.2548, Ωb = 0.048 and
primordial amplitude of scalar perturbations A = 2.2×10−9

(corresponding to σ8 = 0.83). We see that both the dipole
and the octupole decrease quickly with redshift. As expected
the amplitude of the dipole is negative: a galaxy situated be-
hind an overdensity (with cosβ = 1) is apparently demag-
nified by its peculiar motion and the correlation function is
therefore negative. The octupole is generated by the corre-
lation between the Doppler magnification and the redshift-
space distortion experienced by the overdensity. We see that
this contribution is positive and significantly smaller than
the dipole. This difference in amplitude is due to the dif-
ference between ν1(d) and ν3(d) as well as to the different
pre-factors of the dipole and the octupole. In particular the
dipole is enhanced by the galaxy bias, which we choose here
to evolve according to Nusser & Davis (1994); Fry (1996);

Tegmark & Peebles (1998)

b(z) = 1 + (bi − 1)
D(zi)

D(z)
, (30)

where bi is the initial value of the bias at redshift zi ' 3. We
choose as an example bi such that b = 2 at z = 0.5. Since
the dipole is almost 10 times larger than the octupole it will
be easier to detect.

As shown in Eq. (23), the gravitational lensing κg also
generates an asymmetric contribution to the correlation
function. This asymmetry will contribute to the estimator
for the dipole and the octupole. In Figure 3, we compare
the Doppler magnification multipoles with the gravitational
lensing multipoles at two different redshifts. We see that at
low redshift z = 0.1, the gravitational lensing contribution
to the dipole is completely negligible, less than a percent at
all scales. As the redshift increases, the gravitational lensing
contribution becomes more important. At redshift z = 0.3,
it remains very small, less than a few percent at all sepa-
rations. It reaches 7% at z = 0.5 and d = 180 Mpc/h and
21% at z = 1 and d = 180 Mpc/h. For redshifts z ∼< 0.5,
then, the estimator (25) provides a robust way of isolating
Doppler magnification from gravitational lensing, and even
at large redshift this estimator picks up the Doppler magni-
fication predominantly. On the other hand, we find that the
contamination from gravitational lensing to the octupole is
more important: at z = 0.1 and d = 180 Mpc/h the lens-
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ing contribution is already 14% of the Doppler contribution
and at z = 0.5 the lensing contribution dominates over the
Doppler contribution. The octupole is therefore less efficient
than the dipole for isolating the Doppler magnification.

3.1 Validity of the distant observer approximation

Eqs. (28) and (29) are valid in the distant observer approx-
imation, i.e. for d � r. At large separations, d ∼ r, this
approximation clearly breaks down and two types of correc-
tion come into play. First, there is a wide-angle correction:
for large separations, the angle α differs from the angle β (see
Figure 1), α = β − θ 6= β for large θ. Expanding Eqs. (16)
and (17) in powers of d/r, we see that in Eq. (13), the dif-
ference between α and β generates corrections of the order
d/r multiplied by even powers of cosβ and corrections of the
order (d/r)2 multiplied by odd powers of cosβ. The second
type of correction is due to evolution: these come from the
fact that r′ 6= r, and that the Hubble parameter H, growth
rate f , and bias b evolve with redshift. Using (15) and Taylor
expanding H, f and b around r, we find that the evolution
between r and r′ in (13) also generates corrections of the
order d/r multiplied by even powers of cosβ and corrections
of the order (d/r)2 multiplied by odd powers of cosβ.

From this we understand that at large separa-
tions, Doppler magnification generates a monopole and a
quadrupole, whose amplitudes are suppressed by d/r with
respect to the dipole and octupole. Furthermore, the distant
observer expressions for the dipole and the octupole given
in (28) and (29) receive corrections proportional to (d/r)2.

In Figure 4, we compare the distant observer expres-
sion for the dipole (28) and the octupole (29), with the
full-sky result, obtained by inserting (13) into (25) and (26)
and numerically integrating over the angle β. We see that
at low redshift z = 0.1, the corrections to the distant ob-
server dipole are ∼ 7% at d = 100 Mpc/h and reach 27% at
d = 180 Mpc/h. At larger redshift, z = 0.3, the distant ob-
server dipole is a good approximation up to d = 180 Mpc/h
(where the correction is of order 2%) and it becomes even
more accurate at z = 0.5 and z = 1. This is simply due to
the fact that the corrections to the dipole scale as (d/r)2

and therefore decrease quickly as r increases. From the right
panel of Figure 4 we see that the wide-angle and evolution
corrections to the octupole are significantly larger than for
the dipole. This comes from the fact that at large scales
there is a leaking of the dipole into the octupole: terms pro-
portional to the bias and to ν1(d) in Eq. (13) contribute to
the octupole at large separation, and since the dipole is 10
times larger than the octupole, these wide-angle corrections
affect the octupole significantly. In the following we fore-
cast the signal-to-noise and cosmological constraints using
the full-sky expression for the dipole and the octupole, since
most of the constraining power comes from small redshifts,
where the distant observer approximation quickly becomes
inaccurate.

4 VARIANCE AND SIGNAL-TO-NOISE

We now evaluate the signal-to-noise of the dipole and the
octupole in various surveys.

4.1 Variance

We start by calculating the variance of the dipole estima-
tor (28). We have

var
(
ξ̂dip

)
=

〈(
ξ̂dip

)2
〉
−
〈
ξ̂dip

〉2

(31)

=
9`10
p

16π2V 2d2d′2

∑
ij

∑
ab

[
〈∆iκj∆aκb〉 − 〈∆iκj〉〈∆aκb〉

]
× cosβij cosβabδK(dij − d)δK(dab − d′)

=
9`10
p

16π2V 2d2d′2

∑
ij

∑
ab

[
〈∆i∆a〉〈κjκb〉+ 〈∆iκb〉〈∆aκj〉

]
× cosβij cosβabδK(dij − d)δK(dab − d′) ,

where in the third equality we have used Wick’s theorem,
which is valid in the regime where the fields are Gaussian,
i.e. when ∆ and κ are in the linear regime. There are three
types of contribution to the variance. First, 〈∆i∆a〉 contains
a Poisson contribution and a cosmic variance contribution

〈∆i∆a〉 =
1

δn̄
δia + C∆

ia , (32)

where δn̄ is the mean number of galaxies per pixel. In the
distant observer approximation the cosmic variance C∆ is
given by

C∆
ia =

1

(2π)3

∫
d3k eik(xa−xi)P (k, z)

[
b2 +

2bf

3
+
f2

5

+

(
4bf

3
+

4f2

7

)
P2(k̂ · n) +

8f2

35
P4(k̂ · n)

]
. (33)

The relative importance of the Poisson noise and the cosmic
variance depends on the characteristics of the survey and on
the separation dia.

Second, 〈κjκb〉 contains an intrinsic error on the mea-
surement of the galaxy’s size and a cosmic variance contri-
bution

〈κjκb〉 = σ2
κδjb + Cκjb . (34)

The amplitude of the intrinsic error σκ depends on the
type of galaxy, as well as on the resolution of the
instrument (Schmidt et al. 2012; Casaponsa et al. 2013;
Heavens et al. 2013; Alsing et al. 2015). In the following we
consider two values: an optimistic value σκ = 0.3 and a
more pessimistic value σκ = 0.8. The cosmic variance Cκ is
at most of the order 10−4 in the range of redshifts we are
interested in and it can therefore be safely neglected with
respect to the intrinsic contribution.

Finally, 〈∆iκj〉 only contains a contribution from cosmic
variance. This contribution is nothing other than our signal,
which we found to be on the order of 10−2 at most, as can be
seen from Figure 2 (where the amplitude should be divided
by d2). We therefore see that the second contribution in (31)
is always subdominant with respect to the first contribution
and we neglect it in the following.
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Figure 5. Signal-to-noise for the dipole in LOWz and CMASS, plotted as a function of separation. The higher bound corresponds to

an intrinsic error on the size measurement of σκ = 0.3, and the lower bound of σκ = 0.8. The dotted black line corresponds to a mixed
sample with 50% of galaxies with σκ = 0.3 and 50% with σκ = 0.8.

We then obtain

var
(
ξ̂dip

)
'

9`10
p σ

2
κ

16π2V 2d2d′2
(35)

×

[
1

δn̄

∑
ij

cos2 βijδK(dij − d)δK(d− d′)

+
∑
ija

C∆
ia cosβij cosβajδK(dij − d)δK(daj − d′)

]
.

The first term in (35) can easily be calculated in the continu-
ous limit by fixing the position of the pixel i and integrating
over j. We obtain

var1

(
ξ̂dip

)
=

3

4π

`2p
d2

σ2
κ

Ntot
δK(d− d′) , (36)

where Ntot is the total number of galaxies in the (number
count) survey,

Ntot =
δn̄

`3p
V . (37)

The second term in (35) contains a sum over 3 pix-
els. We calculate this term using the method presented
in Hall & Bonvin (2016). We obtain (see Appendix B for
more detail)

var2

(
ξ̂dip

)
=

9

2π2

`3p
V
σ2
κ

(
b2

3
+

2bf

5
+
f2

7

)
(38)

×
∫
dkk2P (k, z)j1(kd)j1(kd′) .

The first contribution (36) is diagonal, i.e. it vanishes for
d 6= d′. The second contribution (38), on the other hand,
is non-diagonal and induces correlations between different
pixel separations. The ratio between the first (Poisson) and
second (cosmic variance) contributions is governed by

var1

var2
∝ 1

n̄d2`p
, (39)

where n̄ denotes the mean number density. As expected,
cosmic variance becomes more and more important at large
separation. We also see that in surveys with high number
density, the cosmic variance contribution dominates over the
Poisson contribution.

A similar derivation can be made for the variance of the
octupole. We find

var1

(
ξ̂oct

)
=

7

4π

`2p
d2

σ2
κ

Ntot
δK(d− d′) , (40)

and

var2

(
ξ̂oct

)
=

49

2π2

`3p
V
σ2
κ

(
b2

7
+

46bf

315
+

13f2

231

)
(41)

×
∫
dkk2P (k, z)j3(kd)j3(kd′) .

Eqs. (36), (38), (40) and (41) assume that the sizes of all
galaxies in the survey are measured with the same error, σκ.
In reality, surveys are composed of various types of galaxies
which may have different size errors. For example, as dis-
cussed in Alsing et al. (2015), the sizes of late-type (spiral)
galaxies tend to be better measured than for early-type (el-
liptical) galaxies. In Appendix C we show that, in this case,
the variance keeps the same form as previously, but with σκ
replaced by an effective mixed error,

σmixed
κ =

√
NE

tot

Ntot

(
σE
κ

)2
+
NS

tot

Ntot

(
σS
κ

)2
, (42)

where NE
tot and NS

tot respectively denote the number of ellip-
tical and spiral galaxies, and σE

κ and σS
κ are their associated

size uncertainties. As an example, if we have a survey con-
sisting of 50% elliptical galaxies with σE

κ = 0.3 and 50%
spiral galaxies with σS

κ = 0.8, we obtain σmixed
κ = 0.6. Note

that, as discussed in Alsing et al. (2015), these numbers are
likely to change, since new techniques may be developed in
future to reduce the error on the size measurement of both
elliptical and spiral galaxies.

Finally, in Appendix D we also calculate similar expres-
sions for the mean and variance of the dipole and the oc-
tupole for the case where the signal is averaged over a wide
range of separation dmin ≤ d ≤ dmax.

4.2 Signal-to-noise

We calculate the signal-to-noise of the dipole and octupole in
various surveys. We assume a pixel size of `p = 4 Mpc/h and
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calculate the signal-to-noise for fixed separation d between
the pixels, where d is a multiple of the pixel size. We have

S

N
(d) =

〈ξ̂X〉(d)√
varX(d)

, (43)

where the mean and the variance are given by Eqs. (28), (36)
and (38) when X = dipole and by Eqs. (29), (40) and (41)
when X = octupole. Note that here we calculate the signal-
to-noise of the Doppler magnification only, neglecting the
gravitational lensing contribution. As seen in Section 3.1 this
is an excellent approximation for the dipole below z = 0.5
but it is not a good approximation for the octupole, even at
low redshift. However, as discussed at the end of Section 5,
the signal-to-noise of the octupole is too small to impact the
constraints on cosmological parameters and so we do not
include it in our forecasts.

We first calculate the signal-to-noise for current opti-
cal surveys. We consider three samples: the main sample
of SDSS galaxies at z ≤ 0.2, the LOWz sample and the
CMASS sample. The volume, number density and mean
bias are taken from Percival et al. (2007); Anderson et al.
(2014); Gaztanaga et al. (2015). We assume that for each
galaxy in those samples we have a measurement of the
size and magnitude from which we can infer the conver-
gence using the estimator described in Schmidt et al. (2012);
Casaponsa et al. (2013); Heavens et al. (2013); Alsing et al.
(2015). The signal-to-noise for the dipole in LOWz and
CMASS is plotted in Figure 5. The higher bound corre-
sponds to an intrinsic error on the size measurement of
σκ = 0.3 and the lower bound of σκ = 0.8. The dotted
black line corresponds to a mixed sample with 50% ellip-
tical galaxies with σE

κ = 0.3 and 50% spiral galaxies with
σS
κ = 0.8. Naively one would expect the signal-to-noise of

this mixed sample to be in the middle of the coloured re-
gion. However as shown in (42) the uncertainties on κ add
in quadrature leading to σmixed

κ = 0.6 and not 0.5, which
explains why the dotted line is closer to the lower boundary.
The signal-to-noise is high enough to allow a detection of
the Doppler magnification dipole in these two samples. In
the main sample of SDSS, the signal-to-noise of the dipole
reaches 2-6 (corresponding to σκ = 0.8 and σκ = 0.3 re-
spectively) at low separation d ∼< 50 Mpc/h. The octupole
on the other hand has a signal-to-noise significantly smaller
than one and can therefore not be detected in these samples.

The cumulative signal-to-noise over all separations can
be calculated by accounting for the fact that the signal at
different separations is correlated(
S

N

)2

cum

=
∑
ab

〈ξ̂X〉(da)var−1
X (da, db)〈ξ̂X〉(db) . (44)

We find a cumulative signal-to-noise for the range of sepa-
ration 12 ≤ d ≤ 180 Mpc/h of 3.8 − 10 in the SDSS main
sample, 8.4− 23 in LOWz and 7.3− 20 in CMASS. Assum-
ing that the three samples are uncorrelated, we reach a total
signal-to-noise of 12−31. A robust detection of the Doppler
magnification dipole should therefore be possible with cur-
rent optical surveys.

We then forecast the signal-to-noise for the future Dark
Energy Spectroscopic Instrument (DESI) (Levi et al. 2013),
along with imaging for the galaxies. The Bright Galaxy
DESI survey (Cahn et al. 2015) will observe 10 million
galaxies over 14,000 square degrees at redshift z ≤ 0.3.

To calculate the signal-to-noise in that range, we split the
sample into three thin redshift bins: 0.05 < z < 0.1,
0.1 < z < 0.2 and 0.2 < z < 0.3 that we assume to be
uncorrelated.5 We assume a mean bias of b = 1.17 over the
whole sample, similar to the one of the main SDSS sam-
ple (Percival et al. 2007). In Figure 6 we show the signal-
to-noise as a function of separation for the dipole and the
octupole. The cumulative signal-to-noise over all separations
is 14 − 37 for the dipole and 1.9 − 5 for the octupole. The
dipole should therefore be robustly detected. The octupole
will be difficult to see if σκ is as large as 0.8 but may be just
about detectable with a smaller size error.

Finally we calculate the signal-to-noise for the SKA. In
its second phase of operation the SKA HI (21cm) galaxy sur-
vey will detect galaxies spectroscopically from redshift 0 to 2
over ∼30,000 square degrees. We forecast the signal-to-noise
of the dipole and octupole from redshift 0.1 to 0.5, using
the specifications from Bull (2016) (see table 3). In Figure 7
we show the signal-to-noise for the dipole and the octupole
in the lowest and highest redshift bins: 0.1 < z < 0.2 and
0.4 < z < 0.5. Even though the volume (and consequently
the number of galaxies) increases with redshift, the signal-to-
noise decreases slightly since the signal is significantly larger
at small redshift due to the 1/r dependence of the dipole and
octupole amplitude, as seen from Eq. (13).

The cumulative signal-to-noise over the range of separa-
tion 12 ≤ d ≤ 180 Mpc/h, combining redshifts 0.1 ≤ z ≤ 0.5
(assuming that the redshift bins are uncorrelated), is 35−93
for the dipole and 5.1−14 for the octupole. The SKA should
therefore allow us to robustly detect both the Doppler mag-
nification dipole and octupole. Note that by going to higher
redshifts we can slightly increase the signal-to-noise. For ex-
ample the cumulative signal-to-noise of the dipole including
data up to z = 0.8 increases to 40 − 106. Above redshift
0.5, the contribution to the dipole from gravitational lens-
ing is no longer negligible however, and isolating the Doppler
contribution therefore becomes more difficult. Both must be
modelled together or measured.

5 FORECASTS

Since the Doppler magnification dipole should be detectable
with both current and future experiments, we now forecast
the constraints on cosmological parameters obtained from
this measurement. We use scales between 12 Mpc/h and
180 Mpc/h. The signal-to-noise of the dipole decreases rela-
tively quickly with separation, and scales above 180 Mpc/h
do not improve the constraints by much. At lower separation,
on the other hand, the signal-to-noise increases significantly.
We have however decided to remove scales below 12 Mpc/h
since they are significantly affected by non-linearities 6. To
correctly model these non-linear scales, we should account

5 We restrict the lower redshift to zmin = 0.05 in order to reduce
the impact of local non-linear effects.
6 The cut-off at 12 Mpc/h has been chosen by comparing the lin-
ear prediction for the dipole with the following proxy for the non-

linear dipole: we have used linear Einstein’s equations to relate

the velocity to the density and modelled the non-linear density
with the Halofit power spectrum. Above 12 Mpc/h the non-linear

corrections obtained in this way are smaller than 5%.
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Figure 6. Predicted signal-to-noise for the dipole and octupole in the DESI Bright Galaxy sample, plotted as a function of separation.

The higher bound corresponds to an intrinsic error on the size measurement of σκ = 0.3, and the lower bound of σκ = 0.8. The dotted
black line corresponds to a mixed sample with 50% of galaxies with σκ = 0.3 and 50% with σκ = 0.8.
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Figure 7. Signal-to-noise for the dipole and the octupole in the SKA Phase 2 survey, plotted as a function of separation. Here, we plot

the signal-to-noise calculated in two thin redshift bins: 0.1 < z < 0.2 and 0.4 < z < 0.5. In each plot the higher bound corresponds to

an intrinsic error on the size measurement of σκ = 0.3, and the lower bound of σκ = 0.8. The dotted black line corresponds to a mixed
sample with 50% of galaxies with σκ = 0.3 and 50% with σκ = 0.8.

not only for non-linearities in the density (which can be mod-
elled using the non-linear Halofit power spectrum), but also
for non-linearities in the velocity. This is beyond the scope
of this paper.

We first consider constraints on five cosmological pa-
rameters: Ωm,Ωb, h, the primordial amplitude A and the

dark energy equation of state w0 (assumed constant in
redshift). For SDSS, we add three free bias parameters
with fiducial values b1 = 1.17 in the main sample of
SDSS (Percival et al. 2007; Cresswell & Percival 2009), b2 =
1.77 in LOWz and b3 = 1.89 in CMASS (Gaztanaga et al.
2015). For the SKA we can reasonably assume that the bias
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Figure 8. Joint constraints on Ωm −w0, marginalised over the other parameters, using Planck alone, Planck combined with SDSS, and

Planck combined with SKA Phase 2. We use the dipole at separation 12 Mpc/h ≤ d ≤ 180 Mpc/h. The numbers 0.3 and 0.8 refer to
the value used for σκ. In the left panel, we consider the bias as a free parameter that is marginalised over. For SDSS we include three

parameters, b1, b2 and b3 (one for each sample), whereas for the SKA we have two parameters, c4 and c5 defined in Eq. (45). In the right

panel we assume that the bias is known and fixed to its fiducial value.

Figure 9. Joint constraints on w0 − wa, marginalised over the other parameters, using Planck alone and Planck combined with SKA

Phase 2. We use the dipole at separation 12 Mpc/h ≤ d ≤ 180 Mpc/h. The numbers 0.3 and 0.8 refer to the value used for σκ. In the
left panel, the bias is described by two free parameters, c4 and c5, defined in Eq. (45), that are marginalised over. In the right panel we

assume that the bias is known and we fix c4 and c5 to their fiducial values.

evolves smoothly over the five redshift bins. We model its
evolution using

b(z) = c4 exp(c5z) , (45)

where c4 and c5 are two free parameters (see Bull 2016).
In the left panel of Figure 8 we show the joint con-

straints on Ωm − w0, marginalised over the other cosmo-
logical parameters and bias parameters. We compare the
constraints from using Planck alone, Planck combined with
SDSS, and Planck combined with the SKA.7 For each case

7 To include the Planck constraints (including CMB lensing

power spectra to break the geometric degeneracy), we pro-
duced an approximate Fisher matrix by calculating the (in-

verse) covariance of the relevant cosmological parameters from the

we show how the constraints change when the error on the
convergence goes from σκ = 0.8 to σκ = 0.3. We see that
for SDSS, assuming σκ = 0.3, the dipole already improves
the constraints from Planck by 20 percent on Ωm and 7 per-
cent on w0. With the SKA the improvement is even more
significant, showing that the dipole genuinely adds valuable
information on the growth of structure.

Comparing with current constraints from redshift-space
distortions, we see that the SKA constraints on Ωm are sim-
ilar to current BOSS constraints, whereas the constraints on
w0 are weaker by a factor 2 (see e.g. Figure 13 of Grieb et al.
2016). The reason is that redshift-space distortions mea-

Planck 2015 base_w_plikHM_TT_lowTEB_post_lensing MCMC
chains (Ade et al. 2015).
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Figure 10. Joint constraints on Ωm − γ, marginalised over the other parameters, using Planck combined with SKA Phase 2. We use

the dipole at separation 12 Mpc/h ≤ d ≤ 180 Mpc/h. The numbers 0.3 and 0.8 refer to the value used for σκ. In the left panel, the bias
is described by two free parameters c4 and c5 defined in Eq. (45), that are marginalised over. In the right panel we assume that the bias

is known and we fix c4 and c5 to their fiducial values.

sure the monopole and the quadrupole, which are sensi-
tive to different combinations of the bias and the growth
rate. Combining those measurements allows one to sepa-
rately constrain bσ8 and fσ8. The dipole, on the other hand,
is sensitive to the combination (b+ 3f/5)fσ8, and does not
on its own allow separate constraints on the bias and the
growth rate (see Eq. (28)). In the right panel of Figure 8,
we show how the constraints on Ωm − w0 improve if we as-
sume that the bias is perfectly known. We see that in this
case the constraints from the dipole become much tighter
for both SDSS and the SKA. The bias can be measured
separately from higher-order correlation functions or lensing
cross-correlations, making some of this increase in precision
achievable in practice. Since they constrain different combi-
nations of f and b, redshift-space distortions and Doppler
magnification dipole measurements could also be combined
to break degeneracies between these parameters.

In Appendix E we show the constraints on the other
cosmological parameters from SDSS (Figure D1) and from
the SKA (Figure D2), marginalised over the bias parameters.
We see that if the error on the convergence is as large as
σκ = 0.8 the dipole in SDSS adds almost nothing to the
constraints from Planck. For σκ = 0.3, the improvement over
Planck alone is however non-negligible. Using the SKA, we
see a significant improvement over Planck alone, for both
values of σκ.

We then explore models beyond ΛCDM. First we let
the equation of state evolve with time (Chevallier & Polarski
2001; Linder 2003)

w(a) = w0 + wa(1− a) . (46)

In Figure 9 we show the constraints on w0−wa (marginalised
over the other parameters) from Planck alone and Planck
combined with the SKA. In the left panel we marginalise
over the bias parameters, whereas in the right panel we
fix the bias to its fiducial value. Comparing with the con-
straints from redshift-space distortions (see e.g. Figure 10
of Grieb et al. 2016) we see that the Doppler magnification
dipole provides slightly stronger constraints. We find that

fixing the bias to its fiducial value improves the constraints
by 20 percent on both w0 and wa. Note that the constraints
on w0−wa from the Doppler magnification dipole are similar
to those obtained from shear measurements with the SKA
Phase 2 (see e.g. Figure 4 of Harrison et al. 2016).

We then explore deviations from General Relativ-
ity by letting the growth rate evolve according to f =
(Ωm(a))γ , where γ is a free parameter (in General Rela-
tivity γ ' 0.55, see e.g. Wang & Steinhardt 1998; Linder
2005; Ferreira & Skordis 2010). Even though this parametri-
sation does not provide a description of all models beyond
General Relativity, it is useful because it gives an easy way
of assessing the potential of our observable to constrain
modified gravity scenarios. In a forthcoming work we will
study in detail how generic models of modified gravity af-
fect the Doppler magnification dipole, and what kind of de-
viations from General Relativity can be constrained by this
observable. In Figure 10 we show the constraints on Ωm− γ
(marginalised over the other parameters) from Planck com-
bined with the SKA.8 In the left panel we marginalise over
the bias parameters, while in the right panel we fix the bias
to its fiducial value.

When the bias is free, the constraints on γ are weaker
than those obtained from redshift-space distortions, see e.g.
Figure 15 of Grieb et al. (2016) (note however that the con-
straints are not directly comparable, since Figure 15 shows
the constraints on w0 − γ). This reflects the fact that the
dipole on its own does not allow us to constrain the bias
and the growth rate separately: a change in the parameter γ
can therefore be reabsorbed into a change in the bias. Fixing
the bias to its fiducial value breaks this degeneracy and con-
sequently improves the constraints on γ by a factor 7. This
shows that combining measurement of the Doppler magnifi-
cation dipole with bias measurements (for example from the
monopole and quadrupole of redshift-space distortions) can
potentially place stringent constraints on the growth rate.

8 Note that Planck does not provide constraints on γ, but does

help to improve precision through the constraint on Ωm.
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Finally, we have explored how adding the octupole mod-
ifies the constraints on cosmological parameters. The oc-
tupole is potentially very interesting, as it does not depend
on the galaxy bias; see Eq. (29). However we find that adding
the octupole leaves the constraints almost unchanged. This
is because the signal-to-noise of the octupole is significantly
lower than the one of the dipole, as shown in Figure 7.

One could argue that the information contained in the
Doppler magnification dipole is the same as the one in the
monopole and quadrupole of redshift-space distortions, as
they all probe the growth rate f . However, in addition to
providing an independent measurement of the growth rate,
the dipole also has the advantage of having a different depen-
dence on scale. From Eq. (14) we see that the shape of the
dipole is determined by the integral of the power spectrum
multiplied by (H0/k)j1(kd). The monopole and quadrupole
on the other hand contain an integral of the power spec-
trum multiplied by j0(kd) and j2(kd) respectively, without
the (H0/k) suppression, see e.g. Bonvin et al. (2014). If the
growth rate is independent of scale, as predicted by General
Relativity, then the different scalings of the integrals is ir-
relevant, since the growth rate factors out. If the growth is
scale-dependent, however, it will induce different signatures
in the dipole than in the monopole and the quadrupole, due
to the H0/k suppression. Combining the dipole with the
monopole and quadrupole therefore provides a way of test-
ing the consistency of a scale-independent growth rate.

6 COMPARISON WITH OTHER VELOCITY
ESTIMATORS

Measurements of peculiar velocities from galaxy surveys
have a long history. In Section 5 we compared the
Doppler magnification dipole with velocity measurements
from redshift-space distortions. Here we briefly discuss how
our estimator compares with measurements of the velocity
that combine redshift and distance (Tully & Fisher 1977;
Dressler et al. 1987; Djorgovski & Davis 1987; Tonry et al.
2000; Turnbull et al. 2012; Tully et al. 2013; Springob et al.
2014), as well as with more recent propositions of measuring
velocities using cross-correlations of galaxy populations with
different biases (Bonvin et al. 2014, 2016; Gaztanaga et al.
2015; Hall & Bonvin 2016).

6.1 Comparison with distance measurements

In addition to measurements from redshift-space distortions,
peculiar velocities have been measured through their effect
on the distance to galaxies. More precisely, at low redshift
we can write

V · n = cz −H0r . (47)

Combining redshift measurements with independent mea-
surements of the distance r therefore allows the galaxy’s
radial peculiar velocity to be measured directly. Various
methods have been developed over the years to measure
the distance to galaxies. For example, the Tully-Fisher re-
lation (Tully & Fisher 1977) allows us to measure distances
to spiral galaxies, the Dn − σ relation (Dn being the lu-
minous diameter and σ the velocity dispersion) associated
with the fundamental plane for elliptical galaxies provides

a distance indicator for elliptical galaxies (Dressler et al.
1987; Djorgovski & Davis 1987), fluctuations of the sur-
face brightness can be used to measure distances to early-
type galaxies (Tonry et al. 2000), and flux measurements
of supernovae allow us to measure their luminosity dis-
tance (Turnbull et al. 2012). Using Eq. (47) these dis-
tances can then be used to infer the peculiar velocities (see
Tully et al. 2013; Springob et al. 2014, for recent velocity
catalogues). These measurements are usually limited to low
redshift. The first reason is that even a relatively small error
on the distance generates a large error on the Hubble flow
subtraction as the distance increases. For example, a 10%
error at 50 Mpc/h generates an error H0δr = 500 km/s, i.e.
of the order of magnitude of the peculiar velocity we want to
measure. The second limitation comes from the fact that, as
redshift increases, the contribution from gravitational lens-
ing to the distance becomes more and more important (see
e.g. Bonvin et al. 2006), contaminating the measurement of
peculiar velocities.

Our estimator is similar in essence to the methodology
of Eq. (47): we look at fluctuations in the size of galaxies
(which are directly related to their distance) to infer the
peculiar velocity. However by looking at cross-correlations
between sizes and galaxy number counts, and by fitting for
a dipole, we overcome the two problems associated with dis-
tance measurements. First, we get rid of the background part
by averaging the sizes at fixed redshift and removing this av-
erage from the convergence. Second, as shown in Section 3,
by fitting for a dipole we can efficiently remove the lensing
contamination up to z ' 0.5, and even at high redshift z ' 1
we can reduce the impact of gravitational lensing drastically.
These improvements do not directly measure the radial ve-
locity as in Eq. (47) however, but rather its correlation with
density fluctuations.

6.2 Comparison with the dipole of 〈∆∆〉

Another method to measure peculiar velocities has
been proposed recently in Bonvin et al. (2014, 2016);
Gaztanaga et al. (2015). The idea is to cross-correlate dif-
ferent populations of galaxies with different biases and to fit
for a dipole in the cross-correlation. This allows us to isolate
the following combination of velocities and the gradient of
the potential in the number counts:

∆dip =

[
1− ḢH2

− 2

rH + 5s

(
1− 1

rH

)]
V · n (48)

+
1

H∂rΨ +
1

H V̇ · n .

This dipole has a lower signal-to-noise than the dipole of
〈∆κ〉 (see Bonvin et al. 2016), and will be challenging to
measure in current galaxy surveys – the cumulative signal-
to-noise in the main sample of SDSS galaxies is 2.4. It should
be robustly detected in future galaxy surveys though, such
as DESI (where the signal-to-noise is 7.4). With SKA Phase
2, we should be able to detect it with a signal-to-noise of
∼100 (Hall & Bonvin 2016). From Eq. (48), we see that the
dipole of 〈∆∆〉measures a different combination of velocities
than the dipole of 〈∆κ〉, see Eq. (9). Furthermore, the dipole
of 〈∆∆〉 is also sensitive to the gradient of Ψ. Combining the
two dipoles would therefore allow us to test the validity of
the Euler equation in a model-independent way, i.e. to test
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if galaxies move according to the gravitational potential Ψ
or if they are affected by an additional force.

7 CONCLUSION

Peculiar velocities are useful for testing the consistency of
General Relativity, as they allow us to directly measure the
rate at which structures grow with time. Combined with
density measurements, velocities therefore provide useful
constraints on cosmological models beyond ΛCDM. Vari-
ous methods have been proposed over the years to mea-
sure peculiar velocities from large-scale structure observa-
tions. A key approach consists in looking at how pecu-
liar velocities change the apparent distance between us and
nearby objects (Tully & Fisher 1977; Dressler et al. 1987;
Djorgovski & Davis 1987; Tonry et al. 2000; Turnbull et al.
2012; Tully et al. 2013; Springob et al. 2014). By combining
distance measurements with redshift information, one can
measure the radial component of peculiar velocities. This
method has delivered useful measurements of galaxies’ ve-
locities, but has the disadvantage of being restricted to low
redshifts, where the scatter in the distance measurements
does not wash out the signal.

Another fruitful method, which has been used exten-
sively during the last decades, consists in looking at how
peculiar velocities change the amplitude of the two-point
correlation function of galaxies (or of its Fourier transform,
the power spectrum), via the so-called redshift-space dis-
tortions (Kaiser 1987; Lilje & Efstathiou 1989; Hamilton
1992). The origin of the distortions is the same as before:
velocities change the apparent distance to the galaxies, and
since we use distances to pixelise our sky, they change the
size of the redshift bins in which we count how many galaxies
we have. As a consequence, the number of galaxies that we
detect per pixel is modified by peculiar velocities. A whole
machinery has been developed over the years to extract ve-
locity measurements from the two-point correlation function
and the power spectrum, giving rise to valuable constraints
on cosmological parameters (see e.g. Hawkins et al. 2003;
Zehavi et al. 2005; Guzzo et al. 2008; Cabre & Gaztanaga
2009; Song et al. 2011; Samushia et al. 2014; Chuang et al.
2013; Satpathy et al. 2016; Beutler et al. 2016).

Here, we have proposed an alternative method: since ve-
locities change the observed distance to galaxies, they also
change their apparent size. Consequently, measurements of
the convergence field are automatically affected by pecu-
liar velocities (Bonvin 2008; Bolejko et al. 2013; Bacon et al.
2014). In this paper we constructed an estimator to measure
the velocities using this effect. We have shown that by corre-
lating the convergence with the number counts of galaxies,
and by fitting for a dipole, we can isolate the velocity con-
tribution from the gravitational lensing contribution up to
a redshift of ∼ 0.5. This method therefore provides a com-
petitive alternative to other velocity probes. We have shown
that the signal-to-noise of the dipole is sufficiently large to
be detected in current optical surveys. We also forecasted
the signal-to-noise for the future DESI and SKA2 HI galaxy
surveys, showing that the dipole will be robustly detected
in these samples. Finally, we computed the expected con-
straints on cosmological parameters for SDSS and the SKA,

demonstrating the potential of this new observable to test
the growth of structure.

The information from size measurements is expected
to be similar to that from redshift-space distortions, as in
both cases the effect is due to the impact of velocities on
distances. Measuring sizes is very different from counting
objects however, and so we expect the two observables to
be affected differently by uncertainties. Moreover, since the
Doppler magnification dipole has a different scale depen-
dence than redshift-space distortions, it allows us to test the
consistency of a scale-independent growth rate. The con-
vergence dipole therefore provides a new and competitive
method to measure peculiar velocities from large-scale struc-
ture surveys.
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APPENDIX A: MEAN OF THE DIPOLE AND
OCTUPOLE ESTIMATORS

We calculate the mean of the dipole and octupole estima-
tors (25) and (26). In the continuous limit the sum over
pixels becomes∑
i

=
1

`3p

∫
d3xi and δK(dij − d) = `pδD(dij − d) , (A1)

where `p is the size of the cubic pixels in which we measure
the convergence and the number counts. The mean of the
dipole then becomes

〈ξ̂dip〉(d) =
aN

`5p

∫
d3xi

∫
d3xj〈∆iκj〉 cosβijδD(dij − d) .

(A2)

Since the Universe is statistically homogeneous and
isotropic, we can fix the position of the pixel i and then
multiply by the volume of the survey V to account for the
integral over xi. The integral over xj can be expressed in
spherical coordinates. By isotropy, the two-point function
does not depend on the azimuthal angle ϕ, so the mean is

〈ξ̂dip〉(d) =
2πaNV d

2

`5p

∫ π

0

dβ sinβ cosβ〈∆κ〉 . (A3)

Inserting the expression for 〈∆κ〉 and integrating over β we
find

〈ξ̂dip〉(d) =
4πaNV d

2

3`5p

H(z)

H0
f(z) (A4)

×
(

1− 1

H(z)r

)(
b(z) +

3f(z)

5

)
ν1(d) .
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Choosing the normalisation

aN =
3

4π

`5p
d2V

, (A5)

we obtain Eq. (28). A similar calculation for the octupole
gives Eq. (29).

APPENDIX B: VARIANCE

To calculate the second term in Eq. (35) we follow the deriva-
tion presented in Hall & Bonvin (2016). In the continuous
limit, we have

var2 =
9`3pσ

2
κ

16π2V 2d2d′2

∫
d3xi

∫
d3xj

∫
d3xaC

∆
ia (B1)

× cosβij cosβajδD(dij − d)δD(daj − d′) .

We make a change of variables yi = xi−xj and ya = xa−xj .
The integral over xj becomes trivial, and gives the volume of
the survey V . In the distant observer approximation, where
we have one fixed line-of-sight n, Eq. (B1) becomes

var2 =
9`3pσ

2
κ

4(2π)5V d2d′2

∫
d3k P (k, z)

[
b2 +

2bf

3
+
f2

5
(B2)

+

(
4bf

3
+

4f2

7

)
P2(k̂ · n) +

8f2

35
P4(k̂ · n)

]

×
∫
d3yie

−ik·yi cosβyiδD(yi − d)

×
∫
d3yae

ik·ya cosβyaδD(ya − d′) .

The integrals over yi and ya can be performed analytically,
giving rise to

16π2d2d′2 cos(n · k)2j1(kd)j1(kd′) . (B3)

Inserting this into (B2) we obtain

var2 =
9

4π2

`3p
V
σ2
κ

∫
dkk2P (k, z)j1(dk)j1(kd′)

∫ 1

−1

dµµ2 (B4)

×
[
b2 +

2bf

3
+
f2

5
+

(
4bf

3
+

4f2

7

)
P2(µ) +

8f2

35
P4(µ)

]
.

Performing the integral over µ, we obtain Eq. (38).

APPENDIX C: VARIANCE FOR GALAXIES
WITH DIFFERENT σκ

In Section 4 and Appendix B the variance was calculated
assuming that the size of all galaxies can be measured with
the same error σκ. In reality, surveys are composed of both
early-type (elliptical) galaxies, for which σκ ∼ 0.3, and
late-type (spiral) galaxies for which σκ ∼ 0.8, as discussed
in Alsing et al. (2015). To calculate the variance in this case,
we assume that in each pixel j we measure either only the
convergence from elliptical galaxies, with an error σE

κ = 0.3,
or only from spiral galaxies, with an error σS

κ = 0.8. The
estimator for the dipole becomes

ξ̂dip(d) = aN

∑
i

(∑
j∈E

∆iκ
E
j +

∑
j∈S

∆iκ
S
j

)
cosβijδK(dij−d) ,

(C1)

where κE
j = κj + σE

κ and κS
j = κj + σS

κ, and κj is the true
convergence in pixel j. The noise cancels on average, so that

〈∆iκ
E
j 〉 = 〈∆jκ

S
j 〉 = 〈∆jκj〉 , (C2)

and we recover the mean of the estimator given by Eq. (28).
The variance of the estimator is different, however. Us-

ing Eq. (C1) we obtain

var
(
ξ̂dip

)
=

〈(
ξ̂dip

)2
〉
−
〈
ξ̂dip

〉2

=
9`10
p

16π2V 2d2d′2

×
∑
ia

∑
AB∈{E,S}

∑
j∈A

∑
b∈B

[
〈∆iκ

A
j ∆aκ

B
b 〉 − 〈∆iκ

A
j 〉〈∆aκ

B
b 〉
]

× cosβij cosβabδK(dij − d)δK(dab − d′) . (C3)

As explained in Section 4, the dominant contributions to the
variance are from the auto-correlation of ∆ and κ, so that
Eq. (C3) becomes

var
(
ξ̂dip

)
=

9`10
p

16π2V 2d2d′2

∑
ia

∑
AB∈{E,S}

∑
j∈A

∑
b∈B

× 〈∆i∆a〉〈κAj κBb 〉 × cosβij cosβabδK(dij − d)δK(dab − d′) .
(C4)

Since we have assumed that in one pixel we have either el-
liptical or spiral galaxies (but not both), we can write

〈κAj κBb 〉 =
(
σAκ
)2
δABδjb , (C5)

where, as explained in Section 4, we can neglect the cosmic
variance contribution Cκij . Inserting (C5) and (32) into (C4)
we obtain

var
(
ξ̂dip

)
=

9`10
p

16π2V 2d2d′2

∑
A∈{E,S}

∑
j∈A

(
σAκ
)2

(C6)

×

[
1

δn̄

∑
i

cos2 βijδK(dij − d)δK(d− d′)

+
∑
ia

C∆
ia cosβij cosβajδK(dij − d)δK(daj − d′)

]
.

Expression (C6) can be calculated in the continuous limit
following the same steps as described in Section 4 and Ap-
pendix B. The only difference is that the sum over pixels
j runs separately over elliptical and spiral galaxies. We can
rewrite it as∑
j∈A

→ 1

`3p

∫
d3xj∈A =

1

`3p
V
NA

tot

Ntot
, (C7)

where NA
tot denotes the number of galaxies of type A. With

this, the two contributions to the variance take the simple
form

var1

(
ξ̂dip

)
=

3

4π

`2p
d2

(
σmixed
κ

)2
Ntot

δK(d− d′) , (C8)

var2

(
ξ̂dip

)
=

9

2π2

`3p
V

(
σmixed
κ

)2( b2
3

+
2bf

5
+
f2

7

)
(C9)

×
∫
dkk2P (k, z)j1(kd)j1(kd′) ,

with(
σmixed
κ

)2
=
NE

tot

Ntot

(
σE
κ

)2
+
NS

tot

Ntot

(
σS
κ

)2
. (C10)
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In a sample with 50% elliptical galaxies and 50% spiral
galaxies, we obtain σmixed

κ = 0.6. The signal-to-noise in this
case is therefore reduced by a factor 2 with respect to the
optimal scenario, where all galaxies are assumed to be mea-
sured with σκ = 0.3.

APPENDIX D: AVERAGE OVER THICK
SHELLS

In Section 4, the mean and variance of the dipole and oc-
tupole were calculated at fixed separations d and d′ between
pixels. In practice we may want to average the signal over
a range of separations dmin ≤ d ≤ dmax. In this case, the
estimator for the dipole reads

ξ̂dip(d) = aN

∑
ij

∆iκj cosβijΘ(dij − dmin)Θ(dmax − dij) ,

(D1)

where Θ denotes the Heaviside step function Θ(x) = 1 if
x ≥ 0 and zero elsewhere. In the continuous limit, the mean
of Eq. (D1) becomes

〈ξ̂dip〉 =
H(z)

H0
f(z)

(
1− 1

H(z)r

)(
b(z) +

3f(z)

5

)
(D2)

× 1

`pd̄2

∫ dmax

dmin

ds s2ν1(s) ,

where d̄ is the mean separation between dmin and dmax.
The first contribution to the variance reads

var1 =
9`10
p

16π2V 2d̄2d̄′2
σ2
κ

δn̄

∑
ij

(cosβij)
2 (D3)

×Θ(dij − dmin)Θ(dmax − dij)Θ(dij − d′min)Θ(d′max − dij) .

Taking the continuous limit, we obtain

var1 =
3

4π

`p(d̃
3
max − d̃3

min)

3Ntotd̄2d̄′2
σ2
κ , (D4)

where d̃min = max
(
dmin, d

′
min

)
and d̃max = min

(
dmax, d

′
max

)
.

The second contribution to the variance reads

var2 =
9`10
p

16π2V 2d̄2d̄′2
σ2
κ

∑
ija

C∆
ia cosβij cosβaj (D5)

×Θ(dij − dmin)Θ(dmax − dij)Θ(daj − d′min)Θ(d′max − daj) .

Following the same steps as in Appendix B, we obtain

var2

(
ξ̂dip

)
=

9`p

2π2V d̄2d̄′2
σ2
κ

(
b2

3
+

2bf

5
+
f2

7

)
(D6)

×
∫
dkk2P (k, z)

∫ dmax

dmin

ds s2j1(ks)

∫ d′max

d′min

ds′s′2j1(ks′) .

Similar expressions can be derived for the octupole.

APPENDIX E: FISHER FORECASTS

In Figures D1 and D2 we show the constraints on
Ωm,Ωb, h, w0 and A using SDSS and the SKA Phase 2.
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show constraints for σκ = 0.3 (left panel) and σκ = 0.8 (right panel).
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